WO2009116254A1 - Thermo valve and heat medium circuit including same - Google Patents

Thermo valve and heat medium circuit including same Download PDF

Info

Publication number
WO2009116254A1
WO2009116254A1 PCT/JP2009/001128 JP2009001128W WO2009116254A1 WO 2009116254 A1 WO2009116254 A1 WO 2009116254A1 JP 2009001128 W JP2009001128 W JP 2009001128W WO 2009116254 A1 WO2009116254 A1 WO 2009116254A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
temperature
valve
thermo
valve body
Prior art date
Application number
PCT/JP2009/001128
Other languages
French (fr)
Japanese (ja)
Inventor
パク・ヒー・ワン
鈴木高智
高橋賢
Original Assignee
富士精工株式会社
高麗電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士精工株式会社, 高麗電子株式会社 filed Critical 富士精工株式会社
Publication of WO2009116254A1 publication Critical patent/WO2009116254A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/022Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details

Definitions

  • the present invention uses a heat medium (hereinafter sometimes referred to as “cooling liquid” or “warm water”) circulating to cool an internal combustion engine or the like, or exchanges heat from a heat source such as a boiler.
  • a temperature-sensitive movable part which is arranged in a heat medium circuit including a terminal device (such as an automobile heater core or a building heating core) that circulates and exchanges heat, and moves forward and backward according to the temperature of the heat medium.
  • the present invention relates to a thermo valve (valve mechanism) and a heat medium circuit for controlling the flow of a heat medium by utilizing the thermal response of a “thermo pellet”, “thermo element” or the like.
  • automotive engine cooling systems include terminal devices (such as heater cores) that exchange heat with coolant in addition to the main coolant circuit for engine cooling (heat insulation). Many coolant circuits have been combined.
  • a heater circuit for vehicle compartment heating is a classic example, but in recent years, for example, for warming and keeping engine oil, for warming and keeping mission oil, for cooling EGR gas, Those for recovering exhaust heat and those for storing exhaust heat have come to be combined.
  • a coolant circuit including a terminal device (such as a heater core) that exchanges heat with the coolant of the engine cooling system, and the flow path in the circuit is opened (the flow rate is increased).
  • a valve mechanism that can be closed (reducing the flow rate) or an engine cooling system in which the valve mechanism is arranged has been proposed.
  • Patent Document 1 discloses a mechanical valve mechanism that reduces the opening as the temperature of cooling water changes from a low temperature side to a high temperature side, and an engine cooling system system including such a valve mechanism. .
  • Patent Document 2 includes a mechanical control valve mechanism that increases the opening when the temperature of the refrigerant is high and decreases the opening when the temperature of the refrigerant is low, and such a valve mechanism.
  • An engine cooling system is disclosed.
  • a transmission heat exchanger is provided in series on the downstream side of the heater core in the heater passage for returning the cooling water discharged from the cylinder head side to the cylinder block side through the heater core, and the heat exchange for the transmission
  • a bypass passage that branches off between the heater and the heater core and joins downstream of the transmission heat exchanger, and includes a valve mechanism that controls flow distribution to the bypass passage, and includes cooling water to the heater core.
  • Patent Document 4 a heater passage similar to that in Patent Document 3 is secured, and if necessary, cooling water diverted from the downstream of the heater core 13 of the heater passage 6 passes through the transmission heat exchanger 14.
  • An engine cooling system is disclosed that includes a valve mechanism as switching means for securing either one of the paths (see Y2 in FIG. 2 of Patent Document 4).
  • valve mechanisms do not mean that when the valve is “closed”, the flow path of the heat medium is completely closed and no leakage is allowed. It is allowed to be in a “closed” state with a little flow.
  • the valve mechanism is a valve mechanism (thermovalve) that increases or decreases the flow rate using the thermal response of the temperature-sensitive movable part that moves forward and backward according to the temperature of the heat medium, It is necessary to maintain the temperature sensing performance of the temperature sensing movable part by leaving a small amount of flow to be in the “closed” state.
  • a conventional valve mechanism that increases or decreases the flow rate using the thermal response of the temperature-sensitive movable portion that moves forward and backward according to the temperature of the heat medium as described above (for example, in Patent Document 1 and Patent Document 2)
  • the valve mechanism (thermovalve) as shown is compared to the one that is controlled to open and close by control means (including an electronic control circuit and a temperature sensor) provided outside the engine cooling device as shown in Patent Document 5.
  • control means including an electronic control circuit and a temperature sensor
  • a heat medium for example, hot water
  • a heat source such as a boiler, heat pump, cogeneration system, etc.
  • a plurality of heat medium circuits for obtaining heat
  • Header devices are known.
  • a header device that distributes heat from a heat source to a plurality of heat medium circuits is used to supply a heat medium appropriately heated to a floor heating or air conditioning system in a plurality of rooms, the heat medium is supplied to a certain heat medium circuit in operation.
  • the required heating capacity cannot be exhibited due to a lack of supply of the heat medium to another heat medium circuit in operation. Excessive heating is harmful and the lack of heating capacity is particularly problematic when it is required.
  • Such a system capable of appropriately distributing a heat medium to a plurality of heat medium circuits can eliminate the need for manual flow rate setting at the construction site, which is considered to be very troublesome.
  • a valve mechanism capable of appropriately distributing a flow rate to a plurality of heat medium circuits according to demand is useful.
  • thermovalve in the engine cooling system for automobiles, conventionally, the valve mechanism (thermovalve) as described above is often omitted in consideration of cost and the like in the heater circuit for heating the passenger compartment.
  • the price is low. It must be lightweight.
  • the above-described conventional thermovalves for example, the thermovalves shown in Patent Document 1 and Patent Document 2 have a complicated structure, a large number of parts, and a high cost.
  • thermo valve (the thermo valve as shown in Patent Document 1 and Patent Document 2) has a disc-like main valve body so as to face the flow of the circulating coolant. Has been placed. For this reason, the main valve body is blocked so as to become an obstacle to the flow of the coolant from the inlet side opening of the thermo valve toward the outlet side opening, and even in the open state (a slight deliberate temperature sensitivity) The main part of the coolant (except for the flow through the leak hole for use) bypasses the outer part of the main valve body and flows, resulting in poor flow efficiency and large flow path resistance (pressure loss). .
  • thermo valve in order to fundamentally reduce the flow resistance (pressure loss), it is necessary to increase the size of the main valve, and the entire thermo valve becomes large, thus reducing cost and weight. Incompatible with chemistry. Moreover, there is a concern that fine control of the flow rate becomes difficult.
  • the main part of the coolant flows around the outer part of the main valve body, so that the coolant is discharged from the temperature-sensitive movable part arranged near the center axis of the disk-shaped main valve body.
  • the flow line is kept away, and it is difficult to secure the flow rate of the coolant around the temperature-sensitive movable part, and the area around the temperature-sensitive movable part tends to become stagnation and difficult to contact with the circulating coolant.
  • the temperature of the coolant cannot be quickly and accurately captured.
  • each coolant circuit competes for coolant. It is desirable to allow the coolant to be properly distributed to other circuits without causing the coolant to flow more than necessary into a particular coolant circuit. That is, it should be optimally distributed according to the cooling demand and heat demand of each coolant circuit, or according to priority.
  • a coolant circuit including a heater core in an automobile cooling system should preferentially distribute the coolant heated by the engine when there is a heat demand for vehicle interior heating. It can be said to be a circuit. However, when there is no heat demand, it is not necessary to send an unnecessarily high flow rate (heat amount) to the heater circuit even if there is a heat demand. In conditions where sufficient flow rate can be obtained (for example, when the rotation speed of the engine to which the water pump is coupled exceeds a certain rotation speed), the flow rate supplied to the heater circuit is limited, It is desirable that the coolant can be distributed so as to meet the heat demand and cooling demand of the coolant circuit, and a thermo valve capable of meeting such a demand is required.
  • thermo valve that can be controlled to reduce or increase the flow rate of the heat medium according to the temperature of the heat medium is useful.
  • the thermo valve is required to be low cost.
  • a conventional thermo valve for example, a thermo valve as shown in Patent Document 1 and Patent Document 2 has a complicated structure, a large number of parts, and a high cost.
  • Patent Document 6 it is necessary to set a flow rate to each heat medium circuit, and the flow rate is set in advance.
  • Some constant flow valves are unitized at each branch port of the header.
  • the constant flow valve as shown in FIG. 3 of Patent Document 6 has a large pressure loss, and a large pump power is required to sufficiently feed the heat medium to each heat medium circuit, so that energy consumption through power consumption is reduced. There is a fear that it will grow.
  • a large-scale pump is required for the system, which may lead to high costs and a reduction in installation flexibility.
  • the terminal device floor heating panel or indoor unit
  • the terminal device provided in each heat medium circuit is set only by presetting the flow rate to each heat medium circuit. Heating radiator core etc.
  • a small flow rate should be used for terminal devices with low heat demand, and as much flow rate as possible should be provided for terminal devices with high heat demand in an optimal balance for the current situation. There is no function to distribute.
  • thermo valve capable of optimally controlling the flow of a heat medium while achieving low pressure loss while having a simple, low cost, light weight, and compact configuration. And it aims at providing the heat carrier circuit provided with the said thermo valve.
  • thermo valve according to the present invention is While being interposed in the heat medium circuit through which the heat medium flows, A valve body that is operated in a direction along the flow path of the heat medium, and a temperature sensing device that opens and closes the valve body in a direction along the flow path of the heat medium by using a heat-responsive operation according to the temperature of the heat medium.
  • a movable part A thermo valve that controls the flow of the heat medium according to the temperature of the heat medium, A coil spring valve body that is opened and closed by increasing or decreasing the passage cross-sectional area of the flow path of the heat medium due to a change in the gap of the winding part due to the expansion and contraction of the valve body in conjunction with the thermal response operation of the temperature-sensitive movable part It is characterized by comprising.
  • thermo valve is A thermo valve that is interposed in a heat medium circuit through which the heat medium flows and controls the flow of the heat medium according to the temperature of the heat medium, A temperature-sensitive movable part that opens and closes the valve body using a heat-responsive operation according to the temperature of the heat medium;
  • a first housing having a flow path through which the heat medium flows, and a support portion protruding inside the flow path to support and fix a part of the temperature-sensitive movable portion;
  • a second housing having a flow path through which the heat medium flows, and having a guide portion that protrudes inside the flow path and supports and guides the advancing and retreating portion of the temperature-sensitive movable portion;
  • the flow path of the heat medium is arranged in a valve chamber formed at an intermediate position between the support portion and the guide portion, and the heat medium flow path is changed by a gap change of the winding portion by being expanded and contracted in conjunction with the heat-responsive operation of the temperature-sensitive movable portion.
  • a coil spring valve body that is opened and closed
  • thermo valve according to the present invention employs a coil spring valve element, and thus can be configured extremely simply. Since the number of parts is smaller than that of the conventional thermo valve and the number of assembling steps can be reduced, the cost can be reduced.
  • thermo valve for example, in the conventional thermo valve as shown in Patent Document 1 and Patent Document 2, a part for fixing and integrating the disc-like valve body to the movable part of the temperature-sensitive movable part is necessary, Its assembly is required.
  • a snap ring for regulating the position of a valve body biased by a spring with respect to a shaft, or a part called a “retainer” (reference numeral in FIG. 3 of Patent Document 1). 228 etc.) is necessary.
  • the thermo valve according to the present invention since the coil spring valve body is adopted, these snap rings, retainers and the like can be omitted.
  • thermo-valve using thermal response normally requires a biasing means for returning the temperature-sensitive movable part to the initial position of the advancing / retreating moving part.
  • thermo-valve according to the present invention has a valve body with a coil spring. Therefore, the valve body can also serve as an urging means (return spring). Thereby, it can contribute to reduction of a number of parts.
  • the coil spring valve body also serves as the urging means, the coil spring as the mere urging means can be eliminated, so that the heat medium (cooling liquid) is a coil spring line as the urging means.
  • the heat medium cooling liquid
  • the heat medium can flow between the spring wire members of the coil spring valve body.
  • the main valve body has taken the shape of a disk, and is arranged so that the flow of the circulating heat medium may be blocked.
  • the main valve body Against the circulation of the heat medium from the opening on the inlet side to the opening on the outlet side, the main valve body is blocked so that it becomes an obstacle, and even in the opened state (the circulation by a slight temperature-sensitive leak hole).
  • thermo valve in which the main part of the flow of the heat medium must circulate around the outer shape of the main valve body, has to secure a passage space for the heat medium outside the main valve body, and the size is increased.
  • thermo valve using the coil spring valve body according to the present invention enables a more compact design.
  • thermo valve according to the present invention can be a compact design and a low pressure loss thermo valve. Therefore, the possibility of wide adoption can be expanded, and the low pressure loss performance can be reduced by reducing the diameter of the piping path of the heat medium circuit and reducing the size of the heat medium delivery pump. Can contribute to cost reduction.
  • the first housing supports and fixes a flow path through which the heat medium flows, an arm extending from an inner wall of the flow path, and a part of the temperature-sensitive movable portion supported by the arm.
  • the second housing has a flow path through which the heat medium flows, an arm extending from the inner wall of the flow path, and an advance / retreat moving member of the temperature-sensitive movable section supported by the arm.
  • a support guide portion that supports and guides the substrate.
  • the first housing having the flow path through which the heat medium flows, the arm, and the support portion is integrally formed by injection molding or the like, while the flow path through which the heat medium flows, the arm, and the support
  • the second housing having the guide portion is integrally formed by injection molding or the like, it is easy to manufacture, easy to assemble, and can be reduced in cost.
  • the possibility of adopting a thermo valve can be increased.
  • the coil spring valve body can be constituted by a taper coil spring (which is formed by winding a spring wire in a substantially truncated cone shape) in a predetermined compressed and crushed state.
  • the vicinity of the temperature-sensitive movable part arranged near the central axis of the coil spring valve body is less likely to become stagnation, and it becomes easy to secure the flow rate of the heat medium around the temperature-sensitive movable part, Since the heat medium and the temperature-sensitive movable part can be easily contacted, the temperature of the circulating heat medium can be quickly and accurately captured.
  • the taper coil spring constituting the coil spring valve body is crushed from the large diameter side so that the flow rate is controlled.
  • thermo valve according to the present invention may include a return spring that biases the advancing / retreating part of the temperature-sensitive movable part to return to the original position.
  • thermo valve a branch or junction of the heat medium circuit is formed in the first housing or the second housing forming the valve chamber, and the temperature-sensitive movable portion of the temperature chamber is formed in the valve chamber.
  • Another coil spring valve body that opens and closes in conjunction with the thermal response operation is provided, and the temperature-sensitive movable part drives the opening and closing of the plurality of coil spring valve bodies, so that the distribution ratio of the heat medium branches or the mixing ratio of the confluence Can be controlled.
  • thermo valve according to the present invention can have a function of branching the flow path (distribution of the heat medium), joining the flow paths (mixing of the heat medium), and switching the flow path in the heat medium circuit. .
  • the flow of the heat medium is more optimally controlled according to the temperature of the heat medium while maintaining low cost. can do.
  • thermo valve according to the present invention has a differential pressure across the front and rear so that when the instantaneous flow rate of the heat medium passing through the coil spring valve body exceeds a threshold value, the coil spring valve body functions as a constant flow valve. Accordingly, the thermosensitive movable part can be expanded and contracted independently of the thermal response.
  • thermo valve that controls the flow of the heat medium according to the temperature of the heat medium. Therefore, the flow of the heat medium can be more optimally controlled according to the temperature and the differential pressure of the heat medium while maintaining the low cost.
  • thermo valve according to the present invention can control the flow of the heat medium according to the temperature and the differential pressure of the heat medium with high accuracy and responsiveness while being low in cost.
  • the heat medium circulation system (heat medium circuit) that can control the flow of the heat medium according to the temperature and the differential pressure of the heat medium with high accuracy and responsiveness at low cost. ) Can be provided.
  • thermovalve which concerns on this invention in the downstream of the terminal device which distribute
  • this thermovalve can measure the grade of the heat demand of the said terminal device, and the cooling demand.
  • the temperature of the coolant in the cooling system main circuit for cooling the engine is controlled to a substantially constant stable temperature by a thermostat or the like after the warm-up is completed. Therefore, the coolant temperature supplied to the coolant circuit branched therefrom can be predicted in advance.
  • the coolant flows in, and the coolant temperature on the downstream side of the terminal device that exchanges heat with the coolant changes depending on the result of the heat exchange. If the terminal device needs a lot of heat, the temperature of the coolant on the downstream side of the terminal device becomes lower than the temperature of the supplied coolant. Conversely, if the terminal device needs a lot of cooling (release of heat to the coolant), the coolant temperature on the downstream side of the terminal device becomes higher than the supplied coolant temperature.
  • thermo valve according to the present invention is disposed downstream of the terminal device and the temperature of the coolant is sensed downstream of the terminal device, the degree of heat demand / cooling demand of the terminal device.
  • the thermo valve according to the present invention is disposed downstream of the terminal device and the temperature of the coolant is sensed downstream of the terminal device, the degree of heat demand / cooling demand of the terminal device.
  • thermo valve according to the present invention is applied to a heat medium circuit for heating a building, for example. If the temperature of the heat medium can be sensed on the downstream side of a terminal device (such as a floor heating panel or a room heating radiator core) provided in each heat medium circuit, the heat of the terminal device can be detected. The degree of demand can be measured, and the distribution control of the heat medium according to the fluctuation of the heat demand of the terminal device becomes possible.
  • a terminal device such as a floor heating panel or a room heating radiator core
  • the flow rate of the heat medium is small for the terminal device with little heat demand and cooling demand.
  • a system capable of distributing the heat medium in an optimal balance can be realized with a simple and inexpensive configuration and without requiring a complicated control system.
  • thermo valve capable of optimally controlling the flow of a heat medium while achieving a low pressure loss while having a simple, low cost, light weight, and compact configuration, and a heat provided with the thermo valve.
  • a media circuit can be provided.
  • thermo valve according to the present invention
  • thermo valve 1 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2.
  • the thermo valve 1 according to the present embodiment exchanges heat by circulating a heat medium circulating to cool an internal combustion engine or the like, or exchanges heat by circulating a heat medium warmed by a heat source such as a boiler. It can be disposed in a heat medium circuit including a terminal device (such as a heater core for an automobile or a radiator core for heating a building).
  • the thermovalve 1 includes a temperature-sensitive movable part (thermally responsive part) 2 that moves forward and backward according to the temperature of the heat medium, and includes a temperature-sensitive movable part 2 that houses the temperature-sensitive movable part 2.
  • the temperature-sensitive movable unit 2 includes a temperature sensing unit 2B that encloses a thermal expansion body such as wax that expands and contracts by sensing the temperature of the heat medium, and an extension portion 2C (which corresponds to a forward / backward moving portion).
  • a piston rod 2A that extends and contracts in the vertical direction in FIG. 1 (A) in accordance with the thermal expansion and contraction of the thermal expansion body in the temperature detection unit 2B and its extension 2C protrudes from the temperature detection unit 2B. ing.
  • the first housing 10 has an opening 11 connected to the heat medium circuit, and is attached to the arm 12 extending from the inner wall substantially integrally.
  • a support portion 13 that supports the tip of the piston rod 2 ⁇ / b> A of the temperature movable portion 2 is provided.
  • the second housing 20 has an opening 21 connected to the heat medium circuit, and is attached substantially integrally to an arm 22 extending from the inner wall.
  • the extension of the temperature sensing unit 2B that slidably supports the extension 2C of the temperature sensing unit 2B of the temperature movable unit 2 and moves along the vertical direction in FIG. 1A according to the expansion and contraction of the piston rod 2A.
  • a guide part (guide part) 23 for movably guiding the part 2C is provided.
  • a coil spring valve body 3 in which a spring wire (winding) is wound in a substantially truncated cone shape is inserted in the outer periphery of the extending portion 2C.
  • the coil spring valve body 3 includes a step portion 2D which is a step portion of a connecting portion between a relatively large diameter portion of the temperature sensing portion 2B of the temperature sensitive movable portion 2 and a relatively small diameter extending portion 2C, and a coil The small diameter side of the spring valve body 3 is disposed so as to abut.
  • the large diameter side of the coil spring valve body 3 is disposed so as to be supported by a step portion 24 which is a step portion provided in the second housing 20.
  • the piston rod 2A is expanded in accordance with the thermal expansion / contraction of the temperature sensing unit 2B. Further, compression is performed by the step portion 2D on the small diameter side and the step portion 24 of the second housing 20 on the large diameter side. As the coil spring valve body 3 is compressed, the gap between the spring wire rods becomes smaller and shifts to the valve closed state, and as the coil spring valve body 3 extends from the valve closed state, the gap between the spring wire rods becomes larger and the valve spring opened state. And function to migrate.
  • thermo valve 1 can be assembled as follows, for example. That is, for example, the coil spring valve body 3 is inserted and accommodated in the second housing 20, and the large diameter side of the coil spring valve body 3 is placed on the stepped portion 24 of the second housing 20. Then, the lower part in FIG. 2 of the extending part 2C of the temperature-sensitive movable part 2 is inserted into the small diameter side of the coil spring valve body 3, and further to the guide part 23 of the second housing 20, and in this state, the first housing 10 is inserted.
  • the thermovalve 1 can be assembled by bringing the joint flange 14 of the first housing 10 and the joint housing part 25 of the second housing 20 together.
  • the first housing 10 and the second housing 20 can be, for example, resin molded products, and can adopt an appropriate bonding method such as bonding by an adhesive, ultrasonic welding, or laser welding. It is.
  • the first housing 10 and the second housing 20 are configured as separate bodies and are described as being joined after incorporating the interior elements, but the present invention is not limited to this.
  • the first housing 10 and the second housing 20 are integrally formed by injection molding or the like, and one of the openings through which the heat medium flows is formed to a size that allows each of the interior elements to pass through.
  • a very simple configuration can be achieved. Since the number of parts is less than that of the conventional thermo valve and the number of assembly steps can be reduced, the cost can be reduced.
  • FIG. 1A shows a case where the heat medium has a relatively low temperature.
  • the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C contract.
  • the piston rod 2A is also contracted.
  • the distance between the step 2D of the temperature-sensitive movable unit 2 and the step 24 of the second housing 20 in the vertical direction in FIG. Since the spring valve body 3 is also in an extended state, the gap between the spring wire members of the spring valve body 3 wound in a substantially truncated cone shape is also expanded in a predetermined manner.
  • thermo valve 1 is opened so that the heat medium flows out from the opening 21 of the second housing 20.
  • FIG. 1 (B) shows a case where the heat medium has a relatively high temperature.
  • the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are thermally expanded.
  • the piston rod 2A is extended.
  • the distance between the step 2D of the temperature-sensitive movable unit 2 and the step 24 of the second housing 20 in the vertical direction in FIG. 1B is relatively small, and is disposed therebetween.
  • the spring valve body 3 is in a predetermined compressed state, the gap between the spring wire rods of the coil spring valve body 3 wound in a substantially truncated cone shape is reduced. For example, adjacent wire rods are in close contact with each other. It has become a state.
  • thermo valve 1 is closed so that the outflow of the heat medium from the opening 21 of the second housing 20 is restricted.
  • the degree of contact and the gap of the spring wire can be adjusted so that a predetermined amount of the heat medium flows through the gap of the spring wire of the coil spring valve body 3 in the valve closed state.
  • the coil spring valve body 3 also functions as a return spring in this way, a simple return spring can be omitted, so that the flow of the heat medium (coolant) is caused by the presence of the simple return spring. Without being obstructed, it is possible to suppress an increase in flow resistance (pressure loss) due to vortex flow or streamline turbulence.
  • the flow direction of the heat medium is illustrated as going from the upper side to the lower side in FIG. 1, but the present invention is not limited to this, and the flow direction of the heat medium is directed from the lower side to the upper side in FIG. It is also possible to dispose the thermo valve 1 as described above.
  • thermovalve As shown in Patent Document 1 and Patent Document 2, a part for fixing and integrating the disc-like valve body to the movable part of the temperature-sensitive movable part is necessary. Assembly is required. In the thermovalve shown in Patent Document 1, a part called “retainer” is also necessary. On the other hand, if it is set as the structure using the coil spring valve body 3 like the thermo valve 1 which concerns on a present Example, these can be made unnecessary.
  • thermo valve 100 according to Embodiment 2 of the present invention will be described with reference to FIG. Similarly to the first embodiment, the thermo valve 100 according to the second embodiment also performs heat exchange by circulating a heat medium circulating to cool the internal combustion engine or the like, or heat heated by a heat source such as a boiler. It can be disposed in a heat medium circuit including a terminal device (such as a heater core for an automobile or a radiator core for heating a building) that exchanges heat by circulating the medium.
  • FIG. 3A shows a low temperature state (valve closed state)
  • FIG. 3B shows a high temperature state (valve open state).
  • thermo valve 100 A configuration of the thermo valve 100 will be described with reference to FIG.
  • the structure and mounting arrangement of the first housing 10, the second housing 20, and the temperature-sensitive movable portion 2 can be the same as those in the first embodiment, and the coil spring wound in a substantially truncated cone shape.
  • the valve body 103 is approximately between the step portion 15 of the first housing 10 and the end of the temperature sensing portion 2B of the temperature sensitive movable portion 2 on the piston rod 2A side.
  • the small-diameter side of the truncated cone shape is disposed so as to face the end of the temperature sensing portion 2B on the piston rod 2A side, and the large-diameter side faces the step portion 15.
  • a return spring 130 is disposed at a position where the coil spring valve element 3 is disposed in the first embodiment.
  • the return spring 130 is enclosed in the temperature sensing unit 2B when the thermo valve 100 returns from the high temperature state shown in FIG. 3B to the low temperature state shown in FIG.
  • the temperature sensing unit 2B is pressed and urged upward in FIG. 3B (the direction in which the piston rod 2A contracts) to contract the piston rod 2A to the initial position (return to the initial position). Act).
  • the coil spring valve body 3 can also function as a return spring (biasing means) as in the first embodiment, in this embodiment, the spring wire material constituting the coil spring valve body 103 (spring steel) In consideration of the torsional stress limit, etc.), it is possible to achieve the performance required for the coil spring valve body 103 and to improve the durability, etc., as a configuration comprising a separate urging means.
  • thermo valve 100 can be assembled as follows, for example. That is, for example, the return spring 130 is inserted and accommodated in the second housing 20, and the large diameter side of the return spring 130 is placed on the step portion 24 of the second housing 20. Then, the lower part in FIG. 3 of the extending part 2C of the temperature-sensitive movable part 2 is inserted into the small diameter side of the return spring 130 and further to the guide part 23 of the second housing 20, and the coil spring valve body 103 is moved in this state. While placing on the temperature-sensitive movable part 2, the first housing 10 is brought to be covered, and the joining flange part 14 of the first housing 10 and the joining housing part 25 of the second housing 20 are provided. By joining, the thermo valve 1 can be assembled. However, the assembly method and procedure are not limited to those described above, and can be changed as appropriate. The method for joining the joining flange portion 14 of the first housing 10 and the joining housing portion 25 of the second housing 20 can be the same as in the first embodiment.
  • FIG. 3A shows a case where the heat medium has a relatively low temperature.
  • the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C contract.
  • the piston rod 2A is also contracted.
  • the coil spring valve body 103 disposed between the step portion 15 of the first housing 10 and the end of the temperature sensing portion 2B of the temperature sensitive movable portion 2 on the piston rod 2A side is compressed,
  • the gap between the spring wires is narrowed to a predetermined value and is in a closed state.
  • the temperature sensing unit 2B and its extension part so that the temperature sensing part 2B of the temperature sensitive movable part 2 and its extension part 2C can sense the temperature of the heat medium.
  • the passage of a predetermined amount of heat medium in the direction of 2C can be allowed.
  • FIG. 3B shows a case where the heat medium has a relatively high temperature.
  • the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are thermally expanded.
  • the return spring 130 is compressed downward in FIG. 3B, and the piston rod 2A extends.
  • the coil spring valve body 103 disposed between the step portion 15 of the first housing 10 and the end of the temperature sensing portion 2B of the temperature-sensitive movable portion 2 on the piston rod 2A side is extended, The gap between the spring wires expands to a predetermined value and opens.
  • thermo valve 100 is opened so that the heat medium flows out from the opening 21 of the second housing 20.
  • the flow direction of the heat medium is illustrated as going from the upper side to the lower side in FIG. 3, but is not limited to this, and the flow direction of the heat medium is directed from the lower side to the upper side in FIG. It is also possible to arrange the thermo valve 100 as described above.
  • thermo valve 200 according to Embodiment 3 of the present invention will be described with reference to FIG.
  • the thermo valve 200 according to the present embodiment is a three-way valve, as in the first embodiment, the heat medium circulating for cooling the internal combustion engine or the like is circulated to exchange heat, or is heated by a heat source such as a boiler. It can be arranged in a heat medium circuit including a terminal device (such as an automobile heater core or a building heating radiator core) that exchanges heat by circulating the produced heat medium.
  • FIG. 4A shows a low temperature state (valve closed state)
  • FIG. 4B shows a high temperature state (valve open state).
  • thermo valve 200 A configuration of the thermo valve 200 will be described with reference to FIG.
  • the second housing 220 has the two first openings 221 and the second opening 222.
  • the structure and mounting arrangement of the first housing 10 and the temperature-sensitive movable section 2 are described in the embodiment. 1.
  • the coil spring valve body 203 wound in a substantially truncated cone shape has a step of the first housing 10 as shown in FIG.
  • the small frustoconical shape faces the end of the temperature sensing portion 2B on the piston rod 2A side.
  • the large diameter side is disposed so as to face the step portion 15.
  • the coil spring valve body 230 is disposed at the position where the coil spring valve body 3 and the return spring 130 are disposed in the first and second embodiments.
  • the coil spring valve body 230 functions as a return spring, and when returning from the state shown in FIG. 4 (B) to the state shown in FIG. 4 (A), the temperature sensing unit 2B is moved to the state shown in FIG. 4 (A).
  • the piston rod 2A can be contracted by being pressed and urged in the middle upward direction (the direction in which the piston rod 2A contracts).
  • FIG. 4A shows a case where the heat medium has a relatively low temperature.
  • the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C contract.
  • the temperature sensing unit 2B is pressed and urged upward in FIG. 4A by the coil spring valve body 230 functioning as a return spring, so that the piston rod 2A is contracted.
  • the coil spring valve body 203 disposed between the step portion 15 of the first housing 10 and the end of the temperature sensing portion 2B of the temperature-sensitive movable portion 2 on the piston rod 2A side is compressed, The gap between the spring wires is narrowed to a predetermined value and is in a closed state.
  • the coil spring valve body 230 is open.
  • thermo valve 200 when there is a heat medium that is going to flow in from the opening 11 of the first housing 10 and a heat medium that is going to flow in from the first opening 221 of the second housing 220 (when confluence), Inflow from the opening 11 of the first housing 10 is restricted, and the heat medium flowing from the first opening 221 of the second housing 220 mainly flows to the second opening 222 side of the second housing 220. 200 will operate.
  • the heat medium flows in from the second opening 222 of the second housing 220 and divides the flow into the opening 11 side of the first housing 10 and the first opening 221 side of the second housing 220.
  • the heat medium is restricted from flowing out to the opening 11 side of the first housing 10 and flows mainly to the first opening 221 side of the second housing 220.
  • the thermo valve 200 will operate.
  • FIG. 4B shows a case where the heat medium has a relatively high temperature.
  • the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are thermally expanded.
  • the coil spring valve body 230 is compressed downward in FIG. 4B, and the piston rod 2A extends.
  • the coil spring valve body 203 is extended, and a gap between the spring wire rods is expanded to a predetermined value, thereby opening the valve.
  • the coil spring valve body 230 is closed.
  • thermo-valve is such that the inflow from the first opening 221 of the second housing 220 is restricted and the heat medium flowing in from the opening 11 of the first housing 10 mainly flows to the second opening 222 side of the second housing 220. 200 will operate.
  • the heat medium flows in from the second opening 222 of the second housing 220 and divides the flow into the opening 11 side of the first housing 10 and the first opening 221 side of the second housing 220.
  • thermo valve 200 In the case of being arranged in this way (in the case of a diversion), the heat medium is restricted from flowing out to the first opening 221 side of the second housing 220 and flows mainly to the opening 11 side of the first housing 10. Thus, the thermo valve 200 will operate.
  • thermo valve 200 adjusts the distribution when the heat medium flowing in from different passages (flow paths) is merged on the downstream side of the thermo valve 200 according to the temperature state of the heat medium.
  • the heat medium to be merged can be switched, and the distribution of the heat medium flowing into the thermo valve 200 from one passage (flow path) into two different passages (flow paths) is adjusted. Or the heat medium to be discharged can be switched.
  • thermovalve 200 is a control valve that can control the mixing ratio when the heat medium is merged according to the temperature state of the heat medium, or a flow that switches the flow path according to the temperature state of the heat medium. It can be used as a path switching valve or a control valve that can control the distribution ratio when the heat medium is branched according to the temperature state of the heat medium.
  • thermo valve 200 according to the present embodiment since a plurality of coil spring valve bodies can be driven and controlled by one temperature-sensitive movable portion 2, it is possible to respond to the temperature of the heat medium while maintaining low cost. Thus, the flow of the heat medium can be controlled.
  • thermo valve 300 according to Embodiment 4 of the present invention will be described with reference to FIG. Similarly to the first embodiment, the thermo valve 300 according to the fourth embodiment also performs heat exchange by circulating a heat medium circulating to cool the internal combustion engine or the like, or heat heated by a heat source such as a boiler. It can be disposed in a heat medium circuit including a terminal device (such as a heater core for an automobile or a radiator core for heating a building) that exchanges heat by circulating the medium.
  • FIG. 5A shows a low temperature low differential pressure state (valve open state)
  • FIG. 5B shows a low temperature high differential pressure state (constant flow rate state: heat medium passing through a thermo valve.
  • thermo valve 300 shows a state in which the opening degree of the coil spring valve body 303 is adjusted so that the flow rate of the heat medium is adjusted and controlled so that the flow rate becomes constant, and FIG. ).
  • the configuration of the thermo valve 300 will be described with reference to FIG.
  • a different part from another Example is demonstrated, the same code
  • a step portion having a smaller diameter is further provided on the lower side in FIG. 5A of the step portion 2D provided in the vicinity of the joint portion between the temperature sensing portion 2B and the extension portion 2C of the temperature sensitive movable portion 2. 2E is provided. Further, in addition to the step portion 24 of the second housing 20, a step portion 26 with a small diameter is further provided on the lower side in FIG. Then, the coil spring valve body 303 wound in a substantially truncated cone shape includes a step portion 2E of the temperature-sensitive movable portion 2 and a step portion 26 of the second housing 20 as shown in FIG.
  • a return spring 330 wound in a substantially truncated cone shape disposed on the outer peripheral side of the coil spring valve body 303 includes a step portion 2D of the temperature-sensitive movable portion 2, Between the step portion 24 of the second housing 20, a substantially truncated cone-shaped small-diameter side is disposed so as to face the step portion 2 ⁇ / b> D, and a large-diameter side faces the step portion 24.
  • FIG. 5A shows the case where the heat medium is relatively low temperature and the supply pressure of the heat medium is low (when the differential pressure of the heat medium before and after the coil spring valve body 303 is small).
  • the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are contracted, and the temperature sensing part 2B is urged upward by a return spring 330 in FIG. Therefore, the piston rod 2A is also contracted.
  • the coil spring valve body 303 disposed between the step portion 2E and the step portion 26 is extended, and the gap of the spring wire is expanded to a predetermined value and is in the valve open state. . Therefore, for example, when the heat medium is about to flow in from the opening 11 of the first housing 10, the heat medium passes through the gap of the spring wire rod of the coil spring valve body 303 as shown in FIG. Thus, the thermo valve 300 is opened so that the heat medium flows out from the opening 21 of the second housing 20.
  • FIG. 5B shows a case where the heat medium is relatively low in temperature and the supply pressure of the heat medium is high (for example, when the heat medium flow rate is instantaneously increased, the heat medium before and after the coil spring valve body 303).
  • the spring wire receives the high differential pressure of the heat medium (the differential pressure due to the flow), as shown in FIG.
  • the coil spring valve body 303 is compressed in the direction of the step portion 26, and the gap between the spring wire rods of the coil spring valve body 303 is narrowed to a predetermined value to be in a constant flow rate state. .
  • thermo valve 300 when the heat medium is about to flow in from the opening 11 of the first housing 10, as shown in FIG. 5B, the heat medium passes through the gap of the spring wire rod of the coil spring valve body 303. Is limited to a predetermined value, the flow of the heat medium from the opening 21 of the second housing 20 is restricted, and the thermo valve 300 is operated in the valve closing direction even in a low temperature state, and is in a constant flow rate control state. That is, the thermo valve 300 according to the present embodiment can function as a constant flow valve (high cut valve).
  • FIG. 5C shows a case where the heat medium has a relatively high temperature.
  • the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are thermally expanded.
  • the return spring 330 is compressed downward in FIG. 5C, and the piston rod 2A extends.
  • interval of the spring wire rod of the coil spring valve body 303 is narrowed by predetermined, and will be in a valve closing state.
  • the difference between the front and rear is set so that the coil spring valve body 303 functions as a constant flow valve (high cut valve).
  • a gap between adjacent spring wires can be set so that the coil spring valve body 303 can be expanded and contracted independently of the thermal response of the temperature-sensitive movable part 2.
  • thermo valves 1, 100, 200, and 300 according to the above-described embodiments, the following effects can be obtained by using the coil spring valve bodies 3, 103, 203, and 303 as the valve bodies. it can.
  • the conventional thermovalves disclosed in Patent Document 1 and Patent Document 2 adopt a disk-like form in which the main valve body is disposed substantially facing the flow direction of the heat medium.
  • the heat medium can flow smoothly and linearly between the spring wires.
  • Such an effect is most effective when the thermo valve as disclosed in Patent Document 1 and Patent Document 2 is linearly arranged from the inlet side opening to the outlet side opening through the main valve body. The same effect can be obtained even if the axis of the inlet opening and the axis of the outlet opening are bent and not in a linear relationship.
  • the coil spring valve bodies 3, 103, 203, and 303 can be configured by winding a spring wire in a substantially cylindrical shape.
  • the spring wire In a state where the spring wire is compressed and crushed, the spring wire can be wound in a substantially truncated cone shape so that the spring wire is in close contact with the spiral shape.
  • the change in the flow direction of the heat medium before and after passing through the spring wire is small, and the flow of the heat medium can be made smooth and in the valve closed state. Compacting can be promoted.
  • the cross-sectional shape of the spring wire has an appropriate shape such as a circular shape, an elliptical shape, a triangular shape, a rectangular shape, a wedge shape, a trapezoidal shape, and other polygonal shapes according to requirements such as durability and heat medium passage resistance. can do.
  • thermovalves disclosed in Patent Document 1 and Patent Document 2 in which the main part of the flow of the heat medium must flow around the outer shape (outside of the outer shape) of the disk-shaped main valve body are as follows.
  • the heat medium passage space must be secured outside the main valve body, but the size is increased.
  • the thermovalve using the coil spring valve body according to each of the above embodiments enables a more compact design. To do.
  • thermo valves 1, 100, 200, and 300 using the coil spring valve bodies according to the above embodiments can be designed to be compact and can be a low pressure loss thermo valve. For this reason, it is possible to broaden the possibility of widespread adoption, and the low pressure loss performance reduces the overall equipment weight and size by reducing the diameter of the piping path of the heat medium circuit and the capacity of the heat medium delivery pump. As a result, it can contribute to cost reduction.
  • the coil spring valve body is configured by winding the spring wire in a substantially truncated cone shape so that the spring wire closely adheres in a spiral shape in the compressed and crushed state as in each of the above-described embodiments, it is adjacent to the coil spring valve body. Since the gap of the spring wire exists from the small-diameter side to the large-diameter side, the heat medium also flows around the temperature-sensitive movable part 2 (temperature sensing part 2B, extension part 2C) arranged near the center of the coil spring valve body. Therefore, as compared with the case where the heat medium passes around the outer shape of the disc-shaped valve body as in the case of using a conventional disc-shaped valve body, the temperature sensing unit 2B.
  • the heat medium around the temperature sensing unit 2B can be secured without the stagnation of the heat medium around the temperature sensing unit 2B, so that The medium can make good contact with the temperature sensing unit 2B, and the temperature sensing unit 2B can quickly and accurately capture the temperature of the circulating heat medium.
  • thermo valves 1, 100, 200, and 300 using the coil spring valve bodies according to the above-described embodiments, not only when there is a sufficient heat medium flow rate, but also in a low flow rate region with high accuracy and responsiveness. A good thermo valve can be realized.
  • thermo valves 1, 100, 200, and 300 can control the flow rate of the heat medium according to the temperature and the differential pressure of the heat medium while being low cost and with high accuracy and responsiveness. Therefore, the following heat medium circulation system can be proposed.
  • thermo valves 1, 100, 200, 300 is provided downstream of a terminal device (such as a heater core for an automobile or a radiator core for heating a building) in one or more heat medium circuits. And providing a heat medium circulation system capable of controlling distribution of the heat medium according to fluctuations in heat demand and cooling demand of the terminal device by causing the temperature-sensitive movable unit 2 to sense the temperature of the heat medium at the location. Can do. That is, by providing the thermo valve according to each of the above embodiments on the downstream side of the terminal device, the thermo valve can measure the degree of heat demand and cooling demand of the terminal device.
  • the temperature of the coolant (heat medium) in the cooling system main circuit for engine cooling is controlled to a substantially constant stable temperature by the thermostat after the warm-up is completed. Therefore, the coolant temperature supplied to the coolant circuit branched therefrom can be predicted in advance.
  • the coolant flows in, and the coolant temperature on the downstream side of the terminal device that exchanges heat with the coolant changes depending on the result of the heat exchange. If the terminal device needs a lot of heat, the temperature of the coolant on the downstream side of the terminal device becomes lower than the temperature of the supplied coolant. Conversely, if the terminal device needs a lot of cooling (release of heat to the coolant), the coolant temperature on the downstream side of the terminal device becomes higher than the supplied coolant temperature.
  • thermo valve By disposing such a thermo valve on the downstream side of the terminal device, it is possible to control the distribution of the heat medium according to fluctuations in the heat demand and cooling demand of the terminal device.
  • thermo valve according to each of the above embodiments is applied to, for example, a heat medium circuit for heating a building. If the temperature of the heat medium is sensed downstream of a terminal device (such as a floor heating panel or a room heating radiator core) provided in each heat medium circuit, the degree of heat demand of the terminal device Therefore, by disposing the thermo valve according to each of the above embodiments on the downstream side of the terminal device, it is possible to control the distribution of the heat medium according to the fluctuation of the heat demand of the terminal device. Become.
  • thermovalve As described above, by using the thermovalve according to each of the above embodiments, the flow rate of the heat medium is changed to a terminal device with less heat demand / cooling demand on the assumption that the heat demand / cooling demand of each terminal device fluctuates.
  • a system (heat medium circuit) that distributes the heat medium in an optimal balance according to the state can be realized with a simple and inexpensive configuration without requiring a complicated control system.
  • thermovalve thermoresponsive valve
  • thermovalve-opening state a low-temperature state
  • B a sectional drawing which shows a high-temperature state
  • C Is a view taken in the direction of arrow A in (A)
  • D is a view taken in the direction of arrow B in (A).
  • FIG. 2 is an assembly diagram of the thermo valve of FIG. 1. It is a figure which shows the structure of the thermovalve which concerns on Example 2 of this invention, (A) is a low-temperature state (valve closing state), (B) is sectional drawing which shows a high temperature state (valve-opening state).
  • thermovalve which concerns on Example 3 of this invention
  • (A) is a low temperature state
  • (B) is sectional drawing which shows a high temperature state.
  • thermovalve which concerns on Example 4 of this invention
  • (A) is a low temperature low differential pressure state
  • (B) is a low temperature high differential pressure state
  • (C) is sectional drawing which shows a high temperature state. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

Provided are a thermo valve with a simple, low-cost, lightweight, and compact structure capable of optimally controlling the flow of a heat medium while achieving a low pressure loss and a heat medium circuit including the thermo valve. A thermo valve (1, 100, 200, 300) installed in a heat medium circuit in which a heat medium flows comprises a valve element that is operated in a direction along the flow of the heat medium, and a temperature sensitive movable portion (2) for driving opening/closing of the valve element in the direction along the flow of the heat medium by using a thermally actuated operation corresponding to the temperature of the heat medium, and controls the flow of the heat medium according to the temperature of the heat medium. The valve element is constituted of a coil spring valve element (3, 103, 203, 230, 303) that is opened/closed by an increase/decrease in the passage section of a flow path of the heat medium caused by the change of gaps in a winding portion that expands and contracts in response to the thermally actuated operation of the temperature sensitive movable portion (2).

