WO2009116537A1 - Manufacturing method for laurolactam - Google Patents

Manufacturing method for laurolactam Download PDF

Info

Publication number
WO2009116537A1
WO2009116537A1 PCT/JP2009/055187 JP2009055187W WO2009116537A1 WO 2009116537 A1 WO2009116537 A1 WO 2009116537A1 JP 2009055187 W JP2009055187 W JP 2009055187W WO 2009116537 A1 WO2009116537 A1 WO 2009116537A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus pentoxide
zinc chloride
solvent
reaction
laurolactam
Prior art date
Application number
PCT/JP2009/055187
Other languages
French (fr)
Japanese (ja)
Inventor
常実 杉本
泰久 福田
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008066916A external-priority patent/JP2009221142A/en
Priority claimed from JP2008128958A external-priority patent/JP2009275005A/en
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2009116537A1 publication Critical patent/WO2009116537A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement

Definitions

  • the present invention relates to a method for producing laurolactam by Beckmann rearrangement reaction of cyclododecanone oxime.
  • a method of performing a Beckmann rearrangement reaction using cyanuric chloride as a catalyst see Patent Document 1 and Non-Patent Document 1
  • a method of rearranging an oxime in the presence of a dialkylamide compound and phosphorus pentoxide see Patent Document 2
  • a dialkylamide A method of rearranging an oxime in the presence of a compound, phosphorus pentoxide, and a strong fluorinated acid see Patent Document 3 and Non-Patent Document 2
  • a dialkylamide compound, a condensed phosphoric acid compound, and optionally an oxime in the presence of a fluorinated strong acid see Patent Document 1 and Non-Patent Document 1
  • a method of rearranging an oxime in the presence of a dialkylamide compound and phosphorus pentoxide see Patent Document 2
  • Patent Document 1 and Non-Patent Document 1 are promising because of their excellent lactam yield, but hydrogen chloride is used when cyanuric chloride, which is a catalyst, reacts with oxime. As a result, the corrosion of the reactor becomes a problem.
  • At least one compound selected from the group consisting of N, N-dialkylamides, N-alkyl cyclic amides and dialkyl sulfoxides and phosphorus pentoxide are used as a catalyst.
  • the yield is not at an industrially satisfactory level of 70% or less.
  • Patent Document 6 describes oxime rearrangement in the presence of a dialkylamide compound, an inorganic acid, and a carboxylic acid anhydride as catalyst components, but the yield of lactam is as low as 82% or less, which is an industrial level. Is not reached.
  • Patent Document 7 in the presence of an acid anhydride, the total number of moles of water contained in the reaction system is set to 15 or less with respect to the acid anhydride, and the oxime is rearranged to obtain a lactam with an industrial level yield.
  • a method is described, but only when p-toluenesulfonic anhydride is used as a catalyst. Since p-toluenesulfonic acid anhydride is expensive, complicated steps such as catalyst separation, catalyst regeneration, and catalyst recycling are required for industrial use.
  • the inventors conducted a rearrangement reaction of cyclododecanone oxime using phosphorus pentoxide as a catalyst, but the lactam yield was very low (see the comparative example of the present application).
  • Non-Patent Document 3 discloses a method of rearranging oxime in acetonitrile solvent using p-toluenesulfonic acid and zinc chloride as catalysts, but neither p-toluenesulfonic acid nor zinc chloride is used in an amount of 10 mol% or more. Since lactam cannot be obtained in an industrially satisfactory yield, the amount of catalyst used is increased, which is not preferable as an industrial production method.
  • the present invention relates to the following matters.
  • a process for producing laurolactam which comprises Beckmann rearrangement of cyclododecanone oxime in a solvent in the presence of phosphorus pentoxide and zinc chloride.
  • the ratio of phosphorus pentoxide to zinc chloride (molar ratio: phosphorus pentoxide: zinc chloride) is 2.5: 1 to 1:10, and the laurolactam according to any one of 9 to 11 above, Production method.
  • an industrially advantageous method for producing laurolactam capable of producing laurolactam in a simple and high yield can be provided.
  • laurolactam is produced by Beckmann rearrangement of cyclododecanone oxime in a solvent in the presence of phosphorus pentoxide and zinc chloride.
  • the Beckmann rearrangement solvent is preferably a nonpolar solvent, a nitrile compound, or a nonpolar solvent containing a nitrile compound.
  • the first to third embodiments are respectively an embodiment using a nonpolar solvent (first embodiment), an embodiment using a nitrile compound (second embodiment), and a non-containing nitrile compound-containing non-nitrile compound. This corresponds to the embodiment using the polar solvent (third embodiment).
  • the raw material cyclododecanone oxime can be produced by a conventional method. For example, a method of producing by ammoxidation in the presence of a catalyst by adding hydrogen peroxide water and ammonia water to cyclododecanone. A method of producing cyclododecanone oxime by reacting cyclododecane with nitrosyl chloride using light energy in the presence of hydrogen chloride (photonitrosation). Recently, N-hydroxyphthalimide is used as a catalyst, and a method for producing cyclododecane and nitrite has been shown. The most industrially established production method is to react cyclododecanone with hydroxylamine. Is the method.
  • the concentration of cyclohexanone oxime can be appropriately changed in consideration of the reaction conditions and the like, but with respect to the solvent (in the first embodiment, relative to the nonpolar solvent; And in the third embodiment, 5 to 90 wt%, preferably 15 to 75 wt%, based on the total amount of the nitrile compound and the nonpolar solvent. If the concentration of cyclohexanone oxime is too low, the reactor volume must be increased in order to secure the production amount, which may be industrially undesirable. In addition, if the concentration of cyclohexanone oxime is too high, the raw material oxime and the product lactam are precipitated during the reaction, which may make the operation difficult.
  • the reaction temperature is not particularly limited, but an industrially advantageous temperature range is preferable. Specifically, it is preferably not higher than the boiling point of the solvent used. In general, if the temperature is too low, the reaction rate becomes slow, so the reactor volume must be increased or the amount of catalyst must be increased, which is not preferable because the production cost increases. Moreover, although it is advantageous if the temperature is higher than the boiling point of the solvent used, the reaction rate increases, which is advantageous, but the reaction pressure becomes atmospheric pressure or higher, and the cost of production equipment increases.
  • the lower limit is more preferably 80 ° C., and the upper limit is the boiling point temperature of the solvent.
  • the lower limit is 50 ° C., and the upper limit is the boiling temperature of the solvent.
  • phosphorus pentoxide and zinc chloride are used as catalysts.
  • the amount of the catalyst that is, phosphorus pentoxide and zinc chloride
  • the rearrangement reaction rate is slow and the reaction time is long, which is not industrially preferable.
  • the catalyst is likely to be deactivated due to a small amount of impurities present in the reaction mixture, and the reaction may be stopped in the middle.
  • the amount of the catalyst added is too large, it is advantageous in terms of reaction efficiency, but it is not preferable from the viewpoint of an industrial production method because the catalyst cost increases.
  • the ratio of phosphorus pentoxide and zinc chloride is used in such a range that the catalytic activity does not decrease.
  • the amount of phosphorus pentoxide and zinc chloride used is generally 0.01 to 20 mol% of the total amount of cyclododecanone oxime, preferably 0.5 to 10 mol%.
  • the ratio of phosphorus pentoxide to zinc chloride is (molar ratio phosphorus pentoxide: zinc chloride) 99: 1 to 1:99, preferably 9: 1 to 1: 9, more preferably 3: 1 to 1: 3. is there.
  • the amount of phosphorus pentoxide and zinc chloride used is generally 0.01 to 20 mol%, preferably 0.5 to 20 mol%, based on cyclododecanone oxime.
  • the amount is 10 mol%, more preferably 0.5 to 5 mol%.
  • the ratio of phosphorus pentoxide to zinc chloride is (molar ratio phosphorus pentoxide: zinc chloride) 99: 1 to 1:99, preferably 9: 1 to 1: 9, more preferably 2: 1 to 1: 5. is there.
  • the amount of phosphorus pentoxide and zinc chloride used is generally 0.01 to 20 mol%, preferably 1.0 to 6 mol% relative to cyclododecanone oxime. 0.5 mol%.
  • the ratio of phosphorus pentoxide to zinc chloride is (molar ratio phosphorus pentoxide: zinc chloride) 99: 1 to 1:99, preferably 2.5: 1 to 1:10.
  • the solvent is as follows.
  • examples of the nonpolar solvent include saturated hydrocarbons such as hexane, cyclohexane, octane, cyclooctane, nonane, and decane, and aromatic hydrocarbons such as benzene, toluene, xylene, and tetralin.
  • Aromatic hydrocarbons such as benzene, toluene, xylene and tetralin are preferred.
  • the nitrile compound used as the solvent is a nitrile compound that is substantially inert to the reaction and is liquid at room temperature, such as acetonitrile, butyronitrile, isobutyronitrile, valeronitrile, Aliphatic nitriles such as valeronitrile, trimethylacetonitrile, hexanenitrile, heptanenitrile, octanenitrile, nonanenitrile, dodecanenitrile, glutaronitrile, adiponitrile, cyclopropylacetonitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, cycloheptanecarb Alicyclic nitriles such as nitrile, benzonitrile, o-tolunitrile, m-tolunitrile, 2-ethylbenzonitrile, 4-ethylbenzonitrile, phenylacetonitrile o- tolyl
  • the nonpolar solvent a nonpolar solvent that is substantially inert to the reaction and is liquid at room temperature.
  • the nonpolar solvents mentioned in the first aspect are used.
  • the solvent include the same (preferred solvents).
  • the nitrile compound a nitrile compound which is liquid at normal temperature is preferable, and specifically, the nitrile compounds mentioned in the second embodiment are preferable (the same applies to the preferable compounds).
  • the addition amount of the nitrile compound is more than 0 wt% and less than 100 wt%, preferably 1 to 80 wt%, more preferably 2.5 to 50 wt% with respect to the nonpolar solvent.
  • the catalyst activity is further improved by increasing the amount of nitrile compound added, but it is preferable that the amount of nitrile compound added is not excessively large in consideration of cost.
  • reaction pressure is not particularly limited, but is usually atmospheric pressure.
  • the present invention is preferably carried out in air or in an inert gas atmosphere such as nitrogen gas, argon or helium.
  • the form of the Beckmann rearrangement reaction may be either a batch reaction or a continuous reaction, but a continuous reaction is preferable from an industrial standpoint.
  • a batch reactor a tube type continuous reactor, a tank type (stirring type) continuous reactor, a tube type or tank type (stirring type) multistage continuous reactor, and the like can be used.
  • a continuous reactor such as a tubular continuous reactor, a tank (stirring) continuous reactor, a tube or tank (stirring) multistage continuous reactor is preferred.
  • the obtained laurolactam can be purified and separated by crystallization or distillation.
  • Example of the first aspect Cyclododecanone oxime 1.0 g (5.08 mmol), zinc chloride 0.0234 g (3.4 mol% of cyclododecanone oxime), phosphorus pentoxide in a glass reaction tube (volume 10 cc) in a glove box under nitrogen atmosphere
  • 0.0224 g 3.1 mol% of cyclododecanone oxime
  • 5.0 g of toluene was added as a solvent and set in an oil bath at 110 ° C. to start the reaction.
  • the reaction tube was taken out of the oil bath, allowed to cool, diluted with toluene, and the product was quantitatively analyzed with a gas chromatography apparatus.
  • the conversion of cyclododecanone oxime was 100%, and the yield of produced laurolactam was 97.2%.
  • Examples A2 to A11 Comparative Examples A1 to A2
  • the reaction was carried out in the same manner as in Example A1 except that the amounts of zinc chloride and phosphorus pentoxide and the solvent were changed as shown in Table 1, and after the reaction, the same treatment and analysis were performed.
  • Table 1 The results are summarized in Table 1.
  • Example of the second aspect (Example B1) Cyclododecanone oxime 1.0 g (5.08 mmol), zinc chloride 0.0072 g (1.0 mol% of cyclododecanone oxime), phosphorus pentoxide in a glass reaction tube (volume 10 cc) in a glove box under nitrogen atmosphere After charging 0.0078 g (1.1 mol% of cyclododecanone oxime), 5.1 g of acetonitrile was added and set in an oil bath at 85 ° C. to start the reaction. After 1 hour, the reaction tube was taken out of the oil bath, allowed to cool, diluted with toluene, and the product was quantitatively analyzed with a gas chromatography apparatus. As a result, the conversion of cyclododecanone oxime was 96.4%, and the yield of produced laurolactam was 95.2%.
  • Examples B2 to B6 Comparative Examples B1 to B3
  • the reaction was carried out in the same manner as in Example B1 except that the amounts of cyclododecanone oxime, zinc chloride and phosphorus pentoxide, the solvent, and the reaction temperature were changed as shown in Table 2. did.
  • the results are summarized in Table 2.
  • Example of the third aspect (Example C1) Cyclododecanone oxime 1.0 g (5.08 mmol), zinc chloride 0.0182 g (2.63 mol% of cyclododecanone oxime), phosphorus pentoxide 0.200 g (cyclododecanone oxime) in a glass reaction tube (volume 10 cc) Then, 4.5 g of toluene and 0.5 g of acetonitrile were added and set in an oil bath at 100 ° C. to start the reaction. After 1 hour, the reaction tube was taken out of the oil bath, allowed to cool, diluted with toluene, and the product was quantitatively analyzed with a gas chromatography apparatus. As a result, the conversion of cyclododecanone oxime was 100%, and the yield of produced laurolactam was 94.2%.
  • Examples C2 to C18 Comparative Examples C1 to C2
  • the reaction was conducted in the same manner as in Example C1, except that the amounts of cyclododecanone oxime, zinc chloride and phosphorus pentoxide, the solvent (nonpolar solvent, nitrile compound), and the reaction temperature were changed as shown in Table 3. , Processed and analyzed in the same manner. The results are summarized in Table 3.
  • an industrially advantageous method for producing laurolactam capable of producing laurolactam in a simple and high yield can be provided.

Abstract

Disclosed is an easy and industrially advantageous method for manufacturing a high yield of laurolactam by means of the Beckmann rearrangement reaction of cyclododecanone oxime. Laurolactam is produced through the Beckmann rearrangement reaction of cyclododecanone oxime in a solvent in the presence of phosphorus pentoxide and zinc chloride.

