WO2009116168A1 - Receiving apparatus - Google Patents

Receiving apparatus Download PDF

Info

Publication number
WO2009116168A1
WO2009116168A1 PCT/JP2008/055284 JP2008055284W WO2009116168A1 WO 2009116168 A1 WO2009116168 A1 WO 2009116168A1 JP 2008055284 W JP2008055284 W JP 2008055284W WO 2009116168 A1 WO2009116168 A1 WO 2009116168A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
reproduction
signal
burst
received data
Prior art date
Application number
PCT/JP2008/055284
Other languages
French (fr)
Japanese (ja)
Inventor
巨生 鈴木
小崎 成治
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2008/055284 priority Critical patent/WO2009116168A1/en
Publication of WO2009116168A1 publication Critical patent/WO2009116168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0262Arrangements for detecting the data rate of an incoming signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring

Definitions

  • the present invention relates to a receiving apparatus that receives a burst optical signal in which a plurality of optical signals having different transmission speeds are time-multiplexed in an upstream direction such as a PON (Passive Optical Networks) system.
  • a PON Passive Optical Networks
  • Non-Patent Document 1 as a method of accommodating an upstream optical signal from each subscriber device to the master station device, a TDMA (Time DMA) in which optical signals from each subscriber are intermittently burst and multiplexed in time.
  • a PON system using the Division Multiplex Access) method is disclosed.
  • a single master station device can accommodate a plurality of subscriber devices having the same transmission light wavelength band via a single optical fiber transmission line.
  • the service cost can be reduced by sharing the devices constituting the system among the subscribers.
  • Patent Document 1 describes a technique related to such a multi-rate PON system, and specifically describes a method for accommodating subscriber devices in a downlink multi-rate PON system.
  • a general optical receiver includes an optical preamplifier and a limiting amplifier that convert an optical signal into an electric signal having an identifiable amplitude, and a CDR that extracts a clock component from received data and performs data reproduction based on phase synchronization information. (Clock and Data Recovery) circuit.
  • a PLL circuit Phased Lock Loop
  • a control signal substantially close to a DC component is applied as a control signal for frequency and phase control. This is to suppress fluctuation components (jitter) generated from the oscillator and the PLL, but due to this, a feedback control type clock extraction circuit such as a PLL essentially obtains a high-speed response characteristic. Things have become difficult.
  • Patent Document 1 Although a specific accommodation method of each subscriber apparatus in the downlink multi-rate PON system is shown, subscriber accommodation in the case of multi-rate in the uplink direction is shown. A specific configuration of a receiver (multi-rate receiver) capable of receiving burst optical signals having different transmission rates at the same optical wavelength in the method, particularly the master station device, is not shown.
  • a receiver that receives only a burst optical frame having a fixed transmission rate is known. This is because a PLL circuit using a continuous voltage control type oscillator as described above, This is also because the clock information (transmission rate information) cannot be extracted for each frame from optical frames having different transmission rates with different frequency components since only a single frequency is followed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a multi-rate compatible receiving apparatus capable of receiving burst optical signals having different transmission speeds for each frame in the upstream direction of a multi-rate PON system. To do.
  • the present invention provides a burst optical signal in which a plurality of optical signals having any one of a plurality of predefined transmission rates are time-multiplexed.
  • a receiving device for receiving, a conversion means for converting the burst optical signal into an electric signal, and a plurality of the electric signal with a plurality of conditions determined in advance corresponding to each of the plurality of transmission speeds
  • a reproduction data generating means for generating the same number of reproduction data as the plurality of transmission speeds, selecting any one reproduction data from the plurality of reproduction data, and finally Selecting means for outputting as received data.
  • the receiving apparatus is adapted to correspond to each transmission rate with respect to a burst optical signal in which a plurality of optical signals having any one of a plurality of predefined transmission rates are time-multiplexed.
  • the data reproduction process is executed under a plurality of conditions determined in advance, and the optimum reproduction data is selected as the final reproduction data (reception data) from the obtained reproduction data.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a receiving device according to the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the light receiving unit.
  • FIG. 3 is a diagram showing the relationship between the optimum phase clock, the edge phase, and the sampling result.
  • FIG. 4 is a diagram illustrating an example of optimum phase clock information output from the multi-phase CLK sampling unit at the subsequent stage of the high-speed data receiving unit.
  • FIG. 5 is a diagram illustrating a configuration example of a receiving apparatus according to the second embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of a burst frame.
  • FIG. 7 is a diagram illustrating a configuration example of a receiving apparatus according to the third embodiment.
  • FIG. 8 is a diagram illustrating a configuration example of a light receiving unit included in the receiving device of the fourth embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of a receiving apparatus according to the fifth embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a receiving device according to the present invention.
  • the receiving apparatus includes a light receiving unit 1 (corresponding to a conversion unit) that converts an optical signal received via an optical fiber into an electrical signal, and a signal after being converted into an electrical signal.
  • a data receiving unit 2 (corresponding to a reproduction data generating unit) that performs data reproduction processing on a signal under a plurality of conditions to generate a plurality of reproduction data, and optimum reproduction data from a plurality of reproduction data that are input signals
  • a burst synchronization processing unit 3 (corresponding to selection means) to be selected and a system clock generation unit 4 are provided.
  • This receiving apparatus constitutes a master station apparatus of the PON system, and an optical signal input to the light receiving unit 1 via an optical fiber is an uplink in which a plurality of optical signals having different transmission speeds are multiplexed in time.
  • Directional optical signal is provided.
  • the data reception unit 2 includes a low-speed data reception section 2 2 for reproducing the reception unit 2 1 and the low transmission rate data for high-speed data for reproducing a high transmission rate data, also receiving high speed data
  • the unit 2 1 includes a burst preamplifier 21 1 and a burst limiting amplifier 22 1
  • the low-speed data receiving unit 2 2 includes a burst preamplifier 21 2 and a burst limiting amplifier 22 2 .
  • the high-speed data receiver 2 1 and the low-speed data receiver 2 2 constitute data reproducing means
  • the burst preamplifiers 21 1 and 21 2 constitute level adjusting means.
  • the burst limiting amplifiers 22 1 and 22 2 constitute a bit determination means.
  • the burst synchronization processing unit 3 includes multi-phase CLK (clock) sampling units 31 1 and 31 2 , a speed determination unit 32, and a data selection unit 33.
  • the multi-phase CLK sampling units 31 1 and 31 2 sample the input signal at a timing based on the system clock, and output a determination result of the optimum sampling timing and a sampling result.
  • the speed determination unit 32 determines the transmission speed of the received signal and outputs a determination result.
  • Data selection unit 33 based on the determination result by the speed determination unit 32 selects and outputs the sampling result output from the multi-phase CLK sampling unit 31 1 or 31 2.
  • the multi-phase CLK sampling units 31 1 and 31 2 constitute an optimum phase determination unit
  • the speed determination unit 32 and the data selection unit 33 constitute a reception data selection unit.
  • the transmission rate of high transmission rate data is 10.3125 Gbps (hereinafter, described as 10.31 Gbps), and the transmission rate of low transmission rate data is 1.25 Gbps.
  • the description using these specific numerical values does not limit the operation of the receiving apparatus of this embodiment.
  • a burst optical signal frame having a data rate of 10.31 Gbps (hereinafter referred to as optical signal frame a) and a burst optical signal frame having a data rate of 1.25 Gbps (hereinafter referred to as optical signal frame b) are time-multiplexed.
  • optical signal frame a a burst optical signal frame having a data rate of 10.31 Gbps
  • optical signal frame b a burst optical signal frame having a data rate of 1.25 Gbps
  • the light receiving unit 1 includes an intensity branching optical coupler 11 and photodiodes (PD) 12 1 and 12 2 .
  • PD photodiodes
  • an optical signal composed of an optical signal frame a and an optical signal frame b time-multiplexed at the same optical wavelength is input to the light receiving unit 1 through a single optical fiber, the optical signal is converted into an intensity branching optical coupler.
  • the photodiode 12 2 is an electrical transducer - optimized light to the photodiode 12 for 1 and 1.25Gbps an electric conversion element - 11 are intensity split by, optimized light for 10.31Gbps.
  • the optical signal branched by the intensity branching optical coupler 11 is simultaneously input to the photodiodes 12 1 and 12 2 .
  • the optical signal composed of the optical signal frame a and the optical signal frame b is an electrical signal in which each burst optical signal data is mixed in each photodiode (the electrical signal frame obtained by converting each optical signal frame is temporally multiplexed). Converted into an electrical signal).
  • the electrical signals output from the photodiodes 12 1 and 12 2 are sent to the high-speed data receiver 2 1 optimized for 10.31 Gbps and the high-speed data receiver 2 2 optimized for 1.25 Gbps. Each is output.
  • the burst preamplifier 21 1 In high speed data receiving section 2 1 of the data reception section 2 that has received the electric signal output from the light receiving unit 1, input to the burst preamplifier 21 1 electrical signal received has the best amplification gain (Ga) for 10.31Gbps The burst preamplifier 21 1 amplifies the input signal. Specifically, each electric signal that is intermittent in bursts and has a different signal level between signal frames is amplified according to the signal level so as to be within a predetermined output electric signal range. The electric signal after being amplified by the burst preamplifier 21 1 is input to the burst limiting amplifier 22 1 .
  • Ga amplification gain
  • an identification threshold value is extracted at a high speed in accordance with each signal level of the input electric signal frame, and a constant electric level is set as the H and L logic levels based on the identification threshold value. Is output to the burst synchronization processing unit 3. That is, the burst limiting amplifier 22 1 performs bit determination of the input signal using an identification threshold, and outputs the determination result as H or L logic level.
  • the output signal output from the burst limiting amplifier 22 1 is optimally amplified simultaneously with the burst signal data of the identified 10.31Gbps, included in the state in which the burst signal data 1.25Gbps are temporally multiplexed ing.
  • the optimal amplification gain for the electric signal received from the photodiode 12 2 is 1.25Gbps a (Gb) It is input to the burst preamplifier 21 2 having, burst preamplifier 21 2 amplifies the input signal. Specifically, electrical signals that are intermittent in bursts and have different signal levels between frames are amplified according to the signal level so as to be within a predetermined output electrical signal range. The electric signal after being amplified by the burst preamplifier 21 2 is input to the burst limiting amplifier 22 2 .
  • an identification threshold value is extracted at a high speed according to each signal level of the input electric signal frame, and a constant electric level is set as the H and L logic levels based on the identification threshold value. Is output to the burst synchronization processing unit 3.
  • the output signal output from the burst limiting amplifier 22 2 is optimally amplified simultaneously with the burst signal data identified 1.25 Gbps, included in the state in which the burst signal data 10.31Gbps is temporally multiplexed ing.
  • Burst synchronization processing section 3 that has received the signal outputted from the data receiver 2, the signal output from the high-speed data receiving section 2 1 (burst electric signal), the speed to extract only data 10.31Gbps, system Synchronize with the system clock output from the clock generator 4. Further, the signal output from the low-speed data receiver 2 2 (burst electric signal), the speed to extract only data of 1.25 Gbps, synchronized to the system clock output from system clock generator 4. Then, either 10.31 Gbps data or 1.25 Gbps data synchronized with the system clock is selected and output as identification reproduction synchronization data (reproduced reception data). The operation for reproducing the received data will be described in detail below.
  • the signal output from the data receiving unit high speed data receiver unit 21 1 of 2 is inputted to the multi-phase CLK sampling unit 31 1 of the burst synchronization processing unit 3, the multi-phase CLK sampling unit 31 1, synchronized to the system clock 10.31
  • the input signal (output data from the high-speed data receiving unit 21 1 ) is sampled with a GHz ⁇ 8 phase clock.
  • one data series sampled with the optimum phase clock is selected from the data series sampled with each phase clock and output to the data selection unit 33.
  • information on the optimum phase clock (optimum sampling timing) for the output data is output to the speed determination unit 32 as optimum phase information.
  • the optimum phase clock is a phase clock farthest from the sampled edge (data change point) phase.
  • the relationship between the optimum phase clock and the edge phase will be described with reference to FIG.
  • FIG. 3 is a diagram showing the relationship between the optimum phase clock, the edge phase, and the sampling result.
  • the phase clock ⁇ 4> is determined as the optimum phase is schematically shown.
  • the phase of the data edge (change point) is phase clock ⁇ 0> and phase clock ⁇ 7
  • the phase clock ⁇ 4> farthest from these data edge phases is determined as the optimum phase. Further, as shown in FIG.
  • the data sequence ⁇ 4> is output in synchronization with the system clock as a sampling result. That is, the multi-phase CLK sampling unit 31 1 outputs the sampling result at the optimum phase for one system clock cycle. For example, if the sampling result at the optimum phase is H, H is output in a section between two data edge phases corresponding to (before and after) the optimum phase. As a result, the multi-phase CLK sampling unit 31 1 outputs the same signal as the signal input from the high-speed data receiving unit 2 1 .
  • FIG. 4 is a diagram showing an example of the optimum phase clock information outputted from the multi-phase CLK sampling unit 31 1.
  • 10.31 Gbps data input data
  • 10.31 GHz clock arbitrary fixed optimum phase information is always output if the input data jitter and the jitter component superimposed on the sampling clock are ignored.
  • the phase clock ⁇ 4> is always output as the optimum phase.
  • the output signal data from the high speed data receiving section 2 1 not only 10.31Gbps data, and 1.25Gbps data is temporally multiplexed.
  • the optimum phase obtained from the 1.25 Gbps data varies with time. For example, 8 times 1.25 Gbps is 10 Gbps, and when 10 Gbps data is sampled with a 10.31 GHz clock, the relationship of the following equation (1) is established.
  • Equation (1) can be interpreted as follows.
  • the 10.31 Gbps data When 10 Gbps data is sampled with a 10.31 GHz clock, the 10.31 Gbps data output shifts by 1 bit every 32 bits, that is, the optimum phase information changes with time, with 32 bits as one cycle.
  • FIG. 4 shows this phenomenon. It can be seen that when 1.25 Gbps data is sampled at 10.31 GHz, the optimum phase fluctuates by one cycle every 32 bits. Therefore, the speed determination unit 32 determines the transmission speed using the periodic fluctuation information of the optimum phase information as speed information.
  • the optimum phase information output from the multi-phase CLK sampling unit 31 1, time-fixed optimum phase information extracted time segment of 10.31Gbps data interval, the time-optimal phase information by periodic variation And the determination result is output to the data selection unit 33 as a speed determination signal.
  • the signal output from the high-speed data receiving unit 21 2 of the data receiving unit 2 is input to the multi-phase CLK sampling unit 312 of the burst synchronization processing unit 3, and the multi-phase CLK sampling unit 31 2 is synchronized with the system clock. sampling the input signal at the 1.25 GHz ⁇ 8-phase clock, similarly to the high speed data receiving section 21 1 described above, when the data of 1.25Gbps is input, the fixing of optimum phase information, the optimum phase clock And the sampled data series.
  • 10.31Gbps data normally amplified in the low-speed data reception unit 2 2, not identified.
  • the optical receiver normally optimized for 1.25 Gbps corresponding to the low-speed data receiver 2 2 in the receiving apparatus shown in FIG. 1
  • the multi-phase CLK sampling unit 31 2 in the time interval in which 10.31Gbps data is input, and to output the indeterminate optimum phase information. That is, the optimum phase information is normally output only in the 1.25 Gbps data section.
  • the multi-phase CLK enter the optimum phase information output from the sampling unit 31 2 to the speed determination unit 32, among the optimum phase information output outputted from the multi-phase CLK sampling unit 31 1 described above, the periodicity information and time intervals with, that optimum phase information output which is output from the multi-phase CLK sampling unit 31 2 takes the product of the outputs become time interval of fixed, it is possible to reduce the rate decision error probability.
