WO2009115595A1 - Vitrage revêtu de couches minces - Google Patents

Vitrage revêtu de couches minces Download PDF

Info

Publication number
WO2009115595A1
WO2009115595A1 PCT/EP2009/053288 EP2009053288W WO2009115595A1 WO 2009115595 A1 WO2009115595 A1 WO 2009115595A1 EP 2009053288 W EP2009053288 W EP 2009053288W WO 2009115595 A1 WO2009115595 A1 WO 2009115595A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silver
layers
surface layer
znsno
Prior art date
Application number
PCT/EP2009/053288
Other languages
English (en)
Inventor
Gaëtan DI STEFANO
Original Assignee
Agc Flat Glass Europe Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39689162&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009115595(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Agc Flat Glass Europe Sa filed Critical Agc Flat Glass Europe Sa
Priority to EP09721364.9A priority Critical patent/EP2262743B2/fr
Priority to PL09721364.9T priority patent/PL2262743T5/pl
Priority to EA201001516A priority patent/EA021185B1/ru
Priority to ES09721364T priority patent/ES2743103T5/es
Priority to CN200980110008.0A priority patent/CN101980984B/zh
Priority to US12/933,602 priority patent/US8697243B2/en
Priority to JP2011500233A priority patent/JP5603320B2/ja
Publication of WO2009115595A1 publication Critical patent/WO2009115595A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3613Coatings of type glass/inorganic compound/metal/inorganic compound/metal/other
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/216ZnO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/219CrOx, MoOx, WOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/22ZrO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to glazings comprising a set of thin layers conferring antisolar or low-emissive properties.
  • the layer systems deposited by this means make it possible to achieve remarkable performances both in the thermal characteristics and in the optical aspects. They can in particular have a very high selectivity, that is to say constitute powerful filters for infrared rays, while allowing the visible wavelengths to pass. They can in the best conditions offer perfect neutrality in reflection, avoiding in particular the undesired colorations.
  • the glazing in question must still have sufficient resistance to the various attacks to which they may be exposed. These include chemical attacks: air, water, salty fogs ..., but also mechanical, to which they are subjected during transport or transformation during their implementation.
  • the glazings having these sunscreen and / or low-emissive properties systematically comprise a set of so-called functional layers reflecting infrared, and dielectric layers that protect the first and minimize the reflection of the wavelengths of the visible.
  • the outermost must in particular give these systems the properties of chemical and mechanical resistance discussed above, of course without altering the other properties.
  • layers known for their mechanical strength including some oxides previously proposed, can be difficult to produce as SiO 2 .
  • SnO 2 for its part does not have excellent resistance.
  • Nitrides, which constitute another possibility for these superficial layers require deposits in a nitrogen atmosphere, which limits the possibilities of implementation. Other layers do not provide satisfactory light transmission.
  • the invention provides surface layers for these sunscreen and / or low-emissive systems, which offer a set of improved properties over those of prior systems.
  • the invention proposes to provide, in a surface layer, a layer based on titanium oxide and at least one other metal oxide of high hardness, of the group comprising: ZrO 2 , SiO 2 , Cr 2 O 3 .
  • the respective proportions of titanium oxide and other metals can cover a wide range.
  • the additional oxide (s) must represent at least 5% by weight of the whole and preferably at least 10% by weight.
  • the titanium oxide is present at least 40% by weight, and preferably at least 50% by weight.
  • the titanium oxide is at least 55% by weight.
  • zirconium oxide is particularly preferred because of its very high hardness. It is advantageously present in a proportion of 15 to 50% by weight of the surface layer.
  • the surface layer according to the invention may also contain additional oxides substantially indissociable from the preceding oxides. This is particularly the case for lanthanides such as yttrium or hafnium oxide. When these additional oxides are present, their content remains relatively limited and does not exceed 8% by weight of the whole and most often remains less than 5%.
  • the surface layer of protection must have a certain thickness. However, if this layer is only arranged for the mechanical properties it confers on the layer system, a relatively modest thickness may suffice. Preferably the thickness of this layer is not less than 3 nm.
  • this protection layer as element of the interference filter, in other words as a layer significantly involved in maintaining a high visible transmission and in establishing a good neutrality in reflection.
  • the surface layer used as element of the interference filter is advantageously combined with other dielectric layers.
  • the choice of the assembly then takes into account not only the optical or structural properties of the various layers (index, transparency, crystalline structure, quality of the interfaces) but also the relative convenience of the formation of these layers.
  • the surface layer according to the invention remains of thickness at most equal to 35 nm.
  • the surface layers according to the invention which confer in particular very good mechanical properties are also advantageously combined with layers offering high resistance to chemical agents.
  • Layers of this type are in particular tin oxide layers or silicon nitride or silicon oxynitride layers.
  • the silicon cathodes may contain aluminum as a small amount of dopant of the order of 4%. , which are also found in the layer.
  • These layers are immediately below the surface layer based on titanium oxide, and have a thickness that can also be relatively modest, of the order of a few nanometers.
  • These layers, and in particular that of tin oxide can also, when their thickness is substantially greater, play a significant optical role in the interferential system constituted.
  • coated glazings according to the invention advantageously have a scratch resistance according to the method of ASTM 2486D, which is not more than 30%, and preferably not more than 20% in a scale of 0 at 100%, 100% corresponding to an entirely scratched glazing.
  • the coated glazings according to the invention still offer very good resistance to humidity tests.
  • the result is advantageously greater than 3 after 2 days of exposure.
  • FIG. 1 is a schematic representation of a section of a glazing coated with a layer system according to the invention
  • FIG. 3 is a graph representing light absorption as a function of wavelength for oxide monolayers used according to the invention
  • the glazing of Figure 1 is presented in section without respecting the proportions of the various elements for the sake of clarity.
  • the glass sheet 1 is coated with a set of layers comprising a layer 4 based on silver reflecting infrared. This layer of silver is arranged between two sets of dielectric layers which protect it and give it good light transmission with good neutrality in reflection.
  • the silver layer 4 is advantageously deposited on a layer 3 based on zinc oxide.
  • the layers of zinc oxide and those based on doped zinc oxide are known to promote the formation of a good interface with the silver layers, in particular without roughness. They improve overall properties of the latter. For the same amount of silver per unit area the conduction, and hence the emissivity of the layers, are improved when they are deposited in this way. It may be zinc oxide alone in small thickness, which thickness is not greater than 15 nm.
  • the layers consisting of zinc and tin mixed oxide are traditionally of two types.
  • the layers on which the silver layers are deposited are advantageously low tin oxide content, especially of the order of 10% by weight. These layers as previously indicated are relatively thin and do not exceed 15 nm.
  • the second type of zinc and tin mixed oxide layers is used to form the main part of the optical path in the dielectric assemblies for the de-reflective effects. In this function, the layer or layers in question usually have thicknesses of several tens of nanometers. Typically, such layers are made from a mixed oxide of about 50% by weight of each of the zinc and tin oxides.