Description

ラウロラクタムの製造方法Method for producing laurolactam
 本発明は、シクロドデカノンオキシムのベックマン転位反応によりラウロラクタムを製造する方法に関する。 The present invention relates to a method for producing laurolactam by Beckmann rearrangement reaction of cyclododecanone oxime.
 現在、シクロドデカノンオキシムのベックマン転位反応によりラウロラクタムを製造する工業的方法としては、濃硫酸または発煙硫酸を転位剤とする方法が一般的に用いられている。しかし、硫酸がオキシムに対して当モル必要であり、反応後に硫酸をアンモニアなどの塩基で中和する必要があることから、副生成物として大量の硫酸アンモニウム(硫安)が排出されることが問題であった。斯かる問題を解決する方法として種々の触媒反応系が検討されてきた。例えば、塩化シアヌルを触媒としてベックマン転位反応を行う方法(特許文献1、非特許文献1参照)、ジアルキルアミド化合物、五酸化リンの存在下にオキシムを転位させる方法(特許文献2参照)、ジアルキルアミド化合物、五酸化リン、含フッ素強酸の存在下にオキシムを転位させる方法(特許文献3、非特許文献2参照)、ジアルキルアミド化合物、縮合リン酸化合物、場合により更に含フッ素強酸の存在下にオキシムを転位させる方法(特許文献4参照)、ジアルキルアミド化合物、五酸化リンまたは縮合リン酸化合物、非含フッ素スルホン酸無水物の存在下にオキシムを転位させる方法(特許文献5参照)、ジアルキルアミド化合物、無機酸、カルボン酸無水物の存在下にオキシムを転位させる方法(特許文献6参照)、酸無水物存在下、反応系中に含まれる水の合計モル数を酸無水物に対して15以下の条件でオキシムを転位させる方法(特許文献7参照)、が知られている。 Currently, as an industrial method for producing laurolactam by the Beckmann rearrangement reaction of cyclododecanone oxime, a method using concentrated sulfuric acid or fuming sulfuric acid as a transfer agent is generally used. However, there is a problem that a large amount of ammonium sulfate (ammonium sulfate) is discharged as a by-product because sulfuric acid must be equimolar to the oxime, and sulfuric acid must be neutralized with a base such as ammonia after the reaction. there were. Various catalytic reaction systems have been studied as a method for solving such problems. For example, a method of performing a Beckmann rearrangement reaction using cyanuric chloride as a catalyst (see Patent Document 1 and Non-Patent Document 1), a method of rearranging an oxime in the presence of a dialkylamide compound and phosphorus pentoxide (see Patent Document 2), a dialkylamide A method of rearranging an oxime in the presence of a compound, phosphorus pentoxide, and a strong fluorinated acid (see Patent Document 3 and Non-Patent Document 2), a dialkylamide compound, a condensed phosphoric acid compound, and optionally an oxime in the presence of a fluorinated strong acid. Rearrangement (see Patent Document 4), dialkylamide compound, phosphorus pentoxide or condensed phosphoric acid compound, method of rearranging oxime in the presence of non-fluorinated sulfonic anhydride (see Patent Document 5), dialkylamide compound , A method of rearranging oxime in the presence of inorganic acid or carboxylic acid anhydride (see Patent Document 6), acid anhydride Presence, method 15 to rearrangement of oxime in the following conditions with respect to the total moles of the acid anhydride of water contained in the reaction system (see Patent Document 7), is known.
 しかしながら、シクロドデカノンオキシムをベックマン転位させてラウロラクタムを工業的に製造するためには、これらの方法は、それぞれ、更に解決すべき課題や問題を有する。 However, in order to industrially produce laurolactam by Beckmann rearrangement of cyclododecanone oxime, each of these methods has further problems and problems to be solved.
 具体的には、特許文献1、非特許文献1に記載の製法は、ラクタムの収率に優れていることから有望な方法であるが、触媒である塩化シアヌルがオキシムと反応するときに塩化水素を遊離放出するため、反応装置の腐食が問題となる。 Specifically, the production methods described in Patent Document 1 and Non-Patent Document 1 are promising because of their excellent lactam yield, but hydrogen chloride is used when cyanuric chloride, which is a catalyst, reacts with oxime. As a result, the corrosion of the reactor becomes a problem.
 特許文献2に記載の製法では、N,N-ジアルキルアミド、N-アルキル環状アミド及びジアルキルスルホキシドからなる群より選ばれた少なくとも一種の化合物と五酸化リンを触媒として使用しているが、ラクタムの収率は70%以下と工業的に満足できるレベルではない。 In the production method described in Patent Document 2, at least one compound selected from the group consisting of N, N-dialkylamides, N-alkyl cyclic amides and dialkyl sulfoxides and phosphorus pentoxide are used as a catalyst. The yield is not at an industrially satisfactory level of 70% or less.
 特許文献3に記載の製法では、触媒として使用している五酸化リンは、オキシムの約0.1~20モル%と比較的少ないものの、ラクタムの収率は90%以下と工業的に満足できるレベルではなく、また、含フッ素強酸を使用しているため、装置の腐食の問題があり、特殊な装置が必要である。さらに、含フッ素強酸はきわめて強い酸であるため安全性の面での問題があり、廃液の処理も煩雑である。 In the production method described in Patent Document 3, phosphorus pentoxide used as a catalyst is relatively small, about 0.1 to 20 mol% of oxime, but the lactam yield is industrially satisfactory as 90% or less. The use of a strong fluorine-containing acid, not a level, has a problem of corrosion of the apparatus, and a special apparatus is required. Furthermore, since the fluorine-containing strong acid is an extremely strong acid, there is a problem in terms of safety, and the treatment of the waste liquid is also complicated.
 特許文献4に記載の製法では、縮合リン酸化合物、N,N-二置換アミド化合物、場合により更に含フッ素強酸の存在下でオキシム転位を実施しているが、含フッ素強酸が存在する場合のみ高収率であり、含フッ素強酸を使用する場合には特許文献3と同様な問題がある。 In the production method described in Patent Document 4, oxime rearrangement is carried out in the presence of a condensed phosphoric acid compound, an N, N-disubstituted amide compound, and optionally a fluorinated strong acid, but only when a fluorinated strong acid is present. When the fluorine-containing strong acid is used, there is a problem similar to that of Patent Document 3.
 特許文献5に記載の製法では、縮合リン酸化合物を触媒として使用しているが、ラクタムの収率は85%以下と工業的に満足できるレベルではなく、含フッ素強酸共存下で転位させなければならない為、特許文献3と同様の問題がある。 In the production method described in Patent Document 5, a condensed phosphoric acid compound is used as a catalyst. However, the yield of lactam is not at an industrially satisfactory level of 85% or less and must be rearranged in the presence of a strong fluorine-containing acid. Therefore, there is a problem similar to that of Patent Document 3.