Description

サーモバルブ及び該サーモバルブを備えた熱媒体回路THERMO VALVE AND HEAT MEDIUM CIRCUIT HAVING THE THERMO VALVE
 本発明は、内燃機関などを冷却するために循環している熱媒体(以下、場合によって「冷却液」、「温水」とも言う。)を利用して熱交換したり、ボイラー等の熱源から熱媒体を流通させて熱交換する端末装置(自動車用ヒーターコアや建物の暖房用ラジエータコアなど)を含む熱媒体回路内に配置され、熱媒体の温度に応じて進退移動する感温可動部(「サーモペレット」、「サーモエレメント」などとも呼ばれる)の熱応動を利用して、熱媒体の流れを制御するサーモバルブ(弁機構)及び熱媒体回路に関する。 The present invention uses a heat medium (hereinafter sometimes referred to as “cooling liquid” or “warm water”) circulating to cool an internal combustion engine or the like, or exchanges heat from a heat source such as a boiler. A temperature-sensitive movable part ("", which is arranged in a heat medium circuit including a terminal device (such as an automobile heater core or a building heating core) that circulates and exchanges heat, and moves forward and backward according to the temperature of the heat medium. The present invention relates to a thermo valve (valve mechanism) and a heat medium circuit for controlling the flow of a heat medium by utilizing the thermal response of a “thermo pellet”, “thermo element” or the like.
 近年、環境技術の進展に伴い、自動車用のエンジン冷却系システムには、エンジンの冷却(保温)のための主たる冷却液回路以外に、冷却液と熱交換する端末装置(ヒーターコアなど)を含む冷却液回路が多数組み合わされるようになってきた。 With recent advances in environmental technology, automotive engine cooling systems include terminal devices (such as heater cores) that exchange heat with coolant in addition to the main coolant circuit for engine cooling (heat insulation). Many coolant circuits have been combined.
 車室暖房用のヒーター回路はその古典的な一例であるが、近年では、例えば、エンジンオイルを温め保温するためのもの、ミッションオイルを温め保温するためのもの、EGRガス冷却のためのもの、排気熱を回収するためのもの、排熱を蓄熱するためのもの等が組合されるようになってきた。 A heater circuit for vehicle compartment heating is a classic example, but in recent years, for example, for warming and keeping engine oil, for warming and keeping mission oil, for cooling EGR gas, Those for recovering exhaust heat and those for storing exhaust heat have come to be combined.
 このような技術の進展を背景に、エンジン冷却系システムの冷却液と熱交換する端末装置(ヒーターコアなど)を含む冷却液回路内に配置され、当該回路における流路の開(流量を増大させる)又は閉(流量を減少させる)制御が可能な弁機構或いはそれを配置してあるエンジン冷却系システムなどが提案されてきている。 Against the background of such technological progress, it is arranged in a coolant circuit including a terminal device (such as a heater core) that exchanges heat with the coolant of the engine cooling system, and the flow path in the circuit is opened (the flow rate is increased). ) Or a valve mechanism that can be closed (reducing the flow rate) or an engine cooling system in which the valve mechanism is arranged has been proposed.
 例えば、特許文献1には、冷却水の温度が低温側から高温側に変化するに従って開度を減少させる機械式の弁機構及びその様な弁機構を備えたエンジン冷却系システムが開示されている。 For example, Patent Document 1 discloses a mechanical valve mechanism that reduces the opening as the temperature of cooling water changes from a low temperature side to a high temperature side, and an engine cooling system system including such a valve mechanism. .
 また、特許文献2には、冷媒の温度が高温の場合に開度を大きくし、前記冷媒の温度が低温の場合に開度を小さくする機械式の制御弁機構及びその様な弁機構を備えたエンジン冷却系システムが開示されている。 Patent Document 2 includes a mechanical control valve mechanism that increases the opening when the temperature of the refrigerant is high and decreases the opening when the temperature of the refrigerant is low, and such a valve mechanism. An engine cooling system is disclosed.
 特許文献3には、シリンダヘッド側から排出される冷却水をヒータコアを経てシリンダブロック側へ戻すヒータ通路における前記ヒータコアの下流側に直列に変速機用熱交換器を設け、該変速機用熱交換器と前記ヒータコアとの間で分岐し該変速機用熱交換器の下流側で合流するバイパス通路を設けると共に、該バイパス通路への流量分配を制御する弁機構を備え、前記ヒータコアへの冷却水流量を相対的に大として前記変速機用熱交換器への冷却水流量を相対的に小とする第1状態と、前記ヒータコアへの冷却水流量を相対的に小として前記変速機用熱交換器への冷却水流量を相対的に大とする第2状態と、のいずれかを必要に応じて確保することができるエンジン冷却系システムが開示されている。 In Patent Document 3, a transmission heat exchanger is provided in series on the downstream side of the heater core in the heater passage for returning the cooling water discharged from the cylinder head side to the cylinder block side through the heater core, and the heat exchange for the transmission A bypass passage that branches off between the heater and the heater core and joins downstream of the transmission heat exchanger, and includes a valve mechanism that controls flow distribution to the bypass passage, and includes cooling water to the heater core. A first state in which the flow rate is relatively large and the cooling water flow rate to the transmission heat exchanger is relatively small, and the transmission heat exchange is performed by relatively reducing the cooling water flow rate to the heater core. An engine cooling system is disclosed that can ensure, as necessary, either a second state in which the flow rate of cooling water to the vessel is relatively large.
 例えば、特許文献4には、特許文献3と同様のヒータ通路を確保した上で、必要に応じて、ヒータ通路6のヒータコア13下流から分流させた冷却水を変速機用熱交換器14を経てシリンダブロック1a側へ戻す暖機用流通経路(特許文献4の図1のY1参照)と、シリンダブロック1a内の冷却水を変速機用熱交換器14を経てシリンダブロック1a側へ戻す冷却用流通経路(特許文献4の図2のY2参照)と、のいずれかを確保する切替手段としての弁機構を含むエンジン冷却系システムが開示されている。 For example, in Patent Document 4, a heater passage similar to that in Patent Document 3 is secured, and if necessary, cooling water diverted from the downstream of the heater core 13 of the heater passage 6 passes through the transmission heat exchanger 14. Flow path for warm-up returning to the cylinder block 1a side (see Y1 in FIG. 1 of Patent Document 4) and cooling flow for returning the cooling water in the cylinder block 1a to the cylinder block 1a side via the transmission heat exchanger 14 An engine cooling system is disclosed that includes a valve mechanism as switching means for securing either one of the paths (see Y2 in FIG. 2 of Patent Document 4).
 特許文献1乃至特許文献4などが説明するように、以上に例示したようなエンジン冷却系システム等において、熱媒体(=冷却液、例えば「冷却水」)の温度に応じて進退移動する感温可動部の熱応動を利用した、流路の開(流量を増大させる)又は閉(流量を減少させる)制御や、流路の分岐における流量分配比制御、流路の合流における混合比制御、流路の切替制御等が可能な弁機構(サーモバルブ)が有用なものであることがわかる。 As described in Patent Literature 1 to Patent Literature 4 and the like, in the engine cooling system and the like exemplified above, the temperature sensitivity that moves forward and backward according to the temperature of the heat medium (= cooling liquid, for example, “cooling water”). Control of flow channel opening (increasing flow rate) or closing (decreasing flow rate), flow rate distribution ratio control at flow channel branching, mixing ratio control at flow channel merging using thermal response of moving parts, flow It can be seen that a valve mechanism (thermo valve) capable of path switching control is useful.
 これらの弁機構(サーモバルブ)は、弁を「閉」とした時に、熱媒体の流路を完全に閉止し少しのリークも許さないというものではない。少しの流量を残して「閉」状態とすることを許すものである。特に、該弁機構(サーモバルブ)が熱媒体の温度に応じて進退移動する感温可動部の熱応動を利用して流量を増大させたり減少させたりする弁機構(サーモバルブ)であれば、少しの流量を残して「閉」状態とすることが、感温可動部の感温性能確保のために必要なことである。 These valve mechanisms (thermo valves) do not mean that when the valve is “closed”, the flow path of the heat medium is completely closed and no leakage is allowed. It is allowed to be in a “closed” state with a little flow. In particular, if the valve mechanism (thermovalve) is a valve mechanism (thermovalve) that increases or decreases the flow rate using the thermal response of the temperature-sensitive movable part that moves forward and backward according to the temperature of the heat medium, It is necessary to maintain the temperature sensing performance of the temperature sensing movable part by leaving a small amount of flow to be in the “closed” state.
 上記のような、熱媒体の温度に応じて進退移動する感温可動部の熱応動を利用して流量を増大させたり減少させたりする従来の弁機構(例えば、特許文献1、特許文献2に示されるような弁機構(サーモバルブ))は、特許文献5に示されるような、エンジン冷却装置の外部に設けた制御手段(電子制御回路や温度センサを含む)によって開閉制御されるものに比べれば、熱媒体の温度に応じた流量制御を比較的簡単な構成で実現し得るものである。 A conventional valve mechanism that increases or decreases the flow rate using the thermal response of the temperature-sensitive movable portion that moves forward and backward according to the temperature of the heat medium as described above (for example, in Patent Document 1 and Patent Document 2) The valve mechanism (thermovalve) as shown is compared to the one that is controlled to open and close by control means (including an electronic control circuit and a temperature sensor) provided outside the engine cooling device as shown in Patent Document 5. For example, the flow rate control according to the temperature of the heat medium can be realized with a relatively simple configuration.
 また、ボイラーやヒートポンプ、コージェネレーションシステムなどの熱源により暖められた熱媒体(例えば温水)を用いた床暖房システムや室内暖房システム等において、熱を求める複数の熱媒体回路(複数の部屋の床暖房や空調のシステムに熱を供給する熱媒体回路)に熱媒体を分配供給するため、各々の分岐口に開閉弁を設けたヘッダー(分岐金具)や、その戻り側のヘッダーが組み合わされた暖房用ヘッダー装置が公知となっている。 Also, in floor heating systems and indoor heating systems that use a heat medium (for example, hot water) heated by a heat source such as a boiler, heat pump, cogeneration system, etc., a plurality of heat medium circuits (floor heating in a plurality of rooms) for obtaining heat For heating that combines a header (branch bracket) with an on-off valve at each branch port, and a header on the return side to distribute and supply the heat medium to the heat medium circuit that supplies heat to the air conditioning system) Header devices are known.
 熱源の熱を複数の熱媒体回路へ分配供給するヘッダー装置により、複数の部屋の床暖房や空調のシステムに適宜温められた熱媒体を供給しようとすると、ある稼働中の熱媒体回路に熱媒体の供給が集中し、別の稼働中の熱媒体回路への熱媒体の供給が不足して、求められる暖房能力を発揮できなくなる惧れがある。過剰な暖房は有害であるし、暖房を必要とする際に、暖房能力が欠如することは、特に問題が大きい。 If a header device that distributes heat from a heat source to a plurality of heat medium circuits is used to supply a heat medium appropriately heated to a floor heating or air conditioning system in a plurality of rooms, the heat medium is supplied to a certain heat medium circuit in operation. However, there is a possibility that the required heating capacity cannot be exhibited due to a lack of supply of the heat medium to another heat medium circuit in operation. Excessive heating is harmful and the lack of heating capacity is particularly problematic when it is required.
 そこで、このような暖房用の複数の熱媒体回路へ熱媒体が適正に配分されるように、流量が予め設定されている定流量弁をヘッダーに組り付けるもの(特許文献6参照)や、供給側のヘッダーと戻り側のヘッダーの圧力の差を一定の範囲に保つように、供給側のヘッダーと戻り側のヘッダー間にバイパス回路を設けて、該バイパス回路に差圧制御弁を配置するもの(特許文献7参照)が開示されている。 Therefore, in order to properly distribute the heat medium to a plurality of such heat medium circuits for heating, a constant flow valve whose flow rate is set in advance is assembled to the header (see Patent Document 6), In order to keep the pressure difference between the header on the supply side and the header on the return side within a certain range, a bypass circuit is provided between the header on the supply side and the header on the return side, and a differential pressure control valve is arranged in the bypass circuit. The thing (refer patent document 7) is disclosed.
 このような複数の熱媒体回路へ熱媒体の適正分配ができるシステムは、施工現場における、とても煩わしいとされる、人手の作業による流量設定を不要なものとすることができる。 Such a system capable of appropriately distributing a heat medium to a plurality of heat medium circuits can eliminate the need for manual flow rate setting at the construction site, which is considered to be very troublesome.
 以上のように、熱源により暖められた熱媒体を用いた床暖房システムや室内暖房システム等において、複数の熱媒体回路に対して、要求に応じて適正に流量分配することができる弁機構が有用なものであることがわかる。 As described above, in a floor heating system or an indoor heating system using a heat medium heated by a heat source, a valve mechanism capable of appropriately distributing a flow rate to a plurality of heat medium circuits according to demand is useful. You can see that
特開2007-120380号公報JP 2007-120380 A 特開2007-205197号公報JP 2007-205197 A 特開2007-224821号公報Japanese Patent Laid-Open No. 2007-224821 特開2007-224819号公報JP 2007-224819 A 特開2002-235544号公報JP 2002-235544 A 特開平9-210380号公報Japanese Patent Laid-Open No. 9-210380 特開2000-266298号公報JP 2000-266298 A
 ここで、自動車用のエンジン冷却系システムにおいては、従来、上述のような弁機構(サーモバルブ)は、車室暖房用のヒーター回路ではコスト面などの考慮から省略されていることも多い。サーモバルブを新たにヒーター回路に採用したり、近年増えてきた新たな複数の回路に採用するには、これらを採用したことによる効果(価値)が大きいものであることに加え、価格が安価で軽量なものでなければならない。この点に照らすと、上述の従来のサーモバルブ(例えば、特許文献1、特許文献2に示されるようなサーモバルブ)では、構造が複雑で部品点数も多く高コストなものである。 Here, in the engine cooling system for automobiles, conventionally, the valve mechanism (thermovalve) as described above is often omitted in consideration of cost and the like in the heater circuit for heating the passenger compartment. In order to adopt a new thermo valve in a heater circuit or in a number of new circuits that have increased in recent years, in addition to having a great effect (value) by adopting these, the price is low. It must be lightweight. In light of this point, the above-described conventional thermovalves (for example, the thermovalves shown in Patent Document 1 and Patent Document 2) have a complicated structure, a large number of parts, and a high cost.
 また、上記従来のサーモバルブ(特許文献1、特許文献2に示されるようなサーモバルブ)は、その主弁体が円盤状の形態をとっており、流通する冷却液の流れに対面するように配置されている。そのため、サーモバルブの入口側開口部から出口側開口部に向けた冷却液の流通に対して、主弁体が障害物となるように立ち塞がり、開弁状態においても(わずかな故意の感温用リーク孔による流通を除いて)冷却液の主要なる部分は、主弁体の外形部分を迂回して流通することとなり、流れの効率が悪く流路抵抗(圧力損失)が大きいといった実情がある。 The conventional thermo valve (the thermo valve as shown in Patent Document 1 and Patent Document 2) has a disc-like main valve body so as to face the flow of the circulating coolant. Has been placed. For this reason, the main valve body is blocked so as to become an obstacle to the flow of the coolant from the inlet side opening of the thermo valve toward the outlet side opening, and even in the open state (a slight deliberate temperature sensitivity) The main part of the coolant (except for the flow through the leak hole for use) bypasses the outer part of the main valve body and flows, resulting in poor flow efficiency and large flow path resistance (pressure loss). .
 このような従来のサーモバルブでは、流路抵抗(圧力損失)を根本的に小さくするには、主弁サイズの大型化が必要でサーモバルブ全体が大きなものとなってしまい、低コスト化・軽量化と相容れない。また、流量のきめ細かな制御が困難になるといった惧れもある。 In such a conventional thermo valve, in order to fundamentally reduce the flow resistance (pressure loss), it is necessary to increase the size of the main valve, and the entire thermo valve becomes large, thus reducing cost and weight. Incompatible with chemistry. Moreover, there is a concern that fine control of the flow rate becomes difficult.
 更に、従来のサーモバルブでは、冷却液の主要なる部分が主弁体の外形部分を迂回して流通するので、円盤状の主弁体の中心軸付近に配置された感温可動部から冷却液の流線は遠ざけられ、感温可動部周辺の冷却液の流速を確保し難くいと共に、感温可動部周辺は澱みになりがちで流通中の冷却液と接触し難くなるので、流通中の冷却液の温度を素早く正確に捉えることができないという面がある。 Further, in the conventional thermo valve, the main part of the coolant flows around the outer part of the main valve body, so that the coolant is discharged from the temperature-sensitive movable part arranged near the center axis of the disk-shaped main valve body. The flow line is kept away, and it is difficult to secure the flow rate of the coolant around the temperature-sensitive movable part, and the area around the temperature-sensitive movable part tends to become stagnation and difficult to contact with the circulating coolant. There is an aspect that the temperature of the coolant cannot be quickly and accurately captured.
 また、近年の自動車冷却系システムにおいては、上述の通り、多数の冷却液回路が組み合わされるようになってきており、各冷却液回路が冷却液を奪い合うような状態になっている面があるが、特定の冷却液回路に必要以上に冷却液を流入させることなく、他の回路にも冷却液を適当に分配できるようにすることが望ましい。すなわち、各冷却液回路の冷却需要と熱需要に応じて、或いは優先順位などによって最適に分配するべきである。 Further, in recent automobile cooling systems, as described above, a large number of coolant circuits have been combined, and there are aspects in which each coolant circuit competes for coolant. It is desirable to allow the coolant to be properly distributed to other circuits without causing the coolant to flow more than necessary into a particular coolant circuit. That is, it should be optimally distributed according to the cooling demand and heat demand of each coolant circuit, or according to priority.
 より詳しく述べると、例えば、自動車冷却系システムにおけるヒーターコアを含む冷却液回路は、車室内暖房のために熱需要がある場合には、最も優先的にエンジンにより温められた冷却液を流通させるべき回路といえる。しかし、熱需要がないときはもとより、熱需要があっても必要以上の流量(熱量)をヒーター回路に送る必要はない。十分な流量が得られる条件が整った条件(例えば、ウォーターポンプが結合されたエンジンの回転数が一定回転数を越えている条件)では、ヒーター回路に供給される流量を制限して、他の冷却液回路の熱需要・冷却需要に応えることができるように冷却液の分配を行えることが望ましく、このような要求に応えることができるサーモバルブが求められる。 More specifically, for example, a coolant circuit including a heater core in an automobile cooling system should preferentially distribute the coolant heated by the engine when there is a heat demand for vehicle interior heating. It can be said to be a circuit. However, when there is no heat demand, it is not necessary to send an unnecessarily high flow rate (heat amount) to the heater circuit even if there is a heat demand. In conditions where sufficient flow rate can be obtained (for example, when the rotation speed of the engine to which the water pump is coupled exceeds a certain rotation speed), the flow rate supplied to the heater circuit is limited, It is desirable that the coolant can be distributed so as to meet the heat demand and cooling demand of the coolant circuit, and a thermo valve capable of meeting such a demand is required.
 ところで、熱媒体(例えば温水)を用いた床暖房システムや室内暖房システム等においても、各熱媒体回路の熱需要に応じて、或いは優先順位などによって最適に分配するべきである。そこで、熱媒体の温度に応じて、熱媒体の流量を減少させたり増大させたりする制御が可能なサーモバルブが有益であるが、複数の熱媒体回路にサーモバルブを設置しようとする場合、サーモバルブは低コストであることが求められる。しかし、従来のサーモバルブ(例えば、特許文献1、特許文献2に示されるようなサーモバルブ)では、構造が複雑で部品点数も多く高コストなものである。 By the way, even in a floor heating system or an indoor heating system using a heat medium (for example, hot water), it should be optimally distributed according to the heat demand of each heat medium circuit or according to priority. Therefore, a thermo valve that can be controlled to reduce or increase the flow rate of the heat medium according to the temperature of the heat medium is useful. However, when installing a thermo valve in a plurality of heat medium circuits, the thermo valve is useful. The valve is required to be low cost. However, a conventional thermo valve (for example, a thermo valve as shown in Patent Document 1 and Patent Document 2) has a complicated structure, a large number of parts, and a high cost.
 また、熱媒体(たとえば温水)を用いた床暖房システムや室内暖房システム等においては、特許文献6に開示されるように、各熱媒体回路への流量設定が必要であり、流量が予め設定されている定流量弁がヘッダーの各分岐口にユニット化されるものがある。しかし、特許文献6の図3に示されるような定流量弁は圧力損失が大きく、各熱媒体回路に熱媒体を十分に送り込むには、大きなポンプの動力が必要となり電力消費を通じたエネルギー消費が大きくなるといった惧れがある。また、システムに大型のポンプが必要となり高コスト、設置自由度の低下などを招くといった惧れもある。 Further, in a floor heating system or an indoor heating system using a heat medium (for example, hot water), as disclosed in Patent Document 6, it is necessary to set a flow rate to each heat medium circuit, and the flow rate is set in advance. Some constant flow valves are unitized at each branch port of the header. However, the constant flow valve as shown in FIG. 3 of Patent Document 6 has a large pressure loss, and a large pump power is required to sufficiently feed the heat medium to each heat medium circuit, so that energy consumption through power consumption is reduced. There is a fear that it will grow. In addition, a large-scale pump is required for the system, which may lead to high costs and a reduction in installation flexibility.
 更に、特許文献6が開示する定流量弁(及びシステム)では、各熱媒体回路への流量を予め設定するのみで、各熱媒体回路に備え付けられた端末装置(床暖房用のパネルや、室内暖房用ラジエータコア等)それぞれの熱需要の大小により、バランスよく熱媒体を分配する機能はない。すなわち、各端末装置の熱需要が変動することを前提に、熱需要の少ない端末装置には少流量を、熱需要の多い端末装置にはなるべく多くの流量をその時々の状態に最適なバランスで分配する機能はない。 Furthermore, in the constant flow valve (and system) disclosed in Patent Document 6, the terminal device (floor heating panel or indoor unit) provided in each heat medium circuit is set only by presetting the flow rate to each heat medium circuit. Heating radiator core etc.) There is no function to distribute the heat medium in a well-balanced manner depending on the heat demand. In other words, on the assumption that the heat demand of each terminal device fluctuates, a small flow rate should be used for terminal devices with low heat demand, and as much flow rate as possible should be provided for terminal devices with high heat demand in an optimal balance for the current situation. There is no function to distribute.