  • Data selection unit 33 based on the speed determination signal input from the speed determination unit 32, selects the multi-phase CLK data sequence is input from the sampling unit 31 1 or the multi-phase CLK input data sequence from the sampling unit 31 2 And output as identification reproduction synchronization data (final received data). Specifically, in a section where the speed determination signal indicates 10.31Gbps data section outputs a data sequence input from the multi-phase CLK sampling unit 31 1, from multi-phase CLK sampling unit 31 2 in the section showing the 1.25Gbps data section Output the input data series.
  • the receiving apparatus is a block for reproducing received data from a signal having a specific transmission rate in a signal obtained by time-multiplexing optical signals having different transmission rates (the burst preamplifier and burst limiting).
  • a plurality of amplifiers individually executes data reproduction processing on the input signal, and selects the optimum reproduction data from the plurality of reproduction data to obtain final reproduction data ( Output as received data).
  • a plurality of blocks for executing reception data reproduction processing are provided, and in each block, optimum conditions for reproducing data at a specific transmission rate are set in advance. Since the transmission rate is determined based on the phase determination result obtained by sampling at a specific period, it is based on the complicated rate determination signal extraction function required by the conventional receiver and the speed determination signal. Control of the burst preamplifier and burst limiting amplifier is unnecessary, and the cost of the receiving apparatus can be reduced.
  • FIG. 5 is a diagram illustrating a configuration example of a receiving apparatus according to the second embodiment.
  • the receiving apparatus of this embodiment has a configuration including a burst synchronization processing unit 3a instead of the burst synchronization processing unit 3 of the receiving apparatus (see FIG. 1) shown in the first embodiment. Since the configuration other than the burst synchronization processing unit 3a is the same as that of the receiving apparatus of the first embodiment, the same reference numerals are given and the description thereof is omitted.
  • the burst synchronization processing unit 3a (corresponding to the reception data reproduction means) includes a speed determination unit 32a, a data selection unit 33a, a header identification unit 34, a switch 35, and a multiphase CLK sampling unit 36.
  • the data selection unit 33 a includes a switch 331 and a low speed data reproduction unit 332.
  • the header identification unit 34 and the switch 35 constitute a reproduction data selection unit
  • the speed determination unit 32a and the data selection unit 33a constitute a final reception data reproduction unit.
  • the speed determination unit 32a determines the transmission speed of the received signal and outputs a determination result.
  • the data selection unit 33a reproduces the received data based on the input signals from the speed determination unit 32a and the multiphase CLK sampling unit 36.
  • the switch 331 switches the output destination of the input signal (input data) from the multiphase CLK sampling unit 36 according to the content of the speed determination signal received from the speed determination unit 32a. That is, switching is made between whether the input data is output as it is as final reproduction data (identification reproduction synchronization data) or is passed to the low-speed data reproduction unit 332.
  • the low-speed data reproducing unit 332 reproduces received data (low transmission rate data) based on the data.
  • Header identification unit 34 analyzes the information contained in the header of the received frame received via the receiving unit 2 1 for high-speed data, and controls the switch 35 based on the analysis result.
  • Switch 35 in accordance with an instruction from the header identification unit 34, is input by selecting the output signal from one of the high-speed data receiving section 2 1 or low-speed data reception section 2 2 to the multi-phase CLK sampling unit 36.
  • the multi-phase CLK sampling unit 36 samples an input signal at a timing based on the system clock and outputs a sampling result.
  • the transmission rate of high transmission rate data is 10.3125 Gbps (note that it is 10.31 Gbps in the description), and the transmission rate of low transmission rate data is 1.25 Gbps.
  • FIG. 6 is a diagram illustrating a configuration example of a burst frame. As shown in FIG. 6, in a burst frame, a “10” alternating pattern that is a fixed frequency component is usually prepared as a header.
  • the header identifying section 34 by detecting the frequency component of the header section, 1.25 Gbps data output from 10.31Gbps data section and the low speed data receiving section 2 2 output from the high-speed data receiving section 2 1
  • the switch 35 is controlled so as to switch between the sections and to output to the multi-phase CLK sampling unit 36.
  • hxAAAA... (10101010101010) Is inserted as a header. It controls the switch 35 to select the output of the receiving section 2 1.
  • detecting a frequency of 625MHz controls the switch 35 so that the transmission speed to select the output of the receiving unit 2 2 for the low-speed data determines that the 1.25 Gbps.
  • Polyphase CLK sampling unit 36 performs the same processing as the multi-phase CLK sampling unit 31 1 receiving apparatus equipped with the first embodiment, the sampled data sequence at the optimum phase clock to the data selector 33a, also Then, the optimum phase information which is the information of the optimum phase clock is output to the speed determination unit 32a.
  • the speed determination unit 32a determines the transmission speed of the received data by the same determination method as the speed determination unit 32 provided in the receiving apparatus of Embodiment 1, and outputs the determination result to the data selection unit 33a.
  • the switch 331 outputs the output from the multiphase CLK sampling unit 36 as identification reproduction synchronization data (high-speed data) when the speed determination signal input from the speed determination unit 32a indicates a 10.31 Gbps data section. To do. On the other hand, when the speed determination signal indicates a 1.25 Gbps data section, the output from the multiphase CLK sampling unit 36 is output to the low-speed data reproduction unit 332.
  • the low speed data reproducing unit 332 reproduces 1.25 Gbps data based on the input signal.
  • the receiving apparatus is a block for reproducing received data from a signal having a specific transmission rate in a signal obtained by time-multiplexing optical signals having different transmission rates (the burst preamplifier and burst limiting).
  • a plurality of amplifiers each block individually performing data reproduction processing on the input signal, and selecting the optimum reproduction data from a plurality of reproduction data, based on the selected signal The final received data was reproduced.
  • FIG. 7 is a diagram illustrating a configuration example of a receiving apparatus according to the third embodiment.
  • the receiving apparatus according to the present embodiment replaces the data receiving section 2 and burst synchronization processing section 3 of the receiving apparatus (see FIG. 1) shown in the first embodiment with a data receiving section 2b and burst synchronization processing section 3b (received data). (Corresponding to reproducing means).
  • the light-receiving part 1 is the same as what was shown in Embodiment 1, description is abbreviate
  • the data receiving unit 2b includes burst preamplifiers 21 1 and 21 2 (corresponding to level adjusting means) and a burst limiting amplifier 23 (corresponding to reception data candidate generating means), and the burst limiting amplifier 23 includes: A switch 231, a header identification unit 232, and a gain switching type limiting amplifier 233 are provided. Note that burst preamplifiers 21 1 and 21 2 are the same as burst preamplifiers 21 1 and 21 2 provided in the receiving apparatus of the first embodiment, and thus description thereof is omitted.
  • the burst limiting amplifier 23 of the data reception unit 2b selects the output from the burst preamplifier 21 1 or 21 2 , and further generates temporary reception data (reception data candidate) based on the selected signal.
  • the header identifying unit 232 analyzes information included in the header of the received frame received from the burst preamplifier 21 1 , and switches based on the analysis result. 231 and the limiting amplifier 233 are controlled.
  • the switch 231 selects an output signal from the burst preamplifier 21 1 or the burst preamplifier 21 2 in accordance with an instruction from the header identification unit 232 and outputs the selected signal to the limiting amplifier 233.
  • the limiting amplifier 233 performs bit determination of the input signal using the identification threshold value instructed from the header identifying unit 232.
  • the burst synchronization processing unit 3b is obtained by removing the header identification unit 34 and the switch 35 from the burst synchronization processing unit 3a provided in the receiving apparatus (see FIG. 5) according to the second embodiment. Is the same as the burst synchronization processing unit 3a. For this reason, the same reference numerals as those assigned to the respective constituent elements of the burst synchronization processing unit 3a are given and the description thereof is omitted.
  • the transmission rate of high transmission rate data is 10.3125 Gbps (note that it is 10.31 Gbps in the description), and the transmission rate of low transmission rate data is 1.25 Gbps.
  • the header identifying unit 232 When receiving the output signal from the burst preamplifier 21 1 , in the burst limiting amplifier 23, first, the header identifying unit 232 detects the header section of the head region of the received burst frame. Then, the switch 231 is controlled according to the information stored in the header section, and either the burst preamplifier 21 1 output or the burst preamplifier 21 2 output is input to the limiting amplifier 233.
  • the operation of the header identifying unit 232 detecting the header section of the head region of the burst frame and controlling the switch 231 is the same as the operation of the header identifying unit 34 described in the second embodiment.
  • the burst frame transmission rate is determined using the header section information, and the switch 231 is controlled so that the signal from the burst preamplifier corresponding to the determination result is input to the limiting amplifier 233.
  • the header identification unit 232 also changes the setting of the limiting amplifier 233 based on the determination result. That is, the transmission rate is determined to change settings so that the burst limiting amplifier 22 1 and the same configuration shown in the first embodiment if 10.31Gbps, whereas, the transmission rate is determined is if 1.25Gbps embodiment The setting is changed so that the setting is the same as that of the burst limiting amplifier 22 2 shown in the first embodiment.
  • the limiting amplifier 233 performs threshold determination using an identification threshold (the identification threshold set by the header identification unit 232) according to the signal level of the input frame, and the determination result is obtained. Output as H and L logic levels.
  • the transmission rate determination using the header information of the received frame is performed before the burst limiting amplifier, and the signal level is desired for the received signal corresponding to the determination result.
  • the data reproduction process including the process of adjusting the level and the sampling process is executed.
  • the header detection function (corresponding to the transmission rate judgment processing of the received signal using the header information) is usually integrated into a limiting amplifier that can be realized as an IC, and is shared for burst signal frames of different rates. As a result, the circuit scale and power consumption can be further reduced.
  • FIG. 8 is a diagram illustrating a configuration example of a light receiving unit included in the receiving device of the fourth embodiment.
  • the light receiving unit 1 see FIG. 2 of the receiving apparatus shown in the first embodiment is replaced with the light receiving unit 1c shown in FIG. Therefore, in the present embodiment, only the light receiving unit 1c different from the receiving device of the first embodiment will be described.
  • the light receiving unit 1 c of the present embodiment is configured by a photodiode 13.
  • the optical signal input to the light receiving unit 1 is input to the photodiode 13 which is a photoelectric conversion element.
  • the optical signal frames a and b constituting the optical signal are commonly input to the photodiode 13.
  • the input optical signal frames a and b are converted into an electric signal in which each burst optical signal data is mixed, and the electric signal output from the photodiode 13 is a high-speed data receiving unit 2 1 optimized for 10.31 Gbps. and output respectively optimized high speed data receiving section 2 2 for 1.25 Gbps.
  • the optical signal is converted into an electric signal, and then branched to each of the plurality of reception processing units corresponding to each transmission speed of the received signal.
  • the number of optical components can be reduced as compared with the receiving apparatuses of Embodiments 1 to 3 described above, and cost reduction can be realized.
  • FIG. 9 is a diagram illustrating a configuration example of a receiving apparatus according to the fifth embodiment.
  • the receiving apparatus according to the present embodiment includes a light receiving section 1d (corresponding to conversion means) and a data receiving section instead of the light receiving section 1 and the data receiving section 2 of the receiving apparatus (see FIG. 1) shown in the first or second embodiment.
  • a configuration with 2d (corresponding to reproduction data generating means) is adopted.
  • the burst synchronization processing unit 3 is the same as that shown in the first embodiment, but may be the one shown in the second embodiment (burst synchronization processing unit 3a shown in FIG. 5).
  • the light converts the input optical signal into an electrical signal - comprises a photodiode 12 1 is an electrical conversion element. Note that this photodiode is the same as the photodiode 12 1 constituting the light receiving unit 1 shown in the first embodiment.
  • Data receiving unit 2d, a high speed data receiving section 2d 1 and the low-speed data reception section 2d 2, also high-speed data receiving section 2d 1 is provided with a burst preamplifier 21 1 and burst limiting amplifier 22 d 1, the low speed data
  • the reception unit 2d 2 includes a burst limiting amplifier 22d 2 .
  • the burst preamplifier 21 1 is the same as the burst preamplifier 21 1 provided in the receiving apparatus of the first embodiment.
  • the transmission rate of high transmission rate data is 10.3125 Gbps (note that it is 10.31 Gbps in the description), and the transmission rate of low transmission rate data is 1.25 Gbps.
  • the electric signal after being amplified by the burst preamplifier 21 1 is input to the burst limiting amplifiers 22 1 and 22 2 .
  • an identification threshold is extracted at a high speed in accordance with each signal level of the input electric signal frame, and the H and L logic levels based on the identification threshold are constant. It is output to the burst synchronization processing unit 3 at the electrical level.
  • the burst limiting amplifier 22 2 has an optimum gain band for 1.25 Gbps.
  • the output signal output from the burst limiting amplifier 22 1 is optimally amplified simultaneously with the burst signal data of the identified 10.31Gbps, included in the state in which the burst signal data 1.25Gbps are temporally multiplexed ing.
  • the burst limiting amplifier band is optimized so that the noise characteristic (SNR: signal-to-noise intensity ratio) is the best for 10.31 Gbps signals.
  • the output signal output from the burst limiting amplifier 22 2 is optimally amplified simultaneously with the burst signal data identified 1.25 Gbps, included in the state in which the burst signal data 10.31Gbps is temporally multiplexed ing.
  • the burst limiting amplifier band is optimized so that the noise characteristic (SNR: signal-to-noise intensity ratio) is the best for a 1.25 Gbps signal.
  • Output signals from the burst limiting amplifiers 22 1 and 22 2 are input to the burst synchronization processing unit 3, and the burst synchronization processing unit 3 operates in the same manner as the burst synchronization processing unit described in the first embodiment on the input signal. To play the received data.
  • the receiving apparatus shown in the above-described embodiment is modified to share the light receiving unit and the burst preamplifier at each transmission rate.
  • the number of parts can be further reduced as compared with the receiving apparatus of the fourth embodiment described above, and further cost reduction can be realized.
  • the receiver shown in FIG. 1 includes and three or more pairs of multi-phase CLK sampling unit (corresponding to high-speed data receiving section 22 1) receiving sections corresponding to the transmission rate, burst synchronization processing unit 3 (data selection unit 33) selects and outputs one of the received data reproduced in each reception unit.
  • the speed determination unit 32 can determine the transmission rate of the received frame using the optimum phase information output from each multi-phase CLK sampling unit based on the above-described optimum phase characteristics (see FIG. 4 and the like).
  • the receiving apparatus is useful for an optical signal receiving apparatus.
  • it constitutes a master station apparatus of a PON system, and an upstream direction in which a plurality of optical signals having different transmission speeds are time-multiplexed. It is suitable for a receiving apparatus that receives a burst optical signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)

Abstract

A receiving apparatus for receiving a burst optical signal which is obtained by time-multiplexing a plurality of optical signals having one of a plurality of predetermined transmission speeds, the apparatus including a light-receiving section (1) for converting the burst light signal into an electric signal, a data-receiving section (2) for performing a data regeneration process for plural times using a plurality of conditions that have been determined in advance correspondingly to the plurality of respective transmission speeds to generate the same number of regenerated data as the number of the plurality of transmission speeds, and a burst synchronization section (3) for selecting one regenerated data from the plurality of regenerated data to output it as a final received data.

