WO2009113619A1 - Process for production of aromatic polymer and starting compound for the same - Google Patents

Process for production of aromatic polymer and starting compound for the same Download PDF

Info

Publication number
WO2009113619A1
WO2009113619A1 PCT/JP2009/054777 JP2009054777W WO2009113619A1 WO 2009113619 A1 WO2009113619 A1 WO 2009113619A1 JP 2009054777 W JP2009054777 W JP 2009054777W WO 2009113619 A1 WO2009113619 A1 WO 2009113619A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
represented
aromatic polymer
aromatic
producing
Prior art date
Application number
PCT/JP2009/054777
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 中村
貴司 山田
有弘 八代
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2009113619A1 publication Critical patent/WO2009113619A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4021Esters of aromatic acids (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4025Esters of poly(thio)phosphonic acids
    • C07F9/404Esters of poly(thio)phosphonic acids containing hydroxy substituents in the hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4025Esters of poly(thio)phosphonic acids
    • C07F9/4043Esters of poly(thio)phosphonic acids containing sulfur substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Definitions

  • the present invention relates to a method for producing an aromatic polymer and a raw material compound thereof.
  • a polymer having an ion exchange group is used as a polymer electrolyte, and the polymer electrolyte is used as a polymer electrolyte membrane of a solid polymer fuel cell.
  • a polymer electrolyte fuel cell (hereinafter may be abbreviated as “fuel cell”) is a power generation device that generates electricity through a chemical reaction between hydrogen and oxygen. High expectations are placed in the automotive industry and other fields. In recent years, inexpensive hydrocarbon polymer electrolytes have attracted attention as polymer electrolyte membranes for fuel cells, instead of conventional fluorine polymer electrolytes. Furthermore, as the hydrocarbon polymer electrolyte membrane, for example, an aromatic polymer electrolyte excellent in heat resistance is known (for example, Patent Document 1).
  • an aromatic polymer electrolyte for example, a specific aromatic polymer compound called a polyether aromatic polymer is brominated with a brominating agent, and then in the presence of nickel halide in an organic solvent.
  • a method is known in which a trialkyl phosphite is allowed to act to produce a phosphonic acid diester compound and the diester is further hydrolyzed to obtain an aromatic polymer (for example, see Patent Document 2). It was.
  • the above-described method for producing an aromatic polymer has a large number of reaction steps and is not satisfactory. Moreover, it was not easy to adjust the ion exchange group density of the resulting aromatic polymer. Therefore, a method for producing an aromatic polymer having a small number of reaction steps and a method for producing an aromatic polymer capable of easily adjusting the ion exchange group density of the obtained aromatic polymer have been desired.
  • an object of the present invention is to provide a method for producing an aromatic polymer in which the number of reaction steps is small and the ion exchange group density can be easily adjusted, and a raw material compound used in the method. is there.
  • the present invention provides the following [2] to [23] as preferred embodiments according to the above [1].
  • [2] General formula (1)
  • groups represented by X 1 and X 2 each independently represent a condensable reactive group.
  • Ar 1 represents an optionally substituted aromatic group.
  • the group represented by E 1 is Represents an ion exchange group or an ion exchange precursor group, and n represents an integer of 1 to 4. When a plurality of E 1 are present, the plurality of E 1 may be the same or different.
  • the method for producing an aromatic polymer according to [1] comprising a polymerization step in which a monomer represented by the formula (I) is polymerized in the presence of a base and a first transition metal salt.
  • Ar 3 represents an aromatic group which may have a substituent.
  • the method for producing an aromatic polymer according to any one of [1] to [6], wherein the monomer represented by [8] The method for producing an aromatic polymer according to any one of [1] to [7], wherein the groups represented by X 1 and X 2 are each independently a hydroxyl group or a mercapto group.
  • the base is an alkali metal carbonate, alkali metal bicarbonate, alkali metal hydroxide, alkali metal hydride, alkaline earth metal carbonate, alkaline earth metal bicarbonate, alkaline earth metal hydroxide.
  • Ar 4 represents an aromatic group which may have a substituent.
  • P represents an integer of 1 to 4.
  • R 1 represents a hydrogen atom, an inorganic or organic cation
  • R 2 represents an alkyl group or an aryl group. in the case where R 1 and R 2 there are a plurality, R 1 and R 2 existing in plural numbers, respectively identical It may or may not be.)
  • [20] The method for producing an aromatic polymer according to any one of [13] to [19], wherein R 2 is an alkyl group.
  • [21] The method for producing an aromatic polymer according to any one of [13] to [20], wherein the polymerization is performed at 100 ° C. or higher in the polymerization step.
  • [22] The method for producing an aromatic polymer according to any one of [13] to [21], wherein the base is an alkali metal salt.
  • R 1 is an organic cation.
  • the ion exchange group density of the obtained aromatic polymer can be easily adjusted, and has various structures easily.
  • Aromatic polymers can be produced.
  • a monomer having a high ion exchange group substitution rate an aromatic polymer having a high ion exchange group density can be obtained.
  • the production method of the present invention has high reactivity and conversion efficiency, the volumetric efficiency can be increased, leading to a reduction in process load.
  • the polymerization step is carried out in the coexistence of a base and a first transition metal salt, the monomer conversion rate is high and an aromatic polymer can be produced under mild reaction conditions.
  • the monomer conversion rate is high and an aromatic polymer can be produced under mild reaction conditions.
  • the production method of the present invention is extremely useful industrially because the type of reaction solvent has little influence on polymerization.
  • a fuel cell using an aromatic polymer obtained by the production method of the present invention as a polymer electrolyte membrane can provide a fuel cell excellent in long-term stability while maintaining practically sufficient power generation performance. It is extremely useful industrially.
  • a fuel cell using an aromatic polymer whose free acid form is a phosphonic acid group as a polymer electrolyte membrane is extremely useful industrially because it can provide a fuel cell with excellent durability.
  • the method for producing an aromatic polymer according to the first embodiment is a polymerization in which the monomer represented by the general formula (1) is polymerized in the presence of a base and a first transition metal salt.
  • a process is provided.
  • the above polymerization step in the general formula (1), a group represented by E 1 at least part of (but group represented by E 1 excluding the case where the ion-exchange group), with E 2
  • It is a manufacturing method of the aromatic polymer which has a repeating unit represented by General formula (2) provided with the reaction process converted into the group shown.
  • the aromatic polymer obtained here is also referred to as an aromatic polymer electrolyte.
  • the monomer used in the first embodiment the polymerization step, the aromatic polymer electrolyte obtained by the production method of the first embodiment, the base, the first transition metal salt, and the reaction step in order. explain.
  • the monomer used in the first embodiment is a monomer represented by the general formula (1).
  • groups represented by X 1 and X 2 each independently represent a condensable reactive group.
  • Ar 1 represents an aromatic group which may have a substituent.
  • the group represented by E 1 represents an ion exchange group or an ion exchange precursor group.
  • n represents an integer of 1 to 4. When a plurality of E 1 are present, the plurality of E 1 may be the same or different.
  • X 3 and X 4 each independently represent a condensable reactive group.
  • Ar 3 represents an aromatic group which may have a substituent.
  • X 1 to X 4 in the general formulas (1) and (3) each independently represent a condensable reactive group.
  • the condensable reactive group means a functional group that can be bonded via a divalent or trivalent group or atomic group by causing a condensation reaction with another condensable functional group.
  • the condensable reactive group include a nucleophilic reactive group and a leaving group.
  • the nucleophilic reactive group represents a group having nucleophilicity, acts on the carbon atom to which the leaving group is bonded, and is newly added with the elimination of the leaving group by ipso substitution.
  • a bond can be formed through a valent or trivalent group or atomic group.
  • a leaving group refers to the group which leaves
  • Each of X 1 to X 4 may be a nucleophilic reactive group or a leaving group, but when homopolymerization is performed with one kind of monomer described in the general formula (1), X 1 And X 2 , one is a nucleophilic reactive group and the other is a leaving group. Moreover, when copolymerizing 1 type of monomer of the said General formula (1), and 1 type of monomer of the said General formula (3), they are mention
  • nucleophilic reactive group examples include a hydroxyl group and a mercapto group. Among these, a hydroxyl group is preferable.
  • Representative examples of the leaving group include a fluoro group, a chloro group, a bromo group, an iodo group, a tosyl group, and a triflate group. Of these, the leaving group is preferably a chloro group.
  • the group represented by E 1 in the general formula (1) represents an ion exchange group or an ion exchange precursor group.
  • An ion exchange precursor group refers to the group used as an ion exchange group, without changing structures other than the ion exchange precursor group of an aromatic polymer electrolyte precursor.
  • the ion exchange precursor group becomes an ion exchange group through a reaction of preferably within 3 stages, more preferably within 2 stages, still more preferably 1 stage.
  • Representative examples of ion exchange groups include sulfonic acid groups, phosphonic acid groups, phosphinic acid groups, carboxylic acid groups, and the like.
  • a sulfonic acid group and a phosphonic acid group are preferable, and a phosphonic acid group is preferable from the viewpoint of improving the solubility of the monomer by acting with the first transition metal salt.
  • Representative examples of ion exchange precursor groups include sulfonic acid precursor groups, phosphonic acid precursor groups, phosphinic acid precursor groups, carboxylic acid precursor groups, and the like.
  • the sulfonic acid precursor group is a group that becomes a sulfonic acid group through the above reaction
  • the phosphonic acid precursor group is a group that becomes a phosphonic acid group through the above reaction, and phosphinic acid.
  • the precursor group is a group that becomes a phosphinic acid group through the above reaction
  • the carboxylic acid precursor group is a group that becomes a carboxylic acid group through the above reaction.
  • a sulfonic acid precursor group and a phosphonic acid precursor group are preferable by acting with the first transition metal salt, and a phosphonic acid precursor group is preferable from the viewpoint of improving the solubility of the monomer.
  • sulfonic acid precursor group examples include the following.
  • Sulfonic acid ester group sulfonic acid neopentyl group, sulfonic acid t-butyl group and other sulfinic acid ester groups: sulfinic acid neopentyl group, sulfinic acid t-butyl group and other mercapto groups: sulfone such as methyl mercapto group, ethyl mercapto group and propyl mercapto group
  • Acid base sodium sulfonate group, potassium sulfonate group, lithium sulfonate group, ammonium sulfonate group, monomethylammonium sulfonate group, monoethylammonium sulfonate group, mono-n-propylammonium sulfonate group, mono-sulfonate group n-butylammonium group, dimethylammonium sulfonate group,
  • Examples of the phosphonic acid precursor group include the following.
  • Phosphonic acid diester group phosphonic acid monoester group: phosphonic acid diethyl group, phosphonic acid di-n-butyl group, phosphonic acid di-t-butyl group, phosphonic acid dimethyl group, phosphonic acid diisopropyl group, phosphonic acid diphenyl group, etc.
  • Phosphonic acid monoester bases such as acid monoethyl group, phosphonic acid mono-t-butyl group, phosphonic acid monomethyl group, and phosphonic acid monodiisopropyl group: ethyl phosphonate-sodium group, ethyl phosphonate-potassium group, ethyl phosphonate-lithium group Phosphonic acid ethyl-ammonium group, phosphonic acid ethyl-monomethylammonium group, phosphonic acid ethyl-monoethylammonium group, phosphonic acid ethyl-mono-n-propylammonium group, phosphonic acid ethyl-mono-n-butylammonium group, phospho Ethyl dimethylammonium group, ethyl phosphonate-diethylammonium group, ethyl phosphonate-di-n-propylammonium group,
  • Phosphonate groups sodium phosphonate group, potassium phosphonate group, lithium phosphonate group, ammonium phosphonate group, phosphonic acid-monomethylammonium group Phosphonic acid-monoethylammonium group, phosphonic acid-mono-n-propylammonium group, phosphonic acid-mono-n-butylammonium group, phosphonic acid-dimethylammonium group, phosphonic acid-diethylammonium group, phosphonic acid-di- n-propylammonium group, phosphonic acid-di-n-butylammonium group, phosphonic acid-trimethylammonium group, phosphonic acid-triethylammonium group, phosphonic acid-tri-n-propylammonium group, phosphonic acid-tri- - butyl ammonium group, phosphonic acid - tetramethyl ammonium group, phosphonic acid - tetraethy
  • Examples of the phosphinic acid group precursor group include the following. Phosphinic acid ester group: Phosphinic acid ethyl group, Phosphinic acid t-butyl group, Phosphinic acid methyl group, Phosphinic acid diisopropyl group, etc.
  • Phosphinic acid groups Phosphinic acid sodium group, Phosphinic acid potassium group, Phosphinic acid lithium group, Phosphinic acid ammonium group Phosphinic acid-monomethylammonium group, phosphinic acid-monoethylammonium group, phosphinic acid-mono-n-propylammonium group, phosphinic acid-mono-n-butylammonium group, phosphinic acid-dimethylammonium group, phosphinic acid-diethylammonium group Group, phosphinic acid-di-n-propylammonium group, phosphinic acid-di-n-butylammonium group, phosphinic acid-trimethylammonium group, phosphinic acid-triethylammonium group, Sphineic acid-tri-n-propylammonium group, phosphinic acid-tri-n-butylammonium group, phos
  • carboxylic acid group precursor group examples include the following. Carboxylic acid ester group: Carboxylic acid neopentyl group, Carboxylic acid t-butyl group and other carboxylic acid groups: Sodium carboxylate group, Carboxylic acid potassium group, Carboxylic acid lithium group, Carboxylic acid ammonium group, Carboxylic acid-monomethylammonium group, Carboxylic acid -Monoethylammonium group, carboxylic acid-mono-n-propylammonium group, carboxylic acid-mono-n-butylammonium group, carboxylic acid-dimethylammonium group, carboxylic acid-diethylammonium group, carboxylic acid-di-n-propyl Ammonium group, carboxylic acid-di-n-butylammonium group, carboxylic acid-trimethylammonium group, carboxylic acid-triethylammonium group, carboxylic acid-tri-
  • Ar 1 and Ar 3 in the first embodiment represent an aromatic group that may have a substituent.
  • the aromatic group may contain a hetero element, and preferably has 4 or more carbon atoms, more preferably 10 or more from the viewpoint of enhancing the reactivity of the condensation reaction.
  • the number of carbon atoms is preferably 24 or less, and more preferably 18 or less.
  • aromatic group examples include aromatic groups represented by the following formulas (a) to (z). (In the formula, * represents a bond with X 1 or X 2 or X 3 or X 4, respectively, and a bond with another substituent was omitted.)
  • Ar 1 is preferably a phenylene group represented by the above (c) which may have a substituent, or a biphenyl group represented by (m), and may have a substituent.
  • the biphenyl group represented by (m) is more preferable.
  • Ar 3 is preferably a group represented by the above (x) which may have a substituent, or a group represented by (y), and in the above (y) which may have a substituent. It is more preferable that it is a group represented.
  • substituents examples include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, a cyano group, a nitro group, and benzoyl. Group.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, Examples thereof include t-butyl group, isobutyl group, n-pentyl group, 2,2-dimethylpropyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, 2-methylpentyl group and 2-ethylhexyl group.
  • the alkoxy group having 1 to 10 carbon atoms may be linear, branched or cyclic.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group, and examples of the aryloxy group having 6 to 10 carbon atoms include a phenoxy group and a naphthyloxy group.
  • These groups may be further substituted with a group selected from the group consisting of an amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, and a phenoxy group.
  • Preferred monomers represented by the general formula (1) include monomers represented by the following formulas (aa) to (au).
  • phosphonic acid precursor groups are shown, but can be changed to the ion exchange groups or ion exchange precursor groups specifically mentioned above.
  • Preferred monomers represented by the general formula (3) include monomers represented by the following formulas (ca) to (cr).
  • the monomer represented by the formula (1) of the first embodiment it can be obtained as a commercial product or synthesized using a known method.
  • X 1 and X 2 are a fluoro group and a chloro group.
  • a leaving group such as a bromo group or an iodo group
  • the following production method can be exemplified, that is, (1-1) A method of introducing a phosphonic acid diester group into an aromatic compound and then introducing the above leaving group and hydrolyzing it by a known method.
  • (1-1) A method of introducing a phosphonic acid diester group into an aromatic compound and then introducing the above leaving group and hydrolyzing it by a known method.
  • 1-2 A method of introducing a phosphonic acid diester group after introducing the above leaving group into an aromatic compound and hydrolyzing it by a known method.
  • a reactive group selected from a chloro group, a bromo group, an iodo group, and the like is introduced, and then the following (2-1) to Examples thereof include a method for carrying out the substitution reaction listed in (2-5).
  • the monomer represented by the formula (1) can be obtained by substituting a part of the functional group with a phosphonic acid group and hydrolyzing by a known method.
  • a specific method for example, J. et al. Fluorine Chem.
  • Known methods such as those described in 2004, 125, 1317 can be used.
  • a protecting group is introduced into the nucleophilic reactive group, the nucleophilic reactive group is deactivated, and then the above substitution reaction is performed. Hydrolysis is preferred.
  • the protecting group is not particularly limited as long as it is a group that can be deprotected after the above-described substitution reaction.
  • Representative protecting groups for hydroxyl and mercapto groups include ethers such as benzyl and t-butyl groups. Group, an acetal group such as methoxymethyl group, an acyl group such as acetyl group and benzoyl group, and a silyl ether group such as t-butyldimethylsilyl group.
  • Representative protecting groups for amine groups include carbamate groups such as t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, imide groups such as phthaloyl group, p-toluene Examples thereof include sulfonamide groups such as a sulfonyl group and a 2-nitrobenzenesulfonyl group.
  • a halogenated phosphoric diester is allowed to act on the hydroxyl group to form a phosphate compound, which is then converted to a compound having a phosphonic diester group by a rearrangement reaction using a strong base.
  • a method for hydrolysis may be used. As a specific method, for example, J. et al. Org. Chem. Known methods such as those described in 1984, 49, 4018 can be used.
  • the monomer represented by the formula (3) of the first embodiment for example, a commercially available product is used.
  • the aromatic polymer electrolyte obtained by the production method of the first embodiment comprises a monomer represented by the general formula (1) or a monomer represented by the general formulas (1) and (3) as a base. And a first transition metal salt. Other monomers may be used as long as the above effects are not impaired.
  • the aromatic polymer electrolyte is an ion exchange in which a divalent aromatic residue obtained by removing two hydrogen atoms from a compound having an aromatic ring is directly or via a connecting member as a structural unit. It means a polymer having a group and / or an ion exchange precursor group.
  • the aromatic polymer electrolyte in the first embodiment may have a substituent.
  • the aromatic polyelectrolyte in the first embodiment has an aromatic ring which may have a substituent in the main chain, and further an aromatic ring to which an ion exchange group and / or an ion exchange precursor group are directly bonded. It is preferable to have.
  • aromatic polymer electrolyte obtained by the production method of the first embodiment those having a repeating unit represented by the general formula (2) are preferable.
  • Ar 2 represents an aromatic group which may have a substituent.
  • the group represented by E 2 represents an ion exchange group or an ion exchange precursor group different from E 1 .
  • m represents an integer of 1 to 4, and Z represents a group represented by —O— or —S—.
  • the plurality of E 2 may be the same or different.
  • Ar 2 in the first embodiment represents an aromatic group that may have a substituent, and examples of the aromatic group include those described above. Specific examples include aromatic groups such as the above formulas (a) to (z) (in the formula, * represents a bond with a group represented by —Z—, and a bond with a substituent). Omitted.) Among these, the phenylene group represented by the above (c) or the biphenyl group represented by (m) is preferable. Examples of the substituent include those described above.
  • E 2 in the first embodiment represents an ion exchange group or an ion exchange precursor group different from E 1 .
  • Specific examples of the ion exchange group and the ion exchange precursor group include those described above, preferably a phosphonic acid group and a phosphonic acid precursor group.
  • Specific examples of the phosphonic acid precursor group include those described above.
  • Examples of the repeating unit represented by the general formula (2) include repeating units represented by the following formulas (da) to (ea).
  • phosphonic acid precursor groups are shown, but can be changed to the ion exchange groups or ion exchange precursor groups specifically mentioned above.
  • the aromatic polymer electrolyte having the repeating unit represented by the general formula (2) may be a homopolymer, a random copolymer, an alternating copolymer, a block copolymer, It may be a coalescence. These can be obtained according to known methods by selecting the corresponding monomers, their ratios, and the polymerization method. These polymerization degrees are preferably 5 or more and a weight average molecular weight of 10 3 or more from the viewpoint of increasing mechanical strength. In addition, these polymerization degrees are 10 4 or less and 10 6 or less in terms of weight average molecular weight from the viewpoint of maintaining solubility in a solvent during film formation, workability such as cast film formation, and moldability. Preferably used. The weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the weight ratio is 100: 0 to 1: 99 is preferable, and 50:50 to 10:90 is more preferable.
  • the polymerization step of the first embodiment is performed in the coexistence of a base and a first transition metal salt.
  • the base include alkali metal carbonates such as sodium carbonate, potassium carbonate and cesium carbonate, alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, alkali metals such as sodium hydroxide, potassium hydroxide and cesium hydroxide.
  • Alkali metal hydrides such as hydroxide, sodium hydride, potassium hydride, alkaline earth metal carbonates such as calcium carbonate, alkaline earth metal hydrogen carbonates such as calcium bicarbonate, alkaline earths such as calcium hydroxide Examples thereof include metal hydroxides and alkaline earth metal hydrides such as calcium hydride.
  • alkali metal carbonates are preferable from the viewpoint of increasing reactivity and easy handling, and among alkali metal carbonates, sodium carbonate, potassium carbonate, and cesium carbonate are preferable.
  • the amount of the base in the polymerization step of the first embodiment is not particularly limited as long as it does not inhibit the condensation reaction in the first embodiment, but preferably 1 with respect to the amount of the nucleophilic reactive group. 0.000 to 50 molar equivalents, more preferably 1.05 to 10 molar equivalents.
  • Examples of the first transition metal salt include ScCl 3 , TiCl 4 , VCl 3 , CrCl 3 , MnCl 2 , FeCl 2 , CoCl 2 , NiCl 2 , CuCl, CuBr, CuI, CuCl 2 , CuBr 2 , and CuI 2 .
  • Examples include halides of transition metal elements.
  • the first transition metal element means a transition metal element in the fourth period in the periodic table. Among these, Fe, Co, Ni or Cu halides are preferable, and copper salts are more preferable.
  • Examples of the copper salt include a monovalent copper salt and a divalent copper salt.
  • a monovalent copper salt is preferable, and among them, CuCl, CuBr, and CuI are more preferable.
  • the amount of the first transition metal salt is preferably 0.01 molar equivalents or more and more preferably 0.1 molar equivalents or more with respect to the amount of the leaving group, from the viewpoint of promptly proceeding the polymerization reaction. From the viewpoint of production, it is preferably 10 molar equivalents or less, more preferably 5 molar equivalents or less.
  • the polymerization step of the first embodiment is preferably performed in an organic solvent.
  • the organic solvent may be any solvent that can dissolve the monomer and the resulting polyarylene ether, and is preferably an aprotic solvent.
  • Specific examples of such solvents include aromatic hydrocarbon solvents such as toluene and xylene; ether solvents such as tetrahydrofuran, 1,3-dioxolane and 1,4-dioxane; dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, Examples include aprotic polar solvents such as N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, sulfolane and hexamethylphosphoric triamide.
  • Such a solvent may be used independently and may be used in mixture of 2 or more types.
  • the amount of the organic solvent to be used is preferably 1 or more times by weight and more preferably 5 or more times by weight with respect to the monomer to be used from the viewpoint of increasing the solubility of the monomer to be used and the produced polymer. Further, from the viewpoint of shortening the reaction time, it is preferably 200 times by weight or less, more preferably 100 times by weight or less.
  • the polymerization reaction of the first embodiment is preferably carried out in an atmosphere of an inert gas such as nitrogen gas.
  • the reaction temperature in the polymerization step of the first embodiment is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher from the viewpoint of shortening the reaction time and increasing the degree of polymerization.
  • 200 degrees C or less is preferable, 180 degrees C or less is more preferable, and 170 degrees C or less is still more preferable.
  • the reaction step may be performed simultaneously with the polymerization step or after the polymerization step, but is preferably performed after the polymerization step.
  • reaction step of the first embodiment examples include known methods such as reacting one or more selected from the group consisting of strong acids, trialkylsilyl halides, bases, and nucleophiles.
  • Examples of the method of allowing a strong acid to act include a method of stirring a mixed solution obtained by dissolving or slurrying an aromatic polymer electrolyte in a solvent containing a strong acid at 0 ° C. to reflux temperature, preferably room temperature to reflux temperature.
  • Examples of the strong acid include hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, trifluoroacetic acid, and the like.
  • Examples of such solvents include alcohols, ethers, ketones, nitriles, dimethyl sulfoxide, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone.
  • a trialkylsilyl halide is converted into the above-mentioned ion-exchange precursor group in an amount of 2 to 2 in a mixed solution obtained by dissolving or partially dissolving an aromatic polymer electrolyte in a solvent such as ketones or nitriles.
  • a solvent such as ketones or nitriles.
  • An example is a method in which 10 molar equivalents are added and the temperature is kept at about 0 to 100 ° C., then water or a weak acid is added and the temperature is kept at 0 to 100 ° C.
  • Typical trialkylsilyl halides include trimethylsilyl iodide, trimethylsilyl bromide, trimethylsilyl chloride, triethylsilyl iodide, triethylsilyl bromide, triethylsilyl chloride and the like.
  • an aqueous solution containing a base in an amount of 1 mole or more in terms of ion-exchange precursor group, usually in a large excess an aromatic polymer electrolyte with alcohols, ethers, ketones, nitriles, dimethyl sulfoxide
  • An example is a method in which a mixed solution dissolved or partially dissolved in an aprotic solvent such as the above is mixed so that the aromatic polymer electrolyte is at least partially dissolved, and the reaction is performed at room temperature to reflux temperature.
  • Representative bases include alkali metal hydroxides and alkaline earth metal hydroxides, preferably lithium hydroxide, sodium hydroxide and potassium hydroxide, but are not limited thereto. It is not
  • a mixed solution obtained by dissolving or partially dissolving an aromatic polymer electrolyte in a solvent containing a nucleophilic reagent is 0 ° C. to reflux temperature, preferably 24
  • the method include stirring at a temperature of from 200 ° C. to 200 ° C.
  • solvents include alcohols, ethers, ketones, nitriles, dimethyl sulfoxide, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone.
  • Typical nucleophiles include amines, alkali metal halides, etc., preferably secondary amines or lithium bromide.
  • the method for producing an aromatic polymer according to the second embodiment includes a polymerization step of polymerizing the monomer represented by the general formula (4) in the presence of a base.
  • a polymerization step of polymerizing the monomer represented by the general formula (4) in the presence of a base Preferably, at least a part of the polymerization step and a group represented by — (P ( ⁇ O) (OR 1 ) (OR 2 )) in the general formula (4) is represented by — (P ( ⁇ O) (OH). ) (OR 3 )) and a reaction step for converting to a group represented by (OR 3 )).
  • the aromatic polymer obtained here is also referred to as an aromatic polymer phosphonic acid.
  • Membranes made of hydrocarbon-based polymer electrolytes do not have sufficient long-term operational stability of fuel cells (hereinafter referred to as “long-term stability”) compared to membranes made of fluorine-based polymer electrolytes.
  • long-term stability As one of the factors hindering stability, it is presumed that the film is deteriorated by a peroxide (for example, hydrogen peroxide) generated during battery operation or a radical generated from the peroxide.
  • a membrane made of an aromatic polymer electrolyte (aromatic polymer phosphonic acid) obtained by the method for producing an aromatic polymer according to the second embodiment has durability against peroxides and radicals (hereinafter referred to as “radicals”). It is excellent in "resistance”, and the long-term stability of the polymer electrolyte fuel cell can be achieved.
  • the monomer used in the second embodiment the polymerization step, the aromatic polymer phosphonic acid obtained by the production method of the second embodiment, the base, and the reaction step will be described in order.
  • the monomer used in the second embodiment is a monomer represented by the general formula (4).
  • X 5 and X 6 each independently represent a condensable reactive group.
  • Ar 4 represents an aromatic group which may have a substituent.
  • p represents an integer of 1 to 4.
  • R 1 represents a hydrogen atom, an inorganic cation or an organic cation, and R 2 represents an alkyl group or an aryl group. When a plurality of R 1 and R 2 are present, the plurality of R 1 and R 2 may be the same or different.
  • a group represented by the above-described — (P ( ⁇ O) (OR 1 ) (OR 2 )) represented by the general formula (6) It is preferable to use a monomer that does not have.
  • X 7 and X 8 each independently represent a condensable reactive group.
  • Ar 6 represents an aromatic group which may have a substituent.
  • X 5 to X 8 in the general formulas (4) and (6) each independently represent a condensable reactive group.
  • the condensable reactive group means a functional group that can be bonded via a divalent or trivalent group or atomic group by causing a condensation reaction with another condensable functional group.
  • the condensable reactive group include a nucleophilic reactive group and a leaving group.
  • the nucleophilic reactive group represents a group having nucleophilicity, acts on the carbon atom to which the leaving group is bonded, and is newly added with the elimination of the leaving group by ipso substitution.
  • a bond can be formed through a valent or trivalent group or atomic group.
  • a leaving group refers to the group which leaves
  • Each of X 5 to X 8 may be a nucleophilic reactive group or a leaving group, but when homopolymerization is performed with one kind of monomer described in the general formula (4), X 5 And X 6 , one is a nucleophilic reactive group and the other is a leaving group. Moreover, when copolymerizing 1 type of monomer of the said General formula (4), and 1 type of monomer of the said General formula (6), they are mention
  • nucleophilic reactive group examples include a hydroxyl group, a mercapto group, and an amino group.
  • the amino group represents a group represented by —NHR 4 (R 4 represents a hydrogen atom, an alkyl group or an aryl group).
  • R 4 represents a hydrogen atom, an alkyl group or an aryl group.
  • a hydroxyl group and a mercapto group are preferable because of high reactivity as a nucleophilic reactive group, and a hydroxyl group is more preferable.
  • Representative examples of the leaving group include a fluoro group, a chloro group, a bromo group, an iodo group, a tosyl group, and a triflate group. Of these, the leaving group is preferably a fluoro group or a chloro group.
  • Each R 1 independently represents a hydrogen atom, an inorganic cation or an organic cation.
  • inorganic cations include cations such as alkali metals and alkaline earth metals, but are not limited thereto. Among these, lithium cation, sodium cation, and potassium cation are preferable.
  • organic cations include, but are not limited to, primary ammonium cations, secondary ammonium cations, tertiary ammonium cations, and quaternary ammonium cations. Of these, primary ammonium cations and secondary ammonium cations are preferable.
  • R 1 is preferably an organic cation from the viewpoint of enhancing the solubility in a solvent preferably used in the polymerization step described later.
  • Each R 2 independently represents an alkyl group or an aryl group. These groups may be partially substituted with other groups.
  • alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec -Butyl group, t-butyl group, t-pentyl group, isooctyl group, t-octyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, 1-methylcyclopentyl group, 1-methyl Cyclohexyl group, 1-methyl-4-isopropylcyclohexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexa
  • Typical examples of the aryl group include a hydrocarbon group such as a phenyl group, a p-nitrophenyl group, a p-methoxyphenyl group, a naphthyl group, a biphenylyl group, a diphenylpropyl group, a fluorenyl group, and a carbazole group.
  • a group containing a hetero atom such as, but not limited to, a thiophene group, a dibenzothiophene group, a furyl group, a dibenzofuryl group, a diphenylamino group, and a 4-phenoxyphenyl group.
  • an alkyl group is preferable from the viewpoint of easily converting the group represented by — (P ( ⁇ O) (OR 1 ) (OR 2 )) into a phosphonic acid group.
  • an ethyl group is preferable.
  • Examples of the group represented by — (P ( ⁇ O) (OR 1 ) (OR 2 )) include phosphonic acid monomethyl group, phosphonic acid monoethyl group, phosphonic acid monoisopropyl group, phosphonic acid mono t-butyl group, and phosphonic acid.
  • Phosphonic acid monoester group such as monophenyl group, phosphonic acid (mono inorganic salt) such as phosphonic acid (lithium) (monoethyl) group, phosphonic acid (sodium) (monoethyl) group, phosphonic acid (potassium) (monoethyl) group ( Phosphonic acid (monoamine salt) such as monoester) group, phosphonic acid (monodibutylamine salt) (monoethyl) group, phosphonic acid (monoaniline salt) (monoethyl) group, phosphonic acid (monobenzylamine salt) (monoethyl) group (Monoester) group, and from the viewpoint of easily ensuring solubility in the solvent used in the polymerization step, An acid (monoamine salt) (monoester) group is preferred, and among these, a phosphonic acid (monodibutylamine salt) (monoethyl) group is preferred
  • the group represented by — (P ( ⁇ O) (OR 1 ) (OR 2 )) is the same as the benzene ring substituted with X 5 and / or X 6 from the viewpoint of increasing the reactivity of the condensation reaction. More preferably, the benzene ring is substituted.
  • Ar 4 and Ar 6 in the second embodiment represent an aromatic group that may have a substituent.
  • the aromatic group may contain a hetero element, and preferably has 4 or more carbon atoms, more preferably 10 or more from the viewpoint of enhancing the reactivity of the condensation reaction.
  • carbon number is 18 or less from a viewpoint of raising the phosphonic acid group density of the aromatic polymer phosphonic acid obtained, and it is more preferable that it is 14 or less.
  • aromatic group examples include aromatic groups represented by the following formulas (1-a) to (1-z). (In the formula, * represents a bond with X 5 or X 6 or X 7 or X 8 respectively, and a bond with another substituent was omitted.)
  • Ar 4 is preferably a phenylene group represented by the above (1-c) which may have a substituent or a biphenyl group represented by (1-m), and has a substituent.
  • the biphenyl group represented by the above (1-m) may be more preferable.
  • Ar 6 is preferably a group represented by the above (1-x) which may have a substituent or a group represented by (1-y), and may have a substituent.
  • a group represented by (1-y) is more preferable.
  • substituents examples include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, a cyano group, a nitro group, and benzoyl. Group.
  • the alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, Examples thereof include a tert-butyl group, an isobutyl group, an n-pentyl group, a 2,2-dimethylpropyl group, a cyclopentyl group, an n-hexyl group, a cyclohexyl group, a 2-methylpentyl group, and a 2-ethylhexyl group.
  • the alkoxy group having 1 to 10 carbon atoms may be linear, branched or cyclic.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group, and examples of the aryloxy group having 6 to 10 carbon atoms include a phenoxy group and a naphthyloxy group.
  • These groups may be further substituted with a group selected from the group consisting of an amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, and a phenoxy group.
  • Preferred monomers represented by the general formula (4) include monomers represented by the following formulas (2-aa) to (2-bj).
  • Preferred monomers represented by the general formula (6) include monomers represented by the following formulas (3-ca) to (3-cx).
  • X 5 and X 6 are leaving groups such as a fluoro group, a chloro group, a bromo group, and an iodo group
  • the production method of (1-3) A method in which a phosphonic acid diester group is introduced into an aromatic compound, and then the above leaving group is introduced and hydrolyzed by a known method.
  • (1-4) A method of introducing a phosphonic acid diester group after introducing the above leaving group into an aromatic compound and hydrolyzing it by a known method.
  • a reactive group selected from a chloro group, a bromo group, an iodo group and the like is introduced, and then the following (2-6) to And a method for carrying out the substitution reaction listed in (2-10).
  • (2-6) Michaelis-Albuzov reaction in which a phosphoric acid triester is reacted using a Lewis acid such as nickel chloride.
  • (2-7) Michaelis-Becker reaction in which a phosphite diester is reacted with a base such as sodium hydride.
  • the reactive group and the leaving groups X 5 and X 6 are the same functional group, after introducing three or more functional groups into the aromatic compound
  • the monomer represented by the formula (4) can be obtained by substituting a part of the functional group with a phosphonic acid group and hydrolyzing by a known method.
  • a specific method for example, J. et al. Fluorine Chem.
  • Known methods such as those described in 2004, 125, 1317 can be used.
  • a protective group is introduced into the nucleophilic reactive group, the nucleophilic reactive group is deactivated, and then the above substitution reaction is performed. Hydrolysis is preferred.
  • the protecting group is not particularly limited as long as it is a group that can be deprotected after the above-described substitution reaction.
  • Representative protecting groups for hydroxyl and mercapto groups include ethers such as benzyl and t-butyl groups. Group, an acetal group such as methoxymethyl group, an acyl group such as acetyl group and benzoyl group, and a silyl ether group such as t-butyldimethylsilyl group.
  • Representative protecting groups for amine groups include carbamate groups such as t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, imide groups such as phthaloyl group, p-toluene Examples thereof include sulfonamide groups such as a sulfonyl group and a 2-nitrobenzenesulfonyl group.
  • a halogenated phosphoric diester is allowed to act on the hydroxyl group to form a phosphate compound, which is then converted to a compound having a phosphonic diester group by a rearrangement reaction using a strong base.
  • a method for hydrolysis may be used. As a specific method, for example, J. et al. Org. Chem. Known methods such as those described in 1984, 49, 4018 can be used.
  • the monomer represented by the formula (6) of the second embodiment for example, a commercially available product is used.
  • the aromatic polymer phosphonic acid obtained by the production method of the second embodiment is based on the monomer represented by the general formula (4) or the monomer represented by the general formula (4) and (6). It is obtained by a manufacturing method provided with the superposition
  • the aromatic polymer phosphonic acids are phosphones linked directly or via a connecting member with a divalent aromatic residue obtained by removing two hydrogen atoms from a compound having an aromatic ring as a structural unit. It means a polymer having an acid group.
  • the aromatic polymer phosphonic acids in the second embodiment may have a substituent.
  • the aromatic polymer phosphonic acid in the second embodiment preferably has an aromatic ring which may have a substituent in the main chain, and further has an aromatic ring to which a phosphonic acid group is directly bonded.
  • the phosphonic acid group refers to a group that becomes a phosphonic acid group without changing the structure other than the phosphonic acid group of the aromatic polymer phosphonic acid.
  • the phosphonic acid group is preferably converted into a phosphonic acid group through a reaction of 3 steps or less, more preferably 2 steps or less, and still more preferably 1 step.
  • aromatic polymer phosphonic acids obtained by the production method of the second embodiment those having a repeating unit represented by the general formula (5) are preferable.
  • Ar 5 represents an aromatic group which may have a substituent.
  • q represents an integer of 1 to 4.
  • —Z 2 — represents a group represented by —O—, —S— or —NR 4 — (R 4 represents a hydrogen atom, an alkyl group or an aryl group).
  • R 3 represents a hydrogen atom, an alkyl group or an aryl group. When a plurality of R 3 are present, the plurality of R 3 may be the same or different.
  • Ar 5 in the second embodiment represents an aromatic group which may have a substituent, and examples of the aromatic group include those described above. Specific examples include aromatic groups such as the above formulas (1-a) to (1-z) (wherein * represents a bond with a group represented by —Z 2 — and The bond with the group is omitted.) Among these, a phenylene group represented by the above (1-c) or a biphenyl group represented by (1-m) is preferable. Examples of the substituent include those described above.
  • R 3 and R 4 each represent a hydrogen atom, an alkyl group or an aryl group, and typical examples of the alkyl group and the aryl group include those described above. Among these, as R 3 , an ethyl group is preferable, and as R 4 , a phenyl group is preferable.
  • Specific examples of the group represented by — (P ( ⁇ O) (OH) (OR 3 )) in the general formula (5) include the above-described phosphonic acid monoester group and phosphonic acid group.
  • Examples of the repeating unit represented by the general formula (5) include repeating units represented by the following formulas (4-da) to (4-dt).
  • a group represented by — (P ( ⁇ O) (OH) (OEt)) in a repeating unit represented by the following formulas (4-da) to (4-dt) is represented by — (P ( ⁇ O) ( OH) (OH)) may be substituted.
  • the radical resistance is increased with respect to the weight of the aromatic polymer phosphonic acids. From a viewpoint, 0.1 weight% or more is preferable and 1.0 weight% or more is more preferable. Further, from the viewpoint of suppressing solubility when the aromatic polymer phosphonic acid of the second embodiment is used as a polymer electrolyte membrane, 20% by weight or less is preferable, and 15% by weight or less is more preferable.
  • the weight content of P triphenylphosphine oxide was added as an internal standard substance to the sample, and a 31 P-NMR spectrum was measured under conditions without proton decoupling using NMR. From the obtained NMR spectrum, It is obtained by comparing the area value of the sample with the area value of triphenylphosphine oxide.
  • the aromatic polymer phosphonic acid having a repeating unit represented by the general formula (5) may be a homopolymer, a random copolymer, an alternating copolymer, a block copolymer. It may be a polymer. These can be obtained according to known methods by selecting the corresponding monomers, their ratios, and the polymerization method. These polymerization degrees are preferably 5 or more and a weight average molecular weight of 10 3 or more from the viewpoint of increasing mechanical strength. In addition, these polymerization degrees are 10 4 or less and 10 6 or less in terms of weight average molecular weight from the viewpoint of maintaining solubility in a solvent during film formation, workability such as cast film formation, and moldability. Preferably used. The weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the weight ratio is 100: 0 to 1: 99 is preferable, and 50:50 to 10:90 is more preferable.
  • the polymerization step of the second embodiment is performed in the presence of a base.
  • the base is preferably a base composed of a metal compound other than the first transition metal salt.
  • Examples of the base include alkali metal salts and alkaline earth metal salts. Among these, alkali metal salts are preferable, and examples of the alkali metal salts include alkali metal carbonates and hydrogen carbonates. Among these, alkali metal carbonates are preferable. Among the alkali metal carbonates, sodium carbonate, potassium carbonate, and cesium carbonate are preferable.
  • the reaction temperature in the polymerization step of the second embodiment is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher from the viewpoint of shortening the reaction time and increasing the degree of polymerization. Moreover, from a viewpoint of suppressing the side reaction by a phosphonic acid group, 300 degrees C or less is preferable and 200 degrees C or less is more preferable.
  • the polymerization step of the second embodiment is preferably performed in an organic solvent.
  • the organic solvent include aprotic solvents such as dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone.
  • the reaction step may be performed simultaneously with the polymerization step or after the polymerization step, but is preferably performed after the polymerization step.
  • reaction step of the second embodiment it is preferable to act a strong acid and / or a trialkylsilyl halide.
  • Examples of the method of allowing a strong acid to act include a method of stirring a mixed solution obtained by dissolving or slurrying an aromatic polymer phosphonic acid in a solvent containing a strong acid at 0 ° C. to reflux temperature, preferably from room temperature to reflux temperature.
  • Examples of the strong acid include hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, trifluoroacetic acid, and the like.
  • Examples of such solvents include alcohols, ethers, ketones, nitriles, dimethyl sulfoxide, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone.
  • a trialkylsilyl halide is dissolved in a mixed solution obtained by dissolving or partially dissolving an aromatic polymer phosphonic acid in a solvent such as ketones or nitriles.
  • a solvent such as ketones or nitriles.
  • An example is a method in which 2 to 10 molar equivalents in terms of a group represented by (OR 1 ) (OR 2 )) are added and kept at about 0 to 100 ° C., then water or a weak acid is added, and then kept at 0 to 100 ° C.
  • Typical trialkylsilyl halides include trimethylsilyl iodide, trimethylsilyl bromide, trimethylsilyl chloride, triethylsilyl iodide, triethylsilyl bromide, triethylsilyl chloride and the like.
  • aromatic polymer electrolyte obtained by the above embodiment or the aromatic phosphonic acid obtained by the above embodiment (hereinafter, the aromatic polymer electrolyte and the aromatic phosphonic acid are collectively referred to as “aromatic”.
  • system polymer electrolyte as a diaphragm (polymer electrolyte membrane) of an electrochemical device such as a fuel cell
  • the aromatic polymer electrolyte obtained by the above embodiment is usually used in the form of a membrane.
  • a membrane there is no restriction
  • membrane For example, the method (solution cast method) which forms into a film from a solution state is used preferably.
  • an aromatic polymer electrolyte is dissolved in an appropriate solvent, and the solution is cast on a support substrate such as a glass plate or polyethylene terephthalate (hereinafter sometimes referred to as PET), and then the solvent is added. Is removed to remove the film.
  • a support substrate such as a glass plate or polyethylene terephthalate (hereinafter sometimes referred to as PET), and then the solvent is added. Is removed to remove the film.
  • PET polyethylene terephthalate
  • the solvent used for film formation is not particularly limited as long as it can dissolve the aromatic polymer electrolyte and can be removed thereafter.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N— Aprotic polar solvents such as methyl-2-pyrrolidone and dimethyl sulfoxide; chlorine-containing solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene; alcohols such as methanol, ethanol and propanol; ethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, alkylene glycol monoalkyl ethers such as propylene glycol monoethyl ether, and water are preferably used. These can be used singly, but two or more solvents can be mixed and used as necessary. Among them, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone are preferable because of high polymer solubility.
  • the thickness of the film is not particularly limited, but is preferably 10 to 300 ⁇ m, particularly preferably 20 to 100 ⁇ m. When the film is thinner than 10 ⁇ m, the practical strength may not be sufficient, and when the film is thicker than 300 ⁇ m, the film resistance tends to increase and the characteristics of the electrochemical device tend to deteriorate.
  • the thickness of the film can be controlled by the concentration of the solution and the coating thickness on the substrate.
  • plasticizers, stabilizers, release agents, etc. used for ordinary polymers can be added to the aromatic polymer electrolyte obtained by the above embodiment.
  • other polymers can be combined with the copolymer of the above embodiment by a method such as co-casting in the same solvent.
  • inorganic or organic fine particles as water retention agents in order to facilitate water management. Any of these known methods can be used as long as they are not contrary to the object of the present invention.
  • the polymer electrolyte is irradiated with an electron beam or radiation.
  • the polymer electrolyte constituting the membrane can also be crosslinked.
  • the polymer electrolyte is obtained by impregnating the porous base material with the aromatic polymer electrolyte obtained by the above embodiment and combining it.
  • a composite membrane can also be used.
  • a known method can be used as the compounding method.
  • the porous substrate is not particularly limited as long as it satisfies the above-mentioned purpose of use, and examples thereof include porous membranes, woven fabrics, non-woven fabrics, and fibrils, and they can be used regardless of their shapes and materials.
  • the porous substrate has a thickness of 1 to 100 ⁇ m, preferably 3 to 30 ⁇ m, and further It is preferably 5 to 20 ⁇ m, the pore diameter is 0.01 to 100 ⁇ m, preferably 0.02 to 10 ⁇ m, and the porosity is 20 to 98%, preferably 40 to 95%.
  • the film thickness of the porous substrate is too thin, the effect of reinforcing the strength after combining or the reinforcing effect of imparting flexibility and durability is insufficient, and gas leakage (cross leak) is likely to occur.
  • the film thickness is too thick, the electric resistance becomes high, and the resulting composite film is insufficient as a diaphragm for the polymer electrolyte fuel cell.
  • the pore diameter is too small, it is difficult to fill the copolymer of the above embodiment, and when it is too large, the reinforcing effect on the polymer solid electrolyte is weakened.
  • the porosity is too small, the resistance of the composite film is increased, and if it is too large, the strength of the porous substrate itself is generally weakened and the reinforcing effect is reduced.
  • the porous substrate is preferably a substrate made of an aliphatic polymer, an aromatic polymer, or a fluorine-containing polymer.
  • Examples of the fuel cell using the polymer electrolyte membrane include a solid polymer fuel cell using hydrogen gas as a fuel and a direct methanol solid polymer fuel cell directly supplying methanol as a fuel.
  • the obtained aromatic polymer electrolyte can be suitably used for both.
  • the fuel cell using the aromatic polymer electrolyte obtained by the above embodiment is obtained by using the copolymer of the above embodiment as a polymer electrolyte membrane and / or a polymer electrolyte composite membrane, or obtained by the above embodiment. And the like using the obtained polymer electrolyte as the polymer electrolyte in the catalyst layer.
  • a fuel cell in which the aromatic polymer electrolyte obtained by the above embodiment is used as a polymer electrolyte membrane or a polymer electrolyte composite membrane has a catalyst and gas diffusion on both sides of the polymer electrolyte membrane or the polymer electrolyte composite membrane. It can be manufactured by joining the layers.
  • a known material can be used for the gas diffusion layer, but a porous carbon woven fabric, carbon non-woven fabric or carbon paper is preferable in order to efficiently transport the raw material gas to the catalyst.
  • the catalyst is not particularly limited as long as it can activate the oxidation-reduction reaction with hydrogen or oxygen, and a known catalyst can be used, but platinum fine particles are preferably used.
  • the platinum fine particles are often preferably those supported on particulate or fibrous carbon such as activated carbon or graphite.
  • platinum supported on carbon is mixed with an alcohol solution of perfluoroalkyl sulfonic acid resin as a polymer electrolyte and pasted into a gas diffusion layer, polymer electrolyte membrane or polymer electrolyte composite membrane.
  • -A catalyst layer is obtained by drying.
  • J. Org. Electrochem. Soc. Known methods such as those described in Electrochemical Science and Technology, 1988, 135 (9), 2209 can be used.
  • a fuel cell using the aromatic polymer electrolyte obtained by the above embodiment as the polymer electrolyte in the catalyst layer can be obtained by the above embodiment instead of the perfluoroalkylsulfonic acid resin constituting the catalyst layer.
  • the thing using an aromatic polymer electrolyte can be mention
  • the polymer electrolyte membrane is not limited to the membrane using the copolymer obtained by the above embodiment, and a known polymer electrolyte membrane may be used. it can.
  • 31 P content (unit:% by weight)
  • An internal standard substance triphenylphosphine oxide
  • a 31 P-NMR spectrum was measured using NMR (600 MHz) without proton decoupling.
  • the area value of the sample was compared with the area value of triphenylphosphine oxide to determine the 31 P content.
  • the theoretical value was derived by stoichiometric calculation from the monomer charge ratio.
  • Synthesis example 1 In a flask purged with argon, 120 g (644 mmol) of 4,4′-biphenol, 266 g (1.93 mol) of diethyl phosphite, 446 g of carbon tetrachloride, and 720 g of tetrahydrofuran were placed and cooled to 0 ° C. 196 g (1.93 mol) of triethylamine was added dropwise over 90 minutes so that the temperature of the reaction solution did not exceed 10 ° C. After stirring at 0 ° C. for 1 hour, the mixture was warmed to room temperature and stirred for 21 hours. 1440 g of water was added and stirred at room temperature for 1 hour.
  • Synthesis example 2 The compound (137 g, 299 mmol) represented by formula (8) and 560 g of tetrahydrofuran were added to the dropping funnel substituted with argon to prepare a THF solution of the compound represented by formula (8). Into a flask purged with argon, 694 g of tetrahydrofuran was charged, cooled to ⁇ 66 ° C. using a dry ice-acetone bath, and 546 g of a 2 mol / L lithium diisopropylamine tetrahydrofuran solution was added.
  • Example (A-1) [Production of Aromatic Phosphonic Acid Monoester Compound]
  • the compound represented by formula (9) (5.00 g, 10.9 mmol), acetonitrile 25 g, and lithium bromide 3.56 g (32.7 mmol) were added to the argon-substituted flask, and the mixture was heated and stirred at 85 ° C. for 16.5 hours. . After cooling to room temperature, the solvent was distilled off under reduced pressure. Acetonitrile was added, and the mixture was heated to reflux with stirring for 1 hour, and the solid was collected by filtration. 4.12 g of the compound represented by the formula (11) (yield: 91 mol%, LC surface percentage purity: 97.4% (conditions) A)) obtained.
  • Example (A-2) [Production 2 of Aromatic Phosphonic Acid Monoester Compound]
  • the compound represented by the formula (9) (2.00 g, 4.36 mmol), piperazine (0.75 g, 8.73 mmol) and 18 g of N-methylpyrrolidone were added, and heated and stirred at 130 ° C. for 19 hours. did.
  • N-methylpyrrolidone was distilled off under reduced pressure. Methanol was added and the resulting precipitate was filtered off. The obtained solid was repeatedly washed with methanol to obtain 0.79 g (yield: 45 mol%, LC area purity: 94.9% (condition A)) of the formula (12).
  • 1 H NMR (DMSO-d 6 , 270 MHz) ⁇ 1.04 (t, 6H), 3.62 (dq, 4H), 6.75 (dd, 2H), 7.48-7.53 (m, 4H) .
  • Example (A-3) [Production of Aromatic Phosphonic Acid Monoester Compound 3]
  • the compound represented by the formula (9) 75.8 g, 165 mmol
  • 128 g (993 mmol) of dibutylamine and 767 g of N-methylpyrrolidone were added and stirred at 130 ° C. for 7 hours. After allowing to cool, the precipitated solid was filtered off. To the obtained solid, 195 g of N-methylpyrrolidone was added and dissolved by heating at 130 ° C. After cooling to room temperature, the precipitated solid was collected by filtration.
  • Example (A-4) [Synthesis 1 of Aromatic Polymer Phosphonic Acid Monoester]
  • 0.40 g (0.98 mmol) of a compound represented by the formula (12) 0.25 g (0.98 mmol) of 4,4′-sulfonyldiphenol, 0.57 g (4.13 mmol) of potassium carbonate was added, and 4.6 g of dimethyl sulfoxide and 5 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 120 ° C. for 3 hours.
  • the symbol “ran” means a structure in which structural units coupled to the symbol are randomly connected. That is, the compound represented by the above formula (14) has a structure in which an aromatic phosphonic acid monoester compound residue and a 4,4′-sulfonyldiphenol residue are randomly linked.
  • Example (A-5) [Synthesis 2 of Aromatic Polymer Phosphonic Acid Monoester]
  • a compound represented by the formula (13) 2.24 g (8.94 mmol) of 4,4′-sulfonyldiphenol, 4.94 g (35.8 mmol) of potassium carbonate, 53 g of dimethyl sulfoxide, and 31 g of toluene were added.
  • the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 145 ° C. for 5 hours.
  • Example (A-6) [Synthesis of Aromatic Polymer Phosphonic Acid Monoester 3]
  • 0.66 g (1.00 mmol) of the compound represented by the formula (13) 0.20 g (0.79 mmol) of 4,4′-sulfonyldiphenol, 0.54 g (3.93 mmol) of potassium carbonate was added, and 5.4 g of dimethyl sulfoxide and 19 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 150 ° C. for 5 hours.
  • Example (A-7) [Synthesis of Aromatic Polymer Phosphonic Acid Monoester 4]
  • 0.52 g (0.79 mmol) of the compound represented by the formula (13) 0.20 g (0.79 mmol) of 4,4′-sulfonyldiphenol, 0.48 g (3.48 mmol) of potassium carbonate, 4.9 g of dimethyl sulfoxide, and 19 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 150 ° C. for 5 hours.
  • Example (B-1) [Synthesis 5 of Aromatic Polymer Phosphonic Acid Monoester]
  • 1.12 g (1.79 mmol) of the compound represented by the formula (13) 0.45 g (1.79 mmol) of 4,4′-sulfonyldiphenol, under a nitrogen atmosphere, 1.04 g (7.51 mmol) of potassium carbonate and 150 mg of biphenyl were added, and 14.5 g of dimethyl sulfoxide and 7.4 g of toluene were added.
  • the toluene in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 140 ° C. for 7 hours.
  • 1.00 g (3.93 mmol) of 4,4′-dichlorodiphenylsulfone and 195 mg (1.97 mmol) of Cu (I) Cl were added, the bath temperature was raised to 160 ° C., and the mixture was stirred while keeping for 21 hours.
  • the reaction solution was added to a 25% nitric acid aqueous solution, the deposited precipitate was filtered, and then washed with ion-exchanged water until neutral, to obtain a compound represented by the formula (14).
  • Example (B-2) [Synthesis of Aromatic Polymer Phosphonic Acid Monoester 6]
  • a compound represented by the formula (14) was obtained in the same manner as in Example (B-1) except that 1,3-dimethyl-2-imidazolidinone was used instead of dimethyl sulfoxide.
  • Mn 5600
  • Example (B-3) [Synthesis of Aromatic Polymer Sulfonic Acid 1]
  • 2.66 g (14.27 mmol) of 4,4′-biphenol, 2.17 g (15.70 mmol) of potassium carbonate and 399 mg of diphenylsulfone were placed under a nitrogen atmosphere, and dimethyl sulfoxide was added. 38.6 g and 40 g of toluene were added. Thereafter, the toluene in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 160 ° C. for 4 hours.
  • Example (B-4) [Synthesis of Aromatic Polymer Sulfonic Acid 2]
  • 2.65 g (14.25 mmol) of 4,4′-biphenol, 2.17 g (15.67 mmol) of potassium carbonate, and 398 mg of diphenylsulfone were added, and dimethyl sulfoxide was added.
  • 38.6 g and 40 g of toluene were added. Thereafter, the toluene in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 160 ° C. for 4 hours.
  • Comparative Example (A-1) In a three-necked flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 5.00 g (10.9 mmol) of a compound represented by the formula (9), 1.58 g (11.5 mmol) of potassium carbonate, 31 g of dimethyl sulfoxide, and 15 g of toluene was added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 150 ° C. for 4 hours. Next, 2.77 g (10.9 mmol) of 4,4′-difluorodiphenylsulfone was added, and the bath temperature was kept at 150 ° C. for 3 hours while stirring. After allowing to cool, the reaction solution was diluted and the molecular weight was measured, but no polymer was confirmed.
  • a compound represented by the formula (9) 1.58 g (11.5 mmol) of potassium carbonate, 31 g of dimethyl sulfox
  • Comparative Example (A-2) In a Schlenk flask equipped with an azeotropic distillation apparatus, 0.50 g (1.44 mmol) of the compound represented by the formula (10), 0.326 g (1.28 mmol) of 4,4′-difluorodiphenylsulfone under a nitrogen atmosphere, 0.915 g (3.97 mmol) of potassium carbonate, 11 g of dimethyl sulfoxide, and 5 g of toluene were added. After reflux dehydration at a bath temperature of 150 ° C. for 9 hours, the mixture was kept at 150 ° C. for 5 hours. After cooling, the reaction solution was collected and the molecular weight was measured, but no polymer was confirmed.
  • Comparative Example (A-4) In a Schlenk flask equipped with an azeotropic distillation apparatus, 0.50 g (1.44 mmol) of a compound represented by the formula (10), 0.24 g (0.96 mmol) of bis-4-hydroxysulfone, 4, 0.67 g (2.65 mmol) of 4′-difluorodiphenyl sulfone, 0.76 g (5.49 mmol) of potassium carbonate, 8.0 g of dimethyl sulfoxide, and 10 g of toluene were added. The toluene in the system was azeotropically dehydrated by heating and distilling off the toluene at a bath temperature of 150 ° C. for 5 hours, and then stirred while keeping at a bath temperature of 150 ° C. for 9 hours. After cooling, the reaction solution was collected and the molecular weight was measured, but no polymer was confirmed.
  • a compound represented by the formula (10) 0.24 g (0.96 mmol)
  • Comparative Example (A-5) In a Schlenk flask equipped with an azeotropic distillation apparatus, 0.34 g (0.98 mmol) of a compound represented by the formula (10), 0.25 g (0.98 mmol) of 4,4′-sulfonyldiphenol, Potassium carbonate 0.84 g (6.10 mmol) was added, and dimethyl sulfoxide 4.4 g and toluene 4 g were added. Thereafter, the water in the system was azeotropically dehydrated by distilling off toluene for 8 hours at a bath temperature of 145 ° C.
  • Comparative Example (B-1) In a flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 2.18 g (3.48 mmol) of the compound represented by the formula (13), 0.87 g (3.48 mmol) of 4,4′-sulfonyldiphenol, carbonic acid, 2.02 g (14.6 mmol) of potassium and 30 mg of biphenyl were added, and 20 g of N-methylpyrrolidone and 10 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 120 ° C. for 3 hours.
  • Comparative Example (B-2) In a flask equipped with an azeotropic distillation apparatus, 2.18 g (3.48 mmol) of a compound represented by the formula (13), 0.87 g (3.48 mmol) of 4,4′-sulfonyldiphenol, 2.02 g (14.6 mmol) of potassium and 30 mg of biphenyl were added, and 20 g of 1,3-dimethyl-2-imidazolidinone and 10 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 120 ° C. for 4 hours.
  • Synthesis Example 4 [Production of polymer electrolyte (base polymer)] A sulfone comprising a repeating unit represented by the following formula (19) using Sumika Excel PES5200P (manufactured by Sumitomo Chemical Co., Ltd.) with reference to the methods described in Examples 7 and 21 of JP-A-2007-284653.
  • Example (A-9) [Production 1 of polymer electrolyte membrane]
  • the polymer obtained in Example (A-8) and the block copolymer 1 were mixed at a weight ratio of 1: 9.
  • a polymer electrolyte solution was prepared by dissolving in dimethyl sulfoxide so that the concentration of the obtained mixture was 9% by weight. Next, this polymer electrolyte solution was uniformly spread on a PET substrate. After application, the polymer electrolyte solution was dried at 80 ° C. under normal pressure.
  • the obtained membrane was immersed in 2N sulfuric acid, washed with ion-exchanged water, further dried at room temperature, and then peeled from the PET substrate to obtain a polymer electrolyte membrane (film thickness 20 ⁇ m). The radical resistance of the obtained film was evaluated, and the results are shown in Table 1.
  • Comparative Example (A-6) [Polymer Electrolyte Membrane Production 2]
  • the block copolymer 1 was dissolved in dimethyl sulfoxide so as to have a concentration of 9% by weight to prepare a polymer electrolyte solution.
  • this polymer electrolyte solution was uniformly spread on a PET substrate.
  • the polymer electrolyte solution was dried at 80 ° C. under normal pressure.
  • the obtained membrane was immersed in 2N sulfuric acid, washed with ion-exchanged water, further dried at room temperature, and then peeled from the PET substrate to obtain a polymer electrolyte membrane (film thickness 20 ⁇ m).
  • the radical resistance of the obtained film was evaluated, and the results are shown in Table 1.
  • the aromatic polymer phosphonic acids obtained by the above production method are excellent in radical resistance as shown in Example (A-9). Therefore, the polymer electrolyte obtained by the above production method is used as a polymer electrolyte membrane. Since the fuel cell used as can provide a fuel cell with excellent long-term stability while maintaining practically sufficient power generation performance, it is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Fuel Cell (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Disclosed is a process for producing an aromatic polymer, which involves a polymerization step of polymerizing a monomer represented by general formula (1) [wherein groups represented by X1 and X2 independently represent a condensable reacting group; Ar1 represents an aromatic group which may have a substituent; a group represented by E1 represents an ion exchange group or an ion exchange precursor group; and n represents an integer of 1 to 4, provided that when multiple E1's exist, the multiple E1's may be the same as or different from each other] in the copresence of a base and a first transition metal salt or a polymerization step of polymerizing a monomer represented by general formula (1) wherein E1 is a group represented by -(P(=O)(OR1)(OR2)) in the presence of a base.

Description

芳香族系高分子の製造方法およびその原料化合物Method for producing aromatic polymer and raw material compound thereof
 本発明は、芳香族系高分子の製造方法およびその原料化合物に関するものである。 The present invention relates to a method for producing an aromatic polymer and a raw material compound thereof.
 イオン交換基を有する高分子は、高分子電解質として用いられ、高分子電解質は固体高分子形燃料電池の高分子電解質膜として用いられている。固体高分子形燃料電池(以下、「燃料電池」と略記することがある。)は、水素と酸素との化学的反応により発電する発電装置であり、次世代エネルギーの一つとして電気機器産業や自動車産業等の分野において大きく期待されている。燃料電池の高分子電解質膜として、従来のフッ素系高分子電解質に代わって、安価な炭化水素系高分子電解質が近年注目されてきている。さらに、炭化水素系高分子電解質膜としては、例えば、耐熱性に優れる芳香族系高分子電解質が知られている(例えば、特許文献1)。 A polymer having an ion exchange group is used as a polymer electrolyte, and the polymer electrolyte is used as a polymer electrolyte membrane of a solid polymer fuel cell. A polymer electrolyte fuel cell (hereinafter may be abbreviated as “fuel cell”) is a power generation device that generates electricity through a chemical reaction between hydrogen and oxygen. High expectations are placed in the automotive industry and other fields. In recent years, inexpensive hydrocarbon polymer electrolytes have attracted attention as polymer electrolyte membranes for fuel cells, instead of conventional fluorine polymer electrolytes. Furthermore, as the hydrocarbon polymer electrolyte membrane, for example, an aromatic polymer electrolyte excellent in heat resistance is known (for example, Patent Document 1).
 芳香族系高分子電解質の製造方法としては、例えば、ポリエーテル系芳香族高分子という特定の芳香族系高分子化合物をブロモ化剤でブロモ化した後、有機溶媒中ハロゲン化ニッケル存在下、これに亜リン酸トリアルキルを作用させることによりホスホン酸ジエステル化合物を生成せしめ、さらにこのジエステルを加水分解することにより、芳香族系高分子を得る方法(例えば、特許文献2参照。)が知られていた。 As a method for producing an aromatic polymer electrolyte, for example, a specific aromatic polymer compound called a polyether aromatic polymer is brominated with a brominating agent, and then in the presence of nickel halide in an organic solvent. A method is known in which a trialkyl phosphite is allowed to act to produce a phosphonic acid diester compound and the diester is further hydrolyzed to obtain an aromatic polymer (for example, see Patent Document 2). It was.
特許第3861367号公報Japanese Patent No. 3861367 特開2003-238678号公報JP 2003-238678 A
 しかしながら、上記の芳香族系高分子の製造方法は、反応工程数が多く、十分に満足できるものではなかった。また、得られる芳香族系高分子のイオン交換基密度の調整が容易ではなかった。従って、反応工程数が少ない芳香族系高分子の製造方法、さらには得られる芳香族系高分子のイオン交換基密度を容易に調整できる芳香族系高分子の製造方法が切望されていた。 However, the above-described method for producing an aromatic polymer has a large number of reaction steps and is not satisfactory. Moreover, it was not easy to adjust the ion exchange group density of the resulting aromatic polymer. Therefore, a method for producing an aromatic polymer having a small number of reaction steps and a method for producing an aromatic polymer capable of easily adjusting the ion exchange group density of the obtained aromatic polymer have been desired.
 このような状況下、本発明の目的は、反応工程数が少なく、イオン交換基密度を容易に調整可能な芳香族系高分子の製造方法及びその製造方法に用いられる原料化合物を提供することである。 Under such circumstances, an object of the present invention is to provide a method for producing an aromatic polymer in which the number of reaction steps is small and the ion exchange group density can be easily adjusted, and a raw material compound used in the method. is there.
 すなわち、本発明は、下記[1]を提供するものである。
 [1]一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式中、X、Xで示される基はそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。Eで示される基はイオン交換基またはイオン交換前駆基を表す。nは1~4の整数を表す。なお、Eが複数存在する場合、複数存在するEは、それぞれ同一であっても異なっていてもよい。)
で表される単量体を、塩基と第一遷移金属塩との共存下で重合させる重合工程、又は、
 Eが-(P(=O)(OR)(OR))で示される基である上記単量体を、塩基の存在下で重合させる重合工程、を備える芳香族系高分子の製造方法。
That is, the present invention provides the following [1].
[1] General formula (1)
Figure JPOXMLDOC01-appb-C000009
(In the formula, groups represented by X 1 and X 2 each independently represent a condensable reactive group. Ar 1 represents an optionally substituted aromatic group. The group represented by E 1 is Represents an ion exchange group or an ion exchange precursor group, and n represents an integer of 1 to 4. When a plurality of E 1 are present, the plurality of E 1 may be the same or different. )
A polymerization step of polymerizing the monomer represented by the presence of a base and a first transition metal salt, or
Production of an aromatic polymer comprising a polymerization step of polymerizing the above monomer in which E 1 is a group represented by — (P (═O) (OR 1 ) (OR 2 )) in the presence of a base Method.
 本発明は、上記[1]に係る好適な実施態様として、下記の[2]~[23]を提供するものである
 [2]一般式(1)
Figure JPOXMLDOC01-appb-C000010
(式中、X、Xで示される基はそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。Eで示される基はイオン交換基またはイオン交換前駆基を表す。nは1~4の整数を表す。なお、Eが複数存在する場合、複数存在するEは、それぞれ同一であっても異なっていてもよい。)
で表される単量体を、塩基と第一遷移金属塩との共存下で重合させる重合工程を備えることを特徴とする、[1]に記載の芳香族系高分子の製造方法。
 [3]上記重合工程と、上記一般式(1)において、Eで示される基(但し、Eで示される基がイオン交換基である場合を除く)の少なくとも一部を、Eで示される基に変換する反応工程を備える、一般式(2)
Figure JPOXMLDOC01-appb-C000011
(式中、Arは置換基を有してもよい芳香族基を表す。Eで示される基は、イオン交換基またはEと異なるイオン交換前駆基を表す。mは1~4の整数を表し、Zは-O-または-S-で示される基を表す。なお、Eが複数存在する場合、複数存在するEは、それぞれ同一であっても異なっていてもよい。)
で表される繰り返し単位を有する[1]又は[2]に記載の芳香族系高分子の製造方法。
 [4]上記反応工程が、強酸、トリアルキルシリルハライド、塩基および求核試薬からなる群より選ばれる1種以上を作用させて、上記Eで示される基の少なくとも一部を、Eで示される基に変換する工程である[3]に記載の芳香族系高分子の製造方法。
 [5]上記イオン交換基がホスホン酸基であり、上記イオン交換前駆基がホスホン酸前駆基である[1]~[4]のいずれかに記載の芳香族系高分子の製造方法。
 [6]上記イオン交換基がスルホン酸基であり、上記イオン交換前駆基がスルホン酸前駆基である[1]~[4]のいずれかに記載の芳香族高分子の製造方法。
 [7]上記重合工程において、上記一般式(1)で表される単量体と、一般式(3)
Figure JPOXMLDOC01-appb-C000012
(式中、X、Xで示される基はそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。)
で表される単量体とを共重合させる[1]~[6]のいずれかに記載の芳香族系高分子の製造方法。
 [8]上記Xおよび上記Xで示される基が、それぞれ独立にヒドロキシル基またはメルカプト基である[1]~[7]のいずれかに記載の芳香族系高分子の製造方法。
 [9]上記塩基がアルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属水酸化物、アルカリ金属水素化物、アルカリ土類金属炭酸塩、アルカリ土類金属炭酸水素塩、アルカリ土類金属水酸化物およびアルカリ土類金属水素化物からなる群より選ばれる1種以上の塩基である[1]~[8]のいずれかに記載の芳香族系高分子の製造方法。
 [10]上記第一遷移金属塩が銅塩である[1]~[9]のいずれかに記載の芳香族系高分子の製造方法。
 [11]上記銅塩が1価の銅塩である[10]に記載の芳香族系高分子の製造方法。
 [12]上記の1価の銅塩がCuCl、CuBrおよびCuIからなる群より選ばれる1種以上である[11]に記載の芳香族系高分子の製造方法。
 [13]一般式(4)
Figure JPOXMLDOC01-appb-C000013
(式中、X、Xはそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。pは1~4の整数を表す。Rは水素原子、無機カチオンまたは有機カチオンを表し、Rはアルキル基またはアリール基を表す。なお、RおよびRが複数存在する場合、複数存在するRおよびRは、それぞれ同一であっても異なっていてもよい。)
で表される単量体を塩基の存在下で重合させる重合工程を備える、[1]に記載の芳香族系高分子の製造方法。
 [14]上記塩基が、第一遷移金属塩以外の金属化合物からなる塩基である、[13]に記載の芳香族系高分子の製造方法。
 [15]上記重合工程と、上記一般式(4)において-(P(=O)(OR)(OR))で示される基の少なくとも一部を、-(P(=O)(OH)(OR))で示される基に変換する反応工程とを備える、一般式(5)
Figure JPOXMLDOC01-appb-C000014
(式中、Arは置換基を有していてもよい芳香族基を表す。qは1~4の整数を表す。Zは-O-、-S-または-NR-(Rは水素原子、アルキル基またはアリール基を表す。)で示される基を表す。Rは水素原子、アルキル基またはアリール基を表す。なお、Rが複数存在する場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。)
で表される繰り返し単位を有する[13]又は[14]に記載の芳香族系高分子の製造方法。
 [16]上記反応工程が、強酸および/またはトリアルキルシリルハライドを作用させて、前記-(P(=O)(OR)(OR))で示される基の少なくとも一部を、-(P(=O)(OH)(OR))で示される基に変換する工程である[15]に記載の芳香族系高分子の製造方法。
 [17]上記重合工程において、上記一般式(4)で表される単量体と、一般式(6)
Figure JPOXMLDOC01-appb-C000015
(式中、X、Xはそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。)
で表される上記-(P(=O)(OR)(OR))で示される基を有さない単量体とを共重合させる[13]~[16]のいずれかに記載の芳香族系高分子の製造方法。
 [18]上記Xおよび上記Xがともに求核性の反応基である[13]~[17]のいずれかに記載の芳香族系高分子の製造方法。
 [19]上記求核性の反応基がヒドロキシル基である[18]に記載の芳香族系高分子の製造方法。
 [20]Rがアルキル基である[13]~[19]のいずれかに記載の芳香族系高分子の製造方法。
 [21]上記重合工程において、100℃以上で重合させる[13]~[20]のいずれかに記載の芳香族系高分子の製造方法。
 [22]上記塩基がアルカリ金属塩である[13]~[21]のいずれかに記載の芳香族系高分子の製造方法。
 [23]Rが有機カチオンである[13]~[22]のいずれかに記載の芳香族系高分子の製造方法。
 [24]上記一般式(4)において-(P(=O)(OR)(OR))で示される基が、Xおよび/またはXに置換されているベンゼン環と同一のベンゼン環を置換している[13]~[23]のいずれかに記載の芳香族系高分子の製造方法。
The present invention provides the following [2] to [23] as preferred embodiments according to the above [1]. [2] General formula (1)
Figure JPOXMLDOC01-appb-C000010
(In the formula, groups represented by X 1 and X 2 each independently represent a condensable reactive group. Ar 1 represents an optionally substituted aromatic group. The group represented by E 1 is Represents an ion exchange group or an ion exchange precursor group, and n represents an integer of 1 to 4. When a plurality of E 1 are present, the plurality of E 1 may be the same or different. )
The method for producing an aromatic polymer according to [1], comprising a polymerization step in which a monomer represented by the formula (I) is polymerized in the presence of a base and a first transition metal salt.
[3] and the polymerization step, in the general formula (1), a group represented by E 1 at least part of (but group represented by E 1 excluding the case where the ion-exchange group), with E 2 Comprising the reaction step of converting to the group shown
Figure JPOXMLDOC01-appb-C000011
(In the formula, Ar 2 represents an aromatic group which may have a substituent. The group represented by E 2 represents an ion-exchange group or an ion-exchange precursor group different from E 1. m is 1 to 4) It represents an integer, Z is a group represented by -O- or -S-. in the case where E 2 there are a plurality, E 2 existing in plural numbers may each be the same or different.)
The manufacturing method of the aromatic polymer as described in [1] or [2] which has a repeating unit represented by these.
[4] The reaction step, a strong acid, trialkylsilyl halides, by the action of one or more members selected from the group consisting of base and nucleophile, at least part of the group represented by E 1, in E 2 The method for producing an aromatic polymer according to [3], which is a step of converting to the group shown.
[5] The method for producing an aromatic polymer according to any one of [1] to [4], wherein the ion exchange group is a phosphonic acid group, and the ion exchange precursor group is a phosphonic acid precursor group.
[6] The method for producing an aromatic polymer according to any one of [1] to [4], wherein the ion exchange group is a sulfonic acid group, and the ion exchange precursor group is a sulfonic acid precursor group.
[7] In the polymerization step, the monomer represented by the general formula (1) and the general formula (3)
Figure JPOXMLDOC01-appb-C000012
(In the formula, groups represented by X 3 and X 4 each independently represent a condensable reactive group. Ar 3 represents an aromatic group which may have a substituent.)
The method for producing an aromatic polymer according to any one of [1] to [6], wherein the monomer represented by
[8] The method for producing an aromatic polymer according to any one of [1] to [7], wherein the groups represented by X 1 and X 2 are each independently a hydroxyl group or a mercapto group.
[9] The base is an alkali metal carbonate, alkali metal bicarbonate, alkali metal hydroxide, alkali metal hydride, alkaline earth metal carbonate, alkaline earth metal bicarbonate, alkaline earth metal hydroxide. And the method for producing an aromatic polymer according to any one of [1] to [8], which is at least one base selected from the group consisting of alkaline earth metal hydrides.
[10] The method for producing an aromatic polymer according to any one of [1] to [9], wherein the first transition metal salt is a copper salt.
[11] The method for producing an aromatic polymer according to [10], wherein the copper salt is a monovalent copper salt.
[12] The method for producing an aromatic polymer according to [11], wherein the monovalent copper salt is at least one selected from the group consisting of CuCl, CuBr, and CuI.
[13] General formula (4)
Figure JPOXMLDOC01-appb-C000013
(In the formula, X 5 and X 6 each independently represent a condensable reactive group. Ar 4 represents an aromatic group which may have a substituent. P represents an integer of 1 to 4. R 1 represents a hydrogen atom, an inorganic or organic cation, R 2 represents an alkyl group or an aryl group. in the case where R 1 and R 2 there are a plurality, R 1 and R 2 existing in plural numbers, respectively identical It may or may not be.)
The manufacturing method of the aromatic polymer as described in [1] provided with the superposition | polymerization process which polymerizes the monomer represented by these in presence of a base.
[14] The method for producing an aromatic polymer according to [13], wherein the base is a base composed of a metal compound other than the first transition metal salt.
[15] At least part of the group represented by — (P (═O) (OR 1 ) (OR 2 )) in the general formula (4) and — (P (═O) (OH) ) (OR 3 )) and a reaction step for converting to a group represented by formula (5)
Figure JPOXMLDOC01-appb-C000014
(In the formula, Ar 5 represents an aromatic group which may have a substituent. Q represents an integer of 1 to 4. Z 2 represents —O—, —S— or —NR 4 — (R 4 the .R 3 represents a group represented by.) represents a hydrogen atom, an alkyl group or an aryl group represents a hydrogen atom, an alkyl group or an aryl group. in the case where R 3 there are a plurality, R 3 existing in plural Each may be the same or different.)
The method for producing an aromatic polymer according to [13] or [14], which has a repeating unit represented by:
[16] In the reaction step, a strong acid and / or a trialkylsilyl halide is allowed to act so that at least a part of the group represented by — (P (═O) (OR 1 ) (OR 2 )) is — ( The method for producing an aromatic polymer according to [15], which is a step of converting to a group represented by P (═O) (OH) (OR 3 )).
[17] In the polymerization step, the monomer represented by the general formula (4) and the general formula (6)
Figure JPOXMLDOC01-appb-C000015
(In the formula, X 7 and X 8 each independently represent a condensable reactive group. Ar 6 represents an aromatic group which may have a substituent.)
Any one of [13] to [16], wherein a monomer having no group represented by-(P (= O) (OR 1 ) (OR 2 )) represented by A method for producing an aromatic polymer.
[18] The method for producing an aromatic polymer according to any one of [13] to [17], wherein both X 5 and X 6 are nucleophilic reactive groups.
[19] The method for producing an aromatic polymer according to [18], wherein the nucleophilic reactive group is a hydroxyl group.
[20] The method for producing an aromatic polymer according to any one of [13] to [19], wherein R 2 is an alkyl group.
[21] The method for producing an aromatic polymer according to any one of [13] to [20], wherein the polymerization is performed at 100 ° C. or higher in the polymerization step.
[22] The method for producing an aromatic polymer according to any one of [13] to [21], wherein the base is an alkali metal salt.
[23] The method for producing an aromatic polymer according to any one of [13] to [22], wherein R 1 is an organic cation.
[24] The same benzene as the benzene ring in which the group represented by — (P (═O) (OR 1 ) (OR 2 )) in the general formula (4) is substituted with X 5 and / or X 6 The method for producing an aromatic polymer according to any one of [13] to [23], wherein the ring is substituted.
 また、本願は、本発明の芳香族系高分子ホスホン酸類の製造方法に用いられる原料化合物として、下記の[25]および[26]を提供するものである。
 [25]一般式(7)
Figure JPOXMLDOC01-appb-C000016
(式中、Arは置換基を有していてもよい芳香族基を表す。qは1~4の整数を表す。Rは水素原子、無機カチオンまたは有機カチオンを表し、Rはアルキル基またはアリール基を表す。なお、RおよびRが複数存在する場合、複数存在するRおよびRは、それぞれ同一であっても異なっていてもよい。)
で表される化合物。
 [26]Arが、置換基を有してもよいビフェニル基である、[25]に記載の化合物。
Moreover, this application provides the following [25] and [26] as a raw material compound used for the manufacturing method of the aromatic high molecular phosphonic acid of this invention.
[25] General formula (7)
Figure JPOXMLDOC01-appb-C000016
(In the formula, Ar 4 represents an aromatic group which may have a substituent. Q represents an integer of 1 to 4. R 1 represents a hydrogen atom, an inorganic cation or an organic cation, and R 2 represents an alkyl group. represents a group or an aryl group. in the case where R 1 and R 2 there are a plurality, R 1 and R 2 existing in plural numbers may each be the same or different.)
A compound represented by
[26] The compound according to [25], wherein Ar 4 is a biphenyl group which may have a substituent.
 本発明によれば、予めイオン交換基を置換させた単量体を重合させるため、得られる芳香族系高分子のイオン交換基密度を容易に調整することができ、簡便に多様な構造を有する芳香族系高分子を製造することができる。また、イオン交換基の置換率が高い単量体を用いることにより、イオン交換基の密度が高い芳香族系高分子を得ることができる。さらに、本発明の製造方法は、反応性及び変換効率が高いため、容積効率を高めることができ、工程の負荷の低減につながる。 According to the present invention, since the monomer having the ion exchange group substituted in advance is polymerized, the ion exchange group density of the obtained aromatic polymer can be easily adjusted, and has various structures easily. Aromatic polymers can be produced. In addition, by using a monomer having a high ion exchange group substitution rate, an aromatic polymer having a high ion exchange group density can be obtained. Furthermore, since the production method of the present invention has high reactivity and conversion efficiency, the volumetric efficiency can be increased, leading to a reduction in process load.
 また、重合工程を塩基と第一遷移金属塩との共存下で行った場合、温和な反応条件下で、単量体の転化率が高く、芳香族系高分子を製造することができる。本発明においては、公知の重合方法では反応活性が低かった単量体及び熱により分解されやすい単量体の使用が可能となる。さらに、本発明の製造方法は、反応溶媒の種類による重合への影響が少ないため、工業的に極めて有用である。 Also, when the polymerization step is carried out in the coexistence of a base and a first transition metal salt, the monomer conversion rate is high and an aromatic polymer can be produced under mild reaction conditions. In the present invention, it is possible to use a monomer having a low reaction activity by a known polymerization method and a monomer that is easily decomposed by heat. Furthermore, the production method of the present invention is extremely useful industrially because the type of reaction solvent has little influence on polymerization.
 本発明の製造方法により得られる芳香族系高分子を高分子電解質膜として用いた燃料電池は、実用的に十分な発電性能を維持しながらも、長期安定性に優れた燃料電池を提供できるため、工業的に極めて有用である。特に、遊離酸の形がホスホン酸基である芳香族系高分子を高分子電解質膜として用いた燃料電池は、耐久性に優れた燃料電池を提供できるため、工業的に極めて有用である。 A fuel cell using an aromatic polymer obtained by the production method of the present invention as a polymer electrolyte membrane can provide a fuel cell excellent in long-term stability while maintaining practically sufficient power generation performance. It is extremely useful industrially. In particular, a fuel cell using an aromatic polymer whose free acid form is a phosphonic acid group as a polymer electrolyte membrane is extremely useful industrially because it can provide a fuel cell with excellent durability.
 以下、本発明の好適な第一実施形態について具体的に説明する。 Hereinafter, a preferred first embodiment of the present invention will be described in detail.
 上述のように、第一実施形態に係る芳香族系高分子の製造方法は、上記一般式(1)で表される単量体を塩基と第一遷移金属塩との共存下で重合させる重合工程を備えることを特徴とする。好ましくは、上記重合工程と、上記一般式(1)において、Eで示される基(但し、Eで示される基がイオン交換基である場合を除く)の少なくとも一部を、Eで示される基に変換する反応工程を備える、一般式(2)で表される繰り返し単位を有する芳香族系高分子の製造方法である。ここで得られる芳香族系高分子を、芳香族系高分子電解質ともいう。 As described above, the method for producing an aromatic polymer according to the first embodiment is a polymerization in which the monomer represented by the general formula (1) is polymerized in the presence of a base and a first transition metal salt. A process is provided. Preferably, the above polymerization step, in the general formula (1), a group represented by E 1 at least part of (but group represented by E 1 excluding the case where the ion-exchange group), with E 2 It is a manufacturing method of the aromatic polymer which has a repeating unit represented by General formula (2) provided with the reaction process converted into the group shown. The aromatic polymer obtained here is also referred to as an aromatic polymer electrolyte.
 従って、以下に、本第一実施形態で用いられる単量体、重合工程、第一実施形態の製造方法で得られる芳香族系高分子電解質、塩基、第一遷移金属塩、反応工程について、順次説明する。 Therefore, in the following, the monomer used in the first embodiment, the polymerization step, the aromatic polymer electrolyte obtained by the production method of the first embodiment, the base, the first transition metal salt, and the reaction step in order. explain.
 第一実施形態で用いる単量体は、一般式(1)で表される単量体である。 The monomer used in the first embodiment is a monomer represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式中、X、Xで示される基はそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。Eで示される基はイオン交換基またはイオン交換前駆基を表す。nは1~4の整数を表す。なお、Eが複数存在する場合、複数存在するEは、それぞれ同一であっても異なっていてもよい。 In the formula, groups represented by X 1 and X 2 each independently represent a condensable reactive group. Ar 1 represents an aromatic group which may have a substituent. The group represented by E 1 represents an ion exchange group or an ion exchange precursor group. n represents an integer of 1 to 4. When a plurality of E 1 are present, the plurality of E 1 may be the same or different.
 好ましくは、上記一般式(1)で表される単量体に加えて、一般式(3)で表される単量体を用いることが好ましい。 Preferably, in addition to the monomer represented by the general formula (1), it is preferable to use a monomer represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式中、X、Xはそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。 In the formula, X 3 and X 4 each independently represent a condensable reactive group. Ar 3 represents an aromatic group which may have a substituent.
 一般式(1)および(3)におけるX~Xは、それぞれ独立に縮合性の反応基を表す。縮合性の反応基としては、他の縮合性の官能基と縮合反応を生じることにより、2価または3価の基または原子団を介して結合させることのできる官能基を意味する。縮合性の反応基としては、求核性反応基および脱離基があげられる。ここで、求核性反応基とは、求核性を有する基を表し、脱離基が結合している炭素原子に作用し、イプソ置換による脱離基の脱離を伴って、新たに2価または3価の基または原子団を介して結合を形成しうるものである。また、脱離基とは、脱離基が結合している炭素原子(イプソ炭素)への求核性反応基の付加に伴い、脱離する基を指す。 X 1 to X 4 in the general formulas (1) and (3) each independently represent a condensable reactive group. The condensable reactive group means a functional group that can be bonded via a divalent or trivalent group or atomic group by causing a condensation reaction with another condensable functional group. Examples of the condensable reactive group include a nucleophilic reactive group and a leaving group. Here, the nucleophilic reactive group represents a group having nucleophilicity, acts on the carbon atom to which the leaving group is bonded, and is newly added with the elimination of the leaving group by ipso substitution. A bond can be formed through a valent or trivalent group or atomic group. Moreover, a leaving group refers to the group which leaves | leaves with the addition of the nucleophilic reactive group to the carbon atom (epsocarbon) which the leaving group has couple | bonded.
 上記X~Xはそれぞれ、求核性反応基であっても脱離基であってもよいが、上記一般式(1)記載の単量体1種類で単独重合を行う場合、XおよびXのうち、一方が求核性反応基となり、他方が脱離基となる。また、上記一般式(1)記載の単量体1種類と、上記一般式(3)記載の単量体1種類とを共重合させる場合には、それらは以下の組み合わせがあげられる。即ち、
(A)X、Xが求核性反応基で、X、Xが脱離基である場合。
(B)X、Xが脱離基でX、Xが求核性反応基である場合。
(C)X、Xが脱離基で、X、Xが求核性反応基である場合。
しかしながら、上記一般式(1)記載の単量体を2種類以上用いる場合および/または上記一般式(3)記載の単量体を2種類以上用いる場合にはこれに限定されない。
Each of X 1 to X 4 may be a nucleophilic reactive group or a leaving group, but when homopolymerization is performed with one kind of monomer described in the general formula (1), X 1 And X 2 , one is a nucleophilic reactive group and the other is a leaving group. Moreover, when copolymerizing 1 type of monomer of the said General formula (1), and 1 type of monomer of the said General formula (3), they are mention | raise | lifted following combination. That is,
(A) A case where X 1 and X 2 are nucleophilic reactive groups and X 3 and X 4 are leaving groups.
(B) When X 1 and X 2 are leaving groups and X 3 and X 4 are nucleophilic reactive groups.
(C) When X 1 and X 3 are leaving groups, and X 2 and X 4 are nucleophilic reactive groups.
However, the present invention is not limited to the case where two or more types of monomers described in the general formula (1) are used and / or the case where two or more types of monomers described in the general formula (3) are used.
 上記求核性反応基としては、ヒドロキシル基、メルカプト基などがあげられる。これらの中でも、ヒドロキシル基が好ましい。脱離基の代表例としては、フルオロ基、クロロ基、ブロモ基、ヨード基、トシル基およびトリフラート基などがあげられる。中でも、脱離基としては、クロロ基が好ましい。 Examples of the nucleophilic reactive group include a hydroxyl group and a mercapto group. Among these, a hydroxyl group is preferable. Representative examples of the leaving group include a fluoro group, a chloro group, a bromo group, an iodo group, a tosyl group, and a triflate group. Of these, the leaving group is preferably a chloro group.
 一般式(1)におけるEで示される基はイオン交換基またはイオン交換前駆基を表す。イオン交換前駆基とは、芳香族系高分子電解質前駆体のイオン交換前駆基以外の構造を変化させることなくイオン交換基となる基を指す。イオン交換前駆基は、好ましくは3段階以内、より好ましくは2段階以内、さらに好ましくは1段階の反応を経てイオン交換基となる。イオン交換基の代表例としては、スルホン酸基、ホスホン酸基、ホスフィン酸基、カルボン酸基等が挙げられる。これらの中でも、スルホン酸基、ホスホン酸基が好ましく、第一遷移金属塩と作用することにより、単量体の溶解性が向上する観点から、ホスホン酸基が好ましい。イオン交換前駆基の代表例としては、スルホン酸前駆基、ホスホン酸前駆基、ホスフィン酸前駆基、カルボン酸前駆基等があげられる。スルホン酸前駆基とは、前記の反応を経て、スルホン酸基となる基のことであり、ホスホン酸前駆基とは、前記の反応を経て、ホスホン酸基となる基のことであり、ホスフィン酸前駆基とは、前記の反応を経て、ホスフィン酸基となる基のことであり、カルボン酸前駆基とは、前記の反応を経て、カルボン酸基となる基のことである。これらの中でも、第一遷移金属塩と作用することにより、スルホン酸前駆基、ホスホン酸前駆基が好ましく、単量体の溶解性が向上する観点から、ホスホン酸前駆基が好ましい。 The group represented by E 1 in the general formula (1) represents an ion exchange group or an ion exchange precursor group. An ion exchange precursor group refers to the group used as an ion exchange group, without changing structures other than the ion exchange precursor group of an aromatic polymer electrolyte precursor. The ion exchange precursor group becomes an ion exchange group through a reaction of preferably within 3 stages, more preferably within 2 stages, still more preferably 1 stage. Representative examples of ion exchange groups include sulfonic acid groups, phosphonic acid groups, phosphinic acid groups, carboxylic acid groups, and the like. Among these, a sulfonic acid group and a phosphonic acid group are preferable, and a phosphonic acid group is preferable from the viewpoint of improving the solubility of the monomer by acting with the first transition metal salt. Representative examples of ion exchange precursor groups include sulfonic acid precursor groups, phosphonic acid precursor groups, phosphinic acid precursor groups, carboxylic acid precursor groups, and the like. The sulfonic acid precursor group is a group that becomes a sulfonic acid group through the above reaction, and the phosphonic acid precursor group is a group that becomes a phosphonic acid group through the above reaction, and phosphinic acid. The precursor group is a group that becomes a phosphinic acid group through the above reaction, and the carboxylic acid precursor group is a group that becomes a carboxylic acid group through the above reaction. Among these, a sulfonic acid precursor group and a phosphonic acid precursor group are preferable by acting with the first transition metal salt, and a phosphonic acid precursor group is preferable from the viewpoint of improving the solubility of the monomer.
 スルホン酸前駆基としては例えば、以下のものがあげられる。
スルホン酸エステル基:スルホン酸ネオペンチル基、スルホン酸t-ブチル基など
スルフィン酸エステル基:スルフィン酸ネオペンチル基、スルフィン酸t-ブチル基など
メルカプト基:メチルメルカプト基、エチルメルカプト基、プロピルメルカプト基など
スルホン酸塩基:スルホン酸ナトリウム基、スルホン酸カリウム基、スルホン酸リチウム基、スルホン酸アンモニウム基、スルホン酸モノメチルアンモニウム基、スルホン酸モノエチルアンモニウム基、スルホン酸モノ-n-プロピルアンモニウム基、スルホン酸モノ-n-ブチルアンモニウム基、スルホン酸ジメチルアンモニウム基、スルホン酸ジエチルアンモニウム基、スルホン酸ジ-n-プロピルアンモニウム基、スルホン酸ジ-n-ブチルアンモニウム基、スルホン酸トリメチルアンモニウム基、スルホン酸トリエチルアンモニウム基、スルホン酸トリ-n-プロピルアンモニウム基、スルホン酸トリ-n-ブチルアンモニウム基、スルホン酸テトラメチルアンモニウム基、スルホン酸テトラエチルアンモニウム基、スルホン酸テトラ-n-プロピルアンモニウム基、スルホン酸テトラ-n-ブチルアンモニウム基など
Examples of the sulfonic acid precursor group include the following.
Sulfonic acid ester group: sulfonic acid neopentyl group, sulfonic acid t-butyl group and other sulfinic acid ester groups: sulfinic acid neopentyl group, sulfinic acid t-butyl group and other mercapto groups: sulfone such as methyl mercapto group, ethyl mercapto group and propyl mercapto group Acid base: sodium sulfonate group, potassium sulfonate group, lithium sulfonate group, ammonium sulfonate group, monomethylammonium sulfonate group, monoethylammonium sulfonate group, mono-n-propylammonium sulfonate group, mono-sulfonate group n-butylammonium group, dimethylammonium sulfonate group, diethylammonium sulfonate group, di-n-propylammonium group sulfonate, di-n-butylammonium sulfonate group, trime sulfonate Ruammonium group, triethylammonium sulfonate group, tri-n-propylammonium sulfonate group, tri-n-butylammonium sulfonate group, tetramethylammonium sulfonate group, tetraethylammonium sulfonate group, tetra-n-propyl sulfonate group Ammonium group, tetra-n-butylammonium sulfonate group, etc.
 ホスホン酸前駆基としては例えば、以下のものがあげられる。
ホスホン酸ジエステル基:ホスホン酸ジエチル基、ホスホン酸ジ-n-ブチル基、ホスホン酸ジ-t-ブチル基、ホスホン酸ジメチル基、ホスホン酸ジイソプロピル基、ホスホン酸ジフェニル基など
ホスホン酸モノエステル基:ホスホン酸モノエチル基、ホスホン酸モノ-t-ブチル基、ホスホン酸モノメチル基、ホスホン酸モノジイソプロピル基など
ホスホン酸モノエステル塩基:ホスホン酸エチル-ナトリウム基、ホスホン酸エチル-カリウム基、ホスホン酸エチル-リチウム基、ホスホン酸エチル-アンモニウム基、ホスホン酸エチル-モノメチルアンモニウム基、ホスホン酸エチル-モノエチルアンモニウム基、ホスホン酸エチル-モノ-n-プロピルアンモニウム基、ホスホン酸エチル-モノ-n-ブチルアンモニウム基、ホスホン酸エチル-ジメチルアンモニウム基、ホスホン酸エチル-ジエチルアンモニウム基、ホスホン酸エチル-ジ-n-プロピルアンモニウム基、ホスホン酸エチル-ジ-n-ブチルアンモニウム基、ホスホン酸エチル-トリメチルアンモニウム基、ホスホン酸エチル-トリエチルアンモニウム基、ホスホン酸エチル-トリ-n-プロピルアンモニウム基、ホスホン酸エチル-トリ-n-ブチルアンモニウム基、ホスホン酸エチル-テトラメチルアンモニウム基、ホスホン酸エチル-テトラエチルアンモニウム基、ホスホン酸エチル-テトラ-n-プロピルアンモニウム基、ホスホン酸エチル-テトラ-n-ブチルアンモニウム基、ホスホン酸t-ブチル-ナトリウム基、ホスホン酸t-ブチル-カリウム基、ホスホン酸t-ブチル-リチウム基、ホスホン酸t-ブチル-アンモニウム基、ホスホン酸t-ブチル-モノメチルアンモニウム基、ホスホン酸t-ブチル-モノエチルアンモニウム基、ホスホン酸t-ブチル-モノ-n-プロピルアンモニウム基、ホスホン酸t-ブチル-モノ-n-ブチルアンモニウム基、ホスホン酸t-ブチル-ジメチルアンモニウム基、ホスホン酸t-ブチル-ジエチルアンモニウム基、ホスホン酸t-ブチル-ジ-n-プロピルアンモニウム基、ホスホン酸t-ブチル-ジ-n-ブチルアンモニウム基、ホスホン酸t-ブチル-トリメチルアンモニウム基、ホスホン酸t-ブチル-トリエチルアンモニウム基、ホスホン酸t-ブチル-トリ-n-プロピルアンモニウム基、ホスホン酸t-ブチル-トリ-n-ブチルアンモニウム基、ホスホン酸t-ブチル-テトラメチルアンモニウム基、ホスホン酸t-ブチル-テトラエチルアンモニウム基、ホスホン酸t-ブチル-テトラ-n-プロピルアンモニウム基、ホスホン酸t-ブチル-テトラ-n-ブチルアンモニウム基、ホスホン酸メチル-ナトリウム基、ホスホン酸メチル-カリウム基、ホスホン酸メチル-リチウム基、ホスホン酸メチル-アンモニウム基、ホスホン酸メチル-モノメチルアンモニウム基、ホスホン酸メチル-モノエチルアンモニウム基、ホスホン酸メチル-モノ-n-プロピルアンモニウム基、ホスホン酸メチル-モノ-n-ブチルアンモニウム基、ホスホン酸メチル-ジメチルアンモニウム基、ホスホン酸メチル-ジエチルアンモニウム基、ホスホン酸メチル-ジ-n-プロピルアンモニウム基、ホスホン酸メチル-ジ-n-ブチルアンモニウム基、ホスホン酸メチル-トリメチルアンモニウム基、ホスホン酸メチル-トリエチルアンモニウム基、ホスホン酸メチル-トリ-n-プロピルアンモニウム基、ホスホン酸メチル-トリ-n-ブチルアンモニウム基、ホスホン酸メチル-テトラメチルアンモニウム基、ホスホン酸メチル-テトラエチルアンモニウム基、ホスホン酸メチル-テトラ-n-プロピルアンモニウム基、ホスホン酸メチル-テトラ-n-ブチルアンモニウム基、ホスホン酸イソプロピル-ナトリウム基、ホスホン酸イソプロピル-カリウム基、ホスホン酸イソプロピル-リチウム基、ホスホン酸イソプロピル-アンモニウム基、ホスホン酸イソプロピル-モノメチルアンモニウム基、ホスホン酸イソプロピル-モノエチルアンモニウム基、ホスホン酸イソプロピル-モノ-n-プロピルアンモニウム基、ホスホン酸イソプロピル-モノ-n-ブチルアンモニウム基、ホスホン酸イソプロピル-ジメチルアンモニウム基、ホスホン酸イソプロピル-ジエチルアンモニウム基、ホスホン酸イソプロピル-ジ-n-プロピルアンモニウム基、ホスホン酸イソプロピル-ジ-n-ブチルアンモニウム基、ホスホン酸イソプロピル-トリメチルアンモニウム基、ホスホン酸イソプロピル-トリエチルアンモニウム基、ホスホン酸イソプロピル-トリ-n-プロピルアンモニウム基、ホスホン酸イソプロピル-トリ-n-ブチルアンモニウム基、ホスホン酸イソプロピル-テトラメチルアンモニウム基、ホスホン酸イソプロピル-テトラエチルアンモニウム基、ホスホン酸イソプロピル-テトラ-n-プロピルアンモニウム基、ホスホン酸イソプロピル-テトラ-n-ブチルアンモニウム基、など
ホスホン酸塩基:ホスホン酸ナトリウム基、ホスホン酸カリウム基、ホスホン酸リチウム基、ホスホン酸アンモニウム基、ホスホン酸-モノメチルアンモニウム基、ホスホン酸-モノエチルアンモニウム基、ホスホン酸-モノ-n-プロピルアンモニウム基、ホスホン酸-モノ-n-ブチルアンモニウム基、ホスホン酸-ジメチルアンモニウム基、ホスホン酸-ジエチルアンモニウム基、ホスホン酸-ジ-n-プロピルアンモニウム基、ホスホン酸-ジ-n-ブチルアンモニウム基、ホスホン酸-トリメチルアンモニウム基、ホスホン酸-トリエチルアンモニウム基、ホスホン酸-トリ-n-プロピルアンモニウム基、ホスホン酸-トリ-n-ブチルアンモニウム基、ホスホン酸-テトラメチルアンモニウム基、ホスホン酸-テトラエチルアンモニウム基、ホスホン酸-テトラ-n-プロピルアンモニウム基、ホスホン酸-テトラ-n-ブチルアンモニウム基、など。これらはモノカチオン塩でもジカチオン塩でも或いはそれらの混合物であってもよい。
Examples of the phosphonic acid precursor group include the following.
Phosphonic acid diester group: phosphonic acid monoester group: phosphonic acid diethyl group, phosphonic acid di-n-butyl group, phosphonic acid di-t-butyl group, phosphonic acid dimethyl group, phosphonic acid diisopropyl group, phosphonic acid diphenyl group, etc. Phosphonic acid monoester bases such as acid monoethyl group, phosphonic acid mono-t-butyl group, phosphonic acid monomethyl group, and phosphonic acid monodiisopropyl group: ethyl phosphonate-sodium group, ethyl phosphonate-potassium group, ethyl phosphonate-lithium group Phosphonic acid ethyl-ammonium group, phosphonic acid ethyl-monomethylammonium group, phosphonic acid ethyl-monoethylammonium group, phosphonic acid ethyl-mono-n-propylammonium group, phosphonic acid ethyl-mono-n-butylammonium group, phospho Ethyl dimethylammonium group, ethyl phosphonate-diethylammonium group, ethyl phosphonate-di-n-propylammonium group, ethyl phosphonate-di-n-butylammonium group, ethyl phosphonate-trimethylammonium group, ethyl phosphonate -Triethylammonium group, ethyl phosphonate-tri-n-propylammonium group, ethyl phosphonate-tri-n-butylammonium group, ethyl phosphonate-tetramethylammonium group, ethyl phosphonate-tetraethylammonium group, ethyl phosphonate- Tetra-n-propylammonium group, ethyl phosphonate-tetra-n-butylammonium group, t-butyl-sodium phosphonate, t-butyl-potassium phosphonate, t-butyl-lithium phosphonate T-butyl-ammonium phosphonate, t-butyl-monomethylammonium phosphonate, t-butyl-monoethylammonium phosphonate, t-butyl-mono-n-propylammonium phosphonate, t-butyl-phosphonate Mono-n-butylammonium group, t-butyl-dimethylammonium phosphonate, t-butyl-diethylammonium phosphonate, t-butyl-di-n-propylammonium phosphonate, t-butyl-di-phosphonate n-butylammonium group, t-butyl-trimethylammonium phosphonate, t-butyl-triethylammonium phosphonate, t-butyl-tri-n-propylammonium phosphonate, t-butyl-tri-n-phosphonate Butylammonium group, phosphonic acid t-butyl Ru-tetramethylammonium group, t-butyl-tetraethylammonium phosphonate, t-butyl-tetra-n-propylammonium phosphonate, t-butyl-tetra-n-butylammonium phosphonate, methyl-sodium phosphonate Group, phosphonate methyl-potassium group, phosphonate methyl-lithium group, phosphonate methyl-ammonium group, phosphonate methyl-monomethylammonium group, phosphonate methyl-monoethylammonium group, phosphonate methyl-mono-n-propylammonium group Group, phosphonate methyl-mono-n-butylammonium group, phosphonate methyl-dimethylammonium group, phosphonate methyl-diethylammonium group, phosphonate methyl-di-n-propylammonium group, phosphonate methyl-di n-butylammonium group, phosphonate methyl-trimethylammonium group, phosphonate methyl-triethylammonium group, phosphonate methyl-tri-n-propylammonium group, phosphonate methyl-tri-n-butylammonium group, phosphonate methyl- Tetramethylammonium group, phosphonate methyl-tetraethylammonium group, phosphonate methyl-tetra-n-propylammonium group, phosphonate methyl-tetra-n-butylammonium group, phosphonate isopropyl-sodium group, phosphonate isopropyl-potassium group Isopropyl phosphonate-lithium group, isopropyl ammonium phosphonate group, isopropyl phosphonate monomethyl ammonium group, isopropyl phosphonate monoethyl ammonium group, Isopropyl sulfonate-mono-n-propylammonium group, isopropyl phosphonate-mono-n-butylammonium group, isopropyl phosphonate-dimethylammonium group, isopropyl phosphonate-diethylammonium group, isopropyl phosphonate-di-n-propylammonium phosphonate Group, isopropyl phosphonate-di-n-butylammonium group, isopropyl phosphonate-trimethylammonium group, isopropyl phosphonate-triethylammonium group, isopropyl phosphonate-tri-n-propylammonium group, isopropyl phosphonate-tri-n- Butylammonium group, isopropyl phosphonate-tetramethylammonium group, isopropyl phosphonate-tetraethylammonium group, isopropyl phosphonate-tetra -N-propylammonium group, phosphonate isopropyl-tetra-n-butylammonium group, etc. Phosphonate groups: sodium phosphonate group, potassium phosphonate group, lithium phosphonate group, ammonium phosphonate group, phosphonic acid-monomethylammonium group Phosphonic acid-monoethylammonium group, phosphonic acid-mono-n-propylammonium group, phosphonic acid-mono-n-butylammonium group, phosphonic acid-dimethylammonium group, phosphonic acid-diethylammonium group, phosphonic acid-di- n-propylammonium group, phosphonic acid-di-n-butylammonium group, phosphonic acid-trimethylammonium group, phosphonic acid-triethylammonium group, phosphonic acid-tri-n-propylammonium group, phosphonic acid-tri- - butyl ammonium group, phosphonic acid - tetramethyl ammonium group, phosphonic acid - tetraethyl ammonium group, phosphonic acid - tetra -n- propyl ammonium group, phosphonic acid - tetra -n- butylammonium group, and the like. These may be monocation salts, dication salts, or mixtures thereof.
 ホスフィン酸基前駆基としては例えば、以下のものがあげられる。
ホスフィン酸エステル基:ホスフィン酸エチル基、ホスフィン酸t-ブチル基、ホスフィン酸メチル基、ホスフィン酸ジイソプロピル基など
ホスフィン酸塩基:ホスフィン酸ナトリウム基、ホスフィン酸カリウム基、ホスフィン酸リチウム基、ホスフィン酸アンモニウム基、ホスフィン酸-モノメチルアンモニウム基、ホスフィン酸-モノエチルアンモニウム基、ホスフィン酸-モノ-n-プロピルアンモニウム基、ホスフィン酸-モノ-n-ブチルアンモニウム基、ホスフィン酸-ジメチルアンモニウム基、ホスフィン酸-ジエチルアンモニウム基、ホスフィン酸-ジ-n-プロピルアンモニウム基、ホスフィン酸-ジ-n-ブチルアンモニウム基、ホスフィン酸-トリメチルアンモニウム基、ホスフィン酸-トリエチルアンモニウム基、ホスフィン酸-トリ-n-プロピルアンモニウム基、ホスフィン酸-トリ-n-ブチルアンモニウム基、ホスフィン酸-テトラメチルアンモニウム基、ホスフィン酸-テトラエチルアンモニウム基、ホスフィン酸-テトラ-n-プロピルアンモニウム基、ホスフィン酸-テトラ-n-ブチルアンモニウム基、など。
Examples of the phosphinic acid group precursor group include the following.
Phosphinic acid ester group: Phosphinic acid ethyl group, Phosphinic acid t-butyl group, Phosphinic acid methyl group, Phosphinic acid diisopropyl group, etc. Phosphinic acid groups: Phosphinic acid sodium group, Phosphinic acid potassium group, Phosphinic acid lithium group, Phosphinic acid ammonium group Phosphinic acid-monomethylammonium group, phosphinic acid-monoethylammonium group, phosphinic acid-mono-n-propylammonium group, phosphinic acid-mono-n-butylammonium group, phosphinic acid-dimethylammonium group, phosphinic acid-diethylammonium group Group, phosphinic acid-di-n-propylammonium group, phosphinic acid-di-n-butylammonium group, phosphinic acid-trimethylammonium group, phosphinic acid-triethylammonium group, Sphineic acid-tri-n-propylammonium group, phosphinic acid-tri-n-butylammonium group, phosphinic acid-tetramethylammonium group, phosphinic acid-tetraethylammonium group, phosphinic acid-tetra-n-propylammonium group, phosphinic acid A tetra-n-butylammonium group, etc.
 カルボン酸基前駆基としては例えば、以下のものがあげられる。
カルボン酸エステル基:カルボン酸ネオペンチル基、カルボン酸t-ブチル基など
カルボン酸塩基:カルボン酸ナトリウム基、カルボン酸カリウム基、カルボン酸リチウム基、カルボン酸アンモニウム基、カルボン酸-モノメチルアンモニウム基、カルボン酸-モノエチルアンモニウム基、カルボン酸-モノ-n-プロピルアンモニウム基、カルボン酸-モノ-n-ブチルアンモニウム基、カルボン酸-ジメチルアンモニウム基、カルボン酸-ジエチルアンモニウム基、カルボン酸-ジ-n-プロピルアンモニウム基、カルボン酸-ジ-n-ブチルアンモニウム基、カルボン酸-トリメチルアンモニウム基、カルボン酸-トリエチルアンモニウム基、カルボン酸-トリ-n-プロピルアンモニウム基、カルボン酸-トリ-n-ブチルアンモニウム基、カルボン酸-テトラメチルアンモニウム基、カルボン酸-テトラエチルアンモニウム基、カルボン酸-テトラ-n-プロピルアンモニウム基、カルボン酸-テトラ-n-ブチルアンモニウム基、など。これらは全て塩型であっても、一部が酸型であってもよい。
ホルミル基、ヒドロキシメチル基、またはヒドロキシル基に保護基を導入したヒドロキシメチル基、など。
Examples of the carboxylic acid group precursor group include the following.
Carboxylic acid ester group: Carboxylic acid neopentyl group, Carboxylic acid t-butyl group and other carboxylic acid groups: Sodium carboxylate group, Carboxylic acid potassium group, Carboxylic acid lithium group, Carboxylic acid ammonium group, Carboxylic acid-monomethylammonium group, Carboxylic acid -Monoethylammonium group, carboxylic acid-mono-n-propylammonium group, carboxylic acid-mono-n-butylammonium group, carboxylic acid-dimethylammonium group, carboxylic acid-diethylammonium group, carboxylic acid-di-n-propyl Ammonium group, carboxylic acid-di-n-butylammonium group, carboxylic acid-trimethylammonium group, carboxylic acid-triethylammonium group, carboxylic acid-tri-n-propylammonium group, carboxylic acid-tri-n-butylammonium Beam group, carboxylic acid - tetramethyl ammonium group, a carboxylic acid - tetraethyl ammonium groups, carboxylic acid - tetra -n- propyl ammonium groups, carboxylic acid - tetra -n- butylammonium group, and the like. These may be all in the salt form or partly in the acid form.
A formyl group, a hydroxymethyl group, or a hydroxymethyl group obtained by introducing a protecting group to a hydroxyl group.
 第一実施形態におけるArおよびArは、置換基を有していてもよい芳香族基を表す。該芳香族基としては、ヘテロ元素を含んでいてもよく、縮合反応の反応性を高める観点から、炭素数が4以上であることが好ましく、10以上であることがより好ましい。また、得られる芳香族系高分子電解質におけるイオン交換基および/またはイオン交換前駆基の密度を高める観点から、炭素数が24以下であることが好ましく、18以下であることがより好ましい。 Ar 1 and Ar 3 in the first embodiment represent an aromatic group that may have a substituent. The aromatic group may contain a hetero element, and preferably has 4 or more carbon atoms, more preferably 10 or more from the viewpoint of enhancing the reactivity of the condensation reaction. Further, from the viewpoint of increasing the density of ion exchange groups and / or ion exchange precursor groups in the obtained aromatic polymer electrolyte, the number of carbon atoms is preferably 24 or less, and more preferably 18 or less.
 芳香族基としては、例えば下記式(a)~(z)のような芳香族基があげられる。(式中、*はそれぞれX若しくはXまたはX若しくはXとの結合手を示し、他の置換基との結合手は省略した。) Examples of the aromatic group include aromatic groups represented by the following formulas (a) to (z). (In the formula, * represents a bond with X 1 or X 2 or X 3 or X 4, respectively, and a bond with another substituent was omitted.)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 中でも、Arとしては置換基を有してもよい上記(c)で表されるフェニレン基、または(m)で表されるビフェニル基であることが好ましく、置換基を有してもよい上記(m)で表されるビフェニル基であることがより好ましい。Arとしては置換基を有してもよい上記(x)で表される基、または(y)で表される基であることが好ましく、置換基を有してもよい上記(y)で表される基であることがより好ましい。 Among them, Ar 1 is preferably a phenylene group represented by the above (c) which may have a substituent, or a biphenyl group represented by (m), and may have a substituent. The biphenyl group represented by (m) is more preferable. Ar 3 is preferably a group represented by the above (x) which may have a substituent, or a group represented by (y), and in the above (y) which may have a substituent. It is more preferable that it is a group represented.
 上記置換基としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、シアノ基、ニトロ基、ベンゾイル基があげられる。 Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, a cyano group, a nitro group, and benzoyl. Group.
 炭素数1~10のアルキル基としては直鎖状、分岐鎖状または環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、イソブチル基、n-ペンチル基、2,2-ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、2-メチルペンチル基、2-エチルヘキシル基があげられる。 The alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, Examples thereof include t-butyl group, isobutyl group, n-pentyl group, 2,2-dimethylpropyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, 2-methylpentyl group and 2-ethylhexyl group.
 炭素数1~10のアルコキシ基としては、直鎖状、分岐鎖状または環状のいずれでもよく、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、sec-ブチルオキシ基、t-ブチルオキシ基、イソブチルオキシ基、n-ペンチルオキシ基、2,2-ジメチルプロピルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、2-メチルペンチルオキシ基、2-エチルヘキシルオキシ基があげられる。 The alkoxy group having 1 to 10 carbon atoms may be linear, branched or cyclic. For example, methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, sec- Butyloxy group, t-butyloxy group, isobutyloxy group, n-pentyloxy group, 2,2-dimethylpropyloxy group, cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, 2-methylpentyloxy group, 2- An ethylhexyloxy group is mentioned.
 炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基があげられ、炭素数6~10のアリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基があげられる。 Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group, and examples of the aryloxy group having 6 to 10 carbon atoms include a phenoxy group and a naphthyloxy group.
 これらの基は、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、およびフェノキシ基からなる群より選ばれる基でさらに置換されていてもよい。 These groups may be further substituted with a group selected from the group consisting of an amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, and a phenoxy group.
 一般式(1)で表される好ましい単量体としては、下記式(aa)~(au)で表される単量体があげられる。式中では、ホスホン酸前駆基を示したが、上記に具体的にあげたイオン交換基またはイオン交換前駆基に変更可能である。 Preferred monomers represented by the general formula (1) include monomers represented by the following formulas (aa) to (au). In the formula, phosphonic acid precursor groups are shown, but can be changed to the ion exchange groups or ion exchange precursor groups specifically mentioned above.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 中でも、上記式(aa)、(ac)であることが好ましい。 Among these, the above formulas (aa) and (ac) are preferable.
 一般式(3)で表される好ましい単量体としては、下記式(ca)~(cr)で表される単量体があげられる。 Preferred monomers represented by the general formula (3) include monomers represented by the following formulas (ca) to (cr).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 中でも、入手し易く安価である理由から、上記式(cf)、(cg)、(ci)、(cj)、(cp)、(cq)であることが好ましい。 Above all, the above formulas (cf), (cg), (ci), (cj), (cp), and (cq) are preferable because they are easily available and inexpensive.
 第一実施形態の式(1)で表される単量体としては、市販品として入手することや、公知の方法を用いて合成することが可能である。 As the monomer represented by the formula (1) of the first embodiment, it can be obtained as a commercial product or synthesized using a known method.
 例えば、Eで示される基がホスホン酸前駆基である場合、第一実施形態の式(1)で表される単量体の製造方法としては、XおよびXがフルオロ基、クロロ基、ブロモ基、ヨード基などの脱離基である場合、以下の製造方法などがあげられる、即ち、
(1-1)芳香族化合物にホスホン酸ジエステル基を導入した後、上記脱離基を導入し、公知の方法で加水分解する方法。
(1-2)芳香族化合物に上記脱離基を導入した後、ホスホン酸ジエステル基を導入し、公知の方法で加水分解する方法。
 ホスホン酸ジエステル基の導入方法としては、芳香族化合物にホスホン酸ジエステル基の導入前に、クロロ基、ブロモ基、ヨード基などから選ばれる反応活性基を導入した後、下記(2-1)~(2-5)にあげる置換反応を実施する方法などがあげられる。
(2-1)塩化ニッケルなどのルイス酸を用いて亜リン酸トリエステルを反応させるミカエリス・アルブーゾフ反応。
(2-2)水素化ナトリウムなどの塩基を用いて亜リン酸ジエステルを反応させるミカエリス・ベッカー反応。
(2-3)テトラキス(トリフェニルホスフィン)パラジウムなどの0価パラジウム触媒を用いて亜リン酸ジエステルを反応させる反応。
(2-4)マグネシウムを作用させグリニャール試薬とした後にハロゲン化リン酸ジエステルを反応させるグリニャール反応。
(2-5)アルキルリチウムを作用させアリールリチウムとした後に、ハロゲン化リン酸ジエステルを反応させる反応。
 上記脱離基の導入方法としては、フッ素、塩素、臭素、沃素などから選ばれるハロゲン化試薬を作用させる方法などがあげられる。また、(1-2)記載の方法において、上記反応活性基並びに上記脱離基XおよびXが同一の官能基である場合、3つ以上の該官能基を芳香族化合物に導入した後に、該官能基の一部をホスホン酸類基に置換し、公知の方法で加水分解することにより、式(1)で表される単量体が得られる。具体的な方法としては例えば、J.Fluorine Chem.2004,125,1317に記載されている方法など公知の方法を用いることができる。
For example, when the group represented by E 1 is a phosphonic acid precursor group, as a method for producing the monomer represented by the formula (1) of the first embodiment, X 1 and X 2 are a fluoro group and a chloro group. In the case of a leaving group such as a bromo group or an iodo group, the following production method can be exemplified, that is,
(1-1) A method of introducing a phosphonic acid diester group into an aromatic compound and then introducing the above leaving group and hydrolyzing it by a known method.
(1-2) A method of introducing a phosphonic acid diester group after introducing the above leaving group into an aromatic compound and hydrolyzing it by a known method.
As a method for introducing a phosphonic acid diester group, before introducing a phosphonic acid diester group into an aromatic compound, a reactive group selected from a chloro group, a bromo group, an iodo group, and the like is introduced, and then the following (2-1) to Examples thereof include a method for carrying out the substitution reaction listed in (2-5).
(2-1) Michaelis-Albuzov reaction in which a phosphoric acid triester is reacted using a Lewis acid such as nickel chloride.
(2-2) Michaelis-Becker reaction in which a phosphite diester is reacted using a base such as sodium hydride.
(2-3) A reaction in which a phosphorous acid diester is reacted using a zerovalent palladium catalyst such as tetrakis (triphenylphosphine) palladium.
(2-4) Grignard reaction in which magnesium is reacted to form a Grignard reagent and then a halogenated phosphoric acid diester is reacted.
(2-5) Reaction in which halogenated phosphoric acid diester is reacted after alkyllithium is reacted to form aryllithium.
Examples of the method for introducing the leaving group include a method in which a halogenating reagent selected from fluorine, chlorine, bromine, iodine and the like is allowed to act. In the method described in (1-2), when the reactive group and the leaving groups X 1 and X 2 are the same functional group, after introducing three or more functional groups into the aromatic compound The monomer represented by the formula (1) can be obtained by substituting a part of the functional group with a phosphonic acid group and hydrolyzing by a known method. As a specific method, for example, J. et al. Fluorine Chem. Known methods such as those described in 2004, 125, 1317 can be used.
 Xおよび/またはXが、求核性反応基である場合、求核性反応基に保護基を導入し、求核性反応基を不活性化した後に上記の置換反応を実施して、加水分解することが好ましい。該保護基としては、上記の置換反応後に脱保護可能な基であれば特に制限はないが、ヒドロキシル基およびメルカプト基の代表的な保護基としては、ベンジル基、t-ブチル基などのエーテル系の基、メトキシメチル基などのアセタール系の基、アセチル基、ベンゾイル基などのアシル系の基、およびt-ブチルジメチルシリル基などのシリルエーテル系の基などがあげられる。アミン基の代表的な保護基としては、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基などのカルバメート系の基、フタロイル基などのイミド系の基、p-トルエンスルホニル基、2-ニトロベンゼンスルホニル基などのスルホンアミド系の基などがあげられる。 When X 1 and / or X 2 is a nucleophilic reactive group, a protecting group is introduced into the nucleophilic reactive group, the nucleophilic reactive group is deactivated, and then the above substitution reaction is performed. Hydrolysis is preferred. The protecting group is not particularly limited as long as it is a group that can be deprotected after the above-described substitution reaction. Representative protecting groups for hydroxyl and mercapto groups include ethers such as benzyl and t-butyl groups. Group, an acetal group such as methoxymethyl group, an acyl group such as acetyl group and benzoyl group, and a silyl ether group such as t-butyldimethylsilyl group. Representative protecting groups for amine groups include carbamate groups such as t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, imide groups such as phthaloyl group, p-toluene Examples thereof include sulfonamide groups such as a sulfonyl group and a 2-nitrobenzenesulfonyl group.
 Xおよび/またはXがヒドロキシル基である場合は、ヒドロキシル基にハロゲン化リン酸ジエステルを作用させてホスフェート化合物とし、その後、強塩基を用いた転位反応によりホスホン酸ジエステル基を有する化合物に変換し、加水分解に供する方法を用いてもよい。具体的な方法としては例えば、J.Org.Chem.1984,49,4018に記載されている方法など公知の方法を用いることができる。 When X 1 and / or X 2 is a hydroxyl group, a halogenated phosphoric diester is allowed to act on the hydroxyl group to form a phosphate compound, which is then converted to a compound having a phosphonic diester group by a rearrangement reaction using a strong base. However, a method for hydrolysis may be used. As a specific method, for example, J. et al. Org. Chem. Known methods such as those described in 1984, 49, 4018 can be used.
 第一実施形態の式(3)で表される単量体としては、例えば市販のものが用いられる。 As the monomer represented by the formula (3) of the first embodiment, for example, a commercially available product is used.
 第一実施形態の製造方法で得られる芳香族系高分子電解質は、一般式(1)で表される単量体または一般式(1)および(3)で表される単量体を、塩基と第一遷移金属塩との存在下で重合させる重合工程を備える製造方法によって得られる。上述の効果を損なわない範囲において、他の単量体を用いてもよい。ここで、芳香族系高分子電解質とは、芳香環を有する化合物から水素原子を2個取り去って得られる2価の芳香族残基を構造単位として直接または連結員を介して連結されたイオン交換基および/またはイオン交換前駆基を有する高分子のことを意味する。第一実施形態における芳香族系高分子電解質は、置換基を有していてもよい。第一実施形態における芳香族系高分子電解質は、主鎖に置換基を有してもよい芳香族環を有し、さらに、イオン交換基および/またはイオン交換前駆基が直接結合した芳香族環を有することが好ましい。 The aromatic polymer electrolyte obtained by the production method of the first embodiment comprises a monomer represented by the general formula (1) or a monomer represented by the general formulas (1) and (3) as a base. And a first transition metal salt. Other monomers may be used as long as the above effects are not impaired. Here, the aromatic polymer electrolyte is an ion exchange in which a divalent aromatic residue obtained by removing two hydrogen atoms from a compound having an aromatic ring is directly or via a connecting member as a structural unit. It means a polymer having a group and / or an ion exchange precursor group. The aromatic polymer electrolyte in the first embodiment may have a substituent. The aromatic polyelectrolyte in the first embodiment has an aromatic ring which may have a substituent in the main chain, and further an aromatic ring to which an ion exchange group and / or an ion exchange precursor group are directly bonded. It is preferable to have.
 上記第一実施形態の製造方法で得られる芳香族系高分子電解質としては、一般式(2)で表される繰り返し単位を有するものが好ましい。 As the aromatic polymer electrolyte obtained by the production method of the first embodiment, those having a repeating unit represented by the general formula (2) are preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式中、Arは置換基を有してもよい芳香族基を表す。Eで示される基は、イオン交換基またはEと異なるイオン交換前駆基を表す。mは1~4の整数を表し、Zは-O-または-S-で示される基を表す。なお、Eが複数存在する場合、複数存在するEは、それぞれ同一であっても異なっていてもよい。 In the formula, Ar 2 represents an aromatic group which may have a substituent. The group represented by E 2 represents an ion exchange group or an ion exchange precursor group different from E 1 . m represents an integer of 1 to 4, and Z represents a group represented by —O— or —S—. When a plurality of E 2 are present, the plurality of E 2 may be the same or different.
 第一実施形態におけるArは、置換基を有していてもよい芳香族基を表し、該芳香族基としては、上述のものがあげられる。具体的には、例えば上記式(a)~(z)のような芳香族基があげられる(式中、*は-Z-で示される基との結合手を示し、置換基との結合手は省略した。)。これらの中でも、上記(c)で表されるフェニレン基、または(m)で表されるビフェニル基であることが好ましい。また、該置換基としては上記のものがあげられる。 Ar 2 in the first embodiment represents an aromatic group that may have a substituent, and examples of the aromatic group include those described above. Specific examples include aromatic groups such as the above formulas (a) to (z) (in the formula, * represents a bond with a group represented by —Z—, and a bond with a substituent). Omitted.) Among these, the phenylene group represented by the above (c) or the biphenyl group represented by (m) is preferable. Examples of the substituent include those described above.
 第一実施形態におけるEは、イオン交換基またはEと異なるイオン交換前駆基を表す。イオン交換基およびイオン交換前駆基の具体例としては、上述のものがあげられ、好ましくは、ホスホン酸基およびホスホン酸前駆基である。ホスホン酸前駆基の具体例としては、上述のものがあげられる。 E 2 in the first embodiment represents an ion exchange group or an ion exchange precursor group different from E 1 . Specific examples of the ion exchange group and the ion exchange precursor group include those described above, preferably a phosphonic acid group and a phosphonic acid precursor group. Specific examples of the phosphonic acid precursor group include those described above.
 一般式(2)で表される繰り返し単位としては、下記式(da)~(ea)で表される繰り返し単位があげられる。式中では、ホスホン酸前駆基を示したが、上記に具体的にあげたイオン交換基またはイオン交換前駆基に変更可能である。 Examples of the repeating unit represented by the general formula (2) include repeating units represented by the following formulas (da) to (ea). In the formula, phosphonic acid precursor groups are shown, but can be changed to the ion exchange groups or ion exchange precursor groups specifically mentioned above.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 中でも、上記式(da)、(de)であることが好ましい。 Among these, the above formulas (da) and (de) are preferable.
 上記一般式(2)で表される繰り返し単位を有する芳香族系高分子電解質は単独重合体であっても、ランダム共重合体であっても、交互共重合体であっても、ブロック共重合体であってもよい。これらは、それぞれ対応する単量体およびそれらの比率、重合方法を選び、公知の方法に準じて得ることができる。これらの重合度は、機械的強度を高める観点から、5以上、重量平均分子量にして10以上のものが好ましく使用される。また、これらの重合度は、成膜時に溶媒への溶解性を保持する観点、キャスト製膜などの加工性、成形性の観点から、10以下、重量平均分子量にして10以下のものが好ましく使用される。該重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定できる。 The aromatic polymer electrolyte having the repeating unit represented by the general formula (2) may be a homopolymer, a random copolymer, an alternating copolymer, a block copolymer, It may be a coalescence. These can be obtained according to known methods by selecting the corresponding monomers, their ratios, and the polymerization method. These polymerization degrees are preferably 5 or more and a weight average molecular weight of 10 3 or more from the viewpoint of increasing mechanical strength. In addition, these polymerization degrees are 10 4 or less and 10 6 or less in terms of weight average molecular weight from the viewpoint of maintaining solubility in a solvent during film formation, workability such as cast film formation, and moldability. Preferably used. The weight average molecular weight can be measured by gel permeation chromatography (GPC).
 第一実施形態の重合工程において、一般式(1)で表される単量体と一般式(3)で表される単量体とを用いる場合、重量比にして、100:0~1:99で用いることが好ましく、50:50~10:90で用いることがより好ましい。 In the polymerization step of the first embodiment, when the monomer represented by the general formula (1) and the monomer represented by the general formula (3) are used, the weight ratio is 100: 0 to 1: 99 is preferable, and 50:50 to 10:90 is more preferable.
 第一実施形態の重合工程は、塩基と第一遷移金属塩との共存下で実施される。該塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどのアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属炭酸水素塩、水酸化ナトリウム、水酸化カリウム、水酸化セシウムなどのアルカリ金属水酸化物、水素化ナトリウム、水素化カリウムなどのアルカリ金属水素化物、炭酸カルシウムなどのアルカリ土類金属炭酸塩、炭酸水素カルシウムなどのアルカリ土類金属炭酸水素塩、水酸化カルシウムなどのアルカリ土類金属水酸化物、および、水素化カルシウムなどのアルカリ土類金属水素化物があげられる。これらの中から1種または2種類以上を用いてもよい。中でも、反応性を高め、取扱が容易である観点から、アルカリ金属炭酸塩が好ましく、アルカリ金属炭酸塩の中でも、炭酸ナトリウム、炭酸カリウム、炭酸セシウムが好ましい。 The polymerization step of the first embodiment is performed in the coexistence of a base and a first transition metal salt. Examples of the base include alkali metal carbonates such as sodium carbonate, potassium carbonate and cesium carbonate, alkali metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, alkali metals such as sodium hydroxide, potassium hydroxide and cesium hydroxide. Alkali metal hydrides such as hydroxide, sodium hydride, potassium hydride, alkaline earth metal carbonates such as calcium carbonate, alkaline earth metal hydrogen carbonates such as calcium bicarbonate, alkaline earths such as calcium hydroxide Examples thereof include metal hydroxides and alkaline earth metal hydrides such as calcium hydride. You may use 1 type, or 2 or more types from these. Among these, alkali metal carbonates are preferable from the viewpoint of increasing reactivity and easy handling, and among alkali metal carbonates, sodium carbonate, potassium carbonate, and cesium carbonate are preferable.
 第一実施形態の重合工程における、塩基の量としては、第一実施形態における縮合反応を阻害しない範囲で特に制限はないが、好ましくは上記求核性の反応基の物質量に対して、1.00~50モル当量、より好ましくは1.05~10モル当量である。 The amount of the base in the polymerization step of the first embodiment is not particularly limited as long as it does not inhibit the condensation reaction in the first embodiment, but preferably 1 with respect to the amount of the nucleophilic reactive group. 0.000 to 50 molar equivalents, more preferably 1.05 to 10 molar equivalents.
 第一遷移金属塩としては、ScCl、TiCl、VCl、CrCl、MnCl、FeCl、CoCl、NiCl、CuCl、CuBr、CuI、CuCl、CuBr、CuIなどの第一遷移金属元素のハロゲン化物が挙げられる。第一遷移金属元素とは、周期表のうち第4周期にある遷移金属元素を意味する。これらの中でも、Fe、Co、NiまたはCuのハロゲン化物が好ましく、銅塩がより好ましい。銅塩としては、1価の銅塩および2価の銅塩があげられるが、反応を速やかに進行させる観点から、1価の銅塩が好ましく、中でも、CuCl、CuBr、CuIがより好ましい。第一遷移金属塩の量としては、重合反応を速やかに進行させる観点から、上記脱離基の物質量に対して、0.01モル当量以上が好ましく、0.1モル当量以上がより好ましい。また、製造上の観点から、10モル当量以下が好ましく、5モル当量以下が好ましい。 Examples of the first transition metal salt include ScCl 3 , TiCl 4 , VCl 3 , CrCl 3 , MnCl 2 , FeCl 2 , CoCl 2 , NiCl 2 , CuCl, CuBr, CuI, CuCl 2 , CuBr 2 , and CuI 2 . Examples include halides of transition metal elements. The first transition metal element means a transition metal element in the fourth period in the periodic table. Among these, Fe, Co, Ni or Cu halides are preferable, and copper salts are more preferable. Examples of the copper salt include a monovalent copper salt and a divalent copper salt. From the viewpoint of promptly proceeding the reaction, a monovalent copper salt is preferable, and among them, CuCl, CuBr, and CuI are more preferable. The amount of the first transition metal salt is preferably 0.01 molar equivalents or more and more preferably 0.1 molar equivalents or more with respect to the amount of the leaving group, from the viewpoint of promptly proceeding the polymerization reaction. From the viewpoint of production, it is preferably 10 molar equivalents or less, more preferably 5 molar equivalents or less.
 第一実施形態の重合工程は、有機溶媒中で行うことが好ましい。該有機溶媒としては、単量体及び生成するポリアリーレンエーテルが溶解し得る溶媒であればよく、非プロトン性溶媒が好ましい。かかる溶媒の具体例としては、トルエン、キシレン等の芳香族炭化水素溶媒;テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン等のエーテル溶媒;ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒があげられる。かかる溶媒は、単独で用いてもよいし、2種以上を混合して用いてもよい。用いる有機溶媒の量としては、用いる単量体および生成した重合体の溶解性を高める観点から、用いる単量体に対して、1重量倍以上が好ましく、5重量倍以上がより好ましい。また、反応時間を短縮する観点から、200重量倍以下が好ましく、100重量倍以下がより好ましい。 The polymerization step of the first embodiment is preferably performed in an organic solvent. The organic solvent may be any solvent that can dissolve the monomer and the resulting polyarylene ether, and is preferably an aprotic solvent. Specific examples of such solvents include aromatic hydrocarbon solvents such as toluene and xylene; ether solvents such as tetrahydrofuran, 1,3-dioxolane and 1,4-dioxane; dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, Examples include aprotic polar solvents such as N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, sulfolane and hexamethylphosphoric triamide. Such a solvent may be used independently and may be used in mixture of 2 or more types. The amount of the organic solvent to be used is preferably 1 or more times by weight and more preferably 5 or more times by weight with respect to the monomer to be used from the viewpoint of increasing the solubility of the monomer to be used and the produced polymer. Further, from the viewpoint of shortening the reaction time, it is preferably 200 times by weight or less, more preferably 100 times by weight or less.
 第一実施形態の重合反応は、窒素ガス等の不活性ガスの雰囲気下で実施することが好ましい。また、第一実施形態の重合工程における反応温度としては、反応時間を短縮させる観点および重合度を高める観点から、50℃以上が好ましく、80℃以上がより好ましく、100℃以上が更に好ましい。また、単量体の分解を抑制する観点から、200℃以下が好ましく、180℃以下がより好ましく、170℃以下が更に好ましい。 The polymerization reaction of the first embodiment is preferably carried out in an atmosphere of an inert gas such as nitrogen gas. The reaction temperature in the polymerization step of the first embodiment is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 100 ° C. or higher from the viewpoint of shortening the reaction time and increasing the degree of polymerization. Moreover, from a viewpoint of suppressing decomposition | disassembly of a monomer, 200 degrees C or less is preferable, 180 degrees C or less is more preferable, and 170 degrees C or less is still more preferable.
 第一実施形態の製造方法において、上記重合工程と、上記一般式(1)においてEで示される基(但し、Eで示される基がイオン交換基である場合を除く)の少なくとも一部を、Eで示される基に変換する反応工程とを備えることが好ましい。該反応工程は、重合工程と同時に行ってもよいし、重合工程の後に行ってもよいが、重合工程の後に行うことが好ましい。 In the production method of the first embodiment, at least a part of the polymerization step and the group represented by E 1 in the general formula (1) (except that the group represented by E 1 is an ion exchange group). the preferably comprises a reaction step of converting the group represented by E 2. The reaction step may be performed simultaneously with the polymerization step or after the polymerization step, but is preferably performed after the polymerization step.
 第一実施形態の反応工程としては、強酸、トリアルキルシリルハライド、塩基および求核試薬からなる群より選ばれる1種以上を作用させるなどの公知の方法をあげることができる。 Examples of the reaction step of the first embodiment include known methods such as reacting one or more selected from the group consisting of strong acids, trialkylsilyl halides, bases, and nucleophiles.
 強酸を作用させる方法としては、芳香族系高分子電解質を、強酸を含む溶媒に溶解またはスラリー化した混合液を0℃~還流温度、好ましくは室温~還流温度で撹拌する方法が例示できる。上記強酸としては、塩酸、臭化水素酸、沃化水素酸、硫酸、硝酸、トリフルオロ酢酸、などがあげられる。かかる溶媒としては、アルコール類、エーテル類、ケトン類、ニトリル類、ジメチルスルホキシドや、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N―メチルピロリドンなどの非プロトン性溶媒などがあげられる。 Examples of the method of allowing a strong acid to act include a method of stirring a mixed solution obtained by dissolving or slurrying an aromatic polymer electrolyte in a solvent containing a strong acid at 0 ° C. to reflux temperature, preferably room temperature to reflux temperature. Examples of the strong acid include hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, trifluoroacetic acid, and the like. Examples of such solvents include alcohols, ethers, ketones, nitriles, dimethyl sulfoxide, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone.
 トリアルキルシリルハライドを作用させる方法としては、芳香族系高分子電解質をケトン類、ニトリル類などの溶媒に溶解または部分溶解した混合液に、トリアルキルシリルハライドを上記イオン交換前駆基換算で2~10モル当量加え、0~100℃程度で保温した後、次いで水または弱酸を加え0~100℃で保温する方法が例示できる。代表的なトリアルキルシリルハライドとしては、トリメチルシリルヨージド、トリメチルシリルブロミド、トリメチルシリルクロリド、トリエチルシリルヨージド、トリエチルシリルブロミド、トリエチルシリルクロリドなどがあげられる。 As a method of causing the trialkylsilyl halide to act, a trialkylsilyl halide is converted into the above-mentioned ion-exchange precursor group in an amount of 2 to 2 in a mixed solution obtained by dissolving or partially dissolving an aromatic polymer electrolyte in a solvent such as ketones or nitriles. An example is a method in which 10 molar equivalents are added and the temperature is kept at about 0 to 100 ° C., then water or a weak acid is added and the temperature is kept at 0 to 100 ° C. Typical trialkylsilyl halides include trimethylsilyl iodide, trimethylsilyl bromide, trimethylsilyl chloride, triethylsilyl iodide, triethylsilyl bromide, triethylsilyl chloride and the like.
 塩基を作用させる方法としては、塩基をイオン交換前駆基換算で1モル倍以上、通常大過剰に含む水溶液と、芳香族系高分子電解質をアルコール類、エーテル類、ケトン類、ニトリル類、ジメチルスルホキシドなどの非プロトン性溶媒に溶解または部分溶解した混合液を、芳香族系高分子電解質が少なくとも部分溶解するように混合し、室温~還流温度で実施する方法が例示できる。代表的な塩基としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物などがあげられ、好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウムがあげられるが、それらに限定されるものではない。 As a method of allowing the base to act, an aqueous solution containing a base in an amount of 1 mole or more in terms of ion-exchange precursor group, usually in a large excess, and an aromatic polymer electrolyte with alcohols, ethers, ketones, nitriles, dimethyl sulfoxide An example is a method in which a mixed solution dissolved or partially dissolved in an aprotic solvent such as the above is mixed so that the aromatic polymer electrolyte is at least partially dissolved, and the reaction is performed at room temperature to reflux temperature. Representative bases include alkali metal hydroxides and alkaline earth metal hydroxides, preferably lithium hydroxide, sodium hydroxide and potassium hydroxide, but are not limited thereto. It is not a thing.
 上記の求核試薬を用いた脱O-アルキル化の一例としては、芳香族系高分子電解質を、求核試薬を含む溶媒に溶解または部分溶解した混合液を0℃~還流温度、好ましくは24℃~200℃で撹拌する方法が例示できる。かかる溶媒としては、アルコール類、エーテル類、ケトン類、ニトリル類、ジメチルスルホキシドや、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N―メチルピロリドンなどの非プロトン性溶媒などがあげられる。代表的な求核試薬としては、アミン類、アルカリ金属のハロゲン化物などがあげられ、好ましくは2級アミンまたは臭化リチウムがあげられる。 As an example of de-O-alkylation using the above nucleophilic reagent, a mixed solution obtained by dissolving or partially dissolving an aromatic polymer electrolyte in a solvent containing a nucleophilic reagent is 0 ° C. to reflux temperature, preferably 24 Examples of the method include stirring at a temperature of from 200 ° C. to 200 ° C. Examples of such solvents include alcohols, ethers, ketones, nitriles, dimethyl sulfoxide, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone. Typical nucleophiles include amines, alkali metal halides, etc., preferably secondary amines or lithium bromide.
 次に、本発明の好適な第二実施形態について具体的に説明する。 Next, a preferred second embodiment of the present invention will be specifically described.
 上述のように、第二実施形態に係る芳香族系高分子の製造方法は、上記一般式(4)で表される単量体を塩基の存在下で重合させる重合工程を備えることを特徴とする。好ましくは、上記重合工程と、上記一般式(4)において-(P(=O)(OR)(OR))で示される基の少なくとも一部を、-(P(=O)(OH)(OR))で示される基に変換する反応工程とを備える、上記一般式(5)で表される繰り返し単位を有する芳香族系高分子の製造方法である。ここで得られる芳香族高分子を、芳香族系高分子ホスホン酸類ともいう。 As described above, the method for producing an aromatic polymer according to the second embodiment includes a polymerization step of polymerizing the monomer represented by the general formula (4) in the presence of a base. To do. Preferably, at least a part of the polymerization step and a group represented by — (P (═O) (OR 1 ) (OR 2 )) in the general formula (4) is represented by — (P (═O) (OH). ) (OR 3 )) and a reaction step for converting to a group represented by (OR 3 )). The aromatic polymer obtained here is also referred to as an aromatic polymer phosphonic acid.
 炭化水素系高分子電解質からなる膜は、フッ素系高分子電解質からなる膜と比較して、燃料電池の長期の運転安定性(以下、「長期安定性」と呼ぶ)が充分ではなく、この長期安定性を妨げる要因の1つとして、電池稼動時に発生する過酸化物(例えば、過酸化水素等)または該過酸化物から発生するラジカルによる膜の劣化が推測される。第二実施形態に係る芳香族系高分子の製造方法により得られる芳香族系高分子電解質(芳香族系高分子ホスホン酸類)からなる膜は、過酸化物やラジカルに対する耐久性(以下、「ラジカル耐性」と呼ぶ)に優れ、固体高分子形燃料電池の長期安定性を達成することができる。 Membranes made of hydrocarbon-based polymer electrolytes do not have sufficient long-term operational stability of fuel cells (hereinafter referred to as “long-term stability”) compared to membranes made of fluorine-based polymer electrolytes. As one of the factors hindering stability, it is presumed that the film is deteriorated by a peroxide (for example, hydrogen peroxide) generated during battery operation or a radical generated from the peroxide. A membrane made of an aromatic polymer electrolyte (aromatic polymer phosphonic acid) obtained by the method for producing an aromatic polymer according to the second embodiment has durability against peroxides and radicals (hereinafter referred to as “radicals”). It is excellent in "resistance", and the long-term stability of the polymer electrolyte fuel cell can be achieved.
 従って、以下に、第二実施形態で用いられる単量体、重合工程、第二実施形態の製造方法で得られる芳香族系高分子ホスホン酸類、塩基、反応工程について、順次説明する。 Therefore, hereinafter, the monomer used in the second embodiment, the polymerization step, the aromatic polymer phosphonic acid obtained by the production method of the second embodiment, the base, and the reaction step will be described in order.
 第二実施形態で用いる単量体は、一般式(4)で表される単量体である。 The monomer used in the second embodiment is a monomer represented by the general formula (4).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 式中、X、Xはそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。pは1~4の整数を表す。Rは水素原子、無機カチオンまたは有機カチオンを表し、Rはアルキル基またはアリール基を表す。なお、RおよびRが複数存在する場合、複数存在するRおよびRは、それぞれ同一であっても異なっていてもよい。 In the formula, X 5 and X 6 each independently represent a condensable reactive group. Ar 4 represents an aromatic group which may have a substituent. p represents an integer of 1 to 4. R 1 represents a hydrogen atom, an inorganic cation or an organic cation, and R 2 represents an alkyl group or an aryl group. When a plurality of R 1 and R 2 are present, the plurality of R 1 and R 2 may be the same or different.
 好ましくは、上記一般式(4)で表される単量体に加えて、一般式(6)で表される上記-(P(=O)(OR)(OR))で示される基を有さない単量体を用いることが好ましい。 Preferably, in addition to the monomer represented by the general formula (4), a group represented by the above-described — (P (═O) (OR 1 ) (OR 2 )) represented by the general formula (6) It is preferable to use a monomer that does not have.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式中、X、Xはそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。 In the formula, X 7 and X 8 each independently represent a condensable reactive group. Ar 6 represents an aromatic group which may have a substituent.
 一般式(4)および(6)におけるX~Xは、それぞれ独立に縮合性の反応基を表す。縮合性の反応基としては、他の縮合性の官能基と縮合反応を生じることにより、2価または3価の基または原子団を介して結合させることのできる官能基を意味する。縮合性の反応基としては、求核性反応基および脱離基があげられる。ここで、求核性反応基とは、求核性を有する基を表し、脱離基が結合している炭素原子に作用し、イプソ置換による脱離基の脱離を伴って、新たに2価または3価の基または原子団を介して結合を形成しうるものである。また、脱離基とは、脱離基が結合している炭素原子(イプソ炭素)への求核性反応基の付加に伴い、脱離する基を指す。 X 5 to X 8 in the general formulas (4) and (6) each independently represent a condensable reactive group. The condensable reactive group means a functional group that can be bonded via a divalent or trivalent group or atomic group by causing a condensation reaction with another condensable functional group. Examples of the condensable reactive group include a nucleophilic reactive group and a leaving group. Here, the nucleophilic reactive group represents a group having nucleophilicity, acts on the carbon atom to which the leaving group is bonded, and is newly added with the elimination of the leaving group by ipso substitution. A bond can be formed through a valent or trivalent group or atomic group. Moreover, a leaving group refers to the group which leaves | leaves with the addition of the nucleophilic reactive group to the carbon atom (epsocarbon) which the leaving group has couple | bonded.
 上記X~Xはそれぞれ、求核性反応基であっても脱離基であってもよいが、上記一般式(4)記載の単量体1種類で単独重合を行う場合、XおよびXのうち、一方が求核性反応基となり、他方が脱離基となる。また、上記一般式(4)記載の単量体1種類と、上記一般式(6)記載の単量体1種類とを共重合させる場合には、それらは以下の組み合わせがあげられる。即ち、
(A-2)X、Xが求核性反応基で、X、Xが脱離基である場合。
(B-2)X、Xが脱離基で、X、Xが求核性反応基である場合。
(C-2)X、Xが脱離基で、X、Xが求核性反応基である場合。
しかしながら、上記一般式(4)記載の単量体を2種類以上用いる場合および/または上記一般式(6)記載の単量体を2種類以上用いる場合にはこれに限定されない。
Each of X 5 to X 8 may be a nucleophilic reactive group or a leaving group, but when homopolymerization is performed with one kind of monomer described in the general formula (4), X 5 And X 6 , one is a nucleophilic reactive group and the other is a leaving group. Moreover, when copolymerizing 1 type of monomer of the said General formula (4), and 1 type of monomer of the said General formula (6), they are mention | raise | lifted following combination. That is,
(A-2) A case where X 5 and X 6 are nucleophilic reactive groups and X 7 and X 8 are leaving groups.
(B-2) When X 5 and X 6 are leaving groups, and X 7 and X 8 are nucleophilic reactive groups.
(C-2) A case where X 5 and X 7 are leaving groups and X 6 and X 8 are nucleophilic reactive groups.
However, the present invention is not limited to the case where two or more types of monomers described in the general formula (4) are used and / or the case where two or more types of monomers described in the general formula (6) are used.
 上記求核性反応基としては、ヒドロキシル基、メルカプト基、アミノ基などがあげられる。該アミノ基は、-NHR(Rは、水素原子、アルキル基またはアリール基を表す。)で表される基を示す。これらの中でも、ヒドロキシル基、メルカプト基は、求核性反応基として反応性が高いため好ましく、ヒドロキシル基がより好ましい。脱離基の代表例としては、フルオロ基、クロロ基、ブロモ基、ヨード基、トシル基およびトリフラート基などがあげられる。中でも、脱離基としては、フルオロ基、クロロ基が好ましい。 Examples of the nucleophilic reactive group include a hydroxyl group, a mercapto group, and an amino group. The amino group represents a group represented by —NHR 4 (R 4 represents a hydrogen atom, an alkyl group or an aryl group). Among these, a hydroxyl group and a mercapto group are preferable because of high reactivity as a nucleophilic reactive group, and a hydroxyl group is more preferable. Representative examples of the leaving group include a fluoro group, a chloro group, a bromo group, an iodo group, a tosyl group, and a triflate group. Of these, the leaving group is preferably a fluoro group or a chloro group.
 上記Rはそれぞれ独立に水素原子、無機カチオンまたは有機カチオンを表す。無機カチオンの代表例としては、アルカリ金属、アルカリ土類金属などのカチオンがあげられるがこれらに限定されるものではない。中でも、リチウムカチオン、ナトリウムカチオン、カリウムカチオンであることが好ましい。有機カチオンの代表例としては、1級アンモニウムカチオン、2級アンモニウムカチオン、3級アンモニウムカチオン、4級アンモニウムカチオンなどがあげられるがこれらに限定されるものではない。中でも、1級アンモニウムカチオン、2級アンモニウムカチオンが好ましい。1級アンモニウムカチオン、2級アンモニウムカチオンの中でも、沸点が100℃以上である1級アミン、2級アミンのプロトン化物であることが好ましく、その中でもジブチルアンモニウムイオンが好ましい。上記Rとしては、後述の重合工程において好ましく用いられる溶媒への溶解性を高める観点から有機カチオンであることが好ましい。 Each R 1 independently represents a hydrogen atom, an inorganic cation or an organic cation. Representative examples of inorganic cations include cations such as alkali metals and alkaline earth metals, but are not limited thereto. Among these, lithium cation, sodium cation, and potassium cation are preferable. Representative examples of organic cations include, but are not limited to, primary ammonium cations, secondary ammonium cations, tertiary ammonium cations, and quaternary ammonium cations. Of these, primary ammonium cations and secondary ammonium cations are preferable. Among primary ammonium cations and secondary ammonium cations, a primary amine having a boiling point of 100 ° C. or higher and a protonated product of a secondary amine are preferable, and among them, dibutylammonium ion is preferable. R 1 is preferably an organic cation from the viewpoint of enhancing the solubility in a solvent preferably used in the polymerization step described later.
 上記Rはそれぞれ独立にアルキル基またはアリール基を表す。これらの基は一部、他の基で置換されていてもよく、アルキル基の代表例としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、t-ペンチル基、イソオクチル基、t-オクチル基、2-エチルヘキシル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-メチル-4-イソプロピルシクロヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等があげられるがこれらに限定されるものではない。また代表的な上記のアリール基としては、例えばフェニル基、p-ニトロフェニル基、p-メトキシフェニル基、ナフチル基、ビフェニリル基、ジフェニルプロピル基、フルオレニル基、などの炭化水素系の基、カルバゾール基、チオフェン基、ジベンゾチオフェン基、フリル基、ジベンゾフリル基、ジフェニルアミノ基、4-フェノキシフェニル基のようなヘテロ原子を含む基などがあげられるがこれらに限定されるものではない。これらの中でも後述の反応工程において、上記-(P(=O)(OR)(OR))で示される基をホスホン酸基に変換しやすい観点からアルキル基であることが好ましく、アルキル基の中でも、エチル基が好ましい。 Each R 2 independently represents an alkyl group or an aryl group. These groups may be partially substituted with other groups. Representative examples of alkyl groups include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec -Butyl group, t-butyl group, t-pentyl group, isooctyl group, t-octyl group, 2-ethylhexyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, 1-methylcyclopentyl group, 1-methyl Cyclohexyl group, 1-methyl-4-isopropylcyclohexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, etc. However, it is not limited to these. Typical examples of the aryl group include a hydrocarbon group such as a phenyl group, a p-nitrophenyl group, a p-methoxyphenyl group, a naphthyl group, a biphenylyl group, a diphenylpropyl group, a fluorenyl group, and a carbazole group. A group containing a hetero atom such as, but not limited to, a thiophene group, a dibenzothiophene group, a furyl group, a dibenzofuryl group, a diphenylamino group, and a 4-phenoxyphenyl group. Among these, in the reaction step described later, an alkyl group is preferable from the viewpoint of easily converting the group represented by — (P (═O) (OR 1 ) (OR 2 )) into a phosphonic acid group. Among these, an ethyl group is preferable.
 上記-(P(=O)(OR)(OR))で示される基としては、ホスホン酸モノメチル基、ホスホン酸モノエチル基、ホスホン酸モノイソプロピル基、ホスホン酸モノt-ブチル基、ホスホン酸モノフェニル基などのホスホン酸モノエステル基、ホスホン酸(リチウム)(モノエチル)基、ホスホン酸(ナトリウム)(モノエチル)基、ホスホン酸(カリウム)(モノエチル)基などのホスホン酸(モノ無機塩)(モノエステル)基、ホスホン酸(モノジブチルアミン塩)(モノエチル)基、ホスホン酸(モノアニリン塩)(モノエチル)基、ホスホン酸(モノベンジルアミン塩)(モノエチル)基などのホスホン酸(モノアミン塩)(モノエステル)基があげられ、重合工程に用いる溶媒への溶解性を確保し易い観点から、ホスホン酸(モノアミン塩)(モノエステル)基が好ましく、これらの中でもホスホン酸(モノジブチルアミン塩)(モノエチル)基が好ましい。 Examples of the group represented by — (P (═O) (OR 1 ) (OR 2 )) include phosphonic acid monomethyl group, phosphonic acid monoethyl group, phosphonic acid monoisopropyl group, phosphonic acid mono t-butyl group, and phosphonic acid. Phosphonic acid monoester group such as monophenyl group, phosphonic acid (mono inorganic salt) such as phosphonic acid (lithium) (monoethyl) group, phosphonic acid (sodium) (monoethyl) group, phosphonic acid (potassium) (monoethyl) group ( Phosphonic acid (monoamine salt) such as monoester) group, phosphonic acid (monodibutylamine salt) (monoethyl) group, phosphonic acid (monoaniline salt) (monoethyl) group, phosphonic acid (monobenzylamine salt) (monoethyl) group (Monoester) group, and from the viewpoint of easily ensuring solubility in the solvent used in the polymerization step, An acid (monoamine salt) (monoester) group is preferred, and among these, a phosphonic acid (monodibutylamine salt) (monoethyl) group is preferred.
 上記-(P(=O)(OR)(OR))で示される基は、縮合反応の反応性を高める観点から、Xおよび/またはXに置換されているベンゼン環と同一のベンゼン環を置換していることがより好ましい。 The group represented by — (P (═O) (OR 1 ) (OR 2 )) is the same as the benzene ring substituted with X 5 and / or X 6 from the viewpoint of increasing the reactivity of the condensation reaction. More preferably, the benzene ring is substituted.
 第二実施形態におけるArおよびArは、置換基を有していてもよい芳香族基を表す。該芳香族基としては、ヘテロ元素を含んでいてもよく、縮合反応の反応性を高める観点から、炭素数が4以上であることが好ましく、10以上であることがより好ましい。また、得られる芳香族系高分子ホスホン酸類のホスホン酸類基密度を高める観点から、炭素数が18以下であることが好ましく、14以下であることがより好ましい。 Ar 4 and Ar 6 in the second embodiment represent an aromatic group that may have a substituent. The aromatic group may contain a hetero element, and preferably has 4 or more carbon atoms, more preferably 10 or more from the viewpoint of enhancing the reactivity of the condensation reaction. Moreover, it is preferable that carbon number is 18 or less from a viewpoint of raising the phosphonic acid group density of the aromatic polymer phosphonic acid obtained, and it is more preferable that it is 14 or less.
 芳香族基としては、例えば下記式(1-a)~(1-z)のような芳香族基があげられる。(式中、*はそれぞれX若しくはXまたはX若しくはXとの結合手を示し、他の置換基との結合手は省略した。) Examples of the aromatic group include aromatic groups represented by the following formulas (1-a) to (1-z). (In the formula, * represents a bond with X 5 or X 6 or X 7 or X 8 respectively, and a bond with another substituent was omitted.)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 中でも、Arとしては置換基を有してもよい上記(1-c)で表されるフェニレン基、または(1-m)で表されるビフェニル基であることが好ましく、置換基を有してもよい上記(1-m)で表されるビフェニル基であることがより好ましい。Arとしては置換基を有してもよい上記(1-x)で表される基、または(1-y)で表される基であることが好ましく、置換基を有してもよい上記(1-y)で表される基であることがより好ましい。 Among them, Ar 4 is preferably a phenylene group represented by the above (1-c) which may have a substituent or a biphenyl group represented by (1-m), and has a substituent. The biphenyl group represented by the above (1-m) may be more preferable. Ar 6 is preferably a group represented by the above (1-x) which may have a substituent or a group represented by (1-y), and may have a substituent. A group represented by (1-y) is more preferable.
 上記置換基としては、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、シアノ基、ニトロ基、ベンゾイル基があげられる。 Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, a cyano group, a nitro group, and benzoyl. Group.
 炭素数1~10のアルキル基としては直鎖状、分岐鎖状または環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、n-ペンチル基、2,2-ジメチルプロピル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、2-メチルペンチル基、2-エチルヘキシル基があげられる。 The alkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, Examples thereof include a tert-butyl group, an isobutyl group, an n-pentyl group, a 2,2-dimethylpropyl group, a cyclopentyl group, an n-hexyl group, a cyclohexyl group, a 2-methylpentyl group, and a 2-ethylhexyl group.
 炭素数1~10のアルコキシ基としては、直鎖状、分岐鎖状または環状のいずれでもよく、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、イソブチルオキシ基、n-ペンチルオキシ基、2,2-ジメチルプロピルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、2-メチルペンチルオキシ基、2-エチルヘキシルオキシ基があげられる。 The alkoxy group having 1 to 10 carbon atoms may be linear, branched or cyclic. For example, methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, sec- Butyloxy group, tert-butyloxy group, isobutyloxy group, n-pentyloxy group, 2,2-dimethylpropyloxy group, cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, 2-methylpentyloxy group, 2- An ethylhexyloxy group is mentioned.
 炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基があげられ、炭素数6~10のアリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基があげられる。 Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group, and examples of the aryloxy group having 6 to 10 carbon atoms include a phenoxy group and a naphthyloxy group.
 これらの基は、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、およびフェノキシ基からなる群より選ばれる基でさらに置換されていてもよい。 These groups may be further substituted with a group selected from the group consisting of an amino group, a methoxy group, an ethoxy group, an isopropyloxy group, a phenyl group, and a phenoxy group.
 一般式(4)で表される好ましい単量体としては、下記式(2-aa)~(2-bj)で表される単量体があげられる。 Preferred monomers represented by the general formula (4) include monomers represented by the following formulas (2-aa) to (2-bj).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 中でも、上記式(2-ae)、(2-ak)であることが好ましい。 Among these, the above formulas (2-ae) and (2-ak) are preferable.
 一般式(6)で表される好ましい単量体としては、下記式(3-ca)~(3-cx)で表される単量体があげられる。 Preferred monomers represented by the general formula (6) include monomers represented by the following formulas (3-ca) to (3-cx).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 中でも、入手し易く安価である理由から、上記式(3-cf)、(3-cg)、(3-ci)、(3-cj)、(3-cs)、(3-cu)であることが好ましい。 Among them, the above formulas (3-cf), (3-cg), (3-ci), (3-cj), (3-cs), (3-cu) are preferable because they are easily available and inexpensive. It is preferable.
 第二実施形態に係る式(4)で表される単量体の製造方法としては、XおよびXがフルオロ基、クロロ基、ブロモ基、ヨード基などの脱離基である場合、以下の製造方法などがあげられる、即ち、
(1-3)芳香族化合物にホスホン酸ジエステル基を導入した後、上記脱離基を導入し、公知の方法で加水分解する方法。
(1-4)芳香族化合物に上記脱離基を導入した後、ホスホン酸ジエステル基を導入し、公知の方法で加水分解する方法。
 ホスホン酸ジエステル基の導入方法としては、芳香族化合物にホスホン酸ジエステル基の導入前に、クロロ基、ブロモ基、ヨード基などから選ばれる反応活性基を導入した後、下記(2-6)~(2-10)にあげる置換反応を実施する方法などがあげられる。
(2-6)塩化ニッケルなどのルイス酸を用いて亜リン酸トリエステルを反応させるミカエリス・アルブーゾフ反応。
(2-7)水素化ナトリウムなどの塩基を用いて亜リン酸ジエステルを反応させるミカエリス・ベッカー反応。
(2-8)テトラキス(トリフェニルホスフィン)パラジウムなどの0価パラジウム触媒を用いて亜リン酸ジエステルを反応させる反応。
(2-9)マグネシウムを作用させグリニャール試薬とした後にハロゲン化リン酸ジエステルを反応させるグリニャール反応。
(2-10)アルキルリチウムを作用させアリールリチウムとした後に、ハロゲン化リン酸ジエステルを反応させる反応。
 上記脱離基の導入方法としては、フッ素、塩素、臭素、沃素などから選ばれるハロゲン化試薬を作用させる方法などがあげられる。また、(1-4)記載の方法において、上記反応活性基並びに上記脱離基XおよびXが同一の官能基である場合、3つ以上の該官能基を芳香族化合物に導入した後に、該官能基の一部をホスホン酸類基に置換し、公知の方法で加水分解することにより、式(4)で表される単量体が得られる。具体的な方法としては例えば、J.Fluorine Chem.2004,125,1317に記載されている方法など公知の方法を用いることができる。
As a method for producing the monomer represented by the formula (4) according to the second embodiment, when X 5 and X 6 are leaving groups such as a fluoro group, a chloro group, a bromo group, and an iodo group, The production method of
(1-3) A method in which a phosphonic acid diester group is introduced into an aromatic compound, and then the above leaving group is introduced and hydrolyzed by a known method.
(1-4) A method of introducing a phosphonic acid diester group after introducing the above leaving group into an aromatic compound and hydrolyzing it by a known method.
As a method for introducing a phosphonic acid diester group, before introducing a phosphonic acid diester group into an aromatic compound, a reactive group selected from a chloro group, a bromo group, an iodo group and the like is introduced, and then the following (2-6) to And a method for carrying out the substitution reaction listed in (2-10).
(2-6) Michaelis-Albuzov reaction in which a phosphoric acid triester is reacted using a Lewis acid such as nickel chloride.
(2-7) Michaelis-Becker reaction in which a phosphite diester is reacted with a base such as sodium hydride.
(2-8) A reaction in which a phosphorous acid diester is reacted using a zerovalent palladium catalyst such as tetrakis (triphenylphosphine) palladium.
(2-9) Grignard reaction in which magnesium is reacted to form a Grignard reagent and then a halogenated phosphoric acid diester is reacted.
(2-10) Reaction in which halogenated phosphoric acid diester is reacted after alkyllithium is reacted to form aryllithium.
Examples of the method for introducing the leaving group include a method in which a halogenating reagent selected from fluorine, chlorine, bromine, iodine and the like is allowed to act. In the method described in (1-4), when the reactive group and the leaving groups X 5 and X 6 are the same functional group, after introducing three or more functional groups into the aromatic compound The monomer represented by the formula (4) can be obtained by substituting a part of the functional group with a phosphonic acid group and hydrolyzing by a known method. As a specific method, for example, J. et al. Fluorine Chem. Known methods such as those described in 2004, 125, 1317 can be used.
 Xおよび/またはXが、求核性反応基である場合、求核性反応基に保護基を導入し、求核性反応基を不活性化した後に上記の置換反応を実施して、加水分解することが好ましい。該保護基としては、上記の置換反応後に脱保護可能な基であれば特に制限はないが、ヒドロキシル基およびメルカプト基の代表的な保護基としては、ベンジル基、t-ブチル基などのエーテル系の基、メトキシメチル基などのアセタール系の基、アセチル基、ベンゾイル基などのアシル系の基、およびt-ブチルジメチルシリル基などのシリルエーテル系の基などがあげられる。アミン基の代表的な保護基としては、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基などのカルバメート系の基、フタロイル基などのイミド系の基、p-トルエンスルホニル基、2-ニトロベンゼンスルホニル基などのスルホンアミド系の基などがあげられる。 When X 5 and / or X 6 is a nucleophilic reactive group, a protective group is introduced into the nucleophilic reactive group, the nucleophilic reactive group is deactivated, and then the above substitution reaction is performed. Hydrolysis is preferred. The protecting group is not particularly limited as long as it is a group that can be deprotected after the above-described substitution reaction. Representative protecting groups for hydroxyl and mercapto groups include ethers such as benzyl and t-butyl groups. Group, an acetal group such as methoxymethyl group, an acyl group such as acetyl group and benzoyl group, and a silyl ether group such as t-butyldimethylsilyl group. Representative protecting groups for amine groups include carbamate groups such as t-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, imide groups such as phthaloyl group, p-toluene Examples thereof include sulfonamide groups such as a sulfonyl group and a 2-nitrobenzenesulfonyl group.
 Xおよび/またはXがヒドロキシル基である場合は、ヒドロキシル基にハロゲン化リン酸ジエステルを作用させてホスフェート化合物とし、その後、強塩基を用いた転位反応によりホスホン酸ジエステル基を有する化合物に変換し、加水分解に供する方法を用いてもよい。具体的な方法としては例えば、J.Org.Chem.1984,49,4018に記載されている方法など公知の方法を用いることができる。 When X 5 and / or X 6 is a hydroxyl group, a halogenated phosphoric diester is allowed to act on the hydroxyl group to form a phosphate compound, which is then converted to a compound having a phosphonic diester group by a rearrangement reaction using a strong base. However, a method for hydrolysis may be used. As a specific method, for example, J. et al. Org. Chem. Known methods such as those described in 1984, 49, 4018 can be used.
 第二実施形態の式(6)で表される単量体としては、例えば市販のものが用いられる。 As the monomer represented by the formula (6) of the second embodiment, for example, a commercially available product is used.
 第二実施形態の製造方法で得られる芳香族系高分子ホスホン酸類は、一般式(4)で表される単量体または一般式(4)および(6)で表される単量体を塩基の存在下で重合させる重合工程を備える製造方法によって得られる。上述の効果を損なわない範囲において、他の単量体を用いてもよい。ここで、芳香族系高分子ホスホン酸類とは、芳香環を有する化合物から水素原子を2個取り去って得られる2価の芳香族残基を構造単位として直接または連結員を介して連結されたホスホン酸類基を有する高分子のことを意味する。第二実施形態における芳香族系高分子ホスホン酸類は、置換基を有していてもよい。第二実施形態における芳香族系高分子ホスホン酸類は、主鎖に置換基を有してもよい芳香族環を有し、さらに、ホスホン酸類基が直接結合した芳香族環を有することが好ましい。ここで、ホスホン酸類基とは、芳香族系高分子ホスホン酸類のホスホン酸類基以外の構造を変化させることなくホスホン酸基となる基を指す。ホスホン酸類基は、好ましくは3段階以内、より好ましくは2段階以内、さらに好ましくは1段階の反応を経てホスホン酸基となる。 The aromatic polymer phosphonic acid obtained by the production method of the second embodiment is based on the monomer represented by the general formula (4) or the monomer represented by the general formula (4) and (6). It is obtained by a manufacturing method provided with the superposition | polymerization process polymerized in presence of this. Other monomers may be used as long as the above effects are not impaired. Here, the aromatic polymer phosphonic acids are phosphones linked directly or via a connecting member with a divalent aromatic residue obtained by removing two hydrogen atoms from a compound having an aromatic ring as a structural unit. It means a polymer having an acid group. The aromatic polymer phosphonic acids in the second embodiment may have a substituent. The aromatic polymer phosphonic acid in the second embodiment preferably has an aromatic ring which may have a substituent in the main chain, and further has an aromatic ring to which a phosphonic acid group is directly bonded. Here, the phosphonic acid group refers to a group that becomes a phosphonic acid group without changing the structure other than the phosphonic acid group of the aromatic polymer phosphonic acid. The phosphonic acid group is preferably converted into a phosphonic acid group through a reaction of 3 steps or less, more preferably 2 steps or less, and still more preferably 1 step.
 第二実施形態の製造方法で得られる芳香族系高分子ホスホン酸類としては、一般式(5)で表される繰り返し単位を有するものが好ましい。 As the aromatic polymer phosphonic acids obtained by the production method of the second embodiment, those having a repeating unit represented by the general formula (5) are preferable.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 式中、Arは置換基を有していてもよい芳香族基を表す。qは1~4の整数を表す。-Z-は-O-、-S-または-NR-(Rは水素原子、アルキル基またはアリール基を表す。)で示される基を表す。Rは水素原子、アルキル基またはアリール基を表す。なお、Rが複数存在する場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。 In the formula, Ar 5 represents an aromatic group which may have a substituent. q represents an integer of 1 to 4. —Z 2 — represents a group represented by —O—, —S— or —NR 4 — (R 4 represents a hydrogen atom, an alkyl group or an aryl group). R 3 represents a hydrogen atom, an alkyl group or an aryl group. When a plurality of R 3 are present, the plurality of R 3 may be the same or different.
 第二実施形態におけるArは、置換基を有していてもよい芳香族基を表し、該芳香族基としては、上述のものがあげられる。具体的には、例えば上記式(1-a)~(1-z)のような芳香族基があげられる(式中、*は-Z-で示される基との結合手を示し、置換基との結合手は省略した。)。これらの中でも、上記(1-c)で表されるフェニレン基、または(1-m)で表されるビフェニル基であることが好ましい。また、該置換基としては上記のものがあげられる。 Ar 5 in the second embodiment represents an aromatic group which may have a substituent, and examples of the aromatic group include those described above. Specific examples include aromatic groups such as the above formulas (1-a) to (1-z) (wherein * represents a bond with a group represented by —Z 2 — and The bond with the group is omitted.) Among these, a phenylene group represented by the above (1-c) or a biphenyl group represented by (1-m) is preferable. Examples of the substituent include those described above.
 RおよびRは、それぞれ水素原子、アルキル基またはアリール基を表し、該アルキル基および該アリール基の代表例としては、それぞれ上述のものがあげられる。これらの中でも、Rとしては、エチル基が好ましく、Rとしては、フェニル基が好ましい。 R 3 and R 4 each represent a hydrogen atom, an alkyl group or an aryl group, and typical examples of the alkyl group and the aryl group include those described above. Among these, as R 3 , an ethyl group is preferable, and as R 4 , a phenyl group is preferable.
 一般式(5)中-(P(=O)(OH)(OR))で示される基の具体例としては、上述のホスホン酸モノエステル基およびホスホン酸基があげられる。 Specific examples of the group represented by — (P (═O) (OH) (OR 3 )) in the general formula (5) include the above-described phosphonic acid monoester group and phosphonic acid group.
 一般式(5)で表される繰り返し単位としては、下記式(4-da)~(4-dt)で表される繰り返し単位があげられる。また、下記式(4-da)~(4-dt)で表される繰り返し単位中の-(P(=O)(OH)(OEt))で示される基を-(P(=O)(OH)(OH))で示される基に置き換えてもよい。 Examples of the repeating unit represented by the general formula (5) include repeating units represented by the following formulas (4-da) to (4-dt). In addition, a group represented by — (P (═O) (OH) (OEt)) in a repeating unit represented by the following formulas (4-da) to (4-dt) is represented by — (P (═O) ( OH) (OH)) may be substituted.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 中でも、上記式(4-da)、(4-dc)であることが好ましい。 Among these, the above formulas (4-da) and (4-dc) are preferable.
 一般式(5)で表される繰り返し単位を有する芳香族系高分子ホスホン酸類のP(りん原子)の重量含有率としては、芳香族系高分子ホスホン酸類の重量に対し、耐ラジカル性を高める観点から、0.1重量%以上が好ましく、1.0重量%以上がより好ましい。また、第二実施形態の芳香族系高分子ホスホン酸類を高分子電解質膜として用いた際の溶解性を抑制する観点から、20重量%以下が好ましく、15重量%以下がより好ましい。該Pの重量含有率としては、試料に内部標準物質としてトリフェニルホスフィンオキサイドを添加して、NMRを用いてプロトンデカップル無しの条件で31P-NMRスペクトルを測定し、得られたNMRスペクトルから、該試料の面積値と、トリフェニルホスフィンオキサイドとの面積値とを比較することにより求められる。 As the weight content of P (phosphorus atom) in the aromatic polymer phosphonic acids having the repeating unit represented by the general formula (5), the radical resistance is increased with respect to the weight of the aromatic polymer phosphonic acids. From a viewpoint, 0.1 weight% or more is preferable and 1.0 weight% or more is more preferable. Further, from the viewpoint of suppressing solubility when the aromatic polymer phosphonic acid of the second embodiment is used as a polymer electrolyte membrane, 20% by weight or less is preferable, and 15% by weight or less is more preferable. As the weight content of P, triphenylphosphine oxide was added as an internal standard substance to the sample, and a 31 P-NMR spectrum was measured under conditions without proton decoupling using NMR. From the obtained NMR spectrum, It is obtained by comparing the area value of the sample with the area value of triphenylphosphine oxide.
 上記一般式(5)で表される繰り返し単位を有する芳香族系高分子ホスホン酸類は単独重合体であっても、ランダム共重合体であっても、交互共重合体であっても、ブロック共重合体であってもよい。これらは、それぞれ対応する単量体およびそれらの比率、重合方法を選び、公知の方法に準じて得ることができる。これらの重合度は、機械的強度を高める観点から、5以上、重量平均分子量にして10以上のものが好ましく使用される。また、これらの重合度は、成膜時に溶媒への溶解性を保持する観点、キャスト製膜などの加工性、成形性の観点から、10以下、重量平均分子量にして10以下のものが好ましく使用される。該重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定できる。 The aromatic polymer phosphonic acid having a repeating unit represented by the general formula (5) may be a homopolymer, a random copolymer, an alternating copolymer, a block copolymer. It may be a polymer. These can be obtained according to known methods by selecting the corresponding monomers, their ratios, and the polymerization method. These polymerization degrees are preferably 5 or more and a weight average molecular weight of 10 3 or more from the viewpoint of increasing mechanical strength. In addition, these polymerization degrees are 10 4 or less and 10 6 or less in terms of weight average molecular weight from the viewpoint of maintaining solubility in a solvent during film formation, workability such as cast film formation, and moldability. Preferably used. The weight average molecular weight can be measured by gel permeation chromatography (GPC).
 第二実施形態の重合工程において、一般式(4)で表される単量体と一般式(6)で表される単量体とを用いる場合、重量比にして、100:0~1:99で用いることが好ましく、50:50~10:90で用いることがより好ましい。 In the polymerization step of the second embodiment, when the monomer represented by the general formula (4) and the monomer represented by the general formula (6) are used, the weight ratio is 100: 0 to 1: 99 is preferable, and 50:50 to 10:90 is more preferable.
 第二実施形態の重合工程は、塩基の存在下で実施される。該塩基としては、第一遷移金属塩以外の金属化合物からなる塩基であることが好ましい。該塩基としては、アルカリ金属塩、アルカリ土類金属塩などがあげられる。これらの中でも、アルカリ金属塩が好ましく、該アルカリ金属塩としては、アルカリ金属の炭酸塩、炭酸水素塩などがあげられる。これらの中でも、アルカリ金属の炭酸塩が好ましい。アルカリ金属の炭酸塩の中でも、炭酸ナトリウム、炭酸カリウム、炭酸セシウムが好ましい。 The polymerization step of the second embodiment is performed in the presence of a base. The base is preferably a base composed of a metal compound other than the first transition metal salt. Examples of the base include alkali metal salts and alkaline earth metal salts. Among these, alkali metal salts are preferable, and examples of the alkali metal salts include alkali metal carbonates and hydrogen carbonates. Among these, alkali metal carbonates are preferable. Among the alkali metal carbonates, sodium carbonate, potassium carbonate, and cesium carbonate are preferable.
 第二実施形態の重合工程における、塩基の量としては、第二実施形態における縮合反応を阻害しない範囲で特に制限はないが、好ましくは上記求核性の反応基と上記-(P(=O)(OR)(OR))で示される基との合計物質量に対して、1.00~50モル当量、より好ましくは1.05~10モル当量である。 The amount of the base in the polymerization step of the second embodiment is not particularly limited as long as it does not inhibit the condensation reaction in the second embodiment, but preferably the nucleophilic reactive group and the-(P (= O ) (OR 1 ) (OR 2 )) and the total amount of the substance is 1.00 to 50 molar equivalents, and more preferably 1.05 to 10 molar equivalents.
 また、第二実施形態の重合工程における反応温度としては、反応時間を短縮させる観点および重合度を高める観点から、100℃以上が好ましく、110℃以上がより好ましく、120℃以上が更に好ましい。また、ホスホン酸類基による副反応を抑制する観点から、300℃以下が好ましく、200℃以下がより好ましい。 The reaction temperature in the polymerization step of the second embodiment is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and further preferably 120 ° C. or higher from the viewpoint of shortening the reaction time and increasing the degree of polymerization. Moreover, from a viewpoint of suppressing the side reaction by a phosphonic acid group, 300 degrees C or less is preferable and 200 degrees C or less is more preferable.
 第二実施形態の重合工程は、有機溶媒中で行うことが好ましい。該有機溶媒としては、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N―メチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなどの非プロトン性溶媒などがあげられる。 The polymerization step of the second embodiment is preferably performed in an organic solvent. Examples of the organic solvent include aprotic solvents such as dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone.
 第二実施形態の製造方法において、上記重合工程と、上記一般式(4)において-(P(=O)(OR)(OR))で示される基の少なくとも一部を、-(P(=O)(OH)(OR))で示される基に変換する反応工程とを備えることが好ましい。該反応工程は、重合工程と同時に行ってもよいし、重合工程の後に行ってもよいが、重合工程の後に行うことが好ましい。 In the production method of the second embodiment, at least a part of the polymerization step and a group represented by — (P (═O) (OR 1 ) (OR 2 )) in the general formula (4) are represented by — (P It is preferable to provide a reaction step of converting to a group represented by (= O) (OH) (OR 3 )). The reaction step may be performed simultaneously with the polymerization step or after the polymerization step, but is preferably performed after the polymerization step.
 第二実施形態の反応工程としては、強酸および/またはトリアルキルシリルハライドを作用させることが好ましい。 As the reaction step of the second embodiment, it is preferable to act a strong acid and / or a trialkylsilyl halide.
 強酸を作用させる方法としては、芳香族系高分子ホスホン酸類を、強酸を含む溶媒に溶解またはスラリー化した混合液を0℃~還流温度、好ましくは室温~還流温度で撹拌する方法が例示できる。上記強酸としては、塩酸、臭化水素酸、沃化水素酸、硫酸、硝酸、トリフルオロ酢酸、などがあげられる。かかる溶媒としては、アルコール類、エーテル類、ケトン類、ニトリル類、ジメチルスルホキシドや、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N―メチルピロリドンなどの非プロトン性溶媒などがあげられる。 Examples of the method of allowing a strong acid to act include a method of stirring a mixed solution obtained by dissolving or slurrying an aromatic polymer phosphonic acid in a solvent containing a strong acid at 0 ° C. to reflux temperature, preferably from room temperature to reflux temperature. Examples of the strong acid include hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, trifluoroacetic acid, and the like. Examples of such solvents include alcohols, ethers, ketones, nitriles, dimethyl sulfoxide, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone.
 トリアルキルシリルハライドを作用させる方法としては、芳香族系高分子ホスホン酸類をケトン類、ニトリル類などの溶媒に溶解または部分溶解した混合液に、トリアルキルシリルハライドを上記-(P(=O)(OR)(OR))で示される基換算で2~10モル当量加え、0~100℃程度で保温した後、次いで水または弱酸を加え0~100℃で保温する方法が例示できる。代表的なトリアルキルシリルハライドとしては、トリメチルシリルヨージド、トリメチルシリルブロミド、トリメチルシリルクロリド、トリエチルシリルヨージド、トリエチルシリルブロミド、トリエチルシリルクロリドなどがあげられる。 As a method of allowing a trialkylsilyl halide to act, a trialkylsilyl halide is dissolved in a mixed solution obtained by dissolving or partially dissolving an aromatic polymer phosphonic acid in a solvent such as ketones or nitriles. An example is a method in which 2 to 10 molar equivalents in terms of a group represented by (OR 1 ) (OR 2 )) are added and kept at about 0 to 100 ° C., then water or a weak acid is added, and then kept at 0 to 100 ° C. Typical trialkylsilyl halides include trimethylsilyl iodide, trimethylsilyl bromide, trimethylsilyl chloride, triethylsilyl iodide, triethylsilyl bromide, triethylsilyl chloride and the like.
 次に、上記実施形態により得られる芳香族系高分子電解質又は上記実施形態により得られる芳香族系ホスホン酸類(以下、芳香族系高分子電解質と芳香族系ホスホン酸類とを総称して「芳香族系高分子電解質」と表す場合がある。)を燃料電池等の電気化学デバイスの隔膜(高分子電解質膜)として使用する場合について説明する。 Next, the aromatic polymer electrolyte obtained by the above embodiment or the aromatic phosphonic acid obtained by the above embodiment (hereinafter, the aromatic polymer electrolyte and the aromatic phosphonic acid are collectively referred to as “aromatic”. The case where it is expressed as a "system polymer electrolyte") as a diaphragm (polymer electrolyte membrane) of an electrochemical device such as a fuel cell will be described.
 この場合は、上記実施形態により得られる芳香族系高分子電解質は、通常、膜の形態で使用される。膜へ転化する方法に特に制限はないが、例えば溶液状態より製膜する方法(溶液キャスト法)が好ましく使用される。 In this case, the aromatic polymer electrolyte obtained by the above embodiment is usually used in the form of a membrane. Although there is no restriction | limiting in particular in the method to convert into a film | membrane, For example, the method (solution cast method) which forms into a film from a solution state is used preferably.
 具体的には、芳香族系高分子電解質を適当な溶媒に溶解し、その溶液をガラス板、ポリエチレンテレフタレート(以下、PETと表す場合がある)などの支持基材上に流延塗布し、溶媒を除去することにより製膜される。製膜に用いる溶媒は、芳香族系高分子電解質を溶解可能であり、その後に除去し得るものであるならば特に制限はなく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシドなどの非プロトン性極性溶媒、あるいはジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼンなどの含塩素溶媒、メタノール、エタノール、プロパノールなどのアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル類、および水が好適に用いられる。これらは単独で用いることもできるが、必要に応じて2種以上の溶媒を混合して用いることもできる。中でも、ジメチルスルホキシドや、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N―メチルピロリドンがポリマーの溶解性が高く好ましい。 Specifically, an aromatic polymer electrolyte is dissolved in an appropriate solvent, and the solution is cast on a support substrate such as a glass plate or polyethylene terephthalate (hereinafter sometimes referred to as PET), and then the solvent is added. Is removed to remove the film. The solvent used for film formation is not particularly limited as long as it can dissolve the aromatic polymer electrolyte and can be removed thereafter. N, N-dimethylformamide, N, N-dimethylacetamide, N— Aprotic polar solvents such as methyl-2-pyrrolidone and dimethyl sulfoxide; chlorine-containing solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene; alcohols such as methanol, ethanol and propanol; ethylene glycol monomethyl Ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, alkylene glycol monoalkyl ethers such as propylene glycol monoethyl ether, and water are preferably used. These can be used singly, but two or more solvents can be mixed and used as necessary. Among them, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone are preferable because of high polymer solubility.
 膜の厚みは、特に制限はないが10~300μmが好ましく、20~100μmが特に好ましい。10μmより薄いフィルムでは実用的な強度が十分でない場合があり、300μmより厚いフィルムでは膜抵抗が大きくなり電気化学デバイスの特性が低下する傾向にある。膜の厚みは溶液の濃度および基板上への塗布厚により制御できる。 The thickness of the film is not particularly limited, but is preferably 10 to 300 μm, particularly preferably 20 to 100 μm. When the film is thinner than 10 μm, the practical strength may not be sufficient, and when the film is thicker than 300 μm, the film resistance tends to increase and the characteristics of the electrochemical device tend to deteriorate. The thickness of the film can be controlled by the concentration of the solution and the coating thickness on the substrate.
 また高分子電解質膜の各種物性改良を目的として、通常の高分子に使用される可塑剤、安定剤、離型剤などを上記実施形態により得られる芳香族系高分子電解質に添加することができる。また、同一溶剤に混合共キャストするなどの方法により、他のポリマーを上記実施形態の共重合体と複合アロイ化することも可能である。 In addition, for the purpose of improving various physical properties of the polymer electrolyte membrane, plasticizers, stabilizers, release agents, etc., used for ordinary polymers can be added to the aromatic polymer electrolyte obtained by the above embodiment. . Also, other polymers can be combined with the copolymer of the above embodiment by a method such as co-casting in the same solvent.
 燃料電池用途では水管理を容易にするために、無機あるいは有機の微粒子を保水剤として添加することも知られている。これらの公知の方法はいずれも本発明の目的に反しない限り使用できる。また、上記実施形態により得られる芳香族系高分子電解質を含む高分子電解質からなる高分子電解質膜の機械的強度の向上などを目的として、電子線・放射線などを照射して、該高分子電解質膜を構成する高分子電解質を架橋することもできる。 In fuel cell applications, it is also known to add inorganic or organic fine particles as water retention agents in order to facilitate water management. Any of these known methods can be used as long as they are not contrary to the object of the present invention. Further, for the purpose of improving the mechanical strength of a polymer electrolyte membrane comprising a polymer electrolyte containing an aromatic polymer electrolyte obtained by the above embodiment, the polymer electrolyte is irradiated with an electron beam or radiation. The polymer electrolyte constituting the membrane can also be crosslinked.
 また、高分子電解質膜の強度や柔軟性、耐久性のさらなる向上のために、上記実施形態により得られる芳香族系高分子電解質を多孔質基材に含浸させ複合化することにより、高分子電解質複合膜とすることも可能である。複合化方法は公知の方法を使用し得る。多孔質基材としては上述の使用目的を満たすものであれば特に制限は無く、例えば多孔質膜、織布、不織布、フィブリルなどがあげられ、その形状や材質によらず用いることができる。 Further, in order to further improve the strength, flexibility, and durability of the polymer electrolyte membrane, the polymer electrolyte is obtained by impregnating the porous base material with the aromatic polymer electrolyte obtained by the above embodiment and combining it. A composite membrane can also be used. A known method can be used as the compounding method. The porous substrate is not particularly limited as long as it satisfies the above-mentioned purpose of use, and examples thereof include porous membranes, woven fabrics, non-woven fabrics, and fibrils, and they can be used regardless of their shapes and materials.
 上記実施形態により得られる芳香族系高分子電解質を用いた高分子電解質複合膜を燃料電池の隔膜として使用する場合、多孔質基材は、膜厚が1~100μm、好ましくは3~30μm、さらに好ましくは5~20μmであり、孔径が0.01~100μm、好ましくは0.02~10μmであり、空隙率が20~98%、好ましくは40~95%である。 When the polymer electrolyte composite membrane using the aromatic polymer electrolyte obtained by the above embodiment is used as a diaphragm of a fuel cell, the porous substrate has a thickness of 1 to 100 μm, preferably 3 to 30 μm, and further It is preferably 5 to 20 μm, the pore diameter is 0.01 to 100 μm, preferably 0.02 to 10 μm, and the porosity is 20 to 98%, preferably 40 to 95%.
 多孔質基材の膜厚が薄すぎると複合化後の強度補強の効果あるいは、柔軟性や耐久性を付与するといった補強効果が不十分となり、ガス漏れ(クロスリーク)が発生しやすくなる。また膜厚が厚すぎると電気抵抗が高くなり、得られた複合膜が固体高分子形燃料電池の隔膜として不十分なものとなる。孔径が小さすぎると上記実施形態の共重合体の充填が困難となり、大きすぎると高分子固体電解質への補強効果が弱くなる。空隙率が小さすぎると複合膜の抵抗が大きくなり、大きすぎると一般に多孔質基材自体の強度が弱くなり補強効果が低減する。 If the film thickness of the porous substrate is too thin, the effect of reinforcing the strength after combining or the reinforcing effect of imparting flexibility and durability is insufficient, and gas leakage (cross leak) is likely to occur. On the other hand, if the film thickness is too thick, the electric resistance becomes high, and the resulting composite film is insufficient as a diaphragm for the polymer electrolyte fuel cell. When the pore diameter is too small, it is difficult to fill the copolymer of the above embodiment, and when it is too large, the reinforcing effect on the polymer solid electrolyte is weakened. If the porosity is too small, the resistance of the composite film is increased, and if it is too large, the strength of the porous substrate itself is generally weakened and the reinforcing effect is reduced.
 耐熱性の観点や、物理的強度の補強効果を鑑みれば、上記多孔質基材は、脂肪族系高分子、芳香族系高分子または、含フッ素高分子からなる基材が好ましい。 From the viewpoint of heat resistance and the effect of reinforcing physical strength, the porous substrate is preferably a substrate made of an aliphatic polymer, an aromatic polymer, or a fluorine-containing polymer.
 次に上記実施形態により得られる芳香族系高分子電解質を用いた燃料電池について説明する。高分子電解質膜を用いる燃料電池としては、例えば水素ガスを燃料とした固体高分子形燃料電池や、メタノールを燃料として直接供給するダイレクトメタノール形固体高分子形燃料電池があるが、上記実施形態により得られる芳香族系高分子電解質はそのどちらにも好適に用いることができる。 Next, a fuel cell using an aromatic polymer electrolyte obtained by the above embodiment will be described. Examples of the fuel cell using the polymer electrolyte membrane include a solid polymer fuel cell using hydrogen gas as a fuel and a direct methanol solid polymer fuel cell directly supplying methanol as a fuel. The obtained aromatic polymer electrolyte can be suitably used for both.
 上記実施形態により得られる芳香族系高分子電解質を用いた燃料電池は、上記実施形態の共重合体を高分子電解質膜および/または高分子電解質複合膜として使用したものや、上記実施形態により得られる高分子電解質を触媒層中の高分子電解質として使用したものなどをあげることができる。 The fuel cell using the aromatic polymer electrolyte obtained by the above embodiment is obtained by using the copolymer of the above embodiment as a polymer electrolyte membrane and / or a polymer electrolyte composite membrane, or obtained by the above embodiment. And the like using the obtained polymer electrolyte as the polymer electrolyte in the catalyst layer.
 上記実施形態により得られる芳香族系高分子電解質を高分子電解質膜または高分子電解質複合膜として使用した燃料電池は、上記高分子電解質膜または上記高分子電解質複合膜の両面に、触媒とガス拡散層を接合することにより製造することができる。ガス拡散層としては公知の材料を用いることができるが、多孔質性のカーボン織布、カーボン不織布またはカーボンペーパーが、原料ガスを触媒へ効率的に輸送するために好ましい。 A fuel cell in which the aromatic polymer electrolyte obtained by the above embodiment is used as a polymer electrolyte membrane or a polymer electrolyte composite membrane has a catalyst and gas diffusion on both sides of the polymer electrolyte membrane or the polymer electrolyte composite membrane. It can be manufactured by joining the layers. A known material can be used for the gas diffusion layer, but a porous carbon woven fabric, carbon non-woven fabric or carbon paper is preferable in order to efficiently transport the raw material gas to the catalyst.
 ここで触媒としては、水素または酸素との酸化還元反応を活性化できるものであれば特に制限はなく、公知のものを用いることができるが、白金の微粒子を用いることが好ましい。白金の微粒子はしばしば活性炭や黒鉛などの粒子状または繊維状のカーボンに担持されたものが好ましく用いられる。また、カーボンに担持された白金を、高分子電解質としてのパーフルオロアルキルスルホン酸樹脂のアルコール溶液と共に混合してペースト化したものを、ガス拡散層、高分子電解質膜または高分子電解質複合膜に塗布・乾燥することにより触媒層が得られる。具体的な方法としては例えば、J.Electrochem.Soc.:Electrochemical Science and Technology,1988,135(9),2209に記載されている方法などの公知の方法を用いることができる。 Here, the catalyst is not particularly limited as long as it can activate the oxidation-reduction reaction with hydrogen or oxygen, and a known catalyst can be used, but platinum fine particles are preferably used. The platinum fine particles are often preferably those supported on particulate or fibrous carbon such as activated carbon or graphite. Also, platinum supported on carbon is mixed with an alcohol solution of perfluoroalkyl sulfonic acid resin as a polymer electrolyte and pasted into a gas diffusion layer, polymer electrolyte membrane or polymer electrolyte composite membrane. -A catalyst layer is obtained by drying. As a specific method, for example, J. Org. Electrochem. Soc. : Known methods such as those described in Electrochemical Science and Technology, 1988, 135 (9), 2209 can be used.
 上記実施形態により得られる芳香族系高分子電解質を触媒層中の高分子電解質として使用した燃料電池としては、前述の触媒層を構成するパーフルオロアルキルスルホン酸樹脂の代わりに上記実施形態により得られる芳香族系高分子電解質を用いたものをあげることができる。上記実施形態の共重合体を用いた触媒層を使用する場合、高分子電解質膜は上記実施形態により得られる共重合体を用いた膜に限定されずに公知の高分子電解質膜を用いることができる。 A fuel cell using the aromatic polymer electrolyte obtained by the above embodiment as the polymer electrolyte in the catalyst layer can be obtained by the above embodiment instead of the perfluoroalkylsulfonic acid resin constituting the catalyst layer. The thing using an aromatic polymer electrolyte can be mention | raise | lifted. When the catalyst layer using the copolymer of the above embodiment is used, the polymer electrolyte membrane is not limited to the membrane using the copolymer obtained by the above embodiment, and a known polymer electrolyte membrane may be used. it can.
 以下に実施例をあげて本発明を詳細に説明するが、本発明はこれらの例により何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 本発明の実施例に移る前に、試料の諸物性の測定方法、各合成例を以下に説明する。 Before proceeding to examples of the present invention, a method for measuring various physical properties of a sample and each synthesis example will be described below.
[単量体純度(%)、単量体の転化率(モル%)]
 液体クロマトグラフィー (LC) により下記条件Aまたは条件Bで測定し求めた。
条件A:
・LC測定装置 島津製作所製 LC-10A
・カラム    L-Column ODS (5μm,4.6mmφ×15cm)
・カラム温度  40℃
・移動相溶媒  A液:0.1重量%テトラブチルアンモニウムブロミド/水
        B液:0.1重量%テトラブチルアンモニウムブロミド/(水/アセトニトリル=1/9(重量比))
・移動相勾配  0→20min(A液:70重量%→10重量%、B液:30重量%→90重量%)、20→35min(A液:10重量%、B液:90重量%)
・溶媒流量   1.0mL/min
・検出法    UV(254nm)
 なお、単量体の転化率は、標準物質として添加したビフェニルとのUV面積値の比較により求めた。
単量体の転化率(モル%)=1-(重合反応後の単量体物質量/重合反応前の単量体物質量)×100
条件B:
・LC測定装置 島津製作所製 LC-20AD
・カラム    L-Column ODS (5μm,4.6mmφ×15cm)
・カラム温度  40℃
・移動相溶媒  A液:0.1重量%テトラブチルアンモニウムブロミド/水
        B液:0.1重量%テトラブチルアンモニウムブロミド/(水/アセトニトリル=1/9(重量比))
・移動相勾配  0→20min(A液:70重量%→10重量%、B液:30重量%→90重量%)、20→35min(A液:10重量%、B液:90重量%)
・溶媒流量   1.0mL/min
・検出法    UV(254nm)
 なお、単量体の転化率は、標準物質として添加したジフェニルスルホンとのUV面積値の比較により求めた。
単量体の転化率(モル%)=1-(重合反応後の単量体物質量/重合反応前の単量体物質量)×100
[Monomer purity (%), monomer conversion (mol%)]
It measured and calculated | required on the following conditions A or B by the liquid chromatography (LC).
Condition A:
・ LC measuring device LC-10A made by Shimadzu Corporation
・ Column L-Column ODS (5μm, 4.6mmφ × 15cm)
・ Column temperature 40 ℃
-Mobile phase solvent A liquid: 0.1 wt% tetrabutylammonium bromide / water B liquid: 0.1 wt% tetrabutylammonium bromide / (water / acetonitrile = 1/9 (weight ratio))
Mobile phase gradient 0 → 20 min (A liquid: 70 wt% → 10 wt%, B liquid: 30 wt% → 90 wt%), 20 → 35 min (A liquid: 10 wt%, B liquid: 90 wt%)
・ Solvent flow 1.0mL / min
・ Detection method UV (254nm)
The monomer conversion was determined by comparing the UV area value with biphenyl added as a standard substance.
Conversion of monomer (mol%) = 1- (amount of monomer substance after polymerization reaction / amount of monomer substance before polymerization reaction) × 100
Condition B:
・ LC measuring device Shimadzu LC-20AD
・ Column L-Column ODS (5μm, 4.6mmφ × 15cm)
・ Column temperature 40 ℃
-Mobile phase solvent A liquid: 0.1 wt% tetrabutylammonium bromide / water B liquid: 0.1 wt% tetrabutylammonium bromide / (water / acetonitrile = 1/9 (weight ratio))
Mobile phase gradient 0 → 20 min (A liquid: 70 wt% → 10 wt%, B liquid: 30 wt% → 90 wt%), 20 → 35 min (A liquid: 10 wt%, B liquid: 90 wt%)
・ Solvent flow 1.0mL / min
・ Detection method UV (254nm)
The monomer conversion was determined by comparing the UV area value with diphenylsulfone added as a standard substance.
Conversion of monomer (mol%) = 1- (amount of monomer substance after polymerization reaction / amount of monomer substance before polymerization reaction) × 100
[分子量]
 ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定し、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を測定した。
・GPC測定装置 TOSOH社製 HLC-8220
・カラム     TOSOH社製 TSKgel GMH-M
・カラム温度   40℃
・移動相溶媒   DMAc(LiBrを10mmol/dmになるように添加)
・溶媒流量    0.5mL/min
・検出法     UV (300nm)
[Molecular weight]
The number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene were measured by gel permeation chromatography (GPC) under the following conditions.
-GPC measuring device HLC-8220 manufactured by TOSOH
・ Column TSKgel GMH-M manufactured by TOSOH
・ Column temperature 40 ℃
Mobile phase solvent DMAc (LiBr added to 10 mmol / dm 3 )
・ Solvent flow rate 0.5mL / min
・ Detection method UV (300nm)
31P含有率(単位:重量%)]
 DMSO-d溶媒中、試料および内部標準物質(トリフェニルホスフィンオキサイド)を加え、NMR(600MHz)を用いて、プロトンデカップル無しの条件で31P-NMRスペクトルを測定し、得られたNMRスペクトルから、該試料の面積値と、トリフェニルホスフィンオキサイドとの面積値とを比較して、31P含有率を求めた。なお、理論値は単量体仕込み比から化学量論計算により導き出した。
[ 31 P content (unit:% by weight)]
A sample and an internal standard substance (triphenylphosphine oxide) were added in a DMSO-d 6 solvent, and a 31 P-NMR spectrum was measured using NMR (600 MHz) without proton decoupling. The area value of the sample was compared with the area value of triphenylphosphine oxide to determine the 31 P content. The theoretical value was derived by stoichiometric calculation from the monomer charge ratio.
[耐ラジカル性(単位:重量%)]
 3重量%の過酸化水素と、8ppm(重量百万分率)のFe(II)Clを含む70℃の水溶液中に試料を2時間浸漬した。試料の浸漬前後の重量を測定し、下記の計算式により、重量維持率を計算した。この重量維持率が高いほど、耐ラジカル性が高いことを意味する。
重量維持率(重量%)=(浸漬後の試料の重量(mg)/浸漬前の試料の重量(mg)))×100
[Radical resistance (unit:% by weight)]
The sample was immersed for 2 hours in a 70 ° C. aqueous solution containing 3 wt% hydrogen peroxide and 8 ppm (parts per million by weight) Fe (II) Cl 2 . The weight of the sample before and after immersion was measured, and the weight retention rate was calculated by the following formula. Higher weight retention means higher radical resistance.
Weight retention ratio (% by weight) = (weight of sample after immersion (mg) / weight of sample before immersion (mg))) × 100
合成例1
 アルゴン置換したフラスコに4,4’-ビフェノール120g(644mmol)、亜リン酸ジエチル266g(1.93mol)、四塩化炭素446g、テトラヒドロフラン720gを入れ0℃に冷却した。反応溶液温度が10℃以上にならないように、トリエチルアミン196g(1.93mol)を90分間かけて滴下した。0℃で1時間撹拌後、室温まで昇温し21時間撹拌した。1440gの水を添加し、室温で1時間撹拌した。分液ロートを用いてクロロホルムに反応生成物を抽出し、クロロホルム溶液を水で洗浄し、硫酸マグネシウムで油層を脱水し、硫酸マグネシウムを濾別した。クロロホルムを減圧留去し、粗生成物を得た。カラムクロマトグラフィーを用いて、粗生成物の精製を行い、式(8)で示される化合物を137g(収率:46%、LC面百純度:95.6%(条件A))得た。
H NMR(CDCl,270MHz)δ1.35(t,12H),4.11(dq,8H),7.28(d,4H),7.50(d,4H).
APPI-MS(クロロホルム溶液) m/z[M+H]:理論値 459.1, 実測値 459.1
Synthesis example 1
In a flask purged with argon, 120 g (644 mmol) of 4,4′-biphenol, 266 g (1.93 mol) of diethyl phosphite, 446 g of carbon tetrachloride, and 720 g of tetrahydrofuran were placed and cooled to 0 ° C. 196 g (1.93 mol) of triethylamine was added dropwise over 90 minutes so that the temperature of the reaction solution did not exceed 10 ° C. After stirring at 0 ° C. for 1 hour, the mixture was warmed to room temperature and stirred for 21 hours. 1440 g of water was added and stirred at room temperature for 1 hour. The reaction product was extracted into chloroform using a separatory funnel, the chloroform solution was washed with water, the oil layer was dehydrated with magnesium sulfate, and magnesium sulfate was filtered off. Chloroform was distilled off under reduced pressure to obtain a crude product. The crude product was purified using column chromatography to obtain 137 g (yield: 46%, LC area purity: 95.6% (condition A)) of the formula (8).
1 H NMR (CDCl 3 , 270 MHz) δ 1.35 (t, 12H), 4.11 (dq, 8H), 7.28 (d, 4H), 7.50 (d, 4H).
APPI-MS (chloroform solution) m / z [M + H] + : theoretical value 459.1, actual value 459.1
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
合成例2
 アルゴン置換した滴下ロートに、式(8)で示される化合物(137g、299mmol)および、テトラヒドロフラン560gを加え、式(8)で示される化合物のTHF溶液を調製した。アルゴン置換したフラスコに、テトラヒドロフラン694gを入れ、ドライアイスーアセトンバスを用いて-66℃に冷却し、2mol/Lのリチウムジイソプロピルアミンのテトラヒドロフラン溶液546g添加した。3.5時間かけて、滴下ロート中の式(8)で示される化合物のTHF溶液を滴下し、-65℃で1.5時間保温撹拌した。反応溶液を8%塩酸で中和後、ジエチルエーテル、クロロホルムで抽出を行った。油層を、水洗および硫酸マグネシウムでの脱水後に、減圧留去し粗生成物を得た。エタノールで再結晶を行い、式(9)で示される化合物を126g(収率:92モル%、LC面百純度:99.3%(条件A))得た。
H NMR(CDCl,270MHz)δ1.36(t,12H),4.03-4.29(m,8H),7.04(dd,2H),7.48(d,2H),7.60(d,2H).
APPI-MS(クロロホルム溶液) m/z[M+H]:理論値 459.1,実測値 459.1
Synthesis example 2
The compound (137 g, 299 mmol) represented by formula (8) and 560 g of tetrahydrofuran were added to the dropping funnel substituted with argon to prepare a THF solution of the compound represented by formula (8). Into a flask purged with argon, 694 g of tetrahydrofuran was charged, cooled to −66 ° C. using a dry ice-acetone bath, and 546 g of a 2 mol / L lithium diisopropylamine tetrahydrofuran solution was added. Over a period of 3.5 hours, a THF solution of the compound represented by the formula (8) in the dropping funnel was dropped, and the mixture was stirred while keeping at -65 ° C for 1.5 hours. The reaction solution was neutralized with 8% hydrochloric acid, and extracted with diethyl ether and chloroform. The oil layer was washed with water and dehydrated with magnesium sulfate, and then distilled under reduced pressure to obtain a crude product. Recrystallization from ethanol gave 126 g of the compound represented by the formula (9) (yield: 92 mol%, LC surface percentage purity: 99.3% (condition A)).
1 H NMR (CDCl 3 , 270 MHz) δ 1.36 (t, 12H), 4.03-4.29 (m, 8H), 7.04 (dd, 2H), 7.48 (d, 2H), 7 .60 (d, 2H).
APPI-MS (chloroform solution) m / z [M + H] + : theoretical value 459.1, actual value 459.1
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
合成例3 [芳香族系ホスホン酸化合物の製造]
 窒素置換したフラスコに式(9)で示される化合物(50.0g、109mmol)、アセトニトリル250g、ヨウ化ナトリウム98.1g(654mmol)、トリメチルシリルクロリド71.1g(654mmol)を加え、40℃で1時間、室温で1.5時間撹拌した。副生した塩化ナトリウムを濾別後、アセトニトリルを減圧留去した。クロロホルムを加え、超音波照射をし、不溶物を濾別後、クロロホルムを減圧留去した。水を加え溶解させた後、ジエチルエーテルを加え、着色成分を油層に抽出した。水層の8割を減圧留去し、析出した固体を濾過回収し、式(10)で示される化合物を25.3g(収率:67モル%、LC面百純度:99.3%(条件A))得た。
H NMR(DMSO-d,270MHz)δ6.79(dd,2H),7.51(d,2H),7.90(d,2H).
ESI-MS(メタノール溶液) m/z[M-H]:理論値 345.0,実測値 344.9
31P重量%=13.2(理論値:13.5)
Synthesis Example 3 [Production of aromatic phosphonic acid compound]
To the flask purged with nitrogen was added the compound of formula (9) (50.0 g, 109 mmol), acetonitrile 250 g, sodium iodide 98.1 g (654 mmol), and trimethylsilyl chloride 71.1 g (654 mmol), and then at 40 ° C. for 1 hour. And stirred at room temperature for 1.5 hours. By-product sodium chloride was filtered off, and then acetonitrile was distilled off under reduced pressure. Chloroform was added, ultrasonic irradiation was performed, insolubles were filtered off, and chloroform was distilled off under reduced pressure. After water was added and dissolved, diethyl ether was added to extract the colored components into the oil layer. 80% of the aqueous layer was distilled off under reduced pressure, and the precipitated solid was collected by filtration, and 25.3 g (yield: 67 mol%, LC surface percentage purity: 99.3% (conditions) of the formula (10)) A)) obtained.
1 H NMR (DMSO-d 6 , 270 MHz) δ 6.79 (dd, 2H), 7.51 (d, 2H), 7.90 (d, 2H).
ESI-MS (methanol solution) m / z [MH] : Theoretical value 345.0, Actual value 344.9
31 P% by weight = 13.2 (theoretical value: 13.5)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
実施例(A-1) [芳香族系ホスホン酸モノエステル化合物の製造]
 アルゴン置換したフラスコに、式(9)で示される化合物(5.00g、10.9mmol)、アセトニトリル25g、リチウムブロミド3.56g(32.7mmol)を加え、85℃で16.5時間加熱撹拌した。室温まで冷却し、溶媒を減圧留去した。アセトニトリルを加え、1時間加熱還流撹拌を行い、固体を濾別回収し、式(11)で示される化合物を4.12g(収率:91モル%、LC面百純度:97.4%(条件A))得た。
H NMR(DMSO-d,270MHz)δ1.03(t,6H),3.62(dq,4H),6.71(dd,2H),7.39(d,2H),7.57(d,2H).
APPI-MS(メタノール溶液) m/z[M-2Li+3H]:理論値 403.1,実測値 403.1
31P重量%=18.4(理論値:17.9)
Example (A-1) [Production of Aromatic Phosphonic Acid Monoester Compound]
The compound represented by formula (9) (5.00 g, 10.9 mmol), acetonitrile 25 g, and lithium bromide 3.56 g (32.7 mmol) were added to the argon-substituted flask, and the mixture was heated and stirred at 85 ° C. for 16.5 hours. . After cooling to room temperature, the solvent was distilled off under reduced pressure. Acetonitrile was added, and the mixture was heated to reflux with stirring for 1 hour, and the solid was collected by filtration. 4.12 g of the compound represented by the formula (11) (yield: 91 mol%, LC surface percentage purity: 97.4% (conditions) A)) obtained.
1 H NMR (DMSO-d 6 , 270 MHz) δ 1.03 (t, 6H), 3.62 (dq, 4H), 6.71 (dd, 2H), 7.39 (d, 2H), 7.57 (D, 2H).
APPI-MS (methanol solution) m / z [M-2Li + 3H] + : Theoretical value 403.1, Measured value 403.1
31 P wt% = 18.4 (theoretical value: 17.9)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
実施例(A-2) [芳香族系ホスホン酸モノエステル化合物の製造2]
 アルゴン置換したフラスコに、式(9)で示される化合物(2.00g、4.36mmol)、ピペラジン(0.75g、8.73mmol)、N-メチルピロリドン18gを加え、130℃で19時間加熱撹拌した。室温まで冷却し、N-メチルピロリドンを減圧留去した。メタノールを加え、生じた析出物を濾別した。得られた個体を繰り返しメタノールで洗浄し、式(12)で示される化合物を0.79g(収率:45モル%、LC面百純度:94.9%(条件A))得た。
H NMR(DMSO-d,270MHz)δ1.04(t,6H),3.62(dq,4H),6.75(dd,2H),7.48-7.53(m,4H).
Example (A-2) [Production 2 of Aromatic Phosphonic Acid Monoester Compound]
To the flask purged with argon, the compound represented by the formula (9) (2.00 g, 4.36 mmol), piperazine (0.75 g, 8.73 mmol) and 18 g of N-methylpyrrolidone were added, and heated and stirred at 130 ° C. for 19 hours. did. After cooling to room temperature, N-methylpyrrolidone was distilled off under reduced pressure. Methanol was added and the resulting precipitate was filtered off. The obtained solid was repeatedly washed with methanol to obtain 0.79 g (yield: 45 mol%, LC area purity: 94.9% (condition A)) of the formula (12).
1 H NMR (DMSO-d 6 , 270 MHz) δ 1.04 (t, 6H), 3.62 (dq, 4H), 6.75 (dd, 2H), 7.48-7.53 (m, 4H) .
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
実施例(A-3) [芳香族系ホスホン酸モノエステル化合物の製造3]
 窒素置換したフラスコに式(9)で示される化合物(75.8g、165mmol)、ジブチルアミン128g(993mmol)、N-メチルピロリドン767gを加え、130℃で7時間撹拌した。放冷後、析出した固体を濾別した。得られた固体にN-メチルピロリドン195gを加え、130℃で加熱溶解させ、室温へ冷却後、析出した固体を濾別回収した。N-メチルピロリドンを用いた再結晶を再度行い、式(13)で示される化合物を100g(収率:92モル%、LC面百純度:99.5%(条件A))得た。
H NMR(CDOD,270MHz)δ0.95(t,12H),1.17(t,6H),1.32-1.45(m,8H),1.58-1.69(m,8H),2.82-2.96(m,8H),3.80(dq,4H),6.84(dd,2H),7.51(d,2H),7.70(d,2H).
APPI-MS(メタノール溶液) m/z[M-2ジブチルアンモニウム+3H]:理論値 403.1,実測値 403.0
Example (A-3) [Production of Aromatic Phosphonic Acid Monoester Compound 3]
To the flask purged with nitrogen, the compound represented by the formula (9) (75.8 g, 165 mmol), 128 g (993 mmol) of dibutylamine and 767 g of N-methylpyrrolidone were added and stirred at 130 ° C. for 7 hours. After allowing to cool, the precipitated solid was filtered off. To the obtained solid, 195 g of N-methylpyrrolidone was added and dissolved by heating at 130 ° C. After cooling to room temperature, the precipitated solid was collected by filtration. Recrystallization using N-methylpyrrolidone was performed again to obtain 100 g of a compound represented by the formula (13) (yield: 92 mol%, LC area percentage purity: 99.5% (condition A)).
1 H NMR (CD 3 OD, 270 MHz) δ 0.95 (t, 12H), 1.17 (t, 6H), 1.32-1.45 (m, 8H), 1.58-1.69 (m , 8H), 2.82-2.96 (m, 8H), 3.80 (dq, 4H), 6.84 (dd, 2H), 7.51 (d, 2H), 7.70 (d, 2H).
APPI-MS (methanol solution) m / z [M-2 dibutylammonium + 3H] + : Theoretical value 403.1, Actual value 403.0
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
実施例(A-4) [芳香族系高分子ホスホン酸モノエステルの合成1]
 共沸蒸留装置を備えたシュレンクフラスコに、窒素雰囲気下、式(12)で示される化合物を0.40g(0.98mmol)、4,4’-スルホニルジフェノール0.25g(0.98mmol)、炭酸カリウム0.57g(4.13mmol)を入れ、ジメチルスルホキシド4.6g、トルエン5gを添加した。その後バス温120℃で3時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジフルオロジフェニルスルホン0.50g(1.97mmol)を添加し、バス温を140℃まで昇温し、5時間保温撹拌した。放冷後、反応液を50%塩酸/メタノール溶液に加え析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、式(14)で示される化合物を得た。
Mn=4900、Mw=5500
31P重量%=4.5(理論値:5.8)
Example (A-4) [Synthesis 1 of Aromatic Polymer Phosphonic Acid Monoester]
In a Schlenk flask equipped with an azeotropic distillation apparatus, 0.40 g (0.98 mmol) of a compound represented by the formula (12), 0.25 g (0.98 mmol) of 4,4′-sulfonyldiphenol, 0.57 g (4.13 mmol) of potassium carbonate was added, and 4.6 g of dimethyl sulfoxide and 5 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 120 ° C. for 3 hours. Subsequently, 0.50 g (1.97 mmol) of 4,4′-difluorodiphenylsulfone was added, the bath temperature was raised to 140 ° C., and the mixture was stirred while keeping for 5 hours. After allowing to cool, the reaction solution was added to a 50% hydrochloric acid / methanol solution, the deposited precipitate was filtered, and washed with ion-exchanged water until neutral, to obtain a compound represented by the formula (14).
Mn = 4900, Mw = 5500
31 P% by weight = 4.5 (theoretical value: 5.8)
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 式中、「ran」の記号は、当該記号と結合する構造単位がランダムに連結した構造であることを意味する。すなわち、上記式(14)で表される化合物は、芳香族系ホスホン酸モノエステル化合物残基と、4,4’-スルホニルジフェノール残基とが、ランダムに連結した構造を有する。 In the formula, the symbol “ran” means a structure in which structural units coupled to the symbol are randomly connected. That is, the compound represented by the above formula (14) has a structure in which an aromatic phosphonic acid monoester compound residue and a 4,4′-sulfonyldiphenol residue are randomly linked.
実施例(A-5) [芳香族系高分子ホスホン酸モノエステルの合成2]
 共沸蒸留装置を備えた三口フラスコに、窒素雰囲気下、式(13)で示される化合物を5.91g(8.94mmol)、4,4’-スルホニルジフェノール2.24g(8.94mmol)、炭酸カリウム4.94g(35.8mmol)、ジメチルスルホキシド 53g、トルエン31gを添加した。その後バス温145℃で5時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジフルオロジフェニルスルホン5.00g(19.7mmol)を添加し、バス温を145℃で15時間保温撹拌した。放冷後、反応液を35%塩酸/メタノール(1/1)溶液に加え析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、式(14)で示される化合物を得た。
Mn=6300、Mw=11000 
31P重量%=5.2(理論値:5.6)
Example (A-5) [Synthesis 2 of Aromatic Polymer Phosphonic Acid Monoester]
In a three-necked flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 5.91 g (8.94 mmol) of a compound represented by the formula (13), 2.24 g (8.94 mmol) of 4,4′-sulfonyldiphenol, 4.94 g (35.8 mmol) of potassium carbonate, 53 g of dimethyl sulfoxide, and 31 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 145 ° C. for 5 hours. Next, 5.00 g (19.7 mmol) of 4,4′-difluorodiphenylsulfone was added, and the mixture was stirred while keeping the bath temperature at 145 ° C. for 15 hours. After allowing to cool, the reaction solution was added to a 35% hydrochloric acid / methanol (1/1) solution, the deposited precipitate was filtered, and washed with ion-exchanged water until neutral, to obtain the compound represented by the formula (14). It was.
Mn = 6300, Mw = 11000
31 % by weight = 5.2 (theoretical value: 5.6)
実施例(A-6) [芳香族系高分子ホスホン酸モノエステルの合成3]
 共沸蒸留装置を備えたシュレンクフラスコに、窒素雰囲気下、式(13)で示される化合物を0.66g(1.00mmol)、4,4’-スルホニルジフェノール0.20g(0.79mmol)、炭酸カリウム0.54g(3.93mmol)を入れ、ジメチルスルホキシド5.4g、トルエン19gを添加した。その後バス温150℃で5時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジフルオロジフェニルスルホン0.50g(1.97mmol)を添加し、バス温を140℃まで昇温し、15時間保温撹拌した。放冷後、反応液を50%塩酸/メタノール溶液に加え析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、式(14)で示される化合物を得た。
Mn=6700、Mw=13000 
31P重量%=5.6(理論値:6.0)
Example (A-6) [Synthesis of Aromatic Polymer Phosphonic Acid Monoester 3]
In a Schlenk flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 0.66 g (1.00 mmol) of the compound represented by the formula (13), 0.20 g (0.79 mmol) of 4,4′-sulfonyldiphenol, 0.54 g (3.93 mmol) of potassium carbonate was added, and 5.4 g of dimethyl sulfoxide and 19 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 150 ° C. for 5 hours. Subsequently, 0.50 g (1.97 mmol) of 4,4′-difluorodiphenylsulfone was added, the bath temperature was raised to 140 ° C., and the mixture was stirred while keeping for 15 hours. After allowing to cool, the reaction solution was added to a 50% hydrochloric acid / methanol solution, the deposited precipitate was filtered, and washed with ion-exchanged water until neutral, to obtain a compound represented by the formula (14).
Mn = 6700, Mw = 13000
31 P% by weight = 5.6 (theoretical value: 6.0)
実施例(A-7) [芳香族系高分子ホスホン酸モノエステルの合成4]
 共沸蒸留装置を備えたシュレンクフラスコに、窒素雰囲気下、式(13)で示される化合物を0.52g(0.79mmol)、4,4’-スルホニルジフェノール0.20g(0.79mmol)、炭酸カリウム0.48g(3.48mmol)、ジメチルスルホキド4.9g、トルエン19gを添加した。その後バス温150℃で5時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジクロロジフェニルスルホン0.50g(1.74mmol)、Cu(I)Cl (90mg, 0.91mmol) を添加し、バス温を160℃まで昇温し、27時間保温撹拌した。放冷後、反応液を35%塩酸/メタノール(1/1)溶液に加え析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、式(14)で示される化合物を得た。
Mn=6500、Mw=13500 
31P重量%=5.0(理論値:5.5)
Example (A-7) [Synthesis of Aromatic Polymer Phosphonic Acid Monoester 4]
In a Schlenk flask equipped with an azeotropic distillation apparatus, in a nitrogen atmosphere, 0.52 g (0.79 mmol) of the compound represented by the formula (13), 0.20 g (0.79 mmol) of 4,4′-sulfonyldiphenol, 0.48 g (3.48 mmol) of potassium carbonate, 4.9 g of dimethyl sulfoxide, and 19 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 150 ° C. for 5 hours. Next, 0.54 g (1.74 mmol) of 4,4′-dichlorodiphenylsulfone and Cu (I) Cl 2 (90 mg, 0.91 mmol) were added, the bath temperature was raised to 160 ° C., and the mixture was stirred while maintaining for 27 hours. . After allowing to cool, the reaction solution was added to a 35% hydrochloric acid / methanol (1/1) solution, the deposited precipitate was filtered, and washed with ion-exchanged water until neutral, to obtain the compound represented by the formula (14). It was.
Mn = 6500, Mw = 13500
31 P% by weight = 5.0 (theoretical value: 5.5)
実施例(B-1) [芳香族系高分子ホスホン酸モノエステルの合成5]
 共沸蒸留装置を備えたシュレンクフラスコに、窒素雰囲気下、式(13)で示される化合物を1.12g(1.79mmol)、4,4’-スルホニルジフェノール0.45g(1.79mmol)、炭酸カリウム1.04g(7.51mmol)、ビフェニル150mgを入れ、ジメチルスルホキシド14.5g、トルエン7.4gを添加した。その後バス温140℃で7時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジクロロジフェニルスルホン1.00g(3.93mmol)、Cu(I)Cl 195mg(1.97mmol)を添加し、バス温を160℃まで昇温し、21時間保温撹拌した。放冷後、反応溶液を25%硝酸水溶液に加え析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、式(14)で示される化合物を得た。
Mn=6100、Mw=13000
31P重量%=5.2重量%(理論値:5.8)
式(13)で示される化合物の転化率(Cu(I)Cl添加6時間後)=98モル%(条件A)
Example (B-1) [Synthesis 5 of Aromatic Polymer Phosphonic Acid Monoester]
In a Schlenk flask equipped with an azeotropic distillation apparatus, 1.12 g (1.79 mmol) of the compound represented by the formula (13), 0.45 g (1.79 mmol) of 4,4′-sulfonyldiphenol, under a nitrogen atmosphere, 1.04 g (7.51 mmol) of potassium carbonate and 150 mg of biphenyl were added, and 14.5 g of dimethyl sulfoxide and 7.4 g of toluene were added. Thereafter, the toluene in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 140 ° C. for 7 hours. Next, 1.00 g (3.93 mmol) of 4,4′-dichlorodiphenylsulfone and 195 mg (1.97 mmol) of Cu (I) Cl were added, the bath temperature was raised to 160 ° C., and the mixture was stirred while keeping for 21 hours. After allowing to cool, the reaction solution was added to a 25% nitric acid aqueous solution, the deposited precipitate was filtered, and then washed with ion-exchanged water until neutral, to obtain a compound represented by the formula (14).
Mn = 6100, Mw = 13000
31 P wt% = 5.2 wt% (theoretical value: 5.8)
Conversion of compound represented by formula (13) (6 hours after addition of Cu (I) Cl) = 98 mol% (Condition A)
実施例(B-2) [芳香族系高分子ホスホン酸モノエステルの合成6]
 ジメチルスルホキシドに代えて1,3-ジメチル-2-イミダゾリジノンとした以外は、実施例(B-1)に記載の方法と同様に行い、式(14)で示される化合物を得た。
Mn=5600、Mw=10200
31P重量%=4.8重量%(理論値:5.8)
式(13)で示される化合物の転化率(Cu(I)Cl添加6時間後)=83モル%(条件A)
Example (B-2) [Synthesis of Aromatic Polymer Phosphonic Acid Monoester 6]
A compound represented by the formula (14) was obtained in the same manner as in Example (B-1) except that 1,3-dimethyl-2-imidazolidinone was used instead of dimethyl sulfoxide.
Mn = 5600, Mw = 10200
31 P% by weight = 4.8% by weight (theoretical value: 5.8)
Conversion of compound represented by formula (13) (6 hours after addition of Cu (I) Cl) = 83 mol% (Condition A)
実施例(A-8) [芳香族系高分子ホスホン酸モノエステルの酸加水分解]
 窒素雰囲気下、還流冷却器を備えたナスフラスコに、実施例(A-5)で得た重合物5g、35%塩酸68gを加えた。バス温145℃でスラリー状の液体を17時間加熱還流撹拌した。放冷後、反応液を濾過した後、イオン交換水で中性になるまで洗浄した。乾燥後、N-メチルピロリドンに溶解させ、10重量%濃度の溶液とした後、10重量倍の35%塩酸/メタノール(1/10(重量比))の溶液に再沈殿させた。沈殿物を濾過した後、イオン交換水で中性になるまで洗浄し、式(15)で示される化合物を得た。
Mn=14700、Mw=19600
31P重量%=5.4(理論値:5.9)
Example (A-8) [Acid Hydrolysis of Aromatic Polymer Phosphonic Acid Monoester]
Under a nitrogen atmosphere, 5 g of the polymer obtained in Example (A-5) and 68 g of 35% hydrochloric acid were added to an eggplant flask equipped with a reflux condenser. The slurry liquid was heated to reflux with stirring at a bath temperature of 145 ° C. for 17 hours. After allowing to cool, the reaction solution was filtered and washed with ion-exchanged water until neutral. After drying, it was dissolved in N-methylpyrrolidone to make a 10% strength by weight solution, and then reprecipitated into a 10% by weight solution of 35% hydrochloric acid / methanol (1/10 (weight ratio)). The precipitate was filtered and then washed with ion exchanged water until neutrality to obtain a compound represented by the formula (15).
Mn = 14700, Mw = 19600
31 P% by weight = 5.4 (theoretical value: 5.9)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
実施例(B-3) [芳香族系高分子スルホン酸の合成1]
 共沸蒸留装置を備えた二口フラスコに、窒素雰囲気下、4,4’-ビフェノール2.66g(14.27mmol)、炭酸カリウム2.17g(15.70mmol)、ジフェニルスルホン399mgを入れ、ジメチルスルホキシド38.6g、トルエン40gを添加した。その後バス温160℃で4時間トルエンを加熱留去することで系内の水分を共沸脱水した。ついで、式(16)で示される化合物7.00g(14.27mmol)、Cu(I)Cl706mg(7.13mmol)を添加し、バス温100℃で、6時間保温攪拌した。放冷後反応溶液をアセトンに加え、析出した沈殿をろ過し、得られた沈殿にイオン交換水を加え溶解させた後、陽イオン交換樹脂を加えて攪拌した。陽イオン交換樹脂を濾別した後、得られた水溶液を乾燥し、式(17)で示される化合物を得た。
Mn=9400、Mw=11900
式(16)で示される化合物の転化率(Cu(I)Cl添加6時間後)=96モル%(条件B)
IEC=3.38meq/g(理論値:3.5meq/g)
Example (B-3) [Synthesis of Aromatic Polymer Sulfonic Acid 1]
In a two-necked flask equipped with an azeotropic distillation apparatus, 2.66 g (14.27 mmol) of 4,4′-biphenol, 2.17 g (15.70 mmol) of potassium carbonate and 399 mg of diphenylsulfone were placed under a nitrogen atmosphere, and dimethyl sulfoxide was added. 38.6 g and 40 g of toluene were added. Thereafter, the toluene in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 160 ° C. for 4 hours. Subsequently, 7.00 g (14.27 mmol) of the compound represented by the formula (16) and 706 mg (7.13 mmol) of Cu (I) Cl were added, and the mixture was stirred while keeping at a bath temperature of 100 ° C. for 6 hours. After allowing to cool, the reaction solution was added to acetone, the deposited precipitate was filtered, and ion exchanged water was added to the resulting precipitate to dissolve it, and then a cation exchange resin was added and stirred. After filtering off the cation exchange resin, the obtained aqueous solution was dried to obtain the compound represented by the formula (17).
Mn = 9400, Mw = 11900
Conversion of compound represented by formula (16) (6 hours after addition of Cu (I) Cl) = 96 mol% (Condition B)
IEC = 3.38 meq / g (theoretical value: 3.5 meq / g)
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
実施例(B-4) [芳香族系高分子スルホン酸の合成2]
 共沸蒸留装置を備えた二口フラスコに、窒素雰囲気下、4,4’-ビフェノール2.65g(14.25mmol)、炭酸カリウム2.17g(15.67mmol)、ジフェニルスルホン398mgを入れ、ジメチルスルホキシド38.6g、トルエン40gを添加した。その後バス温160℃で4時間トルエンを加熱留去することで系内の水分を共沸脱水した。ついで、式(18)で示される化合物7.00g(14.25mmol)、Cu(I)Cl705mg(7.12mmol)を添加し、バス温160℃で、6時間保温攪拌した。放冷後反応溶液をアセトンに加え、析出した沈殿をろ過し、得られた沈殿にイオン交換水を加え溶解させた後、陽イオン交換樹脂を加えて攪拌した。陽イオン交換樹脂を濾別した後、得られた水溶液を乾燥し、式(17)で示される化合物を得た。
Mn=12600、Mw=19200
式(18)で示される化合物の転化率(Cu(I)Cl添加6時間後)=99モル%(条件B)
IEC=3.33meq/g(理論値:3.5meq/g)
Example (B-4) [Synthesis of Aromatic Polymer Sulfonic Acid 2]
In a two-necked flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 2.65 g (14.25 mmol) of 4,4′-biphenol, 2.17 g (15.67 mmol) of potassium carbonate, and 398 mg of diphenylsulfone were added, and dimethyl sulfoxide was added. 38.6 g and 40 g of toluene were added. Thereafter, the toluene in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 160 ° C. for 4 hours. Subsequently, 7.00 g (14.25 mmol) of the compound represented by the formula (18) and 705 mg (7.12 mmol) of Cu (I) Cl were added, and the mixture was stirred while keeping at a bath temperature of 160 ° C. for 6 hours. After allowing to cool, the reaction solution was added to acetone, the deposited precipitate was filtered, and ion exchanged water was added to the resulting precipitate to dissolve it, and then a cation exchange resin was added and stirred. After filtering off the cation exchange resin, the obtained aqueous solution was dried to obtain the compound represented by the formula (17).
Mn = 12600, Mw = 19200
Conversion of compound represented by formula (18) (6 hours after addition of Cu (I) Cl) = 99 mol% (Condition B)
IEC = 3.33 meq / g (theoretical value: 3.5 meq / g)
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
比較例(A-1)
 共沸蒸留装置を備えた三口フラスコに、窒素雰囲気下、式(9)で示される化合物を5.00g(10.9mmol)、炭酸カリウム1.58g(11.5mmol)、ジメチルスルホキシド 31g、トルエン15gを添加した。その後バス温150℃で4時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジフルオロジフェニルスルホン2.77g(10.9mmol)を添加し、バス温を150℃で3時間保温撹拌した。放冷後、反応溶液を希釈し、分子量を測定したが、重合物は確認されなかった。
Comparative Example (A-1)
In a three-necked flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 5.00 g (10.9 mmol) of a compound represented by the formula (9), 1.58 g (11.5 mmol) of potassium carbonate, 31 g of dimethyl sulfoxide, and 15 g of toluene Was added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 150 ° C. for 4 hours. Next, 2.77 g (10.9 mmol) of 4,4′-difluorodiphenylsulfone was added, and the bath temperature was kept at 150 ° C. for 3 hours while stirring. After allowing to cool, the reaction solution was diluted and the molecular weight was measured, but no polymer was confirmed.
比較例(A-2)
 共沸蒸留装置を備えたシュレンクフラスコに、窒素雰囲気下、式(10)で示される化合物を0.50g(1.44mmol)、4,4’-ジフルオロジフェニルスルホン0.326g(1.28mmol)、炭酸カリウム0.915g(3.97mmol)、ジメチルスルホキド11g、トルエン5gを添加した。バス温150℃で9時間環流脱水後、150℃で5時間保温した。放冷後、反応溶液を採取し分子量を測定したが、重合物は確認されなかった。
Comparative Example (A-2)
In a Schlenk flask equipped with an azeotropic distillation apparatus, 0.50 g (1.44 mmol) of the compound represented by the formula (10), 0.326 g (1.28 mmol) of 4,4′-difluorodiphenylsulfone under a nitrogen atmosphere, 0.915 g (3.97 mmol) of potassium carbonate, 11 g of dimethyl sulfoxide, and 5 g of toluene were added. After reflux dehydration at a bath temperature of 150 ° C. for 9 hours, the mixture was kept at 150 ° C. for 5 hours. After cooling, the reaction solution was collected and the molecular weight was measured, but no polymer was confirmed.
比較例(A-3)
 共沸蒸留装置を備えたシュレンクフラスコに、窒素雰囲気下、式(9)で示される化合物を1.00g(2.18mmol)、ビス-4-ヒドロキシスルホン0.36g(1.45mmol)、4,4’-ジフルオロジフェニルスルホン1.02g(4.00mmol)、炭酸カリウム0.55g(4.00mmol)、ジメチルスルホキシド9.5g、トルエン10gを加えた。バス温150℃で5時間トルエンを加熱留去することで系内の水分を共沸脱水した後、バス温150℃で9時間保温撹拌した。放冷後、反応溶液を採取し分子量を測定したが、重合物は確認されなかった。
Comparative Example (A-3)
In a Schlenk flask equipped with an azeotropic distillation apparatus, 1.00 g (2.18 mmol) of the compound represented by the formula (9), 0.36 g (1.45 mmol) of bis-4-hydroxysulfone, 4, 1.02 g (4.00 mmol) of 4′-difluorodiphenylsulfone, 0.55 g (4.00 mmol) of potassium carbonate, 9.5 g of dimethyl sulfoxide, and 10 g of toluene were added. The toluene in the system was azeotropically dehydrated by heating and distilling off the toluene at a bath temperature of 150 ° C. for 5 hours, and then stirred while keeping at a bath temperature of 150 ° C. for 9 hours. After cooling, the reaction solution was collected and the molecular weight was measured, but no polymer was confirmed.
比較例(A-4)
 共沸蒸留装置を備えたシュレンクフラスコに、窒素雰囲気下、式(10)で示される化合物を0.50g(1.44mmol)、ビス-4-ヒドロキシスルホン0.24g(0.96mmol)、4,4’-ジフルオロジフェニルスルホン0.67g(2.65mmol)、炭酸カリウム0.76g(5.49mmol)、ジメチルスルホキシド8.0g、トルエン10gを加えた。バス温150℃で5時間トルエンを加熱留去することで系内の水分を共沸脱水した後、バス温150℃で9時間保温撹拌した。放冷後、反応溶液を採取し分子量を測定したが、重合物は確認されなかった。
Comparative Example (A-4)
In a Schlenk flask equipped with an azeotropic distillation apparatus, 0.50 g (1.44 mmol) of a compound represented by the formula (10), 0.24 g (0.96 mmol) of bis-4-hydroxysulfone, 4, 0.67 g (2.65 mmol) of 4′-difluorodiphenyl sulfone, 0.76 g (5.49 mmol) of potassium carbonate, 8.0 g of dimethyl sulfoxide, and 10 g of toluene were added. The toluene in the system was azeotropically dehydrated by heating and distilling off the toluene at a bath temperature of 150 ° C. for 5 hours, and then stirred while keeping at a bath temperature of 150 ° C. for 9 hours. After cooling, the reaction solution was collected and the molecular weight was measured, but no polymer was confirmed.
比較例(A-5)
 共沸蒸留装置を備えたシュレンクフラスコに、窒素雰囲気下、式(10)で示される化合物を0.34g(0.98mmol)、4,4’-スルホニルジフェノール0.25g(0.98mmol)、炭酸カリウム0.84g(6.10mmol)を入れ、ジメチルスルホキシド4.4g、トルエン4gを添加した。その後バス温145℃で8時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジフルオロジフェニルスルホン0.50g(1.97mmol)を添加し、バス温145℃で16時間保温攪拌した。放冷後、反応液を6N塩酸に加え析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し固形物を得たが、該固形物は、ホスホン酸類基を有していなかった。
Mn=3700、Mw=4700
31P重量%=0.0(理論値:6.0)
Comparative Example (A-5)
In a Schlenk flask equipped with an azeotropic distillation apparatus, 0.34 g (0.98 mmol) of a compound represented by the formula (10), 0.25 g (0.98 mmol) of 4,4′-sulfonyldiphenol, Potassium carbonate 0.84 g (6.10 mmol) was added, and dimethyl sulfoxide 4.4 g and toluene 4 g were added. Thereafter, the water in the system was azeotropically dehydrated by distilling off toluene for 8 hours at a bath temperature of 145 ° C. Subsequently, 0.50 g (1.97 mmol) of 4,4′-difluorodiphenylsulfone was added, and the mixture was stirred while keeping at a bath temperature of 145 ° C. for 16 hours. After allowing to cool, the reaction solution was added to 6N hydrochloric acid, and the deposited precipitate was filtered, and then washed with ion-exchanged water until neutral, to obtain a solid, but the solid did not have a phosphonic acid group. It was.
Mn = 3700, Mw = 4700
31 P% by weight = 0.0 (theoretical value: 6.0)
比較例(B-1)
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、式(13)で示される化合物を2.18g(3.48mmol)、4,4’-スルホニルジフェノール0.87g(3.48mmol)、炭酸カリウム2.02g(14.6mmol)、ビフェニル30mgを入れ、N-メチルピロリドン20g、トルエン10gを添加した。その後バス温120℃で3時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジクロロジフェニルスルホン2.00g(6.97mmol)を添加した。窒素雰囲気下、これを3分割し、バス温140℃、160℃、180℃でそれぞれ5時間保温撹拌した。放冷後、それぞれの反応溶液をメタノールで希釈し、それぞれの転化率を測定した。また、それぞれの反応溶液から得られた生成物をGPCにて測定したが、重合体のピークは確認されなかった。
バス温140℃における式(13)で示される化合物の転化率=0モル%
バス温160℃における式(13)で示される化合物の転化率=5モル%
バス温180℃における式(13)で示される化合物の転化率=13モル%
Comparative Example (B-1)
In a flask equipped with an azeotropic distillation apparatus, under a nitrogen atmosphere, 2.18 g (3.48 mmol) of the compound represented by the formula (13), 0.87 g (3.48 mmol) of 4,4′-sulfonyldiphenol, carbonic acid, 2.02 g (14.6 mmol) of potassium and 30 mg of biphenyl were added, and 20 g of N-methylpyrrolidone and 10 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 120 ° C. for 3 hours. Then, 2.00 g (6.97 mmol) of 4,4′-dichlorodiphenylsulfone was added. This was divided into three parts under a nitrogen atmosphere, and the mixture was stirred while keeping the bath temperatures at 140 ° C., 160 ° C., and 180 ° C. for 5 hours. After standing to cool, each reaction solution was diluted with methanol, and each conversion rate was measured. Moreover, although the product obtained from each reaction solution was measured by GPC, the peak of the polymer was not confirmed.
Conversion of compound represented by formula (13) at bath temperature of 140 ° C. = 0 mol%
Conversion of compound represented by formula (13) at bath temperature of 160 ° C. = 5 mol%
Conversion of compound represented by formula (13) at bath temperature of 180 ° C. = 13 mol%
比較例(B-2)
 共沸蒸留装置を備えたフラスコに、窒素雰囲気下、式(13)で示される化合物を2.18g(3.48mmol)、4,4’-スルホニルジフェノール0.87g(3.48mmol)、炭酸カリウム2.02g(14.6mmol)、ビフェニル30mgを入れ、1,3-ジメチル-2-イミダゾリジノン20g、トルエン10gを添加した。その後バス温120℃で4時間トルエンを加熱留去することで系内の水分を共沸脱水した。次いで、4,4’-ジクロロジフェニルスルホン2.00g(6.97mmol)を添加した。窒素雰囲気下、これを3分割し、バス温160℃、180℃、190℃でそれぞれ5時間保温撹拌した。放冷後、それぞれの反応溶液をメタノールで希釈し、それぞれの転化率を測定した。また、それぞれの反応溶液から得られた生成物をGPCにて測定したが、重合体のピークは確認されなかった。
バス温160℃における式(13)で示される化合物の転化率=2モル%
バス温180℃における式(13)で示される化合物の転化率=11モル%
バス温190℃における式(13)で示される化合物の転化率=24モル%
Comparative Example (B-2)
In a flask equipped with an azeotropic distillation apparatus, 2.18 g (3.48 mmol) of a compound represented by the formula (13), 0.87 g (3.48 mmol) of 4,4′-sulfonyldiphenol, 2.02 g (14.6 mmol) of potassium and 30 mg of biphenyl were added, and 20 g of 1,3-dimethyl-2-imidazolidinone and 10 g of toluene were added. Thereafter, the water in the system was azeotropically dehydrated by heating and distilling off toluene at a bath temperature of 120 ° C. for 4 hours. Then, 2.00 g (6.97 mmol) of 4,4′-dichlorodiphenylsulfone was added. This was divided into three parts under a nitrogen atmosphere, and stirred while keeping the bath temperatures at 160 ° C., 180 ° C., and 190 ° C. for 5 hours, respectively. After standing to cool, each reaction solution was diluted with methanol, and each conversion rate was measured. Moreover, although the product obtained from each reaction solution was measured by GPC, the peak of the polymer was not confirmed.
Conversion of compound represented by formula (13) at bath temperature of 160 ° C. = 2 mol%
Conversion of compound represented by formula (13) at bath temperature of 180 ° C. = 11 mol%
Conversion of compound represented by formula (13) at bath temperature of 190 ° C. = 24 mol%
合成例4 [高分子電解質(ベースポリマー)の製造]
 特開2007-284653号公報実施例7、実施例21記載の方法を参考にして、スミカエクセルPES5200P(住友化学株式会社製)を用いて、下記式(19)で示される繰り返し単位からなる、スルホン酸基を有するセグメントと、下記式(20)で示される、イオン交換基を有さないセグメントとを有するブロック共重合体1(イオン交換容量=2.5meq/g、Mw=340×10、Mn=160×10(これらの値は特開2007-284653号公報記載の方法で測定した。))を合成した。
Synthesis Example 4 [Production of polymer electrolyte (base polymer)]
A sulfone comprising a repeating unit represented by the following formula (19) using Sumika Excel PES5200P (manufactured by Sumitomo Chemical Co., Ltd.) with reference to the methods described in Examples 7 and 21 of JP-A-2007-284653. Block copolymer 1 having a segment having an acid group and a segment having no ion exchange group represented by the following formula (20) (ion exchange capacity = 2.5 meq / g, Mw = 340 × 10 3 , Mn = 160 × 10 3 (these values were measured by the method described in JP-A-2007-284653)).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
実施例(A-9) [高分子電解質膜の製造1]
 実施例(A-8)で得た重合物と、ブロック共重合体1とを、重量比で1:9の割合で混合した。得られた混合物の濃度が9重量%となるようにジメチルスルホキシドに溶解させ、高分子電解質溶液を調製した。次いで、この高分子電解質溶液をPET基材上に均一に塗り広げた。塗布後、高分子電解質溶液を80℃で常圧乾燥した。得られた膜を2N硫酸に浸漬した後、イオン交換水で洗浄し、更に常温乾燥した後、PET基材から剥離することで高分子電解質膜(膜厚20μm)を得た。得られた膜の耐ラジカル性を評価し、その結果を表1に示した。
Example (A-9) [Production 1 of polymer electrolyte membrane]
The polymer obtained in Example (A-8) and the block copolymer 1 were mixed at a weight ratio of 1: 9. A polymer electrolyte solution was prepared by dissolving in dimethyl sulfoxide so that the concentration of the obtained mixture was 9% by weight. Next, this polymer electrolyte solution was uniformly spread on a PET substrate. After application, the polymer electrolyte solution was dried at 80 ° C. under normal pressure. The obtained membrane was immersed in 2N sulfuric acid, washed with ion-exchanged water, further dried at room temperature, and then peeled from the PET substrate to obtain a polymer electrolyte membrane (film thickness 20 μm). The radical resistance of the obtained film was evaluated, and the results are shown in Table 1.
比較例(A-6) [高分子電解質膜の製造2]
 ブロック共重合体1を、濃度が9重量%となるようにジメチルスルホキシドに溶解させ、高分子電解質溶液を調製した。次いで、この高分子電解質溶液をPET基材上に均一に塗り広げた。塗布後、高分子電解質溶液を80℃で常圧乾燥した。得られた膜を2N硫酸に浸漬した後、イオン交換水で洗浄し、更に常温乾燥した後、PET基材から剥離することで高分子電解質膜(膜厚20μm)を得た。得られた膜の耐ラジカル性を評価し、その結果を表1に示した。
Comparative Example (A-6) [Polymer Electrolyte Membrane Production 2]
The block copolymer 1 was dissolved in dimethyl sulfoxide so as to have a concentration of 9% by weight to prepare a polymer electrolyte solution. Next, this polymer electrolyte solution was uniformly spread on a PET substrate. After application, the polymer electrolyte solution was dried at 80 ° C. under normal pressure. The obtained membrane was immersed in 2N sulfuric acid, washed with ion-exchanged water, further dried at room temperature, and then peeled from the PET substrate to obtain a polymer electrolyte membrane (film thickness 20 μm). The radical resistance of the obtained film was evaluated, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 以上の結果から、一般式(1)で示される単量体を用いて、塩基と銅塩との共存下、有機溶媒中で重合させることにより、反応溶媒の種類によらず、温和な反応条件下、単量体の転化率が高く、芳香族系高分子電解質を得ることができることが明らかとなった。また、以上の結果から、一般式(4)で示される単量体を用いることにより、塩基の存在下、少ない反応工程数で芳香族系高分子ホスホン酸類を製造できることが明らかとなった。さらに、実施例(A-5)および(A-6)の結果より、単量体の仕込み比を変えることにより、得られる芳香族系高分子ホスホン酸類のホスホン酸類基密度を容易に調整できることが明らかとなった。上記製造方法で得られた芳香族系高分子ホスホン酸類は、実施例(A-9)に示される通り、耐ラジカル性に優れるため、上記製造方法により得られた高分子電解質を高分子電解質膜として用いた燃料電池は、実用的に十分な発電性能を維持しながらも、長期安定性に優れた燃料電池を提供できるため、工業的に極めて有用である。 From the above results, by using the monomer represented by the general formula (1) and polymerizing in an organic solvent in the presence of a base and a copper salt, mild reaction conditions can be used regardless of the type of reaction solvent. The results show that the monomer conversion is high and an aromatic polymer electrolyte can be obtained. From the above results, it was revealed that the aromatic polymer phosphonic acids can be produced with a small number of reaction steps in the presence of a base by using the monomer represented by the general formula (4). Furthermore, from the results of Examples (A-5) and (A-6), the phosphonic acid group density of the obtained aromatic polymer phosphonic acids can be easily adjusted by changing the monomer charging ratio. It became clear. The aromatic polymer phosphonic acids obtained by the above production method are excellent in radical resistance as shown in Example (A-9). Therefore, the polymer electrolyte obtained by the above production method is used as a polymer electrolyte membrane. Since the fuel cell used as can provide a fuel cell with excellent long-term stability while maintaining practically sufficient power generation performance, it is extremely useful industrially.

Claims (26)

  1.  一般式(1)
    (式中、X、Xで示される基はそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。Eで示される基はイオン交換基またはイオン交換前駆基を表す。nは1~4の整数を表す。なお、Eが複数存在する場合、複数存在するEは、それぞれ同一であっても異なっていてもよい。)
    で表される単量体を、塩基と第一遷移金属塩との共存下で重合させる重合工程、又は、
     Eが-(P(=O)(OR)(OR))で示される基(Rは水素原子、無機カチオンまたは有機カチオンを表し、Rはアルキル基またはアリール基を表す。なお、RおよびRが複数存在する場合、複数存在するRおよびRは、それぞれ同一であっても異なっていてもよい。)である前記単量体を、塩基の存在下で重合させる重合工程、を備える芳香族系高分子の製造方法。
    General formula (1)
    (In the formula, groups represented by X 1 and X 2 each independently represent a condensable reactive group. Ar 1 represents an optionally substituted aromatic group. The group represented by E 1 is Represents an ion exchange group or an ion exchange precursor group, and n represents an integer of 1 to 4. When a plurality of E 1 are present, the plurality of E 1 may be the same or different. )
    A polymerization step of polymerizing the monomer represented by the presence of a base and a first transition metal salt, or
    E 1 represents a group represented by — (P (═O) (OR 1 ) (OR 2 )) (R 1 represents a hydrogen atom, an inorganic cation or an organic cation, and R 2 represents an alkyl group or an aryl group. , R 1 and R 2 are present in a plurality, R 1 and R 2 may be the same or different from each other.) The monomer is polymerized in the presence of a base. A method for producing an aromatic polymer comprising a polymerization step.
  2.  一般式(1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、X、Xで示される基はそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。Eで示される基はイオン交換基またはイオン交換前駆基を表す。nは1~4の整数を表す。なお、Eが複数存在する場合、複数存在するEは、それぞれ同一であっても異なっていてもよい。)
    で表される単量体を、塩基と第一遷移金属塩との共存下で重合させる重合工程を備えることを特徴とする、請求項1に記載の芳香族系高分子の製造方法。
    General formula (1)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, groups represented by X 1 and X 2 each independently represent a condensable reactive group. Ar 1 represents an optionally substituted aromatic group. The group represented by E 1 is Represents an ion exchange group or an ion exchange precursor group, and n represents an integer of 1 to 4. When a plurality of E 1 are present, the plurality of E 1 may be the same or different. )
    The method for producing an aromatic polymer according to claim 1, further comprising a polymerization step of polymerizing the monomer represented by the formula in the presence of a base and a first transition metal salt.
  3.  前記重合工程と、前記一般式(1)において、Eで示される基(但し、Eで示される基がイオン交換基である場合を除く)の少なくとも一部を、Eで示される基に変換する反応工程を備える、一般式(2)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Arは置換基を有してもよい芳香族基を表す。Eで示される基は、イオン交換基またはEと異なるイオン交換前駆基を表す。mは1~4の整数を表し、Zは-O-または-S-で示される基を表す。なお、Eが複数存在する場合、複数存在するEは、それぞれ同一であっても異なっていてもよい。)
    で表される繰り返し単位を有する請求項1又は2に記載の芳香族系高分子の製造方法。
    Wherein the polymerization step, in the general formula (1), a group a group represented by E 1 at least part of (but group represented by E 1 excluding the case where the ion-exchange group), represented by E 2 General formula (2) comprising a reaction step of converting to
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, Ar 2 represents an aromatic group which may have a substituent. The group represented by E 2 represents an ion-exchange group or an ion-exchange precursor group different from E 1. m is 1 to 4) It represents an integer, Z is a group represented by -O- or -S-. in the case where E 2 there are a plurality, E 2 existing in plural numbers may each be the same or different.)
    The manufacturing method of the aromatic polymer of Claim 1 or 2 which has a repeating unit represented by these.
  4.  前記反応工程が、強酸、トリアルキルシリルハライド、塩基および求核試薬からなる群より選ばれる1種以上を作用させて、前記Eで示される基の少なくとも一部を、Eで示される基に変換する工程である請求項3に記載の芳香族系高分子の製造方法。 In the reaction step, one or more selected from the group consisting of strong acids, trialkylsilyl halides, bases, and nucleophiles are allowed to act, and at least a part of the group represented by E 1 is converted to a group represented by E 2. The method for producing an aromatic polymer according to claim 3, wherein the method is a step of converting into an aromatic polymer.
  5.  前記イオン交換基がホスホン酸基であり、前記イオン交換前駆基がホスホン酸前駆基である請求項1~4のいずれかに記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 1 to 4, wherein the ion exchange group is a phosphonic acid group, and the ion exchange precursor group is a phosphonic acid precursor group.
  6.  前記イオン交換基がスルホン酸基であり、前記イオン交換前駆基がスルホン酸前駆基である請求項1~4のいずれかに記載の芳香族高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 1 to 4, wherein the ion exchange group is a sulfonic acid group, and the ion exchange precursor group is a sulfonic acid precursor group.
  7.  前記重合工程において、前記一般式(1)で表される単量体と、一般式(3)
    Figure JPOXMLDOC01-appb-C000004
    (式中、X、Xで示される基はそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。)
    で表される単量体とを共重合させる請求項1~6のいずれかに記載の芳香族系高分子の製造方法。
    In the polymerization step, the monomer represented by the general formula (1) and the general formula (3)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, groups represented by X 3 and X 4 each independently represent a condensable reactive group. Ar 3 represents an aromatic group which may have a substituent.)
    The method for producing an aromatic polymer according to any one of claims 1 to 6, wherein a monomer represented by the formula:
  8.  前記Xおよび前記Xで示される基が、それぞれ独立にヒドロキシル基またはメルカプト基である請求項1~7のいずれかに記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 1 to 7, wherein the groups represented by X 1 and X 2 are each independently a hydroxyl group or a mercapto group.
  9.  前記塩基がアルカリ金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属水酸化物、アルカリ金属水素化物、アルカリ土類金属炭酸塩、アルカリ土類金属炭酸水素塩、アルカリ土類金属水酸化物およびアルカリ土類金属水素化物からなる群より選ばれる1種以上の塩基である請求項1~8のいずれかに記載の芳香族系高分子の製造方法。 The base is an alkali metal carbonate, alkali metal bicarbonate, alkali metal hydroxide, alkali metal hydride, alkaline earth metal carbonate, alkaline earth metal bicarbonate, alkaline earth metal hydroxide and alkaline earth. The method for producing an aromatic polymer according to any one of claims 1 to 8, which is at least one base selected from the group consisting of metal hydrides.
  10.  前記第一遷移金属塩が銅塩である請求項1~9のいずれかに記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 1 to 9, wherein the first transition metal salt is a copper salt.
  11.  前記銅塩が1価の銅塩である請求項10に記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to claim 10 , wherein the copper salt is a monovalent copper salt.
  12.  前記の1価の銅塩がCuCl、CuBrおよびCuIからなる群より選ばれる1種以上である請求項11に記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to claim 11, wherein the monovalent copper salt is at least one selected from the group consisting of CuCl, CuBr and CuI.
  13.  一般式(4)
    Figure JPOXMLDOC01-appb-C000005
    (式中、X、Xはそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。pは1~4の整数を表す。Rは水素原子、無機カチオンまたは有機カチオンを表し、Rはアルキル基またはアリール基を表す。なお、RおよびRが複数存在する場合、複数存在するRおよびRは、それぞれ同一であっても異なっていてもよい。)
    で表される単量体を塩基の存在下で重合させる重合工程を備える、請求項1に記載の芳香族系高分子の製造方法。
    General formula (4)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, X 5 and X 6 each independently represent a condensable reactive group. Ar 4 represents an aromatic group which may have a substituent. P represents an integer of 1 to 4. R 1 represents a hydrogen atom, an inorganic or organic cation, R 2 represents an alkyl group or an aryl group. in the case where R 1 and R 2 there are a plurality, R 1 and R 2 existing in plural numbers, respectively identical It may or may not be.)
    The manufacturing method of the aromatic polymer of Claim 1 provided with the superposition | polymerization process which polymerizes the monomer represented by these in presence of a base.
  14.  前記塩基が、第一遷移金属塩以外の金属化合物からなる塩基である、請求項13に記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to claim 13, wherein the base is a base composed of a metal compound other than the first transition metal salt.
  15.  前記重合工程と、前記一般式(4)において-(P(=O)(OR)(OR))で示される基の少なくとも一部を、-(P(=O)(OH)(OR))で示される基に変換する反応工程とを備える、一般式(5)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Arは置換基を有していてもよい芳香族基を表す。qは1~4の整数を表す。Zは-O-、-S-または-NR-(Rは水素原子、アルキル基またはアリール基を表す。)で示される基を表す。Rは水素原子、アルキル基またはアリール基を表す。なお、Rが複数存在する場合、複数存在するRは、それぞれ同一であっても異なっていてもよい。)
    で表される繰り返し単位を有する請求項13又は14に記載の芳香族系高分子の製造方法。
    In the polymerization step, at least a part of the group represented by — (P (═O) (OR 1 ) (OR 2 )) in the general formula (4) is substituted with — (P (═O) (OH) (OR 3 )) a reaction step for converting to a group represented by formula (5)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, Ar 5 represents an aromatic group which may have a substituent. Q represents an integer of 1 to 4. Z 2 represents —O—, —S— or —NR 4 — (R 4 the .R 3 represents a group represented by.) represents a hydrogen atom, an alkyl group or an aryl group represents a hydrogen atom, an alkyl group or an aryl group. in the case where R 3 there are a plurality, R 3 existing in plural Each may be the same or different.)
    The manufacturing method of the aromatic polymer of Claim 13 or 14 which has a repeating unit represented by these.
  16.  前記反応工程が、強酸および/またはトリアルキルシリルハライドを作用させて、前記-(P(=O)(OR)(OR))で示される基の少なくとも一部を、-(P(=O)(OH)(OR))で示される基に変換する工程である請求項15に記載の芳香族系高分子の製造方法。 In the reaction step, a strong acid and / or a trialkylsilyl halide is allowed to act to convert at least a part of the group represented by — (P (═O) (OR 1 ) (OR 2 )) to — (P (= The method for producing an aromatic polymer according to claim 15, which is a step of converting to a group represented by O) (OH) (OR 3 )).
  17.  前記重合工程において、前記一般式(4)で表される単量体と、一般式(6)
    Figure JPOXMLDOC01-appb-C000007
    (式中、X、Xはそれぞれ独立に縮合性の反応基を表す。Arは置換基を有していてもよい芳香族基を表す。)
    で表される前記-(P(=O)(OR)(OR))で示される基を有さない単量体とを共重合させる請求項13~16のいずれかに記載の芳香族系高分子の製造方法。
    In the polymerization step, the monomer represented by the general formula (4) and the general formula (6)
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, X 7 and X 8 each independently represent a condensable reactive group. Ar 6 represents an aromatic group which may have a substituent.)
    The aromatic group according to any one of claims 13 to 16, which is copolymerized with a monomer represented by the formula-(P (= O) (OR 1 ) (OR 2 )). Of production of a polymer.
  18.  前記Xおよび前記Xがともに求核性の反応基である請求項13~17のいずれかに記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 13 to 17, wherein both X 5 and X 6 are nucleophilic reactive groups.
  19.  前記求核性の反応基がヒドロキシル基である請求項18に記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to claim 18, wherein the nucleophilic reactive group is a hydroxyl group.
  20.  Rがアルキル基である請求項13~19のいずれかに記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 13 to 19, wherein R 2 is an alkyl group.
  21.  前記重合工程において、100℃以上で重合させる請求項13~20のいずれかに記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 13 to 20, wherein the polymerization is performed at 100 ° C or higher in the polymerization step.
  22.  前記塩基がアルカリ金属塩である請求項13~21のいずれかに記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 13 to 21, wherein the base is an alkali metal salt.
  23.  Rが有機カチオンである請求項13~22のいずれかに記載の芳香族系高分子の製造方法。 The method for producing an aromatic polymer according to any one of claims 13 to 22, wherein R 1 is an organic cation.
  24.  前記一般式(4)において-(P(=O)(OR)(OR))で示される基が、Xおよび/またはXに置換されているベンゼン環と同一のベンゼン環を置換している請求項13~23のいずれかに記載の芳香族系高分子の製造方法。 In the general formula (4), a group represented by — (P (═O) (OR 1 ) (OR 2 )) replaces the same benzene ring as that substituted with X 5 and / or X 6. The method for producing an aromatic polymer according to any one of claims 13 to 23.
  25.  一般式(7)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Arは置換基を有していてもよい芳香族基を表す。qは1~4の整数を表す。Rは水素原子、無機カチオンまたは有機カチオンを表し、Rはアルキル基またはアリール基を表す。なお、RおよびRが複数存在する場合、複数存在するRおよびRは、それぞれ同一であっても異なっていてもよい。)
    で表される化合物。
    General formula (7)
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, Ar 4 represents an aromatic group which may have a substituent. Q represents an integer of 1 to 4. R 1 represents a hydrogen atom, an inorganic cation or an organic cation, and R 2 represents an alkyl group. represents a group or an aryl group. in the case where R 1 and R 2 there are a plurality, R 1 and R 2 existing in plural numbers may each be the same or different.)
    A compound represented by
  26.  Arが、置換基を有してもよいビフェニル基である、請求項25に記載の化合物。 The compound according to claim 25, wherein Ar 4 is a biphenyl group which may have a substituent.
PCT/JP2009/054777 2008-03-13 2009-03-12 Process for production of aromatic polymer and starting compound for the same WO2009113619A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008063751 2008-03-13
JP2008-063751 2008-03-13
JP2008090682 2008-03-31
JP2008-090682 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009113619A1 true WO2009113619A1 (en) 2009-09-17

Family

ID=41065279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054777 WO2009113619A1 (en) 2008-03-13 2009-03-12 Process for production of aromatic polymer and starting compound for the same

Country Status (2)

Country Link
JP (1) JP2009263634A (en)
WO (1) WO2009113619A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682920B2 (en) * 2011-02-21 2015-03-11 Jx日鉱日石エネルギー株式会社 Proton conducting polymer and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299080A (en) * 2005-04-20 2006-11-02 Yamaguchi Univ Polysulfonated aromatic compound, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
JP2007031634A (en) * 2005-07-29 2007-02-08 Toray Ind Inc Process for production of aromatic polyether based polymer
JP2007039525A (en) * 2005-08-02 2007-02-15 Toyobo Co Ltd Ion-exchange membrane, ion-exchange resin, manufacturing method thereof, and refining method of ion-exchange resin
JP2007154207A (en) * 2007-02-02 2007-06-21 Sumitomo Chemical Co Ltd Poly(2-phenyl-1,4-phenylene ether)
JP2007191694A (en) * 2005-12-20 2007-08-02 Sumitomo Chemical Co Ltd Copolymer, polymer electrolyte, and use thereof
JP2007262112A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Polymer electrolyte material, polymer electrolyte component using the same, membrane electrode assembly and polymer electrolyte type fuel cell
WO2008018487A1 (en) * 2006-08-11 2008-02-14 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte molded product using the polymer electrolyte material and method for manufacturing the polymer electrolyte molded product, membrane electrode composite, and solid polymer fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299080A (en) * 2005-04-20 2006-11-02 Yamaguchi Univ Polysulfonated aromatic compound, sulfonated polymer, polymeric solid electrolyte and proton-conductive film
JP2007031634A (en) * 2005-07-29 2007-02-08 Toray Ind Inc Process for production of aromatic polyether based polymer
JP2007039525A (en) * 2005-08-02 2007-02-15 Toyobo Co Ltd Ion-exchange membrane, ion-exchange resin, manufacturing method thereof, and refining method of ion-exchange resin
JP2007191694A (en) * 2005-12-20 2007-08-02 Sumitomo Chemical Co Ltd Copolymer, polymer electrolyte, and use thereof
JP2007262112A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Polymer electrolyte material, polymer electrolyte component using the same, membrane electrode assembly and polymer electrolyte type fuel cell
WO2008018487A1 (en) * 2006-08-11 2008-02-14 Toray Industries, Inc. Polymer electrolyte material, polymer electrolyte molded product using the polymer electrolyte material and method for manufacturing the polymer electrolyte molded product, membrane electrode composite, and solid polymer fuel cell
JP2007154207A (en) * 2007-02-02 2007-06-21 Sumitomo Chemical Co Ltd Poly(2-phenyl-1,4-phenylene ether)

Also Published As

Publication number Publication date
JP2009263634A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5265147B2 (en) Fluorinated polymer blocks for PEM applications
KR101546816B1 (en) Ion conducting polymer comprising partially branched multiblock copolymer and use thereof
JP5028828B2 (en) Polyarylene block copolymer and use thereof
TW200829545A (en) Monomers comprising superacidic groups, and polymers therefrom
WO2015156228A1 (en) Polymer electrolyte composition and polymer electrolyte membrane, membrane-electrolyte assembly, and solid polymer fuel cell using same
JP4356279B2 (en) Aromatic polymer phosphonic acids, process for producing the same and uses thereof
WO2013027758A1 (en) Ion exchange membrane for vanadium redox batteries, composite body, and vanadium redox battery
TWI658638B (en) Polymer electrolyte composition and polymer electrolyte membrane, polymer electrolyte membrane with catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell each using the same
KR20130011676A (en) Block copolymer comprising hydrophilic block and hydrophobic block, polymer electrolyte membrane prepared from the block copolymer, and fuel cell employing the polymer electrolyte membrane
JP2012122035A (en) New phosphonic acid group-containing bisphenol or bisthiophenol compound, method for producing the same, and application thereof
JP7513971B2 (en) Method for producing anion exchange resin and method for producing electrolyte membrane
JP5796284B2 (en) Biphenyltetrasulfonic acid compound, process for producing the same, polymer and polymer electrolyte
US7993792B2 (en) Polymer blocks for PEM applications
JP7513970B2 (en) Method for producing anion exchange resin and method for producing electrolyte membrane
JP2012001715A (en) Polyarylene-based block copolymer, production method thereof, and polymer electrolyte
JP5851100B2 (en) Fluorocarbon polymer material and synthesis method
WO2009113619A1 (en) Process for production of aromatic polymer and starting compound for the same
JP6069972B2 (en) Aromatic sulfonimide derivative, sulfonimide group-containing polymer, polymer electrolyte material using the same, polymer electrolyte molded article, and solid polymer fuel cell
JP5266691B2 (en) Polymer, polymer electrolyte and fuel cell using the same
WO2010061963A1 (en) Polymer, polymer electrolyte, fuel cell, and process for producing polymer electrolyte membrane
JP5962120B2 (en) Polymer and production method thereof
WO2011049211A1 (en) Polyarylene copolymer having, in side chain thereof, aromatic ring containing phosphonate group
JPWO2011155520A1 (en) Polyarylene block copolymer having sulfonic acid group and use thereof
JP5682920B2 (en) Proton conducting polymer and method for producing the same
US20240178424A1 (en) Polymer electrolyte membrane, block copolymer, polymer electrolyte material, polymer electrolyte molded body, electrolyte membrane with catalyst layer, membrane electrode composite, solid polymer fuel cell, and water electrolytic hydrogen generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09720959

Country of ref document: EP

Kind code of ref document: A1