 特許文献6には、触媒成分であるジアルキルアミド化合物、無機酸、カルボン酸無水物の存在下でのオキシムの転位が記載されているが、ラクタムの収率は82%以下と低く、工業的レベルには達していない。 Patent Document 6 describes oxime rearrangement in the presence of a dialkylamide compound, an inorganic acid, and a carboxylic acid anhydride as catalyst components, but the yield of lactam is as low as 82% or less, which is an industrial level. Is not reached.
 特許文献7には、酸無水物の存在下、反応系中に含まれる水の合計モル数を酸無水物に対して15以下にしてオキシムを転位し、工業的レベルの収率でラクタムを得る方法が記載されているが、p-トルエンスルホン酸無水物を触媒として用いた場合に限られる。p-トルエンスルホン酸無水物は高価であるため、工業的に使用するためには、触媒分離や触媒再生、触媒リサイクルなどの煩雑な工程が必要となる。また、発明者らは五酸化リンを触媒として用いてシクロドデカノンオキシムの転位反応を実施したが、ラクタム収率は非常に低い結果であった(本願の比較例を参照)。 In Patent Document 7, in the presence of an acid anhydride, the total number of moles of water contained in the reaction system is set to 15 or less with respect to the acid anhydride, and the oxime is rearranged to obtain a lactam with an industrial level yield. A method is described, but only when p-toluenesulfonic anhydride is used as a catalyst. Since p-toluenesulfonic acid anhydride is expensive, complicated steps such as catalyst separation, catalyst regeneration, and catalyst recycling are required for industrial use. In addition, the inventors conducted a rearrangement reaction of cyclododecanone oxime using phosphorus pentoxide as a catalyst, but the lactam yield was very low (see the comparative example of the present application).
 非特許文献3には、アセトニトリル溶媒中でp-トルエンスルホン酸と塩化亜鉛とを触媒としてオキシムを転位させる方法が開示されているが、p-トルエンスルホン酸と塩化亜鉛をともに10mol%以上使用しないと工業的に満足し得る収率でラクタムが得られないことから、触媒の使用量が多くなり工業的製法としては好ましいとはいえない。
特開2006-219470号公報 特開平4-342570号公報 特開平5-105654号公報 特開2001-302602号公報 特開2001-302603号公報 特開2003-128638号公報 特開2004-59553号公報 Journal of American ChemicalSociety, pp11240 (2005) Journal of Molecular CatalysisA: Chemical, pp25 (2005) Tetrahedron Letters, pp7218(2007)
Non-Patent Document 3 discloses a method of rearranging oxime in acetonitrile solvent using p-toluenesulfonic acid and zinc chloride as catalysts, but neither p-toluenesulfonic acid nor zinc chloride is used in an amount of 10 mol% or more. Since lactam cannot be obtained in an industrially satisfactory yield, the amount of catalyst used is increased, which is not preferable as an industrial production method.
JP 2006-219470 A JP-A-4-342570 JP-A-5-105654 JP 2001-302602 A JP 2001-302603 A JP 2003-128638 A JP 2004-59553 A Journal of American Chemical Society, pp11240 (2005) Journal of Molecular CatalysisA: Chemical, pp25 (2005) Tetrahedron Letters, pp7218 (2007)
 シクロドデカノンオキシムのベックマン転位反応によるラウロラクタムの製造において、簡便かつ高収率でラウロラクタムを製造し得る工業的に有利な製造方法を提供することを課題とする。 In the production of laurolactam by Beckmann rearrangement reaction of cyclododecanone oxime, it is an object to provide an industrially advantageous production method capable of producing laurolactam in a simple and high yield.
 本発明は、次の事項に関する。 The present invention relates to the following matters.
 1. 五酸化リンおよび塩化亜鉛の存在下、溶媒中、シクロドデカノンオキシムをベックマン転位させることを特徴とするラウロラクタムの製造方法。 1. A process for producing laurolactam, which comprises Beckmann rearrangement of cyclododecanone oxime in a solvent in the presence of phosphorus pentoxide and zinc chloride.
 2. 前記溶媒が、非極性溶媒であることを特徴とする上記1記載のラウロラクタムの製造方法。 2. The method for producing laurolactam according to 1 above, wherein the solvent is a nonpolar solvent.
 3. 前記非極性溶媒が芳香族炭化水素であることを特徴とする上記2記載のラウロラクタムの製造方法。 3. The method for producing laurolactam as described in 2 above, wherein the nonpolar solvent is an aromatic hydrocarbon.
 4. 五酸化リンと塩化亜鉛の比率(モル比 五酸化リン:塩化亜鉛)が3:1~1:3である上記2記載のラウロラクタムの製造方法。 4. 3. The method for producing laurolactam according to 2 above, wherein the ratio of phosphorus pentoxide to zinc chloride (molar ratio: phosphorus pentoxide: zinc chloride) is 3: 1 to 1: 3.
 5. 前記溶媒が、ニトリル化合物であることを特徴とする上記1記載のラウロラクタムの製造方法。 5. The method for producing laurolactam according to the above 1, wherein the solvent is a nitrile compound.
 6. 五酸化リンと塩化亜鉛の合計使用量が、シクロドデカノンオキシムに対して5モル%以下であることを特徴とする上記5記載のラウロラクタムの製造方法。 6. The method for producing laurolactam according to 5 above, wherein the total amount of phosphorus pentoxide and zinc chloride used is 5 mol% or less based on cyclododecanone oxime.
 7. ニトリル化合物がアセトニトリルまたはベンゾニトリルであることを特徴とする上記5または6記載のラウロラクタムの製造方法。 7. The method for producing laurolactam as described in 5 or 6 above, wherein the nitrile compound is acetonitrile or benzonitrile.
 8. 五酸化リンと塩化亜鉛の比率(モル比 五酸化リン:塩化亜鉛)が2:1~1:5であることを特徴とする上記5~7のいずれか1項に記載のラウロラクタムの製造方法。 8. 8. The method for producing laurolactam according to any one of 5 to 7 above, wherein the ratio of phosphorus pentoxide to zinc chloride (molar ratio: phosphorus pentoxide: zinc chloride) is 2: 1 to 1: 5. .
 9. 前記溶媒が、ニトリル化合物を含有する非極性溶媒であることを特徴とする上記1記載のラウロラクタムの製造方法。 9. The method for producing laurolactam according to 1 above, wherein the solvent is a nonpolar solvent containing a nitrile compound.
 10. 五酸化リンと塩化亜鉛の合計使用量が、シクロドデカノンオキシムに対して1.0~6.5mol%であることを特徴とする上記9記載のラウロラクタムの製造方法。 10. 10. The method for producing laurolactam as described in 9 above, wherein the total amount of phosphorus pentoxide and zinc chloride used is 1.0 to 6.5 mol% based on cyclododecanone oxime.
 11. ニトリル化合物がアセトニトリルまたはベンゾニトリルであることを特徴とする上記9または10記載のラウロラクタムの製造方法。 11. The method for producing laurolactam as described in 9 or 10 above, wherein the nitrile compound is acetonitrile or benzonitrile.
 12. 五酸化リンと塩化亜鉛の比率(モル比 五酸化リン:塩化亜鉛)が2.5:1~1:10であることを特徴とする上記9~11のいずれか1項に記載のラウロラクタムの製造方法。 12. The ratio of phosphorus pentoxide to zinc chloride (molar ratio: phosphorus pentoxide: zinc chloride) is 2.5: 1 to 1:10, and the laurolactam according to any one of 9 to 11 above, Production method.
 13. ニトリル化合物含有量が非極性溶媒に対して2.5~50wt%であることを特徴とする上記9~12のいずれか1項に記載のラウロラクタムの製造方法。 13. 13. The method for producing laurolactam according to any one of 9 to 12 above, wherein the nitrile compound content is 2.5 to 50 wt% with respect to the nonpolar solvent.
 本発明により、簡便かつ高収率でラウロラクタムを製造し得る工業的に有利なラウロラクタムの製造方法を提供することができる。 According to the present invention, an industrially advantageous method for producing laurolactam capable of producing laurolactam in a simple and high yield can be provided.
 本発明は、五酸化リンおよび塩化亜鉛の存在下、溶媒中で、シクロドデカノンオキシムをベックマン転位させてラウロラクタムを製造する。そのベックマン転位溶媒として、好ましくは、非極性溶媒、ニトリル化合物、ニトリル化合物を含有する非極性溶媒が挙げられる。以下の説明で、第1~第3の態様は、それぞれ、非極性溶媒を使用する態様(第1の態様)、ニトリル化合物を使用する態様(第2の態様)、およびニトリル化合物を含有する非極性溶媒を使用する態様(第3の態様)に対応する。 In the present invention, laurolactam is produced by Beckmann rearrangement of cyclododecanone oxime in a solvent in the presence of phosphorus pentoxide and zinc chloride. The Beckmann rearrangement solvent is preferably a nonpolar solvent, a nitrile compound, or a nonpolar solvent containing a nitrile compound. In the following description, the first to third embodiments are respectively an embodiment using a nonpolar solvent (first embodiment), an embodiment using a nitrile compound (second embodiment), and a non-containing nitrile compound-containing non-nitrile compound. This corresponds to the embodiment using the polar solvent (third embodiment).
 以下の説明で、特に言及しないかぎり、第1~第3の態様に共通して適用される。 In the following description, unless otherwise noted, the same applies to the first to third aspects.
 原料であるシクロドデカノンオキシムは通常の方法で製造することができる。例えば、シクロドデカノンに過酸化水素水及びアンモニア水を加えて触媒存在下でアンモ酸化し製造する方法。シクロドデカンを塩化水素の共存下、光エネルギーを利用して塩化ニトロシルと反応させて、シクロドデカノンオキシムを製造する方法(光ニトロソ化)。最近ではN-ヒドロキシフタルイミドを触媒に用い、シクロドデカンと亜硝酸エステルから製造する方法等が示されているが、最も工業的に確立されている製造方法はシクロドデカノンとヒドロキシルアミンとを反応させる方法である。 The raw material cyclododecanone oxime can be produced by a conventional method. For example, a method of producing by ammoxidation in the presence of a catalyst by adding hydrogen peroxide water and ammonia water to cyclododecanone. A method of producing cyclododecanone oxime by reacting cyclododecane with nitrosyl chloride using light energy in the presence of hydrogen chloride (photonitrosation). Recently, N-hydroxyphthalimide is used as a catalyst, and a method for producing cyclododecane and nitrite has been shown. The most industrially established production method is to react cyclododecanone with hydroxylamine. Is the method.
 シクロヘキサノンオキシムの濃度は、反応条件等を考慮して適宜変更することができるが、溶媒に対して(第1の態様においては非極性溶媒に対して;第2の態様においてはニトリル化合物溶媒に対して;第3の態様においてはニトリル化合物と非極性溶媒の総量に対して)、5~90wt%、好ましくは、15~75wt%である。シクロヘキサノンオキシム濃度が少なすぎると、生産量を確保するためにリアクター容積を大きくしなければならないため、工業的に好ましくない場合がある。また、シクロヘキサノンオキシム濃度が大きくなりすぎると原料オキシムや生成物のラクタムが反応中に析出してしまうため、運転が困難となる場合がある。 The concentration of cyclohexanone oxime can be appropriately changed in consideration of the reaction conditions and the like, but with respect to the solvent (in the first embodiment, relative to the nonpolar solvent; And in the third embodiment, 5 to 90 wt%, preferably 15 to 75 wt%, based on the total amount of the nitrile compound and the nonpolar solvent. If the concentration of cyclohexanone oxime is too low, the reactor volume must be increased in order to secure the production amount, which may be industrially undesirable. In addition, if the concentration of cyclohexanone oxime is too high, the raw material oxime and the product lactam are precipitated during the reaction, which may make the operation difficult.
 反応温度としては、特に制限はないが、工業的に有利な温度範囲が好ましい。具体的には使用する溶媒の沸点以下が好ましい。一般に、温度が低すぎると反応速度が遅くなるためリアクター容積を大きくしたり、触媒量を増やさなければならなくなり、製造コストが増加して好ましくない。また、使用する溶媒の沸点温度より高くすると反応速度は増加するため有利であるが、反応圧力が大気圧以上となり製造設備のコストが増大するからである。 The reaction temperature is not particularly limited, but an industrially advantageous temperature range is preferable. Specifically, it is preferably not higher than the boiling point of the solvent used. In general, if the temperature is too low, the reaction rate becomes slow, so the reactor volume must be increased or the amount of catalyst must be increased, which is not preferable because the production cost increases. Moreover, although it is advantageous if the temperature is higher than the boiling point of the solvent used, the reaction rate increases, which is advantageous, but the reaction pressure becomes atmospheric pressure or higher, and the cost of production equipment increases.
 より具体的には、第1の態様では、より好ましくは下限が80℃であって、上限が溶媒の沸点温度である。第2および第3の態様では、より好ましくは下限が50℃であって、上限が溶媒の沸点温度である。 More specifically, in the first aspect, the lower limit is more preferably 80 ° C., and the upper limit is the boiling point temperature of the solvent. In the second and third embodiments, more preferably, the lower limit is 50 ° C., and the upper limit is the boiling temperature of the solvent.
 本発明では、触媒として五酸化リンと塩化亜鉛が使用される。反応を効率的に進行させるためには五酸化リンと塩化亜鉛をともに使用することが重要であり、そのいずれか一方が欠けても、反応速度や選択率が悪くなるため好ましくない(比較例を参照)。 In the present invention, phosphorus pentoxide and zinc chloride are used as catalysts. In order to advance the reaction efficiently, it is important to use both phosphorus pentoxide and zinc chloride. Even if one of them is missing, the reaction rate and selectivity are deteriorated (comparative example). reference).
 一般に、触媒、即ち五酸化リンと塩化亜鉛の添加量が少なすぎる場合には転位反応速度が遅く反応時間が長くなるため、工業的に好ましくない。また、反応混合物中に存在する微量の不純物による触媒の失活が起こりやすくなり、反応が途中で停止してしまう恐れもある。一方、触媒添加量が多すぎる場合には、反応効率の面では有利であるが、触媒コストが増大するため工業的製法の見地から好ましくない。また、五酸化リンと塩化亜鉛の比率は、触媒活性が低下しない範囲で使用される。 Generally, when the amount of the catalyst, that is, phosphorus pentoxide and zinc chloride is too small, the rearrangement reaction rate is slow and the reaction time is long, which is not industrially preferable. Further, the catalyst is likely to be deactivated due to a small amount of impurities present in the reaction mixture, and the reaction may be stopped in the middle. On the other hand, when the amount of the catalyst added is too large, it is advantageous in terms of reaction efficiency, but it is not preferable from the viewpoint of an industrial production method because the catalyst cost increases. Moreover, the ratio of phosphorus pentoxide and zinc chloride is used in such a range that the catalytic activity does not decrease.