Description

受信装置Receiver
 本発明は、PON(Passive Optical Networks)システムなどの上り方向において、伝送速度が異なる複数の光信号が時間多重化されたバースト光信号を受信する受信装置に関する。 The present invention relates to a receiving apparatus that receives a burst optical signal in which a plurality of optical signals having different transmission speeds are time-multiplexed in an upstream direction such as a PON (Passive Optical Networks) system.
 近年、インターネットや、音楽配信、双方向データ通信等の急激な普及に伴い、加入者光アクセス網において、大幅なブロードバンド化が要求されてきている。この要求に応えるため、2004年度以降にFTTH(Fiber-to-the-home)サービスの本格的な市場展開が開始され、加入者光アクセスサービスへの加入者数は指数関数的な増大を見せている。このような広帯域光アクセス網を収容するシステムとして、光ファイバ及び光カプラを用いて親局装置(OLT:Optical Line Terminal)と加入者装置(ONU:Optical Network Unit)を双方向で結ぶPON(Passive Optical Networks)システムが主流となっている。このPONシステムについては、例えば下記非特許文献1にそのシステム構成が開示されている。 In recent years, with the rapid spread of the Internet, music distribution, two-way data communication, etc., there has been a demand for drastic broadband in subscriber optical access networks. In order to meet this demand, full-scale market development of FTTH (Fiber-to-the-home) service started in 2004 and the number of subscribers to the subscriber optical access service has increased exponentially. Yes. As a system for accommodating such a broadband optical access network, a PON (Passive) that connects a master station device (OLT: Optical Line Terminal) and a subscriber device (ONU: Optical Network Unit) using an optical fiber and an optical coupler. Optical Networks) system is mainstream. About this PON system, the system structure is disclosed by the following nonpatent literature 1, for example.
 下記非特許文献1では、各加入者装置から親局装置に向けた上り方向の光信号の収容方法として、各加入者からの光信号をバースト的に間欠させ、時間的に多重させるTDMA(Time Division Multiplex Access)方式を適用したPONシステムが開示されている。この方式により、一芯の光ファイバ伝送路を介して、一つの親局装置が同一の送信光波長帯を有する複数の加入者装置を収容可能となる。また、各加入者間でシステムを構成する装置を共有してサービスコストの低減を実現可能にしている。このように、PONシステムの持つ利点により、広帯域光アクセス網における一層の経済化と、さらなる加入者数の増大が実現されている。 In Non-Patent Document 1 below, as a method of accommodating an upstream optical signal from each subscriber device to the master station device, a TDMA (Time DMA) in which optical signals from each subscriber are intermittently burst and multiplexed in time. A PON system using the Division Multiplex Access) method is disclosed. According to this method, a single master station device can accommodate a plurality of subscriber devices having the same transmission light wavelength band via a single optical fiber transmission line. In addition, the service cost can be reduced by sharing the devices constituting the system among the subscribers. Thus, due to the advantages of the PON system, further economic improvement in the broadband optical access network and further increase in the number of subscribers are realized.
 また、加入者光アクセス網の広帯域化要求を受け、伝送速度をさらに向上させた高伝送速度PONシステムの検討がなされており、すでにサービスが運用されている既存のPONシステムとこの高伝送速度PONシステムの混在共存が可能なマルチレートPONシステムの提供が期待されている。下記特許文献1には、このようなマルチレートPONシステムに関する技術が記載されており、具体的には、下り方向のマルチレートPONシステムにおける加入者装置の収容方法が記載されている。 Further, in response to a request for broadband access of the subscriber optical access network, a high transmission rate PON system in which the transmission rate is further improved is being studied. The existing PON system in which the service is already in operation and this high transmission rate PON system are being studied. It is expected to provide a multi-rate PON system capable of coexisting systems. The following Patent Document 1 describes a technique related to such a multi-rate PON system, and specifically describes a method for accommodating subscriber devices in a downlink multi-rate PON system.
特開2007-288655号公報JP 2007-288655 A
 従来のPONシステムにおいて、親局装置における上り方向のバースト光受信器は、バースト受信に特有の技術課題を有している。この技術課題を以下に説明する。一般的な光受信器は、光信号を識別可能な振幅を持つ電気信号に変換する光プリアンプ及びリミッティングアンプと、受信データからクロック成分を抽出し、位相同期情報に基づいてデータ再生を行うCDR(Clock and Data Recovery)回路から構成されている。そして、このCDRにおけるクロック成分を抽出する方式としては、連続電圧制御型発振器を用いたPLL回路(Phased Lock Loop)が通常用いられる。ここで、PLL方式においては、周波数及び位相制御用の制御信号として、ほぼDC成分に近い制御信号が適用される。これは発振器及びPLLから発生するゆらぎ成分(ジッタ)を抑圧するためであるが、このことに起因して、本質的にPLLのような帰還制御型クロック抽出回路においては、高速な応答特性を得る事が困難となっている。 In the conventional PON system, the upstream burst optical receiver in the master station apparatus has a technical problem peculiar to burst reception. This technical problem will be described below. A general optical receiver includes an optical preamplifier and a limiting amplifier that convert an optical signal into an electric signal having an identifiable amplitude, and a CDR that extracts a clock component from received data and performs data reproduction based on phase synchronization information. (Clock and Data Recovery) circuit. As a method for extracting clock components in the CDR, a PLL circuit (Phased Lock Loop) using a continuous voltage controlled oscillator is usually used. Here, in the PLL system, a control signal substantially close to a DC component is applied as a control signal for frequency and phase control. This is to suppress fluctuation components (jitter) generated from the oscillator and the PLL, but due to this, a feedback control type clock extraction circuit such as a PLL essentially obtains a high-speed response characteristic. Things have become difficult.
 そのため、たとえば、上記特許文献1においては、下り方向のマルチレートPONシステムにおける、各加入者装置の具体的な収容方法については示されているものの、上り方向をマルチレート化する場合の加入者収容方法、特に親局装置において、同一の光波長にて、異なる伝送速度を持つバースト光信号を受信可能な受信器(マルチレート受信器)の具体的な構成については示されていない。 Therefore, for example, in Patent Document 1, although a specific accommodation method of each subscriber apparatus in the downlink multi-rate PON system is shown, subscriber accommodation in the case of multi-rate in the uplink direction is shown. A specific configuration of a receiver (multi-rate receiver) capable of receiving burst optical signals having different transmission rates at the same optical wavelength in the method, particularly the master station device, is not shown.
 また、従来のバースト光受信器として、固定の伝送速度のバースト光フレームのみを受信する受信器が知られているが、これは、前述のような連続電圧制御型発振器を用いたPLL回路は、単一の周波数のみに追随するため、周波数成分の異なる伝送速度の光フレームからフレーム毎にクロック情報(伝送速度情報)を抽出できないことにも起因している。 In addition, as a conventional burst optical receiver, a receiver that receives only a burst optical frame having a fixed transmission rate is known. This is because a PLL circuit using a continuous voltage control type oscillator as described above, This is also because the clock information (transmission rate information) cannot be extracted for each frame from optical frames having different transmission rates with different frequency components since only a single frequency is followed.
 また、通常、PONシステムでは、伝送速度情報を抽出した場合でも、伝送速度情報に基づいて光受信器のフロントエンドであるプリアンプやリミッティングアンプの制御が必要であり、受信処理の複雑さや処理時間が増大する要因となっていた。 In general, in the PON system, even when the transmission rate information is extracted, it is necessary to control the preamplifier and the limiting amplifier that are the front end of the optical receiver based on the transmission rate information. Was a factor that increased.
 本発明は、上記に鑑みてなされたものであって、マルチレートPONシステムの上り方向において、フレーム毎に伝送速度の異なるバースト光信号を受信可能なマルチレート対応の受信装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a multi-rate compatible receiving apparatus capable of receiving burst optical signals having different transmission speeds for each frame in the upstream direction of a multi-rate PON system. To do.
 また、周波数成分の異なる伝送速度の光フレームからフレーム毎にクロック情報(伝送速度情報)を抽出可能な受信装置を得ることを目的とする。 It is another object of the present invention to obtain a receiving apparatus capable of extracting clock information (transmission rate information) for each frame from optical frames having different transmission rates of frequency components.
 さらに、受信処理の複雑さや処理時間を従来よりも低減させた受信装置を得ることを目的とする。 Furthermore, it aims at obtaining the receiver which reduced the complexity and the processing time of the reception process compared with the past.
 上述した課題を解決し、目的を達成するために、本発明は、予め規定された複数の伝送速度の中のいずれか一つの伝送速度を有する複数の光信号が時間多重されたバースト光信号を受信する受信装置であって、前記バースト光信号を電気信号に変換する変換手段と、前記電気信号に対して、前記複数の伝送速度それぞれに対応させて予め決定しておいた複数の条件で複数回のデータ再生処理を実行し、前記複数の伝送速度と同じ数の再生データを生成する再生データ生成手段と、前記複数の再生データの中のいずれか一つの再生データを選択し、最終的な受信データとして出力する選択手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a burst optical signal in which a plurality of optical signals having any one of a plurality of predefined transmission rates are time-multiplexed. A receiving device for receiving, a conversion means for converting the burst optical signal into an electric signal, and a plurality of the electric signal with a plurality of conditions determined in advance corresponding to each of the plurality of transmission speeds A reproduction data generating means for generating the same number of reproduction data as the plurality of transmission speeds, selecting any one reproduction data from the plurality of reproduction data, and finally Selecting means for outputting as received data.
 本発明にかかる受信装置は、予め規定された複数の伝送速度の中のいずれか一つの伝送速度を有する複数の光信号が時間多重されたバースト光信号に対して、各伝送速度にそれぞれ対応させて予め決定しておいた複数の条件でデータ再生処理を実行し、得られた複数の再生データの中から最適なものを最終的な再生データ(受信データ)として選択することとしたので、受信処理の複雑さや処理時間を従来よりも低減させることができる、という効果を奏する。 The receiving apparatus according to the present invention is adapted to correspond to each transmission rate with respect to a burst optical signal in which a plurality of optical signals having any one of a plurality of predefined transmission rates are time-multiplexed. The data reproduction process is executed under a plurality of conditions determined in advance, and the optimum reproduction data is selected as the final reproduction data (reception data) from the obtained reproduction data. There is an effect that the processing complexity and processing time can be reduced as compared with the prior art.
 また、従来は適用が困難であったPONシステムの上り方向すなわち親局装置において、同一波長にて、異なる伝送速度のフレームが時間的に間欠、多重されたバースト光信号を受信することができる、という効果を奏する。 Further, in the upstream direction of the PON system, which is difficult to apply in the past, that is, in the master station device, it is possible to receive burst optical signals in which frames of different transmission speeds are intermittently and multiplexed at the same wavelength. There is an effect.
図1は、本発明にかかる受信装置の実施の形態1の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a receiving device according to the present invention. 図2は、受光部の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the light receiving unit. 図3は、最適位相クロック、エッジ位相およびサンプリング結果の関係を示す図である。FIG. 3 is a diagram showing the relationship between the optimum phase clock, the edge phase, and the sampling result. 図4は、高速データ用受信部の後段の多位相CLKサンプリング部から出力される最適位相クロック情報の一例を示す図である。FIG. 4 is a diagram illustrating an example of optimum phase clock information output from the multi-phase CLK sampling unit at the subsequent stage of the high-speed data receiving unit. 図5は、実施の形態2の受信装置の構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of a receiving apparatus according to the second embodiment. 図6は、バーストフレームの構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of a burst frame. 図7は、実施の形態3の受信装置の構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a receiving apparatus according to the third embodiment. 図8は、実施の形態4の受信装置が備える受光部の構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of a light receiving unit included in the receiving device of the fourth embodiment. 図9は、実施の形態5の受信装置の構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of a receiving apparatus according to the fifth embodiment.
符号の説明Explanation of symbols
 1、1c、1d 受光部
 2、2b、2d データ受信部
 21 高速データ用受信部
 22、2d2 低速データ用受信部
 3、3a、3b バースト同期処理部
 4 システムクロック生成部
 11 強度分岐光カプラ
 121、122、13 ホトダイオード
 211、212 バーストプリアンプ
 221、22d1、222、23 バーストリミティングアンプ
 311、312、36 多位相CLKサンプリング部
 32、32a 速度判定部
 33、33a データ選択部
 34、232 ヘッダ識別部
 35、231、331 スイッチ
 233 リミティングアンプ
 332 低速データ再生部
1, 1c, 1d Light receiving unit 2, 2b, 2d Data receiving unit 2 1 High-speed data receiving unit 2 2 , 2d 2 Low-speed data receiving unit 3, 3a, 3b Burst synchronization processing unit 4 System clock generation unit 11 Intensity split light Couplers 12 1 , 12 2 , 13 Photodiodes 21 1 , 21 2 Burst preamplifiers 22 1 , 22d 1 , 22 2 , 23 Burst limiting amplifiers 31 1 , 31 2 , 36 Multi-phase CLK sampling units 32, 32 a Speed determination unit 33, 33a Data selection unit 34, 232 Header identification unit 35, 231, 331 Switch 233 Limiting amplifier 332 Low-speed data reproduction unit
 以下に、本発明にかかる受信装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an embodiment of a receiving apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかる受信装置の実施の形態1の構成例を示す図である。図1に示したように、本実施の形態の受信装置は、光ファイバ経由で受信した光信号を電気信号に変換する受光部1(変換手段に相当)と、電気信号に変換された後の信号に対して複数の条件でデータ再生処理を行い複数の再生データを生成するデータ受信部2(再生データ生成手段に相当)と、入力信号である複数の再生データの中から最適な再生データを選択するバースト同期処理部3(選択手段に相当)と、システムクロック生成部4と、を備える。なお、この受信装置は、PONシステムの親局装置を構成し、光ファイバ経由で受光部1へ入力される光信号は、異なる伝送速度を有する複数の光信号が時間的に多重化された上り方向の光信号とする。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a receiving device according to the present invention. As shown in FIG. 1, the receiving apparatus according to the present embodiment includes a light receiving unit 1 (corresponding to a conversion unit) that converts an optical signal received via an optical fiber into an electrical signal, and a signal after being converted into an electrical signal. A data receiving unit 2 (corresponding to a reproduction data generating unit) that performs data reproduction processing on a signal under a plurality of conditions to generate a plurality of reproduction data, and optimum reproduction data from a plurality of reproduction data that are input signals A burst synchronization processing unit 3 (corresponding to selection means) to be selected and a system clock generation unit 4 are provided. This receiving apparatus constitutes a master station apparatus of the PON system, and an optical signal input to the light receiving unit 1 via an optical fiber is an uplink in which a plurality of optical signals having different transmission speeds are multiplexed in time. Directional optical signal.
 また、データ受信部2は、高伝送速度データを再生するための高速データ用受信部21および低伝送速度データを再生するための低速データ用受信部22を備え、また、高速データ用受信部21は、バーストプリアンプ211およびバーストリミティングアンプ221を備え、低速データ用受信部22は、バーストプリアンプ212およびバーストリミティングアンプ222を備える。ここで、高速データ用受信部21および低速データ用受信部22がデータ再生手段を構成し、バーストプリアンプ211および212がレベル調整手段を構成する。また、バーストリミティングアンプ221および222がビット判定手段を構成する。 Further, the data reception unit 2 includes a low-speed data reception section 2 2 for reproducing the reception unit 2 1 and the low transmission rate data for high-speed data for reproducing a high transmission rate data, also receiving high speed data The unit 2 1 includes a burst preamplifier 21 1 and a burst limiting amplifier 22 1 , and the low-speed data receiving unit 2 2 includes a burst preamplifier 21 2 and a burst limiting amplifier 22 2 . Here, the high-speed data receiver 2 1 and the low-speed data receiver 2 2 constitute data reproducing means, and the burst preamplifiers 21 1 and 21 2 constitute level adjusting means. The burst limiting amplifiers 22 1 and 22 2 constitute a bit determination means.
 また、バースト同期処理部3は、多位相CLK(クロック)サンプリング部311および312と、速度判定部32と、データ選択部33と、を備える。多位相CLKサンプリング部311および312は、システムクロックに基づいたタイミングで入力信号をサンプリングし、最適なサンプリングタイミングの判定結果およびサンプリング結果を出力する。速度判定部32は、受信信号の伝送速度を判定し、判定結果を出力する。データ選択部33は、速度判定部32による判定結果に基づいて、多位相CLKサンプリング部311または312から出力されたサンプリング結果を選択して出力する。ここで、多位相CLKサンプリング部311および312が最適位相判定手段を構成し、速度判定部32およびデータ選択部33が受信データ選択手段を構成する。 The burst synchronization processing unit 3 includes multi-phase CLK (clock) sampling units 31 1 and 31 2 , a speed determination unit 32, and a data selection unit 33. The multi-phase CLK sampling units 31 1 and 31 2 sample the input signal at a timing based on the system clock, and output a determination result of the optimum sampling timing and a sampling result. The speed determination unit 32 determines the transmission speed of the received signal and outputs a determination result. Data selection unit 33 based on the determination result by the speed determination unit 32 selects and outputs the sampling result output from the multi-phase CLK sampling unit 31 1 or 31 2. Here, the multi-phase CLK sampling units 31 1 and 31 2 constitute an optimum phase determination unit, and the speed determination unit 32 and the data selection unit 33 constitute a reception data selection unit.