  • a protective layer 5 is deposited above the silver layer 4. It is a traditional layer that aims to protect the silver layer against the alterations that occur. may affect it during subsequent deposits, especially when these deposits are made in a reactive mode for example in an oxidizing atmosphere.
  • the layer 5 is called “barrier” or “sacrificial” when it intervenes by reacting with the atmosphere which, in the absence of this layer, would be likely to react with the silver layer.
  • These sacrificial layers are very thin. They are not more than 6 nm and preferably their thickness is 2 or 3 nm. They are traditionally composed of oxide, in particular titanium or a material containing NiCr, or Zr, and corresponding sub-oxides. Being deposited to be able to react by protecting the silver, they are often formed from targets of the corresponding metals, and oxidized in the continuation of the constitution of the stacking. For this reason the layers are often substoichiometric. It is also possible to deposit them from ceramic targets themselves substoichiometric. This way of proceeding makes it possible to achieve a good oxidation close to the stoichiometry more conveniently in the final layer. In this way the extinction coefficient of the layer is reduced at best.
  • the layers 2 and 6 are layers forming part of the filter. They make it possible to avoid the reflection of most of the rays of the visible domain. Thanks to these layers we also adjust the coloring of the transmitted light and especially of the reflected light, being known that in the great majority of the applications one strives for the latter to ensure that this light is as weak and as neutral as possible.
  • the traditional dielectric layers consist mainly of oxides of: Zn, Sn, Ti, Al, Zr, Nb. Their thickness is a function of their index and the optical paths required, which themselves depend on the thickness of the infrared reflective layer. The relations between these quantities are perfectly established and most often give rise to determinations by means of specialized programs. On the basis of the values thus determined, subsequent adjustments are made to take account of differences which may exist between the actual characteristics of structure, composition or configuration and those corresponding to the ideal layers.
  • the surface layer 7 is a layer according to the invention based on titanium oxide comprising an oxide of high hardness (ZrO 2 , SiO 2 , Cr e O 3 ,).
  • ZSO9 denotes a layer of zinc oxide doped with 10% by weight of tin oxide
  • TiOx is a sub-oxidized titanium oxide (optionally TiOx may be replaced by ZrOx is a sub-oxidized zirconium oxide); TiZrOx is a mixed titanium oxide comprising by weight 50% of TiO 2 , 46% of ZrO 2 , the rest consisting of accompanying elements usually zirconium, especially oxide Y 2 O 5 ; it is obtained from ceramic targets and deposited in a slightly oxidizing atmosphere, the layer obtained is practically stoichiometric;
  • TiO 2 is a layer deposited under conditions that favor the formation of a quasi-stoichiometric compound as opposed to the TiOx barrier layers which, because of their function, are deposited while keeping a certain sub-stoichiometry which diminishes or disappears during the depositions. subsequent layers.
  • Samples are tested for their ability to withstand mechanical testing. Under the conditions of the test it is of little importance that differences be found in the constitution of the underlying layers.
  • the results depend essentially on the quality of the surface layer.
  • Samples 1 and 2 according to the invention have levels of 5% and 15% respectively. Their resistance is thus improved very significantly. Similar tests are carried out on systems constituted in the following manner (thicknesses in Angstroms):
  • the optical and resistance qualities are not substantially modified by the presence of the protective layer according to the invention.
  • the abrasion resistance measured according to ASTM4086D is all the better as the protective layer is thicker. It is the same in the measurement of the delamination resistance in the wet rub test.
  • the "wet rub test” is intended to assess the resistance of the layer system to delamination to friction.
  • the sample is rubbed with a cotton cloth kept wet (deionized water) under a load.
  • the back-and-forth friction is performed at a frequency of 60 oscillations per minute.
  • the movement is maintained for a number of cycles usually 500.
  • the resistance to the so-called chemical tests also shows an improvement as a function of the thickness of the protective layer.
  • Three types of tests are carried out.
  • the Cleveland test says, the climatic chamber and the salt spray. The nature of these tests is detailed below in connection with tests carried out on samples comprising two layers of silver.
  • the sample having the thickest protective layer again shows the best resistance to these three tests.
  • the respective values are 4.5 in Cleveland, 4.5 in climate chamber 3.5 in salt spray.
  • the comparison samples comprise a surface layer of tin oxide.
  • the samples according to the invention are coated with a mixed oxide layer of titanium and zirconium as previously.
  • ZnO-Al denotes an aluminum doped zinc oxide comprising 5% by weight of aluminum.
  • FIG. 2 is the comparison samples such as those of the invention.
  • the first test concerns condensation resistance according to the so-called "Cleveland” method which is the subject of the ISO 6270 standard.
  • the samples are kept in an atmosphere saturated with moisture at a constant temperature for several days.
  • the test is considered successful when the level reached after 1 day is 4 on a scale from 1 to 5, the score 5 corresponding to a sample without defect.
  • a test is also carried out in climatic chamber. It is also a test of resistance to condensation. In this test the temperature goes from 45 to 55 ° C alternately each time for 1 hour.
  • the atmosphere is also saturated with moisture. As before, the result is good when the level after 3 days is at least 3 on the scale of 1 to 5.
  • the salt spray test is performed according to EN1096.
  • the sample in this case is satisfactory when the level is at least 2.5 after 2 days still on the scale of 1 to 5.
  • the UV resistance is determined by exposure in an accelerated manner. The level is satisfactory if it is at least 3.
  • the structures according to the invention behave at least as well, and are particularly resistant to moisture resistance tests.
  • the layers used according to the invention as a protective surface layer still have the advantage over other types of layers having qualities of mechanical strength, for example titanium nitride, to be very transparent at visible wavelengths. . This transparency is even better than the oxidation of the layer is more complete.
  • Figures 3 and 4 illustrate this feature. In these figures, series of absorption measurements are reported as a function of the wavelength. The measurements are made on mixed oxide monolayers of titanium and zirconium of the same type as those which are the subject of the preceding examples. The layers are deposited on a sheet of clear glass 4mm thick.
  • the TiZrOx layer is uniformly 16 nm. It is deposited in an argon atmosphere whose oxygen content is variable, under a constant total pressure of 0.8 Pa.
  • Glazing according to the invention useful as low emissive glazings include in particular the following structure starting from the glass sheet:
  • the silver-based layer has a thickness of between 10 and 14 nm, the dielectrics located under the silver layer respectively the thicknesses of 20 to 35 nm and 6 at 10 nm, and for the oxide-based dielectric layers. of zinc located above the silver of the respective thicknesses of 15 to 25 nm and 15 to 25 nm, the thickness of the surface layer of TiZrOx being between 5 and 8 nm.
  • a similar system of layers is proposed according to the invention which this time comprises two reflective layers based on silver.
  • the structure of this system is from the glass substrate:
  • thicknesses such as under the first silver layer 20 to 35 nm and 6 to 10 nm, between the silver layers for the zinc oxide layers 8 to 20 nm respectively, 40 to 70 nm and from 8 to 20 nm, and that above the second layer of silver from 6 to 10 nm and from 20 to 35 nm, the layers of silver having each a thickness between 10 and 14 nm, and the thickness of the TiZrOx surface layer being between 5 and 8 nm.
  • the structure according to the invention shows a very good resistance to abrasion and tests in wet conditions.