 具体的には、第1の態様において、五酸化リンと塩化亜鉛の使用量については、両者の総量がシクロドデカノンオキシムに対して、通常、0.01~20mol%であればよく、好ましくは、0.5~10mol%である。五酸化リンと塩化亜鉛の比率は、(モル比 五酸化リン:塩化亜鉛)99:1~1:99、好ましくは、9:1~1:9、更に好ましくは3:1~1:3である。 Specifically, in the first embodiment, the amount of phosphorus pentoxide and zinc chloride used is generally 0.01 to 20 mol% of the total amount of cyclododecanone oxime, preferably 0.5 to 10 mol%. The ratio of phosphorus pentoxide to zinc chloride is (molar ratio phosphorus pentoxide: zinc chloride) 99: 1 to 1:99, preferably 9: 1 to 1: 9, more preferably 3: 1 to 1: 3. is there.
 第2の態様において、五酸化リンと塩化亜鉛の使用量については、両者の総量がシクロドデカノンオキシムに対して、通常、0.01~20mol%であればよく、好ましくは、0.5~10mol%であり、さらに好ましくは0.5~5mol%である。五酸化リンと塩化亜鉛の比率は、(モル比 五酸化リン:塩化亜鉛)99:1~1:99、好ましくは、9:1~1:9、更に好ましくは2:1~1:5である。 In the second embodiment, the amount of phosphorus pentoxide and zinc chloride used is generally 0.01 to 20 mol%, preferably 0.5 to 20 mol%, based on cyclododecanone oxime. The amount is 10 mol%, more preferably 0.5 to 5 mol%. The ratio of phosphorus pentoxide to zinc chloride is (molar ratio phosphorus pentoxide: zinc chloride) 99: 1 to 1:99, preferably 9: 1 to 1: 9, more preferably 2: 1 to 1: 5. is there.
 第3の態様において、五酸化リンと塩化亜鉛の使用量については、両者の総量がシクロドデカノンオキシムに対して、通常、0.01~20mol%であればよく、好ましくは1.0~6.5mol%である。五酸化リンと塩化亜鉛の比率は、(モル比 五酸化リン:塩化亜鉛)99:1~1:99、好ましくは2.5:1~1:10である。 In the third embodiment, the amount of phosphorus pentoxide and zinc chloride used is generally 0.01 to 20 mol%, preferably 1.0 to 6 mol% relative to cyclododecanone oxime. 0.5 mol%. The ratio of phosphorus pentoxide to zinc chloride is (molar ratio phosphorus pentoxide: zinc chloride) 99: 1 to 1:99, preferably 2.5: 1 to 1:10.
 溶媒については次のとおりである。 The solvent is as follows.
 第1の態様において、非極性溶媒としては、ヘキサン、シクロヘキサン、オクタン、シクロオクタン、ノナン、デカンなどの飽和炭化水素、ベンゼン、トルエン、キシレン、テトラリンなどの芳香族炭化水素、などが挙げられるが、ベンゼン、トルエン、キシレン、テトラリンなどの芳香族炭化水素が好ましい。 In the first aspect, examples of the nonpolar solvent include saturated hydrocarbons such as hexane, cyclohexane, octane, cyclooctane, nonane, and decane, and aromatic hydrocarbons such as benzene, toluene, xylene, and tetralin. Aromatic hydrocarbons such as benzene, toluene, xylene and tetralin are preferred.
 第2の態様において、溶媒として使用するニトリル化合物としては、反応に対して実質的に不活性であって、常温で液体のニトリル化合物、例えば、アセトニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、ヘプタンニトリル、オクタンニトリル、ノナンニトリル、ドデカンニトリル、グルタロニトリル、アジポニトリルのような脂肪族ニトリルや、シクロプロピルアセトニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、シクロヘプタンカルボニトリルのような脂環式ニトリルや、ベンゾニトリル、o-トルニトリル、m-トルニトリル、2-エチルベンゾニトリル、4-エチルベンゾニトリル、フェニルアセトニトリル、o-トリルアセトニトリル、m-トリルアセトニトリル、p-トリルアセトニトリル、2-フェニルブチロニトリル、4-フェニルブチロニトリルのような芳香族ニトリル、などが挙げられるが、特にアセトニトリル、ベンゾニトリルが好ましい。 In the second embodiment, the nitrile compound used as the solvent is a nitrile compound that is substantially inert to the reaction and is liquid at room temperature, such as acetonitrile, butyronitrile, isobutyronitrile, valeronitrile, Aliphatic nitriles such as valeronitrile, trimethylacetonitrile, hexanenitrile, heptanenitrile, octanenitrile, nonanenitrile, dodecanenitrile, glutaronitrile, adiponitrile, cyclopropylacetonitrile, cyclopentanecarbonitrile, cyclohexanecarbonitrile, cycloheptanecarb Alicyclic nitriles such as nitrile, benzonitrile, o-tolunitrile, m-tolunitrile, 2-ethylbenzonitrile, 4-ethylbenzonitrile, phenylacetonitrile o- tolyl acetonitrile, m- tolyl acetonitrile, p- tolyl acetonitrile, 2-phenyl-butyronitrile, 4- aromatic nitriles such as phenyl butyronitrile, but like, particularly acetonitrile, benzonitrile are preferred.
 第3の態様において、非極性溶媒としては、反応に対して実質的に不活性であって、常温で液体の非極性溶媒が使用され、具体的には、第1の態様で挙げた非極性溶媒が挙げられる(好ましい溶媒も同じ)。ニトリル化合物としては、常温で液体のニトリル化合物が好ましく、具体的には第2の態様で挙げたニトリル化合物が挙げられる(好ましい化合物も同じ)。ニトリル化合物の添加量は、非極性溶媒に対して0wt%より多く100wt%未満であり、好ましくは1~80wt%、より好ましくは2.5~50wt%である。ニトリル化合物の添加量を多くすることで触媒活性はより向上するが、コストを考慮すると、ニトリル化合物添加量は過度に多くない方が好ましいからである。 In the third aspect, as the nonpolar solvent, a nonpolar solvent that is substantially inert to the reaction and is liquid at room temperature is used. Specifically, the nonpolar solvents mentioned in the first aspect are used. Examples of the solvent include the same (preferred solvents). As the nitrile compound, a nitrile compound which is liquid at normal temperature is preferable, and specifically, the nitrile compounds mentioned in the second embodiment are preferable (the same applies to the preferable compounds). The addition amount of the nitrile compound is more than 0 wt% and less than 100 wt%, preferably 1 to 80 wt%, more preferably 2.5 to 50 wt% with respect to the nonpolar solvent. The catalyst activity is further improved by increasing the amount of nitrile compound added, but it is preferable that the amount of nitrile compound added is not excessively large in consideration of cost.
 本発明の反応において、反応圧力については、特に制限はないが、通常は、大気圧である。 In the reaction of the present invention, the reaction pressure is not particularly limited, but is usually atmospheric pressure.
 本発明は、空気中、または窒素ガス、アルゴン、ヘリウムなどの不活性ガス雰囲気中で行うことが好ましい。 The present invention is preferably carried out in air or in an inert gas atmosphere such as nitrogen gas, argon or helium.