 なお、以下の説明においては、簡単化のため、高伝送速度データの伝送速度を10.3125Gbps(ただし、これ以降は10.31Gbpsと記載する)とし、低伝送速度データの伝送速度を1.25Gbpsとして説明を行う。また、多位相CLKサンプリング部311および312のサンプリング位相数をN=8とする。ただし、これらの具体的数値を用いた説明は、本実施の形態の受信装置の動作を限定するものではない。 In the following explanation, for the sake of simplicity, the transmission rate of high transmission rate data is 10.3125 Gbps (hereinafter, described as 10.31 Gbps), and the transmission rate of low transmission rate data is 1.25 Gbps. Do. Further, the number of sampling phases of the multi-phase CLK sampling units 31 1 and 31 2 is N = 8. However, the description using these specific numerical values does not limit the operation of the receiving apparatus of this embodiment.
 つづいて、図1に示した受信装置による光バースト信号の受信動作を詳細に説明する。10.31Gbpsのデータ速度を持つバースト光信号フレーム(以下、光信号フレームaと記載する)と1.25Gbpsのデータ速度を持つバースト光信号フレーム(以下、光信号フレームbと記載する)が時間多重化された光信号が一芯の光ファイバを介して受光部1に入力されると、受光部1では、受光した光を電気(電流)信号に変換し、データ受信部2の高速データ用受信部21および低速データ用受信部22へ出力する。なお、図2は受光部1の構成例を示す図であり、受光部1は、強度分岐光カプラ11と、ホトダイオード(PD)121および122と、により構成されている。以下、この図に基づいて受光部1の動作を詳細に説明する。 Next, the reception operation of the optical burst signal by the receiving apparatus shown in FIG. 1 will be described in detail. A burst optical signal frame having a data rate of 10.31 Gbps (hereinafter referred to as optical signal frame a) and a burst optical signal frame having a data rate of 1.25 Gbps (hereinafter referred to as optical signal frame b) are time-multiplexed. When the received optical signal is input to the light receiving unit 1 through a single optical fiber, the light receiving unit 1 converts the received light into an electric (current) signal, and the data receiving unit 2 receives the high-speed data receiving unit 2. 1 and output to low-speed data receiver 2 2 . FIG. 2 is a diagram illustrating a configuration example of the light receiving unit 1, and the light receiving unit 1 includes an intensity branching optical coupler 11 and photodiodes (PD) 12 1 and 12 2 . Hereinafter, the operation of the light receiving unit 1 will be described in detail with reference to this figure.
 同一光波長にて時間多重化された光信号フレームaおよび光信号フレームbからなる光信号が一芯の光ファイバを介して受光部1に入力されると、その光信号は、強度分岐光カプラ11にて強度分岐され、10.31Gbps用に最適化された光-電気変換素子であるホトダイオード121および1.25Gbps用に最適化された光-電気変換素子であるホトダイオード122へ入力される。ここで、強度分岐光カプラ11にて分岐された光信号は、ホトダイオード121および122へ同時に入力される。そして、光信号フレームaおよび光信号フレームbからなる光信号は、各ホトダイオードにおいて、各バースト光信号データが混在した電気信号(各光信号フレームを変換して得られる電気信号フレームが時間的に多重された電気信号)に変換さる。そして、ホトダイオード121,122から出力された電気信号は、10.31Gbps用に最適化された高速データ用受信部21,1.25Gbps用に最適化された高速データ用受信部22に対してそれぞれ出力される。 When an optical signal composed of an optical signal frame a and an optical signal frame b time-multiplexed at the same optical wavelength is input to the light receiving unit 1 through a single optical fiber, the optical signal is converted into an intensity branching optical coupler. it is input to the photodiode 12 2 is an electrical transducer - optimized light to the photodiode 12 for 1 and 1.25Gbps an electric conversion element - 11 are intensity split by, optimized light for 10.31Gbps. Here, the optical signal branched by the intensity branching optical coupler 11 is simultaneously input to the photodiodes 12 1 and 12 2 . The optical signal composed of the optical signal frame a and the optical signal frame b is an electrical signal in which each burst optical signal data is mixed in each photodiode (the electrical signal frame obtained by converting each optical signal frame is temporally multiplexed). Converted into an electrical signal). The electrical signals output from the photodiodes 12 1 and 12 2 are sent to the high-speed data receiver 2 1 optimized for 10.31 Gbps and the high-speed data receiver 2 2 optimized for 1.25 Gbps. Each is output.
 受光部1から出力された電気信号を受け取ったデータ受信部2の高速データ用受信部21では、受け取った電気信号が10.31Gbps用に最適な増幅利得(Ga)を持つバーストプリアンプ211に入力され、バーストプリアンプ211は、入力された信号を増幅する。具体的には、バースト的に間欠し、また、各信号フレーム間の信号レベルがそれぞれ異なる各電気信号をその信号レベルに応じて、高速に所定の出力電気信号範囲となるように増幅する。バーストプリアンプ211により増幅された後の電気信号は、バーストリミティングアンプ221に入力される。バーストリミティングアンプ221においては、入力された電気信号フレームの各信号レベルに応じて識別しきい値が高速に抽出され、この識別しきい値に基づいたH,Lロジックレベルとして一定の電気レベルでバースト同期処理部3へ出力される。すなわち、バーストリミティングアンプ221は、識別しきい値を用いて入力信号のビット判定を行い、判定結果をHまたはLロジックレベルとして出力する。 In high speed data receiving section 2 1 of the data reception section 2 that has received the electric signal output from the light receiving unit 1, input to the burst preamplifier 21 1 electrical signal received has the best amplification gain (Ga) for 10.31Gbps The burst preamplifier 21 1 amplifies the input signal. Specifically, each electric signal that is intermittent in bursts and has a different signal level between signal frames is amplified according to the signal level so as to be within a predetermined output electric signal range. The electric signal after being amplified by the burst preamplifier 21 1 is input to the burst limiting amplifier 22 1 . In the burst limiting amplifier 22 1 , an identification threshold value is extracted at a high speed in accordance with each signal level of the input electric signal frame, and a constant electric level is set as the H and L logic levels based on the identification threshold value. Is output to the burst synchronization processing unit 3. That is, the burst limiting amplifier 22 1 performs bit determination of the input signal using an identification threshold, and outputs the determination result as H or L logic level.
 なお、バーストリミティングアンプ221より出力される出力信号には、最適に増幅,識別された10.31Gbpsのバースト信号データと同時に、1.25Gbpsのバースト信号データが時間的に多重された状態で含まれている。 Incidentally, the output signal output from the burst limiting amplifier 22 1 is optimally amplified simultaneously with the burst signal data of the identified 10.31Gbps, included in the state in which the burst signal data 1.25Gbps are temporally multiplexed ing.
 同様に、受光部1から出力された電気信号を受け取ったデータ受信部2の低速データ用受信部22では、ホトダイオード122から受け取った電気信号が1.25Gbps用に最適な増幅利得(Gb)を持つバーストプリアンプ212に入力され、バーストプリアンプ212は、入力された信号を増幅する。具体的には、バースト的に間欠し、また、各フレーム間の信号レベルがそれぞれ異なる電気信号をその信号レベルに応じて、高速に所定の出力電気信号範囲となるように増幅する。バーストプリアンプ212により増幅された後の電気信号は、バーストリミティングアンプ222に入力される。バーストリミティングアンプ222においては、入力された電気信号フレームの各信号レベルに応じて識別しきい値が高速に抽出され、この識別しきい値に基づいたH,Lロジックレベルとして一定の電気レベルでバースト同期処理部3へ出力される。 Similarly, the low-speed data reception section 2 2 of the data reception section 2 that has received the electric signal output from the light receiving unit 1, the optimal amplification gain for the electric signal received from the photodiode 12 2 is 1.25Gbps a (Gb) It is input to the burst preamplifier 21 2 having, burst preamplifier 21 2 amplifies the input signal. Specifically, electrical signals that are intermittent in bursts and have different signal levels between frames are amplified according to the signal level so as to be within a predetermined output electrical signal range. The electric signal after being amplified by the burst preamplifier 21 2 is input to the burst limiting amplifier 22 2 . In the burst limiting amplifier 22 2 , an identification threshold value is extracted at a high speed according to each signal level of the input electric signal frame, and a constant electric level is set as the H and L logic levels based on the identification threshold value. Is output to the burst synchronization processing unit 3.
 なお、バーストリミティングアンプ222より出力される出力信号には、最適に増幅,識別された1.25Gbpsのバースト信号データと同時に、10.31Gbpsのバースト信号データが時間的に多重された状態で含まれている。 Incidentally, the output signal output from the burst limiting amplifier 22 2 is optimally amplified simultaneously with the burst signal data identified 1.25 Gbps, included in the state in which the burst signal data 10.31Gbps is temporally multiplexed ing.
 データ受信部2から出力された信号を受け取ったバースト同期処理部3は、高速データ用受信部21から出力された信号(バースト電気信号)から、速度が10.31Gbpsのデータのみを抽出し、システムクロック生成部4から出力されたシステムクロックに同期させる。また、低速データ用受信器22から出力された信号(バースト電気信号)から、速度が1.25Gbpsのデータのみを抽出し、システムクロック生成部4から出力されたシステムクロックに同期させる。そして、システムクロックに同期した10.31Gbpsデータおよび1.25Gbpsデータのいずれか一方を選択し、識別再生同期データ(再生された受信データ)として出力する。以下に、この受信データを再生する動作を詳細に説明する。 Burst synchronization processing section 3 that has received the signal outputted from the data receiver 2, the signal output from the high-speed data receiving section 2 1 (burst electric signal), the speed to extract only data 10.31Gbps, system Synchronize with the system clock output from the clock generator 4. Further, the signal output from the low-speed data receiver 2 2 (burst electric signal), the speed to extract only data of 1.25 Gbps, synchronized to the system clock output from system clock generator 4. Then, either 10.31 Gbps data or 1.25 Gbps data synchronized with the system clock is selected and output as identification reproduction synchronization data (reproduced reception data). The operation for reproducing the received data will be described in detail below.
 データ受信部2の高速データ用受信部211から出力された信号はバースト同期処理部3の多位相CLKサンプリング部311へ入力され、多位相CLKサンプリング部311は、システムクロックに同期した10.31GHz×8位相クロックにて入力信号(高速データ用受信部211からの出力データ)をサンプリングする。そして、各位相クロックにてサンプリングしたデータ系列の中から、最適位相クロックにてサンプリングしたデータ系列1系列を選択してデータ選択部33へ出力する。同時に、出力データに対する最適位相クロック(最適なサンプリングタイミング)の情報を最適位相情報として速度判定部32へ出力する。 The signal output from the data receiving unit high speed data receiver unit 21 1 of 2 is inputted to the multi-phase CLK sampling unit 31 1 of the burst synchronization processing unit 3, the multi-phase CLK sampling unit 31 1, synchronized to the system clock 10.31 The input signal (output data from the high-speed data receiving unit 21 1 ) is sampled with a GHz × 8 phase clock. Then, one data series sampled with the optimum phase clock is selected from the data series sampled with each phase clock and output to the data selection unit 33. At the same time, information on the optimum phase clock (optimum sampling timing) for the output data is output to the speed determination unit 32 as optimum phase information.
 ここで、最適位相クロックは、サンプリングされたエッジ(データ変化点)位相から最も離れた位相クロックとする。最適位相クロックとエッジ位相との関係について、図3を用いて説明する。図3は、最適位相クロック、エッジ位相およびサンプリング結果の関係を示す図であり、一例として、位相クロック<4>を最適位相と判定する場合を模式的に示している。この例では、各位相のクロック<0>~<7>にてサンプリングしたデータ系列<0>~<7>の中から、データエッジ(変化点)位相を位相クロック<0>と位相クロック<7>と判定し、さらに、これらのデータエッジ位相から最も離れた位相クロック<4>を最適位相として判定する。また、図3に示したように、サンプリング結果として、データ系列<4>をシステムクロックに同期させて出力する。すなわち、多位相CLKサンプリング部311は、最適位相でのサンプリング結果を1システムクロック周期にわたって出力する。たとえば、最適位相でのサンプリング結果がHであれば、この最適位相に対応する(前後する)2つのデータエッジ位相で挟まれた区間でHを出力する。この結果、多位相CLKサンプリング部311は、高速データ用受信部21から入力された信号と同じ信号を出力することとなる。 Here, the optimum phase clock is a phase clock farthest from the sampled edge (data change point) phase. The relationship between the optimum phase clock and the edge phase will be described with reference to FIG. FIG. 3 is a diagram showing the relationship between the optimum phase clock, the edge phase, and the sampling result. As an example, the case where the phase clock <4> is determined as the optimum phase is schematically shown. In this example, from the data series <0> to <7> sampled by the clocks <0> to <7> of each phase, the phase of the data edge (change point) is phase clock <0> and phase clock <7 In addition, the phase clock <4> farthest from these data edge phases is determined as the optimum phase. Further, as shown in FIG. 3, the data sequence <4> is output in synchronization with the system clock as a sampling result. That is, the multi-phase CLK sampling unit 31 1 outputs the sampling result at the optimum phase for one system clock cycle. For example, if the sampling result at the optimum phase is H, H is output in a section between two data edge phases corresponding to (before and after) the optimum phase. As a result, the multi-phase CLK sampling unit 31 1 outputs the same signal as the signal input from the high-speed data receiving unit 2 1 .
 つぎに、速度判定部32の動作を説明する。図4は、多位相CLKサンプリング部311から出力される最適位相クロック情報の一例を示す図である。たとえば、10.31Gbpsのデータ(入力データ)を10.31GHzクロックでサンプリングした場合、入力データジッタおよびサンプリングクロックに重畳したジッタ成分を無視すれば、常に任意の固定最適位相情報が出力される。図4に示した例では、最適位相として位相クロック<4>が常に出力されている。一方、上述したように、高速データ用受信部21からの出力信号データは、10.31Gbpsデータだけでなく、1.25Gbpsデータが時間的に多重されたものである。そして、1.25Gbpsデータは10.31GHzクロック周波数速度に対して整数倍にないため、1.25Gbpsデータから求めた最適位相は時間的に変動する。例えば、1.25Gbpsの8倍は10Gbpsであり、10Gbpsのデータを10.31GHzクロックでサンプリングした場合、次式(1)の関係が成立する。 Next, the operation of the speed determination unit 32 will be described. Figure 4 is a diagram showing an example of the optimum phase clock information outputted from the multi-phase CLK sampling unit 31 1. For example, when 10.31 Gbps data (input data) is sampled with a 10.31 GHz clock, arbitrary fixed optimum phase information is always output if the input data jitter and the jitter component superimposed on the sampling clock are ignored. In the example shown in FIG. 4, the phase clock <4> is always output as the optimum phase. On the other hand, as described above, the output signal data from the high speed data receiving section 2 1 not only 10.31Gbps data, and 1.25Gbps data is temporally multiplexed. Since the 1.25 Gbps data is not an integer multiple of the 10.31 GHz clock frequency rate, the optimum phase obtained from the 1.25 Gbps data varies with time. For example, 8 times 1.25 Gbps is 10 Gbps, and when 10 Gbps data is sampled with a 10.31 GHz clock, the relationship of the following equation (1) is established.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 そして、式(1)は、次の様に解釈できる。10Gbpsのデータを10.31GHzクロックでサンプリングした場合、10.31Gbpsデータ出力として32ビット毎に1ビットずつずれる、すなわち、32ビットを一周期として、最適位相情報が時間的に変化することとなる。図4は、この現象を示しており、1.25Gbpsのデータを10.31GHzにてサンプリングした場合、32ビット毎に最適位相が一周期変動している事が分かる。そこで、速度判定部32では、この最適位相情報の周期的な変動情報を速度情報として利用して伝送速度を判定する。すなわち、多位相CLKサンプリング部311から出力された最適位相情報のうち、時間的に固定の最適位相情報が抽出された時間区間を10.31Gbpsデータ区間、時間的に最適位相情報が周期変動している区間を1.25Gbpsデータ区間、と判定し、判定結果を速度判定信号としてデータ選択部33へ出力する。 Equation (1) can be interpreted as follows. When 10 Gbps data is sampled with a 10.31 GHz clock, the 10.31 Gbps data output shifts by 1 bit every 32 bits, that is, the optimum phase information changes with time, with 32 bits as one cycle. FIG. 4 shows this phenomenon. It can be seen that when 1.25 Gbps data is sampled at 10.31 GHz, the optimum phase fluctuates by one cycle every 32 bits. Therefore, the speed determination unit 32 determines the transmission speed using the periodic fluctuation information of the optimum phase information as speed information. That is, of the optimum phase information output from the multi-phase CLK sampling unit 31 1, time-fixed optimum phase information extracted time segment of 10.31Gbps data interval, the time-optimal phase information by periodic variation And the determination result is output to the data selection unit 33 as a speed determination signal.
 また、データ受信部2の高速データ用受信部212から出力された信号はバースト同期処理部3の多位相CLKサンプリング部312へ入力され、多位相CLKサンプリング部312は、システムクロックに同期した1.25GHz×8位相クロックにて入力信号をサンプリングし、上述した高速データ用受信部211と同様に、1.25Gbpsのデータが入力された場合は、固定の最適位相情報と、最適位相クロックにてサンプリングしたデータ系列と、を出力する。 The signal output from the high-speed data receiving unit 21 2 of the data receiving unit 2 is input to the multi-phase CLK sampling unit 312 of the burst synchronization processing unit 3, and the multi-phase CLK sampling unit 31 2 is synchronized with the system clock. sampling the input signal at the 1.25 GHz × 8-phase clock, similarly to the high speed data receiving section 21 1 described above, when the data of 1.25Gbps is input, the fixing of optimum phase information, the optimum phase clock And the sampled data series.
 ここで、10.31Gbpsデータは、低速データ用受信部22においては正常に増幅、識別されない。これは、通常1.25Gbps用に最適化された光受信器(図1に示した受信装置では低速データ用受信部22に相当)は、低雑音とするために1GHz程度に狭帯域化されたローパスフィルタとして機能するためであり、10.31Gbpsデータを正常に出力することが出来ない。そのため、多位相CLKサンプリング部312は、10.31Gbpsデータが入力された時間区間では、不定の最適位相情報を出力することとなる。すなわち、1.25Gbpsデータ区間でのみ最適位相情報を正常に出力する。 Here, 10.31Gbps data, normally amplified in the low-speed data reception unit 2 2, not identified. This is because the optical receiver normally optimized for 1.25 Gbps (corresponding to the low-speed data receiver 2 2 in the receiving apparatus shown in FIG. 1) has been narrowed to about 1 GHz to reduce noise. Because it functions as a low-pass filter, 10.31Gbps data cannot be output normally. Therefore, the multi-phase CLK sampling unit 31 2, in the time interval in which 10.31Gbps data is input, and to output the indeterminate optimum phase information. That is, the optimum phase information is normally output only in the 1.25 Gbps data section.
 従って、多位相CLKサンプリング部312から出力される最適位相情報を速度判定部32へ入力し、上述した多位相CLKサンプリング部311から出力された最適位相情報出力の中で、周期性情報を持つ時間区間と、多位相CLKサンプリング部312から出力された最適位相情報出力が固定の出力となる時間区間の積をとることで、速度判定誤り確率を軽減させることができる。 Thus, the multi-phase CLK enter the optimum phase information output from the sampling unit 31 2 to the speed determination unit 32, among the optimum phase information output outputted from the multi-phase CLK sampling unit 31 1 described above, the periodicity information and time intervals with, that optimum phase information output which is output from the multi-phase CLK sampling unit 31 2 takes the product of the outputs become time interval of fixed, it is possible to reduce the rate decision error probability.