 同様に、特許文献7が開示するシステムでは、供給ヘッダーと戻りヘッダーの差圧を常に一定化することにより、各熱媒体回路の流量を他の熱媒体回路の使用状況に関わりなく安定にすることができるのであるが、このシステムでも各熱媒体回路に備え付けられた端末装置(床暖房用のパネルや、室内暖房用ラジエータコア等)それぞれの熱需要の大小により、バランスよく熱媒体を分配する機能はない。すなわち、各端末装置の熱需要が変動することを前提に、熱需要の少ない端末装置には少流量を、熱需要の多い端末装置にはなるべく多くの流量をその時々の状態に最適なバランスで分配する機能はない。 Similarly, in the system disclosed in Patent Document 7, the flow rate of each heat medium circuit is stabilized regardless of the use state of the other heat medium circuits by always keeping the differential pressure between the supply header and the return header constant. However, even in this system, the function of distributing the heat medium in a well-balanced manner depending on the magnitude of the heat demand of each terminal device (floor heating panel, indoor heating radiator core, etc.) provided in each heat medium circuit There is no. In other words, on the assumption that the heat demand of each terminal device fluctuates, a small flow rate should be used for terminal devices with low heat demand, and as much flow rate as possible should be provided for terminal devices with high heat demand in an optimal balance for the current situation. There is no function to distribute.
 本発明は、かかる実情に鑑みてなされたものであり、簡単、低コスト、軽量、コンパクトな構成でありながら、低圧力損失を達成しつつ熱媒体の流れを最適に制御することができるサーモバルブ及び当該サーモバルブを備えた熱媒体回路を提供することを目的とする。 The present invention has been made in view of such circumstances, and a thermo valve capable of optimally controlling the flow of a heat medium while achieving low pressure loss while having a simple, low cost, light weight, and compact configuration. And it aims at providing the heat carrier circuit provided with the said thermo valve.
 このため、本発明に係るサーモバルブは、
 熱媒体が流れる熱媒体回路に介装されると共に、
 熱媒体の流路に沿った方向に動作される弁体と、熱媒体の温度に応じた熱応動動作を利用して前記弁体を熱媒体の流路に沿った方向に開閉駆動する感温可動部と、を備え、
 熱媒体の温度に応じて熱媒体の流れを制御するサーモバルブであって、
 前記弁体が、前記感温可動部の熱応動動作に連動して伸縮することによる巻線部の間隙変化により熱媒体の流路の通過断面積が増減されて開閉動作されるコイルスプリング弁体により構成されることを特徴とする。
Therefore, the thermo valve according to the present invention is
While being interposed in the heat medium circuit through which the heat medium flows,
A valve body that is operated in a direction along the flow path of the heat medium, and a temperature sensing device that opens and closes the valve body in a direction along the flow path of the heat medium by using a heat-responsive operation according to the temperature of the heat medium. A movable part,
A thermo valve that controls the flow of the heat medium according to the temperature of the heat medium,
A coil spring valve body that is opened and closed by increasing or decreasing the passage cross-sectional area of the flow path of the heat medium due to a change in the gap of the winding part due to the expansion and contraction of the valve body in conjunction with the thermal response operation of the temperature-sensitive movable part It is characterized by comprising.
 また、本発明に係るサーモバルブは、
 熱媒体が流れる熱媒体回路に介装され、熱媒体の温度に応じて熱媒体の流れを制御するサーモバルブであって、
 熱媒体の温度に応じた熱応動動作を利用して、弁体を開閉駆動する感温可動部と、
 熱媒体が流れる流路を有すると共に、当該流路の内側に突き出し前記感温可動部の一部を支持固定する支持部を有する第1ハウジングと、
 熱媒体が流れる流路を有すると共に、当該流路の内側に突き出し前記感温可動部の進退移動部分を支持案内する案内部を有する第2ハウジングと、
 前記支持部と前記案内部の中間位置に形成される弁室に配置され、前記感温可動部の熱応動動作に連動して伸縮されることによる巻線部の間隙変化により熱媒体の流路の通過断面積が増減されて開閉動作されるコイルスプリング弁体と、
 を含んで構成されることを特徴とする。
The thermo valve according to the present invention is
A thermo valve that is interposed in a heat medium circuit through which the heat medium flows and controls the flow of the heat medium according to the temperature of the heat medium,
A temperature-sensitive movable part that opens and closes the valve body using a heat-responsive operation according to the temperature of the heat medium;
A first housing having a flow path through which the heat medium flows, and a support portion protruding inside the flow path to support and fix a part of the temperature-sensitive movable portion;
A second housing having a flow path through which the heat medium flows, and having a guide portion that protrudes inside the flow path and supports and guides the advancing and retreating portion of the temperature-sensitive movable portion;
The flow path of the heat medium is arranged in a valve chamber formed at an intermediate position between the support portion and the guide portion, and the heat medium flow path is changed by a gap change of the winding portion by being expanded and contracted in conjunction with the heat-responsive operation of the temperature-sensitive movable portion. A coil spring valve body that is opened and closed by increasing or decreasing the passage cross-sectional area of
It is characterized by including.
 これにより、本発明に係るサーモバルブは、コイルスプリング弁体を採用したことから、極めて簡単な構成とすることができる。従来のサーモバルブよりも部品点数が少なくて済み、組立て工数も削減できるので、低コスト化を図ることができる。 Thus, the thermo valve according to the present invention employs a coil spring valve element, and thus can be configured extremely simply. Since the number of parts is smaller than that of the conventional thermo valve and the number of assembling steps can be reduced, the cost can be reduced.
 また、例えば、特許文献1、特許文献2に示されるような従来のサーモバルブでは、円盤状の弁体を感温可動部の可動部へ固定・一体化するための部品が必要であると共に、その組み立てが必要となる。特許文献1に示されるサーモバルブでは、例えばスプリングにより付勢される弁体を軸に対して位置規制するためのスナップリング、或いは「リテーナ」と称される部品(特許文献1の図3の符号228等参照)などが必要である。これに対し、本発明に係るサーモバルブでは、コイルスプリング弁体を採用したことから、これらスナップリングやリテーナ等を省略することができる。 Further, for example, in the conventional thermo valve as shown in Patent Document 1 and Patent Document 2, a part for fixing and integrating the disc-like valve body to the movable part of the temperature-sensitive movable part is necessary, Its assembly is required. In the thermovalve disclosed in Patent Document 1, for example, a snap ring for regulating the position of a valve body biased by a spring with respect to a shaft, or a part called a “retainer” (reference numeral in FIG. 3 of Patent Document 1). 228 etc.) is necessary. On the other hand, in the thermo valve according to the present invention, since the coil spring valve body is adopted, these snap rings, retainers and the like can be omitted.
 また、進退移動する感温可動部の進退移動部分の初期位置(原位置)への復帰動作は、スプリング等の付勢手段により付勢することで確実なものとなるので、感温可動部の熱応動を利用したサーモバルブは感温可動部の進退移動部分の初期位置への復帰動作のための付勢手段が通常必要とされるが、本発明に係るサーモバルブは、弁体がコイルスプリングであるので、弁体が付勢手段(リターンスプリング)を兼ねることができる。これにより、部品点数の削減に貢献することができる。 In addition, the return operation of the advancing / retreating part of the temperature-sensitive moving part that moves forward / backward to the initial position (original position) is ensured by urging by an urging means such as a spring. The thermo-valve using thermal response normally requires a biasing means for returning the temperature-sensitive movable part to the initial position of the advancing / retreating moving part. However, the thermo-valve according to the present invention has a valve body with a coil spring. Therefore, the valve body can also serve as an urging means (return spring). Thereby, it can contribute to reduction of a number of parts.
 上述のように、コイルスプリング弁体が付勢手段を兼ねるようにすれば、単なる付勢手段としてのコイルスプリングを廃止できるので、熱媒体(冷却液)が単なる付勢手段としてのコイルスプリングの線間を横切ったり近辺を通過することによって、渦流や流線の乱れを発生させ流通抵抗(圧力損失)を発生させることを抑制することができる。 As described above, if the coil spring valve body also serves as the urging means, the coil spring as the mere urging means can be eliminated, so that the heat medium (cooling liquid) is a coil spring line as the urging means. By crossing between and passing the vicinity, it is possible to suppress the generation of flow resistance (pressure loss) due to turbulence and turbulence of streamlines.
 なお、コイルスプリング弁体が開弁状態において、熱媒体はコイルスプリング弁体のスプリング線材間を流れることができる。
 これにより、特許文献1や特許文献2に示されるような従来のサーモバルブのように、主弁体が円盤状の形態をとっており、流通する熱媒体の流れを遮るように配置されていて、入口側開口部から出口側開口部に向けた熱媒体の流通に対して、主弁体が障害物となるように立ち塞がり、開弁状態においても(わずかな感温用リーク孔による流通を除いて)、熱媒体の流れの主要なる部分は、主弁体の外形部分を迂回して流通しなければならないということがないので、熱媒体はよりスムーズに直線的な流れとなり、熱媒体の流通の抵抗(=圧力損失)を低減する効果を奏することができる。
When the coil spring valve body is in the open state, the heat medium can flow between the spring wire members of the coil spring valve body.
Thereby, like the conventional thermo valve as shown in patent documents 1 and patent documents 2, the main valve body has taken the shape of a disk, and is arranged so that the flow of the circulating heat medium may be blocked. , Against the circulation of the heat medium from the opening on the inlet side to the opening on the outlet side, the main valve body is blocked so that it becomes an obstacle, and even in the opened state (the circulation by a slight temperature-sensitive leak hole The main part of the flow of the heat medium does not have to circulate around the outer shape of the main valve body, so that the heat medium has a smoother linear flow, The effect of reducing the flow resistance (= pressure loss) can be achieved.
 この効果は、特許文献1や特許文献2に示されるようなサーモバルブの入口側開口部から主弁体を経て出口側開口部までを直線的に配置する場合にもっとも効果の度合いが大きいが、入口側開口部の軸線と出口側開口部の軸線が屈曲していて、直線的な関係でなくても、同様の効果を得ることができる。 This effect is most effective when linearly arranged from the inlet side opening of the thermo valve through the main valve body to the outlet side opening as shown in Patent Document 1 and Patent Document 2, The same effect can be obtained even if the axis of the inlet opening and the axis of the outlet opening are bent and not in a linear relationship.
 熱媒体の流れの主要なる部分が主弁体の外形部分を迂回して流通しなければならない従来のサーモバルブは、主弁体の外側に熱媒体の通過スペースを確保しなければならず大型化するが、本発明に係るコイルスプリング弁体を用いたサーモバルブは、よりコンパクトな設計を可能とする。 The conventional thermo valve, in which the main part of the flow of the heat medium must circulate around the outer shape of the main valve body, has to secure a passage space for the heat medium outside the main valve body, and the size is increased. However, the thermo valve using the coil spring valve body according to the present invention enables a more compact design.
 よって、本発明に係るサーモバルブは、コンパクトな設計を可能とするうえに、低圧力損失なサーモバルブとすることができる。よって、幅広く採用の可能性を広げることができ、また、低圧力損失性能は熱媒体回路の配管流路の小径化や熱媒体送出ポンプの小型化等を通じて装置全体の軽量化・小型化、延いてはコスト低減に貢献できる。 Therefore, the thermo valve according to the present invention can be a compact design and a low pressure loss thermo valve. Therefore, the possibility of wide adoption can be expanded, and the low pressure loss performance can be reduced by reducing the diameter of the piping path of the heat medium circuit and reducing the size of the heat medium delivery pump. Can contribute to cost reduction.
 また、本発明に係るサーモバルブにおいて、前記第1ハウジングが、熱媒体が流れる流路と、当該流路の内壁から伸びるアームと、当該アームに支持され前記感温可動部の一部を支持固定する支持部と、が一体成形により形成され、前記第2ハウジングが、熱媒体が流れる流路と、当該流路の内壁から伸びるアームと、当該アームに支持され前記感温可動部の進退移動部材を支持案内する支持案内部と、が一体成形により形成されることを特徴とすることができる。 In the thermo valve according to the present invention, the first housing supports and fixes a flow path through which the heat medium flows, an arm extending from an inner wall of the flow path, and a part of the temperature-sensitive movable portion supported by the arm. Are formed by integral molding, and the second housing has a flow path through which the heat medium flows, an arm extending from the inner wall of the flow path, and an advance / retreat moving member of the temperature-sensitive movable section supported by the arm. And a support guide portion that supports and guides the substrate.
 このように、熱媒体が流れる流路と、前記アームと、前記支持部と、を有する第1ハウジングを射出成形等により一体成形する一方、熱媒体が流れる流路と、前記アームと、前記支持案内部と、を有する第2ハウジングと、を射出成形等により一体成形するものとすれば、製造容易であると共に組立容易であり、低コスト化を図ることができ、以って本発明に係るサーモバルブの採用可能性を高めることができる。 Thus, the first housing having the flow path through which the heat medium flows, the arm, and the support portion is integrally formed by injection molding or the like, while the flow path through which the heat medium flows, the arm, and the support If the second housing having the guide portion is integrally formed by injection molding or the like, it is easy to manufacture, easy to assemble, and can be reduced in cost. The possibility of adopting a thermo valve can be increased.
 さらに、本発明において、コイルスプリング弁体は、所定に圧縮され潰れた状態において、渦巻状に密着するテーパーコイルスプリング(略円錐台形状にスプリング線材を巻回したもの)で構成することができる。 Furthermore, in the present invention, the coil spring valve body can be constituted by a taper coil spring (which is formed by winding a spring wire in a substantially truncated cone shape) in a predetermined compressed and crushed state.
 かかる構成とすれば、コイルスプリング弁体の中心軸付近に配置された感温可動部周辺は澱みになり難くなり、感温可動部周辺の熱媒体の流速を確保し易くなって、流通中の熱媒体と感温可動部との接触がし易くなるので、流通中の熱媒体の温度を素早く正確に捉えることができるようになる。特に、コイルスプリング弁体が全開状態から最大絞り状態へ向かう時、コイルスプリング弁体を構成するテーパーコイルスプリングは大径側から潰れて行くことで流量を制御するので、流量が絞られて流量が少なくなるにも拘わらず、小径側(=感温可動部の付近)の流速は確保されるようにでき、以って感温可動部が流通中の熱媒体の温度を素早く正確に捉えることができるようになる。従って、高精度で応答性の良いサーモバルブとすることができる。 With such a configuration, the vicinity of the temperature-sensitive movable part arranged near the central axis of the coil spring valve body is less likely to become stagnation, and it becomes easy to secure the flow rate of the heat medium around the temperature-sensitive movable part, Since the heat medium and the temperature-sensitive movable part can be easily contacted, the temperature of the circulating heat medium can be quickly and accurately captured. In particular, when the coil spring valve body is moved from the fully open state to the maximum throttle state, the taper coil spring constituting the coil spring valve body is crushed from the large diameter side so that the flow rate is controlled. Despite a decrease, the flow velocity on the small-diameter side (= near the temperature-sensitive movable part) can be secured, so that the temperature-sensitive movable part can quickly and accurately capture the temperature of the circulating heat medium. become able to. Therefore, it is possible to provide a thermo valve with high accuracy and good response.
 なお、本発明に係るサーモバルブは、前記感温可動部の進退移動部分を原位置へ復帰させるよう付勢するリターンスプリングを備えたことを特徴とすることができる。 The thermo valve according to the present invention may include a return spring that biases the advancing / retreating part of the temperature-sensitive movable part to return to the original position.
 また、本発明に係るサーモバルブにおいて、前記弁室を形成する前記第1ハウジング或いは第2ハウジングに、熱媒体回路の分岐或いは合流箇所が形成され、前記弁室内には、前記感温可動部の熱応動動作に連動して開閉動作する他のコイルスプリング弁体が備えられ、前記感温可動部により複数のコイルスプリング弁体を開閉駆動して、熱媒体の分岐の分配比或いは合流の混合比を制御可能に構成されたことを特徴とすることができる。 Further, in the thermo valve according to the present invention, a branch or junction of the heat medium circuit is formed in the first housing or the second housing forming the valve chamber, and the temperature-sensitive movable portion of the temperature chamber is formed in the valve chamber. Another coil spring valve body that opens and closes in conjunction with the thermal response operation is provided, and the temperature-sensitive movable part drives the opening and closing of the plurality of coil spring valve bodies, so that the distribution ratio of the heat medium branches or the mixing ratio of the confluence Can be controlled.
 これにより、本発明に係るサーモバルブは、熱媒体回路における流路の分岐(熱媒体の分配)、流路の合流(熱媒体の混合)、更には流路の切替の機能を併せ持つことができる。 Accordingly, the thermo valve according to the present invention can have a function of branching the flow path (distribution of the heat medium), joining the flow paths (mixing of the heat medium), and switching the flow path in the heat medium circuit. .
 また、1つの感温可動部によって複数のコイルスプリング弁体を制御することも可能となるので、低コストを維持したまま、より最適に、熱媒体の流れを、熱媒体の温度に応じて制御することができる。 In addition, since it is possible to control a plurality of coil spring valve bodies with a single temperature-sensitive movable part, the flow of the heat medium is more optimally controlled according to the temperature of the heat medium while maintaining low cost. can do.
 また、本発明に係るサーモバルブは、前記コイルスプリング弁体を通過する熱媒体の瞬間流量が閾値を越えた場合に、該コイルスプリング弁体が定流量弁として機能するように、前後差圧に応じて前記感温可動部の熱応動とは独立に伸縮動作することを特徴とすることができる。 Further, the thermo valve according to the present invention has a differential pressure across the front and rear so that when the instantaneous flow rate of the heat medium passing through the coil spring valve body exceeds a threshold value, the coil spring valve body functions as a constant flow valve. Accordingly, the thermosensitive movable part can be expanded and contracted independently of the thermal response.
 これにより、熱媒体の温度に応じて熱媒体の流れを制御するサーモバルブに、流量のハイカットという機能を追加部品なしに追加することができる。よって、低コストを維持したまま、より最適に、熱媒体の流れを、熱媒体の温度や差圧に応じて制御することができる。 This makes it possible to add a function of high-cut flow without additional parts to the thermo valve that controls the flow of the heat medium according to the temperature of the heat medium. Therefore, the flow of the heat medium can be more optimally controlled according to the temperature and the differential pressure of the heat medium while maintaining the low cost.
 本発明に係るサーモバルブは、低コストでありながら、高精度で応答性良く、熱媒体の流れを、熱媒体の温度や差圧に応じて制御することができるので、本発明に係るサーモバルブを利用することで、低コストでありながら、高精度で応答性良く、熱媒体の流れを、熱媒体の温度や差圧に応じて良好に制御することができる熱媒体循環システム(熱媒体回路)を提供することができる。 The thermo valve according to the present invention can control the flow of the heat medium according to the temperature and the differential pressure of the heat medium with high accuracy and responsiveness while being low in cost. The heat medium circulation system (heat medium circuit) that can control the flow of the heat medium according to the temperature and the differential pressure of the heat medium with high accuracy and responsiveness at low cost. ) Can be provided.
 なお、熱媒体を流通させて熱交換する端末装置の下流側に、本発明に係るサーモバルブを備えることで、該サーモバルブは、前記端末装置の熱需要や冷却需要の程度を測れるようになる。 In addition, by providing the thermovalve which concerns on this invention in the downstream of the terminal device which distribute | circulates a heat medium and heat-exchanges, this thermovalve can measure the grade of the heat demand of the said terminal device, and the cooling demand. .
 すなわち、例えば、エンジン冷却のための冷却系メイン回路の冷却液の温度は、暖機終了後はサーモスタット等により略一定の安定温度に制御されている。従って、そこから分岐された冷却液回路に供給される冷却液温度は予め予測可能である。それに対しその冷却液が流入し、該冷却液と熱交換する端末装置の下流側の冷却液温度は、熱交換の結果により変化する。端末装置がたくさんの熱を必要としていれば、それだけ該端末装置の下流側の冷却液温度は供給される冷却液温度よりも低い温度となる。逆に端末装置がたくさんの冷却(冷却液への熱の放出)を必要としていれば、それだけ該端末装置の下流側の冷却液温度は供給される冷却液温度よりも高い温度となる。このため、本発明に係るサーモバルブを端末装置の下流側に配設し、端末装置の下流側で冷却液の温度を感温するようにすれば、当該端末装置の熱需要・冷却需要の程度を測ることができるようになり、端末装置の熱需要・冷却需要の変動に応じた熱媒体の分配制御が可能となる。 That is, for example, the temperature of the coolant in the cooling system main circuit for cooling the engine is controlled to a substantially constant stable temperature by a thermostat or the like after the warm-up is completed. Therefore, the coolant temperature supplied to the coolant circuit branched therefrom can be predicted in advance. On the other hand, the coolant flows in, and the coolant temperature on the downstream side of the terminal device that exchanges heat with the coolant changes depending on the result of the heat exchange. If the terminal device needs a lot of heat, the temperature of the coolant on the downstream side of the terminal device becomes lower than the temperature of the supplied coolant. Conversely, if the terminal device needs a lot of cooling (release of heat to the coolant), the coolant temperature on the downstream side of the terminal device becomes higher than the supplied coolant temperature. Therefore, if the thermo valve according to the present invention is disposed downstream of the terminal device and the temperature of the coolant is sensed downstream of the terminal device, the degree of heat demand / cooling demand of the terminal device. Thus, it is possible to control distribution of the heat medium according to fluctuations in the heat demand and cooling demand of the terminal device.
 また、本発明に係るサーモバルブを、例えば、建物の暖房用の熱媒体回路に適用する場合も同様である。各熱媒体回路に備え付けられた端末装置(床暖房用のパネルや、室内暖房用ラジエータコア等)の下流側で熱媒体の温度を感温することができるようにすれば、当該端末装置の熱需要の程度を測ることができるようになり、端末装置の熱需要の変動に応じた熱媒体の分配制御が可能となる。 The same applies to the case where the thermo valve according to the present invention is applied to a heat medium circuit for heating a building, for example. If the temperature of the heat medium can be sensed on the downstream side of a terminal device (such as a floor heating panel or a room heating radiator core) provided in each heat medium circuit, the heat of the terminal device can be detected. The degree of demand can be measured, and the distribution control of the heat medium according to the fluctuation of the heat demand of the terminal device becomes possible.
