WO2009116543A1 - Process for producing wet masterbatch and wet masterbatch - Google Patents

Process for producing wet masterbatch and wet masterbatch Download PDF

Info

Publication number
WO2009116543A1
WO2009116543A1 PCT/JP2009/055205 JP2009055205W WO2009116543A1 WO 2009116543 A1 WO2009116543 A1 WO 2009116543A1 JP 2009055205 W JP2009055205 W JP 2009055205W WO 2009116543 A1 WO2009116543 A1 WO 2009116543A1
Authority
WO
WIPO (PCT)
Prior art keywords
wet masterbatch
solution
rubber
producing
wet
Prior art date
Application number
PCT/JP2009/055205
Other languages
French (fr)
Japanese (ja)
Inventor
信彦 福原
元則 文堂
稔 鈴木
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2009116543A1 publication Critical patent/WO2009116543A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2407/00Characterised by the use of natural rubber

Definitions

  • the present invention relates to a method for producing a wet masterbatch, a wet masterbatch formed by this method, a rubber composition, and a tire, and in particular, a method for producing a wet masterbatch that improves the blending ratio and the accuracy of solidified particle size. It is about.
  • This wet masterbatch is a mixture of a rubber solution, a slurry solution containing a filler such as carbon black and silica, and a coagulant to coagulate and separate only the solid content from the coagulation liquid containing these coagulum, The separated solid is produced by dehydration and drying.
  • a method of producing this in a continuous process is generally used.
  • the slurry solution is added to the coagulation tank.
  • a rubber solution are continuously supplied, these are coagulated in a coagulation tank, and a coagulation liquid containing a coagulum formed from these is continuously discharged from the coagulation tank.
  • the coagulating tank agitating apparatus at that time is generally a method of agitating at a relatively low rotational speed with paddles or propeller-shaped blades in order to efficiently mix the input raw materials.
  • an object of the present invention is to produce a wet masterbatch having a uniform size and composition of the solidified product produced from these solutions, particularly when producing a wet masterbatch for mixing and solidifying the slurry solution and the rubber solution.
  • a wet masterbatch, a rubber composition, and a tire formed by the method are provided.
  • the method for producing a wet masterbatch according to the present invention is a method in which a slurry solution containing a filler and a rubber solution are mixed and coagulated, and the solution for one wet masterbatch is measured and coagulated. It is characterized by being stirred and mixed while being pulverized.
  • the rubber solution is a natural rubber solution in such a wet masterbatch production method.
  • a coagulant containing acid is introduced into the coagulation tank.
  • the grinding blade rotates at a speed of 500 rpm or a peripheral speed of 5 m / s or more.
  • the slurry solution and the rubber solution are simultaneously added to the coagulation tank and mixed with stirring.
  • the particle size of the wet masterbatch is controlled in the range of 0.001 to 10 cm.
  • the mixture is stirred and mixed at a slurry solid content concentration of 0.5 to 20% and a rubber solution solid content concentration of 1% to 60%.
  • the wet masterbatch according to the present invention is formed by any of the wet masterbatch manufacturing methods described above.
  • the rubber composition according to the present invention is formed using the wet master batch described above.
  • the tire according to the present invention is formed using the rubber composition described above.
  • the coagulation time from when the slurry solution and the rubber solution are charged into the coagulation tank to when the rubber solution is discharged as coagulum cannot be controlled quantitatively.
  • Some products were insufficiently mixed and solidified, and did not have the intended particle size and blending ratio. Further, they were entangled with stirring blades, and it was difficult to flow and discharge.
  • the manufacturing method of the wet masterbatch of the present invention is to measure the solution for one wet masterbatch and put it into the coagulation tank, so that the raw materials are not continuously charged, but the batch is charged for a certain time, By discharging after mixing and coagulation, a coagulated product with the intended particle size and blending ratio can always be reliably produced.
  • the shear force F by the pulverization blade is applied in the coagulation step as shown in FIG. 1B to suppress aggregation and make the size of the generated coagulum uniform.
  • a wet masterbatch having a uniform composition can be obtained without generating a giant coagulated product in which aggregated particles are associated with each other as shown in FIG.
  • the coagulated material becomes a large mass in the coagulation tank, so that the stirring efficiency can be reduced and the decrease in discharge of the coagulated material can be prevented.
  • FIG. 2 is a process diagram illustrating the process of the method for producing a wet masterbatch of the present invention.
  • the overall process 20 includes a filler slurry solution preparation process 21 prepared by preparing a slurry solution in which a filler such as carbon or silica is dispersed, a natural rubber or synthetic rubber solution, a surfactant, and the like.
  • a rubber solution compounding step 22 for preparing a rubber solution by stirring in a solvent such as water, and a coagulating liquid containing a coagulated product by mixing and coagulating the slurry solution and the rubber solution prepared in these steps A mixing / coagulation step 23 to be formed, and a solid-liquid separation step 24, a washing step 25, and a dehydration step 26, in which only the solid content is separated from the formed coagulation liquid and the separated solid content is washed and dehydrated;
  • a coagulant preparation step 29 for preparing and preparing an acid such as formic acid It can also be included before the mixing / solidifying step 23.
  • FIG. 3 is a schematic view showing a wet master batch stirring device for mixing and coagulating the slurry solution and the rubber solution in the mixing and coagulating step 23.
  • a stirrer 1 includes a coagulation tank 2 that contains a slurry solution, a rubber solution, and a coagulation liquid, and a radial type agitator 3 that is disposed at the bottom of the coagulation tank 2 with the axis of rotation directed vertically.
  • the slurry solution supply port 4 that supplies the slurry solution prepared in the filler slurry solution preparation process 21 to the coagulation tank 2 and the rubber solution prepared in the rubber solution preparation process 22.
  • a coagulant supply port for supplying the coagulant prepared in the coagulant preparation step 29 made of an acid such as formic acid or sulfuric acid or a salt such as sodium chloride to the coagulation tank
  • the coagulation tank 2 is further provided with a discharge port 7 for discharging a coagulation liquid containing a coagulated product formed by mixing and coagulation of the coagulation tank.
  • the radiant flow type agitator 3 rotates at a low speed so as to expose the bottom of the container, and can agitate the entire inside of the tank and extrude the generated coagulum to the discharge port 7. This can improve productivity and stabilize product quality.
  • the discharge port 7 is disposed in the lower part of the side wall of the coagulation tank 2 and can discharge and collect the solidified material in the coagulation tank by opening and closing the piston.
  • the side wall of the coagulation tank 2 is provided with a pulverizing section 8 that is arranged orthogonal to the radial flow stirrer 3 and crushes the generated coagulated product in the coagulating liquid with pulverization blades.
  • the rotating shaft of the stirrer 3 and the rotating shaft of the pulverizing unit 8 are arranged orthogonal to each other, but the rotating shafts of the stirrer 3 and the pulverizing unit 8 are arranged in parallel. You can also.
  • the slurry solution and the rubber solution are supplied into the coagulation tank 2 containing the coagulation liquid, and the agitator 3 is mixed. Further, while rotating the pulverizing unit 8, water, a coagulant, a solution containing various additives, and the like may be supplied, and the coagulation liquid may be discharged after stirring.
  • FIG. 4 is a diagram schematically showing a twin-screw extruder that cleans and dewaters the solidified product in the dewatering step 26 and the drying step 27.
  • the twin-screw extruder 31 in the figure is configured to include two screws and a cylinder, and when the solidified material is introduced from the hopper of the extruder 31, the screw rotates under heating to dehydrate the solidified material. dry.
  • a surfactant may be added for the purpose of improving the stability of the natural rubber solution.
  • anionic, cationic, nonionic and amphoteric surfactants can be used, and anionic and nonionic surfactants are particularly preferable.
  • the addition amount of the surfactant is appropriately adjusted according to the properties of the natural rubber solution.
  • the solidification yield can be improved by introducing a coagulant containing an acid such as formic acid or sulfuric acid into the coagulation tank. Further improvement in coagulation yield by combining acids such as sulfuric acid and formic acid, salts such as NaCl and KCl, polymer flocculants, and liquid temperature control (60-100 ° C) used in the mixing / coagulation step 23 Can be achieved.
  • the pulverization blade of the pulverization unit 8 By rotating the pulverization blade of the pulverization unit 8 at a speed of 500 rpm or a peripheral speed of 5 m / s or more, the enlargement of the solidified product can be suppressed.
  • the particle size of the solidified product By controlling the solidification time and selecting the rotation speed of the pulverization blades, the particle size of the solidified product can be controlled to produce a solidified product having a desired particle size and blending ratio.
  • the coagulation where the slurry solution and the rubber solution come into contact partially starts, resulting in variations in the carbon black compounding ratio and poor carbon black uptake. Can be prevented. Moreover, since the slurry solution and the rubber solution are not mixed in the vicinity of the pipe, clogging of the pipe can be prevented.
  • the slurry solution and the rubber solution are simultaneously added to the coagulation tank 2 from separate pipes and mixed by stirring.
  • These charging speeds can be controlled to the intended mixing ratio of the rubber and carbon black of the coagulated product to be produced by adding the same amount according to the mixing ratio.
  • the charging time is 10 minutes, more preferably 5 minutes, and even more preferably within 2 minutes. .