 ベックマン転位反応の形態としては、回分式反応、連続式反応いずれでもよいが、工業的見地からは連続式反応が好ましい。反応器としては、回分式反応器、管型連続反応器、槽型(撹拌型)連続反応器、管型または槽型(撹拌型)の多段式連続反応器などを使用することができるが、管型連続反応器、槽型(撹拌型)連続反応器、管型または槽型(撹拌型)多段式連続反応器などの連続反応器が好ましい。 The form of the Beckmann rearrangement reaction may be either a batch reaction or a continuous reaction, but a continuous reaction is preferable from an industrial standpoint. As the reactor, a batch reactor, a tube type continuous reactor, a tank type (stirring type) continuous reactor, a tube type or tank type (stirring type) multistage continuous reactor, and the like can be used. A continuous reactor such as a tubular continuous reactor, a tank (stirring) continuous reactor, a tube or tank (stirring) multistage continuous reactor is preferred.
 反応終了後、得られたラウロラクタムは、晶析または蒸留などによって精製・分離することが出来る。 After completion of the reaction, the obtained laurolactam can be purified and separated by crystallization or distillation.
 以下に実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
 第1の態様の実施例:
 (実施例A1)
 窒素雰囲気下のグローブボックス中でガラス製反応管(容積10cc)にシクロドデカノンオキシム1.0g(5.08mmol)、塩化亜鉛0.0234g(シクロドデカノンオキシムの3.4mol%)、五酸化リン0.0224g(シクロドデカノンオキシムの3.1mol%)を仕込んだ後、溶媒としてトルエン5.0gを添加して、110℃のオイルバスにセットし、反応を開始した。1時間後、反応管をオイルバスから取り出し放冷した後、トルエンで希釈して、ガスクロマトグラフィー装置で生成物を定量分析した。その結果、シクロドデカノンオキシムの転化率は100%であり、生成したラウロラクタムの収率は97.2%であった。
Example of the first aspect:
(Example A1)
Cyclododecanone oxime 1.0 g (5.08 mmol), zinc chloride 0.0234 g (3.4 mol% of cyclododecanone oxime), phosphorus pentoxide in a glass reaction tube (volume 10 cc) in a glove box under nitrogen atmosphere After charging 0.0224 g (3.1 mol% of cyclododecanone oxime), 5.0 g of toluene was added as a solvent and set in an oil bath at 110 ° C. to start the reaction. After 1 hour, the reaction tube was taken out of the oil bath, allowed to cool, diluted with toluene, and the product was quantitatively analyzed with a gas chromatography apparatus. As a result, the conversion of cyclododecanone oxime was 100%, and the yield of produced laurolactam was 97.2%.
 (実施例A2~A11、比較例A1~A2)
 塩化亜鉛および五酸化リンの量、溶媒を表1に記載のとおりに変更した以外は実施例A1と同様に反応を行い、反応後、同様に処理して、分析した。結果を表1にまとめて示す。
(Examples A2 to A11, Comparative Examples A1 to A2)
The reaction was carried out in the same manner as in Example A1 except that the amounts of zinc chloride and phosphorus pentoxide and the solvent were changed as shown in Table 1, and after the reaction, the same treatment and analysis were performed. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第2の態様の実施例:
 (実施例B1)
 窒素雰囲気下のグローブボックス中でガラス製反応管(容積10cc)にシクロドデカノンオキシム1.0g(5.08mmol)、塩化亜鉛0.0072g(シクロドデカノンオキシムの1.0mol%)、五酸化リン0.0078g(シクロドデカノンオキシムの1.1mol%)を仕込んだ後、アセトニトリル5.1gを添加して、85℃のオイルバスにセットし、反応を開始した。1時間後、反応管をオイルバスから取り出し放冷した後、トルエンで希釈して、ガスクロマトグラフィー装置で生成物を定量分析した。その結果、シクロドデカノンオキシムの転化率は96.4%であり、生成したラウロラクタムの収率は95.2%であった。
Example of the second aspect:
(Example B1)
Cyclododecanone oxime 1.0 g (5.08 mmol), zinc chloride 0.0072 g (1.0 mol% of cyclododecanone oxime), phosphorus pentoxide in a glass reaction tube (volume 10 cc) in a glove box under nitrogen atmosphere After charging 0.0078 g (1.1 mol% of cyclododecanone oxime), 5.1 g of acetonitrile was added and set in an oil bath at 85 ° C. to start the reaction. After 1 hour, the reaction tube was taken out of the oil bath, allowed to cool, diluted with toluene, and the product was quantitatively analyzed with a gas chromatography apparatus. As a result, the conversion of cyclododecanone oxime was 96.4%, and the yield of produced laurolactam was 95.2%.
 (実施例B2~B6、比較例B1~B3)
 シクロドデカノンオキシム、塩化亜鉛および五酸化リンの量、溶媒、反応温度を表2に記載のとおりに変更した以外は実施例B1と同様に反応を行い、反応後、同様に処理して、分析した。結果を表2にまとめて示す。
(Examples B2 to B6, Comparative Examples B1 to B3)
The reaction was carried out in the same manner as in Example B1 except that the amounts of cyclododecanone oxime, zinc chloride and phosphorus pentoxide, the solvent, and the reaction temperature were changed as shown in Table 2. did. The results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第3の態様の実施例:
 (実施例C1)
 ガラス製反応管(容積10cc)にシクロドデカノンオキシム1.0g(5.08mmol)、塩化亜鉛0.0182g(シクロドデカノンオキシムの2.63mol%)、五酸化リン0.200g(シクロドデカノンオキシムの2.73mol%)を仕込んだ後、トルエン4.5gとアセトニトリル0.5gを添加して、100℃のオイルバスにセットし、反応を開始した。1時間後、反応管をオイルバスから取り出し放冷した後、トルエンで希釈して、ガスクロマトグラフィー装置で生成物を定量分析した。その結果、シクロドデカノンオキシムの転化率は100%であり、生成したラウロラクタムの収率は94.2%であった。
Example of the third aspect:
(Example C1)
Cyclododecanone oxime 1.0 g (5.08 mmol), zinc chloride 0.0182 g (2.63 mol% of cyclododecanone oxime), phosphorus pentoxide 0.200 g (cyclododecanone oxime) in a glass reaction tube (volume 10 cc) Then, 4.5 g of toluene and 0.5 g of acetonitrile were added and set in an oil bath at 100 ° C. to start the reaction. After 1 hour, the reaction tube was taken out of the oil bath, allowed to cool, diluted with toluene, and the product was quantitatively analyzed with a gas chromatography apparatus. As a result, the conversion of cyclododecanone oxime was 100%, and the yield of produced laurolactam was 94.2%.
 (実施例C2~C18、比較例C1~C2)
 シクロドデカノンオキシム、塩化亜鉛および五酸化リンの量、溶媒(非極性溶媒、ニトリル化合物)、反応温度を表3に記載のとおりに変更した以外は実施例C1と同様に反応を行い、反応後、同様に処理して、分析した。結果を表3にまとめて示す。
(Examples C2 to C18, Comparative Examples C1 to C2)
The reaction was conducted in the same manner as in Example C1, except that the amounts of cyclododecanone oxime, zinc chloride and phosphorus pentoxide, the solvent (nonpolar solvent, nitrile compound), and the reaction temperature were changed as shown in Table 3. , Processed and analyzed in the same manner. The results are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明により、簡便かつ高収率でラウロラクタムを製造し得る工業的に有利なラウロラクタムの製造方法を提供することができる。 According to the present invention, an industrially advantageous method for producing laurolactam capable of producing laurolactam in a simple and high yield can be provided.

Claims (13)

  1.  五酸化リンおよび塩化亜鉛の存在下、溶媒中、シクロドデカノンオキシムをベックマン転位させることを特徴とするラウロラクタムの製造方法。 A process for producing laurolactam, which comprises Beckmann rearrangement of cyclododecanone oxime in a solvent in the presence of phosphorus pentoxide and zinc chloride.
  2.  前記溶媒が、非極性溶媒であることを特徴とする請求項1記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 1, wherein the solvent is a nonpolar solvent.
  3.  前記非極性溶媒が芳香族炭化水素であることを特徴とする請求項2記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 2, wherein the nonpolar solvent is an aromatic hydrocarbon.
  4.  五酸化リンと塩化亜鉛の比率(モル比 五酸化リン:塩化亜鉛)が3:1~1:3である請求項2記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 2, wherein the ratio of phosphorus pentoxide to zinc chloride (molar ratio: phosphorus pentoxide: zinc chloride) is 3: 1 to 1: 3.
  5.  前記溶媒が、ニトリル化合物であることを特徴とする請求項1記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 1, wherein the solvent is a nitrile compound.
  6.  五酸化リンと塩化亜鉛の合計使用量が、シクロドデカノンオキシムに対して5モル%以下であることを特徴とする請求項5記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 5, wherein the total amount of phosphorus pentoxide and zinc chloride used is 5 mol% or less based on cyclododecanone oxime.
  7.  ニトリル化合物がアセトニトリルまたはベンゾニトリルであることを特徴とする請求項5または6記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 5 or 6, wherein the nitrile compound is acetonitrile or benzonitrile.
  8.  五酸化リンと塩化亜鉛の比率(モル比 五酸化リン:塩化亜鉛)が2:1~1:5であることを特徴とする請求項5~7のいずれか1項に記載のラウロラクタムの製造方法。 The production of laurolactam according to any one of claims 5 to 7, wherein the ratio of phosphorus pentoxide to zinc chloride (molar ratio phosphorus pentoxide: zinc chloride) is 2: 1 to 1: 5. Method.
  9.  前記溶媒が、ニトリル化合物を含有する非極性溶媒であることを特徴とする請求項1記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 1, wherein the solvent is a nonpolar solvent containing a nitrile compound.
  10.  五酸化リンと塩化亜鉛の合計使用量が、シクロドデカノンオキシムに対して1.0~6.5mol%であることを特徴とする請求項9記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 9, wherein the total amount of phosphorus pentoxide and zinc chloride used is 1.0 to 6.5 mol% with respect to cyclododecanone oxime.
  11.  ニトリル化合物がアセトニトリルまたはベンゾニトリルであることを特徴とする請求項9または10記載のラウロラクタムの製造方法。 The method for producing laurolactam according to claim 9 or 10, wherein the nitrile compound is acetonitrile or benzonitrile.
  12.  五酸化リンと塩化亜鉛の比率(モル比 五酸化リン:塩化亜鉛)が2.5:1~1:10であることを特徴とする請求項9~11のいずれか1項に記載のラウロラクタムの製造方法。 The laurolactam according to any one of claims 9 to 11, wherein the ratio of phosphorus pentoxide to zinc chloride (molar ratio: phosphorus pentoxide: zinc chloride) is 2.5: 1 to 1:10. Manufacturing method.
  13.  ニトリル化合物含有量が非極性溶媒に対して2.5~50wt%であることを特徴とする請求項9~12のいずれか1項に記載のラウロラクタムの製造方法。 The method for producing laurolactam according to any one of claims 9 to 12, wherein the nitrile compound content is 2.5 to 50 wt% with respect to the nonpolar solvent.
PCT/JP2009/055187 2008-03-17 2009-03-17 Manufacturing method for laurolactam WO2009116537A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-066916 2008-03-17
JP2008066916A JP2009221142A (en) 2008-03-17 2008-03-17 Manufacturing method of laurolactam
JP2008-100898 2008-04-09
JP2008100898 2008-04-09
JP2008128958A JP2009275005A (en) 2008-05-16 2008-05-16 Method for producing laurolactam
JP2008-128958 2008-05-16

Publications (1)

Publication Number Publication Date
WO2009116537A1 true WO2009116537A1 (en) 2009-09-24

Family

ID=41090938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055187 WO2009116537A1 (en) 2008-03-17 2009-03-17 Manufacturing method for laurolactam

Country Status (1)

Country Link
WO (1) WO2009116537A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529578A (en) * 2000-03-31 2003-10-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング A method for Beckmann rearrangement of organic oximes
JP2004059554A (en) * 2002-07-31 2004-02-26 Mitsubishi Chemicals Corp Method for producing amide compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529578A (en) * 2000-03-31 2003-10-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング A method for Beckmann rearrangement of organic oximes
JP2004059554A (en) * 2002-07-31 2004-02-26 Mitsubishi Chemicals Corp Method for producing amide compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FURUYA, Y. ET AL.: "Cyanuric Chloride as a Mild and Active Beckmann Rearrangement Catalyst", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 127, no. 32, 23 July 2005 (2005-07-23), pages 11240 - 11241, XP002441494 *
SATO, H. ET AL.: "Homogeneous liquid-phase Beckmann rearrangement of oximes catalyzed by phosphorous pentoxide and accelerated by a fluorine-containing strong acid", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 149, no. 1-2, 15 December 1999 (1999-12-15), pages 25 - 32 *

Similar Documents

Publication Publication Date Title
EP2013162A1 (en) Process for preparing amides from ketoximes
JP5249033B2 (en) Process for producing amides by heterogeneous oximation and rearrangement
JP4406645B2 (en) Process for the production of xylylenediamine by continuous hydrogenation of liquid phthalonitrile
WO2009116537A1 (en) Manufacturing method for laurolactam
EP2292599A1 (en) Process for producing laurolactam
KR102529310B1 (en) Method for Purifying Nitrile Solvents
JP2009275005A (en) Method for producing laurolactam
US11028045B2 (en) Process for reducing CPI in a dinitrile stream
US3404148A (en) Preparation of omega-laurinolactam
EP3277664B1 (en) An efficient process for the synthesis of cyclic amides
JP2009269908A (en) Production method of laurolactam
JP5369653B2 (en) Method for producing amide or lactam
RU2005120625A (en) METHOD FOR INHIBITING POLYMERIZATION DURING ISOLATION AND CLEANING OF UNSATURATED MONONITRILS
JP2009221142A (en) Manufacturing method of laurolactam
KR101399572B1 (en) Method for producing xylylenediamines
JP6455318B2 (en) Method for treating liquid and method for producing acrylonitrile or methacrylonitrile
JP2009249336A (en) Method for producing laurolactam
JP2009167112A (en) Method for producing laurolactam
JP2008290986A (en) Method for producing lactam compound
JP2001288127A (en) Method for producing alkyl halide
JP2003104973A (en) Method for producing amide compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09721495

Country of ref document: EP

Kind code of ref document: A1