 このように、本発明に係るサーモバルブを用いることで、各端末装置の熱需要・冷却需要が変動することを前提に、熱媒体の流量を、熱需要・冷却需要の少ない端末装置には少流量に、熱需要・冷却需要の多い端末装置にはなるべく多くの流量に、そして、流量ハイカット機能(=定流量弁機能)を備えることで必要以上の分配をすることなく、その時々の状態に最適なバランスで熱媒体を分配することができるシステムを、簡単かつ安価な構成で、複雑な制御系を必要とせずに実現することができる。 As described above, on the assumption that the heat demand and cooling demand of each terminal device fluctuate by using the thermo valve according to the present invention, the flow rate of the heat medium is small for the terminal device with little heat demand and cooling demand. The flow rate is as high as possible for terminal devices with high demand for heat and cooling, and with the flow high cut function (= constant flow valve function), it is possible to maintain the current state without distributing more than necessary. A system capable of distributing the heat medium in an optimal balance can be realized with a simple and inexpensive configuration and without requiring a complicated control system.
 本発明によれば、簡単、低コスト、軽量、コンパクトな構成でありながら、低圧力損失を達成しつつ、熱媒体の流れを最適に制御することができるサーモバルブ及び当該サーモバルブを備えた熱媒体回路を提供することができる。 According to the present invention, a thermo valve capable of optimally controlling the flow of a heat medium while achieving a low pressure loss while having a simple, low cost, light weight, and compact configuration, and a heat provided with the thermo valve. A media circuit can be provided.
 以下に、本発明に係るサーモバルブの実施例を、添付の図面に基づいて詳細に説明する。なお、以下で説明する実施例により、本発明が限定されるものではない。 Hereinafter, embodiments of a thermo valve according to the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the examples described below.
 本発明の実施例1に係るサーモバルブ1について、図1、図2に基づいて説明する。
 本実施例に係るサーモバルブ1は、内燃機関などを冷却するために循環している熱媒体を流通させて熱交換したり、ボイラー等の熱源で温められた熱媒体を流通させて熱交換する端末装置(自動車用ヒーターコアや建物の暖房用ラジエータコアなど)を含む熱媒体回路内に配設されることができる。
A thermo valve 1 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2.
The thermo valve 1 according to the present embodiment exchanges heat by circulating a heat medium circulating to cool an internal combustion engine or the like, or exchanges heat by circulating a heat medium warmed by a heat source such as a boiler. It can be disposed in a heat medium circuit including a terminal device (such as a heater core for an automobile or a radiator core for heating a building).
 図1に示すように、サーモバルブ1は、熱媒体の温度に応じて進退移動する感温可動部(熱応動部)2を含んで構成されると共に、当該感温可動部2を収容する第1ハウジン部10と第2ハウジング20を有して構成されている。
 感温可動部2は、熱媒体の温度を感知して膨張収縮するワックス等の熱膨張体を内封した温度感知部2B延いてはその延在部2C(これらが進退移動部分に相当)を備え、この温度感知部2Bから、当該温度感知部2B及びその延在部2C内の熱膨張体の熱膨張収縮に応じて図1(A)中上下方向に沿って伸縮するピストンロッド2Aが突出している。
As shown in FIG. 1, the thermovalve 1 includes a temperature-sensitive movable part (thermally responsive part) 2 that moves forward and backward according to the temperature of the heat medium, and includes a temperature-sensitive movable part 2 that houses the temperature-sensitive movable part 2. 1 housing part 10 and second housing 20 are provided.
The temperature-sensitive movable unit 2 includes a temperature sensing unit 2B that encloses a thermal expansion body such as wax that expands and contracts by sensing the temperature of the heat medium, and an extension portion 2C (which corresponds to a forward / backward moving portion). A piston rod 2A that extends and contracts in the vertical direction in FIG. 1 (A) in accordance with the thermal expansion and contraction of the thermal expansion body in the temperature detection unit 2B and its extension 2C protrudes from the temperature detection unit 2B. ing.
 第1ハウジング10は、図1(A)や図1(D)に示すように、熱媒体回路に接続される開口部11を有し、内壁から伸びるアーム12に略一体的に取り付けられ前記感温可動部2のピストンロッド2Aの先端部を支持する支持部13を備えて構成されている。
 第2ハウジング20は、図1(A)や図1(C)に示すように、熱媒体回路に接続される開口部21を有し、内壁から伸びるアーム22に略一体的に取り付けられ前記感温可動部2の温度感知部2Bの延在部2Cを摺動自在に支持しピストンロッド2Aの伸縮に応じて図1(A)中上下方向に沿って移動する当該温度感知部2Bの延在部2Cを移動自在にガイドするガイド部(案内部)23を備えて構成されている。
As shown in FIGS. 1A and 1D, the first housing 10 has an opening 11 connected to the heat medium circuit, and is attached to the arm 12 extending from the inner wall substantially integrally. A support portion 13 that supports the tip of the piston rod 2 </ b> A of the temperature movable portion 2 is provided.
As shown in FIGS. 1 (A) and 1 (C), the second housing 20 has an opening 21 connected to the heat medium circuit, and is attached substantially integrally to an arm 22 extending from the inner wall. The extension of the temperature sensing unit 2B that slidably supports the extension 2C of the temperature sensing unit 2B of the temperature movable unit 2 and moves along the vertical direction in FIG. 1A according to the expansion and contraction of the piston rod 2A. A guide part (guide part) 23 for movably guiding the part 2C is provided.
 ここで、図1(A)等に示すように、延在部2Cの外周には、スプリング線材(巻線)が略円錐台形状に巻回されたコイルスプリング弁体3が挿通されており、コイルスプリング弁体3は、感温可動部2の温度感知部2Bの比較的大径な部分と、比較的小径の延在部2Cと、の接続部の段差部分である段部2Dと、コイルスプリング弁体3の小径側と、が当接するように配設されている。
 一方、コイルスプリング弁体3の大径側は、第2ハウジング20に設けられる段差部分である段部24で支持されるように配設されている。
Here, as shown in FIG. 1A and the like, a coil spring valve body 3 in which a spring wire (winding) is wound in a substantially truncated cone shape is inserted in the outer periphery of the extending portion 2C. The coil spring valve body 3 includes a step portion 2D which is a step portion of a connecting portion between a relatively large diameter portion of the temperature sensing portion 2B of the temperature sensitive movable portion 2 and a relatively small diameter extending portion 2C, and a coil The small diameter side of the spring valve body 3 is disposed so as to abut.
On the other hand, the large diameter side of the coil spring valve body 3 is disposed so as to be supported by a step portion 24 which is a step portion provided in the second housing 20.
 従って、スプリング弁体3は、温度感知部2Bの熱膨張収縮に応じてピストンロッド2Aが伸長して、温度感知部2B及び延在部2Cが図1(A)中下方向に移動される際に、小径側の段部2Dと、大径側の第2ハウジング20の段部24と、により圧縮されるようになっている。
 なお、コイルスプリング弁体3は、圧縮されるに従いスプリング線材間の間隙が小さくなって閉弁状態へと移行し、かかる閉弁状態から伸びるに従いスプリング線材間の間隙が大きくなって開弁状態へと移行するように機能する。
Therefore, when the spring rod 3 is moved in the downward direction in FIG. 1 (A), the piston rod 2A is expanded in accordance with the thermal expansion / contraction of the temperature sensing unit 2B. Further, compression is performed by the step portion 2D on the small diameter side and the step portion 24 of the second housing 20 on the large diameter side.
As the coil spring valve body 3 is compressed, the gap between the spring wire rods becomes smaller and shifts to the valve closed state, and as the coil spring valve body 3 extends from the valve closed state, the gap between the spring wire rods becomes larger and the valve spring opened state. And function to migrate.
 ここにおいて、本実施例に係るサーモバルブ1は、例えば、以下のようにして組み立てられることができる。
 すなわち、例えば、第2ハウジング20にコイルスプリング弁体3を挿入して収容させ、コイルスプリング弁体3の大径側を第2ハウジング20の段部24に載置しておく。
 そして、感温可動部2の延在部2Cの図2中下方部を、コイルスプリング弁体3の小径側、更には第2ハウジング20のガイド部23に挿通させ、かかる状態で第1ハウジング10を蓋をするように持ち来し、第1ハウジング10の接合フランジ部14と、第2ハウジング20の接合ハウジング部25と、を接合することで、サーモバルブ1は組み立てられることができる。
 但し、組み立て方法及び手順は、上記に限らず、適宜変更可能である。
 なお、第1ハウジング10や第2ハウジング20は、例えば、樹脂成型品とすることができ、接着剤による接合、超音波溶着、レーザー溶着による接合などの適宜の接合方法を採用することができるものである。
Here, the thermo valve 1 according to the present embodiment can be assembled as follows, for example.
That is, for example, the coil spring valve body 3 is inserted and accommodated in the second housing 20, and the large diameter side of the coil spring valve body 3 is placed on the stepped portion 24 of the second housing 20.
Then, the lower part in FIG. 2 of the extending part 2C of the temperature-sensitive movable part 2 is inserted into the small diameter side of the coil spring valve body 3, and further to the guide part 23 of the second housing 20, and in this state, the first housing 10 is inserted. The thermovalve 1 can be assembled by bringing the joint flange 14 of the first housing 10 and the joint housing part 25 of the second housing 20 together.
However, the assembly method and procedure are not limited to those described above, and can be changed as appropriate.
The first housing 10 and the second housing 20 can be, for example, resin molded products, and can adopt an appropriate bonding method such as bonding by an adhesive, ultrasonic welding, or laser welding. It is.
 ところで、本実施例では、第1ハウジング10と第2ハウジング20とを別体で構成し、内装する各要素を組み込んだ後にこれらを接合するものとして説明したが、これに限定されるものではなく、例えば第1ハウジング10と第2ハウジング20とを射出成形等により一体に成形し、熱媒体が流通する開口部の一方を、内装する各要素が通過可能な大きさに形成しておいて、当該開口部を介して外部から内装する各要素を内部に挿入し、これらをスナップリング等により所定位置に支持固定することでサーモバルブ1を組み立てるようにすることも可能である。
 以上で説明したように、本実施例に係るコイルスプリング弁体3を利用したサーモバルブ1によれば、極めて簡単な構成とすることができる。従来のサーモバルブよりも部品点数が少なくて済み、組み立て工数も削減できるので、低コスト化を図ることができる。
By the way, in the present embodiment, the first housing 10 and the second housing 20 are configured as separate bodies and are described as being joined after incorporating the interior elements, but the present invention is not limited to this. For example, the first housing 10 and the second housing 20 are integrally formed by injection molding or the like, and one of the openings through which the heat medium flows is formed to a size that allows each of the interior elements to pass through. It is also possible to assemble the thermovalve 1 by inserting each element internally provided from the outside through the opening, and supporting and fixing them in a predetermined position by a snap ring or the like.
As explained above, according to the thermovalve 1 using the coil spring valve body 3 according to the present embodiment, a very simple configuration can be achieved. Since the number of parts is less than that of the conventional thermo valve and the number of assembly steps can be reduced, the cost can be reduced.
 ここで、図1(A)、図1(B)に基づいて、本実施例に係るサーモバルブ1の作動について説明する。
 図1(A)は、熱媒体が比較的低温である場合を示しており、かかる場合には、感温可動部2の温度感知部2B及びその延在部2C内の熱膨張体は収縮して、ピストンロッド2Aも収縮している。このため、感温可動部2の段部2Dと、第2ハウジング20の段部24と、の図1(A)中上下方向における距離は比較的大きくなっており、この間に配設されているスプリング弁体3も伸びた状態となっているため、略円錐台形状に巻回されているスプリング弁体3のスプリング線材の間隙も所定に広がった状態となっている。
 従って、例えば、第1ハウジング10の開口部11から熱媒体が流入しようとしている場合には、図1(A)に示すように、スプリング弁体3のスプリング線材の間隙を熱媒体が通過して、第2ハウジング20の開口部21から熱媒体が流出するように、サーモバルブ1は開弁作動することになる。
Here, based on FIG. 1 (A) and FIG. 1 (B), the operation | movement of the thermo valve 1 which concerns on a present Example is demonstrated.
FIG. 1A shows a case where the heat medium has a relatively low temperature. In such a case, the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C contract. The piston rod 2A is also contracted. For this reason, the distance between the step 2D of the temperature-sensitive movable unit 2 and the step 24 of the second housing 20 in the vertical direction in FIG. Since the spring valve body 3 is also in an extended state, the gap between the spring wire members of the spring valve body 3 wound in a substantially truncated cone shape is also expanded in a predetermined manner.
Therefore, for example, when the heat medium is about to flow in from the opening 11 of the first housing 10, the heat medium passes through the gap of the spring wire rod of the spring valve body 3 as shown in FIG. The thermo valve 1 is opened so that the heat medium flows out from the opening 21 of the second housing 20.
 図1(B)は、熱媒体が比較的高温である場合を示しており、かかる場合には、感温可動部2の温度感知部2B及びその延在部2C内の熱膨張体は熱膨張して、ピストンロッド2Aが伸長している。このため、感温可動部2の段部2Dと、第2ハウジング20の段部24と、の図1(B)中上下方向における距離は比較的小さくなっており、この間に配設されているスプリング弁体3は所定に圧縮された状態となっているため、略円錐台形状に巻回されているコイルスプリング弁体3のスプリング線材の間隙は縮小され、例えば隣接する線材同士が所定に密着した状態となっている。 FIG. 1 (B) shows a case where the heat medium has a relatively high temperature. In such a case, the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are thermally expanded. The piston rod 2A is extended. For this reason, the distance between the step 2D of the temperature-sensitive movable unit 2 and the step 24 of the second housing 20 in the vertical direction in FIG. 1B is relatively small, and is disposed therebetween. Since the spring valve body 3 is in a predetermined compressed state, the gap between the spring wire rods of the coil spring valve body 3 wound in a substantially truncated cone shape is reduced. For example, adjacent wire rods are in close contact with each other. It has become a state.
 従って、例えば、第1ハウジング10の開口部11から熱媒体が流入しようとしている場合でも、図1(B)に示すように、コイルスプリング弁体3のスプリング線材の間隙を熱媒体が通過することは制限されるため、第2ハウジング20の開口部21からの熱媒体の流出が制限されるように、サーモバルブ1は閉弁作動することになる。
 なお、かかる閉弁状態のときに、コイルスプリング弁体3のスプリング線材の間隙を熱媒体が所定量流れるように、例えば、スプリング線材の密着度合いや間隙を調整することができる。
Therefore, for example, even when the heat medium is about to flow in from the opening 11 of the first housing 10, the heat medium passes through the gap of the spring wire of the coil spring valve body 3 as shown in FIG. Therefore, the thermo valve 1 is closed so that the outflow of the heat medium from the opening 21 of the second housing 20 is restricted.
Note that, for example, the degree of contact and the gap of the spring wire can be adjusted so that a predetermined amount of the heat medium flows through the gap of the spring wire of the coil spring valve body 3 in the valve closed state.
 ところで、図1(B)の高温状態(閉弁状態)から図1(A)の低温状態(開弁状態)へ移行する場合、温度低下に伴い感温可動部2の温度感知部2B及びその延在部2C内に封入されている熱膨張体は収縮するがピストンロッド2Aを縮める方向に作用する力は十分でないため、外部から感温可動部2を図1(B)中上方へ押し上げる力が必要となる。このため、例えば、感温可動部2の段部2Dと第2ハウジング20との間でこれらを離間させる方向に作用する所謂リターンスプリングを配設することが想定されるが、本実施例では、かかるリターンスプリングとしての機能をコイルスプリング弁体3に持たせるようにしている。これにより、部品点数の削減による軽量化、コンパクト化、低コスト化などをより一層促進することができることとなる。 By the way, when shifting from the high temperature state (valve closed state) in FIG. 1 (B) to the low temperature state (valve open state) in FIG. 1 (A), the temperature sensing unit 2B of the temperature sensitive movable unit 2 and its Since the thermal expansion body enclosed in the extending part 2C contracts, but the force acting in the direction of contracting the piston rod 2A is not sufficient, the force for pushing up the temperature-sensitive movable part 2 from the outside upward in FIG. Is required. For this reason, for example, it is assumed that a so-called return spring that acts in the direction of separating the step portion 2D of the temperature-sensitive movable portion 2 and the second housing 20 is disposed, but in this embodiment, The coil spring valve body 3 is provided with a function as such a return spring. As a result, it is possible to further promote weight reduction, compactness, and cost reduction by reducing the number of parts.
 また、このように、コイルスプリング弁体3がリターンスプリングとしての機能を兼ねるようにすれば、単なるリターンスプリングを省略することができるため、単なるリターンスプリングの存在によって熱媒体(冷却液)の流れが阻害されるようなことがなく、渦流や流線の乱れなどによる流通抵抗(圧力損失)の増加を抑制することができる。
 なお、本実施例では、熱媒体の流れ方向を図1中上方から下方へ向かうものとして例示したが、これに限定されるものではなく、熱媒体の流れ方向を図1中下方から上方へ向かうようにサーモバルブ1を配設することも可能である。
In addition, if the coil spring valve body 3 also functions as a return spring in this way, a simple return spring can be omitted, so that the flow of the heat medium (coolant) is caused by the presence of the simple return spring. Without being obstructed, it is possible to suppress an increase in flow resistance (pressure loss) due to vortex flow or streamline turbulence.
In this embodiment, the flow direction of the heat medium is illustrated as going from the upper side to the lower side in FIG. 1, but the present invention is not limited to this, and the flow direction of the heat medium is directed from the lower side to the upper side in FIG. It is also possible to dispose the thermo valve 1 as described above.
 更に、例えば、特許文献1、特許文献2に示されるような従来のサーモバルブでは、円盤状の弁体を感温可動部の可動部へ固定・一体化するための部品が必要であり、その組み立てが必要である。特許文献1に示されるサーモバルブでは、「リテーナ」と呼ばれる部品も必要である。これに対し、本実施例に係るサーモバルブ1のようにコイルスプリング弁体3を用いた構成とすれば、これらを不要なものとすることができる。 Furthermore, for example, in the conventional thermovalve as shown in Patent Document 1 and Patent Document 2, a part for fixing and integrating the disc-like valve body to the movable part of the temperature-sensitive movable part is necessary. Assembly is required. In the thermovalve shown in Patent Document 1, a part called “retainer” is also necessary. On the other hand, if it is set as the structure using the coil spring valve body 3 like the thermo valve 1 which concerns on a present Example, these can be made unnecessary.
 本発明の実施例2に係るサーモバルブ100について、図3に基づいて説明する。
 本実施例2に係るサーモバルブ100も、実施例1と同様に、内燃機関などを冷却するために循環している熱媒体を流通させて熱交換したり、ボイラー等の熱源で温められた熱媒体を流通させて熱交換する端末装置(自動車用ヒーターコアや建物の暖房用ラジエータコアなど)を含む熱媒体回路内に配設されることができる。
 本実施例においては、図3(A)が低温状態(閉弁状態)を示し、図3(B)は高温状態(開弁状態)を示している。
A thermo valve 100 according to Embodiment 2 of the present invention will be described with reference to FIG.
Similarly to the first embodiment, the thermo valve 100 according to the second embodiment also performs heat exchange by circulating a heat medium circulating to cool the internal combustion engine or the like, or heat heated by a heat source such as a boiler. It can be disposed in a heat medium circuit including a terminal device (such as a heater core for an automobile or a radiator core for heating a building) that exchanges heat by circulating the medium.
In the present embodiment, FIG. 3A shows a low temperature state (valve closed state), and FIG. 3B shows a high temperature state (valve open state).
 図3(B)を用いてサーモバルブ100の構成について説明する。ここでは、実施例1と異なる部分について説明し、同様の部分については同一の符号を付してその詳細な説明は省略するものとする。
 本実施例では、第1ハウジング10、第2ハウジング20、感温可動部2の構造及び取り付け配置などについては実施例1と同様とすることができ、略円錐台形状に巻回されたコイルスプリング弁体103が、図3(B)に示すように、第1ハウジング10の段部15と、感温可動部2の温度感知部2Bのピストンロッド2A側の端部と、の間に、略円錐台形状の小径側が温度感知部2Bのピストンロッド2A側の端部に対面し大径側が段部15に対面するように配設されている。
A configuration of the thermo valve 100 will be described with reference to FIG. Here, a different part from Example 1 is demonstrated, the same code | symbol is attached | subjected about the same part, and the detailed description shall be abbreviate | omitted.
In the present embodiment, the structure and mounting arrangement of the first housing 10, the second housing 20, and the temperature-sensitive movable portion 2 can be the same as those in the first embodiment, and the coil spring wound in a substantially truncated cone shape. As shown in FIG. 3 (B), the valve body 103 is approximately between the step portion 15 of the first housing 10 and the end of the temperature sensing portion 2B of the temperature sensitive movable portion 2 on the piston rod 2A side. The small-diameter side of the truncated cone shape is disposed so as to face the end of the temperature sensing portion 2B on the piston rod 2A side, and the large-diameter side faces the step portion 15.
 また、実施例1においてコイルスプリング弁体3が配設されていた位置に、リターンスプリング130が配設されている。このリターンスプリング130は、図3(B)に示す高温状態から図3(A)に示す低温状態にサーモバルブ100が復帰する際(熱媒体が低温となって温度感知部2Bに封入されている熱膨張体が収縮した場合)に、温度感知部2Bを図3(B)中上方(ピストンロッド2Aの縮む方向)に押圧付勢してピストンロッド2Aを初期位置まで縮ませる(初期位置へ復帰させる)ように作用する。 Further, a return spring 130 is disposed at a position where the coil spring valve element 3 is disposed in the first embodiment. The return spring 130 is enclosed in the temperature sensing unit 2B when the thermo valve 100 returns from the high temperature state shown in FIG. 3B to the low temperature state shown in FIG. When the thermal expansion body contracts), the temperature sensing unit 2B is pressed and urged upward in FIG. 3B (the direction in which the piston rod 2A contracts) to contract the piston rod 2A to the initial position (return to the initial position). Act).
 実施例1のようにコイルスプリング弁体3がリターンスプリング(付勢手段)としての機能を兼ねることも可能であるが、本実施例では、コイルスプリング弁体103を構成するスプリング線材(バネ用鋼)のねじり応力限界等を考慮して、付勢手段を別個に備える構成として、コイルスプリング弁体103に要求される性能を達成可能とすると共に、耐久性の向上等を図るものである。 Although the coil spring valve body 3 can also function as a return spring (biasing means) as in the first embodiment, in this embodiment, the spring wire material constituting the coil spring valve body 103 (spring steel) In consideration of the torsional stress limit, etc.), it is possible to achieve the performance required for the coil spring valve body 103 and to improve the durability, etc., as a configuration comprising a separate urging means.
 ここにおいて、本実施例に係るサーモバルブ100は、例えば、以下のようにして組み立てられることができる。
 すなわち、例えば、第2ハウジング20にリターンスプリング130を挿入して収容させ、リターンスプリング130の大径側を第2ハウジング20の段部24に載置しておく。
 そして、感温可動部2の延在部2Cの図3中下方部を、リターンスプリング130の小径側、更には第2ハウジング20のガイド部23に挿通させ、かかる状態でコイルスプリング弁体103を感温可動部2の上に載置すると共に、第1ハウジング10を蓋をするように持ち来し、第1ハウジング10の接合フランジ部14と、第2ハウジング20の接合ハウジング部25と、を接合することで、サーモバルブ1は組み立てられることができる。
 但し、組み立て方法及び手順は、上記に限らず、適宜変更可能である。第1ハウジング10の接合フランジ部14と第2ハウジング20の接合ハウジング部25の接合方法等については、実施例1と同様とすることができる。
Here, the thermo valve 100 according to the present embodiment can be assembled as follows, for example.
That is, for example, the return spring 130 is inserted and accommodated in the second housing 20, and the large diameter side of the return spring 130 is placed on the step portion 24 of the second housing 20.
Then, the lower part in FIG. 3 of the extending part 2C of the temperature-sensitive movable part 2 is inserted into the small diameter side of the return spring 130 and further to the guide part 23 of the second housing 20, and the coil spring valve body 103 is moved in this state. While placing on the temperature-sensitive movable part 2, the first housing 10 is brought to be covered, and the joining flange part 14 of the first housing 10 and the joining housing part 25 of the second housing 20 are provided. By joining, the thermo valve 1 can be assembled.
However, the assembly method and procedure are not limited to those described above, and can be changed as appropriate. The method for joining the joining flange portion 14 of the first housing 10 and the joining housing portion 25 of the second housing 20 can be the same as in the first embodiment.
 ここで、図3(A)、(B)に基づいて、本実施例に係るサーモバルブ100の作動について説明する。
 図3(A)は、熱媒体が比較的低温である場合を示しており、かかる場合には、感温可動部2の温度感知部2B及びその延在部2C内の熱膨張体は収縮していると共に、温度感知部2Bはリターンスプリング130により図3(A)中上方に押圧付勢されているため、ピストンロッド2Aも収縮している。このため、第1ハウジング10の段部15と、感温可動部2の温度感知部2Bのピストンロッド2A側の端部と、の間に配設されているコイルスプリング弁体103は圧縮され、そのスプリング線材の間隙は所定に狭められて閉弁状態となっている。
 なお、かかる閉弁状態であっても、感温可動部2の温度感知部2B及びその延在部2Cが熱媒体の温度を感知することができるように、温度感知部2B及びその延在部2Cの方向への所定量の熱媒体の通過は許容されることができる。
Here, the operation of the thermo valve 100 according to the present embodiment will be described with reference to FIGS. 3 (A) and 3 (B).
FIG. 3A shows a case where the heat medium has a relatively low temperature. In such a case, the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C contract. At the same time, since the temperature sensing unit 2B is pressed and urged upward in FIG. 3A by the return spring 130, the piston rod 2A is also contracted. Therefore, the coil spring valve body 103 disposed between the step portion 15 of the first housing 10 and the end of the temperature sensing portion 2B of the temperature sensitive movable portion 2 on the piston rod 2A side is compressed, The gap between the spring wires is narrowed to a predetermined value and is in a closed state.
Even in such a valve-closed state, the temperature sensing unit 2B and its extension part so that the temperature sensing part 2B of the temperature sensitive movable part 2 and its extension part 2C can sense the temperature of the heat medium. The passage of a predetermined amount of heat medium in the direction of 2C can be allowed.
 図3(B)は、熱媒体が比較的高温である場合を示しており、かかる場合には、感温可動部2の温度感知部2B及びその延在部2C内の熱膨張体は熱膨張してリターンスプリング130を図3(B)中下方に圧縮し、ピストンロッド2Aが伸長する。このため、第1ハウジング10の段部15と、感温可動部2の温度感知部2Bのピストンロッド2A側の端部と、の間に配設されているコイルスプリング弁体103は伸長され、そのスプリング線材の間隙は所定に広がることとなって開弁状態となる。 FIG. 3B shows a case where the heat medium has a relatively high temperature. In such a case, the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are thermally expanded. Then, the return spring 130 is compressed downward in FIG. 3B, and the piston rod 2A extends. For this reason, the coil spring valve body 103 disposed between the step portion 15 of the first housing 10 and the end of the temperature sensing portion 2B of the temperature-sensitive movable portion 2 on the piston rod 2A side is extended, The gap between the spring wires expands to a predetermined value and opens.
 従って、例えば、第1ハウジング10の開口部11から熱媒体が流入しようとしている場合には、図3(B)に示すように、コイルスプリング弁体103のスプリング線材の間隙を熱媒体が通過して、第2ハウジング20の開口部21から熱媒体が流出するように、サーモバルブ100は開弁作動することになる。
 ところで、本実施例では、熱媒体の流れ方向を図3中上方から下方へ向かうものとして例示したが、これに限定されるものではなく、熱媒体の流れ方向を図3中下方から上方へ向かうようにサーモバルブ100を配設することも可能である。
Therefore, for example, when the heat medium is about to flow in from the opening 11 of the first housing 10, the heat medium passes through the gap of the spring wire rod of the coil spring valve body 103 as shown in FIG. Thus, the thermo valve 100 is opened so that the heat medium flows out from the opening 21 of the second housing 20.
By the way, in the present embodiment, the flow direction of the heat medium is illustrated as going from the upper side to the lower side in FIG. 3, but is not limited to this, and the flow direction of the heat medium is directed from the lower side to the upper side in FIG. It is also possible to arrange the thermo valve 100 as described above.
 本発明の実施例3に係るサーモバルブ200について、図4に基づいて説明する。
 本実施例に係るサーモバルブ200は三方弁であるが、実施例1と同様、内燃機関などを冷却するために循環している熱媒体を流通させて熱交換したり、ボイラー等の熱源で温められた熱媒体を流通させて熱交換する端末装置(自動車用ヒーターコアや建物の暖房用ラジエータコアなど)を含む熱媒体回路内に配設されることができる。
 本実施例においては、図4(A)が低温状態(閉弁状態)を示し、図4(B)は高温状態(開弁状態)を示している。
A thermo valve 200 according to Embodiment 3 of the present invention will be described with reference to FIG.
Although the thermo valve 200 according to the present embodiment is a three-way valve, as in the first embodiment, the heat medium circulating for cooling the internal combustion engine or the like is circulated to exchange heat, or is heated by a heat source such as a boiler. It can be arranged in a heat medium circuit including a terminal device (such as an automobile heater core or a building heating radiator core) that exchanges heat by circulating the produced heat medium.
In this embodiment, FIG. 4A shows a low temperature state (valve closed state), and FIG. 4B shows a high temperature state (valve open state).
 図4(B)を用いてサーモバルブ200の構成について説明する。ここでは、実施例1、2と異なる部分について説明し、同様の部分については同一の符号を付してその詳細な説明は省略するものとする。
 本実施例では、第2ハウジング220が2つの第1開口部221、第2開口部222を有しているが、第1ハウジング10、感温可動部2の構造及び取り付け配置などについては実施例1、実施例2と同様であり、また実施例2と同様に、略円錐台形状に巻回されたコイルスプリング弁体203が、図4(B)に示すように、第1ハウジング10の段部15と、感温可動部2の温度感知部2Bのピストンロッド2A側の端部と、の間に、略円錐台形状の小径側が温度感知部2Bのピストンロッド2A側の端部に対面し大径側が段部15に対面するように配設されている。
A configuration of the thermo valve 200 will be described with reference to FIG. Here, a different part from Example 1, 2 is demonstrated, the same code | symbol is attached | subjected about the same part, and the detailed description shall be abbreviate | omitted.
In the present embodiment, the second housing 220 has the two first openings 221 and the second opening 222. However, the structure and mounting arrangement of the first housing 10 and the temperature-sensitive movable section 2 are described in the embodiment. 1. Similar to the second embodiment, and similarly to the second embodiment, the coil spring valve body 203 wound in a substantially truncated cone shape has a step of the first housing 10 as shown in FIG. Between the portion 15 and the end of the temperature sensing portion 2B of the temperature sensitive movable portion 2 on the piston rod 2A side, the small frustoconical shape faces the end of the temperature sensing portion 2B on the piston rod 2A side. The large diameter side is disposed so as to face the step portion 15.
 更に、本実施例では、実施例1、2においてコイルスプリング弁体3、リターンスプリング130が配設されていた位置に、コイルスプリング弁体230が配設されている。なお、このコイルスプリング弁体230は、リターンスプリングとして機能し、図4(B)に示す状態から図4(A)に示す状態に復帰する際には、温度感知部2Bを図4(A)中上方(ピストンロッド2Aの縮む方向)に押圧付勢してピストンロッド2Aを縮ませるように作用することができるようになっている。 Furthermore, in this embodiment, the coil spring valve body 230 is disposed at the position where the coil spring valve body 3 and the return spring 130 are disposed in the first and second embodiments. The coil spring valve body 230 functions as a return spring, and when returning from the state shown in FIG. 4 (B) to the state shown in FIG. 4 (A), the temperature sensing unit 2B is moved to the state shown in FIG. 4 (A). The piston rod 2A can be contracted by being pressed and urged in the middle upward direction (the direction in which the piston rod 2A contracts).
 ここで、図4に基づいて、本実施例に係るサーモバルブ200の作動について説明する。
 図4(A)は、熱媒体が比較的低温である場合を示しており、かかる場合には、感温可動部2の温度感知部2B及びその延在部2C内の熱膨張体は収縮していると共に、温度感知部2Bはリターンスプリングとして機能するコイルスプリング弁体230により図4(A)中上方に押圧付勢されているため、ピストンロッド2Aは収縮している。このため、第1ハウジング10の段部15と、感温可動部2の温度感知部2Bのピストンロッド2A側の端部と、の間に配設されているコイルスプリング弁体203は圧縮され、そのスプリング線材の間隙は所定に狭められて閉弁状態となっている。一方、コイルスプリング弁体230は開弁状態となっている。
Here, based on FIG. 4, the operation | movement of the thermo valve 200 which concerns on a present Example is demonstrated.
FIG. 4A shows a case where the heat medium has a relatively low temperature. In such a case, the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C contract. At the same time, the temperature sensing unit 2B is pressed and urged upward in FIG. 4A by the coil spring valve body 230 functioning as a return spring, so that the piston rod 2A is contracted. For this reason, the coil spring valve body 203 disposed between the step portion 15 of the first housing 10 and the end of the temperature sensing portion 2B of the temperature-sensitive movable portion 2 on the piston rod 2A side is compressed, The gap between the spring wires is narrowed to a predetermined value and is in a closed state. On the other hand, the coil spring valve body 230 is open.
 従って、例えば、第1ハウジング10の開口部11から流入しようとする熱媒体と、第2ハウジング220の第1開口部221から流入しようとする熱媒体と、がある場合(合流の場合)、第1ハウジング10の開口部11からの流入は制限され、第2ハウジング220の第1開口部221から流入する熱媒体が第2ハウジング220の第2開口部222側へ主に流れるように、サーモバルブ200は作動することになる。
 或いは、例えば、第2ハウジング220の第2開口部222から熱媒体が流入して、第1ハウジング10の開口部11側と、第2ハウジング220の第1開口部221側と、に流れを分けるように配設されている場合(分流の場合)は、熱媒体は、第1ハウジング10の開口部11側への流出は制限され、第2ハウジング220の第1開口部221側へ主に流れるように、サーモバルブ200は作動することになる。
Therefore, for example, when there is a heat medium that is going to flow in from the opening 11 of the first housing 10 and a heat medium that is going to flow in from the first opening 221 of the second housing 220 (when confluence), Inflow from the opening 11 of the first housing 10 is restricted, and the heat medium flowing from the first opening 221 of the second housing 220 mainly flows to the second opening 222 side of the second housing 220. 200 will operate.
Alternatively, for example, the heat medium flows in from the second opening 222 of the second housing 220 and divides the flow into the opening 11 side of the first housing 10 and the first opening 221 side of the second housing 220. The heat medium is restricted from flowing out to the opening 11 side of the first housing 10 and flows mainly to the first opening 221 side of the second housing 220. Thus, the thermo valve 200 will operate.
 図4(B)は、熱媒体が比較的高温である場合を示しており、かかる場合には、感温可動部2の温度感知部2B及びその延在部2C内の熱膨張体は熱膨張してコイルスプリング弁体230を図4(B)中下方に圧縮し、ピストンロッド2Aが伸長する。このため、コイルスプリング弁体203は伸長され、そのスプリング線材の間隙は所定に広がることとなって開弁状態となる。一方、コイルスプリング弁体230は閉弁状態となる。 FIG. 4B shows a case where the heat medium has a relatively high temperature. In such a case, the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are thermally expanded. Then, the coil spring valve body 230 is compressed downward in FIG. 4B, and the piston rod 2A extends. For this reason, the coil spring valve body 203 is extended, and a gap between the spring wire rods is expanded to a predetermined value, thereby opening the valve. On the other hand, the coil spring valve body 230 is closed.
 従って、例えば、第1ハウジング10の開口部11から流入しようとする熱媒体と、第2ハウジング220の第1開口部221から流入しようとする熱媒体と、がある場合(合流の場合)、第2ハウジング220の第1開口部221からの流入は制限され、第1ハウジング10の開口部11から流入する熱媒体が第2ハウジング220の第2開口部222側へ主に流れるように、サーモバルブ200は作動することになる。
 或いは、例えば、第2ハウジング220の第2開口部222から熱媒体が流入して、第1ハウジング10の開口部11側と、第2ハウジング220の第1開口部221側と、に流れを分けるように配設されている場合(分流の場合)は、熱媒体は、第2ハウジング220の第1開口部221側への流出は制限され、第1ハウジング10の開口部11側へ主に流れるように、サーモバルブ200は作動することになる。
Therefore, for example, when there is a heat medium that is going to flow in from the opening 11 of the first housing 10 and a heat medium that is going to flow in from the first opening 221 of the second housing 220 (when confluence), The thermo-valve is such that the inflow from the first opening 221 of the second housing 220 is restricted and the heat medium flowing in from the opening 11 of the first housing 10 mainly flows to the second opening 222 side of the second housing 220. 200 will operate.
Alternatively, for example, the heat medium flows in from the second opening 222 of the second housing 220 and divides the flow into the opening 11 side of the first housing 10 and the first opening 221 side of the second housing 220. In the case of being arranged in this way (in the case of a diversion), the heat medium is restricted from flowing out to the first opening 221 side of the second housing 220 and flows mainly to the opening 11 side of the first housing 10. Thus, the thermo valve 200 will operate.
 すなわち、本実施例に係るサーモバルブ200は、熱媒体の温度状態に応じて、異なる通路(流路)から流入する熱媒体をサーモバルブ200の下流側で合流させる際にその配分を調節したり、合流させる熱媒体を切り替えたりすることができると共に、一の通路(流路)からサーモバルブ200に流入する熱媒体を二つの異なる通路(流路)に流出させる際に、その配分を調節したり、流出させる熱媒体を切り替えたりすることができる。 That is, the thermo valve 200 according to the present embodiment adjusts the distribution when the heat medium flowing in from different passages (flow paths) is merged on the downstream side of the thermo valve 200 according to the temperature state of the heat medium. The heat medium to be merged can be switched, and the distribution of the heat medium flowing into the thermo valve 200 from one passage (flow path) into two different passages (flow paths) is adjusted. Or the heat medium to be discharged can be switched.
 従って、本実施例に係るサーモバルブ200は、熱媒体の温度状態に応じて熱媒体を合流させる場合の混合比を制御可能な制御弁、或いは熱媒体の温度状態に応じて流路を切り換える流路切換弁、或いは熱媒体の温度状態に応じて熱媒体を分岐させる場合の分配比を制御可能な制御弁などとして利用することができる。
 また、本実施例に係るサーモバルブ200によれば、一つの感温可動部2により複数のコイルスプリング弁体を駆動制御することができるため、低コストを維持したまま、熱媒体の温度に応じて熱媒体の流れを制御可能である。
Therefore, the thermovalve 200 according to the present embodiment is a control valve that can control the mixing ratio when the heat medium is merged according to the temperature state of the heat medium, or a flow that switches the flow path according to the temperature state of the heat medium. It can be used as a path switching valve or a control valve that can control the distribution ratio when the heat medium is branched according to the temperature state of the heat medium.
In addition, according to the thermo valve 200 according to the present embodiment, since a plurality of coil spring valve bodies can be driven and controlled by one temperature-sensitive movable portion 2, it is possible to respond to the temperature of the heat medium while maintaining low cost. Thus, the flow of the heat medium can be controlled.
 本発明の実施例4に係るサーモバルブ300について、図5に基づいて説明する。
 本実施例4に係るサーモバルブ300も、実施例1と同様に、内燃機関などを冷却するために循環している熱媒体を流通させて熱交換したり、ボイラー等の熱源で温められた熱媒体を流通させて熱交換する端末装置(自動車用ヒーターコアや建物の暖房用ラジエータコアなど)を含む熱媒体回路内に配設されることができる。
 本実施例においては、図5(A)が低温低差圧状態(開弁状態)を示し、図5(B)が低温高差圧状態(定流量流調状態:サーモバルブを通過する熱媒体の流量がある一定の流量となるように、コイルスプリング弁体303の開度が調整され熱媒体の流量が調整制御されている状態)を示し、図5(C)は高温状態(閉弁状態)を示している。
 図5(A)を用いてサーモバルブ300の構成について説明する。ここでは、他の実施例と異なる部分について説明し、同様の部分については同一の符号を付してその詳細な説明は省略するものとする。
A thermo valve 300 according to Embodiment 4 of the present invention will be described with reference to FIG.
Similarly to the first embodiment, the thermo valve 300 according to the fourth embodiment also performs heat exchange by circulating a heat medium circulating to cool the internal combustion engine or the like, or heat heated by a heat source such as a boiler. It can be disposed in a heat medium circuit including a terminal device (such as a heater core for an automobile or a radiator core for heating a building) that exchanges heat by circulating the medium.
In this embodiment, FIG. 5A shows a low temperature low differential pressure state (valve open state), and FIG. 5B shows a low temperature high differential pressure state (constant flow rate state: heat medium passing through a thermo valve. 5 (C) shows a state in which the opening degree of the coil spring valve body 303 is adjusted so that the flow rate of the heat medium is adjusted and controlled so that the flow rate becomes constant, and FIG. ).
The configuration of the thermo valve 300 will be described with reference to FIG. Here, a different part from another Example is demonstrated, the same code | symbol is attached | subjected about the same part, and the detailed description shall be abbreviate | omitted.
 本実施例では、感温可動部2の温度感知部2Bの延在部2Cとの接合部付近に設けられている段部2Dの図5(A)中下側に、更に、小径の段部2Eが設けられている。
 また、第2ハウジング20の段部24に加え、その図5(A)中下側に、更に、小径の段部26が設けられている。
 そして、略円錐台形状に巻回されたコイルスプリング弁体303が、図5(A)に示すように、感温可動部2の段部2Eと、第2ハウジング20の段部26と、の間に、略円錐台形状の小径側が段部2Eに対面し大径側が段部26に対面するように配設されている。
 また、コイルスプリング弁体303の外周側に配設される略円錐台形状に巻回されたリターンスプリング330が、図5(A)に示すように、感温可動部2の段部2Dと、第2ハウジング20の段部24と、の間に、略円錐台形状の小径側が段部2Dに対面し大径側が段部24に対面するように配設されている。
In the present embodiment, a step portion having a smaller diameter is further provided on the lower side in FIG. 5A of the step portion 2D provided in the vicinity of the joint portion between the temperature sensing portion 2B and the extension portion 2C of the temperature sensitive movable portion 2. 2E is provided.
Further, in addition to the step portion 24 of the second housing 20, a step portion 26 with a small diameter is further provided on the lower side in FIG.
Then, the coil spring valve body 303 wound in a substantially truncated cone shape includes a step portion 2E of the temperature-sensitive movable portion 2 and a step portion 26 of the second housing 20 as shown in FIG. In the meantime, the substantially truncated cone-shaped small-diameter side is arranged so as to face the step portion 2E and the large-diameter side faces the step portion 26.
Further, as shown in FIG. 5 (A), a return spring 330 wound in a substantially truncated cone shape disposed on the outer peripheral side of the coil spring valve body 303 includes a step portion 2D of the temperature-sensitive movable portion 2, Between the step portion 24 of the second housing 20, a substantially truncated cone-shaped small-diameter side is disposed so as to face the step portion 2 </ b> D, and a large-diameter side faces the step portion 24.
 ここで、図5(A)、図5(B)、図5(C)に基づいて、本実施例に係るサーモバルブ300の作動について説明する。
 図5(A)は、熱媒体が比較的低温で、かつ熱媒体の供給圧力が低い場合(コイルスプリング弁体303の前後における熱媒体の差圧が小さい場合)を示しており、かかる場合には、感温可動部2の温度感知部2B及びその延在部2C内の熱膨張体は収縮していると共に、温度感知部2Bはリターンスプリング330により図5(A)中上方に押圧付勢されているため、ピストンロッド2Aも収縮している。このため、段部2Eと、段部26と、の間に配設されているコイルスプリング弁体303は伸長されており、そのスプリング線材の間隙は所定に広げられて開弁状態となっている。
 従って、例えば、第1ハウジング10の開口部11から熱媒体が流入しようとしている場合には、図5(A)に示すように、コイルスプリング弁体303のスプリング線材の間隙を熱媒体が通過して、第2ハウジング20の開口部21から熱媒体が流出するように、サーモバルブ300は開弁作動することになる。
Here, based on FIG. 5 (A), FIG. 5 (B), and FIG. 5 (C), the operation | movement of the thermo valve 300 which concerns on a present Example is demonstrated.
FIG. 5A shows the case where the heat medium is relatively low temperature and the supply pressure of the heat medium is low (when the differential pressure of the heat medium before and after the coil spring valve body 303 is small). The temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are contracted, and the temperature sensing part 2B is urged upward by a return spring 330 in FIG. Therefore, the piston rod 2A is also contracted. For this reason, the coil spring valve body 303 disposed between the step portion 2E and the step portion 26 is extended, and the gap of the spring wire is expanded to a predetermined value and is in the valve open state. .
Therefore, for example, when the heat medium is about to flow in from the opening 11 of the first housing 10, the heat medium passes through the gap of the spring wire rod of the coil spring valve body 303 as shown in FIG. Thus, the thermo valve 300 is opened so that the heat medium flows out from the opening 21 of the second housing 20.
 図5(B)は、熱媒体が比較的低温で、かつ熱媒体の供給圧力が高い場合(例えば瞬間的に熱媒体流量が増加したような場合で、コイルスプリング弁体303の前後における熱媒体の差圧が大きい場合))を示しており、かかる場合には、熱媒体の高い差圧(流れによる差圧)をスプリング線材が受けることで、図5(B)に示したように、感温可動部2の動作から独立して動作し、コイルスプリング弁体303は段部26方向へ圧縮され、コイルスプリング弁体303のスプリング線材の間隙は所定に狭められて定流量流調状態となる。 FIG. 5B shows a case where the heat medium is relatively low in temperature and the supply pressure of the heat medium is high (for example, when the heat medium flow rate is instantaneously increased, the heat medium before and after the coil spring valve body 303). In this case, the spring wire receives the high differential pressure of the heat medium (the differential pressure due to the flow), as shown in FIG. The coil spring valve body 303 is compressed in the direction of the step portion 26, and the gap between the spring wire rods of the coil spring valve body 303 is narrowed to a predetermined value to be in a constant flow rate state. .
 従って、例えば、第1ハウジング10の開口部11から熱媒体が流入しようとしている場合には、図5(B)に示すように、コイルスプリング弁体303のスプリング線材の間隙を熱媒体が通過することが所定に制限され、第2ハウジング20の開口部21からの熱媒体の流出が制限され、サーモバルブ300は低温状態であっても閉弁方向に作動され、定流量流調状態となる。すなわち、本実施例に係るサーモバルブ300によれば、定流量弁(ハイカットバルブ)として機能させることができる。 Therefore, for example, when the heat medium is about to flow in from the opening 11 of the first housing 10, as shown in FIG. 5B, the heat medium passes through the gap of the spring wire rod of the coil spring valve body 303. Is limited to a predetermined value, the flow of the heat medium from the opening 21 of the second housing 20 is restricted, and the thermo valve 300 is operated in the valve closing direction even in a low temperature state, and is in a constant flow rate control state. That is, the thermo valve 300 according to the present embodiment can function as a constant flow valve (high cut valve).
 図5(C)は、熱媒体が比較的高温である場合を示しており、かかる場合には、感温可動部2の温度感知部2B及びその延在部2C内の熱膨張体は熱膨張してリターンスプリング330を図5(C)中下方に圧縮し、ピストンロッド2Aが伸長する。このため、コイルスプリング弁体303のスプリング線材の間隙は所定に狭められて閉弁状態となる。 FIG. 5C shows a case where the heat medium has a relatively high temperature. In such a case, the temperature sensing part 2B of the temperature-sensitive movable part 2 and the thermal expansion body in the extension part 2C are thermally expanded. Then, the return spring 330 is compressed downward in FIG. 5C, and the piston rod 2A extends. For this reason, the gap | interval of the spring wire rod of the coil spring valve body 303 is narrowed by predetermined, and will be in a valve closing state.
 ところで、本実施例においては、コイルスプリング弁体303を通過する熱媒体の瞬間流量が閾値を越えた場合に、コイルスプリング弁体303を定流量弁(ハイカット弁)として機能するように、前後差圧に応じて前記感温可動部2の熱応動とは独立にコイルスプリング弁体303が伸縮動作可能に隣接するスプリング線材間の隙間等が設定されることができるが、その設定の仕方の一例としては、以下のようにすることができる。
 すなわち、コイルスプリング弁体303の前後差圧がある一定値を越えた場合には、コイルスプリング弁体303の各巻線間の隙間による通過孔面積Sと、コイルスプリング弁体3を境にした流体の差圧の平方根ΔP1/2と、の積がほぼ一定になるように設定することができるものである。
By the way, in the present embodiment, when the instantaneous flow rate of the heat medium passing through the coil spring valve body 303 exceeds the threshold value, the difference between the front and rear is set so that the coil spring valve body 303 functions as a constant flow valve (high cut valve). Depending on the pressure, a gap between adjacent spring wires can be set so that the coil spring valve body 303 can be expanded and contracted independently of the thermal response of the temperature-sensitive movable part 2. As, it can be as follows.
That is, when the differential pressure across the coil spring valve body 303 exceeds a certain value, the passage hole area S due to the gap between the windings of the coil spring valve body 303 and the fluid with the coil spring valve body 3 as a boundary. The product of the square root ΔP 1/2 of the differential pressure can be set to be substantially constant.
 ここにおいて、上述した各実施例に係るサーモバルブ1、100、200、300において、弁体としてコイルスプリング弁体3、103、203、303を用いることで、以下のような作用効果を奏することができる。 Here, in the thermo valves 1, 100, 200, and 300 according to the above-described embodiments, the following effects can be obtained by using the coil spring valve bodies 3, 103, 203, and 303 as the valve bodies. it can.
 例えば、特許文献1や特許文献2に開示されるような従来のサーモバルブは、主弁体が熱媒体の流れ方向に略対面して配設される円盤状の形態を採っているが、かかる構成では、流通する熱媒体の流れを遮るように弁体が配置されており、入口側開口部から出口側開口部に向けた熱媒体の流通に対して、主弁体が障害物となるように立ち塞がることになる。このため、開弁状態においても、熱媒体流れの主要なる部分(弁体に開口され温度感知用に温度感知部に熱媒体を供給するための微小な感温用リーク孔を介した流れは除く)は、円盤状の主弁体の外形部分を迂回して流通しなければならず、熱媒体の流通の抵抗(=圧力損失)が大きいといった実情がある。 For example, the conventional thermovalves disclosed in Patent Document 1 and Patent Document 2 adopt a disk-like form in which the main valve body is disposed substantially facing the flow direction of the heat medium. In the configuration, the valve body is arranged so as to block the flow of the circulating heat medium, and the main valve body becomes an obstacle to the flow of the heat medium from the inlet side opening to the outlet side opening. Will be blocked. Therefore, even in the valve open state, the main part of the heat medium flow (excluding the flow through the minute temperature-sensitive leak hole that is opened in the valve body and supplies the heat medium to the temperature sensing part for temperature sensing is excluded. ) Must circulate around the outer shape of the disc-shaped main valve body, and there is a fact that the resistance (= pressure loss) of the circulation of the heat medium is large.
 しかしながら、上述した各実施例に係るコイルスプリング弁体3、103、203、303を採用した場合には、熱媒体はスプリング線材間をスムーズに直線的に流れることができるため、熱媒体の流通の抵抗(=圧力損失)を低減する効果を奏することができる。
 かかる効果は、特許文献1や特許文献2に開示されるようなサーモバルブの入口側開口部から主弁体を経て出口側開口部までを直線的に配置する場合にもっとも効果の度合いが大きいが、入口側開口部の軸線と出口側開口部の軸線が屈曲していて、直線的な関係でなくても、同様の効果を得ることができる。
However, when the coil spring valve bodies 3, 103, 203, and 303 according to the above-described embodiments are employed, the heat medium can flow smoothly and linearly between the spring wires. An effect of reducing resistance (= pressure loss) can be obtained.
Such an effect is most effective when the thermo valve as disclosed in Patent Document 1 and Patent Document 2 is linearly arranged from the inlet side opening to the outlet side opening through the main valve body. The same effect can be obtained even if the axis of the inlet opening and the axis of the outlet opening are bent and not in a linear relationship.
 また、上述した各実施例に係るコイルスプリング弁体3、103、203、303は、略円筒状にスプリング線材を巻回して構成することもできるが、上記各実施例で説明したように、所定に圧縮され潰れた状態において、スプリング線材が渦巻状に密着するように、略円錐台形状にスプリング線材を巻回して構成することができる。このようにすると、コイルスプリング弁体が開弁状態において、スプリング線材を通過する前後における熱媒体の流れ方向の変化が小さく熱媒体の流れを円滑なものとすることができると共に、閉弁状態においてコンパクト化を促進することができる。
 ところで、スプリング線材の断面形状は、耐久性、熱媒体の通過抵抗等の要求に応じて、円形状、楕円形状、三角形状、矩形状、楔形状、台形状その他の多角形状など適宜の形状とすることができる。
In addition, the coil spring valve bodies 3, 103, 203, and 303 according to the above-described embodiments can be configured by winding a spring wire in a substantially cylindrical shape. In a state where the spring wire is compressed and crushed, the spring wire can be wound in a substantially truncated cone shape so that the spring wire is in close contact with the spiral shape. In this way, when the coil spring valve body is in the valve open state, the change in the flow direction of the heat medium before and after passing through the spring wire is small, and the flow of the heat medium can be made smooth and in the valve closed state. Compacting can be promoted.
By the way, the cross-sectional shape of the spring wire has an appropriate shape such as a circular shape, an elliptical shape, a triangular shape, a rectangular shape, a wedge shape, a trapezoidal shape, and other polygonal shapes according to requirements such as durability and heat medium passage resistance. can do.
 なお、熱媒体の流れの主要なる部分が円盤状の主弁体の外形部分(外形の外側)を迂回して流通しなければならない特許文献1や特許文献2に開示される従来のサーモバルブは、主弁体の外側に熱媒体の通過スペースを確保しなければならず大型化するが、上記各実施例に係るコイルスプリング弁体を用いたサーモバルブによれば、よりコンパクトな設計を可能とする。 The conventional thermovalves disclosed in Patent Document 1 and Patent Document 2 in which the main part of the flow of the heat medium must flow around the outer shape (outside of the outer shape) of the disk-shaped main valve body are as follows. The heat medium passage space must be secured outside the main valve body, but the size is increased. However, the thermovalve using the coil spring valve body according to each of the above embodiments enables a more compact design. To do.
 よって、上記各実施例に係るコイルスプリング弁体を用いたサーモバルブ1、100、200、300は、コンパクトな設計を可能とするうえに、低圧力損失なサーモバルブとすることができる。このため、幅広く採用の可能性を広げることができ、また、低圧力損失性能は熱媒体回路の配管流路の小径化や熱媒体送出ポンプの小容量化等を通じて装置全体の軽量化・小型化、延いてはコスト低減に貢献できる。 Therefore, the thermo valves 1, 100, 200, and 300 using the coil spring valve bodies according to the above embodiments can be designed to be compact and can be a low pressure loss thermo valve. For this reason, it is possible to broaden the possibility of widespread adoption, and the low pressure loss performance reduces the overall equipment weight and size by reducing the diameter of the piping path of the heat medium circuit and the capacity of the heat medium delivery pump. As a result, it can contribute to cost reduction.
 さらに、上記各実施例のように、コイルスプリング弁体を、圧縮され潰された状態において、スプリング線材が渦巻状に密着するように略円錐台形状にスプリング線材を巻回して構成すると、隣接するスプリング線材の間隙は小径側から大径側まで存在するため、コイルスプリング弁体の中心付近に配置された感温可動部2(温度感知部2B、延在部2C)周辺にも熱媒体は流入することになるから、従来のような円盤状の弁体を用いた場合のように円盤状の弁体の外形部分を熱媒体が迂回するようにして通過するものに比べて、温度感知部2B周辺の熱媒体が澱むことなく温度感知部2B周辺の熱媒体の流速を確保することができるため、流通中の熱媒体が温度感知部2Bと良好に接触することができ、以って温度感知部2Bでは流通中の熱媒体の温度を素早く正確に捉えることができる。
 なお、かかる作用効果は、コイルスプリング弁体を略円錐台形状にスプリング線材を巻回した場合に限らず、略円筒状に巻回して形成した場合においても奏されるものであり、従来のような円盤状の弁体を用いたものに比べて、温度感知部2B周辺の熱媒体が澱むことなく温度感知部2B周辺の熱媒体の流速を確保することができ、以って流通中の熱媒体が温度感知部2Bと良好に接触することができ、延いては温度感知部2Bでは流通中の熱媒体の温度を素早く正確に捉えることができるものである。
Further, when the coil spring valve body is configured by winding the spring wire in a substantially truncated cone shape so that the spring wire closely adheres in a spiral shape in the compressed and crushed state as in each of the above-described embodiments, it is adjacent to the coil spring valve body. Since the gap of the spring wire exists from the small-diameter side to the large-diameter side, the heat medium also flows around the temperature-sensitive movable part 2 (temperature sensing part 2B, extension part 2C) arranged near the center of the coil spring valve body. Therefore, as compared with the case where the heat medium passes around the outer shape of the disc-shaped valve body as in the case of using a conventional disc-shaped valve body, the temperature sensing unit 2B. Since the flow rate of the heat medium around the temperature sensing unit 2B can be secured without the surrounding heat medium stagnating, the circulating heat medium can make good contact with the temperature sensing unit 2B, and thus temperature sensing. Part 2B is in circulation It is possible to capture the temperature of the medium quickly and accurately.
Such an effect is not limited to the case where the coil spring valve body is wound in a substantially truncated cone shape, but also in the case where it is formed by being wound in a substantially cylindrical shape. Compared with the one using a disc-shaped valve body, the heat medium around the temperature sensing unit 2B can be secured without the stagnation of the heat medium around the temperature sensing unit 2B, so that The medium can make good contact with the temperature sensing unit 2B, and the temperature sensing unit 2B can quickly and accurately capture the temperature of the circulating heat medium.
 特に、コイルスプリング弁体が全開状態から最大絞り状態へ向かう時、コイルスプリング弁体を構成する略円錐台形状に巻回されたスプリング線材は大径側から圧縮されて潰れて行くことで、通過する熱媒体の流量を制御するので、熱媒体の流量が絞られて少なくなるにも拘わらず、小径側(=温度感知部2Bの付近)の流速は確保されることになるため、熱媒体の流量が絞られた状態においても、温度感知部2Bが流通中の熱媒体の温度を素早く正確に捉えることができることになる。
 すなわち、上記各実施例に係るコイルスプリング弁体を用いたサーモバルブ1、100、200、300によれば、十分な熱媒体の流量がある場合は勿論、低流量領域においても高精度で応答性の良いサーモバルブを実現することができる。
In particular, when the coil spring valve body is moved from the fully open state to the maximum throttle state, the spring wire wound in a substantially truncated cone shape constituting the coil spring valve body is compressed and crushed from the large-diameter side, and passes. Since the flow rate of the heating medium is controlled, the flow velocity on the small diameter side (= in the vicinity of the temperature sensing unit 2B) is secured even though the flow rate of the heating medium is reduced and reduced. Even in a state where the flow rate is reduced, the temperature sensing unit 2B can quickly and accurately capture the temperature of the circulating heat medium.
That is, according to the thermo valves 1, 100, 200, and 300 using the coil spring valve bodies according to the above-described embodiments, not only when there is a sufficient heat medium flow rate, but also in a low flow rate region with high accuracy and responsiveness. A good thermo valve can be realized.
 上記各実施例に係るサーモバルブ1、100、200、300は、低コストでありながら、高精度で応答性良く、熱媒体の流量を、熱媒体の温度や差圧に応じて制御することができるので、以下のような熱媒体循環システムが提案できる。 The thermo valves 1, 100, 200, and 300 according to each of the above embodiments can control the flow rate of the heat medium according to the temperature and the differential pressure of the heat medium while being low cost and with high accuracy and responsiveness. Therefore, the following heat medium circulation system can be proposed.
 上記各実施例に係るサーモバルブ1、100、200、300の何れかを、1つ又は複数の熱媒体回路内の端末装置(自動車用ヒーターコアや建物の暖房用ラジエータコアなど)の下流側に備え、当該箇所の熱媒体の温度を感温可動部2に感知させることで、端末装置の熱需要・冷却需要の変動に応じた熱媒体の分配制御が可能な熱媒体循環システムを提供することができる。
 すなわち、端末装置の下流側に上記各実施例に係るサーモバルブを備えることで、該サーモバルブは、端末装置の熱需要や冷却需要の程度を測ることができるようになる。
Any one of the thermo valves 1, 100, 200, 300 according to each of the above embodiments is provided downstream of a terminal device (such as a heater core for an automobile or a radiator core for heating a building) in one or more heat medium circuits. And providing a heat medium circulation system capable of controlling distribution of the heat medium according to fluctuations in heat demand and cooling demand of the terminal device by causing the temperature-sensitive movable unit 2 to sense the temperature of the heat medium at the location. Can do.
That is, by providing the thermo valve according to each of the above embodiments on the downstream side of the terminal device, the thermo valve can measure the degree of heat demand and cooling demand of the terminal device.
 例えば、エンジン冷却のための冷却系メイン回路の冷却液(熱媒体)の温度は、暖機終了後は、サーモスタットにより略一定の安定温度に制御されている。従って、そこから分岐された冷却液回路に供給される冷却液温度は予め予測可能である。それに対しその冷却液が流入し、該冷却液と熱交換する端末装置の下流側の冷却液温度は、熱交換の結果により変化する。端末装置がたくさんの熱を必要としていれば、それだけ該端末装置の下流側の冷却液温度は供給される冷却液温度よりも低い温度となる。逆に端末装置がたくさんの冷却(冷却液への熱の放出)を必要としていれば、それだけ該端末装置の下流側の冷却液温度は供給される冷却液温度よりも高い温度となる。
 このため、端末装置の下流側で冷却液の温度を感温するようにすれば、当該端末装置の熱需要・冷却需要の程度を測ることができるようになり、以って上記各実施例に係るサーモバルブを端末装置の下流側に配設することで端末装置の熱需要・冷却需要の変動に応じた熱媒体の分配制御が可能となる。
For example, the temperature of the coolant (heat medium) in the cooling system main circuit for engine cooling is controlled to a substantially constant stable temperature by the thermostat after the warm-up is completed. Therefore, the coolant temperature supplied to the coolant circuit branched therefrom can be predicted in advance. On the other hand, the coolant flows in, and the coolant temperature on the downstream side of the terminal device that exchanges heat with the coolant changes depending on the result of the heat exchange. If the terminal device needs a lot of heat, the temperature of the coolant on the downstream side of the terminal device becomes lower than the temperature of the supplied coolant. Conversely, if the terminal device needs a lot of cooling (release of heat to the coolant), the coolant temperature on the downstream side of the terminal device becomes higher than the supplied coolant temperature.
For this reason, if the temperature of the coolant is sensed on the downstream side of the terminal device, the degree of heat demand / cooling demand of the terminal device can be measured. By disposing such a thermo valve on the downstream side of the terminal device, it is possible to control the distribution of the heat medium according to fluctuations in the heat demand and cooling demand of the terminal device.
 また、上記各実施例に係るサーモバルブを、例えば、建物の暖房用の熱媒体回路に適用した場合も同様である。各熱媒体回路に備え付けられた端末装置(床暖房用のパネルや、室内暖房用ラジエータコア等)の下流側で熱媒体の温度を感温するようにすれば、当該端末装置の熱需要の程度を測ることができるようになり、以って上記各実施例に係るサーモバルブを端末装置の下流側に配設することで端末装置の熱需要の変動に応じた熱媒体の分配制御が可能となる。 The same applies to the case where the thermo valve according to each of the above embodiments is applied to, for example, a heat medium circuit for heating a building. If the temperature of the heat medium is sensed downstream of a terminal device (such as a floor heating panel or a room heating radiator core) provided in each heat medium circuit, the degree of heat demand of the terminal device Therefore, by disposing the thermo valve according to each of the above embodiments on the downstream side of the terminal device, it is possible to control the distribution of the heat medium according to the fluctuation of the heat demand of the terminal device. Become.
 このように、上記各実施例に係るサーモバルブを用いることで、各端末装置の熱需要・冷却需要が変動することを前提に、熱媒体の流量を、熱需要・冷却需要の少ない端末装置には少流量に、熱需要・冷却需要の多い端末装置にはなるべく多くの流量に、そして、流量ハイカット機能(=定流量弁機能)を備えることで必要以上の分配をすることなく、その時々の状態に最適なバランスで熱媒体を分配するシステム(熱媒体回路)を、簡単かつ安価な構成で、複雑な制御系を必要とせずに実現することができる。 As described above, by using the thermovalve according to each of the above embodiments, the flow rate of the heat medium is changed to a terminal device with less heat demand / cooling demand on the assumption that the heat demand / cooling demand of each terminal device fluctuates. The terminal device with high heat demand / cooling demand has as much flow as possible, and the flow high cut function (= constant flow valve function) is provided at any time without distributing more than necessary. A system (heat medium circuit) that distributes the heat medium in an optimal balance according to the state can be realized with a simple and inexpensive configuration without requiring a complicated control system.
 なお、本発明は上述した実施例で説明した構造に限定されるものではなく、サーモバルブ(熱応動弁)を構成する各部の形状、構造等を適宜変形、変更し得るものである。 In addition, this invention is not limited to the structure demonstrated in the Example mentioned above, The shape, structure, etc. of each part which comprises a thermovalve (thermally responsive valve) can be changed suitably and can be changed.
本発明の実施例1に係るサーモバルブの構成を示す図であり、(A)は低温状態(開弁状態)、(B)は高温状態(閉弁状態)を示す断面図であり、(C)は(A)中のA矢視図、(D)は(A)中のB矢視図である。It is a figure which shows the structure of the thermovalve which concerns on Example 1 of this invention, (A) is a low-temperature state (valve-opening state), (B) is sectional drawing which shows a high-temperature state (valve-closing state), (C ) Is a view taken in the direction of arrow A in (A), and (D) is a view taken in the direction of arrow B in (A). 図1のサーモバルブの組み立て図である。FIG. 2 is an assembly diagram of the thermo valve of FIG. 1. 本発明の実施例2に係るサーモバルブの構成を示す図であり、(A)は低温状態(閉弁状態)、(B)は高温状態(開弁状態)を示す断面図である。It is a figure which shows the structure of the thermovalve which concerns on Example 2 of this invention, (A) is a low-temperature state (valve closing state), (B) is sectional drawing which shows a high temperature state (valve-opening state). 本発明の実施例3に係るサーモバルブの構成を示す図であり、(A)は低温状態、(B)は高温状態を示す断面図である。It is a figure which shows the structure of the thermovalve which concerns on Example 3 of this invention, (A) is a low temperature state, (B) is sectional drawing which shows a high temperature state. 本発明の実施例4に係るサーモバルブの構成を示す図であり、(A)は低温低差圧状態、(B)は低温高差圧状態、(C)は高温状態を示す断面図である。It is a figure which shows the structure of the thermovalve which concerns on Example 4 of this invention, (A) is a low temperature low differential pressure state, (B) is a low temperature high differential pressure state, (C) is sectional drawing which shows a high temperature state. .
符号の説明Explanation of symbols
1、100、200、300      サーモバルブ
2                  感温可動部
2A                 ピストンロッド
2B                 温度感知部
2C                 延在部
3、103、203、230、303  コイルスプリング弁体
10                 第1ハウジング
11                 開口部
12                 アーム
13                 支持部
20、220             第2ハウジング
21                 開口部
22                 アーム
23                 ガイド部
130、330            リターンスプリング
221                第1開口部 
222                第2開口部
DESCRIPTION OF SYMBOLS 1,100,200,300 Thermo valve 2 Temperature sensing movable part 2A Piston rod 2B Temperature sensing part 2C Extension part 3, 103, 203, 230, 303 Coil spring valve body 10 1st housing 11 Opening part 12 Arm 13 Support part 20, 220 Second housing 21 Opening portion 22 Arm 23 Guide portion 130, 330 Return spring 221 First opening portion
222 Second opening

Claims (10)

  1.  熱媒体が流れる熱媒体回路に介装されると共に、
     熱媒体の流路に沿った方向に動作される弁体と、熱媒体の温度に応じた熱応動動作を利用して前記弁体を熱媒体の流路に沿った方向に開閉駆動する感温可動部と、を備え、
     熱媒体の温度に応じて熱媒体の流れを制御するサーモバルブであって、
     前記弁体が、前記感温可動部の熱応動動作に連動して伸縮することによる巻線部の間隙変化により熱媒体の流路の通過断面積が増減されて開閉動作されるコイルスプリング弁体により構成されたことを特徴とするサーモバルブ。
    While being interposed in the heat medium circuit through which the heat medium flows,
    A valve body that is operated in a direction along the flow path of the heat medium, and a temperature sensing device that opens and closes the valve body in a direction along the flow path of the heat medium by using a heat-responsive operation according to the temperature of the heat medium. A movable part,
    A thermo valve that controls the flow of the heat medium according to the temperature of the heat medium,
    A coil spring valve body that is opened and closed by increasing or decreasing the passage cross-sectional area of the flow path of the heat medium due to a change in the gap of the winding part due to the expansion and contraction of the valve body in conjunction with the thermal response operation of the temperature-sensitive movable part The thermo valve characterized by comprising.
  2.  熱媒体が流れる熱媒体回路に介装され、熱媒体の温度に応じて熱媒体の流れを制御するサーモバルブであって、
     熱媒体の温度に応じた熱応動動作を利用して、弁体を開閉駆動する感温可動部と、
     熱媒体が流れる流路を有すると共に、当該流路の内側に突き出し前記感温可動部の一部を支持固定する支持部を有する第1ハウジングと、
     熱媒体が流れる流路を有すると共に、当該流路の内側に突き出し前記感温可動部の進退移動部分を支持案内する案内部を有する第2ハウジングと、
     前記支持部と前記案内部の中間位置に形成される弁室に配置され、前記感温可動部の熱応動動作に連動して伸縮されることによる巻線部の間隙変化により熱媒体の流路の通過断面積が増減されて開閉動作されるコイルスプリング弁体と、
     を含んで構成されたことを特徴とするサーモバルブ。
    A thermo valve that is interposed in a heat medium circuit through which the heat medium flows and controls the flow of the heat medium according to the temperature of the heat medium,
    A temperature-sensitive movable part that opens and closes the valve body using a heat-responsive operation according to the temperature of the heat medium;
    A first housing having a flow path through which the heat medium flows, and a support portion protruding inside the flow path to support and fix a part of the temperature-sensitive movable portion;
    A second housing having a flow path through which the heat medium flows, and having a guide portion that protrudes inside the flow path and supports and guides the advancing and retreating portion of the temperature-sensitive movable portion;
    The flow path of the heat medium is arranged in a valve chamber formed at an intermediate position between the support portion and the guide portion, and the heat medium flow path is changed by a gap change of the winding portion by being expanded and contracted in conjunction with the heat-responsive operation of the temperature-sensitive movable portion. A coil spring valve body that is opened and closed by increasing or decreasing the cross-sectional area of
    A thermo-valve characterized by comprising.
  3.  前記第1ハウジングが、熱媒体が流れる流路と、当該流路の内壁から伸びるアームと、当該アームに支持され前記感温可動部の一部を支持固定する支持部と、が一体成形により形成され、
     前記第2ハウジングが、熱媒体が流れる流路と、当該流路の内壁から伸びるアームと、当該アームに支持され前記感温可動部の進退移動部材を支持案内する支持案内部と、が一体成形により形成されることを特徴とする請求項2に記載のサーモバルブ。
    The first housing is formed by integral molding of a flow path through which the heat medium flows, an arm extending from the inner wall of the flow path, and a support portion that is supported by the arm and supports and fixes a part of the temperature-sensitive movable portion. And
    The second housing is integrally formed with a flow path through which the heat medium flows, an arm extending from the inner wall of the flow path, and a support guide portion that is supported by the arm and supports and guides the advancing / retreating member of the temperature-sensitive movable portion. The thermo valve according to claim 2, wherein the thermo valve is formed by:
  4.  請求項1~請求項3の何れか1つに記載のサーモバルブであって、
     前記コイルスプリング弁体が、所定に圧縮され潰れた状態において、スプリング線材が渦巻状に密着するように、略円錐台形状にスプリング線材を巻回して構成されたことを特徴とするサーモバルブ。
    A thermo valve according to any one of claims 1 to 3,
    A thermo-valve, wherein the coil spring valve body is configured by winding a spring wire in a substantially truncated cone shape so that the spring wire closely adheres in a spiral shape in a state where the coil spring valve body is compressed and crushed to a predetermined degree.
  5.  請求項1~請求項4の何れか1つに記載のサーモバルブであって、
     前記感温可動部の進退移動部分を原位置へ復帰させるよう付勢するリターンスプリングを備えたことを特徴とするサーモバルブ。
    A thermo valve according to any one of claims 1 to 4,
    A thermo-valve comprising a return spring that urges the advancing / retreating part of the temperature-sensitive movable part to return to the original position.
  6.  請求項1~請求項5の何れか1つに記載のサーモバルブであって、
     前記弁室を形成する前記第1ハウジング或いは第2ハウジングに、熱媒体回路の分岐或いは合流箇所が形成され、
     前記弁室内には、前記感温可動部の熱応動動作に連動して開閉動作する他のコイルスプリング弁体が備えられ、
     前記感温可動部により複数のコイルスプリング弁体を開閉駆動して、熱媒体の分岐の分配比或いは合流の混合比を制御可能に構成されたことを特徴とするサーモバルブ。
    A thermo valve according to any one of claims 1 to 5,
    In the first housing or the second housing forming the valve chamber, a branch or junction of the heat medium circuit is formed,
    In the valve chamber, another coil spring valve body that opens and closes in conjunction with the thermally responsive operation of the temperature-sensitive movable part is provided,
    A thermo-valve characterized in that a plurality of coil spring valve bodies are driven to open and close by the temperature-sensitive movable part, and a distribution ratio or a mixing ratio of the heat medium can be controlled.
  7.  請求項1~請求項6の何れか1つに記載のサーモバルブであって、
     前記コイルスプリング弁体を通過する熱媒体の瞬間流量が閾値を越えた場合に、該コイルスプリング弁体が定流量弁として機能するように、前後差圧に応じて前記感温可動部の熱応動とは独立に伸縮動作することを特徴とするサーモバルブ。
    A thermo valve according to any one of claims 1 to 6,
    When the instantaneous flow rate of the heat medium that passes through the coil spring valve body exceeds a threshold value, the thermal response of the temperature-sensitive movable part according to the front-rear differential pressure so that the coil spring valve body functions as a constant flow valve. A thermo-valve characterized in that it can extend and contract independently.
  8.  請求項1~請求項7の何れか1つに記載のサーモバルブを備えたことを特徴とする熱媒体回路。 A heat medium circuit comprising the thermo valve according to any one of claims 1 to 7.
  9.  請求項8に記載の熱媒体回路であって、前記サーモバルブが、熱媒体を流通させて熱交換する端末装置の下流側に配設されたことを特徴とする熱媒体回路。 9. The heat medium circuit according to claim 8, wherein the thermo valve is disposed downstream of a terminal device that exchanges heat by circulating the heat medium.
  10.  請求項8又は請求項9に記載の熱媒体回路は、内燃機関の冷却系システム或いは建物の暖房システムにおける熱媒体回路であることを特徴とする熱媒体回路。 10. A heat medium circuit according to claim 8, wherein the heat medium circuit is a heat medium circuit in a cooling system of an internal combustion engine or a heating system of a building.
PCT/JP2009/001128 2008-03-19 2009-03-13 Thermo valve and heat medium circuit including same WO2009116254A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008070743A JP5424567B2 (en) 2008-03-19 2008-03-19 THERMO VALVE AND HEAT MEDIUM CIRCUIT HAVING THE THERMO VALVE
JP2008-070743 2008-03-19

Publications (1)

Publication Number Publication Date
WO2009116254A1 true WO2009116254A1 (en) 2009-09-24

Family

ID=41090669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001128 WO2009116254A1 (en) 2008-03-19 2009-03-13 Thermo valve and heat medium circuit including same

Country Status (2)

Country Link
JP (1) JP5424567B2 (en)
WO (1) WO2009116254A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017081127A1 (en) * 2015-11-13 2017-05-18 Vernet Thermostatic cartridge for controlling hot and cold fluids to be mixed
CN113091120A (en) * 2021-04-15 2021-07-09 方靖 Self-operated temperature difference balance adjusting device of heating system
CN115053055A (en) * 2020-02-12 2022-09-13 日本恒温器株式会社 Valve unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296453B1 (en) * 2012-01-19 2013-08-13 인지컨트롤스 주식회사 Thermostat for vehicle
KR102310865B1 (en) * 2019-11-18 2021-10-12 인지컨트롤스 주식회사 Thermostat valve
JP7464504B2 (en) 2020-11-16 2024-04-09 日本サーモスタット株式会社 Thermo valve and thermo valve connector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041117U (en) * 1973-08-10 1975-04-25
JPS51153833U (en) * 1975-06-02 1976-12-08
JPH1019160A (en) * 1996-07-03 1998-01-23 Fuji Thomson Kk Thermal reacting valve for controlling automobile engine refrigerant circulating circuit
JPH11336548A (en) * 1998-05-22 1999-12-07 Fuji Thomson Kk Thermally-actuated valve for control automobile engine coolant circulating circuit
JP2001522971A (en) * 1997-11-06 2001-11-20 ボルボ ラストワグナー アーベー Thermostat valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041117U (en) * 1973-08-10 1975-04-25
JPS51153833U (en) * 1975-06-02 1976-12-08
JPH1019160A (en) * 1996-07-03 1998-01-23 Fuji Thomson Kk Thermal reacting valve for controlling automobile engine refrigerant circulating circuit
JP2001522971A (en) * 1997-11-06 2001-11-20 ボルボ ラストワグナー アーベー Thermostat valve
JPH11336548A (en) * 1998-05-22 1999-12-07 Fuji Thomson Kk Thermally-actuated valve for control automobile engine coolant circulating circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017081127A1 (en) * 2015-11-13 2017-05-18 Vernet Thermostatic cartridge for controlling hot and cold fluids to be mixed
GB2561471A (en) * 2015-11-13 2018-10-17 Vernet Thermostatic cartridge for controlling hot and cold fluids to be mixed
US10753486B2 (en) 2015-11-13 2020-08-25 Vernet Thermostatic cartridge for controlling hot and cold fluids to be mixed
GB2561471B (en) * 2015-11-13 2021-10-13 Vernet Thermostatic cartridge for controlling hot and cold fluids to be mixed
CN115053055A (en) * 2020-02-12 2022-09-13 日本恒温器株式会社 Valve unit
CN113091120A (en) * 2021-04-15 2021-07-09 方靖 Self-operated temperature difference balance adjusting device of heating system
CN113091120B (en) * 2021-04-15 2022-04-12 方靖 Self-operated temperature difference balance adjusting device of heating system

Also Published As

Publication number Publication date
JP5424567B2 (en) 2014-02-26
JP2009222217A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5424567B2 (en) THERMO VALVE AND HEAT MEDIUM CIRCUIT HAVING THE THERMO VALVE
JP5299728B2 (en) Vehicle coolant control valve
US8042745B2 (en) Thermally responsive valve for regulating engine coolant flow
JP3284407B2 (en) Cooling medium flow control method and device
WO2005113958A1 (en) Thermostat device
US8833314B2 (en) Cooling system for cooling of a combustion engine
WO2013175809A1 (en) Thermostat device
WO2018207740A1 (en) Cooling water control valve device
JP2002327621A (en) Thermostat device
JP4921955B2 (en) Thermostat device
JP2014025381A (en) Engine cooling device
JP2010121455A (en) Thermally-actuated valve gear
JP4853450B2 (en) Engine cooling system
US20230075049A1 (en) Cooling water temperature control device
JP2007211715A (en) Valve mechanism and heat exchange system using the same
WO2020145921A2 (en) A smart thermal management module for engine cooling
JP2020169611A (en) Thermostat device
WO2022176871A1 (en) Thermostat device
JP2012026341A (en) Fluid control valve
WO2021161665A1 (en) Valve unit
JP7141915B2 (en) temperature controller
JP2007205197A (en) Engine cooling device
JP2005214075A (en) Cooling device of internal combustion engine
JP2005069192A (en) Heating value distribution control valve
JP2010121456A (en) Engine cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723229

Country of ref document: EP

Kind code of ref document: A1