 以上の説明は、データ及びクロックにジッタがない理想的な場合を前提としたが、仮にジッタが重畳した場合でも、通常のジッタ周期としては2MHz程度に制限されており、ここで示す最適位相変動周期は10.31GHz/32=322MHzとジッタ変動に対して非常に速いため、ある時間区間では等価的に固定の最適位相とみなすことができる。よって、ジッタが重畳した場合でであっても、上記と同様な速度判定信号を生成できる。 The above explanation is based on an ideal case where there is no jitter in the data and the clock. However, even if jitter is superimposed, the normal jitter period is limited to about 2 MHz, and the optimum phase fluctuation shown here Since the period is 10.31 GHz / 32 = 322 MHz, which is very fast against jitter fluctuation, it can be regarded as a fixed optimum phase equivalently in a certain time interval. Therefore, even when jitter is superimposed, a speed determination signal similar to the above can be generated.
 データ選択部33は、速度判定部32から入力された速度判定信号に基づいて、多位相CLKサンプリング部311から入力されたデータ系列または多位相CLKサンプリング部312から入力されたデータ系列を選択し、識別再生同期データ(最終的な受信データ)として出力する。具体的には、速度判定信号が10.31Gbpsデータ区間を示す区間では多位相CLKサンプリング部311から入力されたデータ系列を出力し、1.25Gbpsデータ区間を示す区間では多位相CLKサンプリング部312から入力されたデータ系列を出力する。 Data selection unit 33, based on the speed determination signal input from the speed determination unit 32, selects the multi-phase CLK data sequence is input from the sampling unit 31 1 or the multi-phase CLK input data sequence from the sampling unit 31 2 And output as identification reproduction synchronization data (final received data). Specifically, in a section where the speed determination signal indicates 10.31Gbps data section outputs a data sequence input from the multi-phase CLK sampling unit 31 1, from multi-phase CLK sampling unit 31 2 in the section showing the 1.25Gbps data section Output the input data series.
 このように、本実施の形態の受信装置は、異なる伝送速度の光信号が時間多重された信号の中の特定伝送速度の信号から受信データを再生するためのブロック(上記バーストプリアンプおよびバーストリミティングアンプからなる構成)を、複数備え、入力信号に対して各ブロックが個別にデータ再生処理を実行して得られた複数の再生データの中から最適なものを選択して最終的な再生データ(受信データ)として出力することとした。これにより、PONシステムの上り方向すなわち親局装置において、同一波長にて、異なる伝送速度のフレームが時間的に間欠、多重された上りバースト光信号を受信することができる。 As described above, the receiving apparatus according to the present embodiment is a block for reproducing received data from a signal having a specific transmission rate in a signal obtained by time-multiplexing optical signals having different transmission rates (the burst preamplifier and burst limiting). A plurality of amplifiers), and each block individually executes data reproduction processing on the input signal, and selects the optimum reproduction data from the plurality of reproduction data to obtain final reproduction data ( Output as received data). As a result, in the upstream direction of the PON system, that is, in the master station apparatus, it is possible to receive an upstream burst optical signal in which frames having different transmission rates are intermittently multiplexed at the same wavelength.
 また、受信データの再生処理を実行するブロックを複数備え、各ブロックには、特定伝送速度のデータを再生するための最適な条件を予め設定しておくこととし、また、複数の再生データに対して特定周期でサンプリングを行って得られた位相判定結果に基づいて伝送速度を判定することとしたので、従来の受信装置で必要としていた複雑な速度判定信号抽出機能と、速度判定信号に基づいたバーストプリアンプ及びバーストリミティングアンプの制御が不要となり、受信装置の低コスト化が実現できる。 In addition, a plurality of blocks for executing reception data reproduction processing are provided, and in each block, optimum conditions for reproducing data at a specific transmission rate are set in advance. Since the transmission rate is determined based on the phase determination result obtained by sampling at a specific period, it is based on the complicated rate determination signal extraction function required by the conventional receiver and the speed determination signal. Control of the burst preamplifier and burst limiting amplifier is unnecessary, and the cost of the receiving apparatus can be reduced.
実施の形態2.
 つづいて、実施の形態2の受信装置について説明する。図5は、実施の形態2の受信装置の構成例を示す図である。本実施の形態の受信装置は、実施の形態1で示した受信装置(図1参照)のバースト同期処理部3に代えてバースト同期処理部3aを備えた構成をとる。なお、バースト同期処理部3a以外の構成は実施の形態1の受信装置と同様であるため、同一の符号を付してその説明は省略する。
Embodiment 2. FIG.
Next, the receiving apparatus according to the second embodiment will be described. FIG. 5 is a diagram illustrating a configuration example of a receiving apparatus according to the second embodiment. The receiving apparatus of this embodiment has a configuration including a burst synchronization processing unit 3a instead of the burst synchronization processing unit 3 of the receiving apparatus (see FIG. 1) shown in the first embodiment. Since the configuration other than the burst synchronization processing unit 3a is the same as that of the receiving apparatus of the first embodiment, the same reference numerals are given and the description thereof is omitted.
 バースト同期処理部3a(受信データ再生手段に相当)は、速度判定部32aと、データ選択部33aと、ヘッダ識別部34と、スイッチ35と、多位相CLKサンプリング部36と、を備え、また、データ選択部33aは、スイッチ331および低速データ再生部332を備える。ここで、ヘッダ識別部34およびスイッチ35が再生データ選択手段を構成し、速度判定部32aおよびデータ選択部33aが最終受信データ再生手段を構成する。 The burst synchronization processing unit 3a (corresponding to the reception data reproduction means) includes a speed determination unit 32a, a data selection unit 33a, a header identification unit 34, a switch 35, and a multiphase CLK sampling unit 36. The data selection unit 33 a includes a switch 331 and a low speed data reproduction unit 332. Here, the header identification unit 34 and the switch 35 constitute a reproduction data selection unit, and the speed determination unit 32a and the data selection unit 33a constitute a final reception data reproduction unit.
 速度判定部32aは、受信信号の伝送速度を判定し、判定結果を出力する。データ選択部33aは、速度判定部32aおよび多位相CLKサンプリング部36からの入力信号に基づいて受信データを再生する。具体的には、速度判定部32aから受け取った速度判定信号の内容に従い、スイッチ331が、多位相CLKサンプリング部36からの入力信号(入力データ)の出力先を切り替える。すなわち、入力データを最終的な再生データ(識別再生同期データ)としてそのまま出力するか、低速データ再生部332へ渡すかを切り替える。低速データ再生部332は、低速データ再生部332からデータを受け取った場合、そのデータに基づいて受信データ(低伝送速度データ)を再生する。 The speed determination unit 32a determines the transmission speed of the received signal and outputs a determination result. The data selection unit 33a reproduces the received data based on the input signals from the speed determination unit 32a and the multiphase CLK sampling unit 36. Specifically, the switch 331 switches the output destination of the input signal (input data) from the multiphase CLK sampling unit 36 according to the content of the speed determination signal received from the speed determination unit 32a. That is, switching is made between whether the input data is output as it is as final reproduction data (identification reproduction synchronization data) or is passed to the low-speed data reproduction unit 332. When receiving data from the low-speed data reproducing unit 332, the low-speed data reproducing unit 332 reproduces received data (low transmission rate data) based on the data.
 ヘッダ識別部34は、高速データ用受信部21経由で受け取った受信フレームのヘッダに含まれている情報を解析し、解析結果に基づいてスイッチ35を制御する。スイッチ35はヘッダ識別部34からの指示に従い、高速データ用受信部21または低速データ用受信部22のいずれか一方からの出力信号を選択して多位相CLKサンプリング部36へ入力させる。多位相CLKサンプリング部36は、システムクロックに基づいたタイミングで入力信号をサンプリングし、サンプリング結果を出力する。 Header identification unit 34 analyzes the information contained in the header of the received frame received via the receiving unit 2 1 for high-speed data, and controls the switch 35 based on the analysis result. Switch 35 in accordance with an instruction from the header identification unit 34, is input by selecting the output signal from one of the high-speed data receiving section 2 1 or low-speed data reception section 2 2 to the multi-phase CLK sampling unit 36. The multi-phase CLK sampling unit 36 samples an input signal at a timing based on the system clock and outputs a sampling result.
 以下に、バースト同期処理部3aの動作を詳細に説明する。なお、上述した実施の形態1と同様に、高伝送速度データの伝送速度を10.3125Gbps(ただし記載上は10.31Gbpsとする)とし、低伝送速度データの伝送速度を1.25Gbpsとして説明を行う。また、多位相CLKサンプリング部36のサンプリング位相数をN=8とする。 Hereinafter, the operation of the burst synchronization processing unit 3a will be described in detail. As in the first embodiment, the transmission rate of high transmission rate data is 10.3125 Gbps (note that it is 10.31 Gbps in the description), and the transmission rate of low transmission rate data is 1.25 Gbps. The number of sampling phases of the multi-phase CLK sampling unit 36 is N = 8.
 バースト同期処理部3aのヘッダ識別部34では、高速データ用受信部21から出力されたバースト電気信号から、各バーストフレームの先頭領域のヘッダ区間を検出する。そして、そのヘッダ区間に格納された情報に応じて、スイッチ35を制御し、高速データ用受信部21出力および低速データ用受信部22出力のいずれか一方を多位相CLKサンプリング部36へ入力させる。なお、図6はバーストフレームの構成例を示す図である。図6に示したように、バーストフレームは、通常、固定周波数成分となる“10”交番パタンがヘッダとして準備されている。そのため、ヘッダ識別部34は、このヘッダ区間の周波数成分を検出することで、高速データ用受信部21から出力された10.31Gbpsデータ区間と低速データ用受信部22から出力された1.25Gbpsデータ区間とを切り替え、多位相CLKサンプリング部36へ出力するようにスイッチ35を制御する。図6の例では、ヘッダとしてhxAAAA…(10101010101010…)が挿入されており、ヘッダ識別部34は、この区間で5.156GHzの周波数を検出した場合、伝送速度が10.31Gbpsと判断して高速データ用受信部21の出力を選択するようにスイッチ35を制御する。一方、625MHzの周波数を検出した場合には、伝送速度が1.25Gbpsと判断して低速データ用受信部22の出力を選択するようにスイッチ35を制御する。 The header identification unit 34 of the burst synchronization processing unit 3a, a burst electric signal output from the high-speed data receiving section 2 1, to detect the header section of the first part of each burst frame. Then, the depending on the information stored in the header section, and controls the switch 35, input either for high speed data receiving section 2 1 output and the reception section 2 2 output the low-speed data to the multi-phase CLK sampling section 36 Let FIG. 6 is a diagram illustrating a configuration example of a burst frame. As shown in FIG. 6, in a burst frame, a “10” alternating pattern that is a fixed frequency component is usually prepared as a header. Therefore, the header identifying section 34, by detecting the frequency component of the header section, 1.25 Gbps data output from 10.31Gbps data section and the low speed data receiving section 2 2 output from the high-speed data receiving section 2 1 The switch 35 is controlled so as to switch between the sections and to output to the multi-phase CLK sampling unit 36. In the example of FIG. 6, hxAAAA... (10101010101010...) Is inserted as a header. It controls the switch 35 to select the output of the receiving section 2 1. On the other hand, when detecting a frequency of 625MHz controls the switch 35 so that the transmission speed to select the output of the receiving unit 2 2 for the low-speed data determines that the 1.25 Gbps.
 多位相CLKサンプリング部36は、実施の形態1の受信装置が備えていた多位相CLKサンプリング部311と同じ処理を実行し、最適位相クロックにてサンプリングしたデータ系列をデータ選択部33aへ、また、最適位相クロックの情報である最適位相情報を速度判定部32aへ出力する。 Polyphase CLK sampling unit 36 performs the same processing as the multi-phase CLK sampling unit 31 1 receiving apparatus equipped with the first embodiment, the sampled data sequence at the optimum phase clock to the data selector 33a, also Then, the optimum phase information which is the information of the optimum phase clock is output to the speed determination unit 32a.
 速度判定部32aは、実施の形態1の受信装置が備えていた速度判定部32と同じ判定方法により、受信データの伝送速度を判定し、判定結果をデータ選択部33aに対して出力する。 The speed determination unit 32a determines the transmission speed of the received data by the same determination method as the speed determination unit 32 provided in the receiving apparatus of Embodiment 1, and outputs the determination result to the data selection unit 33a.
 データ選択部33aにおいて、スイッチ331は、速度判定部32aから入力された速度判定信号が10.31Gbpsデータ区間を示す場合、多位相CLKサンプリング部36からの出力を識別再生同期データ(高速データ)として出力する。一方、速度判定信号が1.25Gbpsデータ区間を示す場合には、多位相CLKサンプリング部36からの出力を低速データ再生部332へ出力する。 In the data selection unit 33a, the switch 331 outputs the output from the multiphase CLK sampling unit 36 as identification reproduction synchronization data (high-speed data) when the speed determination signal input from the speed determination unit 32a indicates a 10.31 Gbps data section. To do. On the other hand, when the speed determination signal indicates a 1.25 Gbps data section, the output from the multiphase CLK sampling unit 36 is output to the low-speed data reproduction unit 332.
 多位相CLKサンプリング部36からの信号が入力された場合、低速データ再生部332は、入力信号に基づいて1.25Gbpsデータを再生する。具体的なデータ再生手順を示すと、実施の形態1で説明したように、1.25Gbpsの8倍である10.0Gbpsデータと10.31Gbpsの間には、「10.0Gbps×32bit=10.31Gbps×33bit」の関係が成り立っている。そのため、低速データ再生部332は、10.31GHzにてサンプリングされたデータを33bit区切りとし、その内、32bitを有効データ区間、1bitを無効区間として抽出し、さらに32bitデータを8bit毎に抽出することで1.25Gbpsデータ列を再生する。また、低速データ再生部332は、この再生したデータを1.25Gbpsの識別再生同期データ(低速データ)として出力する。 When the signal from the multi-phase CLK sampling unit 36 is input, the low speed data reproducing unit 332 reproduces 1.25 Gbps data based on the input signal. The specific data reproduction procedure is as follows. As described in the first embodiment, between 10.0 Gbps data and 10.31 Gbps, which is eight times 1.25 Gbps, “10.0 Gbps × 32 bit = 10.31 Gbps × 33 bit” A relationship is established. Therefore, the low-speed data reproduction unit 332 extracts the data sampled at 10.31 GHz as 33-bit segments, extracts 32 bits as an effective data section, 1 bit as an invalid section, and further extracts 32 bit data every 8 bits. Play a 1.25Gbps data string. The low-speed data reproduction unit 332 outputs the reproduced data as identification reproduction synchronization data (low-speed data) of 1.25 Gbps.
 このように、本実施の形態の受信装置は、異なる伝送速度の光信号が時間多重された信号の中の特定伝送速度の信号から受信データを再生するためのブロック(上記バーストプリアンプおよびバーストリミティングアンプからなる構成)を、複数備え、入力信号に対して各ブロックが個別にデータ再生処理を実行して得られた複数の再生データの中から最適なものを選択し、選択した信号に基づいて最終的な受信データを再生することとした。これにより、実施の形態1の受信装置と同様の効果が得られるとともに、実施の形態1の受信装置と比較して、回路規模および消費電力を低減させることができる。 As described above, the receiving apparatus according to the present embodiment is a block for reproducing received data from a signal having a specific transmission rate in a signal obtained by time-multiplexing optical signals having different transmission rates (the burst preamplifier and burst limiting). A plurality of amplifiers), each block individually performing data reproduction processing on the input signal, and selecting the optimum reproduction data from a plurality of reproduction data, based on the selected signal The final received data was reproduced. Thereby, the same effect as that of the receiving apparatus of the first embodiment can be obtained, and the circuit scale and power consumption can be reduced as compared with the receiving apparatus of the first embodiment.
実施の形態3.
 つづいて、実施の形態3の受信装置について説明する。図7は、実施の形態3の受信装置の構成例を示す図である。本実施の形態の受信装置は、実施の形態1で示した受信装置(図1参照)のデータ受信部2およびバースト同期処理部3に代えてデータ受信部2bおよびバースト同期処理部3b(受信データ再生手段に相当)を備えた構成をとる。なお、受光部1は実施の形態1で示したものと同じものであるため、説明は省略する。
Embodiment 3 FIG.
Next, the receiving apparatus according to the third embodiment will be described. FIG. 7 is a diagram illustrating a configuration example of a receiving apparatus according to the third embodiment. The receiving apparatus according to the present embodiment replaces the data receiving section 2 and burst synchronization processing section 3 of the receiving apparatus (see FIG. 1) shown in the first embodiment with a data receiving section 2b and burst synchronization processing section 3b (received data). (Corresponding to reproducing means). In addition, since the light-receiving part 1 is the same as what was shown in Embodiment 1, description is abbreviate | omitted.
 データ受信部2bは、バーストプリアンプ211および212(レベル調整手段に相当)と、バーストリミティングアンプ23(受信データ候補生成手段に相当)と、を備え、また、バーストリミティングアンプ23は、スイッチ231、ヘッダ識別部232および利得切替型のリミティングアンプ233を備える。なお、バーストプリアンプ211および212は、実施の形態1の受信装置が備えていたバーストプリアンプ211および212と同じものであるため、説明は省略する。 The data receiving unit 2b includes burst preamplifiers 21 1 and 21 2 (corresponding to level adjusting means) and a burst limiting amplifier 23 (corresponding to reception data candidate generating means), and the burst limiting amplifier 23 includes: A switch 231, a header identification unit 232, and a gain switching type limiting amplifier 233 are provided. Note that burst preamplifiers 21 1 and 21 2 are the same as burst preamplifiers 21 1 and 21 2 provided in the receiving apparatus of the first embodiment, and thus description thereof is omitted.
