WO2009116571A1 - 圧延機及び圧延方法 - Google Patents

圧延機及び圧延方法 Download PDF

Info

Publication number
WO2009116571A1
WO2009116571A1 PCT/JP2009/055282 JP2009055282W WO2009116571A1 WO 2009116571 A1 WO2009116571 A1 WO 2009116571A1 JP 2009055282 W JP2009055282 W JP 2009055282W WO 2009116571 A1 WO2009116571 A1 WO 2009116571A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
shape
temperature
plate material
work roll
Prior art date
Application number
PCT/JP2009/055282
Other languages
English (en)
French (fr)
Inventor
裕之 大塚
茂 都筑
剛 杉安
司 松澤
肇 石井
恒 本城
Original Assignee
株式会社Ihi
Ihiメタルテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, Ihiメタルテック株式会社 filed Critical 株式会社Ihi
Priority to CN200980107221.6A priority Critical patent/CN101959624B/zh
Priority to KR1020107018907A priority patent/KR101234820B1/ko
Priority to US12/921,969 priority patent/US8573015B2/en
Publication of WO2009116571A1 publication Critical patent/WO2009116571A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/30Control of flatness or profile during rolling of strip, sheets or plates using roll camber control
    • B21B37/32Control of flatness or profile during rolling of strip, sheets or plates using roll camber control by cooling, heating or lubricating the rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Definitions

  • the present invention relates to a rolling mill and a rolling method.
  • This application claims priority based on Japanese Patent Application No. 2008-073597 filed in Japan on March 21, 2008, the contents of which are incorporated herein by reference.
  • Patent Document 1 in a rolling mill that rolls a plate with a pair of upper and lower work rolls, a base coolant supply unit that jets base coolant to the work rolls, and a spot that jets spot coolant to the work rolls A coolant supply unit is provided, and the base coolant and spot coolant are set at a flow rate ratio based on the temperature difference between the base coolant and spot coolant, and the base coolant and spot coolant are injected at this set flow rate ratio.
  • a rolling mill and a rolling method that control the shape of the plate material in the plate width direction by controlling the coolant supply unit and the spot coolant supply unit are disclosed. Japanese Patent No. 3828784
  • the shape in the width direction of the plate material is controlled based on the temperature difference between the base coolant and the spot coolant.
  • the effect of the coolant control on the shape change of the plate material is greater in the factors determined by the temperature difference between the work roll and the coolant than in the influence of the temperature difference between the base coolant and the spot coolant.
  • the prior art cannot be said to be a rolling mill and a rolling method that are accurate and effective as shape control of the plate material.
  • This invention is made
  • the present invention is a rolling mill that rolls a plate material with upper and lower work rolls, and has a plurality of nozzles arranged at predetermined intervals along the rotation axis direction of the work rolls, and the work pieces from each nozzle
  • a coolant injection section for injecting coolant to the roll; a roll temperature estimation section for estimating an average temperature of the work roll; a coolant temperature detection section for detecting the temperature of the coolant; and a width direction of the rolled sheet material
  • a shape detecting unit for detecting a shape; a shape deviation calculating unit for calculating a deviation amount between a plate material shape detected by the shape detecting unit and a target shape; a difference between an average temperature of the work roll and a temperature of the coolant; And controlling the injection amount and / or temperature of the coolant injected from the coolant injection unit based on the deviation amount between the plate material shape and the target shape.
  • the present invention is a rolling mill that rolls a plate material with upper and lower work rolls, and has a plurality of nozzles arranged at predetermined intervals along a rotation axis direction of the work rolls, and the work pieces are separated from the nozzles.
  • a base coolant injection section for injecting base coolant to the roll; and a plurality of nozzles arranged at predetermined intervals along a rotation axis direction of the work roll, and spot coolant is applied from each nozzle to the work roll.
  • a shape detecting unit for detecting a shape in the width direction of the rolled plate material; and the shape detecting unit
  • a shape deviation calculation unit for calculating a deviation amount between the detected shape of the plate material and the target shape; a difference between the average temperature of the work roll and the temperature of the base coolant; the average temperature of the work roll; and the spot coolant
  • the base coolant injection amount and temperature injected from the base coolant injection unit based on the difference between the temperature and the deviation amount between the plate material shape and the target shape, and the spot coolant injection unit A shape control unit that controls the shape of the plate material by controlling at least one of the spray amount and temperature of the spot coolant.
  • the roll temperature estimation unit includes a motor current detection unit that detects a current value of a motor that rotates the work roll; and a current value of the motor.
  • a temperature calculation unit that calculates a plate plastic deformation energy based on the plate plastic deformation energy and calculates an average temperature of the work roll using the plate plastic deformation energy.
  • the roll temperature estimation unit calculates a plate plastic deformation energy based on a predetermined plastic processing arithmetic expression, and uses the plate plastic deformation energy. You may calculate the average temperature of the said work roll.
  • this invention is a rolling method which rolls a board
  • the shape of the plate material is controlled by controlling the injection amount and / or temperature of the coolant based on the deviation amount from the target shape. Having; and Jo control process.
  • this invention is a rolling method which rolls a board
  • the shape of the plate material is controlled by controlling the injection amount and / or temperature of the coolant to the work roll based on the temperature difference between the work roll and the coolant and the deviation amount between the plate material shape and the target shape. Therefore, the plate shape can be controlled more accurately than before.
  • the rolling mill according to the present embodiment includes the following: work rolls 10 a and 10 b, backup rolls 11 a and 11 b, base coolant spray (base coolant injection unit) 12 a, 12b, spot coolant spray (spot coolant injection unit) 13a, 13b, base coolant valve group 14, spot coolant valve group 15, shape detection device (shape detection unit) 16, shape deviation calculation device (shape deviation calculation unit) 17, motor Current sensor (motor current detection unit) 18, roll average temperature calculation device (temperature calculation unit) 19, coolant supply device 20, base coolant temperature adjustment device 21, spot coolant temperature adjustment device 22, base coolant temperature sensor (base coolant temperature detection) Part) 23, Spot Cou Cement temperature sensor (spot coolant temperature detecting section) 24, the shape control (shape control unit) 25.
  • Reference numeral 100 denotes a plate material rolled by the present rolling mill
  • FIG. 1 is a schematic view of the work rolls 10a and 10b, the backup rolls 11a and 11b, the base coolant sprays 12a and 12b, the spot coolant sprays 13a and 13b, the shape detection device 16, and the plate member 100 viewed from the side surface (X-axis direction).
  • FIG. 2 is a schematic view of the work roll 10a, the base coolant spray 12a, the spot coolant spray 13a, the shape detection device 16, and the plate material 100 as viewed from the upper surface (Z-axis direction).
  • a base coolant valve group 14 a spot coolant valve group 15, a shape deviation calculation device 17, a motor current sensor 18, a roll average temperature calculation device 19, a coolant supply device 20, and a base coolant are shown. It is assumed that the temperature adjustment device 21, the spot coolant temperature adjustment device 22, the base coolant temperature sensor 23, the spot coolant temperature sensor 24, and the shape control device 25 are arranged regardless of the XYZ orthogonal coordinate system.
  • the work rolls 10a and 10b are a pair of upper and lower rolling work rolls provided on the Z-axis.
  • the work rolls 10a and 10b are rotationally driven by a roll motor (not shown) and a plate material 100 supplied from a plate supply roll (not shown) between the rolls.
  • the plate material 100 is rolled by sandwiching.
  • the backup rolls 11a and 11b are a pair of upper and lower work roll support rolls provided on the Z axis.
  • the backup roll 11a supports the work roll 10a from above, and the backup roll 11b supports the work roll 10b from below.
  • the base coolant sprays 12a and 12b are a pair of upper and lower base coolant sprays provided on the Z axis.
  • Base coolant is supplied to the pair of base coolant sprays 12 a and 12 b via a base coolant valve group 14.
  • the base coolant spray 12a sprays the base coolant toward the work roll 10a
  • the base coolant spray 12b sprays the base coolant toward the work roll 10b.
  • the spot coolant sprays 13a and 13b are a pair of upper and lower spot coolant sprays provided on the Z axis. Spot coolant is supplied to the pair of spot coolant sprays 13 a and 13 b via a spot coolant valve group 15.
  • the spot coolant spray 13a sprays spot coolant toward the work roll 10a
  • the spot coolant spray 13b sprays spot coolant toward the work roll 10b.
  • the spot coolant spray 13a is provided above the base coolant spray 12a
  • the spot coolant is sprayed above the base coolant to the work roll 10a.
  • the spot coolant spray 13b is provided below the base coolant spray 12b, the spot coolant is injected below the base coolant to the work roll 10b.
  • the base coolant spray 12a and the spot coolant spray 13a are representatively illustrated.
  • the base coolant spray 12a has a unit structure extending in the rotation axis direction (that is, the X axis direction) of the work roll 10a, and can individually inject the base coolant along the X axis direction.
  • m nozzles NB1 to NBm are provided at predetermined intervals.
  • the base coolant valve group 14 includes m valves VB1 to VBm corresponding to the nozzles NB1 to NBm described above.
  • These valves VB1 to VBm are electromagnetic valves whose open / close states are individually controlled by a base valve control signal output from the shape control device 25.
  • the valves VB1 to VBm (solenoid valves) supply the base coolant supplied via the base coolant temperature adjusting device 21 to the corresponding nozzles NB1 to NBm according to the base valve control signal.
  • the spot coolant spray 13a like the base coolant spray 12a, has a unit structure extending in the direction of the rotation axis of the work roll 10a, and nozzles NS1 to NSm capable of individually injecting spot coolant along the X-axis direction are provided. , M are provided at predetermined intervals.
  • the spot coolant valve group 15 includes m valves VS1 to VSm corresponding to the nozzles NS1 to NSm described above. These valves VS1 to VSm are electromagnetic valves whose open / close states are individually controlled by spot valve control signals output from the shape control device 25.
  • the valves VS1 to VSm (solenoid valves) supply spot coolant supplied via the spot coolant temperature adjusting device 22 to the corresponding nozzles NS1 to NSm according to the spot valve control signal.
  • the detailed configuration of the base coolant spray 12b and the spot coolant spray 13b is the same as that of the base coolant spray 12a and the spot coolant spray 13a.
  • the shape detection device 16 is provided on the downstream side of the work rolls 10a and 10b, and the same number (m) of rotary rotors R1 to Rm as the nozzles are in contact with the lower surface of the rolled plate material 100 in the plate width direction. (That is, they are connected in the X-axis direction).
  • the shape detection device 16 detects the plate shape in the plate width direction of the rolled plate material 100 by the rotary rotors R1 to Rm, and outputs a shape detection signal Sf representing the detected plate shape to the shape deviation calculation device 17. .
  • the shape deviation calculation device 17 Based on the shape detection signal Sf, calculates a deviation amount between the detected plate shape and the target plate shape, and outputs shape deviation data Df representing the deviation amount to the shape control device 25.
  • the motor current sensor 18 detects a current Im (motor current) flowing through the roll motor that rotationally drives the work roll 10 b and outputs a motor current detection signal Si representing the detected motor current Im to the roll average temperature calculation device 19.
  • the roll average temperature calculation device 19 includes a motor current detection signal Si (that is, motor current Im) output from the motor current sensor 18 and a base coolant temperature detection signal Stc (that is, base coolant temperature output from the base coolant temperature sensor 23).
  • the roll average temperature Tr is calculated based on Tc), and a roll average temperature calculation signal Sr representing the calculated roll average temperature Tr is output to the shape control device 25. The method for calculating the roll average temperature Tr will be described later.