  • a preliminary mixing tank can be provided depending on the capacity of the coagulation tank 2, depending on the capacity of the coagulation tank 2, a preliminary mixing tank can be provided.
  • wet masterbatch particle size within the range of 0.001 to 10 cm, preferably 0.2 to 1.0 cm, there is an advantage that the workability of dehydration and drying in the post-process is improved.
  • the filter cloth when dehydrating, the filter cloth is clogged with particles and the dehydration efficiency is lowered, or the ratio of solidified particles passing through the filter cloth tends to increase and the yield tends to decrease.
  • the moisture content of the coagulated product due to the water adhering to the surface of the coagulated product increases, the moisture content of the extrudate after the extrusion (dehydration + drying) process increases, the workability decreases, and the heat generation characteristics of the kneaded rubber increase.
  • the solidified material adheres to the hopper portion of the extruder, and the biting into the extruder tends to deteriorate.
  • it exceeds 10 cm it tends to be bulky and stagnant at a small inlet or the like, or the biting into the extruder will deteriorate, and the extrusion process will not be performed.
  • the slurry solid content concentration is 0.5 to 20%
  • the rubber solution solid content concentration is 1% to 60%
  • more preferably the slurry solid content concentration is 3% to 10%
  • the rubber solution solid content concentration is 10% to 30%. To do.
  • a known method can be used as a method for preparing the slurry solution, and is not particularly limited, but is a rotor-stator type high shear mixer, high pressure homogenizer, ultrasonic homogenizer.
  • a bead mill, a colloid mill, or the like can be used.
  • a slurry solution can be prepared by putting a predetermined amount of filler such as carbon black and water in a colloid mill and stirring at high speed for a certain time.
  • M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, an oxide or hydroxide of these metals, and a hydrate thereof, or a carbonate of these metals.
  • N, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10]
  • the slurry concentration of the filler containing at least one of the carbon black, silica, and the filler represented by the general formula (1) is preferably 0.5% by weight to 20% by weight, and particularly preferably.
  • the range is 3% to 10% by weight.
  • the filler is preferably added in an amount of 5 to 100 parts by weight, particularly 10 to 70 parts by weight, with respect to 100 parts by weight of the rubber component of the wet masterbatch. This is because if the amount of the filler is less than 5 parts by weight, sufficient reinforcement may not be obtained, and if it exceeds 100 parts by weight, the workability may be deteriorated. Furthermore, the said carbon black, a silica, and the filler represented by General formula (1) can also be used individually or in mixture of 2 or more types.
  • solutions containing various additives such as surfactants, vulcanizing agents, anti-aging agents, coloring agents, dispersants, and the like, water, and the like can also be added.
  • the wet masterbatch formed by the manufacturing method of the present invention co-solidifies after mixing the rubber particles finely dispersed in water and the carbon black particles, so that the dispersibility of carbon black is improved compared to the dry-mixed mixture To do. Further, since the particle size is controlled as fine particles, workability in subsequent processes such as dehydration and drying can be improved.
  • the rubber composition obtained by using this wet masterbatch has excellent dispersibility of carbon black due to the factors of wet mixing and the shape factor of fine particles, and the resulting improvement in rubber properties (reduction of energy loss, wear / durability) Improvement) is realized.
  • the rubber composition obtained by the production method of the present invention includes various chemicals usually used in the rubber industry, such as a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a scorch, as long as the object of the present invention is not impaired.
  • a vulcanizing agent such as a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a scorch, as long as the object of the present invention is not impaired.
  • An inhibitor, zinc white, stearic acid and the like can be added.
  • the pneumatic tire obtained by using this rubber composition is improved in rolling resistance (fuel consumption), wear and durability.
  • a natural rubber (clone type GT-1) solution, a carbon black (LS-SAF) slurry solution, and a coagulant are put into a coagulation tank.
  • a coagulation tank As shown in Table 1, the particle size distribution was evaluated for each of Example Batch 1 to Example Batch 3 and Comparative Example Batch 1 in which the respective specifications were changed.
  • the stirring apparatus of the comparative example batch 1 shown in FIG. 7 is an apparatus in which a rubber solution (35 kg / hour) and a slurry solution (30 kg / hour) are joined together through a pipe and continuously added.
  • a universal mixer manufactured by Tsukishima Kikai Co., Ltd. was used as the stirring device shown in FIG.
  • Example Batch 1 to Example Batch 3 and Comparative Example Batch 1 About each of Example Batch 1 to Example Batch 3 and Comparative Example Batch 1, the produced coagulum was sampled by about 1 L, stirred uniformly, and then sieved with 1 to 3000 mesh, and the coagulation remaining on each sieve The average particle size was calculated from the amount of the product and the size of the mesh. The evaluation results are shown in Table 2 and FIG.
  • Example Batch 1 to Example Batch 3 From the results of Table 2 and FIG. 5, in Example Batch 1 to Example Batch 3, the solidified particle size is controlled to a constant size, and the average particle size can be adjusted by the number of rotations of the grinding blades. On the other hand, the size of the patch 1 of Comparative Example could not be controlled because the coagulated material became a lump.
  • Example Batch 1 to Example Batch 3 and Comparative Example Batch 1 were sampled from three different locations in each batch of the coagulated material produced under the conditions of Example Batch and Comparative Example Batch 1, and solidified at each location. About 1 g of the product was dried to remove moisture, then cut into a size of 1 to 2 mm in diameter, and the content of carbon black was measured by a pyrolysis method according to ASTM D297-39 using a crucible. The average of batches sampled at three different locations is defined as carbon black blending amount B, and the difference (AB) between the value and target blending amount A is defined as the center value deviation of the batch.
  • Equation 1 When a plurality of batches are manufactured under the same manufacturing conditions and the same target blending amount, and the blending amount of each batch is measured, (center value deviation) and (variation) in the manufacturing conditions are expressed by Equation 1.
  • N 21 for Example Batch 1
  • N 24 for Example Batch 2
  • N 19 for Example Batch 3
  • N 34 for Comparative Batch 1 Calculated from the data.
  • Example Batch 1 to Example Batch 3 have a significantly reduced center value deviation and variation compared to Comparative Example Batch 1, and are stably master batches at the intended carbon black content.
  • Example Batch 1 to Example Batch 3 have a significantly reduced center value deviation and variation compared to Comparative Example Batch 1, and are stably master batches at the intended carbon black content.
  • Example Batch 3 have a significantly reduced center value deviation and variation compared to Comparative Example Batch 1, and are stably master batches at the intended carbon black content.
  • Example Batch 1 to Example Batch 3 have a significantly reduced center value deviation and variation compared to Comparative Example Batch 1, and are stably master batches at the intended carbon black content.
  • Example Batch 3 have a significantly reduced center value deviation and variation compared to Comparative Example Batch 1, and are stably master batches at the intended carbon black content.
  • Example Batch 3 have a significantly reduced center value deviation and variation compared to Comparative Example Batch 1, and are stably master batches at the intended carbon black content.
  • Example Batch 3 have a significantly reduced center value deviation and variation compared to Comparative Example Batch
  • Example Batch 1 to Example Batch 3 are compared with Comparative Example Batch 1 with a solidified particle size of a certain size and the target carbon black content. It was possible to stably produce a masterbatch controlled at a constant temperature.
  • the comparative example batch 2 to be introduced first was made as a prototype, and the others were changed as shown in Table 4 to evaluate the dispersion and variation of carbon black.
  • Example Batch 4 Comparative Example Batch 1, and Comparative Example Batch 2
  • the produced coagulated product was drained, dried, compounded with rubber chemicals, mixed with a banbury mixer except the vulcanizing agent, and added.
  • the mixture was mixed with the sulfurizing agent.
  • the sample was cut into an appropriate size, placed in a mold, and vulcanized at 145 ° C. for 30 minutes with a vulcanizer to prepare a test specimen for measurement.
  • the dispersion of carbon black with TECHPRO dispersGRADER + and the variation with the above formula 1 were measured by a method according to ASTM D2663-95a.
  • the evaluation results are shown in Table 5.
  • the dispersion is performed by comparison with standard samples of 1 to 10, and the larger the value in the table, the greater the dispersion and variation.
  • Example Batch 4 From the results shown in Table 5, in Example Batch 4, the dispersion of carbon black was higher than that in Comparative Example Batch 1 and Comparative Example Batch 2, and the variation in carbon black was greatly improved.
  • the produced coagulum was sampled approximately 1 L and stirred uniformly, and sieved with 1 to 3000 mesh. From the amount of coagulum remaining on each sieve and the size of the mesh After calculating the average particle size, the moisture content was measured for each of the solidified products having an average particle size as shown in Table 6. Thereafter, in the Kobe Steel twin-screw extruder KTX-59 shown in FIG. 4, when the dehydration and drying are performed at a barrel temperature of 160 ° C. and a screw rotation speed of 400 rpm, The moisture content of the extrudate after extrusion was measured, and the evaluation results are shown in Table 6.
  • the biting property to the extruder was evaluated by visual observation of the fluidity of the solidified product with the screw of the extruder and the adherence of the solidified product to the hopper.
  • the moisture content of the coagulated product and the extrudate was determined to be 2.0% or less by measuring the moisture content by weight with a heat-drying moisture meter MX-50 manufactured by A & D.

Abstract

A process for producing a wet masterbatch by mixing and coagulating a slurry solution and a rubber solution. The wet masterbatch comprises coagulated particles produced from these solutions, the coagulated particles being uniform in size and composition. Also provided are the wet masterbatch formed by the process, a rubber composition, and a tire. The process for wet-masterbatch production comprises mixing a slurry solution containing a filler with a rubber solution and coagulating the mixture, and is characterized by metering these solutions to a coagulation tank (2) in respective amounts corresponding to one batch of the wet masterbatch and stirring and mixing the solutions while pulverizing the mixture.

Description

ウェットマスターバッチの製造方法およびウェットマスターバッチWet masterbatch manufacturing method and wet masterbatch
 本発明は、ウェットマスターバッチを製造する方法、この方法によって形成されたウェットマスターバッチ、ゴム組成物、および、タイヤに関し、特に、配合比率と凝固粒径の精度を向上するウェットマスターバッチの製造方法に関するものである。 The present invention relates to a method for producing a wet masterbatch, a wet masterbatch formed by this method, a rubber composition, and a tire, and in particular, a method for producing a wet masterbatch that improves the blending ratio and the accuracy of solidified particle size. It is about.
 従来から、充填剤を含有するゴム組成物を形成の加工性や分散性を向上させるため、ウェットマスターバッチを用いる方法が知られている。このウェットマスターバッチは、ゴム溶液、カーボンブラックやシリカ等の充填剤を含有するスラリー溶液および凝固剤等を混合して凝固させ、これらの凝固物を含有する凝固液から固形分だけを分離し、分離された固形分を脱水し乾燥させて生成される。 Conventionally, a method using a wet masterbatch is known in order to improve the processability and dispersibility of forming a rubber composition containing a filler. This wet masterbatch is a mixture of a rubber solution, a slurry solution containing a filler such as carbon black and silica, and a coagulant to coagulate and separate only the solid content from the coagulation liquid containing these coagulum, The separated solid is produced by dehydration and drying.
 そして、ウェットマスターバッチの生成工程において、その生産性を向上させため、これを連続プロセスで生成する方法が一般的であり、スラリー溶液とゴム溶液との混合・凝固方法として、凝固槽にスラリー溶液とゴム溶液とを連続的に供給し、これらを凝固槽で凝固させて、これらよりできた凝固物を含有する凝固液を連続的に凝固槽から排出する方法が知られている。また、その際の凝固槽の攪拌装置は、投入原材料を効率的に混合するために、パドルやプロペラ形状の羽根で、比較的低回転数で攪拌する方法が一般的である。 In order to improve the productivity in the production process of the wet master batch, a method of producing this in a continuous process is generally used. As a method of mixing and coagulating the slurry solution and the rubber solution, the slurry solution is added to the coagulation tank. And a rubber solution are continuously supplied, these are coagulated in a coagulation tank, and a coagulation liquid containing a coagulum formed from these is continuously discharged from the coagulation tank. In addition, the coagulating tank agitating apparatus at that time is generally a method of agitating at a relatively low rotational speed with paddles or propeller-shaped blades in order to efficiently mix the input raw materials.
 しかるに、このウェットマスターバッチの製造方法では、投入してから排出するまでの凝固時間を定量的にコントロールすることができず、生成した凝固物は混合・凝固の不十分なものが存在し、意図とした粒径および配合比率にならないおそれがあった。
 また、スラリー溶液とゴム溶液を凝固槽に投入した直後は、これら両者は混合しておらず、凝固もしていないが、混合によって、スラリー溶液とゴム溶液の接触回数が増加すると、スラリー溶液が凝固剤として働き、スラリー溶液とゴム溶液が少量会合した一次凝集粒子が生成する。そして混合時間が更に増すと、一次凝集粒子同士が会合して二次凝集粒子になり、更に混合時間が増すと、二次凝集粒子同士が会合し、巨大凝固物が生成する。この凝固物が、配管径より大きく成長して流動が困難になったり、攪拌羽根に絡みつき流動できない場合があった。
However, in this wet masterbatch manufacturing method, the solidification time from charging to discharging cannot be quantitatively controlled, and the resulting solidified product is insufficiently mixed and solidified. There was a risk that the particle size and blending ratio were not satisfied.
Immediately after the slurry solution and the rubber solution are put into the coagulation tank, neither of them is mixed and solidified. However, when the number of contact between the slurry solution and the rubber solution increases by mixing, the slurry solution is solidified. Acting as an agent, primary agglomerated particles are formed in which a small amount of the slurry solution and the rubber solution are associated. When the mixing time is further increased, the primary aggregated particles are associated with each other to form secondary aggregated particles. When the mixing time is further increased, the secondary aggregated particles are associated with each other, and a giant coagulum is generated. In some cases, this coagulated material grows larger than the pipe diameter, making it difficult to flow, or entangled with the stirring blade and cannot flow.
 そこで、本発明の目的は、特に、スラリー溶液とゴム溶液とを混合・凝固させるウェットマスターバッチを製造するに際し、これらの溶液から生成された凝固物の大きさおよび組成が均一なウェットマスターバッチを提供するとともに、この方法によって形成されたウェットマスターバッチ、ゴム組成物、ならびに、タイヤを提供する。 Accordingly, an object of the present invention is to produce a wet masterbatch having a uniform size and composition of the solidified product produced from these solutions, particularly when producing a wet masterbatch for mixing and solidifying the slurry solution and the rubber solution. A wet masterbatch, a rubber composition, and a tire formed by the method are provided.
 この発明にかかるウェットマスターバッチの製造方法は、充填剤を含有するスラリー溶液と、ゴム溶液とを混合して凝固させる方法であって、一ウェットマスターバッチ分の、それらの溶液を計量して凝固槽に投入し、粉砕しながら攪拌混合することを特徴とする。 The method for producing a wet masterbatch according to the present invention is a method in which a slurry solution containing a filler and a rubber solution are mixed and coagulated, and the solution for one wet masterbatch is measured and coagulated. It is characterized by being stirred and mixed while being pulverized.
 このようなウェットマスターバッチの製造方法でより好ましくは、ゴム溶液が天然ゴム溶液である。 More preferably, the rubber solution is a natural rubber solution in such a wet masterbatch production method.
 また好ましくは、酸を含有する凝固剤を凝固槽に投入する。 Also preferably, a coagulant containing acid is introduced into the coagulation tank.
 より好ましくは、粉砕羽根が500rpmまたは周速5m/s以上の速度で回転する。 More preferably, the grinding blade rotates at a speed of 500 rpm or a peripheral speed of 5 m / s or more.
 より好ましくは、スラリー溶液と、ゴム溶液を凝固槽に同時に投入して攪拌混合させる。 More preferably, the slurry solution and the rubber solution are simultaneously added to the coagulation tank and mixed with stirring.
 ところで、ウェットマスターバッチの粒径を0.001~10cmの範囲にコントロールする。 By the way, the particle size of the wet masterbatch is controlled in the range of 0.001 to 10 cm.
 また好ましくは、スラリー固形分濃度0.5~20%、ゴム溶液固形分濃度1%~60%で攪拌混合する。 Preferably, the mixture is stirred and mixed at a slurry solid content concentration of 0.5 to 20% and a rubber solution solid content concentration of 1% to 60%.
 本発明に係るウェットマスターバッチは、上述したいずれかのウェットマスターバッチの製造方法で形成される。 The wet masterbatch according to the present invention is formed by any of the wet masterbatch manufacturing methods described above.
 本発明に係るゴム組成物は、上述したウェットマスターバッチを用いて形成される。 The rubber composition according to the present invention is formed using the wet master batch described above.
 本発明に係るタイヤは、上述したゴム組成物を用いて形成される。 The tire according to the present invention is formed using the rubber composition described above.
 従来の連続式のウェットマスターバッチの製造方法では、スラリー溶液と、ゴム溶液を凝固槽に投入してから凝固物として排出するまでの凝固時間を定量的にコントロールすることができず、生成した凝固物は混合・凝固の不十分なものが存在し、意図とした粒径および配合比率にならず、また攪拌羽根に絡みついたりして、流動して排出することが困難であった。 In the conventional continuous wet masterbatch manufacturing method, the coagulation time from when the slurry solution and the rubber solution are charged into the coagulation tank to when the rubber solution is discharged as coagulum cannot be controlled quantitatively. Some products were insufficiently mixed and solidified, and did not have the intended particle size and blending ratio. Further, they were entangled with stirring blades, and it was difficult to flow and discharge.
 そこで、本発明のウェットマスターバッチの製造方法は、一ウェットマスターバッチ分の、それらの溶液を計量して凝固槽に投入することにより、原材料を連続投入せず、バッチ投入して、一定時間、混合・凝固をしてから排出することで、目的とした粒径と配合比率の凝固物を常に、確実に製造することができる。 Therefore, the manufacturing method of the wet masterbatch of the present invention is to measure the solution for one wet masterbatch and put it into the coagulation tank, so that the raw materials are not continuously charged, but the batch is charged for a certain time, By discharging after mixing and coagulation, a coagulated product with the intended particle size and blending ratio can always be reliably produced.
 また、粉砕しながら攪拌混合することにより、図1(b)に示すような凝固工程で粉砕羽根による剪断力Fを加えて凝集を抑制して、生成された凝固物の大きさを均一にすることで、図1(a)に示すような凝集粒子同士が会合した巨大凝固物を生成することなく、組成の均一なウェットマスターバッチを得ることができる。その結果、凝固物が凝固槽内で大きな固まりとなって、攪拌効率が低下したり凝固物の排出の低下を防ぐことができる。 In addition, by stirring and mixing while pulverizing, the shear force F by the pulverization blade is applied in the coagulation step as shown in FIG. 1B to suppress aggregation and make the size of the generated coagulum uniform. Thus, a wet masterbatch having a uniform composition can be obtained without generating a giant coagulated product in which aggregated particles are associated with each other as shown in FIG. As a result, the coagulated material becomes a large mass in the coagulation tank, so that the stirring efficiency can be reduced and the decrease in discharge of the coagulated material can be prevented.
本発明のウェットマスターバッチの粉砕部の粉砕を示した概略図である。It is the schematic which showed the grinding | pulverization of the grinding | pulverization part of the wet masterbatch of this invention. 本発明のウェットマスターバッチの製造方法の工程を例示する工程図である。It is process drawing which illustrates the process of the manufacturing method of the wet masterbatch of this invention. 本発明のウェットマスターバッチの製造方法に用いる、スラリー溶液とゴム溶液とを混合・凝固させるウェットマスターバッチ攪拌装置を示す概略図である。It is the schematic which shows the wet masterbatch stirring apparatus used for the manufacturing method of the wet masterbatch of this invention which mixes and solidifies a slurry solution and a rubber solution. 二軸押出機を模式的に示す図である。It is a figure which shows a twin-screw extruder typically. (a)~(d)は実施例により粒度分布を測定した結果を示す図である。(A)-(d) is a figure which shows the result of having measured the particle size distribution by the Example. (a)~(d)は実施例によりカーボンブラック配合量を測定した結果を示す図である。(A)-(d) is a figure which shows the result of having measured the carbon black compounding quantity by the Example. 従来のウェットマスターバッチの製造方法に用いる、スラリー溶液とゴム溶液とを混合・凝固させるウェットマスターバッチ攪拌装置を示す概略図である。It is the schematic which shows the wet masterbatch stirring apparatus used for the manufacturing method of the conventional wet masterbatch which mixes and solidifies a slurry solution and a rubber solution.
符号の説明Explanation of symbols
 1  攪拌装置
 2  凝固槽
 3、13 攪拌機
 4、14 スラリー溶液供給口
 5、15 ゴム溶液供給口
 6、16 凝固剤供給口
 7、17 排出口
 8  粉砕部
 20 全体工程
 21 充填剤スラリー溶液調合工程
 22 ゴム溶液調合工程
 23 混合・凝固工程
 24 固液分離工程
 25 洗浄工程
 26 脱水工程
 27 乾燥工程
 28 成型工程
 29 凝固剤調合工程
 31 二軸押出機
DESCRIPTION OF SYMBOLS 1 Stirring apparatus 2 Coagulation tank 3, 13 Stirrer 4, 14 Slurry solution supply port 5, 15 Rubber solution supply port 6, 16 Coagulant supply port 7, 17 Discharge port 8 Grinding part 20 Overall process 21 Filler slurry solution preparation process 22 Rubber solution preparation process 23 Mixing / coagulation process 24 Solid-liquid separation process 25 Cleaning process 26 Dehydration process 27 Drying process 28 Molding process 29 Coagulant preparation process 31 Twin screw extruder
 以下に、図面を参照しながら本発明のウェットマスターバッチの製造方法を詳細に説明する。
 図2は、本発明のウェットマスターバッチの製造方法の工程を例示する工程図である。
 図中の、全体工程20は、カーボンやシリカ等の充填剤を分散させたスラリー溶液を調合して準備する充填剤スラリー溶液調合工程21と、天然ゴムや合成ゴムの溶液等と界面活性剤等とを水等の溶媒中で攪拌してゴム溶液を調合準備するゴム溶液調合工程22と、これらの工程で調合されたスラリー溶液とゴム溶液とを混合・凝固させ凝固物を含有する凝固液を形成する混合・凝固工程23と、形成された凝固液から固形分だけを分離するとともに分離された固形分を洗浄して脱水する固液分離工程24・洗浄工程25および脱水工程26と、脱水された固形分を乾燥する乾燥工程27と、乾燥された固形分を粒状、ベール状等の所望の形状に成型して製品としてのウェットマスターバッチを形成する成型工程28とよりなる。
 なお、混合・凝固工程23においては、スラリー溶液とゴム溶液のみを混合・凝固させることもできるが、凝固反応を促進するため、蟻酸等の酸を調合して準備する凝固剤調合工程29を、混合・凝固工程23の前に含むこともできる。
Below, the manufacturing method of the wet masterbatch of this invention is demonstrated in detail, referring drawings.
FIG. 2 is a process diagram illustrating the process of the method for producing a wet masterbatch of the present invention.
In the figure, the overall process 20 includes a filler slurry solution preparation process 21 prepared by preparing a slurry solution in which a filler such as carbon or silica is dispersed, a natural rubber or synthetic rubber solution, a surfactant, and the like. A rubber solution compounding step 22 for preparing a rubber solution by stirring in a solvent such as water, and a coagulating liquid containing a coagulated product by mixing and coagulating the slurry solution and the rubber solution prepared in these steps A mixing / coagulation step 23 to be formed, and a solid-liquid separation step 24, a washing step 25, and a dehydration step 26, in which only the solid content is separated from the formed coagulation liquid and the separated solid content is washed and dehydrated; The drying step 27 for drying the solid content, and the molding step 28 for forming the wet solid batch as a product by molding the dried solid content into a desired shape such as a granular shape or a bale shape.
In the mixing / coagulation step 23, only the slurry solution and the rubber solution can be mixed and coagulated, but in order to accelerate the coagulation reaction, a coagulant preparation step 29 for preparing and preparing an acid such as formic acid, It can also be included before the mixing / solidifying step 23.
 図3は、混合・凝固工程23において、スラリー溶液とゴム溶液とを混合・凝固させるウェットマスターバッチ攪拌装置を示す概略図である。
 図中、攪拌装置1は、スラリー溶液、ゴム溶液、および凝固液を収容する凝固槽2と、凝固槽2の底部に、回転軸線を上下方向に向けて配置された輻流型攪拌機3とを具える。また、凝固槽2より上部の位置には、充填剤スラリー溶液調合工程21で調合されたスラリー溶液を凝固槽2に供給するスラリー溶液供給口4と、ゴム溶液調合工程22で調合されたゴム溶液を凝固槽2に供給するゴム溶液供給口5と、蟻酸、硫酸等の酸や、塩化ナトリウム等の塩よりなる凝固剤調合工程29で調合された凝固剤を凝固槽に供給する凝固剤供給口6とを具えてなり、さらに凝固槽2は、凝固槽混合・凝固によって形成された凝固物を含有する凝固液を排出する排出口7を設けて構成される。
FIG. 3 is a schematic view showing a wet master batch stirring device for mixing and coagulating the slurry solution and the rubber solution in the mixing and coagulating step 23.
In the figure, a stirrer 1 includes a coagulation tank 2 that contains a slurry solution, a rubber solution, and a coagulation liquid, and a radial type agitator 3 that is disposed at the bottom of the coagulation tank 2 with the axis of rotation directed vertically. Have. Further, at a position above the coagulation tank 2, the slurry solution supply port 4 that supplies the slurry solution prepared in the filler slurry solution preparation process 21 to the coagulation tank 2 and the rubber solution prepared in the rubber solution preparation process 22. And a coagulant supply port for supplying the coagulant prepared in the coagulant preparation step 29 made of an acid such as formic acid or sulfuric acid or a salt such as sodium chloride to the coagulation tank The coagulation tank 2 is further provided with a discharge port 7 for discharging a coagulation liquid containing a coagulated product formed by mixing and coagulation of the coagulation tank.
 ここで、輻流型攪拌機3は、容器の底をさらうように低速で回転し、槽内全体の攪拌するとともに、生成した凝固物をさらって排出口7に押し出すことができる。このことにより、生産性の向上と、製品品質の安定をもたらすことができる。
 排出口7は、凝固槽2の側壁下部に配置され、ピストンの開閉で凝固槽内の凝固物等を排出・回収することができる。
Here, the radiant flow type agitator 3 rotates at a low speed so as to expose the bottom of the container, and can agitate the entire inside of the tank and extrude the generated coagulum to the discharge port 7. This can improve productivity and stabilize product quality.
The discharge port 7 is disposed in the lower part of the side wall of the coagulation tank 2 and can discharge and collect the solidified material in the coagulation tank by opening and closing the piston.
 凝固槽2の側壁には、輻流型攪拌機3に直交して配置され、生成された、凝固液中の凝固物を粉砕羽根で粉砕する粉砕部8を具えて構成される。
 図3に示した攪拌装置1では、攪拌機3の回転軸と、粉砕部8の回転軸とを直交させて配置させたが、攪拌機3と、粉砕部8との回転軸同士を平行に配置することもできる。
The side wall of the coagulation tank 2 is provided with a pulverizing section 8 that is arranged orthogonal to the radial flow stirrer 3 and crushes the generated coagulated product in the coagulating liquid with pulverization blades.
In the stirring device 1 shown in FIG. 3, the rotating shaft of the stirrer 3 and the rotating shaft of the pulverizing unit 8 are arranged orthogonal to each other, but the rotating shafts of the stirrer 3 and the pulverizing unit 8 are arranged in parallel. You can also.
 以上のように構成された攪拌装置1を用いてスラリー溶液とゴム溶液とを混合・凝固させるには、凝固液を収容する凝固槽2の中にスラリー溶液とゴム溶液とを供給し、攪拌機3および粉砕部8を回転させながら、水、凝固剤、種々の添加剤を含有する溶液等を供給し、攪拌の後に、凝固液を排出すればよい。 In order to mix and coagulate the slurry solution and the rubber solution using the stirring device 1 configured as described above, the slurry solution and the rubber solution are supplied into the coagulation tank 2 containing the coagulation liquid, and the agitator 3 is mixed. Further, while rotating the pulverizing unit 8, water, a coagulant, a solution containing various additives, and the like may be supplied, and the coagulation liquid may be discharged after stirring.
 図4は、脱水工程26および乾燥工程27において、凝固物を洗浄・脱水する二軸押出機を模式的に示す図である。
 図中の二軸押出機31は、二本のスクリューとシリンダーとを具えて構成し、この押出機31のホッパーから凝固物を投入すると、加熱下でスクリューが回転することで、凝固物を脱水乾燥する。
FIG. 4 is a diagram schematically showing a twin-screw extruder that cleans and dewaters the solidified product in the dewatering step 26 and the drying step 27.
The twin-screw extruder 31 in the figure is configured to include two screws and a cylinder, and when the solidified material is introduced from the hopper of the extruder 31, the screw rotates under heating to dehydrate the solidified material. dry.
 そしてこのウェットマスターバッチの製造方法では、一ウェットマスターバッチ分の、それらの溶液を計量して凝固槽2に投入し、粉砕しながら攪拌混合する。 In this wet masterbatch manufacturing method, one wet masterbatch of these solutions is weighed and charged into the coagulation tank 2, and stirred and mixed while being pulverized.
 このような製造方法においてより好ましくは、ゴム溶液を天然ゴム溶液とすることにより、製造過程で、機械的特性、低発熱性、耐摩耗性に優れ、環境に優しい素材とすることができる。 In such a production method, more preferably, by using a natural rubber solution as the rubber solution, it is possible to obtain a material that is excellent in mechanical properties, low heat generation, and wear resistance and is environmentally friendly during the production process.
 天然ゴム溶液の安定性を向上させる目的で、界面活性剤を加えてもよい。例えば、アニオン系、カチオン系、ノニオン系、両性界面活性剤を使用できるが、特に、アニオン系、ノニオン系界面活性剤が好ましい。界面活性剤の添加量は、天然ゴム溶液の性状に応じて適宜調整する。 A surfactant may be added for the purpose of improving the stability of the natural rubber solution. For example, anionic, cationic, nonionic and amphoteric surfactants can be used, and anionic and nonionic surfactants are particularly preferable. The addition amount of the surfactant is appropriately adjusted according to the properties of the natural rubber solution.
 また、蟻酸、硫酸等の酸を含有する凝固剤を凝固槽に投入することにより、凝固収率の向上が図ることができる。
 混合・凝固工程23で用いられる、硫酸、蟻酸等の酸、NaCl、KCl等の塩、高分子凝集剤、および液温コントロール(60~100℃)を組み合わせることにより、更なる凝固収率の向上を図ることができる。
Moreover, the solidification yield can be improved by introducing a coagulant containing an acid such as formic acid or sulfuric acid into the coagulation tank.
Further improvement in coagulation yield by combining acids such as sulfuric acid and formic acid, salts such as NaCl and KCl, polymer flocculants, and liquid temperature control (60-100 ° C) used in the mixing / coagulation step 23 Can be achieved.
 粉砕部8の粉砕羽根を500rpmまたは周速5m/s以上の速度で回転することにより、凝固物の肥大化を押さえることができる。
 凝固時間の一定化と、粉砕羽根の回転数の選択により凝固物粒径をコントロールし、目的とした粒径と配合比率の凝固物を生成することができる。
By rotating the pulverization blade of the pulverization unit 8 at a speed of 500 rpm or a peripheral speed of 5 m / s or more, the enlargement of the solidified product can be suppressed.
By controlling the solidification time and selecting the rotation speed of the pulverization blades, the particle size of the solidified product can be controlled to produce a solidified product having a desired particle size and blending ratio.
 スラリー溶液と、ゴム溶液を凝固槽2に同時に投入して混合することにより、スラリー溶液と、ゴム溶液が接触する凝固が部分的に開始し、カーボンブラック配合比率のバラツキおよびカーボンブラックの取り込み不良を防ぐことができる。また、スラリー溶液と、ゴム溶液を配管付近で混合することがないため配管詰まりを防ぐことができる。 By simultaneously adding and mixing the slurry solution and the rubber solution into the coagulation tank 2, the coagulation where the slurry solution and the rubber solution come into contact partially starts, resulting in variations in the carbon black compounding ratio and poor carbon black uptake. Can be prevented. Moreover, since the slurry solution and the rubber solution are not mixed in the vicinity of the pipe, clogging of the pipe can be prevented.
 好ましくは、スラリー溶液と、ゴム溶液を凝固槽2に別配管から、同時に投入して攪拌混合する。これらの投入速度は、配合比率に合わせて同等量になるように投入することで、生成する凝固物のゴムとカーボンブラックの配合比率を意図したものにコントロールすることができる。スラリー溶液とゴム溶液が混合すると凝固反応は天然ゴム溶液の場合、数分程度で進行することから、これらの投入時間は、10分、より好ましくは5分、更に好ましくは2分以内に投入する。また、凝固槽2の容量によっては、予備混合槽を設けることができる。 Preferably, the slurry solution and the rubber solution are simultaneously added to the coagulation tank 2 from separate pipes and mixed by stirring. These charging speeds can be controlled to the intended mixing ratio of the rubber and carbon black of the coagulated product to be produced by adding the same amount according to the mixing ratio. When the slurry solution and the rubber solution are mixed, the coagulation reaction proceeds in about a few minutes in the case of a natural rubber solution. Therefore, the charging time is 10 minutes, more preferably 5 minutes, and even more preferably within 2 minutes. . Further, depending on the capacity of the coagulation tank 2, a preliminary mixing tank can be provided.
 ウェットマスターバッチの粒径が0.001~10cm、好ましくは0.2~1.0cmの範囲にコントロールすることにより、後工程の脱水、乾燥の作業性が向上するメリットがある。 By controlling the wet masterbatch particle size within the range of 0.001 to 10 cm, preferably 0.2 to 1.0 cm, there is an advantage that the workability of dehydration and drying in the post-process is improved.
 すなわち、それが0.001cm未満では、脱水の際、濾布の目に粒子が詰まって脱水効率が落ちたり、濾布を通過する凝固粒子の割合が増加して収率の低下する傾向がある。また、凝固物の表面に付着する水に起因する凝固物水分率が高くなり、押出(脱水+乾燥)工程後の押出物水分率が増加し、加工性の低下や練りゴムの発熱特性が増加するとともに、押出機のホッパー部分等に凝固物が付着し、押出機への噛み込み性が悪化する傾向がある。
 一方、10cmを超えると、嵩張って小さな投入口等で滞積したり、押出機への噛み込み性が悪化して、押出工程を行うことができない傾向がある。
That is, if it is less than 0.001 cm, when dehydrating, the filter cloth is clogged with particles and the dehydration efficiency is lowered, or the ratio of solidified particles passing through the filter cloth tends to increase and the yield tends to decrease. . In addition, the moisture content of the coagulated product due to the water adhering to the surface of the coagulated product increases, the moisture content of the extrudate after the extrusion (dehydration + drying) process increases, the workability decreases, and the heat generation characteristics of the kneaded rubber increase. At the same time, the solidified material adheres to the hopper portion of the extruder, and the biting into the extruder tends to deteriorate.
On the other hand, if it exceeds 10 cm, it tends to be bulky and stagnant at a small inlet or the like, or the biting into the extruder will deteriorate, and the extrusion process will not be performed.
 好ましくはスラリー固形分濃度0.5~20%、ゴム溶液固形分濃度1%~60%、より好ましくはスラリー固形分濃度3%~10%、ゴム溶液固形分濃度10%~30%で攪拌混合する。 Preferably, the slurry solid content concentration is 0.5 to 20%, the rubber solution solid content concentration is 1% to 60%, more preferably the slurry solid content concentration is 3% to 10%, and the rubber solution solid content concentration is 10% to 30%. To do.
 この配合で攪拌混合することにより、配合比及び粒径ともに均一な凝固物を高い生産性で製造することができる。各液がこの範囲より高濃度の場合、液粘度が高くなりすぎて、液を均一に攪拌することができず、不均一な凝固物が生成するおそれがある。また、この範囲より低濃度の場合、単位容量当りの凝固物製造量が低くなり、十分な生産性を得ることができないおそれがある。 By stirring and mixing with this blend, a solidified product having a uniform blend ratio and particle size can be produced with high productivity. When each liquid has a concentration higher than this range, the liquid viscosity becomes too high, and the liquid cannot be uniformly stirred, and a non-uniform solidified product may be generated. On the other hand, when the concentration is lower than this range, the amount of the solidified product produced per unit volume becomes low, and there is a possibility that sufficient productivity cannot be obtained.
 充填剤スラリー溶液調合工程21において、スラリー溶液を調合する方法としては公知の方法を用いることができ、特に限定されるものではないが、ローター・ステータータイプのハイシアーミキサー、高圧ホモジナイザー、超音波ホモジナイザー、ビーズミル、コロイドミル等を用いることができる。例えば、コロイドミルに所定量のカーボンブラック等の充填剤と水を入れ、高速で一定時間攪拌することで、スラリー溶液を調製することができる。 In the filler slurry solution preparation step 21, a known method can be used as a method for preparing the slurry solution, and is not particularly limited, but is a rotor-stator type high shear mixer, high pressure homogenizer, ultrasonic homogenizer. A bead mill, a colloid mill, or the like can be used. For example, a slurry solution can be prepared by putting a predetermined amount of filler such as carbon black and water in a colloid mill and stirring at high speed for a certain time.
 ここで、スラリー溶液としては、カーボンブラック、シリカ、もしくは、一般式(1)で表される充填剤の少なくとも1種を予め水中に分散させたものを用いるのがよい。
 nM・xSiO・zHO・・・(1)
〔式中、Mは、アルミニウム、マグネシウム、チタン、カルシウムおよびジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、およびそれらの水和物、またはこれらの金属の炭酸塩から選ばれる少なくとも一種であり、n、x、yおよびzは、それぞれ1~5の整数、0~10の整数、2~5の整数、および0~10の整数である〕
Here, as the slurry solution, it is preferable to use carbon black, silica, or a dispersion in which at least one filler represented by the general formula (1) is dispersed in water in advance.
nM 1 xSiO y zH 2 O (1)
[Wherein M 1 is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, an oxide or hydroxide of these metals, and a hydrate thereof, or a carbonate of these metals. N, x, y and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10]
 一般式(1)で表される充填剤としては、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(Ca・SiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩などが使用できる。また、一般式(1)中のMがアルミニウム金属、アルミニウムの酸化物又は水酸化物、およびそれらの水和物、またはアルミニウムの炭酸塩から選ばれる少なくとも一つである場合が好ましい。 The filler represented by the general formula (1), .gamma.-alumina, alpha-alumina, such as alumina (Al 2 O 3), boehmite, alumina monohydrate such as diaspore (Al 2 O 3 · H 2 O ), Gibbsite, Bayerite, etc. Aluminum hydroxide [Al (OH) 3 ], Aluminum carbonate [Al 2 (CO 3 ) 2 ], Magnesium hydroxide [Mg (OH) 2 ], Magnesium oxide (MgO), Magnesium carbonate (MgCO 3 ), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO) , calcium hydroxide [Ca (OH) 2], magnesium aluminum oxide (MgO · Al 2 O 3) , clay (Al 2 O 3 · SiO 2), kaolin (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O) Aluminum silicate (Al 2 SiO 5 , Al 4 · 3SiO 4 · 5H 2 O etc.), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), calcium silicate (Ca 2 · SiO 4 etc.), silicic acid Aluminum calcium (Al 2 O 3 · CaO · 2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 · nH 2 O], zirconium carbonate [Zr (CO 3) 2] , hydrogen to correct electric charge as various zeolites, Such as crystalline aluminosilicates including alkali metal or alkaline earth metal can be used. Further, it is preferable that M 1 in the general formula (1) is at least one selected from aluminum metal, aluminum oxide or hydroxide, hydrates thereof, and aluminum carbonate.
 なお、上記カーボンブラック、シリカ、一般式(1)で表される充填剤の少なくとも一種を含む充填剤のスラリー濃度は、スラリー溶液に対して0.5重量%~20重量%が好ましく、特に好ましい範囲は3重量%~10重量%である。 Note that the slurry concentration of the filler containing at least one of the carbon black, silica, and the filler represented by the general formula (1) is preferably 0.5% by weight to 20% by weight, and particularly preferably. The range is 3% to 10% by weight.
 また、充填剤は、ウェットマスターバッチのゴム成分100重量部に対して、5~100重量部添加されるのが好ましく、特には10~70重量部の範囲であることが好ましい。充填剤の量が5重量部より少ないと充分な補強性が得られない場合があり、また100重量部を超えると加工性が悪化する場合があるからである。さらに、上記カーボンブラック、シリカ、および一般式(1)で表される充填剤は単独でまたは二種以上のものを混合して用いることもできる。 The filler is preferably added in an amount of 5 to 100 parts by weight, particularly 10 to 70 parts by weight, with respect to 100 parts by weight of the rubber component of the wet masterbatch. This is because if the amount of the filler is less than 5 parts by weight, sufficient reinforcement may not be obtained, and if it exceeds 100 parts by weight, the workability may be deteriorated. Furthermore, the said carbon black, a silica, and the filler represented by General formula (1) can also be used individually or in mixture of 2 or more types.
 さらに、充填剤以外に、界面活性剤、加硫剤、老化防止剤、着色剤、分散剤等の薬品など、種々の添加剤を含有する溶液や、水なども加えることができる。 Furthermore, in addition to fillers, solutions containing various additives such as surfactants, vulcanizing agents, anti-aging agents, coloring agents, dispersants, and the like, water, and the like can also be added.
 本発明の製造方法によって形成されたウェットマスターバッチは、水中で細かく分散したゴム粒子とカーボンブラック粒子が混合後、共凝固するので、乾燥混合された混合物に比べて、カーボンブラックの分散性が向上する。また微細粒子として、粒径がコントロールされているので、脱水や乾燥等の後工程の作業性を向上することができる。 The wet masterbatch formed by the manufacturing method of the present invention co-solidifies after mixing the rubber particles finely dispersed in water and the carbon black particles, so that the dispersibility of carbon black is improved compared to the dry-mixed mixture To do. Further, since the particle size is controlled as fine particles, workability in subsequent processes such as dehydration and drying can be improved.
 このウェットマスターバッチを用いることにより得られるゴム組成物は、ウエット混合の要因と微細粒子という形状要因によりカーボンブラックの分散性が優れ、それに伴うゴム物性の向上(エネルギーロスの低減、摩耗・耐久性の向上)が実現される。 The rubber composition obtained by using this wet masterbatch has excellent dispersibility of carbon black due to the factors of wet mixing and the shape factor of fine particles, and the resulting improvement in rubber properties (reduction of energy loss, wear / durability) Improvement) is realized.
 本発明の製造方法により得られるゴム組成物には、本発明の目的が損なわれない範囲で、通常ゴム工業界で用いられる各種薬品、例えば加硫剤、加硫促進剤、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸などを添加することができる。 The rubber composition obtained by the production method of the present invention includes various chemicals usually used in the rubber industry, such as a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a scorch, as long as the object of the present invention is not impaired. An inhibitor, zinc white, stearic acid and the like can be added.
 このゴム組成物を用いることにより得られる空気入りタイヤは、転がり抵抗(燃費)、摩耗及び耐久性が向上する。 The pneumatic tire obtained by using this rubber composition is improved in rolling resistance (fuel consumption), wear and durability.
 図に示した攪拌装置を用いて、天然ゴム(クローン種GT-1)溶液とカーボンブラック(LS-SAF)スラリー溶液と、凝固剤(20重量%に水で希釈した蟻酸)を凝固槽に投入し、表1に示すように、それぞれの諸元を変化させた実施例バッチ1~実施例バッチ3、および比較例バッチ1のそれぞれにつき、粒度分布を評価した。
 なお、図7に示す比較例バッチ1の攪拌装置はゴム溶液(35kg/時間)とスラリー溶液(30kg/時間)を配管で合流させ、連続的に投入する装置である。図3に示す攪拌装置として月島機械製ユニバーサルミキサー製を用いた。
Using the stirring device shown in the figure, a natural rubber (clone type GT-1) solution, a carbon black (LS-SAF) slurry solution, and a coagulant (formic acid diluted to 20% by weight with water) are put into a coagulation tank. As shown in Table 1, the particle size distribution was evaluated for each of Example Batch 1 to Example Batch 3 and Comparative Example Batch 1 in which the respective specifications were changed.
In addition, the stirring apparatus of the comparative example batch 1 shown in FIG. 7 is an apparatus in which a rubber solution (35 kg / hour) and a slurry solution (30 kg / hour) are joined together through a pipe and continuously added. A universal mixer manufactured by Tsukishima Kikai Co., Ltd. was used as the stirring device shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(粒度分布)
 実施例バッチ1~実施例バッチ3、および比較例バッチ1のそれぞれにつき、生成した凝固物を約1Lサンプリングして均一に攪拌した後、1~3000メッシュで篩い分けし、各篩に残った凝固物の量とメッシュの大きさから平均粒径を算出した。その評価結果を表2および図5に示す。
(Particle size distribution)
About each of Example Batch 1 to Example Batch 3 and Comparative Example Batch 1, the produced coagulum was sampled by about 1 L, stirred uniformly, and then sieved with 1 to 3000 mesh, and the coagulation remaining on each sieve The average particle size was calculated from the amount of the product and the size of the mesh. The evaluation results are shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2および図5の結果から、実施例バッチ1~実施例バッチ3は、一定の大きさに凝固粒径がコントロールされており、その平均粒径は粉砕羽根の回転数によって調節することができるのに対し、比較例パッチ1は、凝固物が塊になって大きさのコントロールができなかった。 From the results of Table 2 and FIG. 5, in Example Batch 1 to Example Batch 3, the solidified particle size is controlled to a constant size, and the average particle size can be adjusted by the number of rotations of the grinding blades. On the other hand, the size of the patch 1 of Comparative Example could not be controlled because the coagulated material became a lump.
(カーボンブラック配合量)
 実施例バッチ1~実施例バッチ3、および比較例バッチ1のそれぞれを、実施例バッチおよび比較例バッチ1の条件で製造した凝固物を各バッチ内の異なる三箇所からサンプリングし、各々個所の凝固物約1gを乾燥させて水分を除いた後、径1~2mmの大きさに切り坩堝を用いて、ASTM D297-39に準じた熱分解法で、カーボンブラックの含有量を測定した。
 異なる三個所でサンプリングしたバッチの平均をカーボンブラック配合量Bとし、その値と目標配合量Aとの差(A-B)を、そのバッチの中心値ズレとする。同一製造条件・同一目標配合量で複数バッチの製造を行い、各バッチの配合量を測定した時、その製造条件における(中心値ズレ)と(バラツキ)は数1で示される。その評価結果を表3および図6に示す。
Figure JPOXMLDOC01-appb-M000003
[N:バッチ数、B:K=1~Nバッチまでのカーボンブラック配合量計測結果]
(バラツキ):Bの標準偏差
 ここで、実施例バッチ1はN=21、実施例バッチ2はN=24、実施例バッチ3はN=19、比較例バッチ1はN=34の配合量データから計算した。
(Carbon black content)
Each of Example Batch 1 to Example Batch 3 and Comparative Example Batch 1 was sampled from three different locations in each batch of the coagulated material produced under the conditions of Example Batch and Comparative Example Batch 1, and solidified at each location. About 1 g of the product was dried to remove moisture, then cut into a size of 1 to 2 mm in diameter, and the content of carbon black was measured by a pyrolysis method according to ASTM D297-39 using a crucible.
The average of batches sampled at three different locations is defined as carbon black blending amount B, and the difference (AB) between the value and target blending amount A is defined as the center value deviation of the batch. When a plurality of batches are manufactured under the same manufacturing conditions and the same target blending amount, and the blending amount of each batch is measured, (center value deviation) and (variation) in the manufacturing conditions are expressed by Equation 1. The evaluation results are shown in Table 3 and FIG.
Figure JPOXMLDOC01-appb-M000003
[N: number of batches, B k : K = 1 to N batch carbon black content measurement result]
(Dispersion): Standard deviation of B k Here, N = 21 for Example Batch 1, N = 24 for Example Batch 2, N = 19 for Example Batch 3, and N = 34 for Comparative Batch 1 Calculated from the data.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3および図6の結果から、実施例バッチ1~実施例バッチ3は、比較例バッチ1に対し、中心値ズレおよびバラツキが大幅に低減され、意図したカーボンブラック配合量で安定的にマスターバッチを製造することができた。 From the results of Table 3 and FIG. 6, Example Batch 1 to Example Batch 3 have a significantly reduced center value deviation and variation compared to Comparative Example Batch 1, and are stably master batches at the intended carbon black content. Could be manufactured.
 表2、表3および図5、図6の結果から、実施例バッチ1~実施例バッチ3は、比較例バッチ1に対し、一定の大きさの凝固粒径で、目的とするカーボンブラック配合量にコントロールしたマスターバッチを安定的に製造することができた。 From the results of Tables 2 and 3 and FIGS. 5 and 6, Example Batch 1 to Example Batch 3 are compared with Comparative Example Batch 1 with a solidified particle size of a certain size and the target carbon black content. It was possible to stably produce a masterbatch controlled at a constant temperature.
 図に示した攪拌装置を用いて、天然ゴム溶液とカーボンブラックスラリー溶液と、凝固剤としての蟻酸を、凝固槽に同時に投入する実施例バッチ4および、配管混合する比較例バッチ1、スラリー溶液を先に投入する比較例バッチ2を試作して、他を表4に示すように、それぞれの諸元を変化させて、カーボンブラック分散およびバラツキを、評価した。 Example batch 4 in which natural rubber solution, carbon black slurry solution, and formic acid as a coagulant are simultaneously charged into the coagulation tank, and comparative example batch 1 in which pipe mixing is performed, using the stirring apparatus shown in the figure, The comparative example batch 2 to be introduced first was made as a prototype, and the others were changed as shown in Table 4 to evaluate the dispersion and variation of carbon black.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例バッチ4、および比較例バッチ1、比較例バッチ2のそれぞれで、生成した凝固物を、水きり、乾燥後、ゴム薬品を配合して、バンバリミキサーで加硫剤を除いて混合し、加硫剤を含めて混合した。その後、適当な大きさに切り、金型に入れ加硫機で145℃を30分の加硫を行い、測定用の試験片を作成した。その試験片を用いて、ASTM D2663-95aに準拠の方法で、TECHPRO disperGRADER+でカーボンブラックの分散および、上記数1でバラツキを、測定した。その評価結果を表5に示す。
 なお、分散は、1~10の標準見本との比較で行い、表中の値が大きいほど、分散およびバラツキが大きいことを示す。
In each of Example Batch 4, Comparative Example Batch 1, and Comparative Example Batch 2, the produced coagulated product was drained, dried, compounded with rubber chemicals, mixed with a banbury mixer except the vulcanizing agent, and added. The mixture was mixed with the sulfurizing agent. Thereafter, the sample was cut into an appropriate size, placed in a mold, and vulcanized at 145 ° C. for 30 minutes with a vulcanizer to prepare a test specimen for measurement. Using the test piece, the dispersion of carbon black with TECHPRO dispersGRADER + and the variation with the above formula 1 were measured by a method according to ASTM D2663-95a. The evaluation results are shown in Table 5.
The dispersion is performed by comparison with standard samples of 1 to 10, and the larger the value in the table, the greater the dispersion and variation.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5の結果から、実施例バッチ4は、比較例バッチ1、比較例バッチ2に対し、カーボンブラックの分散は高いとともに、カーボンブラックのバラツキは大幅に改善した。 From the results shown in Table 5, in Example Batch 4, the dispersion of carbon black was higher than that in Comparative Example Batch 1 and Comparative Example Batch 2, and the variation in carbon black was greatly improved.
 図3に示した攪拌装置を用いて、生成した凝固物を約1Lサンプリングして均一に攪拌し、1~3000メッシュで篩い分けし、各篩に残った凝固物の量とメッシュの大きさから平均粒径を算出した後、表6に示すような平均粒径の凝固物のそれぞれにつき、水分率を測定した。その後、図4に示した神戸製鋼製二軸押出機KTX-59にて、バレル温度160℃、スクリュー回転数400回転/minで、脱水および乾燥を行う際の、押出機への噛み込み性および押出後の押出物の水分率を測定し、その評価結果を表6に示す。 Using the stirrer shown in FIG. 3, the produced coagulum was sampled approximately 1 L and stirred uniformly, and sieved with 1 to 3000 mesh. From the amount of coagulum remaining on each sieve and the size of the mesh After calculating the average particle size, the moisture content was measured for each of the solidified products having an average particle size as shown in Table 6. Thereafter, in the Kobe Steel twin-screw extruder KTX-59 shown in FIG. 4, when the dehydration and drying are performed at a barrel temperature of 160 ° C. and a screw rotation speed of 400 rpm, The moisture content of the extrudate after extrusion was measured, and the evaluation results are shown in Table 6.
 ここで、押出機への噛み込み性は、押出機のスクリューでの凝固物の流動性および、ホッパーへの凝固物の付着性を目視で評価した。
 凝固物および押出物の水分率は、エー・アンド・デイ社製の加熱乾燥式水分計MX-50にて重量水分率を測定し、2.0%以下を良好とした。
Here, the biting property to the extruder was evaluated by visual observation of the fluidity of the solidified product with the screw of the extruder and the adherence of the solidified product to the hopper.
The moisture content of the coagulated product and the extrudate was determined to be 2.0% or less by measuring the moisture content by weight with a heat-drying moisture meter MX-50 manufactured by A & D.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6の結果から、ウェットマスターバッチの粒径が、0.001~10cmの範囲で、押出機への噛み込み性および凝固物の水分率が向上し、特に0.2~1.0cmの範囲でさらに良好な結果を得ることができた。 From the results in Table 6, when the particle size of the wet masterbatch is in the range of 0.001 to 10 cm, the biting property into the extruder and the moisture content of the coagulated substance are improved, especially in the range of 0.2 to 1.0 cm. Even better results were obtained.

Claims (10)

  1.  充填剤を含有するスラリー溶液と、ゴム溶液とを混合して凝固させたウェットマスターバッチを製造する方法において、
     一ウェットマスターバッチ分の、それらの溶液を計量して凝固槽に投入し、粉砕しながら攪拌混合することを特徴とするウェットマスターバッチの製造方法。
    In a method for producing a wet masterbatch in which a slurry solution containing a filler and a rubber solution are mixed and solidified,
    A method for producing a wet masterbatch, characterized in that a solution of one wet masterbatch is weighed and charged into a coagulation tank and stirred and mixed while being pulverized.
  2.  ゴム溶液を天然ゴム溶液とする請求項1に記載のウェットマスターバッチの製造方法。 The method for producing a wet masterbatch according to claim 1, wherein the rubber solution is a natural rubber solution.
  3.  酸を含有する凝固剤を凝固槽に投入する請求項1または2に記載のウェットマスターバッチの製造方法。 The method for producing a wet masterbatch according to claim 1 or 2, wherein a coagulant containing an acid is introduced into a coagulation tank.
  4.  粉砕羽根を500rpmまたは周速5m/s以上の速度で回転させる請求項1~3に記載のウェットマスターバッチの製造方法。 The method for producing a wet masterbatch according to claims 1 to 3, wherein the grinding blade is rotated at a speed of 500 rpm or a peripheral speed of 5 m / s or more.
  5.  スラリー溶液と、ゴム溶液を凝固槽に同時に投入して攪拌混合する請求項1~4のいずれかに記載のウェットマスターバッチの製造方法。 The method for producing a wet masterbatch according to any one of claims 1 to 4, wherein the slurry solution and the rubber solution are simultaneously charged into a coagulation tank and stirred and mixed.
  6.  ウェットマスターバッチの粒径を0.001~10cmの範囲にコントロールする請求項1~5のいずれかに記載のウェットマスターバッチの製造方法。 The method for producing a wet masterbatch according to any one of claims 1 to 5, wherein the particle size of the wet masterbatch is controlled within a range of 0.001 to 10 cm.
  7.  スラリー固形分濃度0.5~20%、ゴム溶液固形分濃度1%~60%で攪拌混合する請求項1~6のいずれかに記載のウェットマスターバッチの製造方法。 The method for producing a wet masterbatch according to any one of claims 1 to 6, wherein stirring solid mixing is performed at a slurry solid content concentration of 0.5 to 20% and a rubber solution solid content concentration of 1% to 60%.
  8.  請求項1~7のいずれかの製造方法によって形成されたウェットマスターバッチ。 A wet masterbatch formed by the production method according to any one of claims 1 to 7.
  9.  請求項8に記載のウェットマスターバッチを用いて形成されたゴム組成物。 A rubber composition formed using the wet masterbatch according to claim 8.
  10.  請求項9に記載のゴム組成物を用いて形成されたタイヤ。 A tire formed using the rubber composition according to claim 9.
PCT/JP2009/055205 2008-03-18 2009-03-17 Process for producing wet masterbatch and wet masterbatch WO2009116543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008070268 2008-03-18
JP2008-070268 2008-03-18