 データ受信部2bのバーストリミティングアンプ23は、バーストプリアンプ211または212からの出力を選択し、さらに、選択した信号に基づいて仮の受信データ(受信データの候補)を生成する。バーストリミティングアンプ23を構成する各部の動作を簡単に説明すると、ヘッダ識別部232は、バーストプリアンプ211から受け取った受信フレームのヘッダに含まれている情報を解析し、解析結果に基づいてスイッチ231およびリミティングアンプ233を制御する。スイッチ231はヘッダ識別部232からの指示に従い、バーストプリアンプ211またはバーストプリアンプ212からの出力信号を選択してリミティングアンプ233へ出力する。リミティングアンプ233は、ヘッダ識別部232から指示された識別しきい値を用いて入力信号のビット判定を行う。 The burst limiting amplifier 23 of the data reception unit 2b selects the output from the burst preamplifier 21 1 or 21 2 , and further generates temporary reception data (reception data candidate) based on the selected signal. The operation of each unit constituting the burst limiting amplifier 23 will be briefly described. The header identifying unit 232 analyzes information included in the header of the received frame received from the burst preamplifier 21 1 , and switches based on the analysis result. 231 and the limiting amplifier 233 are controlled. The switch 231 selects an output signal from the burst preamplifier 21 1 or the burst preamplifier 21 2 in accordance with an instruction from the header identification unit 232 and outputs the selected signal to the limiting amplifier 233. The limiting amplifier 233 performs bit determination of the input signal using the identification threshold value instructed from the header identifying unit 232.
 また、バースト同期処理部3bは、実施の形態2の受信装置(図5参照)が備えていたバースト同期処理部3aからヘッダ識別部34およびスイッチ35を取り除いたものであり、これ以外の部分についてはバースト同期処理部3aと同様である。そのため、バースト同期処理部3aの各構成要素に付与したものと同じ符号を付してその説明は省略する。 The burst synchronization processing unit 3b is obtained by removing the header identification unit 34 and the switch 35 from the burst synchronization processing unit 3a provided in the receiving apparatus (see FIG. 5) according to the second embodiment. Is the same as the burst synchronization processing unit 3a. For this reason, the same reference numerals as those assigned to the respective constituent elements of the burst synchronization processing unit 3a are given and the description thereof is omitted.
 以下に、データ受信部2bの動作を詳細に説明する。ただし、本実施の形態では、実施の形態1のデータ受信部2に含まれていない構成要素であるバーストリミティングアンプ23についてのみ説明を行う。なお、上述した実施の形態1と同様に、高伝送速度データの伝送速度を10.3125Gbps(ただし記載上は10.31Gbpsとする)とし、低伝送速度データの伝送速度を1.25Gbpsとして説明を行う。また、多位相CLKサンプリング部36のサンプリング位相数をN=8とする。 Hereinafter, the operation of the data receiving unit 2b will be described in detail. However, in the present embodiment, only the burst limiting amplifier 23 that is a component not included in the data receiving unit 2 of the first embodiment will be described. As in the first embodiment, the transmission rate of high transmission rate data is 10.3125 Gbps (note that it is 10.31 Gbps in the description), and the transmission rate of low transmission rate data is 1.25 Gbps. The number of sampling phases of the multi-phase CLK sampling unit 36 is N = 8.
 バーストプリアンプ211からの出力信号を受け取ると、バーストリミティングアンプ23では、まず、ヘッダ識別部232が、受け取ったバーストフレームの先頭領域のヘッダ区間を検出する。そして、そのヘッダ区間に格納された情報に応じてスイッチ231を制御し、バーストプリアンプ211出力およびバーストプリアンプ212出力のいずれか一方をリミティングアンプ233へ入力させる。なお、ヘッダ識別部232がバーストフレームの先頭領域のヘッダ区間を検出し、スイッチ231を制御する動作は、実施の形態2で説明したヘッダ識別部34の動作と同様である。すなわち、ヘッダ区間の情報を用いてバーストフレームの伝送速度を判定し、判定結果に対応するバーストプリアンプからの信号がリミティングアンプ233へ入力されるようにスイッチ231を制御する。ヘッダ識別部232は、また、判定結果に基づいてリミティングアンプ233の設定を変更する。すなわち、判定した伝送速度が10.31Gbpsであれば実施の形態1で示したバーストリミティングアンプ221と同じ設定となるように設定を変更し、一方、判定した伝送速度が1.25Gbpsであれば実施の形態1で示したバーストリミティングアンプ222と同じ設定となるように設定を変更する。 When receiving the output signal from the burst preamplifier 21 1 , in the burst limiting amplifier 23, first, the header identifying unit 232 detects the header section of the head region of the received burst frame. Then, the switch 231 is controlled according to the information stored in the header section, and either the burst preamplifier 21 1 output or the burst preamplifier 21 2 output is input to the limiting amplifier 233. The operation of the header identifying unit 232 detecting the header section of the head region of the burst frame and controlling the switch 231 is the same as the operation of the header identifying unit 34 described in the second embodiment. That is, the burst frame transmission rate is determined using the header section information, and the switch 231 is controlled so that the signal from the burst preamplifier corresponding to the determination result is input to the limiting amplifier 233. The header identification unit 232 also changes the setting of the limiting amplifier 233 based on the determination result. That is, the transmission rate is determined to change settings so that the burst limiting amplifier 22 1 and the same configuration shown in the first embodiment if 10.31Gbps, whereas, the transmission rate is determined is if 1.25Gbps embodiment The setting is changed so that the setting is the same as that of the burst limiting amplifier 22 2 shown in the first embodiment.
 次に、リミティングアンプ233が、入力されたフレームの信号レベルに応じた識別しきい値(ヘッダ識別部232により設定された識別しきい値)を用いてしきい値判定を行い、判定結果をH,Lロジックレベルとして出力する。 Next, the limiting amplifier 233 performs threshold determination using an identification threshold (the identification threshold set by the header identification unit 232) according to the signal level of the input frame, and the determination result is obtained. Output as H and L logic levels.
 このように、本実施の形態の受信装置では、バーストリミティングアンプの前段において、受信フレームのヘッダ情報を利用した伝送速度判定を行い、判定結果に対応した受信信号を対象として、信号レベルを所望のレベルに調整する処理およびサンプリング処理を含むデータ再生処理を実行することとした。これにより、実施の形態1の受信装置と同様の効果が得られるとともに、実施の形態1の受信装置と比較して、回路規模および消費電力を低減させることができる。 As described above, in the receiving apparatus according to the present embodiment, the transmission rate determination using the header information of the received frame is performed before the burst limiting amplifier, and the signal level is desired for the received signal corresponding to the determination result. The data reproduction process including the process of adjusting the level and the sampling process is executed. Thereby, the same effect as that of the receiving apparatus of the first embodiment can be obtained, and the circuit scale and power consumption can be reduced as compared with the receiving apparatus of the first embodiment.
 加えて、通常はICとして実現可能なリミティングアンプにヘッダ検出機能(上記ヘッダ情報を利用した受信信号の伝送速度判定処理に相当)を集約し、異なる速度のバースト信号フレームに対して共通化することとしたので、回路規模および消費電力をさらに低減させることができる。 In addition, the header detection function (corresponding to the transmission rate judgment processing of the received signal using the header information) is usually integrated into a limiting amplifier that can be realized as an IC, and is shared for burst signal frames of different rates. As a result, the circuit scale and power consumption can be further reduced.
実施の形態4.
 つづいて、実施の形態4の受信装置について説明する。図8は、実施の形態4の受信装置が備える受光部の構成例を示す図である。本実施の形態の受信装置は、たとえば、実施の形態1で示した受信装置の受光部1(図2参照)を図8に示した受光部1cに置き換えたものである。そのため、本実施の形態では、実施の形態1の受信装置と異なる受光部1cについてのみ説明する。
Embodiment 4 FIG.
Next, the receiving apparatus according to the fourth embodiment will be described. FIG. 8 is a diagram illustrating a configuration example of a light receiving unit included in the receiving device of the fourth embodiment. In the receiving apparatus of the present embodiment, for example, the light receiving unit 1 (see FIG. 2) of the receiving apparatus shown in the first embodiment is replaced with the light receiving unit 1c shown in FIG. Therefore, in the present embodiment, only the light receiving unit 1c different from the receiving device of the first embodiment will be described.
 図8に示したように、本実施の形態の受光部1cは、ホトダイオード13により構成される。受光部1に入力された光信号は、光-電気変換素子であるホトダイオード13へ入力される。ここで、光信号を構成する光信号フレームaおよびbは、ホトダイオード13へ共通的に入力される。入力された光信号フレームa,bは、各バースト光信号データが混在した電気信号に変換され、ホトダイオード13から出力された電気信号は、10.31Gbps用に最適化された高速データ用受信部21および1.25Gbps用に最適化された高速データ用受信部22に対してそれぞれ出力される。 As shown in FIG. 8, the light receiving unit 1 c of the present embodiment is configured by a photodiode 13. The optical signal input to the light receiving unit 1 is input to the photodiode 13 which is a photoelectric conversion element. Here, the optical signal frames a and b constituting the optical signal are commonly input to the photodiode 13. The input optical signal frames a and b are converted into an electric signal in which each burst optical signal data is mixed, and the electric signal output from the photodiode 13 is a high-speed data receiving unit 2 1 optimized for 10.31 Gbps. and output respectively optimized high speed data receiving section 2 2 for 1.25 Gbps.
 なお、実施の形態2または3で示した受信装置の受光部1を受光部1cに置き換えることも可能である。 In addition, it is possible to replace the light receiving unit 1 of the receiving apparatus shown in the second or third embodiment with the light receiving unit 1c.
 このように、本実施の形態の受信装置では、光信号を電気信号へ変換後、受信信号の各伝送速度に対応させて複数備えている各受信処理部へ分岐させることとした。これにより、上述した実施の形態1~3の受信装置と比較して光部品の数を削減することができ、低コスト化を実現できる。 As described above, in the receiving apparatus of the present embodiment, the optical signal is converted into an electric signal, and then branched to each of the plurality of reception processing units corresponding to each transmission speed of the received signal. As a result, the number of optical components can be reduced as compared with the receiving apparatuses of Embodiments 1 to 3 described above, and cost reduction can be realized.
実施の形態5.
 つづいて、実施の形態5の受信装置について説明する。図9は、実施の形態5の受信装置の構成例を示す図である。本実施の形態の受信装置は、実施の形態1または2で示した受信装置(図1参照)の受光部1およびデータ受信部2に代えて受光部1d(変換手段に相当)およびデータ受信部2d(再生データ生成手段に相当)を備えた構成をとる。なお、バースト同期処理部3は実施の形態1で示したものと同じものとしているが、実施の形態2で示したもの(図5で示したバースト同期処理部3a)としてもよい。
Embodiment 5. FIG.
Next, the receiving apparatus according to the fifth embodiment will be described. FIG. 9 is a diagram illustrating a configuration example of a receiving apparatus according to the fifth embodiment. The receiving apparatus according to the present embodiment includes a light receiving section 1d (corresponding to conversion means) and a data receiving section instead of the light receiving section 1 and the data receiving section 2 of the receiving apparatus (see FIG. 1) shown in the first or second embodiment. A configuration with 2d (corresponding to reproduction data generating means) is adopted. The burst synchronization processing unit 3 is the same as that shown in the first embodiment, but may be the one shown in the second embodiment (burst synchronization processing unit 3a shown in FIG. 5).
 受光部1dは、入力された光信号を電気信号に変換する光-電気変換素子であるホトダイオード121を備える。なお、このホトダイオードは、実施の形態1で示した受光部1を構成するホトダイオード121と同じものである。 Receiving portion 1d, the light converts the input optical signal into an electrical signal - comprises a photodiode 12 1 is an electrical conversion element. Note that this photodiode is the same as the photodiode 12 1 constituting the light receiving unit 1 shown in the first embodiment.
 データ受信部2dは、高速データ用受信部2d1および低速データ用受信部2d2を備え、また、高速データ用受信部2d1はバーストプリアンプ211およびバーストリミティングアンプ22d1を備え、低速データ用受信部2d2はバーストリミティングアンプ22d2を備えている。なお、バーストプリアンプ211は、実施の形態1の受信装置が備えていたバーストプリアンプ211と同じものである。 Data receiving unit 2d, a high speed data receiving section 2d 1 and the low-speed data reception section 2d 2, also high-speed data receiving section 2d 1 is provided with a burst preamplifier 21 1 and burst limiting amplifier 22 d 1, the low speed data The reception unit 2d 2 includes a burst limiting amplifier 22d 2 . The burst preamplifier 21 1 is the same as the burst preamplifier 21 1 provided in the receiving apparatus of the first embodiment.
 以下に、データ受信部2dの動作を詳細に説明する。ただし、本実施の形態では、実施の形態1のデータ受信部2に含まれていない構成要素であるバーストリミティングアンプ22d1および22d2についてのみ説明を行う。なお、上述した実施の形態1と同様に、高伝送速度データの伝送速度を10.3125Gbps(ただし記載上は10.31Gbpsとする)とし、低伝送速度データの伝送速度を1.25Gbpsとして説明を行う。また、多位相CLKサンプリング部36のサンプリング位相数をN=8とする。 Hereinafter, the operation of the data receiving unit 2d will be described in detail. However, in the present embodiment, only burst limiting amplifiers 22d 1 and 22d 2 that are constituent elements not included in data receiving unit 2 of the first embodiment will be described. As in the first embodiment, the transmission rate of high transmission rate data is 10.3125 Gbps (note that it is 10.31 Gbps in the description), and the transmission rate of low transmission rate data is 1.25 Gbps. The number of sampling phases of the multi-phase CLK sampling unit 36 is N = 8.
 バーストプリアンプ211により増幅された後の電気信号は、バーストリミティングアンプ221および222へ入力される。バーストリミティングアンプ221および222では、入力された電気信号フレームの各信号レベルに応じて識別しきい値が高速に抽出され、この識別しきい値に基づいたH,Lロジックレベルとして一定の電気レベルでバースト同期処理部3へ出力される。なお、バーストリミティングアンプ222は、1.25Gbps用に最適な利得帯域を持っている。 The electric signal after being amplified by the burst preamplifier 21 1 is input to the burst limiting amplifiers 22 1 and 22 2 . In the burst limiting amplifiers 22 1 and 22 2 , an identification threshold is extracted at a high speed in accordance with each signal level of the input electric signal frame, and the H and L logic levels based on the identification threshold are constant. It is output to the burst synchronization processing unit 3 at the electrical level. The burst limiting amplifier 22 2 has an optimum gain band for 1.25 Gbps.
 また、バーストリミティングアンプ221より出力される出力信号には、最適に増幅,識別された10.31Gbpsのバースト信号データと同時に、1.25Gbpsのバースト信号データが時間的に多重された状態で含まれている。また、バーストリミティングアンプ帯域は10.31Gbps信号に対して最も雑音特性(SNR:信号対雑音強度比率)が良好となるように最適化されている。 Further, the output signal output from the burst limiting amplifier 22 1 is optimally amplified simultaneously with the burst signal data of the identified 10.31Gbps, included in the state in which the burst signal data 1.25Gbps are temporally multiplexed ing. The burst limiting amplifier band is optimized so that the noise characteristic (SNR: signal-to-noise intensity ratio) is the best for 10.31 Gbps signals.
 一方、バーストリミティングアンプ222より出力される出力信号には、最適に増幅,識別された1.25Gbpsのバースト信号データと同時に、10.31Gbpsのバースト信号データが時間的に多重された状態で含まれている。また、バーストリミティングアンプ帯域は1.25Gbps信号に対して最も雑音特性(SNR:信号対雑音強度比率)が良好となるように最適化されている。 On the other hand, the output signal output from the burst limiting amplifier 22 2 is optimally amplified simultaneously with the burst signal data identified 1.25 Gbps, included in the state in which the burst signal data 10.31Gbps is temporally multiplexed ing. The burst limiting amplifier band is optimized so that the noise characteristic (SNR: signal-to-noise intensity ratio) is the best for a 1.25 Gbps signal.
 バーストリミティングアンプ221および222からの出力信号はバースト同期処理部3へ入力され、バースト同期処理部3は、入力信号に対して、実施の形態1で示したバースト同期処理部と同じ動作を実行して受信データを再生する。 Output signals from the burst limiting amplifiers 22 1 and 22 2 are input to the burst synchronization processing unit 3, and the burst synchronization processing unit 3 operates in the same manner as the burst synchronization processing unit described in the first embodiment on the input signal. To play the received data.
 このように、本実施の形態では、上述した実施の形態で示した受信装置を変形し、受光部とバーストプリアンプを各伝送速度で共通化することとした。これにより、上述した実施の形態4の受信装置と比較して部品の数をさらに削減することができ、さらなる低コスト化を実現できる。 As described above, in this embodiment, the receiving apparatus shown in the above-described embodiment is modified to share the light receiving unit and the burst preamplifier at each transmission rate. Thereby, the number of parts can be further reduced as compared with the receiving apparatus of the fourth embodiment described above, and further cost reduction can be realized.
 なお、上記説明では、伝送速度が2つの場合について説明を行ったが、3つ以上の場合にも対応可能である。たとえば、図1に示した受信装置の場合、各伝送速度に対応した受信部(高速データ用受信部221などに相当)および多位相CLKサンプリング部のペアを3つ以上備え、バースト同期処理部3(データ選択部33)が、各受信部において再生された受信データの中からいずれか一つを選択して出力するようにする。速度判定部32は、上述した最適位相の特性(図4など参照)より、各多位相CLKサンプリング部から出力される最適位相情報を利用して受信フレームの伝送速度を判定可能である。 In the above description, the case where the transmission rate is two has been described. However, the case where there are three or more transmission rates is also possible. For example, if the receiver shown in FIG. 1, includes and three or more pairs of multi-phase CLK sampling unit (corresponding to high-speed data receiving section 22 1) receiving sections corresponding to the transmission rate, burst synchronization processing unit 3 (data selection unit 33) selects and outputs one of the received data reproduced in each reception unit. The speed determination unit 32 can determine the transmission rate of the received frame using the optimum phase information output from each multi-phase CLK sampling unit based on the above-described optimum phase characteristics (see FIG. 4 and the like).
 以上のように、本発明にかかる受信装置は、光信号の受信装置に有用であり、特に、PONシステムの親局装置を構成し、伝送速度の異なる複数の光信号が時間多重された上り方向のバースト光信号を受信する受信装置に適している。 As described above, the receiving apparatus according to the present invention is useful for an optical signal receiving apparatus. In particular, it constitutes a master station apparatus of a PON system, and an upstream direction in which a plurality of optical signals having different transmission speeds are time-multiplexed. It is suitable for a receiving apparatus that receives a burst optical signal.