  • the coolant supply device 20 supplies the base coolant to the base coolant valve group 14 via the base coolant temperature adjustment device 21 and also supplies the spot coolant to the spot coolant valve group 15 via the spot coolant temperature adjustment device 22.
  • the base coolant temperature adjustment device 21 has functions of a cooler and a heater, and adjusts the temperature of the base coolant supplied from the coolant supply device 20 in accordance with a base coolant temperature control signal output from the shape control device 25.
  • the spot coolant temperature adjustment device 22 has functions of a cooler and a heater, and adjusts the temperature of the spot coolant supplied from the coolant supply device 20 in accordance with a spot coolant temperature control signal output from the shape control device 25.
  • the spot coolant temperature Ts may be lower or higher than the roll average temperature Tr.
  • the base coolant temperature sensor 23 is provided between the base coolant temperature adjusting device 21 and the base coolant valve group 14, detects the base coolant temperature, and indicates the detected base coolant temperature Tc.
  • the detection signal Stc is output to the roll average temperature calculation device 19 and the shape control device 25.
  • the spot coolant temperature sensor 24 is provided between the spot coolant temperature adjusting device 22 and the spot coolant valve group 15, detects the temperature of the spot coolant, and expresses the detected spot coolant temperature Ts.
  • the detection signal Sts is output to the shape control device 25.
  • the shape control device 25 determines the shape of the plate material 100 in the plate width direction.
  • the shape of the plate member 100 is controlled by controlling at least one of the following so that the deviation amount becomes zero:
  • the flow rate of the base coolant supplied to the nozzles NB1 to NBm of the base coolant sprays 12a and 12b that is, the base coolant injection amount of the nozzles NB1 to NBm
  • the flow rate of spot coolant supplied to the nozzles NS1 to NSm of the spot coolant sprays 13a and 13b that is, the amount of spot coolant sprayed from the nozzles NS1 to NSm
  • the temperature of the base coolant • Spot coolant temperature.
  • the shape control device 25 controls the open / closed state of the valves VB1 to VBm in the base coolant valve group 14 by outputting a base valve control signal. Further, when controlling the spot coolant injection amount, the shape control device 25 controls the open / close state of the valves VS1 to VSm in the spot coolant valve group 15 by outputting a spot valve control signal. In addition, when controlling the temperature of the base coolant, the shape control device 25 controls the base coolant temperature adjusting device 21 by outputting a base coolant temperature control signal. When controlling the temperature of the spot coolant, the shape control device 25 controls the spot coolant temperature adjusting device 22 by outputting a spot coolant temperature control signal.
  • the shape control device 25 performs initial setting of the injection amount and temperature of the base coolant and the injection amount and temperature of the spot coolant before rolling the plate material 100. Then, the shape control device 25 outputs the base valve control signal and the base coolant temperature control signal so as to obtain the base coolant injection amount and temperature which are initialized as described above, thereby opening and closing the valves VB1 to VBm.
  • the base coolant temperature adjusting device 21 is controlled while controlling the state. Further, the shape control device 25 outputs the spot valve control signal and the spot coolant temperature control signal so as to achieve the initially set spot coolant injection amount and temperature as described above, thereby opening and closing the valves VS1 to VSm.
  • the spot coolant temperature adjusting device 22 are controlled. Thereby, before starting rolling, the base coolant having the initial set temperature and the initial set injection amount is injected from the nozzles NB1 to NBm to the work rolls 10a and 10b, and the initial set temperature and the nozzles NS1 to NSm. An initial set injection amount of spot coolant is injected.
  • the shape deviation calculation device 17 calculates a deviation amount between the detected plate shape (detected elongation difference ⁇ S ) and the target plate shape (target elongation difference ⁇ T ) based on the shape detection signal Sf.
  • the shape deviation data Df representing the calculated deviation amount is output to the shape control device 25.
  • the target plate shape (target elongation difference ⁇ T ) is expressed by the following equation (2)
  • the shape deviation data Df is expressed by the following equation (3).
  • the roll average temperature calculation device 19 includes a motor current detection signal Si output from the motor current sensor 18 (that is, motor current Im) and a base coolant temperature detection signal Stc output from the base coolant temperature sensor 23 (that is, base coolant).
  • the roll average temperature Tr is calculated based on the temperature Tc). Specifically, assuming that the diameter of the work rolls 10a and 10b is D, the thermal conductivity is h, the plate plastic deformation energy by passing through the work roll is Es, and the coefficient K, the roll average temperature Tr is expressed by the following equation (4).
  • the Tr Tc + K ⁇ Es / (D ⁇ h) (4)
  • the plate plastic deformation energy Es is expressed by the following equation (5), where the roll motor voltage is Vm and the power factor is cos ⁇ .
  • the roll average temperature calculation device 19 calculates the plate plastic deformation energy Es by substituting the motor current Im represented by the motor current detection signal Si into the above equation (5). Further, the roll average temperature Tr is calculated by substituting the calculated plate plastic deformation energy Es and the base coolant temperature Tc represented by the base coolant temperature detection signal Stc into the above equation (4). Then, the roll average temperature calculation device 19 outputs a roll average temperature calculation signal Sr representing the roll average temperature Tr calculated as described above to the shape control device 25.
  • the shape control device 25 outputs the following four pieces of information: the shape deviation calculation device 17 outputs the shape deviation data Df, and the roll average temperature calculation device 19 outputs the roll average temperature.
  • the calculation signal Sr is output, the base coolant temperature sensor 23 outputs the base coolant temperature detection signal Stc, and the spot coolant temperature sensor 24 outputs the spot coolant temperature detection signal Sts.
  • shape control in the present embodiment will be described.
  • Example 1 The shape control device 25 according to the first embodiment controls the shape of the plate material 100 by controlling the injection amount and temperature of the spot coolant without changing the injection amount and temperature of the base coolant from the initial set values.
  • the shape control device 25 determines whether there is a locally raised area (convex portion) on the surface of the rolled sheet material 100 based on the shape deviation data Df, or locally on the surface of the rolled sheet material 100. It is determined whether a depressed area (concave part) exists. That is, since the shape deviation data Df represents the difference between the target plate shape (target elongation difference ⁇ T ) and the detected plate shape (detected elongation difference ⁇ S ), when the shape deviation data Df ⁇ 0, As shown to FIG. 4A, it determines with a recessed part existing locally on the board
  • the shape control device 25 increases the spray amount of spot coolant sprayed from the nozzles corresponding to the concave portions of the plate material 100 of the spot coolant sprays 13a and 13b (cooling).
  • the convex portions generated on the work rolls 10a and 10b are thermally contracted, thereby reducing the amount of reduction of the surface of the plate member 100 with respect to the concave portions and flattening the surface shape.
  • the spot coolant temperature adjusting device 22 is controlled to lower the spot coolant temperature to increase the cooling effect. .
  • the shape control device 25 reduces the spray amount of the spot coolant sprayed from the nozzles corresponding to the convex portions of the plate material 100 of the spot coolant sprays 13a and 13b (the cooling effect is reduced).
  • the spot coolant temperature adjusting device 22 is controlled to increase the temperature of the spot coolant.
  • a method for controlling the increase / decrease in the injection amount of the spot coolant there is a method for controlling the ratio of the valve opening / closing time as shown in FIG. That is, as the valve opening time ratio is increased with respect to the closing time, the spot coolant injection amount (flow rate) is increased. Moreover, you may control the injection quantity of a spot coolant by controlling the opening degree of a valve
  • the shape control device 25 reduces the injection amount of the base coolant injected from the nozzle corresponding to the convex portion of the plate material 100 of the base coolant sprays 12a and 12b to reduce the work rolls 10a and 10b.
  • the amount of reduction with respect to the convex portion on the surface of the plate member 100 is increased, and the surface shape is flattened.
  • the base coolant temperature adjusting device 21 is controlled to increase the base coolant temperature.
  • Example 3 The shape control device 25 according to the third embodiment controls the shape of the plate member 100 by controlling both the injection amount and temperature of the base coolant and the injection amount and temperature of the spot coolant.
  • the temperature difference ⁇ Tc and the temperature difference ⁇ Ts show the same tendency, the plate-shaped unevenness determination may be performed using one of the temperature differences.
  • the third embodiment is a combination of the first embodiment and the second embodiment, when the temperature difference ⁇ Tc ( ⁇ Ts)> 0, the base coolant and the spot are increased so that the cooling effect is increased according to the shape deviation amount. What is necessary is just to control the ratio of the injection amount (flow rate) with the coolant or the temperature ratio between the base coolant and the spot coolant.
  • the work roll 10a is based on the temperature difference between the work rolls 10a and 10b and the base coolant or the spot coolant and the deviation amount between the plate material shape and the target shape. Since the shape of the plate material is controlled by controlling at least one of the injection amount and temperature of the base coolant and the injection amount and temperature of the spot coolant with respect to 10b, the plate shape can be controlled more accurately than before. .
  • the plate plastic deformation energy Es is calculated from the motor current Im using the above equation (5).
  • this plate plastic deformation energy Es is calculated using the following equation (6) which is a plastic working arithmetic expression. May be calculated.
  • km is a two-dimensional average deformation resistance (material intrinsic value)
  • V is a passing volume
  • h1 is an outlet thickness
  • h2 is an inlet thickness.
  • Es km ⁇ V ⁇ ln (h1 / h2) (6)
  • the roll average temperature Tr was calculated using the above equation (2).
  • the present invention is not limited to this, and for example, the radiation heat temperature of the work roll 10a or 10b is measured using a radiation thermometer, The roll average temperature Tr may be estimated by subjecting the measured radiation temperature to a temporal or local averaging process.
  • the rolling mill of the type provided with two types of coolant injection parts that is, the base coolant sprays 12a and 12b and the spot coolant sprays 13a and 13b has been described as an example.
  • the present invention is not limited to a type of rolling mill, and can be applied to a type of rolling mill that includes only one type of coolant injection unit.
  • the rolling mill by controlling the injection amount and / or the temperature of the coolant to the work roll based on the temperature difference between the work roll and the coolant and the deviation amount between the plate material shape and the target shape. Since the shape of the plate material is controlled, the plate shape can be controlled more accurately than before.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

本発明は、従来よりも正確に板材形状の制御を行うことが可能な圧延機の提供及び圧延方法に関し、上下のワークロールによって板材を圧延する圧延機であって、ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルを有し、各ノズルからワークロールに対してクーラントを噴射するクーラント噴射部と;ワークロールの平均温度を推定するロール温度推定部と;クーラントの温度を検出するクーラント温度検出部と;圧延された板材の幅方向の形状を検出する形状検出部と;形状検出部によって検出された板材形状と目標形状との偏差量を算出する形状偏差演算部と;ワークロールの平均温度とクーラントの温度との差と、板材形状と目標形状との偏差量とに基づいて、クーラント噴射部から噴射されるクーラントの噴射量及び/または温度を制御することにより板材の形状を制御する形状制御部とを具備する。

Description

圧延機及び圧延方法
 本発明は、圧延機及び圧延方法に関する。
 本願は、2008年3月21日に、日本に出願された特願2008-073597号に基づき優先権を主張し、その内容をここに援用する。
 例えば、下記特許文献1には、上下一対の作業ロールにより板材を圧延する圧延機において、作業ロールに対してベースクーラントを噴射するベースクーラント供給部と、作業ロールに対してスポットクーラントを噴射するスポットクーラント供給部とを備え、ベースクーラントとスポットクーラントとの温度差に基づいてベースクーラントとスポットクーラントとの流量比を設定し、この設定した流量比でベースクーラントとスポットクーラントとを噴射するようにベースクーラント供給部及びスポットクーラント供給部を制御することにより、板材の板幅方向の形状を制御する圧延機及び圧延方法が開示されている。
特許第3828784号公報
 上記のように従来技術では、ベースクーラントとスポットクーラントとの温度差に基づいて板材の幅方向の形状を制御する。しかしながら、クーラントコントロールによる板材の形状変化に対する効果は、ベースクーラントとスポットクーラントとの温度差に影響されることよりも、作業ロールとクーラントとの温度差で決まる要素の方が大きく、この点において上記従来技術は板材の形状制御として的確で効果の大きい圧延機及び圧延方法とはいえない。
 本発明は、このような事情に鑑みてなされたものであり、従来よりも正確に板材の形状制御を行うことが可能な圧延機及び圧延方法を提供することを目的とする。
 上記目的を達成するため、本発明は、以下の手段を採用した。
 すなわち、
 (1)本発明は、上下のワークロールによって板材を圧延する圧延機であって、前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルを有し、各ノズルから前記ワークロールに対してクーラントを噴射するクーラント噴射部と;前記ワークロールの平均温度を推定するロール温度推定部と;前記クーラントの温度を検出するクーラント温度検出部と;圧延された前記板材の幅方向の形状を検出する形状検出部と;前記形状検出部によって検出された板材形状と目標形状との偏差量を算出する形状偏差演算部と;前記ワークロールの平均温度と前記クーラントの温度との差と、前記板材形状と目標形状との偏差量とに基づいて、前記クーラント噴射部から噴射される前記クーラントの噴射量及び/または温度を制御することにより前記板材の形状を制御する形状制御部と;を具備する。
(2)本発明は、上下のワークロールによって板材を圧延する圧延機であって、前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルを有し、各ノズルから前記ワークロールに対してベースクーラントを噴射するベースクーラント噴射部と;前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルを有し、各ノズルから前記ワークロールに対してスポットクーラントを噴射するスポットクーラント噴射部と;前記ワークロールの平均温度を推定するロール温度推定部と;前記ベースクーラントの温度を検出するベースクーラント温度検出部と;前記スポットクーラントの温度を検出するスポットクーラント温度検出部と;圧延された前記板材の幅方向の形状を検出する形状検出部と;前記形状検出部によって検出された板材の形状と目標形状との偏差量を算出する形状偏差演算部と;前記ワークロールの平均温度と前記ベースクーラントの温度との差と、前記ワークロールの平均温度と前記スポットクーラントの温度との差と、前記板材形状と目標形状との偏差量とに基づいて、前記ベースクーラント噴射部から噴射される前記ベースクーラントの噴射量と温度、前記スポットクーラント噴射部から噴射される前記スポットクーラントの噴射量と温度の少なくとも1つを制御することにより前記板材の形状を制御する形状制御部と;を具備する。
(3)上記(1)及び(2)に記載の圧延機において、前記ロール温度推定部は、前記ワークロールを回転させるモータの電流値を検出するモータ電流検出部と;前記モータの電流値を基に板塑性変形エネルギーを算出し、その板塑性変形エネルギーを用いて前記ワークロールの平均温度を算出する温度演算部と;を備えても良い。
(4)上記(1)~(3)に記載の圧延機において、前記ロール温度推定部は、所定の塑性加工演算式を基に板塑性変形エネルギーを算出し、この板塑性変形エネルギーを用いて前記ワークロールの平均温度を算出しても良い。
(5)また、本発明は、上下のワークロールによって板材を圧延する圧延方法であって、前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルから前記ワークロールに対してクーラントを噴射するクーラント噴射工程と;前記ワークロールの平均温度を推定するロール温度推定工程と;前記クーラントの温度を検出するクーラント温度検出工程と;圧延された前記板材の幅方向の形状を検出する形状検出工程と;前記形状検出部によって検出された板材形状と目標形状との偏差量を算出する形状偏差演算工程と;前記ワークロールの平均温度と前記クーラントの温度との差と、前記板材形状と目標形状との偏差量とに基づいて、前記クーラントの噴射量及び/または温度を制御することにより前記板材の形状を制御する形状制御工程と;を有する。
(6)また、本発明は、上下のワークロールによって板材を圧延する圧延方法であって、前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルから前記ワークロールに対してベースクーラントを噴射するベースクーラント噴射工程と;前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルから前記ワークロールに対してスポットクーラントを噴射するスポットクーラント噴射工程と;前記ワークロールの平均温度を推定するロール温度推定工程と;前記ベースクーラントの温度を検出するベースクーラント温度検出工程と;前記スポットクーラントの温度を検出するスポットクーラント温度検出工程と;圧延された前記板材の幅方向の形状を検出する形状検出工程と;前記形状検出部によって検出された板材の形状と目標形状との偏差量を算出する形状偏差演算工程と;前記ワークロールの平均温度と前記ベースクーラントの温度との差と、前記ワークロールの平均温度と前記スポットクーラントの温度との差と、前記板材形状と目標形状との偏差量とに基づいて、前記ベースクーラントの噴射量と温度、前記スポットクーラントの噴射量と温度の少なくとも1つを制御することにより前記板材の形状を制御する形状制御工程と;を有する。
 本発明によれば、ワークロールとクーラントとの温度差と、板材形状と目標形状との偏差量とに基づいて、ワークロールに対するクーラントの噴射量及び/または温度を制御することにより板材の形状を制御するので、従来よりも正確な板形状の制御を行うことができる。
本発明の一実施形態に係る圧延機の第1構成概略図である。 本発明の一実施形態に係る圧延機の第2構成概略図である。 本発明の一実施形態に係る圧延機の動作に関する第1説明図である。 本発明の一実施形態に係る圧延機の動作に関する第2説明図であり、板材表面に局所的に凹部が存在し、ワークロール表面には局所的に凸部が存在する。 本発明の一実施形態に係る圧延機の動作に関する第2説明図であり、板材表面に局所的に凸部が存在し、ワークロール表面には局所的に凹部が存在する。 本発明の一実施形態に係る圧延機の動作に関する第3説明図である。
符号の説明
 10a、10b…ワークロール
 11a、11b…バックアップロール
 12a、12b…ベースクーラントスプレー
 13a、13b…スポットクーラントスプレー
 14…ベースクーラントバルブ群
 15…スポットクーラントバルブ群
 16…形状検出装置
 17…形状偏差演算装置
 18…モータ電流センサ
 19…ロール平均温度演算装置
 20…クーラント供給装置
 21…ベースクーラント温度調整装置
 22…スポットクーラント温度調整装置
 23…ベースクーラント温度センサ
 24…スポットクーラント温度センサ
 25…形状制御装置
 100…板材
 以下、図面を参照して、本発明の一実施形態について説明する。
 図1及び図2は、本実施形態に係る圧延機の構成概略図である。これら図1及び図2に示すように、本実施形態に係る圧延機は、以下から構成されている:ワークロール10a、10b、バックアップロール11a、11b、ベースクーラントスプレー(ベースクーラント噴射部)12a、12b、スポットクーラントスプレー(スポットクーラント噴射部)13a、13b、ベースクーラントバルブ群14、スポットクーラントバルブ群15、形状検出装置(形状検出部)16、形状偏差演算装置(形状偏差演算部)17、モータ電流センサ(モータ電流検出部)18、ロール平均温度演算装置(温度演算部)19、クーラント供給装置20、ベースクーラント温度調整装置21、スポットクーラント温度調整装置22、ベースクーラント温度センサ(ベースクーラント温度検出部)23、スポットクーラント温度センサ(スポットクーラント温度検出部)24、形状制御装置(形状制御部)25。また、符号100は本圧延機にて圧延される板材である。
 なお、図1及び図2において、ワークロール10a、10bの回転軸方向(板幅方向)をX軸方向とし、板材100の圧延方向(つまりX軸方向と直交する方向)をY軸方向とし、XY平面に垂直な方向をZ軸方向とするXYZ直交の座標系を設定する。つまり、図1は、ワークロール10a、10b、バックアップロール11a、11b、ベースクーラントスプレー12a、12b、スポットクーラントスプレー13a、13b、形状検出装置16及び板材100を側面(X軸方向)から視た模式図であり、図2は、ワークロール10a、ベースクーラントスプレー12a、スポットクーラントスプレー13a、形状検出装置16及び板材100を上面(Z軸方向)から視た模式図である。
 また、説明の便宜上、図1及び図2において、ベースクーラントバルブ群14、スポットクーラントバルブ群15、形状偏差演算装置17、モータ電流センサ18、ロール平均温度演算装置19、クーラント供給装置20、ベースクーラント温度調整装置21、スポットクーラント温度調整装置22、ベースクーラント温度センサ23、スポットクーラント温度センサ24及び形状制御装置25は、XYZ直交座標系に無関係に配置されているものとする。
 ワークロール10a、10bは、Z軸上に設けられた上下一対の圧延用作業ロールであり、図示しないロールモータによって回転駆動されると共に、図示しない板材供給ロールから供給される板材100をロール間に挟み込むことによって板材100を圧延する。バックアップロール11a、11bは、Z軸上に設けられた上下一対のワークロール支持用ロールである。バックアップロール11aはワークロール10aを上側から支持し、バックアップロール11bはワークロール10bを下側から支持している。
 ベースクーラントスプレー12a、12bは、Z軸上に設けられた上下一対のベースクーラント噴射用スプレーである。その一対のベースクーラントスプレー12a、12bには、ベースクーラントバルブ群14を介してベースクーラントが供給されている。ベースクーラントスプレー12aは、ベースクーラントをワークロール10aに向かって噴射し、ベースクーラントスプレー12bは、ベースクーラントをワークロール10bに向かって噴射する。
 スポットクーラントスプレー13a、13bは、Z軸上に設けられた上下一対のスポットクーラント噴射用スプレーである。その一対のスポットクーラントスプレー13a、13bには、スポットクーラントバルブ群15を介してスポットクーラントが供給されている。スポットクーラントスプレー13aは、スポットクーラントをワークロール10aに向かって噴射し、スポットクーラントスプレー13bは、スポットクーラントをワークロール10bに向かって噴射する。なお、スポットクーラントスプレー13aは、ベースクーラントスプレー12aより上方に設けられている為、ワークロール10aに対してスポットクーラントはベースクーラントよりも上方に噴射される。また、スポットクーラントスプレー13bは、ベースクーラントスプレー12bより下方に設けられている為、ワークロール10bに対してスポットクーラントはベースクーラントよりも下方に噴射される。
 これら一対のベースクーラントスプレー12a、12bと、一対のスポットクーラントスプレー13a、13bと、ベースクーラントバルブ群14と、スポットクーラントバルブ群15の詳細について図2を用いて説明する。なお、図2では、ベースクーラントスプレー12aとスポットクーラントスプレー13aを代表的に図示している。
 図2に示すように、ベースクーラントスプレー12aは、ワークロール10aの回転軸方向(つまりX軸方向)に延在するユニット構造であり、そのX軸方向に沿ってベースクーラントを個別に噴射可能なm個のノズルNB1~NBmが所定間隔で設けられている。一方、ベースクーラントバルブ群14は、上述したノズルNB1~NBmの各々に対応するm個のバルブVB1~VBmから構成されている。これらバルブVB1~VBmは、形状制御装置25から出力されるベースバルブ制御信号によって個別に開閉状態が制御される電磁弁である。バルブVB1~VBm(電磁弁)は、ベースクーラント温度調整装置21を介して供給されるベースクーラントを、ベースバルブ制御信号に応じて各々に対応するノズルNB1~NBmに供給する。
 スポットクーラントスプレー13aは、ベースクーラントスプレー12aと同様に、ワークロール10aの回転軸方向に延在するユニット構造であり、そのX軸方向に沿ってスポットクーラントを個別に噴射可能なノズルNS1~NSmが、所定間隔でm個設けられている。一方、スポットクーラントバルブ群15は、上述したノズルNS1~NSmの各々に対応するm個のバルブVS1~VSmから構成されている。これらバルブVS1~VSmは、形状制御装置25から出力されるスポットバルブ制御信号によって個別に開閉状態が制御される電磁弁である。バルブVS1~VSm(電磁弁)は、スポットクーラント温度調整装置22を介して供給されるスポットクーラントを、スポットバルブ制御信号に応じて各々に対応するノズルNS1~NSmに供給する。
 なお、ベースクーラントスプレー12b及びスポットクーラントスプレー13bの詳細な構成も上記のベースクーラントスプレー12a及びスポットクーラントスプレー13aと同様である。
 形状検出装置16は、ワークロール10a、10bの下流側に設けられていると共に、圧延後の板材100の下面に接するように上記ノズルと同数(m個)の回転ロータR1~Rmが板幅方向(つまりX軸方向)に連結されている。形状検出装置16は、各回転ロータR1~Rmにて圧延後の板材100における板幅方向の板形状を検出し、その検出した板形状を表す形状検出信号Sfを形状偏差演算装置17に出力する。形状偏差演算装置17は、上記形状検出信号Sfに基づいて、検出した板形状と目標板形状との偏差量を算出し、その偏差量を表す形状偏差データDfを形状制御装置25に出力する。
 モータ電流センサ18は、ワークロール10bを回転駆動するロールモータに流れる電流Im(モータ電流)を検出し、その検出されたモータ電流Imを表すモータ電流検出信号Siをロール平均温度演算装置19に出力する。ロール平均温度演算装置19は、上記モータ電流センサ18から出力されるモータ電流検出信号Si(つまりモータ電流Im)と、ベースクーラント温度センサ23から出力されるベースクーラント温度検出信号Stc(つまりベースクーラント温度Tc)とを基にロール平均温度Trを算出し、算出されたロール平均温度Trを表すロール平均温度演算信号Srを形状制御装置25に出力する。なお、このロール平均温度Trの算出手法については後述する。
 クーラント供給装置20は、ベースクーラント温度調整装置21を介してベースクーラントをベースクーラントバルブ群14に供給すると共に、スポットクーラント温度調整装置22を介してスポットクーラントをスポットクーラントバルブ群15に供給する。ベースクーラント温度調整装置21は、クーラ及びヒータの機能を備えており、形状制御装置25から出力されるベースクーラント温度制御信号に応じて、クーラント供給装置20から供給されるベースクーラントの温度を調整する。スポットクーラント温度調整装置22は、クーラ及びヒータの機能を備えており、形状制御装置25から出力されるスポットクーラント温度制御信号に応じて、クーラント供給装置20から供給されるスポットクーラントの温度を調整する。なお、スポットクーラント温度Tsはロール平均温度Trより低い場合も高い場合もある。
 ベースクーラント温度センサ23は、ベースクーラント温度調整装置21とベースクーラントバルブ群14との間に設けられており、ベースクーラントの温度を検出して、その検出されたベースクーラント温度Tcを表すベースクーラント温度検出信号Stcをロール平均温度演算装置19及び形状制御装置25に出力する。
 スポットクーラント温度センサ24は、スポットクーラント温度調整装置22とスポットクーラントバルブ群15との間に設けられており、スポットクーラントの温度を検出して、その検出されたスポットクーラント温度Tsを表すスポットクーラント温度検出信号Stsを形状制御装置25に出力する。
 形状制御装置25は、以下の4つの情報(形状偏差データDf、ロール平均温度演算信号Sr、ベースクーラント温度検出信号Stc及びスポットクーラント温度検出信号Sts)に基づいて、板材100の板幅方向における形状偏差量が零になるように、以下の少なくとも1つを制御することにより板材100の形状制御を行う:
・ ベースクーラントスプレー12a、12bの各ノズルNB1~NBmに供給するベースクーラントの流量(つまり各ノズルNB1~NBmのベースクーラント噴射量);
・ スポットクーラントスプレー13a、13bの各ノズルNS1~NSmに供給するスポットクーラントの流量(つまり各ノズルNS1~NSmのスポットクーラント噴射量);
・ ベースクーラントの温度;
・ スポットクーラントの温度。
 ベースクーラント噴射量を制御する場合、形状制御装置25は、ベースバルブ制御信号を出力することでベースクーラントバルブ群14における各バルブVB1~VBmの開閉状態を制御する。
 また、スポットクーラント噴射量を制御する場合、形状制御装置25は、スポットバルブ制御信号を出力することでスポットクーラントバルブ群15における各バルブVS1~VSmの開閉状態を制御する。
 また、ベースクーラントの温度を制御する場合、形状制御装置25は、ベースクーラント温度制御信号を出力することでベースクーラント温度調整装置21を制御する。
 また、スポットクーラントの温度を制御する場合、形状制御装置25は、スポットクーラント温度制御信号を出力することでスポットクーラント温度調整装置22を制御する。
 次に、上記のように構成された本実施形態に係る圧延機の動作について説明する。
 まず、形状制御装置25は、板材100の圧延を行う前に、ベースクーラントの噴射量及び温度、スポットクーラントの噴射量及び温度の初期設定を行う。そして、形状制御装置25は、上記のように初期設定されたベースクーラントの噴射量及び温度になるようなベースバルブ制御信号及びベースクーラント温度制御信号を出力することにより、各バルブVB1~VBmの開閉状態を制御すると共にベースクーラント温度調整装置21を制御する。
 また、形状制御装置25は、上記のように初期設定したスポットクーラントの噴射量及び温度になるようなスポットバルブ制御信号及びスポットクーラント温度制御信号を出力することにより、各バルブVS1~VSmの開閉状態を制御すると共にスポットクーラント温度調整装置22を制御する。これにより、圧延開始前において、ワークロール10a、10bに対して、各ノズルNB1~NBmから初期設定温度且つ初期設定噴射量のベースクーラントが噴射されると共に、各ノズルNS1~NSmから初期設定温度且つ初期設定噴射量のスポットクーラントが噴射される。
 そして、ワークロール10a、10bによって板材100の圧延が開始され、圧延後の板材100が形状検出装置16上を通過すると、形状検出装置16から圧延後の板材100の板形状を表す形状検出信号Sfが形状偏差演算装置17に出力される。具体的には、この板形状を表す形状検出信号Sfとしては、例えば伸び差率Δεを用いることができる。この伸び差率Δεとは、圧延分野における板形状評価に一般的に用いられるものであり、下記(1)式で表される。なお、下記(1)式において、Hは圧延後の板材100の圧延方向(Y軸方向)における波の高さ、Lはその波のピッチである(図3参照)。
以下、このΔεS を検出伸び差率と称す。
         ΔεS = H/L            ・・・・・(1)
 そして、形状偏差演算装置17は、上記形状検出信号Sfに基づいて、検出した板形状(検出伸び差率Δε)と目標板形状(目標伸び差率Δε)との偏差量を算出し、その算出された偏差量を表す形状偏差データDfを形状制御装置25に出力する。図3に示すように、目標板形状(目標伸び差率Δε)は下記(2)式で表され、形状偏差データDfは下記(3)式で表される。
          ΔεT = H/L            ・・・・・(2)
     Df = Δε-ΔεS = (H-H)/L    ・・・・・(3)
 また、ロール平均温度演算装置19は、モータ電流センサ18から出力されるモータ電流検出信号Si(つまりモータ電流Im)と、ベースクーラント温度センサ23から出力されるベースクーラント温度検出信号Stc(つまりベースクーラント温度Tc)とを基にロール平均温度Trを算出する。具体的には、ワークロール10a、10bの直径をD、熱伝導率をh、ワークロール通過による板塑性変形エネルギーをEs、係数Kとすると、ロール平均温度Trは下記(4)式で表される。
        Tr=Tc+K・Es/(D・h)     ・・・・・(4)
 また、板塑性変形エネルギーEsは、ロールモータの電圧をVm、力率をcosφとすると下記(5)式で表される。
        Es=Im・Vm・cosφ        ・・・・・(5)
 なお、上記(4)、(5)式において、ワークロール10a、10bの直径D、熱伝導率h、係数K、ロールモータの電圧Vm及び力率cosφは定数である。
 つまり、ロール平均温度演算装置19は、モータ電流検出信号Siによって表されるモータ電流Imを上記(5)式に代入して板塑性変形エネルギーEsを算出する。さらに、算出された板塑性変形エネルギーEsとベースクーラント温度検出信号Stcによって表されるベースクーラント温度Tcとを上記(4)式に代入することによりロール平均温度Trを算出する。そして、ロール平均温度演算装置19は、上記のように算出したロール平均温度Trを表すロール平均温度演算信号Srを形状制御装置25に出力する。
 このように、板材100の圧延開始以降、形状制御装置25からは以下4つの情報が出力される:形状偏差演算装置17から形状偏差データDfが出力され、ロール平均温度演算装置19からロール平均温度演算信号Srが出力され、ベースクーラント温度センサ23からベースクーラント温度検出信号Stcが出力され、スポットクーラント温度センサ24からスポットクーラント温度検出信号Stsが出力される。
 形状制御装置25は、ロール平均温度演算信号Sr、ベースクーラント温度検出信号Stc及びベースクーラント温度検出信号Stcを基に、ロール平均温度Trとベースクーラント温度Tcとの温度差ΔTc(=Tr-Tc)を算出すると共に、ロール平均温度Trとスポットクーラント温度Tsとの温度差ΔTs(=Tr-Ts)を算出する。そして、形状制御装置25は、上記のように算出した温度差ΔTc及び温度差ΔTsと形状偏差データDfとを基に、ベースクーラントとスポットクーラントとの噴射量及び温度を制御することにより、板材100の形状制御を行う。なお、ΔTsはプラスの場合もあればマイナスの場合もある。
 以下、本実施形態における形状制御の具体例について説明する。
(1)実施例1
 本実施例1における形状制御装置25は、ベースクーラントの噴射量及び温度は初期設定値から変化させず、スポットクーラントの噴射量及び温度を制御することで板材100の形状制御を行う。この場合、形状制御装置25は、形状偏差データDfを基に圧延後の板材100の表面に局所的に盛り上がった領域(凸部)が存在するのか、圧延後の板材100の表面に局所的に窪んだ領域(凹部)が存在するのかを判定する。つまり、形状偏差データDfは、目標板形状(目標伸び差率Δε)と、検出した板形状(検出伸び差率Δε)との差を表すので、形状偏差データDf<0のときは、図4Aに示すように、板材表面に局所的に凹部が存在し、ワークロール表面には局所的に凸部が存在すると判定する。
 温度差ΔTs>0の場合、形状制御装置25は、図4Aに示すように、スポットクーラントスプレー13a、13bの板材100の凹部に対応するノズルから噴射されるスポットクーラントの噴射量を上げて(冷却効果を増大して)ワークロール10a、10bに発生した凸部を熱収縮させることにより、板材100の表面の凹部に対する圧下量を減らし、その表面形状を平坦化する。また、スポットクーラントの噴射量が最大定格値に達しており、これ以上噴射量を増大できない場合は、スポットクーラント温度調整装置22を制御してスポットクーラントの温度を低くすることで冷却効果を増大する。
 一方、形状偏差データDf>0のときは、図4Bに示すように、板材表面に局所的に凸部が存在し、ワークロール表面には局所的に凹部が存在すると判定する。このような場合、形状制御装置25は、図4Bに示すように、スポットクーラントスプレー13a、13bの板材100の凸部に対応するノズルから噴射されるスポットクーラントの噴射量を下げて(冷却効果を減少させて)ワークロール10a、10bに発生した凹部を熱膨張させることにより、板材100の表面の凸部に対する圧下量を増やし、その表面形状を平坦化する。また、スポットクーラントの噴射量が最小定格値に達しており、これ以上噴射量を減少できない場合は、スポットクーラント温度調整装置22を制御してスポットクーラントの温度を高くする。
 なお、スポットクーラントの噴射量の増減を制御する方法しては、図5に示すように、バルブの開閉時間の比率を制御する方法がある。つまり、バルブの開時間の割合を閉時間に対して大きくする程、スポットクーラントの噴射量(流量)が増大させる。また、バルブの開度を制御することでスポットクーラントの噴射量を制御しても良い。
(2)実施例2
 本実施例2における形状制御装置25は、スポットクーラントの噴射量及び温度は初期設定値から変化させず、ベースクーラントの噴射量及び温度を制御することで板材100の形状制御を行う。つまり、温度差ΔTc(=Tr-Tc)>0の場合、形状制御装置25は、ベースクーラントスプレー12a、12bの板材100の凹部に対応するノズルから噴射されるベースクーラントの噴射量を上げてワークロール10a、10bに発生した凸部を熱収縮させることにより、板材100の表面の凹部に対する圧下量を減らし、その表面形状を平坦にする。また、ベースクーラントの噴射量が最大定格値に達しており、これ以上噴射量を増大できない場合は、ベースクーラント温度調整装置21を制御してベースクーラントの温度を低くすることで冷却効果を増大する。
 一方、温度差ΔTc<0である場合、形状制御装置25は、ベースクーラントスプレー12a、12bの板材100の凸部に対応するノズルから噴射されるベースクーラントの噴射量を下げてワークロール10a、10bに発生した凹部を熱膨張させることにより、板材100の表面の凸部に対する圧下量を増やし、その表面形状を平坦にする。また、ベースクーラントの噴射量が最小定格値に達しており、これ以上噴射量を減少できない場合は、ベースクーラント温度調整装置21を制御してベースクーラントの温度を高くする。
(3)実施例3
 本実施例3における形状制御装置25は、ベースクーラントの噴射量及び温度、スポットクーラントの噴射量及び温度の両方を制御することで板材100の形状制御を行う。この場合、温度差ΔTcと温度差ΔTsとは同じ傾向を示すので、どちらか一方の温度差を用いて板形状の凸凹判定を行えば良い。また、この実施例3は実施例1と実施例2との組み合わせであるため、温度差ΔTc(ΔTs)>0の場合は、形状偏差量に応じて冷却効果が大きくなるようにベースクーラントとスポットクーラントとの噴射量(流量)の比率、またはベースクーラントとスポットクーラントとの温度の比率を制御すれば良い。また、温度差ΔTc(ΔTs)<0の場合は、形状偏差量に応じて冷却効果が小さくなるようにベースクーラントとスポットクーラントとの噴射量の比率、またはベースクーラントとスポットクーラントとの温度の比率を制御すれば良い。
 以上のように、本実施形態に係る圧延機によれば、ワークロール10a、10bとベースクーラントまたはスポットクーラントとの温度差と、板材形状と目標形状との偏差量とに基づいて、ワークロール10a、10bに対するベースクーラントの噴射量と温度、スポットクーラントの噴射量と温度との少なくとも1つを制御することにより板材の形状を制御するので、従来よりも正確な板形状の制御を行うことができる。
 なお、本発明は上記実施形態に限定されることなく、以下のような変形例が考えられる。
(i)上記実施形態では、上記(5)式を用いてモータ電流Imから板塑性変形エネルギーEsを算出したが、塑性加工演算式である下記(6)式を用いてこの板塑性変形エネルギーEsを算出しても良い。なお、下記(6)式において、kmは2次元平均変形抵抗(材料固有値)、Vは通過体積、h1は出口厚み、h2は入口厚みである。
       Es=km・V・ln(h1/h2)   ・・・・・(6)
(ii)上記実施形態では、ロール平均温度Trを上記(2)式を用いて算出したが、これに限らず、例えば輻射温度計を用いてワークロール10aまたは10bの輻射熱温度を計測し、その計測した輻射温度に時間的または場所的な平均化処理を施すことによりロール平均温度Trを推定しても良い。
(iii)上記実施形態では、ベースクーラントスプレー12a、12bと、スポットクーラントスプレー13a、13bとの2種類のクーラント噴射部を備えるタイプの圧延機を例示して説明したが、本発明はこのようなタイプの圧延機に限らず、クーラント噴射部を1種類だけ備えるタイプの圧延機にも適用できる。
 本発明に係る圧延機によれば、ワークロールとクーラントとの温度差と、板材形状と目標形状との偏差量とに基づいて、ワークロールに対するクーラントの噴射量及び/または温度を制御することにより板材の形状を制御するので、従来よりも正確な板形状の制御を行うことができる。

Claims (6)

  1. 上下のワークロールによって板材を圧延する圧延機であって、
      前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルを有し、各ノズルから前記ワークロールに対してクーラントを噴射するクーラント噴射部と、
     前記ワークロールの平均温度を推定するロール温度推定部と、
     前記クーラントの温度を検出するクーラント温度検出部と、
     圧延された前記板材の幅方向の形状を検出する形状検出部と、 前記形状検出部によって検出された板材形状と目標形状との偏差量を算出する形状偏差演算部と、 
     前記ワークロールの平均温度と前記クーラントの温度との差と、前記板材形状と目標形状との偏差量とに基づいて、前記クーラント噴射部から噴射される前記クーラントの噴射量及び/または温度を制御することにより前記板材の形状を制御する形状制御部と、 
     を具備する圧延機。
  2. 上下のワークロールによって板材を圧延する圧延機であって、
     前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルを有し、各ノズルから前記ワークロールに対してベースクーラントを噴射するベースクーラント噴射部と、
     前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルを有し、各ノズルから前記ワークロールに対してスポットクーラントを噴射するスポットクーラント噴射部と、
     前記ワークロールの平均温度を推定するロール温度推定部と、
     前記ベースクーラントの温度を検出するベースクーラント温度検出部と、
     前記スポットクーラントの温度を検出するスポットクーラント温度検出部と、
     圧延された前記板材の幅方向の形状を検出する形状検出部と、 
     前記形状検出部によって検出された板材の形状と目標形状との偏差量を算出する形状偏差演算部と、 
     前記ワークロールの平均温度と前記ベースクーラントの温度との差と、前記ワークロールの平均温度と前記スポットクーラントの温度との差と、前記板材形状と目標形状との偏差量とに基づいて、前記ベースクーラント噴射部から噴射される前記ベースクーラントの噴射量と温度、前記スポットクーラント噴射部から噴射される前記スポットクーラントの噴射量と温度の少なくとも1つを制御することにより前記板材の形状を制御する形状制御部と、
     を具備する圧延機。
  3.  前記ロール温度推定部は、
     前記ワークロールを回転させるモータの電流値を検出するモータ電流検出部と、
     前記モータの電流値を基に板塑性変形エネルギーを算出し、当該板塑性変形エネルギーを用いて前記ワークロールの平均温度を算出する温度演算部と、
     を備える請求項1または2に記載の圧延機。
  4.  前記ロール温度推定部は、所定の塑性加工演算式を基に板塑性変形エネルギーを算出し、前記板塑性変形エネルギーを用いて前記ワークロールの平均温度を算出する請求項1~3のいずれか一項に記載の圧延機。
  5. 上下のワークロールによって板材を圧延する圧延方法であって、
      前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルから前記ワークロールに対してクーラントを噴射するクーラント噴射工程と、
     前記ワークロールの平均温度を推定するロール温度推定工程と、
     前記クーラントの温度を検出するクーラント温度検出工程と、
     圧延された前記板材の幅方向の形状を検出する形状検出工程と、 
     前記形状検出部によって検出された板材形状と目標形状との偏差量を算出する形状偏差演算工程と、
     前記ワークロールの平均温度と前記クーラントの温度との差と、前記板材形状と目標形状との偏差量とに基づいて、前記クーラントの噴射量及び/または温度を制御することにより前記板材の形状を制御する形状制御工程と、
     を有する圧延方法。
  6. 上下のワークロールによって板材を圧延する圧延方法であって、
     前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルから前記ワークロールに対してベースクーラントを噴射するベースクーラント噴射工程と、
     前記ワークロールの回転軸方向に沿って所定間隔で配置された複数のノズルから前記ワークロールに対してスポットクーラントを噴射するスポットクーラント噴射工程と、
     前記ワークロールの平均温度を推定するロール温度推定工程と、
     前記ベースクーラントの温度を検出するベースクーラント温度検出工程と、
     前記スポットクーラントの温度を検出するスポットクーラント温度検出工程と、
     圧延された前記板材の幅方向の形状を検出する形状検出工程と、
     前記形状検出部によって検出された板材の形状と目標形状との偏差量を算出する形状偏差演算工程と、
     前記ワークロールの平均温度と前記ベースクーラントの温度との差と、前記ワークロールの平均温度と前記スポットクーラントの温度との差と、前記板材形状と目標形状との偏差量とに基づいて、前記ベースクーラントの噴射量と温度、前記スポットクーラントの噴射量と温度の少なくとも1つを制御することにより前記板材の形状を制御する形状制御工程と、
     を有する圧延方法。
PCT/JP2009/055282 2008-03-21 2009-03-18 圧延機及び圧延方法 WO2009116571A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980107221.6A CN101959624B (zh) 2008-03-21 2009-03-18 轧机及轧制方法
KR1020107018907A KR101234820B1 (ko) 2008-03-21 2009-03-18 압연기 및 압연 방법
US12/921,969 US8573015B2 (en) 2008-03-21 2009-03-18 Rolling mill and rolling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-073597 2008-03-21
JP2008073597A JP5428173B2 (ja) 2008-03-21 2008-03-21 圧延機及び圧延方法

Publications (1)

Publication Number Publication Date
WO2009116571A1 true WO2009116571A1 (ja) 2009-09-24

Family

ID=41090970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055282 WO2009116571A1 (ja) 2008-03-21 2009-03-18 圧延機及び圧延方法

Country Status (6)

Country Link
US (1) US8573015B2 (ja)
JP (1) JP5428173B2 (ja)
KR (1) KR101234820B1 (ja)
CN (1) CN101959624B (ja)
TW (1) TWI357836B (ja)
WO (1) WO2009116571A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201121704A (en) * 2009-12-29 2011-07-01 Prec Machinery Res Dev Ct Sectionized positioning correction device for thermal expansion of feed shaft.
EP2581150A1 (de) * 2011-10-12 2013-04-17 Siemens Aktiengesellschaft Gießwalzvorrichtung mit kryogener Kühlung der Gießwalzen
CN102514129A (zh) * 2011-11-24 2012-06-27 桐乡市小老板特种塑料制品有限公司 型材冷却工艺
KR101376565B1 (ko) * 2011-12-15 2014-04-02 (주)포스코 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치
FR3008633B1 (fr) * 2013-07-22 2015-08-07 Fives Dms Laminoir equipe d'au moins une buse de refroidissement
CN103861875B (zh) * 2014-03-05 2016-01-20 辽宁科技大学 冷轧机工艺冷却系统的优化控制方法
US20160101451A1 (en) * 2014-10-09 2016-04-14 Josef Froehling Gmbh & Co. Kg Rolling Device and Rolling Process
CA2998379C (en) 2015-09-21 2020-01-21 Novelis Inc. Pre-heating and thermal control of work rolls in metal rolling processes and control systems thereof
EP3895821B1 (en) * 2020-04-14 2023-03-15 ABB Schweiz AG Detection of faulty cooling units configured to provide coolant to rolling mills
CN112387783A (zh) * 2020-10-29 2021-02-23 厦门厦顺铝箔有限公司 一种锂离子电池用铝箔的板形控制方法
CN113319123A (zh) * 2021-06-07 2021-08-31 燕山大学 一种新型轧辊表面测温装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224105A (ja) * 1988-03-01 1989-09-07 Nippon Steel Corp 冷間圧延機のロール冷却制御方法
JPH0732041A (ja) * 1993-07-19 1995-02-03 Nkk Corp 圧延ロールのロールプロフィール演算装置
JPH0957311A (ja) * 1995-08-23 1997-03-04 Kobe Steel Ltd 板圧延機におけるクーラント制御方法
JP2007210528A (ja) * 2006-02-10 2007-08-23 Bridgestone Corp タイヤの温度分布予測方法、熱解析モデル、及び、タイヤの温度分布予測計算プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0222041B1 (en) * 1985-11-15 1991-02-06 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Method for controlling shape of material in rolling process
CH675974A5 (ja) * 1987-10-23 1990-11-30 Lauener Eng Ag
US5212975A (en) * 1991-05-13 1993-05-25 International Rolling Mill Consultants, Inc. Method and apparatus for cooling rolling mill rolls and flat rolled products
JP3495909B2 (ja) * 1998-03-30 2004-02-09 株式会社東芝 圧延ロールのプロフィール制御装置
DE19959553A1 (de) * 1999-06-17 2001-06-13 Siemens Ag Einrichtung zur Beeinflussung des Profils oder der Planheit eines Walzbandes
US6314776B1 (en) * 2000-10-03 2001-11-13 Alcoa Inc. Sixth order actuator and mill set-up system for rolling mill profile and flatness control
JP3828784B2 (ja) * 2001-11-09 2006-10-04 株式会社日立製作所 圧延機および圧延方法
US7181822B2 (en) * 2005-01-20 2007-02-27 Nucor Corporation Method and apparatus for controlling strip shape in hot rolling mills
JP2006289420A (ja) * 2005-04-11 2006-10-26 Hitachi Ltd 圧延形状制御方法および圧延形状制御装置
CN101547756B (zh) * 2006-11-27 2011-08-03 株式会社Ihi 轧制装置、轧制板的形状控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224105A (ja) * 1988-03-01 1989-09-07 Nippon Steel Corp 冷間圧延機のロール冷却制御方法
JPH0732041A (ja) * 1993-07-19 1995-02-03 Nkk Corp 圧延ロールのロールプロフィール演算装置
JPH0957311A (ja) * 1995-08-23 1997-03-04 Kobe Steel Ltd 板圧延機におけるクーラント制御方法
JP2007210528A (ja) * 2006-02-10 2007-08-23 Bridgestone Corp タイヤの温度分布予測方法、熱解析モデル、及び、タイヤの温度分布予測計算プログラム

Also Published As

Publication number Publication date
TW200948499A (en) 2009-12-01
JP5428173B2 (ja) 2014-02-26
US8573015B2 (en) 2013-11-05
KR20100111730A (ko) 2010-10-15
TWI357836B (en) 2012-02-11
CN101959624A (zh) 2011-01-26
JP2009226431A (ja) 2009-10-08
US20110005285A1 (en) 2011-01-13
KR101234820B1 (ko) 2013-02-19
CN101959624B (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2009116571A1 (ja) 圧延機及び圧延方法
CN103492154B (zh) 用于对挤出的塑料型材的壁厚度产生影响的挤出装置和方法
EP2505277B1 (en) Hot-rolled steel sheet manufacturing device, and hot-rolled steel sheet manufacturing method
JP6829721B2 (ja) 矯正システム及び矯正方法
US11358324B2 (en) Straining device and method for extending a film web
ES2821326T3 (es) Precalentamiento y control térmico de rodillos de trabajo en procedimientos de laminación de metales y sistema de control de los mismos
CN103302107B (zh) 轧制控制装置和轧制控制方法
TWI304754B (ja)
US9511401B2 (en) Energy-saving device for rolling plant
US6697699B2 (en) Method and device for influencing relevant quality parameters of a rolling strip
TWI322048B (ja)
KR101003202B1 (ko) 강판 냉각장치
JP2001001017A (ja) 圧延ロールの冷却方法および冷却設備
JP2001219209A (ja) 熱間圧延方法及び圧延機
KR101746984B1 (ko) 냉각 시스템 및 냉각 방법
JP2898910B2 (ja) 板圧延機におけるクーラント制御方法
JP3767663B2 (ja) 誘導加熱装置の加熱制御方法
KR101188086B1 (ko) 가속 냉각 장치 및 이의 유량 제어 방법
JPH0557415A (ja) 連続鋳造装置の2次冷却状態を制御するセンサーと、このセンサーを備えたダミーバーと、連続鋳造装置の制御方法
JP3373353B2 (ja) スキッドマーク成分の冷却による除去方法
JPH09195023A (ja) ギャップ可変式ガスワイピングノズル装置
US11883879B1 (en) System and method for controlling flow through a 3D printer
US20240075530A1 (en) System and method for controlling flow through a 3d printer
JP4865598B2 (ja) 冷間圧延材の形状制御方法および形状制御装置
JPH10263630A (ja) 圧延方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980107221.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107018907

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12921969

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723548

Country of ref document: EP

Kind code of ref document: A1