Abstract

La présente invention concerne des vitrages essentiellement transparents comportant un système de couches minces déposées sous vide avec magnétron, et présentant des propriétés antisolaires et/ou bas-émissives, comportant comme couche superficielle protectrice une couche à base d'oxyde de titane et d'au moins un autre oxyde métallique de dureté élevée du groupe comprenant : ZrO2, SiO2, Cr2O3.

Description

Vitrage revêtu de couches minces
La présente invention concerne des vitrages comprenant un ensemble de couches minces conférant des propriétés antisolaires ou bas- émissives.
Les revêtements les plus usuels pour les vitrages en question, sont réalisés par des techniques de dépôt sous vide assisté par magnétron, dits "magnetron sputtering".
Les systèmes de couches déposés par ce moyen permettent d'atteindre des performances remarquables tant dans les caractéristiques thermiques que dans les aspects optiques. Ils peuvent présenter notamment une très grande sélectivité, autrement dit constituer de puissants filtres pour les rayons infrarouges, tout en laissant passer les longueurs d'ondes visibles. Ils peuvent dans les meilleures conditions offrir une parfaite neutralité en réflexion, évitant notamment les colorations non-souhaitées.
Au-delà des qualités recherchées, les vitrages en question doivent présenter encore une résistance suffisante aux diverses agressions auxquelles ils sont susceptibles d'être exposés. Il s'agit notamment des agressions chimiques : air, eau, brouillards salins..., mais aussi mécaniques, auxquelles ils sont soumis au cours des transports ou transformations lors de leur mise en oeuvre.
Les vitrages présentant ces propriétés antisolaires et/ou basse- émissives comportent systématiquement un ensemble de couches dites fonctionnelles réfléchissant les infrarouges, et de couches diélectriques qui protègent les premières et minimisent la réflexion des longueurs d'onde du visible. Parmi les couches de protection, les plus externes doivent notamment conférer à ces systèmes les propriétés de résistance chimique et mécanique dont il a été question plus haut, bien entendu en n'altérant pas les autres propriétés. A titre indicatif, des couches pourtant réputées pour leur résistance mécanique, notamment certains oxydes proposés antérieurement, peuvent être difficiles à produire comme SiO2. SnO2 pour sa part ne présente pas une excellente résistance. Les nitrures, qui constituent une autre possibilité pour ces couches superficielles nécessitent des dépôts en atmosphère d'azote, ce qui limite les possibilités de mise en oeuvre. D'autres couches n'offrent pas une transmission lumineuse satisfaisante.
L'invention propose des couches superficielles pour ces systèmes antisolaires et/ou bas-émissifs, qui offrent un ensemble de propriétés améliorées par rapport à celles des systèmes antérieurs.
L'invention propose de disposer en couche superficielle une couche à base d'oxyde de titane et d'au moins un autre oxyde métallique de dureté élevée, du groupe comprenant : ZrO2, SiO2, Cr2O3.
Les proportions respectives d'oxyde de titane et des autres métaux peuvent recouvrir une large gamme. Pour que l'effet soit sensible le ou les oxydes additionnels doivent représenter au moins 5% en poids de l'ensemble et de préférence au moins 10% en poids.
Dans l'oxyde mixte, l'oxyde de titane est présent au moins à 40% en poids, et de préférence au moins à 50% en poids.
De manière particulièrement préférée l'oxyde de titane représente au moins 55% en poids.
Dans les oxydes mixtes utilisés selon l'invention en plus de l'oxyde de titane, l'oxyde de zirconium est particulièrement préféré en raison de sa dureté très élevée. Il est avantageusement présent à raison de 15 à 50% en poids de la couche superficielle. En dehors des oxydes de titane et des métaux énumérés ci- dessus, la couche superficielle selon l'invention peut encore contenir des oxydes supplémentaires pratiquement indissociables des oxydes précédents. C'est le cas en particulier des lanthanides comme l'oxyde d'yttrium ou celui de hafnium. Lorsque ces oxydes additionnels sont présents, leur teneur reste relativement limitée et ne dépasse pas 8% en poids de l'ensemble et le plus souvent reste inférieure à 5%.
Pour jouer convenablement son rôle la couche superficielle de protection doit présenter une certaine épaisseur. Cependant si cette couche n'est disposée que pour les propriétés mécaniques qu'elle confère au système de couches, une épaisseur relativement modeste peut suffire. De préférence l'épaisseur de cette couche n'est pas inférieure à 3 nm.
Compte tenu de ce que les oxydes qui entrent dans la composition de cette couche superficielle sont bien transparents, il est possible d'utiliser des couches beaucoup plus épaisses que ne le nécessiterait l'amélioration de la résistance. Il est possible notamment d'utiliser cette couche de protection comme élément du filtre interférentiel, autrement dit comme couche participant de façon significative au maintient d'une transmission visible élevée et à l'établissement d'une bonne neutralité en réflexion.
La couche superficielle utilisée comme élément du filtre interférentiel est avantageusement combinée à d'autres couches diélectriques. Le choix de l'ensemble tient compte alors non seulement des propriétés optiques ou structurelles des différentes couches (indice, transparence, structure cristalline, qualité des interfaces) mais aussi de la commodité relative de la formation de ces couches.
Quelle que soit la structure considérée, en pratique la couche superficielle selon l'invention reste d'épaisseur au plus égale à 35 nm.
Les couches superficielles selon l'invention qui confèrent notamment de très bonnes propriétés mécaniques sont aussi avantageusement combinées avec des couches offrant une grande résistance aux agents chimiques. Des couches de ce type sont notamment des couches d'oxyde d'étain ou des couches de nitrure de silicium ou d'oxynitrure de silicium Les cathodes de silicium peuvent contenir de l'aluminium comme dopant en faible quantité de l'ordre de 4%, lesquels se retrouvent également dans la couche. Ces couches se situent immédiatement sous la couche superficielle à base d'oxyde de titane, et présentent une épaisseur qui peut également être relativement modeste, de l'ordre de quelques nanomètres. Ces couches et notamment celle d'oxyde d'étain, peuvent aussi, lorsque leur épaisseur est sensiblement plus importante, jouer un rôle optique significatif dans le système interférentiel constitué.
Les vitrages revêtus selon l'invention présentent avantageusement une résistance aux rayures selon la méthode faisant l'objet de la norme ASTM 2486D, qui n'est pas supérieure à 30%, et de préférence pas supérieure à 20% dans une échelle allant de 0 à 100%, 100% correspondant à un vitrage entièrement rayé.
Les vitrages revêtus selon l'invention offrent encore une très bonne résistance aux tests d'humidité. Soumis au test « Cleveland » selon la norme ISO 6270, et pendant 3 jours, le niveau atteint est avantageusement d'au moins 3 sur une échelle allant de 1 à 5, 5 correspondant à un vitrage parfaitement sans défaut. Pour les échantillons soumis au test de pulvérisation saline selon la norme EN 1096 le résultat est avantageusement supérieur à 3 après 2 jours d'exposition.
L'invention est décrite de façon détaillée dans les exemples suivants qui font également l'objet des figures annexées dans lesquelles :
- la figure 1 est une représentation schématique d'une coupe d'un vitrage revêtu d'un système de couches selon l'invention ;
- la figure 2 illustre un autre système de couches comprenant deux couches d'argent ; - la figure 3 est un graphique représentant l'absorption lumineuse en fonction de la longueur d'onde pour des monocouches d'oxydes utilisés selon l'invention ;
- la figure 4 est analogue à la précédente à une échelle plus détaillée.
Le vitrage de la figure 1 est présenté en coupe sans respecter les proportions des différents éléments par souci de clarté. La feuille de verre 1 est revêtue d'un ensemble de couches comprenant une couche 4 à base d'argent réfléchissant les infrarouges. Cette couche d'argent est disposée entre deux ensembles de couches diélectriques qui la protègent et lui confèrent une bonne transmission lumineuse avec une bonne neutralité en réflexion.
La couche d'argent 4 est avantageusement déposée sur une couche 3 à base d'oxyde de zinc. Les couches d'oxyde de zinc et celles à base d'oxyde de zinc dopé, sont connues pour favoriser la formation d'une bonne interface avec les couches d'argent, notamment sans rugosité. Elles améliorent globalement les propriétés de ces dernières. Pour une même quantité d'argent par unité de surface la conduction, et par suite l'émissivité des couches, sont améliorées lorsqu'elles sont déposées de cette façon. Il peut s'agir d'oxyde de zinc seul sous faible épaisseur, épaisseur qui n'est pas supérieure à 15nm.
Lorsque l'épaisseur d'oxyde de zinc est plus importante, le risque est de développer une croissance colonnaire laquelle conduit à une interface moins régulière avec une rugosité accrue. Pour éviter ce type de croissance il est connu de doper l'oxyde de zinc avec d'autres oxydes notamment de l'oxyde d'étain.
Les couches constituées d'oxyde mixte zinc et étain sont traditionnellement de deux types. Les couches sur lesquelles les couches d'argent sont déposées sont avantageusement à faible teneur en oxyde d'étain, notamment de l'ordre de 10% en poids. Ces couches comme indiqué précédemment sont relativement peu épaisses et ne dépassent pas 15nm. Le second type de couches d'oxyde mixte de zinc et d'étain est utilisé pour constituer dans les ensembles diélectriques la part principale du chemin optique pour les effets dé-réfléchissants. Dans cette fonction, la ou les couches en question, ont d'ordinaire des épaisseurs de plusieurs dizaines de nanomètres. De façon typique, des couches de ce type sont constituées à partir d'un oxyde mixte à 50% en poids environ de chacun des oxydes de zinc et d'étain
Dans l'exemple représenté à la figure 1, une couche protectrice 5 est déposée au dessus de la couche d'argent 4. Il s'agit d'une couche traditionnelle qui a pour but de protéger la couche d'argent contre les altérations qui pourraient l'affecter au cours des dépôts ultérieurs, notamment lorsque ces dépôts sont réalisés selon un mode réactif par exemple en atmosphère oxydante. La couche 5 est dite "barrière" ou encore "sacrificielle" lorsqu'elle intervient en réagissant avec l'atmosphère qui, en l'absence de cette couche, serait susceptible de réagir avec la couche d'argent.
Ces couches sacrificielles sont de très faibles épaisseurs. Elles ne sont pas de plus de 6 nm et de préférence leur épaisseur est de 2 ou 3 nm. Elles sont constituées traditionnellement à base d'oxyde, notamment de titane ou d'un matériau contenant NiCr, ou du Zr, et des sous oxydes correspondants. Etant déposées pour pouvoir réagir en protégeant l'argent, elles sont souvent formées à partir de cibles des métaux correspondant, et oxydées dans la suite de la constitution de l'empilage. Pour cette raison les couches sont souvent sous-stoechiométriques. Il est aussi possible de les déposer à partir de cibles céramiques elles mêmes sous-stoechiométriques. Cette façon de procéder permet d'atteindre plus commodément dans la couche finale une bonne oxydation voisine de la stoechiométrie. De cette manière le coefficient d'extinction de la couche est réduit au mieux.
A la figure 1 les couches 2 et 6, sont des couches entrant dans la constitution du filtre. Elles permettent d'éviter la réflexion de la majeure partie des rayons du domaine du visible. Grâce à ces couches on règle aussi la coloration de la lumière transmise et surtout de celle réfléchie, étant connu que dans la grande majorité des applications l'on s'efforce pour cette dernière de faire en sorte que cette lumière soit aussi faible et aussi neutre que possible.
Les couches diélectriques traditionnelles sont principalement constituées des oxydes de : Zn, Sn, Ti, Al, Zr, Nb. Leur épaisseur est fonction de leur indice et des chemins optiques requis, eux-mêmes dépendant de l'épaisseur de la couche réfléchissant les infrarouges. Les relations entre ces grandeurs sont parfaitement établies et donnent lieu le plus souvent à des déterminations au moyen de programmes spécialisés. Partant des valeurs ainsi déterminées, les ajustements ultérieurs sont effectués pour tenir compte des écarts qui peuvent exister entre les caractéristiques effectives de structure, de composition ou de configuration, et celles correspondantes des couches idéales.
La couche superficielle 7 est une couche selon l'invention à base d'oxyde de titane comprenant un oxyde de dureté élevée (ZrO2, SiO2, CreO3,).
A titre d'exemple d'un empilage de ce type conforme à l'invention, les échantillons suivants sont réalisés. Les épaisseurs sont exprimées en Angstroms :
Figure imgf000008_0001
Dans ce tableau :
ZSO9 désigne une couche d'oxyde de zinc dopée à 10% en poids d'oxyde d'étain ;
TiOx est un oxyde de titane sous-oxydé (éventuellement TiOx peut être remplacé par ZrOx est un oxyde de zirconium sous-oxydé) ; TiZrOx est un oxyde de titane mixte comprenant en poids 50% de TiO2, 46% de ZrO2, le reste étant constitué d'éléments accompagnant habituellement le zirconium, notamment de l'oxyde Y2O5 ; il est obtenu à partir de cibles céramiques et déposé en atmosphère légèrement oxydante, la couche obtenue est pratiquement stoechiométrique ;
L'exemple de comparaison, analogue aux exemples précédents mais ne comportant pas de couche superficielle selon l'invention, est le suivant :
Figure imgf000009_0001
TiO2 est une couche déposée dans des conditions qui favorisent la formation d'un composé quasi stoechimétrique par opposition aux couches barrières TiOx qui en raison de leur fonction sont déposées en gardant une certaine sous-stoechiométrie qui s'atténue ou disparait au cours des dépôts des couches ultérieures.
Tous ces exemples correspondent a des systèmes à basse émissivité de vitrages "non-trempables". Soumis à un traitement thermique vigoureux du type bombage/trempe, leurs qualités optiques sont susceptibles de se modifier de manière significative.
Les échantillons sont testés pour leur capacité de résister aux épreuves mécaniques. Dans les conditions de l'essai il est peu important que des différences soient relevées dans la constitution des couches sous-jacentes.
Les résultats dépendent essentiellement de la qualité de la couche superficielle.
Les échantillons sont soumis à un essai avec une brosse sèche selon la norme ASTM 2486D. On mesure le taux de rayures. Plus celui-ci est faible meilleure est la résistance mécanique. L'échantillon comportant la couche superficielle de SnO2 présente un taux de rayures de 40%. Les échantillons 1 et 2 selon l'invention présentent respectivement des taux de 5% et 15%. Leur résistance est donc améliorée de façon très significative. Des essais analogues sont réalisés sur des systèmes constitués de la façon suivante (épaisseurs en Angstroms) :
Figure imgf000010_0001
Pour ces échantillons les propriétés optiques dans le système
CIELAB et la résistance s'établissent de la façon suivante :
Transmission lumineuse
Figure imgf000010_0002
Les résistances par carré respectives de ces trois échantillons s'établissent à 3,65, 3,44 et 3,51Ω/D.
Les qualités optiques et de résistance ne sont pas sensiblement modifiées par la présence de la couche protectrice selon l'invention. La résistance à l'abrasion mesurée selon la norme ASTM4086D est d'autant meilleure que la couche protectrice est plus épaisse. Il en est de même dans la mesure de la résistance à la délamination dans l'épreuve de frottement humide ("wet rub test").
Le "wet rub test" est destiné à apprécier la résistance du système de couches à la délamination au frottement. L'échantillon est soumis au frottement d'un tissu de coton maintenu humide (eau déminéralisée) sous une charge. Le frottement en va-et-vient est effectué à une fréquence de 60 oscillations par minutes. Le mouvement est maintenu pendant un nombre de cycles usuellement de 500.
On observe l'évolution de la couche supérieure et si celle-ci est enlevée par ce frottement.
La résistance aux épreuves dites chimiques montre également une amélioration en fonction de l'épaisseur de la couche protectrice. Trois types d'essais sont réalisés. Le test dit de Cleveland, la chambre climatique et le brouillard salin. La nature de ces essais est détaillée plus loin à propos des essais effectués sur des échantillons comprenant deux couches d'argent. L'échantillon ayant la couche protectrice la plus épaisse montre encore une fois la meilleure résistance à ces trois tests. Les valeurs respectives s'établissent ainsi à 4,5 au Cleveland, 4,5 à la chambre climatique te 3,5 au brouillard salin.
D'autres essais sont conduits avec des systèmes de couches comprenant deux couches d'argent. De nouveau des essais comparatifs sont effectués. Les échantillons de comparaison comportent une couche superficielle d'oxyde d'étain. Les échantillons selon l'invention sont revêtus par une couche d'oxyde mixte de titane et de zirconium comme précédemment.
Dans une première comparaison les structures sont les suivantes
(comme précédemment les épaisseurs sont exprimées en Angstroms) :
Figure imgf000012_0001
Dans ce tableau les abréviations ont les mêmes significations que précédemment. En plus ZnO-Al désigne un oxyde de zinc dopé à l'aluminium, comportant 5% en poids d'aluminium.
La structure est celle schématisée à la figure 2 qu'il s'agisse des échantillons de comparaison comme ceux de l'invention.
Les échantillons précédents ont été soumis à une série de tests de résistance.
Le premier essai concerne la résistance à la condensation suivant la méthode dite « Cleveland » qui fait l'objet de la norme ISO 6270. Selon ce test les échantillons sont maintenus dans une atmosphère saturée d'humidité à température constante pendant plusieurs jours. On note l'apparition éventuelle de défauts et leur densité. Le test est considéré comme réussi lorsque le niveau atteint après 1 jour est de 4 sur une échelle allant de 1 à 5, la note 5 correspondant à un échantillon sans défaut. Un essai est effectué aussi en chambre climatique. Il s'agit également d'un essai de résistance à la condensation. Dans ce test la température passe de 45 à 55°C alternativement chaque fois pendant 1 heure.
L'atmosphère est aussi saturée en humidité. Comme précédemment le résultat est bon lorsque le niveau après 3 jours est au moins de 3 sur l'échelle de 1 à 5.
Le test de la pulvérisation saline est effectué selon la norme EN1096. L'échantillon dans ce cas est satisfaisant lorsque le niveau est au moins de 2,5 après 2 jours toujours sur l'échelle de 1 à 5.
La résistance aux UV est déterminée par exposition de manière accélérée. Le niveau est satisfaisant s'il est d'au moins 3.
Les résultats obtenus sont reportés dans le tableau suivant :
Figure imgf000013_0001
Par rapport aux échantillons de référence les structures selon l'invention se comportent au moins aussi bien, et sont particulièrement résistantes aux tests de résistances à l'humidité.
D'autres essais sont effectués avec des couches superficielles à base d'oxyde mixte de titane et soit de silicium (TiSiO). Le taux d'oxyde de silicium est de 8% en poids. Le dépôt de ces couches est effectué soit dans un gaz neutre (Ar) soit dans un mélange de gaz neutre et d'oxygène comportant 7% d'oxygène. Ces structures sont encore essayées à différentes épaisseurs pour la couche superficielle (30, 80 et 130Â).
La structure des systèmes de couches est analogue à celle des exemples précédents 1 et 2.
Figure imgf000014_0001
Les combinaisons suivantes sont réalisées et les propriétés indiquées pour la résistance aux rayures à la brosse sèche, et au test chimique de type "Cleveland".
Tous les essais "Cleveland" montrent une très bonne résistance des échantillons selon l'invention. Les notations se situent toutes à 4 ou plus sur l'échelle de 1 à 5. La résistance à la brosse montre les résultats suivants en pourcentage de rayures :
Figure imgf000014_0002
Les résistances à l'abrasion montrent une progression manifeste pour les couches déposées en atmosphère contenant de l'oxygène. Cette résistance à la rayure dépend aussi, de manière un peu moindre, de l'épaisseur de la couche.
Les couches utilisées selon l'invention comme couche superficielle protectrice ont encore l'avantage par rapport à d'autres types de couches présentant des qualités de résistance mécanique, par exemple de nitrure de titane, d'être très transparentes aux longueurs d'onde visibles. Cette transparence est d'autant meilleure que l'oxydation de la couche est plus complète. Les figures 3 et 4 illustrent cette particularité. Sur ces figures des séries de mesures d'absorption sont rapportées en fonction de la longueur d'onde. Les mesures sont faites sur des monocouches d'oxyde mixte de titane et de zirconium du même type que celles faisant l'objet des exemples précédents. Les couches sont déposées sur une feuille de verre clair de 4mm d'épaisseur.
La couche de TiZrOx est uniformément de 16 nm. Elle est déposée dans une atmosphère d'argon dont la teneur en oxygène est variable, sous une pression totale constante de 0,8 Pa.
Les dépôts sont effectués à partir d'une cible céramique comportant le mélange d'oxyde de titane et zirconium. Le débit d'oxygène est successivement nul (losange), puis de 1 (rond), 2,5 (triangle), et 5 cm3 (carré) par Kw de puissance appliquée à la cathode. La cinquième mesure (étoile) correspond au dernier échantillon (5 cm3) ayant été soumis au traitement thermique 6000C pendant 3 mn.
Dans l'atmosphère d'argon seul, l'absorption de la couche, figure 3, est très importante. Cette absorption correspond à l'existence de sous- stoechiométrie inhérente à la formation dans ce type d'atmosphère. Dès qu'un peu d'oxygène est introduit, l'aptitude du titane à réagir conduit rapidement à un comportement radicalement différent. L'absorption est réduite sensiblement. Le mélange d'oxyde tend vers la stoechiométrie.
A la figure 3 les différentes courbes sont très rapprochées. Pour distinguer les effets de la teneur en oxygène les résultats sont reportés à une autre échelle à la figure 4. On constate sur cette figure que l'absorption est globalement plus faible lorsque la teneur en oxygène est augmentée. On atteint cependant rapidement une limite. La courbe qui est présentée pour l'échantillon qui a subi un traitement thermique est pratiquement identique à celle de l'échantillon avant ce traitement. La couche est donc pratiquement stoechiométrique pour ces concentrations. Les couches protectrices superficielles selon l'invention sont avantageusement utilisées pour protéger des systèmes bas émissifs comprenant une, deux ou trois couches d'argent, chaque couche d'argent présentant une épaisseur comprise entre 7 et 20 nm. Ces systèmes comprennent aussi des couches diélectriques notamment à base d'oxyde de zinc, d'oxyde d'étain et de leurs alliages. Ces systèmes comprennent en outre des couches barrières situées au-dessus des couches d'argent et constituées de titane ou de NiCr, de Zr, et de leurs oxydes ou sous oxydes.
Des vitrages selon l'invention utiles comme vitrages bas émissifs comprennent notamment la structure suivante partant de la feuille de verre :
ZnSnO(50/50)/ZnSnO(90/10)/Ag/TiOx/ZnSnO(90/10)/ZnSnO(50/50)/TiZrOx(5 5/45)
Dans cette structure la couche à base d'argent présente une épaisseur comprise entre 10 et 14nm, les diélectriques situés sous la couche d'argent respectivement les épaisseurs de 20 à 35nm et 6 à lOnm, et pour les couches diélectriques à base d'oxyde de zinc situées au dessus de l'argent des épaisseurs respectives de 15 à 25nm et 15 à 25nm, l'épaisseur de la couche superficielle de TiZrOx étant comprise entre 5 et 8nm.
Un système de couches analogue est proposé selon l'invention qui comporte cette fois deux couches réfléchissantes à base d'argent. La structure de ce système est à partir du substrat verrier :
ZnSnO(50/50)/ZnSnO(90/10)/Ag/TiOx/ZnSnO(50/50)/ ZnSnO(90/10)/Ag/TiOx/ZnSnO(90/10)/ZnSnO(50/50)/TiZrOx(55/45)
avec pour chaque ensemble de couches diélectriques, des épaisseurs telles que sous la première couche d'argent 20 à 35nm et 6 àlOnm, entre les couches d'argent pour les couches à base d'oxyde de zinc respectivement de 8 à 20 nm, de 40 à 70nm et de 8 à 20nm, et celle au dessus de la seconde couche d'argent de 6 à lOnm et de 20 à 35nm, les couches d'argent ayant chacune une épaisseur comprise entre 10 et 14nm, et l'épaisseur de la couche superficielle de TiZrOx étant comprise entre 5 et 8nm.
Sur la base de cette structure on compare un ensemble comprenant la couche supérieure de protection selon l'invention à une structure analogue sans cette couche. Les épaisseurs respectives des différentes couches sont :
Exemple comparatif
268/110/118/21/685/160/166/23/140/107/105 Selon l'invention 218/160/118/21/685/160/166/23/120/77/105/31
Les échantillons sont soumis aux essais :
Figure imgf000017_0001
La structure selon l'invention montre une très bonne résistance à l'abrasion et aux épreuves en conditions humides.

Claims

REVENDICATIONS
1. Vitrage essentiellement transparent comportant un système de couches minces déposées sous vide avec magnétron et présentant des propriétés antisolaires et/ou bas-émissives comportant comme couche superficielle protectrice une couche à base d'oxyde de titane et d'au moins un autre oxyde métallique de dureté élevée du groupe comprenant : ZrO2, SiO2, Cr2O3.
2. Vitrage selon la revendication 1 dans lequel le ou les oxydes métalliques hors l'oxyde de titane de la couche superficielle représentent au moins 5% en poids de l'ensemble de la couche, et de préférence au moins 10% en poids.
3. Vitrage selon l'une des revendications précédentes dans lequel l'oxyde de titane représente au moins 40% en poids de la couche superficielle.
4. Vitrage selon l'une des revendications précédentes dans lequel la couche superficielle contient encore des oxydes métalliques présents habituellement avec les oxydes additionnels considérés, ces oxydes se trouvant en proportion ne dépassant pas 8 % en poids de l'ensemble des oxydes de la couche superficielle.
5. Vitrage selon l'une des revendications précédentes dans lequel, hors l'oxyde de titane, la couche superficielle contient de l'oxyde de zirconium à raison de 15 à 50% en poids.
6. Vitrage selon l'une des revendications précédentes dans lequel la couche superficielle à base d'oxyde de titane présente une épaisseur qui n'est pas inférieure à 3nm.
7. Vitrage selon l'une des revendications 1 à 6 dans lequel la couche superficielle à base d'oxyde de titane présente une épaisseur qui n'est pas supérieure 35nm.
8. Vitrage selon l'une des revendications précédentes dans lequel la couche superficielle à base d'oxyde de titane est appliquée sur une première couche protectrice d'oxyde d'étain ou de nitrure, ou oxynitrure de silicium éventuellement contenant de l'Ai.
9. Vitrage selon l'une des revendications précédentes qui, dans l'essai de résistance aux rayures effectué selon la norme ASTM 2486D conduit à un taux de rayures au plus égal à 30% et de préférence au plus égal 20%.
10. Vitrage selon l'une des revendications précédentes comprenant outre la couche superficielle au moins une couche fonctionnelle à base d'argent et un ensemble de couches diélectriques disposées entre le substrat verrier et la première couche d'argent, le cas échéant entre chaque couche d'argent, et au dessus de la couche d'argent la plus distante du substrat.
11. Vitrage selon la revendication 10 comprenant une, deux ou trois couches d'argent chacune d'une épaisseur de 7 à 20nm.
12. Vitrage selon la revendication précédente dans lequel chaque couche à base d'argent est revêtue d'une couche sacrificielle formée par un oxyde ou sous oxyde de Ti, NiCr.
13. Vitrage selon la revendication 10, 11 ou 12 dans lequel la ou les couches d'argent sont déposées sur une couche à base d'oxyde de zinc éventuellement dopée à l'étain.
14. Procédé de préparation d'un vitrage selon l'une des revendications précédentes dans lequel la couche superficielle à base d'oxyde de titane comprenant un ou plusieurs oxydes additionnels améliorant sa résistance mécanique, est déposée par dépôt sous vide assisté par magnétron, à partir de cathodes comportant un mélange correspondant d'oxydes.
15. Procédé selon la revendication 14 dans lequel le dépôt de la couche superficielle est effectué en atmosphère légèrement oxydante.
16. Vitrage selon l'une des revendications 1 à 13, dans lequel le système de couches est constitué de la façon suivante à partir du substrat verrier :
ZnSnO(50/50)/ZnSnO(90/10)/Ag/TiOx/ZnSnO(90/10)/ZnSnO(50/50)/TiZrOx(5 5/45)
dans lequel la couche à base d'argent présente une épaisseur comprise entre 10 et 14nm et l'épaisseur de la couche superficielle de TiZrOx étant comprise entre 5 et 8nm.
17. Vitrage selon l'une des revendications 1 à 13 revêtu d'un système de couches comprenant 2 couches à base d'argent dans lequel le système de couches présente à partir du substrat verrier la structure suivante
ZnSnO(50/50)/ZnSnO(90/10)/Ag/TiOx/ZnSnO(90/10)/ZnSn(50/50)/ ZnSnO(90/10)/Ag/TiOx/ZnSnO(90/10)/ZnSnO(50/50)/TiZrOx(55/45)
les couches d'argent ayant chacune une épaisseur comprise entre 10 et 14nm, et l'épaisseur de la couche superficielle de TiZrOx étant comprise entreδ et 8nm.
PCT/EP2009/053288 2008-03-20 2009-03-20 Vitrage revêtu de couches minces WO2009115595A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09721364.9A EP2262743B2 (fr) 2008-03-20 2009-03-20 Vitrage revêtu de couches minces
PL09721364.9T PL2262743T5 (pl) 2008-03-20 2009-03-20 Oszklenie pokryte cienkimi warstwami
EA201001516A EA021185B1 (ru) 2008-03-20 2009-03-20 Остекление, покрытое тонкими слоями
ES09721364T ES2743103T5 (es) 2008-03-20 2009-03-20 Acristalamiento revestido de capas delgadas
CN200980110008.0A CN101980984B (zh) 2008-03-20 2009-03-20 覆盖有薄层的玻璃
US12/933,602 US8697243B2 (en) 2008-03-20 2009-03-20 Film-coated glazing
JP2011500233A JP5603320B2 (ja) 2008-03-20 2009-03-20 フィルム被覆板ガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08102808 2008-03-20
EP08102808.6 2008-03-20

Publications (1)

Publication Number Publication Date
WO2009115595A1 true WO2009115595A1 (fr) 2009-09-24

Family

ID=39689162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053288 WO2009115595A1 (fr) 2008-03-20 2009-03-20 Vitrage revêtu de couches minces

Country Status (8)

Country Link
US (1) US8697243B2 (fr)
EP (1) EP2262743B2 (fr)
JP (1) JP5603320B2 (fr)
CN (1) CN101980984B (fr)
EA (1) EA021185B1 (fr)
ES (1) ES2743103T5 (fr)
PL (1) PL2262743T5 (fr)
WO (1) WO2009115595A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232159A (zh) * 2013-05-10 2013-08-07 苏州工业园区方圆金属制品有限公司 一种多功能平板玻璃
WO2015071610A1 (fr) * 2013-11-15 2015-05-21 Saint-Gobain Glass France Vitrage comprenant un substrat revetu d'un empilement comprenant une couche fonctionnelle a base d'argent et une sous-couche de blocage epaisse de tiox
WO2018165130A1 (fr) * 2017-03-07 2018-09-13 Guardian Glass, LLC Article revêtu ayant un revêtement à faible émissivité comportant une ou des couches réfléchissant les ir et un film diélectrique bicouche en oxyde de titane dopé et son procédé de fabrication
EP3233749B1 (fr) 2014-12-19 2020-04-29 Saint-Gobain Glass France Vitrage utilise comme un element constitutif d'un dispositif chauffant
WO2022053507A1 (fr) 2020-09-10 2022-03-17 Agc Glass Europe Feuille de verre revêtue réfléchissant les uv pouvant être trempée
WO2023006543A1 (fr) 2021-07-27 2023-02-02 Agc Glass Europe Vitrage pour empêcher les collisions d'oiseaux
WO2023131766A1 (fr) * 2022-01-10 2023-07-13 Saint-Gobain Glass France Vitrage contrôle solaire
WO2023131765A1 (fr) * 2022-01-10 2023-07-13 Saint-Gobain Glass France Vitrage contrôle solaire

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314553A1 (fr) * 2009-10-16 2011-04-27 AGC Glass Europe Vitrage réflechissant émaille
US8679633B2 (en) 2011-03-03 2014-03-25 Guardian Industries Corp. Barrier layers comprising NI-inclusive alloys and/or other metallic alloys, double barrier layers, coated articles including double barrier layers, and methods of making the same
US8709604B2 (en) * 2011-03-03 2014-04-29 Guardian Industries Corp. Barrier layers comprising Ni-inclusive ternary alloys, coated articles including barrier layers, and methods of making the same
JP5846203B2 (ja) * 2011-05-30 2016-01-20 旭硝子株式会社 低放射率積層体、および複層ガラス
KR101381531B1 (ko) * 2011-08-18 2014-04-07 (주)엘지하우시스 열처리가 가능한 저방사 유리 및 이의 제조방법
EP2803245B1 (fr) * 2012-01-10 2017-03-08 Saint-Gobain Glass France Vitrage transparent doté d'un revêtement pouvant être chauffé de manière électrique
WO2014109368A1 (fr) * 2013-01-11 2014-07-17 旭硝子株式会社 Film optique multicouche, corps stratifié et verre à double vitrage
FR3054892A1 (fr) * 2016-08-02 2018-02-09 Saint Gobain Substrat muni d'un empilement a proprietes thermiques comportant au moins une couche comprenant du nitrure de silicium-zirconium enrichi en zirconium, son utilisation et sa fabrication.
JP2018145069A (ja) * 2017-03-08 2018-09-20 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス、及び、合わせガラスシステム
US10562812B2 (en) * 2018-06-12 2020-02-18 Guardian Glass, LLC Coated article having metamaterial-inclusive layer, coating having metamaterial-inclusive layer, and/or method of making the same
US10752541B2 (en) 2018-07-16 2020-08-25 Guardian Glass, LLC Low-E matchable coated articles having doped seed layer under silver, and corresponding methods
US10301215B1 (en) 2018-07-16 2019-05-28 Guardian Glass, LLC Low-E matchable coated articles having doped seed layer under silver, and corresponding methods
US10759693B2 (en) * 2018-07-16 2020-09-01 Guardian Glass, LLC Low-E matchable coated articles having absorber film and corresponding methods
US10787385B2 (en) 2018-07-16 2020-09-29 Guardian Glass, LLC Low-E matchable coated articles having absorber film and corresponding methods
EP3894365A1 (fr) * 2018-12-14 2021-10-20 Guardian Glass, LLC Articles revêtus ajustables à faible émissivité ayant une couche de germe dopée sous l'argent, et procédés correspondants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514485A (en) * 1988-03-03 1996-05-07 Asahi Glass Company Ltd. Amorphous oxide film and article having such film thereon
EP0922681A1 (fr) * 1997-12-11 1999-06-16 Saint-Gobain Vitrage Substrat transparent muni de couches minces à propriétés de réflexion dans l'infrarouge
WO2002042234A1 (fr) * 2000-11-25 2002-05-30 Saint-Gobain Glass France Substrat transparent ayant un empilement de couches minces a reflexion metallique
WO2003093188A1 (fr) * 2002-05-03 2003-11-13 Ppg Industries Ohio, Inc. Substrat presentant un revetement de gestion thermique pour une unite de vitrage isolant
WO2004013059A2 (fr) * 2002-08-01 2004-02-12 Saint-Gobain Glass France Systeme de couches apte a etre precontraint, pour vitrages
US20040241490A1 (en) * 2003-03-28 2004-12-02 Finley James J. Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US231501A (en) * 1880-08-24 Hoeaoe see
US241490A (en) * 1881-05-17 Pipe-wrench
US116967A (en) * 1871-07-11 Improvement in stench-traps
US9356A (en) * 1852-10-26 N-peters
US99427A (en) * 1870-02-01 William frecdenau
US53068A (en) * 1866-03-06 Improved apparatus for removing dust and gases from air
CN1208274C (zh) * 2001-01-09 2005-06-29 上海耀华皮尔金顿玻璃股份有限公司 吸收式低辐射膜玻璃及其生产工艺
US20040002083A1 (en) 2002-01-29 2004-01-01 Ye Ding Statistical algorithms for folding and target accessibility prediction and design of nucleic acids
EP1594812B1 (fr) * 2003-02-14 2008-04-09 AGC Flat Glass Europe SA Panneau de vitrage portant une superposition de revetement
DE10333619B3 (de) 2003-07-24 2004-12-16 Saint-Gobain Glass Deutschland Gmbh Schichtsystem für transparente Substrate
CN1569731A (zh) * 2004-04-23 2005-01-26 清华大学 一种Li-Si-Ni-0基高介电常数陶瓷材料及其合成方法
US20060046089A1 (en) * 2004-09-01 2006-03-02 O'shaughnessy Dennis J Metal based coating composition and related coated substrates
WO2006048463A1 (fr) 2004-11-08 2006-05-11 Glaverbel Vitrage
US20090258222A1 (en) 2004-11-08 2009-10-15 Agc Flat Glass Europe S.A. Glazing panel
GB2428251A (en) 2005-07-09 2007-01-24 Pilkington Plc Multi layer solar control glass coating
DE102006014796B4 (de) 2006-03-29 2009-04-09 Saint-Gobain Glass Deutschland Gmbh Thermisch hoch belastbares Low-E-Schichtsystem für transparente Substrate
CN101058486B (zh) * 2007-04-26 2011-08-17 天津南玻工程玻璃有限公司 可热处理的磁控溅射方法制备的低辐射镀膜玻璃

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514485A (en) * 1988-03-03 1996-05-07 Asahi Glass Company Ltd. Amorphous oxide film and article having such film thereon
EP0922681A1 (fr) * 1997-12-11 1999-06-16 Saint-Gobain Vitrage Substrat transparent muni de couches minces à propriétés de réflexion dans l'infrarouge
WO2002042234A1 (fr) * 2000-11-25 2002-05-30 Saint-Gobain Glass France Substrat transparent ayant un empilement de couches minces a reflexion metallique
WO2003093188A1 (fr) * 2002-05-03 2003-11-13 Ppg Industries Ohio, Inc. Substrat presentant un revetement de gestion thermique pour une unite de vitrage isolant
WO2004013059A2 (fr) * 2002-08-01 2004-02-12 Saint-Gobain Glass France Systeme de couches apte a etre precontraint, pour vitrages
US20040241490A1 (en) * 2003-03-28 2004-12-02 Finley James J. Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232159A (zh) * 2013-05-10 2013-08-07 苏州工业园区方圆金属制品有限公司 一种多功能平板玻璃
WO2015071610A1 (fr) * 2013-11-15 2015-05-21 Saint-Gobain Glass France Vitrage comprenant un substrat revetu d'un empilement comprenant une couche fonctionnelle a base d'argent et une sous-couche de blocage epaisse de tiox
FR3013348A1 (fr) * 2013-11-15 2015-05-22 Saint Gobain Vitrage comprenant un substrat revetu d'un empilement comprenant une couche fonctionnelle a base d'argent et une sous-couche de blocage epaisse de tiox
US10207952B2 (en) 2013-11-15 2019-02-19 Saint-Gobain Glass France Glazing comprising a substrate coated with a stack comprising a functional layer made from silver and a thick blocking underlayer made from TiOx
EA034007B1 (ru) * 2013-11-15 2019-12-18 Сэн-Гобэн Гласс Франс ОКОННОЕ СТЕКЛО, СОДЕРЖАЩЕЕ ОСНОВУ, ПОКРЫТУЮ МНОГОСЛОЙНОЙ СИСТЕМОЙ, СОДЕРЖАЩЕЙ ФУНКЦИОНАЛЬНЫЙ СЛОЙ НА ОСНОВЕ СЕРЕБРА И ТОЛСТЫЙ НИЖНИЙ БЛОКИРУЮЩИЙ СЛОЙ ИЗ TiO
EP3620442A1 (fr) * 2013-11-15 2020-03-11 Saint-Gobain Glass France Vitrage comprenant un substrat revetu d'un empilement comprenant une couche fonctionnelle a base d'argent et une sous-couche de blocage epaisse de tiox
EP3233749B1 (fr) 2014-12-19 2020-04-29 Saint-Gobain Glass France Vitrage utilise comme un element constitutif d'un dispositif chauffant
WO2018165130A1 (fr) * 2017-03-07 2018-09-13 Guardian Glass, LLC Article revêtu ayant un revêtement à faible émissivité comportant une ou des couches réfléchissant les ir et un film diélectrique bicouche en oxyde de titane dopé et son procédé de fabrication
WO2022053507A1 (fr) 2020-09-10 2022-03-17 Agc Glass Europe Feuille de verre revêtue réfléchissant les uv pouvant être trempée
WO2023006543A1 (fr) 2021-07-27 2023-02-02 Agc Glass Europe Vitrage pour empêcher les collisions d'oiseaux
WO2023131766A1 (fr) * 2022-01-10 2023-07-13 Saint-Gobain Glass France Vitrage contrôle solaire
WO2023131765A1 (fr) * 2022-01-10 2023-07-13 Saint-Gobain Glass France Vitrage contrôle solaire
FR3131741A1 (fr) * 2022-01-10 2023-07-14 Saint-Gobain Glass France Vitrage contrôle solaire
FR3131742A1 (fr) * 2022-01-10 2023-07-14 Saint-Gobain Glass France Vitrage contrôle solaire

Also Published As

Publication number Publication date
EP2262743A1 (fr) 2010-12-22
EP2262743B2 (fr) 2022-08-10
PL2262743T3 (pl) 2019-11-29
EA201001516A1 (ru) 2011-06-30
JP2011515312A (ja) 2011-05-19
ES2743103T5 (es) 2022-11-24
CN101980984A (zh) 2011-02-23
PL2262743T5 (pl) 2023-01-02
JP5603320B2 (ja) 2014-10-08
US20110027562A1 (en) 2011-02-03
EP2262743B1 (fr) 2019-05-22
ES2743103T3 (es) 2020-02-18
CN101980984B (zh) 2015-11-25
EA021185B1 (ru) 2015-04-30
US8697243B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
EP2262743B1 (fr) Vitrage revêtu de couches minces
EP2262744B2 (fr) Vitrage revêtu de couches minces
EP2262745B1 (fr) Vitrage revetu de couches minces
EP2137116B1 (fr) Vitrage à faible émissivité
EP2331475B1 (fr) Vitrage à réflexion élevée
FR2858975A1 (fr) Substrat transparent revetu d'un empilement de couches minces a proprietes de reflexion dans l'infrarouge et/ou dans le domaine du rayonnement solaire
BE1019881A3 (fr) Vitrage isolant.
EP2585411B1 (fr) Vitrage isolant
WO2011006905A1 (fr) Materiau photocatalytique
BE1019641A3 (fr) Vitrage a reflexion elevee.
BE1019690A3 (fr) Vitrage isolant.
BE1019638A3 (fr) Vitrage a reflexion elevee.
EP3419946B1 (fr) Vitrage de contrôle solaire comprenant une couche d'un alliage nicucr

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110008.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721364

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12933602

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011500233

Country of ref document: JP

Ref document number: 2009721364

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201001516

Country of ref document: EA