Claims (16)

  1.  予め規定された複数の伝送速度の中のいずれか一つの伝送速度を有する複数の光信号が時間多重されたバースト光信号を受信する受信装置であって、
     前記バースト光信号を電気信号に変換する変換手段と、
     前記電気信号に対して、前記複数の伝送速度それぞれに対応させて予め決定しておいた複数の条件で複数回のデータ再生処理を実行し、前記複数の伝送速度と同じ数の再生データを生成する再生データ生成手段と、
     前記複数の再生データの中のいずれか一つの再生データを選択し、最終的な受信データとして出力する選択手段と、
     を備えることを特徴とする受信装置。
    A receiving device that receives a burst optical signal in which a plurality of optical signals having any one of a plurality of transmission rates defined in advance are time-multiplexed,
    Conversion means for converting the burst optical signal into an electrical signal;
    The data reproduction process is performed a plurality of times on a plurality of conditions determined in advance corresponding to each of the plurality of transmission rates, and the same number of reproduction data as the plurality of transmission rates is generated. Playback data generation means for
    Selecting means for selecting any one of the plurality of reproduction data and outputting as final received data;
    A receiving apparatus comprising:
  2.  前記再生データ生成手段は、
     前記予め規定された複数の伝送速度の中のいずれか一つの伝送速度に対応させて予め決定しておいた条件で前記電気信号に対するデータ再生処理を実行する、当該複数の伝送速度と同じ数のデータ再生手段、
     を備え、
     前記各データ再生手段は、それぞれ異なる条件でデータ再生処理を実行することを特徴とする請求項1に記載の受信装置。
    The reproduction data generation means includes
    The data reproduction process for the electrical signal is executed under a condition determined in advance corresponding to any one of the plurality of transmission rates defined in advance, and the same number as the plurality of transmission rates. Data reproduction means,
    With
    The receiving apparatus according to claim 1, wherein each of the data reproduction units executes data reproduction processing under different conditions.
  3.  前記データ再生手段は、
     入力信号である前記電気信号に対して、対応する条件に従ったレベル調整を行うレベル調整手段と、
     前記信号レベルが調整された後の電気信号に対して、受信データのビット判定を行うビット判定手段と、
     を備えることを特徴とする請求項2に記載の受信装置。
    The data reproducing means includes
    Level adjustment means for performing level adjustment according to corresponding conditions on the electric signal which is an input signal;
    Bit determination means for performing bit determination of received data with respect to the electric signal after the signal level is adjusted,
    The receiving apparatus according to claim 2, further comprising:
  4.  前記選択手段は、
     前記各再生データに対して、再生データの生成処理で使用した条件に対応する多位相クロックでサンプリングを行い、得られたサンプリング結果に基づいて最適なサンプリングタイミングである最適位相を判定する、前記複数の再生データと同じ数の最適位相判定手段と、
     前記各最適位相判定手段により判定された最適位相に基づいて、前記複数の再生データの中から最終的な受信データを選択する受信データ選択手段と、
     を備えることを特徴とする請求項1、2または3に記載の受信装置。
    The selection means includes
    The plurality of reproduction data is sampled with a multi-phase clock corresponding to the condition used in the reproduction data generation process, and the optimum phase that is the optimum sampling timing is determined based on the obtained sampling result. The same number of optimum phase determination means as the reproduction data of
    Received data selecting means for selecting final received data from the plurality of reproduction data based on the optimum phase determined by each of the optimum phase determining means;
    The receiving device according to claim 1, 2 or 3.
  5.  前記変換手段は、
     前記光信号を入力とし、前記複数の伝送速度と同じ数の経路に当該入力信号を強度分岐させる強度分岐光カプラと、
     前記複数の経路と1対1で接続され、接続された経路を介して前記強度分岐光カプラから受け取った光信号を電気信号に変換する、前記複数の伝送速度と同じ数のホトダイオードと、
     を備えることを特徴とする請求項1に記載の受信装置。
    The converting means includes
    An intensity branching optical coupler that takes the optical signal as input and branches the intensity of the input signal to the same number of paths as the plurality of transmission speeds;
    A plurality of photodiodes connected to the plurality of paths in a one-to-one manner and converting the optical signals received from the intensity branching optical couplers through the connected paths into electrical signals;
    The receiving apparatus according to claim 1, further comprising:
  6.  前記変換手段は、
     前記光信号を電気信号に変換し、得られた電気信号を前記予め規定された複数の伝送速度と同じ数の経路に出力することを特徴とする請求項1に記載の受信装置。
    The converting means includes
    The receiving apparatus according to claim 1, wherein the optical signal is converted into an electric signal, and the obtained electric signal is output to the same number of paths as the plurality of predetermined transmission rates.
  7.  予め規定された複数の伝送速度の中のいずれか一つの伝送速度を有する複数の光信号が時間多重されたバースト光信号を受信する受信装置であって、
     前記バースト光信号を電気信号に変換する変換手段と、
     前記電気信号に対して、前記複数の伝送速度それぞれに対応させて予め決定しておいた複数の条件で複数回のデータ再生処理を実行し、前記複数の伝送速度と同じ数の再生データを生成する再生データ生成手段と、
     前記複数の再生データの中のいずれか一つの再生データに基づいて最終的な受信データを再生する受信データ再生手段と、
     を備えることを特徴とする受信装置。
    A receiving device that receives a burst optical signal in which a plurality of optical signals having any one of a plurality of transmission rates defined in advance are time-multiplexed,
    Conversion means for converting the burst optical signal into an electrical signal;
    The data reproduction process is performed a plurality of times on a plurality of conditions determined in advance corresponding to each of the plurality of transmission rates, and the same number of reproduction data as the plurality of transmission rates is generated. Playback data generation means for
    Received data reproducing means for reproducing final received data based on any one of the plurality of reproduced data;
    A receiving apparatus comprising:
  8.  前記再生データ生成手段は、
     前記予め規定された複数の伝送速度の中のいずれか一つの伝送速度に対応させて予め決定しておいた条件で前記電気信号に対するデータ再生処理を実行する、当該複数の伝送速度と同じ数のデータ再生手段、
     を備え、
     前記各データ再生手段は、それぞれ異なる条件でデータ再生処理を実行することを特徴とする請求項7に記載の受信装置。
    The reproduction data generation means includes
    The data reproduction process for the electrical signal is executed under a condition determined in advance corresponding to any one of the plurality of transmission rates defined in advance, and the same number as the plurality of transmission rates. Data reproduction means,
    With
    8. The receiving apparatus according to claim 7, wherein each of the data reproducing means executes data reproducing processing under different conditions.
  9.  前記データ再生手段は、
     入力信号である前記電気信号に対して、対応する条件に従ったレベル調整を行うレベル調整手段と、
     前記信号レベルが調整された後の電気信号に対して、受信データのビット判定を行うビット判定手段と、
     を備えることを特徴とする請求項8に記載の受信装置。
    The data reproducing means includes
    Level adjustment means for performing level adjustment according to corresponding conditions on the electric signal which is an input signal;
    Bit determination means for performing bit determination of received data with respect to the electric signal after the signal level is adjusted,
    The receiving apparatus according to claim 8, further comprising:
  10.  前記受信データ再生手段は、
     前記再生データに含まれる受信フレームのヘッダ情報に基づいて、前記複数の再生データの中のいずれか一つを選択する再生データ選択手段と、
     前記再生データ選択手段により選択された再生データに対して、前記複数の伝送速度の中の最も高速な伝送速度に対応する多位相クロックでサンプリングを行い、得られたサンプリング結果に基づいて最適なサンプリングタイミングである最適位相を判定する最適位相判定手段と、
     前記再生データ選択手段により選択された再生データ、および前記最適位相判定手段により判定された最適位相に基づいて、最終的な受信データを再生する最終受信データ再生手段と、
     を備えることを特徴とする請求項7、8または9に記載の受信装置。
    The received data reproduction means includes
    Reproduction data selection means for selecting any one of the plurality of reproduction data based on header information of a received frame included in the reproduction data;
    The reproduction data selected by the reproduction data selection means is sampled with a multi-phase clock corresponding to the fastest transmission speed among the plurality of transmission speeds, and optimum sampling is performed based on the obtained sampling results. An optimal phase determination means for determining an optimal phase as a timing;
    Final received data reproducing means for reproducing final received data based on the reproduced data selected by the reproduced data selecting means and the optimum phase determined by the optimum phase determining means;
    The receiving apparatus according to claim 7, 8 or 9.
  11.  予め規定された複数の伝送速度の中のいずれか一つの伝送速度を有する複数の光信号が時間多重されたバースト光信号を受信する受信装置であって、
     前記バースト光信号を電気信号に変換する変換手段と、
     入力信号である前記電気信号に対して、前記予め規定された複数の伝送速度の中のいずれか一つの伝送速度に対応させて予め決定しておいたゲインを用いてレベル調整を行う、前記予め規定された複数の伝送速度と同じ数のレベル調整手段と、
     前記各レベル調整手段によりレベルが調整された後の各電気信号に基づいて、受信データの候補を生成する受信データ候補生成手段と、
     前記受信データの候補に基づいて最終的な受信データを再生する受信データ再生手段と、
     を備えることを特徴とする受信装置。
    A receiving device that receives a burst optical signal in which a plurality of optical signals having any one of a plurality of transmission rates defined in advance are time-multiplexed,
    Conversion means for converting the burst optical signal into an electrical signal;
    The level adjustment is performed on the electrical signal that is an input signal by using a gain that is determined in advance in correspondence with any one of the plurality of transmission speeds defined in advance. The same number of level adjustment means as the specified multiple transmission rates;
    Received data candidate generating means for generating received data candidates based on each electrical signal after the level is adjusted by each level adjusting means;
    Received data reproduction means for reproducing final received data based on the received data candidates;
    A receiving apparatus comprising:
  12.  前記受信データ再生手段は、
     前記受信データ候補生成手段により生成された候補に対して、前記複数の伝送速度の中の最も高速な伝送速度に対応する多位相クロックでサンプリングを行い、得られたサンプリング結果に基づいて最適なサンプリングタイミングである最適位相を判定する最適位相判定手段と、
     前記受信データ候補生成手段により生成された候補、および前記最適位相判定手段により判定された最適位相に基づいて、最終的な受信データを再生する最終受信データ再生手段と、
     を備えることを特徴とする請求項11に記載の受信装置。
    The received data reproduction means includes
    The candidate generated by the received data candidate generation means is sampled with a multi-phase clock corresponding to the fastest transmission speed among the plurality of transmission speeds, and optimum sampling is performed based on the obtained sampling result An optimal phase determination means for determining an optimal phase as a timing;
    Final received data reproducing means for reproducing final received data based on the candidate generated by the received data candidate generating means and the optimum phase determined by the optimum phase determining means;
    The receiving device according to claim 11, comprising:
  13.  予め規定された複数の伝送速度の中のいずれか一つの伝送速度を有する複数の光信号が時間多重されたバースト光信号を受信する受信装置であって、
     前記光信号を電気信号に変換する変換手段と、
     前記電気信号のレベル変換を行い、その信号レベルが所望のレベルとなるように調整し、さらに、レベル調整後の電気信号に対して、前記複数の伝送速度それぞれに対応させて予め決定しておいた複数の条件で複数回のデータ再生処理を実行し、前記複数の伝送速度と同じ数の再生データを生成する再生データ生成手段と、
     前記複数の再生データの中のいずれか一つの再生データを選択し、最終的な受信データとして出力する選択手段と、
     を備えることを特徴とする受信装置。
    A receiving device that receives a burst optical signal in which a plurality of optical signals having any one of a plurality of transmission rates defined in advance are time-multiplexed,
    Conversion means for converting the optical signal into an electrical signal;
    The level of the electrical signal is converted, adjusted so that the signal level becomes a desired level, and the level-adjusted electrical signal is determined in advance corresponding to each of the plurality of transmission rates. Reproduction data generation means for executing a plurality of data reproduction processes under a plurality of conditions and generating the same number of reproduction data as the plurality of transmission speeds;
    Selecting means for selecting any one of the plurality of reproduction data and outputting as final received data;
    A receiving apparatus comprising:
  14.  前記選択手段は、
     前記各再生データに対して、再生データの生成処理で使用した条件に対応する多位相クロックでサンプリングを行い、得られたサンプリング結果に基づいて最適なサンプリングタイミングである最適位相を判定する、前記複数の再生データと同じ数の最適位相判定手段と、
     前記各最適位相判定手段により判定された最適位相に基づいて、前記複数の再生データの中から最終的な受信データを選択する受信データ選択手段と、
     を備えることを特徴とする請求項13に記載の受信装置。
    The selection means includes
    The plurality of reproduction data is sampled with a multi-phase clock corresponding to the condition used in the reproduction data generation process, and the optimum phase that is the optimum sampling timing is determined based on the obtained sampling result. The same number of optimum phase determination means as the reproduction data of
    Received data selecting means for selecting final received data from the plurality of reproduction data based on the optimum phase determined by each of the optimum phase determining means;
    The receiving apparatus according to claim 13, comprising:
  15.  予め規定された複数の伝送速度の中のいずれか一つの伝送速度を有する複数の光信号が時間多重されたバースト光信号を受信する受信装置であって、
     前記光信号を電気信号に変換する変換手段と、
     前記電気信号のレベル変換を行い、その信号レベルが所望のレベルとなるように調整し、さらに、レベル調整後の電気信号に対して、前記複数の伝送速度それぞれに対応させて予め決定しておいた複数の条件で複数回のデータ再生処理を実行し、前記複数の伝送速度と同じ数の再生データを生成する再生データ生成手段と、
     前記複数の再生データの中のいずれか一つの再生データに基づいて最終的な受信データを再生する受信データ再生手段と、
     を備えることを特徴とする受信装置。
    A receiving device that receives a burst optical signal in which a plurality of optical signals having any one of a plurality of transmission rates defined in advance are time-multiplexed,
    Conversion means for converting the optical signal into an electrical signal;
    The level of the electrical signal is converted, adjusted so that the signal level becomes a desired level, and the level-adjusted electrical signal is determined in advance corresponding to each of the plurality of transmission rates. Reproduction data generation means for executing a plurality of data reproduction processes under a plurality of conditions and generating the same number of reproduction data as the plurality of transmission speeds;
    Received data reproducing means for reproducing final received data based on any one of the plurality of reproduced data;
    A receiving apparatus comprising:
  16.  前記受信データ再生手段は、
     前記再生データに含まれる受信フレームのヘッダ情報に基づいて、前記複数の再生データの中のいずれか一つを選択する再生データ選択手段と、
     前記再生データ選択手段により選択された再生データに対して、前記複数の伝送速度の中の最も高速な伝送速度に対応する多位相クロックでサンプリングを行い、得られたサンプリング結果に基づいて最適なサンプリングタイミングである最適位相を判定する最適位相判定手段と、
     前記再生データ選択手段により選択された再生データ、および前記最適位相判定手段により判定された最適位相に基づいて、最終的な受信データを再生する最終受信データ再生手段と、
     を備えることを特徴とする請求項15に記載の受信装置。
    The received data reproduction means includes
    Reproduction data selection means for selecting any one of the plurality of reproduction data based on header information of a received frame included in the reproduction data;
    The reproduction data selected by the reproduction data selection means is sampled with a multi-phase clock corresponding to the fastest transmission speed among the plurality of transmission speeds, and optimum sampling is performed based on the obtained sampling results. An optimal phase determination means for determining an optimal phase as a timing;
    Final received data reproducing means for reproducing final received data based on the reproduced data selected by the reproduced data selecting means and the optimum phase determined by the optimum phase determining means;
    The receiving device according to claim 15, comprising:
PCT/JP2008/055284 2008-03-21 2008-03-21 Receiving apparatus WO2009116168A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055284 WO2009116168A1 (en) 2008-03-21 2008-03-21 Receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/055284 WO2009116168A1 (en) 2008-03-21 2008-03-21 Receiving apparatus