Publications (1)

Publication Number Publication Date
WO2009116543A1 true WO2009116543A1 (en) 2009-09-24

Family

ID=41090944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055205 WO2009116543A1 (en) 2008-03-18 2009-03-17 Process for producing wet masterbatch and wet masterbatch

Country Status (1)

Country Link
WO (1) WO2009116543A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110722A (en) * 2013-10-31 2015-06-18 株式会社ブリヂストン Method for producing wet master batch, wet master batch, rubber composition, and solid-liquid separation dehydrator for producing wet master batch
WO2016002235A1 (en) * 2014-07-01 2016-01-07 東洋ゴム工業株式会社 Process for producing wet rubber masterbatch
WO2016063897A1 (en) * 2014-10-23 2016-04-28 古河産機システムズ株式会社 Evaluation device for granulator operating condition, and evaluation method
JPWO2014129564A1 (en) * 2013-02-25 2017-02-02 株式会社ブリヂストン Method for producing wet masterbatch and wet masterbatch obtained thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012396A1 (en) * 2003-08-05 2005-02-10 Bridgestone Corporation Rubber master batch and method for production thereof
JP2006348130A (en) * 2005-06-15 2006-12-28 Bridgestone Corp Method for producing wet master batch, reactor therefor, wet master batch produced by the same method, rubber composition and tire
JP2007197622A (en) * 2006-01-30 2007-08-09 Bridgestone Corp Rubber master batch and method for producing the same
JP2007237456A (en) * 2006-03-06 2007-09-20 Bridgestone Corp Manufacturing method of wet master batch, wet master batch formed thereby, rubber composition and tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012396A1 (en) * 2003-08-05 2005-02-10 Bridgestone Corporation Rubber master batch and method for production thereof
JP2006348130A (en) * 2005-06-15 2006-12-28 Bridgestone Corp Method for producing wet master batch, reactor therefor, wet master batch produced by the same method, rubber composition and tire
JP2007197622A (en) * 2006-01-30 2007-08-09 Bridgestone Corp Rubber master batch and method for producing the same
JP2007237456A (en) * 2006-03-06 2007-09-20 Bridgestone Corp Manufacturing method of wet master batch, wet master batch formed thereby, rubber composition and tire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014129564A1 (en) * 2013-02-25 2017-02-02 株式会社ブリヂストン Method for producing wet masterbatch and wet masterbatch obtained thereby
JP2015110722A (en) * 2013-10-31 2015-06-18 株式会社ブリヂストン Method for producing wet master batch, wet master batch, rubber composition, and solid-liquid separation dehydrator for producing wet master batch
WO2016002235A1 (en) * 2014-07-01 2016-01-07 東洋ゴム工業株式会社 Process for producing wet rubber masterbatch
JP2016014086A (en) * 2014-07-01 2016-01-28 東洋ゴム工業株式会社 Method for producing rubber wet master batch
DE112015003098B4 (en) 2014-07-01 2018-10-18 Toyo Tire & Rubber Co., Ltd. Process for the preparation of a wet rubber masterbatch
US10544289B2 (en) 2014-07-01 2020-01-28 Toyo Tire Corporation Process for producing wet rubber masterbatch
WO2016063897A1 (en) * 2014-10-23 2016-04-28 古河産機システムズ株式会社 Evaluation device for granulator operating condition, and evaluation method
JPWO2016063897A1 (en) * 2014-10-23 2017-05-25 古河産機システムズ株式会社 Apparatus and method for evaluating operating conditions of granulator
US10899099B2 (en) 2014-10-23 2021-01-26 Furukawa Industrial Machinery Systems Co., Ltd. Device and method for evaluating operating conditions of briquetting machine, briquetting machine, method for manufacturing briquette, control device of briquetting machine, control method of briquetting machine, and program

Similar Documents

Publication Publication Date Title
JP5646454B2 (en) Manufacturing method of rubber wet masterbatch, rubber composition and tire
JP5129928B2 (en) Rubber masterbatch and manufacturing method thereof
JP4965822B2 (en) Wet masterbatch rubber composition and tire
JP4972286B2 (en) Manufacturing method of rubber-filler masterbatch
JP5676588B2 (en) Method for producing wet masterbatch, rubber composition and tire
JP5072240B2 (en) Method for producing wet masterbatch, and wet masterbatch formed by this method, rubber composition, and tire
JP2009126978A (en) Rubber wet master batch, its manufacturing method, rubber composition, and tire
WO2009116543A1 (en) Process for producing wet masterbatch and wet masterbatch
JP6295374B2 (en) Functionalized silica with elastomeric binder
JP4533317B2 (en) Manufacturing method of rubber masterbatch
JP4945095B2 (en) Method for producing wet masterbatch, wet masterbatch formed by this method, and rubber composition and tire formed using this wet masterbatch
JPS6054974B2 (en) Manufacturing method of rubber carbon master batch
JP2006348146A (en) Method for producing wet master batch, wet master batch produced by the same method, rubber composition and tire
JP5906112B2 (en) Manufacturing method of wet masterbatch
JP2006219593A (en) Master batch containing two or more fillers, method for producing the same, rubber composition using the same, and tire
JP2011032373A (en) Manufacturing method for wet master batch
JP2014156534A (en) Method for producing wet master batch
JP2006348130A (en) Method for producing wet master batch, reactor therefor, wet master batch produced by the same method, rubber composition and tire
JP2015203106A (en) Method of producing wet master batch, wet master batch, rubber composition, and tire using the same
JP5868205B2 (en) Manufacturing method of wet masterbatch
JP4452317B1 (en) Manufacturing method of wet masterbatch
JP2008201958A (en) Method for producing un-granulated carbon black-containing wet master batch, rubber composition and tire
CN105026464A (en) Method for producing wet master batch and wet master batch obtained thereby
JP2012062390A (en) Tire
JP2013199530A (en) Wet master batch containing silica and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09721592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP