WO2009110688A2 - 태양광 발전 장치 - Google Patents

태양광 발전 장치 Download PDF

Info

Publication number
WO2009110688A2
WO2009110688A2 PCT/KR2009/000830 KR2009000830W WO2009110688A2 WO 2009110688 A2 WO2009110688 A2 WO 2009110688A2 KR 2009000830 W KR2009000830 W KR 2009000830W WO 2009110688 A2 WO2009110688 A2 WO 2009110688A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
reflecting
cell module
solar
reflector
Prior art date
Application number
PCT/KR2009/000830
Other languages
English (en)
French (fr)
Other versions
WO2009110688A3 (ko
Inventor
장금식
조성례
Original Assignee
Jang Gum Sik
Jo Seong Rye
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080021090A external-priority patent/KR100876392B1/ko
Priority claimed from KR1020080099282A external-priority patent/KR20100040181A/ko
Application filed by Jang Gum Sik, Jo Seong Rye filed Critical Jang Gum Sik
Publication of WO2009110688A2 publication Critical patent/WO2009110688A2/ko
Publication of WO2009110688A3 publication Critical patent/WO2009110688A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photovoltaic device, and more particularly, to a photovoltaic device for converting solar energy into electrical energy using a solar cell.
  • a solar cell used for converting solar energy into electrical energy in a photovoltaic device is composed of a solar cell array formed by connecting a plurality of solar cell modules formed of a plurality of solar cell cells.
  • the cost of manufacturing the photovoltaic device is increased because the cost of parts of the condenser lens is high.
  • the solar cell apparatus converts solar energy into electrical energy by injecting solar light into the solar cell, and as the solar light is focused on the solar cell, the temperature of the solar cell increases, whereby the solar cell There is a problem of deterioration.
  • the power generation efficiency of the solar cell is generally 10-15%, only 10-15% of the solar energy incident on the solar cell is used for photovoltaic power generation, and the remaining 85-90% of the energy cannot be effectively used. Abandoned by heat.
  • an object of the present invention is to provide a photovoltaic device configured to increase the incident amount of sunlight incident on a solar cell at a low manufacturing cost, to solve the problems of the prior art.
  • the present invention can provide a photovoltaic device configured to be able to prevent the temperature rise of the solar cell while using the heat that is not used for power generation of the solar energy incident on the solar cell for hot water or heating. Is in.
  • a solar cell apparatus for converting solar energy into electrical energy using a solar cell
  • the solar cell is formed by connecting a plurality of solar cell modules A solar cell module, wherein both sides of the solar cell modules are provided with an inclined reflector to reflect sunlight into the solar cell module, and the reflector is inclined to irradiate the sun with the entire solar cell module.
  • a photovoltaic device is provided comprising a first reflecting portion and a second reflecting portion inclined to irradiate sunlight to the opposite half of the reflecting plate of the solar cell module.
  • the first reflector is inclined such that sunlight reflected from the upper end thereof is irradiated to the opposite end side of the reflecting plate among the solar cell modules and sunlight reflected from the lower end thereof is irradiated to the reflecting plate side end of the solar cell module,
  • the second reflecting portion is irradiated with sunlight reflected from the upper end portion of the solar cell module to the opposite side of the reflecting plate and the sunlight reflected from the lower end portion of the solar cell module to the inner end of the opposite half side of the reflecting plate It is preferred to be inclined to be irradiated.
  • the reflector is formed of the first reflector and the second reflector by bending one metal plate.
  • the reflecting surface of the reflecting plate is mirror-finished or attached with a stainless steel mirror or a glass mirror.
  • the first reflecting portion of the reflecting plate is inclined at an angle of 115.5 degrees inward with respect to the solar cell module of the solar cell array, the width of the first reflecting portion is 1.47 times the width of the solar cell module, the second reflection of the reflecting plate The portion is formed to be inclined 5.2 degrees inward with respect to the first reflecting portion, but the width of the second reflecting portion is preferably 1.1 times the width of the solar cell module.
  • the solar cell array is formed in a straight line form a plurality of solar cell modules arranged in a row, the plurality of solar cell array is arranged spaced apart at regular intervals, the reflector is supported on a separately manufactured block is the solar It is preferable that the blocks assembled with the cell arrays and installed between the solar cell arrays are inclined at both sides, and the blocks installed at both ends of the solar cell array are inclined only at one surface.
  • the heat sink is insulated and attached to the rear surface of the solar cell modules, and a heat exchanger having a passage through which a refrigerant flows is formed in close contact with the rear surface of the solar cell module, and the front surface of the solar cell modules and the rear surface of the heat sink are insulated. desirable.
  • transparent glass is installed on the front surface of the solar cell modules so as to be spaced apart from the solar cell modules, and an air layer is present therebetween.
  • the heat sink is surrounded by a heat insulating material on the rear surface including the heat exchanger.
  • a plurality of cooling radiating fins may be formed on the rear surface of the heat sink.
  • the solar cell array is formed in a linear form of a plurality of solar cell modules arranged in a row and connected, each of the solar cell module is provided with a negative electrode and a positive electrode on the front and rear, respectively, the width direction of the linear solar cell array
  • each of the solar cell modules it is preferable that negative electrode terminals and positive electrode terminals are provided at both sides in the width direction of the straight solar cell array to connect both ends of the negative electrode and the positive electrode, respectively.
  • the solar cell is connected to a plurality of solar cell modules Comprising a solar cell array formed, the solar cell array is installed upside down so that the front side is rearward, the rear side of the solar cell array reflects sunlight to the solar cell module in front of the solar cell array It is preferable that an inclined reflector is provided so as to make it.
  • One end of the support is installed on the front surface of the solar cell array, and an auxiliary plate is installed at the other end of the support, and one side of each of the reflection plates is positioned at both side ends of the auxiliary plate, so that the reflected light for the vertical incident light is reflected in the solar cell.
  • the pair of first reflecting portions installed to be incident on the entire area of the module and one end thereof are connected to the side ends of the pair of first reflecting portions so that the reflected light of the vertical incident light is incident on the entire area of the solar cell module It is preferred to include a pair of second reflectors.
  • the pair of second reflectors further includes a pair of third reflectors having one side end connected to the side ends of the pair of first reflecting parts such that reflected light of vertical incident light is incident on the entire area of the solar cell module. It is preferable.
  • the photovoltaic device of the present invention since it is configured to increase the incident amount of sunlight incident on the solar cell at a low production cost, there is an effect that the photovoltaic power generation efficiency is increased. Moreover, according to the photovoltaic device of the present invention, since the temperature rise of the solar cell can be prevented, the heat that cannot be used for generation of solar energy incident on the solar cell can be used for hot water or heating. By preventing the deterioration of the battery, while increasing the durability of the solar cell, there is an effect of enabling hot water and heating at the same time as photovoltaic power generation.
  • FIG. 1 is a perspective view of a solar cell of a solar cell apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG.
  • FIG. 3 is an enlarged view of a portion B of FIG. 2.
  • FIG. 4 is a perspective view of a state where a reflector is installed on a solar cell in the solar cell apparatus according to the embodiment of the present invention.
  • FIG. 5 is a front view of FIG. 4.
  • FIG. 6 is a perspective view illustrating only a reflecting plate in the solar cell apparatus according to the embodiment of the present invention.
  • FIG. 7 is a plan view of a solar cell of a photovoltaic device according to an embodiment of the present invention.
  • FIG 8 is a front view of a state in which a reflector is installed on a solar cell in the solar cell apparatus according to another embodiment of the present invention.
  • FIG. 9 is a front view of a photovoltaic device according to yet another embodiment of the present invention.
  • FIG. 10 is a perspective view of FIG. 9.
  • FIG. 11 is a perspective view of two rows of the photovoltaic device of FIG. 10.
  • FIG. 11 is a perspective view of two rows of the photovoltaic device of FIG. 10.
  • FIG. 1 is a perspective view of a solar cell of a solar cell apparatus according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along the line A-A of Figure 1
  • Figure 3 is an enlarged view of the portion B of FIG.
  • the solar cell of the photovoltaic device consists of a solar cell array 1 formed by connecting a plurality of solar cell modules 10 formed of a plurality of solar cell cells.
  • the insulating sheet 13 is laid on the base plate 11 made of aluminum, and a plurality of solar cell modules 10 are connected to the insulating sheet 13 to form a solar cell array 1.
  • a negative electrode 15 is provided on a front surface of each of the solar cell modules 10, and a positive electrode 17 is provided on a rear surface of each of the solar cell modules 10.
  • an electrode connecting plate auxiliary PCB is interposed between the negative electrode 15 and the positive electrode 17.
  • the heat sink 20 is attached to the back of the solar cell modules 10, and more particularly, to the back of the base plate 11.
  • the heat sink 20 consists of a flat part and both protrusions which protrude vertically downward from the both ends of this flat part.
  • the heat sink 20 is preferably made of aluminum.
  • the heat exchanger 30 having the passage 31 through which the refrigerant flows is provided on the rear surface of the flat portion of the heat sink 20 to be in close contact with each other.
  • the heat exchanger 30 is preferably made of copper pipe material. Although not shown at both ends of the passage 31, it can be seen that the inlets and outlets for the inlet and outlet of the refrigerant are formed.
  • the heat sink 20 is installed on the rear surface of the solar cell modules 10, the heat of the solar cell module 10 is transferred to the heat sink 20, so that the temperature of the solar cell module 10 is lowered. The degradation of the solar cell module 10 is prevented, so that the durability of the solar cell module 10 is increased.
  • the front surface of the solar cell modules 10 and the rear surface of the heat sink 20 are insulated.
  • the transparent glass 40 is installed on the front surface of the solar cell modules 10 so as to be spaced apart from the solar cell module 10 by the support guide 41, and an air layer 43 is present therebetween.
  • the air layer 43 acts as a heat insulating layer. It is preferable that the transparent glass 40 is low iron tempered glass.
  • the heat sink 20 has a back surface including a heat exchanger 30 is surrounded by a heat insulating material (50). That is, after the heat insulating material 50 is inserted into the flat portion and both protrusions of the heat sink 20, the lower cover 60 covers the outside of the heat sink 20 and the heat insulating material 50. It is preferable that the heat insulating material 50 is a foam heat insulating material.
  • the air layer 43 and the heat insulating material 50 by the transparent glass 40 serve as a highly efficient heat collector, all of the heat generated by the sunlight incident on the solar cell is absorbed by the heat sink 20 and the heat exchanger 30. Heat exchange with the refrigerant can be used for hot water or heating.
  • FIG. 4 is a perspective view of a state where a reflector is installed on a solar cell in the solar cell apparatus according to an embodiment of the present invention
  • Figure 5 is a front view of FIG.
  • the inclined reflector 70 is installed to reflect the sunlight to the solar cell module 10.
  • the reflecting plate 70 includes a first reflecting unit 71 and a second reflecting unit 73, and the first reflecting unit 71 is inclined to irradiate sunlight to the entire solar cell module 10.
  • the second reflecting portion 73 is inclined to irradiate sunlight to the opposite half side of the reflecting plate 70 of the solar cell module 10.
  • the first reflecting portion 71 of the reflecting plate 70 has the reflecting plate 70 among the solar cell modules 10 as the dotted line a is reflected by sunlight.
  • the solar light that is irradiated to the opposite end of the light and reflected at the lower end thereof is inclined to be irradiated to the reflecting plate side end of the low solar cell module 10 as shown by the dotted line b.
  • the second reflecting portion 71 of the reflecting plate 70 is irradiated with the sunlight reflected from the upper end thereof to the opposite side end of the reflecting plate 70 of the solar cell module 10 as indicated by the dotted line c and reflected at the lower end thereof.
  • the solar light is inclined so as to be irradiated to the inner end of the opposite half side of the reflecting plate 70 of the solar cell module 10 as shown by the dotted line d.
  • the solar light irradiated to the solar cell module 10 in front is indicated by a dashed line e.
  • the first reflecting portion 71 of the reflecting plate 70 is formed to be inclined at an angle of about 115.5 degrees at the side end of the solar cell module 10, wherein the width of the first reflecting portion 71 is the solar cell module It is 1.47 times the width of (10).
  • the second reflector 73 of the reflector plate 70 is formed to be inclined about 5.2 degrees further with respect to the first reflector 71, where the width of the second reflector 73 is a solar cell module ( 10 times the width of 10).
  • the first reflector 71 collects 63% of the amount of sunlight received by the solar cell module 10 from the front side and irradiates the solar cell module 10, and the second reflector 73 solar cell module 10. 38% of the amount of sunlight received from the front side is collected and irradiated to the solar cell module 10.
  • the reflecting plates 70 are provided on both side surfaces of the solar cell module 10, 126% of sunlight is collected by both first reflecting portions 71 and 76% by both second reflecting portions 73. Of the solar light is collected, and a total of 202% of the sunlight is collected by both reflecting plates 70 and irradiated to the solar cell module 10.
  • the solar cell module 10 adds 100% of the amount of sunlight received from the front, the total amount of solar light collected by the solar cell module 10 in the present invention is 302%. Therefore, according to the present invention, since it receives about three times the amount of sunlight as compared with the case of receiving sunlight only from the front of the solar cell module 10, it is about compared with the case of receiving sunlight only from the front of the solar cell module 10. 3 times solar power generation will be possible.
  • the solar cell array 1 is formed in a linear shape in which a plurality of solar cell modules 10 are aligned and connected in a row. Further, a plurality of solar cell arrays 1 are arranged spaced apart at regular intervals.
  • FIG. 6 is a perspective view illustrating only a reflecting plate in the solar cell apparatus according to the embodiment of the present invention.
  • the reflector plate 70 is supported on a separately manufactured block 75 and assembled with the solar cell arrays 1.
  • the blocks 75 provided between the solar cell arrays 1 are formed to be inclined at both sides, and the blocks 75 installed at both ends of the solar cell array 1 are formed to be inclined only at one surface thereof.
  • Block 75 is preferably made of a corrosion-resistant steel frame structure.
  • the reflector 70 is preferably formed of the first reflector 71 and the second reflector 73 by bending one metal plate.
  • the reflecting surface of the reflecting plate 70 is mirror-finished or attached with a stainless steel mirror or a glass mirror.
  • the solar cell array 1 is formed in a straight shape in which a plurality of solar cell modules 10 are arranged in a row and connected to each other, and the negative electrode 15 is disposed on the front and rear surfaces of the solar cell module 10.
  • the positive electrode 17 is provided, respectively.
  • the negative electrode 15 and the positive electrode 17 are arranged in the width direction of the straight solar cell array 1, and in the solar cell module 10 in the width direction of the straight solar cell array 1.
  • the negative electrode terminal 16 and the positive electrode terminal 18 which connect the both ends of the negative electrode 15 and the positive electrode 17, respectively, are provided in both sides.
  • the negative electrode 15 and the positive electrode 17 are arranged in the longitudinal direction of the straight solar cell array 1, and each length thereof is the length of two solar cell modules 10.
  • the electrode 15 and the positive electrode 17 are arranged in the width direction of the straight solar cell array 1, and the length of each of the electrodes is the length of one solar cell module 10. 2 times shorter Therefore, in the present invention, the allowable current capacity of the electrode is increased by 2 times compared with the conventional one. This is suitable when the incident amount of sunlight incident on the solar cell in the photovoltaic device is increased as described above, thereby increasing the amount of electricity generated in the solar cell.
  • FIG 8 is a front view of a state in which a reflector is installed on a solar cell in the solar cell apparatus according to another embodiment of the present invention.
  • the solar cell apparatus is inclined to reflect solar light to the solar cell module 10 on both sides of the solar cell modules 10. ) Is installed.
  • the air-cooled heat sink 120 is attached to the rear of the solar cell modules 10.
  • the air-cooled heat sink 120 has a plurality of heat radiation fins 121 for air cooling.
  • Air-cooled heat sink 120 is preferably made of aluminum.
  • the heat sink 20 is attached to the rear surface of the solar cell modules 10, and the heat exchanger 30, the heat insulating material 50, and the lower cover are disposed on the rear surface of the flat portion of the heat sink 20. Since the installation work is complicated and the manufacturing cost is increased because it is required to install 60, etc., in the embodiment shown in FIG. 8, since only the air-cooled heat radiation fins 120 are installed on the back of the solar cell modules 10, the installation is performed. It is easy to work and saves manufacturing cost.
  • FIG 9 and 10 illustrate a photovoltaic device according to another embodiment of the present invention.
  • the solar cell apparatus according to another embodiment of the present invention is installed upside down so that the front surface of the solar cell array 1 faces backward, the solar cell array 1 On the rear side of the solar cell array 1 is installed a tilted reflector to reflect the sunlight to the solar cell module 10 in front of the solar cell array (1).
  • One end of the support 146 is provided on the front surface of the solar cell array 1, and an auxiliary plate 146a is provided on the other end of the support 146.
  • the reflecting plate includes a pair of first reflecting portions 147a and 148a which are disposed at both side ends of the auxiliary plate 146a so that the reflected light with respect to the vertical incident light is incident on the entire area of the solar cell module 10.
  • a pair of second reflecting portions extending from side ends of the pair of first reflecting portions 147a and 148a or connected to one end thereof so that the reflected light of the vertical incident light is incident on the entire area of the solar cell module 10;
  • 147b and 148b and the side ends of the pair of second reflecting portions 147b and 148b are extended or connected to one side thereof, the reflected light of the vertical incident light is incident to the entire area of the solar cell module 10.
  • a pair of third reflecting portions 147c and 148c are disposed at both side ends of the auxiliary plate 146a so that the reflected light with respect to the vertical incident light is incident on the entire area of the solar cell module 10.
  • the solar cell apparatus according to another embodiment of the present invention illustrated in FIG. 10 may be arranged in two rows, as illustrated in FIG. 11.
  • the photovoltaic device of the present invention can also be applied to a solar tracking system that changes the direction of the solar cell in real time or periodically so that the incident angle of sunlight is always vertical.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

태양 전지를 이용하여 태양광 에너지를 전기 에너지로 변환하는 태양광 발전 장치가 개시된다. 상기 태양 전지는 태양 전지 모듈들을 다수개 연결하여 형성한 태양 전지 어레이로 이루어지고, 상기 태양 전지 어레이의 양측면에는 태양광을 상기 태양 전지 모듈로 반사시키도록 경사진 반사판이 설치되고, 상기 반사판은, 태양광을 상기 태양 전지 모듈의 전체로 조사시키도록 경사진 제1 반사부와, 태양광을 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 절반부로 조사시키도록 경사진 제2 반사부를 포함한다.

Description

태양광 발전 장치
본 발명은 태양광 발전 장치에 관한 것으로서, 더욱 상세하게는, 태양 전지를 이용하여 태양광 에너지를 전기 에너지로 변환하는 태양광 발전 장치에 관한 것이다.
최근, 화석 에너지의 자원 고갈에 따른 에너지 가격의 상승 문제와 화석 에너지의 연소에 따른 환경 오염 방지를 위한 대책으로 청정 에너지 중의 하나인 태양 에너지를 이용하는 방안이 대두되고 있다.
일반적으로, 태양광 발전 장치에서 태양광 에너지를 전기 에너지로 변환하기 위해 사용되는 태양 전지는, 다수개의 태양 전지 셀들로 조립 형성된 태양 전지 모듈을 다수개 연결하여 형성한 태양 전지 어레이로 이루어진다.
태양광 발전 장치에서는, 발전 효율을 증가시키기 위해 태양 전지에 입사되는 태양광의 입사량을 증가시킬 필요성이 있다. 이를 위한 방법으로는 태양 전지의 전면에 볼록 렌즈 또는 오목 렌즈 등의 집광 렌즈를 설치하여 태양광을 집광하는 방법이 있다.
그러나, 집광 렌즈를 사용하는 경우 집광 렌즈의 부품 가격이 비싸므로 태양광 발전 장치를 제작하는 비용이 증가하는 문제점이 있다.
또한, 태양광 발전 장치는 태양 전지에 태양광을 입사시켜 태양광 에너지를 전기 에너지로 변환하는데, 태양 전지에 태양광이 집속됨에 따라, 태양 전지의 온도가 상승하게 되고, 이에 따라 태양 전지가 열화되는 문제점이 있다. 또한, 일반적으로 태양 전지의 발전 효율이 10-15% 이므로, 태양 전지에 입사되는 태양광 에너지의 10-15% 만이 태양광 발전에 이용되고, 나머지 85-90%의 에너지는 유효하게 이용되지 못하고 열로 버려지는 실정이다.
따라서, 본 발명은 목적은, 이러한 종래기술의 문제점을 해결하기 위한 것으로서, 저렴한 제작 비용으로 태양 전지에 입사되는 태양광의 입사량을 증가시키도록 구성된 태양광 발전 장치를 제공하는 데에 있다. 또한, 본 발명은 태양 전지의 온도 상승을 방지할 수 있으면서도 태양 전지에 입사되는 태양광 에너지 중 발전에 이용되지 못하고 버려지는 열을 온수용이나 난방용으로 사용할 수 있도록 구성된 태양광 발전 장치를 제공하는 데에 있다.
전술한 목적을 달성하기 위한 본 발명의 일측면에 의하면, 태양 전지를 이용하여 태양광 에너지를 전기 에너지로 변환하는 태양광 발전 장치로서, 상기 태양 전지는 태양 전지 모듈들을 다수개 연결하여 형성한 태양 전지 어레이로 이루어지고, 상기 태양 전지 모듈들의 양측면에는 태양광을 상기 태양 전지 모듈로 반사시키도록 경사진 반사판이 설치되고, 상기 반사판은, 태양광을 상기 태양 전지 모듈의 전체로 조사시키도록 경사진 제1 반사부와, 태양광을 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 절반부로 조사시키도록 경사진 제2 반사부를 포함하는 것을 특징으로 하는 태양광 발전 장치가 제공된다.
상기 제1 반사부는 그 상단부에서 반사되는 태양광이 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 단부로 조사되고 그 하단부에서 반사되는 태양광이 상기 태양 전지 모듈 중에서 상기 반사판측 단부로 조사되도록 경사지고, 상기 제2 반사부는 그 상단부에서 반사되는 태양광이 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 단부로 조사되고 그 하단부에서 반사되는 태양광이 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 절반부의 내측 단부로 조사되도록 경사진 것이 바람직하다.
상기 반사판은 하나의 금속 판재를 절곡하여 상기 제1 반사부와 상기 제2 반사부로 형성된 것이 바람직하다.
상기 반사판의 반사면은 경면처리하거나 스테인레스 스틸재 거울 또는 유리재 거울을 부착한 것이 바람직하다.
상기 반사판의 제1 반사부는 상기 태양 전지 에레이의 상기 태양 전지 모듈에 대해 내측으로 115.5도의 각도로 경사지게 형성되되 상기 제1 반사부의 폭은 상기 태양 전지 모듈의 폭의 1.47배이고, 상기 반사판의 제2 반사부는 상기 제1 반사부에 대하여 내측으로 5.2도 경사지게 형성되되 상기 제2 반사부의 폭은 상기 태양 전지 모듈의 폭의 1.1배인 것이 바람직하다.
상기 태양 전지 어레이는 다수개의 태양 전지 모듈들을 일렬로 정렬하여 연결한 일자형으로 형성되고, 상기 태양 전지 어레이는 다수개가 일정한 간격으로 이격되어 배치되고, 상기 반사판은 별도로 제작된 블록 상에 지지되어 상기 태양 전지 어레이들과 조립되되 상기 태양 전지 어레이들 사이에 설치되는 상기 블록은 양면이 경사지게 형성되고 상기 태양 전지 어레이의 양끝에 설치되는 블록은 일면만 경사지게 형성된 것이 바람직하다.
상기 태양 전지 모듈들의 배면에는 방열판이 절연되어 부착되고, 상기 방열판의 배면에는 내부에 냉매가 흐르는 통로가 형성된 열교환기가 밀착되게 설치되고, 상기 태양 전지 모듈들의 전면과 상기 방열판의 배면은 단열처리되는 것이 바람직하다.
상기 태양 전지 모듈들의 전면에는 투명 유리가 상기 태양 전지 모듈들과 이격되게 설치되되 그 사이에 공기층이 존재하도록 설치되는 것이 바람직하다.
상기 방열판은 상기 열교환기를 포함한 배면이 단열재에 의해 둘러싸여지는 것이 바람직하다.
상기 방열판의 배면에는 복수의 냉각용 방열핀들이 형성될 수도 있다.
상기 태양 전지 어레이는 다수개의 태양 전지 모듈들을 일렬로 정렬하여 연결한 일자형으로 형성되고, 상기 태양 전지 모듈들의 각각의 전면과 배면에는 마이너스 전극과 플러스 전극이 각각 설치되되 상기 일자형 태양 전지 어레이의 폭방향으로 배치되고, 상기 태양 전지 모듈들의 각각에서 상기 일자형 태양 전지 어레이의 폭방향으로 양측에는 상기 마이너스 전극과 상기 플러스 전극의 양단부를 각각 연결하는 마이너스 전극 단자와 플러스 전극 단자가 설치되는 것이 바람직하다.
또한, 전술한 목적을 달성하기 위한 본 발명의 다른 일측면에 의하면, 태양 전지를 이용하여 태양광 에너지를 전기 에너지로 변환하는 태양광 발전 장치로서, 상기 태양 전지는 태양 전지 모듈들을 다수개 연결하여 형성한 태양 전지 어레이로 이루어지고, 상기 태양 전지 어레이는 그 전면이 후방으로 향하도록 뒤집어져 설치되고, 상기 태양 전지 어레이의 후방 측면에는 상기 태양 전지 어레이의 전면의 상기 태양 전지 모듈로 태양광을 반사시키도록 경사진 반사판이 설치된 것이 바람직하다.
상기 태양 전지 어레이의 전면에는 지지대의 일단이 설치되고, 상기 지지대의 타단에는 보조판이 설치되고, 상기 반사판은, 상기 보조판의 양 측단에 각각의 일측단이 위치되어 수직 입사광에 대한 반사광이 상기 태양 전지 모듈의 전체 면적에 입사되게 설치된 한 쌍의 제1 반사부와, 상기 한 쌍의 제1 반사부의 측단에 그 일측단이 연결되어 수직 입사광의 반사광이 상기 태양 전지 모듈의 전체 면적으로 입사되게 설치된 한 쌍의 제2 반사부를 포함하는 것이 바람직하다.
상기 한 쌍의 제2 반사부는 그 일측단이 상기 한 쌍의 제 1반사부의 측단에 연결되어 수직 입사광의 반사광이 상기 태양 전지 모듈의 전체 면적으로 입사되게 설치된 한 쌍의 제3 반사부를 더 포함하는 것이 바람직하다.
전술한 바와 같이, 본 발명의 태양광 발전 장치에 의하면, 저렴한 제작 비용으로 태양 전지에 입사되는 태양광의 입사량을 증가시키도록 구성되어 있으므로, 태양광 발전 효율이 증가되는 효과가 있다. 또한, 본 발명의 태양광 발전 장치에 의하면, 태양 전지의 온도 상승을 방지할 수 있으면서도 태양 전지에 입사되는 태양광 에너지 중 발전에 이용되지 못하고 버려지는 열을 온수용이나 난방용으로 사용할 수 있으므로, 태양 전지의 열화를 방지하여 태양 전지의 내구성을 증대시키면서도 태양광 발전과 동시에 온수 및 난방을 가능하게 하는 효과가 있다.
도 1은 본 발명의 하나의 실시예에 따른 태양광 발전 장치의 태양 전지의 사시도이다.
도 2는 도 1의 A-A선을 따른 단면도이다.
도 3은 도 2의 B 부분의 확대도이다.
도 4는 본 발명의 실시예에 따른 태양광 발전 장치에서 태양 전지에 반사판이 설치된 상태의 사시도이다.
도 5는 도 4의 정면도이다.
도 6은 본 발명의 실시예에 따른 태양광 발전 장치에서 반사판만을 도시한 사시도이다.
도 7은 본 발명의 실시예에 따른 태양광 발전 장치의 태양 전지의 평면도이다.
도 8은 본 발명의 다른 하나의 실시예에 따른 태양광 발전 장치에서 태양 전지에 반사판이 설치된 상태의 정면도이다.
도 9는 본 발명의 또 다른 하나의 실시예에 따른 태양광 발전 장치의 정면도이다.
도 10은 도 9의 사시도이다.
도 11은 도 10의 태양광 발전 장치를 2열로 배치한 사시도이다.
이하, 첨부된 도면을 참조로 하여 본 발명의 바람직한 실시예를 설명하기로 한다.
도 1은 본 발명의 하나의 실시예에 따른 태양광 발전 장치의 태양 전지의 사시도이고, 도 2는 도 1의 A-A선을 따른 단면도이고, 도 3은 도 2의 B 부분의 확대도이다.
도시된 바와 같이, 본 실시예에 따른 태양광 발전 장치의 태양 전지는 다수개의 태양 전지 셀들로 조립 형성된 태양 전지 모듈(10)들을 다수개 연결하여 형성한 태양 전지 어레이(1)로 이루어져 있다.
알루미늄 재질의 베이스판(11) 위에 절연 시트(13)을 깔고, 절연 시트(13) 위에 태양 전지 모듈(10)들을 다수개 연결하여 태양 전지 어레이(1)를 형성한다.
태양 전지 모듈(10)들의 각각의 전면에는 마이너스 전극(15)이 설치되어 있고, 태양 전지 모듈(10)들의 각각의 배면에는 플러스 전극(17)이 설치되어 있다. 마이너스 전극(15)과 플러스 전극(17) 사이에는 도시하지는 않았지만 전극 연결판 보조 PCB가 개재된다.
태양 전지 모듈(10)들의 배면, 보다 상세하게는, 베이스판(11)의 배면에는 방열판(20)이 부착되어 있다. 방열판(20)은 평면부와 이 평면부의 양측 단부에서 수직 하방으로 돌출된 양 돌출부로 이루어져 있다. 방열판(20)은 알루미늄 재질인 것이 바람직하다.
방열판(20)의 평면부의 배면에는 내부에 냉매가 흐르는 통로(31)가 형성된 열교환기(30)가 밀착되게 설치되어 있다. 열교환기(30)는 동파이프 재질인 것이 바람직하다. 통로(31)의 양단에는 도시하지는 않았지만 냉매의 유입 및 유출을 위한 유입구와 유출구가 형성됨을 알 수 있을 것이다. 이렇게 태양 전지 모듈(10)들의 배면에 방열판(20)이 설치됨에 따라 태양 전지 모듈(10)의 열이 방열판(20)으로 전달되므로, 태양 전지 모듈(10)의 온도가 하강하게 되고, 이에 따라 태양 전지 모듈(10)의 열화가 방지되어 태양 전지 모듈(10)의 내구성이 증대된다.
태양 전지 모듈(10)들의 전면과 방열판(20)의 배면은 단열처리된다.
태양 전지 모듈(10)들의 전면에는 투명 유리(40)가 지지 가이드(41)에 의해 태양 전지 모듈(10)과 이격되게 설치되되 그 사이에 공기층(43)이 존재하도록 설치된다. 공기층(43)은 단열층으로서 작용한다. 투명 유리(40)는 저철분 강화 유리인 것이 바람직하다.
방열판(20)은 열교환기(30)를 포함한 배면이 단열재(50)에 의해 둘러싸여진다. 즉, 방열판(20)의 평면부와 양 돌출부 내에 단열재(50)가 끼워진 후 하부 커버(60)가 방열판(20)의 외부와 단열재(50)를 덮는 것이다. 단열재(50)는 발포 단열재인 것이 바람직하다.
이러한 투명 유리(40)에 의한 공기층(43)과 단열재(50)가 효율 높은 집열기의 역할을 하므로, 태양 전지에 입사된 태양광에 의한 열은 모두 방열판(20)으로 흡수되고 열교환기(30)의 냉매와 열교환되어 온수용 또는 난방용으로 사용될 수 있다.
도 4는 본 발명의 실시예에 따른 태양광 발전 장치에서 태양 전지에 반사판이 설치된 상태의 사시도이고, 도 5는 도 4의 정면도이다.
태양 전지 모듈(10)들의 양측면에는, 즉, 태양 전지 모듈(10)들의 양측면에는 태양광을 태양 전지 모듈(10)로 반사시키도록 경사진 반사판(70)이 설치되어 있다.
반사판(70)은 제1 반사부(71)와 제2 반사부(73)를 포함하며, 제1 반사부(71)는 태양광을 태양 전지 모듈(10)의 전체로 조사시키도록 경사져 있으며, 제2 반사부(73)는 태양광을 태양 전지 모듈(10) 중에서 그 반사판(70)의 반대편측 절반부로 조사시키도록 경사져 있다.
보다 상세하게는, 도 4에 도시된 바와 같이, 반사판(70)의 제1 반사부(71)는 그 상단부에서 반사되는 태양광이 점선 a와 같이 태양 전지 모듈(10) 중에서 그 반사판(70)의 반대편측 단부로 조사되고 그 하단부에서 반사되는 태양광이 점선 b와 같이 저태양 전지 모듈(10) 중에서 그 반사판측 단부로 조사되도록 경사진 것이다. 또한, 반사판(70)의 제2 반사부(71)는 그 상단부에서 반사되는 태양광이 점선 c와 같이 태양 전지 모듈(10) 중에서 그 반사판(70)의 반대편측 단부로 조사되고 그 하단부에서 반사되는 태양광이 점선 d와 같이 태양 전지 모듈(10) 중에서 그 반사판(70)의 반대편측 절반부의 내측 단부로 조사되도록 경사진 것이다. 도 4에서 태양 전지 모듈(10)에 정면으로 조사되는 태양광은 일점쇄선 e로 표시하였다.
예를 들면, 반사판(70)의 제1 반사부(71)는 태양 전지 모듈(10)의 측단에 약 115.5도의 각도로 경사지게 형성되며, 여기에서 제1 반사부(71)의 폭은 태양 전지 모듈(10)의 폭의 1.47배이다. 또한, 반사판(70)의 제2 반사부(73)는 제1 반사부(71)에 대하여 내측으로 약 5.2도 더 경사지게 형성되며, 여기에서 제2 반사부(73)의 폭은 태양 전지 모듈(10)의 폭의 1.1배이다.
제1 반사부(71)에서는 태양 전지 모듈(10)이 정면에서 받는 태양광량의 63%를 집광하여 태양 전지 모듈(10)로 조사하고, 제2 반사부(73)에서는 태양 전지 모듈(10)이 정면에서 받는 태양광량의 38%를 집광하여 태양 전지 모듈(10)로 조사한다. 본 발명에서는 태양 전지 모듈(10)의 양측면에 반사판(70)이 설치되어 있으므로, 양 제1 반사부(71)에서 126%의 태양광이 집광되고, 양 제2 반사부(73)에서 76%의 태양광이 집광되어, 양 반사판(70)에서 총 202%의 태양광을 집광하여 태양 전지 모듈(10)로 조사한다. 여기에, 태양 전지 모듈(10)이 정면에서 받는 태양광량 100%을 더하면, 본 발명에서 태양 전지 모듈(10)에 집광되는 태양광의 총량은 302%가 된다. 따라서, 본 발명에 의하면, 태양 전지 모듈(10)의 정면에서만 태양광을 받는 경우에 비하여 약 3배의 태양광량을 받으므로, 태양 전지 모듈(10)의 정면에서만 태양광을 받는 경우에 비하여 약 3배의 태양광 발전을 할 수 있게 된다.
한편, 태양 전지 어레이(1)는 다수개의 태양 전지 모듈(10)들을 일렬로 정렬하여 연결한 일자형으로 형성되어 있다. 또한, 태양 전지 어레이(1)는 다수개가 일정한 간격으로 이격되어 배치되어 있다.
도 6은 본 발명의 실시예에 따른 태양광 발전 장치에서 반사판만을 도시한 사시도이다. 도 6으로부터 알 수 있는 바와 같이, 반사판(70)은 별도로 제작된 블록(75) 상에 지지되어 태양 전지 어레이(1)들과 조립된다. 여기에서, 태양 전지 어레이(1)들 사이에 설치되는 블록(75)은 양면이 경사지게 형성되고, 태양 전지 어레이(1)의 양끝에 설치되는 블록(75)은 일면만 경사지게 형성되어 있다. 블록(75)은 내식성 철골 구조로 이루어지는 것이 바람직하다.
반사판(70)은 하나의 금속 판재를 절곡하여 제1 반사부(71)와 제2 반사부(73)로 형성되는 것이 바람직하다.
또한, 반사판(70)의 반사면은 경면처리하거나 스테인레스 스틸재 거울 또는 유리재 거울을 부착하는 것이 바람직하다.
도 7은 본 발명의 실시예에 따른 태양광 발전 장치의 태양 전지의 평면도이다. 도시된 바와 같이, 태양 전지 어레이(1)는 다수개의 태양 전지 모듈(10)들을 일렬로 정렬하여 연결한 일자형으로 형성되어 있고, 태양 전지 모듈(10)의 전면과 배면에는 마이너스 전극(15)과 플러스 전극(17)이 각각 설치되어 있다. 본 실시예에서, 마이너스 전극(15)과 플러스 전극(17)은 일자형 태양 전지 어레이(1)의 폭방향으로 배치되어 있고, 태양 전지 모듈(10)에서 일자형 태양 전지 어레이(1)의 폭방향으로 양측에는 마이너스 전극(15)과 플러스 전극(17)의 양단부를 각각 연결하는 마이너스 전극 단자(16)와 플러스 전극 단자(18)가 설치되어 있다.
기존에는 마이너스 전극(15)과 플러스 전극(17)이 일자형 태양 전지 어레이(1)의 길이방향으로 배치되고, 그 각각의 길이가 2개의 태양 전지 모듈(10)의 길이로 되는데, 본 발명에서는 마이너스 전극(15)과 플러스 전극(17)은 일자형 태양 전지 어레이(1)의 폭방향으로 배치되고, 그 각각의 길이가 1개의 태양 전지 모듈(10)의 길이로 되므로 전극의 유효 길이가 기존에 비해 2배 짧아진다. 따라서, 본 발명에서는 기존에 비해 전극의 허용 전류용량이 2배 증가된다. 이것은 전술한 바와 같이 태양광 발전 장치에서 태양 전지에 입사되는 태양광의 입사량이 증가되어 태양 전지에서 발생되는 전기량도 증가되는 경우에 적합하다.
도 8은 본 발명의 다른 하나의 실시예에 따른 태양광 발전 장치에서 태양 전지에 반사판이 설치된 상태의 정면도이다.
도 8에 나타낸 바와 같이, 본 발명의 다른 하나의 실시예에 따른 태양광 발전 장치는, 태양 전지 모듈(10)들의 양측면에 태양광을 태양 전지 모듈(10)로 반사시키도록 경사진 반사판(70)이 설치된 것이다. 특히, 도 8에 도시된 태양광 발전 장치는, 태양 전지 모듈(10)들의 배면에 공냉식 방열판(120)이 부착된 것이다. 공냉식 방열판(120)은 공기 냉각을 위한 복수의 방열핀(121)들을 갖는다. 공냉식 방열판(120)은 알루미늄 재질인 것이 바람직하다.
대단위의 태양 추적 시스템이 적용된 경우에는 온수나 난방이 필요하지 않으며, 발전 전용의 초기 설치비가 적게 드는 태양광 발전 장치가 바람직하다. 그런데, 도 3에 도시된 실시예에서는 태양 전지 모듈(10)들의 배면에 방열판(20)을 부착하고, 이 방열판(20)의 평면부의 배면에 열교환기(30)와 단열재(50) 및 하부 커버(60) 등을 설치해야 하므로, 설치 작업이 복잡하고 제조비가 상승되지만, 도 8에 도시된 실시예에서는 태양 전지 모듈(10)들의 배면에, 공냉식 방열핀(120)을 설치하기만 하며 되므로, 설치 작업이 쉬우며 제조비가 절감된다.
도 9 및 도 10은 본 발명의 또 다른 하나의 실시예에 따른 태양광 발전 장치를 나타내고 있다.
도 9 및 도 10에 나타낸 바와 같이, 본 발명의 또 다른 하나의 실시예에 따른 태양광 발전 장치는, 태양 전지 어레이(1)의 전면이 후방으로 향하도록 뒤집어져 설치되고, 태양 전지 어레이(1)의 후방 측면에 태양 전지 어레이(1)의 전면의 태양 전지 모듈(10)로 태양광을 반사시키도록 경사진 반사판이 설치된 것이다.
태양 전지 어레이(1)의 전면에는 지지대(146)의 일단이 설치되고, 지지대(146)의 타단에는 보조판(146a)이 설치되어 있다.
반사판은, 보조판(146a)의 양 측단에 각각의 일측단이 위치되어 수직 입사광에 대한 반사광이 태양 전지 모듈(10)의 전체 면적에 입사되게 설치된 한 쌍의 제1 반사부(147a, 148a)와, 한 쌍의 제1 반사부(147a, 148a)의 측단에 연장 형성되거나 그 일측단이 연결되어 수직 입사광의 반사광이 태양 전지 모듈(10)의 전체 면적으로 입사되게 설치된 한 쌍의 제2 반사부(147b, 148b)와, 한 쌍의 제2 반사부(147b, 148b)의 측단에 연장 형성되거나 그 일측단이 연결되어 수직 입사광의 반사광이 태양 전지 모듈(10)의 전체 면적으로 입사되게 설치된 한 쌍의 제3 반사부(147c, 148c)로 구성된다.
도 10에 나타낸 본 발명의 또 다른 하나의 실시예에 따른 태양광 발전 장치는, 도 11에 나타낸 바와 같이, 2열로 배치될 수도 있다.
본 발명의 태양광 발전 장치는 태양 전지의 방향을 실시간 또는 주기적으로 변경시켜서 태양광의 입사각이 항상 수직으로 유지되도록 하는 태양 추적 시스템에도 적용될 수 있음을 알 수 있을 것이다.
이상에서는 본 발명이 특정 실시예를 중심으로 하여 설명되었지만, 본 발명의 취지 및 첨부된 특허청구범위 내에서 다양한 변형, 변경 또는 수정이 당해 기술분야에서 있을 수 있으며, 따라서, 전술한 설명 및 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어져야 한다.

Claims (14)

  1. 태양 전지를 이용하여 태양광 에너지를 전기 에너지로 변환하는 태양광 발전 장치로서,
    상기 태양 전지는 태양 전지 모듈들을 다수개 연결하여 형성한 태양 전지 어레이로 이루어지고,
    상기 태양 전지 모듈들의 양측면에는 태양광을 상기 태양 전지 모듈로 반사시키도록 경사진 반사판이 설치되고,
    상기 반사판은,
    태양광을 상기 태양 전지 모듈의 전체로 조사시키도록 경사진 제1 반사부와,
    태양광을 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 절반부로 조사시키도록 경사진 제2 반사부를 포함하는 것을 특징으로 하는 태양광 발전 장치.
  2. 청구항 1에 있어서,
    상기 제1 반사부는 그 상단부에서 반사되는 태양광이 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 단부로 조사되고 그 하단부에서 반사되는 태양광이 상기 태양 전지 모듈 중에서 상기 반사판측 단부로 조사되도록 경사지고,
    상기 제2 반사부는 그 상단부에서 반사되는 태양광이 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 단부로 조사되고 그 하단부에서 반사되는 태양광이 상기 태양 전지 모듈 중에서 상기 반사판의 반대편측 절반부의 내측 단부로 조사되도록 경사진 것을 특징으로 하는 태양광 발전 장치.
  3. 청구항 1에 있어서,
    상기 반사판은 하나의 금속 판재를 절곡하여 상기 제1 반사부와 상기 제2 반사부로 형성된 것을 특징으로 하는 태양광 발전 장치.
  4. 청구항 3에 있어서,
    상기 반사판의 반사면은 경면처리하거나 스테인레스 스틸재 거울 또는 유리재 거울을 부착한 것을 특징으로 하는 태양광 발전 장치.
  5. 청구항 1에 있어서,
    상기 반사판의 제1 반사부는 상기 태양 전지 에레이의 상기 태양 전지 모듈에 대해 내측으로 115.5도의 각도로 경사지게 형성되되 상기 제1 반사부의 폭은 상기 태양 전지 모듈의 폭의 1.47배이고,
    상기 반사판의 제2 반사부는 상기 제1 반사부에 대하여 내측으로 5.2도 경사지게 형성되되 상기 제2 반사부의 폭은 상기 태양 전지 모듈의 폭의 1.1배인 것을 특징으로 하는 태양광 발전 장치.
  6. 청구항 1에 있어서,
    상기 태양 전지 어레이는 다수개의 태양 전지 모듈들을 일렬로 정렬하여 연결한 일자형으로 형성되고,
    상기 태양 전지 어레이는 다수개가 일정한 간격으로 이격되어 배치되고,
    상기 반사판은 별도로 제작된 블록 상에 지지되어 상기 태양 전지 어레이들과 조립되되 상기 태양 전지 어레이들 사이에 설치되는 상기 블록은 양면이 경사지게 형성되고 상기 태양 전지 어레이의 양끝에 설치되는 블록은 일면만 경사지게 형성된 것을 특징으로 하는 태양광 발전 장치.
  7. 청구항 1에 있어서,
    상기 태양 전지 모듈들의 배면에는 방열판이 절연되어 부착되고,
    상기 방열판의 배면에는 내부에 냉매가 흐르는 통로가 형성된 열교환기가 밀착되게 설치되고,
    상기 태양 전지 모듈들의 전면과 상기 방열판의 배면은 단열처리되는 것을 특징으로 하는 태양광 발전 장치.
  8. 청구항 7에 있어서,
    상기 태양 전지 모듈들의 전면에는 투명 유리가 상기 태양 전지 모듈들과 이격되게 설치되되 그 사이에 공기층이 존재하도록 설치되는 것을 특징으로 하는 태양광 발전 장치.
  9. 청구항 7에 있어서,
    상기 방열판은 상기 열교환기를 포함한 배면이 단열재에 의해 둘러싸여지는 것을 특징으로 하는 태양광 발전 장치.
  10. 청구항 7에 있어서,
    상기 방열판의 배면에는 복수의 냉각용 방열핀들이 형성된 것을 특징으로 하는 태양광 발전 장치.
  11. 청구항 1에 있어서,
    상기 태양 전지 어레이는 다수개의 태양 전지 모듈들을 일렬로 정렬하여 연결한 일자형으로 형성되고,
    상기 태양 전지 모듈들의 각각의 전면과 배면에는 마이너스 전극과 플러스 전극이 각각 설치되되 상기 일자형 태양 전지 어레이의 폭방향으로 배치되고,
    상기 태양 전지 모듈들의 각각에서 상기 일자형 태양 전지 어레이의 폭방향으로 양측에는 상기 마이너스 전극과 상기 플러스 전극의 양단부를 각각 연결하는 마이너스 전극 단자와 플러스 전극 단자가 설치되는 것을 특징으로 하는 태양광 발전 장치.
  12. 태양 전지를 이용하여 태양광 에너지를 전기 에너지로 변환하는 태양광 발전 장치로서,
    상기 태양 전지는 태양 전지 모듈들을 다수개 연결하여 형성한 태양 전지 어레이로 이루어지고,
    상기 태양 전지 어레이는 그 전면이 후방으로 향하도록 뒤집어져 설치되고,
    상기 태양 전지 어레이의 후방 측면에는 상기 태양 전지 어레이의 전면의 상기 태양 전지 모듈로 태양광을 반사시키도록 경사진 반사판이 설치된 것을 특징으로 하는 태양광 발전 장치.
  13. 청구항 12에 있어서,
    상기 태양 전지 어레이의 전면에는 지지대의 일단이 설치되고,
    상기 지지대의 타단에는 보조판이 설치되고,
    상기 반사판은,
    상기 보조판의 양 측단에 각각의 일측단이 위치되어 수직 입사광에 대한 반사광이 상기 태양 전지 모듈의 전체 면적에 입사되게 설치된 한 쌍의 제1 반사부와,
    상기 한 쌍의 제1 반사부의 측단에 그 일측단이 연결되어 수직 입사광의 반사광이 상기 태양 전지 모듈의 전체 면적으로 입사되게 설치된 한 쌍의 제2 반사부를 포함하는 것을 특징으로 하는 태양광 발전 장치.
  14. 청구항 13에 있어서,
    상기 한 쌍의 제2 반사부는 그 일측단이 상기 한 쌍의 제 1반사부의 측단에 연결되어 수직 입사광의 반사광이 상기 태양 전지 모듈의 전체 면적으로 입사되게 설치된 한 쌍의 제3 반사부를 더 포함하는 것을 특징으로 하는 태양광 발전 장치.
PCT/KR2009/000830 2008-03-06 2009-02-20 태양광 발전 장치 WO2009110688A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0021090 2008-03-06
KR1020080021090A KR100876392B1 (ko) 2008-03-06 2008-03-06 집광형 냉각식 태양광 발전장치
KR10-2008-0099282 2008-10-09
KR1020080099282A KR20100040181A (ko) 2008-10-09 2008-10-09 태양광 발전 장치

Publications (2)

Publication Number Publication Date
WO2009110688A2 true WO2009110688A2 (ko) 2009-09-11
WO2009110688A3 WO2009110688A3 (ko) 2009-11-19

Family

ID=41056444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000830 WO2009110688A2 (ko) 2008-03-06 2009-02-20 태양광 발전 장치

Country Status (1)

Country Link
WO (1) WO2009110688A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283361B2 (en) 2008-06-04 2012-10-09 Astrazeneca Ab Heterocyclic urea derivatives and methods of use thereof
CN102810590A (zh) * 2011-05-31 2012-12-05 岳克森 正面叠加多重太阳光太阳能电池组件及正面叠加多重太阳光的方法
CN103633932A (zh) * 2013-11-05 2014-03-12 成都聚合科技有限公司 一种聚光光伏光电转换接收器用散热器
CN103633933A (zh) * 2013-11-05 2014-03-12 成都聚合科技有限公司 一种聚光光伏光电转换接收器专用散热器
CN105895719A (zh) * 2016-05-13 2016-08-24 广东大粤新能源科技股份有限公司 一种太阳能光伏组件
WO2019178798A1 (zh) * 2018-03-22 2019-09-26 博立多媒体控股有限公司 侧面聚光太阳能装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337758A (en) * 1978-06-21 1982-07-06 Meinel Aden B Solar energy collector and converter
JP2002314112A (ja) * 2001-04-16 2002-10-25 Sumitomo 3M Ltd 光発電システム
US20040163699A1 (en) * 2002-11-25 2004-08-26 Alcatel Solar cell for a solar generator panel, a solar generator panel, and a space vehicle
KR100546842B1 (ko) * 2004-12-30 2006-01-26 주식회사 템피아 태양광 집광기
US7301095B2 (en) * 1999-06-21 2007-11-27 Aec-Able Engineering Co., Inc. Solar cell array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337758A (en) * 1978-06-21 1982-07-06 Meinel Aden B Solar energy collector and converter
US7301095B2 (en) * 1999-06-21 2007-11-27 Aec-Able Engineering Co., Inc. Solar cell array
JP2002314112A (ja) * 2001-04-16 2002-10-25 Sumitomo 3M Ltd 光発電システム
US20040163699A1 (en) * 2002-11-25 2004-08-26 Alcatel Solar cell for a solar generator panel, a solar generator panel, and a space vehicle
KR100546842B1 (ko) * 2004-12-30 2006-01-26 주식회사 템피아 태양광 집광기

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283361B2 (en) 2008-06-04 2012-10-09 Astrazeneca Ab Heterocyclic urea derivatives and methods of use thereof
CN102810590A (zh) * 2011-05-31 2012-12-05 岳克森 正面叠加多重太阳光太阳能电池组件及正面叠加多重太阳光的方法
WO2012162857A1 (zh) * 2011-05-31 2012-12-06 Yue Kesen 正面叠加多重太阳光太阳能电池组件及正面叠加多重太阳光的方法
CN103633932A (zh) * 2013-11-05 2014-03-12 成都聚合科技有限公司 一种聚光光伏光电转换接收器用散热器
CN103633933A (zh) * 2013-11-05 2014-03-12 成都聚合科技有限公司 一种聚光光伏光电转换接收器专用散热器
CN105895719A (zh) * 2016-05-13 2016-08-24 广东大粤新能源科技股份有限公司 一种太阳能光伏组件
WO2019178798A1 (zh) * 2018-03-22 2019-09-26 博立多媒体控股有限公司 侧面聚光太阳能装置
RU2747266C1 (ru) * 2018-03-22 2021-05-04 Болимедиа Холдингз Ко. Лтд. Солнечное устройство с боковой концентрацией

Also Published As

Publication number Publication date
WO2009110688A3 (ko) 2009-11-19

Similar Documents

Publication Publication Date Title
WO2009110688A2 (ko) 태양광 발전 장치
US4045246A (en) Solar cells with concentrators
JP5337487B2 (ja) 光電池屋根棟キャップおよび設置方法
WO2017135541A1 (ko) 공기집열식 pvt 컬렉터
WO2011145831A2 (ko) 신규한 구조의 냉각부재와 이를 포함하는 전지모듈
WO1990004142A1 (en) Solar electric conversion unit and system
CN102177591A (zh) 用于聚光太阳能板的交错开的光收集器
WO2011002261A2 (ko) 태양광 교류발전장치
KR101955774B1 (ko) 집광이 가능한 태양광 발전과 태양광의 집열 구조를 갖는 태양열 집열장치
US20100154864A1 (en) Photovoltaic-thermal hybrid apparatus and assembly method thereof
WO2011145847A2 (ko) 태양열 온수기용 집열장치
ITVA20100057A1 (it) "manto di copertura con tegole incorporanti organi di conversione fotovoltaica a concentrazione e termica dell'energia solare"
WO2013002537A2 (ko) 집광형 태양 전지
WO2013069874A1 (ko) 태양광발전 시스템
Braunstein et al. On the development of the solar photovoltaic and thermal (PVT) collector
KR20100040181A (ko) 태양광 발전 장치
CN111463304A (zh) 光伏组件和用于其的局部聚光光伏玻璃
CN103424869B (zh) 均光器、光能转换器及反射聚光太阳能模组
WO2015064788A1 (ko) 태양전지 어셈블리 및 이를 포함하는 고집광형 태양전지모듈
US20120291851A1 (en) Liquid immersing photovoltaic module
CN201474197U (zh) 波形瓦聚光太阳能水电一体化建筑模块
CN2758977Y (zh) 板状太阳能发电模块
CN111869099A (zh) 聚光太阳能装置
CN210405220U (zh) 太阳能热电联产装置
CN107230754B (zh) 一种高密封性能的电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09716786

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09716786

Country of ref document: EP

Kind code of ref document: A2