Publications (1)

Publication Number Publication Date
WO2009116168A1 true WO2009116168A1 (en) 2009-09-24

Family

ID=41090590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055284 WO2009116168A1 (en) 2008-03-21 2008-03-21 Receiving apparatus

Country Status (1)

Country Link
WO (1) WO2009116168A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160054A (en) * 2010-01-29 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> Dual rate amplitude limiting amplifier circuit
WO2013035226A1 (en) * 2011-09-05 2013-03-14 日本電気株式会社 Optical burst signal processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088954A (en) * 1994-06-21 1996-01-12 Nec Corp Increase system for service capacity in point-multi-point optical transmission system
JP2000049823A (en) * 1998-08-03 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Transmitter, receiver and multi-rate transmission system using them
JP2005151424A (en) * 2003-11-19 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> Optical signal receiver
JP2007300445A (en) * 2006-05-01 2007-11-15 Sumitomo Electric Ind Ltd Station side apparatus to be used for multi-rate pon system, terminal apparatus, and network synchronizing method in the system
JP2008017111A (en) * 2006-07-05 2008-01-24 Mitsubishi Electric Corp Bit speed determination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088954A (en) * 1994-06-21 1996-01-12 Nec Corp Increase system for service capacity in point-multi-point optical transmission system
JP2000049823A (en) * 1998-08-03 2000-02-18 Nippon Telegr & Teleph Corp <Ntt> Transmitter, receiver and multi-rate transmission system using them
JP2005151424A (en) * 2003-11-19 2005-06-09 Nippon Telegr & Teleph Corp <Ntt> Optical signal receiver
JP2007300445A (en) * 2006-05-01 2007-11-15 Sumitomo Electric Ind Ltd Station side apparatus to be used for multi-rate pon system, terminal apparatus, and network synchronizing method in the system
JP2008017111A (en) * 2006-07-05 2008-01-24 Mitsubishi Electric Corp Bit speed determination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011160054A (en) * 2010-01-29 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> Dual rate amplitude limiting amplifier circuit
WO2013035226A1 (en) * 2011-09-05 2013-03-14 日本電気株式会社 Optical burst signal processing device

Similar Documents

Publication Publication Date Title
US8346098B2 (en) Receiving apparatus and receiving method
JP2007060443A (en) Dqpsk optical receiving circuit
JP4233985B2 (en) Optical signal receiver
US20090225914A1 (en) Communication terminal apparatus, communication apparatus, and signal receiving method
CA2875762A1 (en) Burst signal receiving apparatus and method, pon optical line terminal, and pon system
KR101519443B1 (en) Optical receiver
JP2013219599A (en) Multirate optical signal receiving device and method
US20100135666A1 (en) Clock phase aligning apparatus for burst-mode data
WO2009116168A1 (en) Receiving apparatus
US20100183107A1 (en) Burst mode receiver
JP2008219765A (en) Optical receiver and balance adjusting method
JP2005287019A (en) Low power low jitter optical receiver for optical fiber communication link
JP5321312B2 (en) Optical signal receiving apparatus and receiving method
KR101338480B1 (en) apparatus for generating a detection signal for burst mode packet signal and receiving apparatus
CN117397181A (en) Method and apparatus for feedback control of mode MUX and DEMUX
KR101031609B1 (en) Clock phase aligner for burst-mode data
JP4555348B2 (en) System and method for mitigating dispersion slope in optical communication system
JP2014165728A (en) Optical receiver
JP2010178257A (en) Amplifier corresponding to a plurality of speeds
WO2020050101A1 (en) Signal processing device and optical receiver
JP5588814B2 (en) Burst receiver, burst reception control method, and system
WO2013132580A1 (en) Multi-rate recovery device
JP2010219745A (en) Data reproduction circuit
JP5649496B2 (en) Burst CDR circuit and method for reproducing input data signal from burst signal
JP5617405B2 (en) DATA REPRODUCING CIRCUIT, STATION-SIDE OPTICAL TRANSMITTER / RECEIVER AND DATA REPRODUCING METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08722636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP