WO2009110614A1 - Effector cell function measurement method, measurement kit and measurement system - Google Patents

Effector cell function measurement method, measurement kit and measurement system Download PDF

Info

Publication number
WO2009110614A1
WO2009110614A1 PCT/JP2009/054340 JP2009054340W WO2009110614A1 WO 2009110614 A1 WO2009110614 A1 WO 2009110614A1 JP 2009054340 W JP2009054340 W JP 2009054340W WO 2009110614 A1 WO2009110614 A1 WO 2009110614A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
measurement
measuring
function
Prior art date
Application number
PCT/JP2009/054340
Other languages
French (fr)
Japanese (ja)
Inventor
泰信 小林
啓司 谷川
Original Assignee
Kobayashi Yasunobu
Tanigawa Keishi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobayashi Yasunobu, Tanigawa Keishi filed Critical Kobayashi Yasunobu
Priority to JP2010501988A priority Critical patent/JPWO2009110614A1/en
Publication of WO2009110614A1 publication Critical patent/WO2009110614A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism

Definitions

  • the present invention relates to a method for measuring cell functions centering on the cytotoxic activity of lymphocytes, and a measurement kit and measurement system therefor.
  • Our body has an immune mechanism that recognizes and eliminates foreign objects.
  • Abnormal cells such as pathogens that enter from the outside and cancer cells generated in the living body are recognized as foreign substances and are excluded from the living body by various immune system mechanisms.
  • Such immune functions are skillfully controlled by leukocytes that circulate throughout the whole body on the flow of blood or lymph.
  • lymphocytes play the main role in the so-called effector phase of cellular immunity.
  • cell groups called so-called effector cells such as natural killer cells (hereinafter sometimes abbreviated as NK cells) and cytotoxic T cells (hereinafter sometimes abbreviated as killer T cells) include, for example, viruses. Detecting abnormalities occurring in their own cells in the body, such as cells infected with cancer and cancer cells, and eliminating them by killing the abnormal cells (for example, Non-Patent Document 1).
  • effector cells kill virus-infected cells and cancer cells, but especially in the case of NK cells and killer T cells, the mechanism of cytotoxic activity via perforin and granzymes plays an important role.
  • effector cells release perforin and granzymes after adhering to the target cells.
  • Perforin makes a hole in the cell membrane of the target cell, and granzyme is injected into the target cell through the hole.
  • Granzyme A is known to induce apoptosis in target cells through at least a caspase-independent pathway, although the detailed mechanism of action is unknown. Simultaneously with perforin and granzyme, granulysin, a lipid-binding protein, is also released extracellularly. Although there are many unclear points regarding the mechanism of action of granulysin and its physiological significance, it has been pointed out that it may induce cell death in the target cell by directly binding to the cell membrane of the target cell (eg, non-patented). Reference 2).
  • LAK therapy is a therapy in which lymphocytes taken out of the body are activated by interleukin 2 or the like so as to increase the ability to kill cancer cells, and the cells are returned to the living body again. It has been reported that when lymphocytes are actually cultured in the presence of interleukin 2, the perforin content of NK cells in lymphocytes is significantly increased (for example, Non-Patent Paper 4).
  • Activated lymphocyte transfer therapy is an immune cell therapy that specifically activates killer T cells in lymphocytes removed outside the body. Like “LAK therapy”, the target cell killing ability by perforin granzyme etc. It is an important factor to enhance the therapeutic effect.
  • therapeutic cells which are not purified, uniform cell populations, but mostly a collection of diverse lymphocytes with different antigen specificities, but at least in the cell population, the desired effector In what ratio the cells are present, in addition to whether the effector cells actually express killing components such as perforin and granzyme B, the level of expression, and the therapeutic cells
  • the immune function inherent in the living body is attracting attention not only from the scene of cancer treatment by immune cell therapy but also from the viewpoint of preventive medicine.
  • the function of NK cells to kill cancer cells is also called NK activity, and is widely recognized as one of the representative indicators of the immune function of the living body.
  • NK activity is generally evaluated by a test called a chromium release test or a cytotoxic activity test by flow cytometry (see, for example, Non-Patent Document 5), but the activity varies depending on age and lifestyle. It has also been reported (for example, see Non-patent Document 6), and it has also been reported that its activity is enhanced by the intake of certain health foods and supplements (for example, see Non-Patent Document 7). That is, NK activity is positioned as an important test item today as a barometer for promoting health and as a means for confirming the effects of drugs, foods, supplements and the like on the immune function of the living body.
  • effector cell functions is an important test item for knowing the immunity of a living body.
  • the activity of effector cells is evaluated by various methods.
  • NK cells The function of NK cells is generally to measure NK activity. That is, the peripheral blood of the subject is used as an effector cell, the myeloid leukemia cell line K562 cell is used as a target cell, and these cells are co-cultured at a ratio uniquely determined by each laboratory, and after a certain time, the target cell The degree of injury of K562 cells is measured. The measurement of cytotoxicity is generally assessed by a chromium release test. As a result, for example, lymphocytes in peripheral blood and K562 cells were mixed at a ratio of 10: 1 and cultured for 4 hours, and at 4 hours after culture, the damaged K562 cells were 60% of the whole. The NK activity is defined as 60%.
  • NK activity the actual test material is a cell population of leukocytes centered on blood or mononuclear cells. And, NK cells are usually contained in these specimens by about a dozen percent or less. In addition, the number of NK cells in the specimen in each test is not constant. In addition, the number of NK cells present in the specimen is considered to be not homogeneous in terms of their function. For example, in the aforementioned non-patent paper 4, it is described that the perforin content of NK cells varies depending on sex and age.
  • NK activity evaluation and its measurement results do not take into account the difference in the number of NK cells in the sample and their quality, but simply represent the final results of cell death occurring in the target cells. Not too much. Therefore, a specimen having a large number of NK cells generally tends to exhibit a higher NK activity value, and a specimen having a small number of NK cells tends to exhibit a low NK activity value.
  • NK activity when there are differences in NK activity when comparing multiple specimens, there are various possibilities whether the difference is due to the difference in the number of NK cells or the function of individual NK cells. However, the details cannot be clarified by the above-described inspection method.
  • Non-Patent Document 5 a cytotoxic activity test using a flow cytometer has also been developed as an alternative method of the chromium release test.
  • this flow cytometer test by appropriately combining a plurality of antibodies and fluorescent dyes, the degree of cytotoxicity generated in the target cells is measured, and at the same time, the ratio of NK cells in the specimen used for the test, It is also possible to measure the frequency of granzyme expression in the NK cells.
  • the data that is stored at the time of measurement and used for the analysis is numerical data such as scattered light and fluorescence intensity detected when the cells flow through the flow path in the device.
  • a statistical analysis process is performed on a plurality of parameters converted into list mode data, and the cell itself is not directly analyzed. Therefore, even if various analysis methods are used in the analysis software, there are limits to the phenomena that can be analyzed and the accuracy of the data.
  • an example is disclosed in which adhesion between NK cells or T cells and target cells is analyzed by a flow cytometer.
  • killer T cells since the number of cells is smaller than that of NK cells, it is very difficult to measure the function of the cells, so that a certain cell population in a living body such as peripheral blood mononuclear cells In many cases, only the frequency of the cells can be measured. In particular, the number of specific killer T cells against a specific tumor antigen detected in the peripheral blood of cancer patients is extremely small. For example, the detection frequency is 0.1% of the total killer T cells, and the peripheral blood. In the mononuclear cell fraction, it is often less than 0.01%.
  • the number of tumor antigen-specific killer T cells that can be collected by normal blood collection is extremely small, and for carrying out the above-described chromium release test or cytotoxic activity test using a flow cytometer, In many cases, even the minimum number of cells cannot be secured, and as a result, the cytotoxic activity against the target cancer cells cannot be directly measured. Therefore, at present, in most cases, only MHC tetramer method, ELISPOT method, etc. are used to limit the measurement of the frequency of specific killer T cells responding to a specific antigen in peripheral blood killer T cells. Absent.
  • the MHC tetramer method is a method in which a complex of an antigenic peptide and an MHC class I-like molecule is labeled with a fluorescent dye, and killer T cells bound to the molecule are detected and analyzed with a flow cytometer.
  • a fluorescent dye a fluorescent dye that detects killer T cells bound to the molecule.
  • killer T cells bound to the molecule are detected and analyzed with a flow cytometer.
  • it is widely used as one of representative techniques for detecting killer T cells that specifically recognize viral antigens.
  • flow cytometry it is generally difficult to ensure the reliability of data, for example, when the amount of measurement is less than 0.01% of cells to be measured.
  • a dot indicating the presence of one cell is a signal derived from a cell to be measured or mixed Even if there is a question about whether this artifact is caused by noise, it is no longer possible to remeasure or reanalyze that single dot.
  • the ELISPOT method is a method for detecting interferon ⁇ (hereinafter sometimes abbreviated as IFN ⁇ ) or granzyme B produced by killer T cells activated with a specific antigen. It is widely used as one of representative techniques for detecting specific killer T cells. However, it is difficult to ensure the reliability of data in low-frequency cell analysis as in the MHC tetramer method.
  • the measurement target is a spot scattered in the membrane, that is, a spot visualized by staining an IFN ⁇ or granzyme B produced by a cell with an enzyme antibody method or the like, and the cell is also a direct measurement target. Absent.
  • the present invention provides a new cell function measurement method for overcoming the disadvantages and problems of the conventional effector cell function measurement method as described above, and a kit for carrying out the measurement and its kit
  • An object is to provide a measurement system. That is, the present invention provides a novel cell function measurement method for measuring the function of an effector cell, such as cytotoxic activity against a target cell, in detail and exhaustively, with high accuracy, a kit for performing the measurement, and its Provide a measurement system.
  • effector cells and target cells are mixed and cultured in an arbitrary time at an arbitrary ratio in a standard microtiter plate.
  • a plurality of molecules are fluorescently labeled antibodies, fluorescent substances, etc. And then measure the expression of multiple molecules simultaneously and as needed using a cell-based assay device capable of acquiring and analyzing individual images of the cells in the plate. And an effector cell evaluation method characterized by qualitatively and quantitatively analyzing the measurement results.
  • the bottom of the standard microtiter plate is desirably a flat bottom, and the number of cells used as a sample may be one or more. Further, when a plurality of cells are used as a sample, it is desirable to arrange them in a single layer on the bottom surface of the flat bottom.
  • the flow cytometer has been used so far, such as the ratio of the desired effector cells in the specimen, the ratio of the effector cells expressing perforin granzyme in the cells, and the content of perforin granzyme in each effector cell.
  • Intracellular granule containing perforin granzyme etc. produced by encountering target cells with the localization of perforin granzyme etc. in individual effector cells The dynamics and other items that have been observed with a fluorescence microscope or a laser confocal microscope until now are measured simultaneously.
  • cell biological phenomena such as adhesion of effector cells to target cells and changes related to apoptosis in target cells are also measured simultaneously in the same sample.
  • the phenomenon when measuring and quantifying the cytotoxicity of a target cell, whether the phenomenon is due to, for example, apoptosis, and how much the effector cell adheres to the target cell.
  • Targeting intracellular granules containing granzyme B in the cytoplasm because a killing component that induces apoptosis in the target cell, such as granzyme B, is expressed, and the effector cell kills the target cell Simultaneously measure and analyze various phenomena such as whether or not the cell is moved to the adhesive surface.
  • the ratio of the effector cells present in the specimen, the ratio of the effector cells expressing granzyme B, and the granzyme B expression level of individual effector cells are simultaneously measured and analyzed. That is, according to the method of the present invention, it is possible to analyze the quantity and quality of effector cells, and their functions in detail, simultaneously and in a multifaceted manner, thereby confirming the specificity and validity of the phenomenon. It becomes possible to do.
  • this image acquisition obtains image data of individual cells and makes the image data subject to analysis, in addition to enabling detailed morphological observation and analysis of cells as described above, data By confirming the image of each cell at the time of analysis, it becomes easy to find foreign substances mixed during sample preparation and measurement, or to find false positive data derived from the foreign substances. And it becomes possible to reanalyze a result only with the true positive data except the said false positive data.
  • Such exclusion of false positive data and reanalysis cannot be performed by conventional methods such as chromium release test, NK activity measurement by flow cytometry, or measurement of killer T cell frequency by MHC tetramer method or ELISPOT method. This is one of the excellent characteristics of the present invention. Therefore, even when a low-frequency cell group such as a killer T cell is used as a measurement target, measurement and analysis with higher reliability can be performed as compared with the conventional method.
  • the present invention even after a plurality of parameters are measured and the analysis is completed, if necessary, another parameter can be added and remeasured, and the data can be analyzed again.
  • another parameter can be added and remeasured, and the data can be analyzed again.
  • the effector cell to be measured is again a different killing component. If you want to investigate whether or not a certain granulysin is expressed, use an appropriate antibody that does not cross immunologically, and can be detected optically and separated from fluorescent dyes used for other parameter measurements.
  • a device for performing the measurement and analysis as described above is not specifically specified, but a fluorescence microscope image of a cell is acquired fully automatically, for example, a cell image analysis device such as Olympus RS-100, Furthermore, it is desirable that the apparatus can obtain statistical data by analyzing and digitizing fluorescence luminance information and cell morphology information. That is, for example, when the measurement target is a cell monolayer fixed to the well bottom of a standard flat bottom 96-well microtiter plate and subjected to various fluorescent labels, the 96-well microtiter plate is used.
  • a cell-based assay device comprising means for directing to a camera and further comprising a computer system for receiving and processing digital data from the digital camera. Then, the entire region of the 96-well microtiter plate is imaged, and this image is analyzed to quantitatively analyze the expression level of surface antigens and intracellular antigens of individual cells.
  • the above-described apparatus is a high-magnification fluorescent optical system apparatus equipped with an objective lens of at least 10 times, preferably 20 times or more, more preferably 40 times or more, for observing the internal structure of a cell in detail. It is preferable that the apparatus is capable of acquiring a microscopic image. For high-sensitivity detection, it is preferable to include a light source and a detector capable of widely detecting many fluorescent molecules having different excitation wavelengths and fluorescence wavelengths. At that time, in order to detect multiple parameters with the same specimen, when performing multiple staining with multiple fluorescent dyes, an optical separation function for accurately and independently measuring the fluorescence intensity of each dye, It is preferable to have an optical filter or the like.
  • the number of fluorescent dyes that can be measured simultaneously and independently is more preferably an apparatus having an optical measurement function capable of simultaneously using at least two kinds, preferably four or more kinds of dyes.
  • the above-mentioned apparatus has computer means for receiving and processing digital data from, for example, a CCD camera, specifically storing the data as an image image and processing the image image as necessary.
  • an image analysis function capable of quantitative analysis is installed, or an apparatus that can process and analyze measurement data in conjunction with an external image analysis apparatus.
  • a function that automatically aligns and focuses at the time of measurement is installed, so that more processing is performed. It is more preferable if the apparatus has a function of automatically acquiring high-speed image image data of cells.
  • Non-Patent Document 5 an analysis is performed in which a virtual cell image is reproduced on a display from a scattered light or fluorescence data using an imaging flow cytometer device, and morphological observation is performed using a microscope image.
  • the method disclosed in this paper is basically a method obtained by modifying the flow cytometry method, and is essentially different from the present invention in which cell image data is analyzed. That is, in the method according to the present invention, an image image of a cell acquired by a CCD camera or the like is stored as a measurement / analysis target, and the image data is converted into digitized data by various image processing to perform statistical analysis or the like.
  • the measurement method in the above paper is the conventional analysis method in flow cytometry, that is, individual cells are generated when light such as laser light is irradiated to cells that continuously flow through a specific flow path.
  • the intensity of scattered light or fluorescence is stored as data together with light emission position information, and the optical data is analyzed by various methods. Therefore, the method described in the non-patent document is essentially a method different from the present invention in which cells are directly observed and the image data is directly analyzed.
  • false positive data cannot be excluded and reanalyzed, and remeasurement and reanalysis with new parameters for the same sample is also possible. It is impossible, and from this point, it is considered that the method is essentially different from the measurement method according to the present invention.
  • a CMOS image sensor can be used in addition to a CCD camera including a CCD image sensor, and light including fluorescence of 300 nm to 800 nm is detected, and light emitted from an object to be photographed is used as a lens.
  • the optical system forms an image on the light receiving plane of the image pickup device, and the light and darkness of the image is photoelectrically converted into an amount of electric charge, which is sequentially read and converted into an electric signal.
  • the apparatus used in the invention is a digital image capturing means for capturing an image of a CCD image sensor, a CMOS image sensor or the like to perform measurement / analysis, a filter for spectrally separating the captured image by wavelength, and spectrally captured imaging data.
  • a memory that stores brightness information, position information, and wavelength information from each other, a central processing unit that obtains and analyzes a graph of the wavelength vs. frequency of the imaging data as light intensity for each wavelength, and a display unit that displays the calculation results It is to be prepared.
  • the present invention provides a method for detecting cell death or a method for detecting apoptosis as a method for detecting injury caused to a target cell.
  • the method for detecting cell death is not particularly limited.
  • PI sodium iodide
  • 7-AAD 7-aminoactinomycin D
  • the method of doing can also be used.
  • the method for detecting apoptosis is not particularly limited.
  • active caspase 3 which is a characteristic molecule expressed in cells at the early stage of apoptosis can be used as a measurement target.
  • Caspase 3 becomes active in the cytoplasm by being cleaved by the action of granzyme B injected into the target cell from, for example, an effector cell. This activated caspase 3 is visualized by immunostaining using a specific antibody.
  • cytokeratin 18 can also be used as an index of apoptosis.
  • Cytokeratin 18 is cleaved by activated caspase 3 (or caspase 7). By detecting the cleaved cytokeratin 18 immunochemically, it is also possible to detect apoptosis occurring in the target cell. Is possible.
  • a fluorescent labeling compound that specifically binds to active caspase 3 or a specific color that develops fluorescence when cleaved by caspase 3 is used.
  • a chemical substance such as a typical substrate may be used to measure the amount of active caspase 3 and its enzyme activity.
  • apoptosis such as nuclear concentration / fragmentation
  • fluorescence-labeled annexin V to detect phosphatidylserine exposed on the cell surface in the early stage of apoptosis, or by staining the cell nucleus with a dye such as DAPI, apoptosis such as nuclear concentration / fragmentation
  • a method of quantitative analysis using morphological changes characteristic of cells as an index may be used.
  • the target cell itself, or a target cell that has been subjected to some kind of injury, selected by various indicators as described above, a target cell that has undergone apoptosis, and / or a characteristic of apoptosis.
  • a method for measuring the function of an effector cell comprising the step of confirming whether or not the effector cell is actually attached to a target cell expressing a molecule. Adhesion between effector cells and target cells is an essential phenomenon for effector cells to kill target cells. Therefore, by including the step of analyzing this phenomenon over time, it is possible to confirm whether or not the effector cell is a functional cell having the ability to actually identify and adhere to the target cell.
  • NK cells characteristic expression on the cell surface of NK cells such as NKp46 and NKp30
  • NKp46 characteristic expression on the cell surface of NK cells
  • NKp30 characteristic expression on the cell surface of NK cells
  • the expression of these molecules may be extremely low, which may make it difficult to identify the cells.
  • MHC tetramer molecules are used. A method of detecting by, for example, is preferable. However, depending on the antigen, the MHC tetramer molecule may not be easily prepared. Therefore, it is possible to use a method of identifying the presence or absence of expression of a plurality of other molecules as an indicator, such as selecting CD3 positive and CD8 positive cells. Good.
  • molecules produced from the antigen-specific killer T cells or the expression level of the antigen-specific killer T cells changes depending on the stimulation of the specific antigen.
  • the expression level of intracellular killer T cells can be used as an index. Specifically, production of cytokines such as IFN ⁇ from killer T cells by stimulation of specific antigens, accumulation of such cytokines in cells, and cell killing components such as perforin, granzyme A, granzyme B, granulysin Increased expression in cells can be used as an index.
  • purified effector cells in addition to the above method, for example, a method of discriminating by directly incorporating the fluorescent marker gene for expressing GFP or the like into the cell.
  • a method may be used in which a specific molecule, for example, bromodeoxyuridine or the like is taken into a cell at the time of cell division and the effector cell is identified using the presence or absence of the expression of the molecule as an index.
  • the target cell does not need to be labeled with a fluorescent molecule or the like as long as it can be distinguished from the effector cell only by its morphological characteristics such as the difference in cell size.
  • fluorescent labeling may be performed using an antibody that recognizes a molecule characteristic of the target cell, similarly to labeling of effector cells.
  • the target cell is a cell line such as the above K562 cell, for example, the target cell is labeled and identified by directly incorporating the fluorescent marker gene for expressing GFP or the like into the target cell.
  • bromodeoxyuridine or the like may be incorporated into a cell and labeled, and the target cell may be identified using the presence or absence of the expression of the molecule as an index.
  • the method for detecting the adhesion between the effector cell and the target cell is not particularly limited. For example, it is easiest to observe the target cells in the image data one by one and measure the ratio of cells to which effector cells actually attach. On the other hand, if the image analysis apparatus has a masking tool, the analysis may be performed using the analysis tool. In that case, for example, the nucleus or cell membrane of the target cell is stained, and the area of the target cell where the lymphocyte adhering to the periphery is included on the outer periphery of the staining site.
  • the effector cell By setting (masking) a region similar to the shape of the cell nucleus or cell membrane outside a certain pixel around the cell membrane, and examining whether there is a fluorescent signal originating from the effector cell in that region, the effector cell It becomes possible to automatically select and measure the target cell to which the cell adheres and the target cell to which the effector cell does not adhere.
  • an effector cell evaluation method comprising the step of confirming the amount of cell killing components in the effector cell and the kinetics thereof.
  • the amounts of perforin, granzyme A, granzyme B, and granulysin to be measured can be quantified by performing immunofluorescence staining using a specific antibody as usual, and measuring the fluorescence intensity. If an image with high magnification and high resolution can be obtained, the number of granules in the cell can be measured and calculated.
  • the method for analyzing the dynamics of these cell killing components in the effector cells is not particularly limited, but, as described above, either the method for directly observing and analyzing the image of the cell or the automatic analysis by the image analyzer.
  • the method can be used. That is, intracellular granules containing these killing ingredients are normally distributed relatively uniformly in effector cells, but when the effector cells and target cells adhere, as a pre-stage that is injected into the target cells, Intracellular cell killing components accumulate near the cell adhesion surface (see, for example, Non-Patent Document 2 above). Using this phenomenon, the intracellular dynamics of the killing component of effector cells are analyzed.
  • the distribution of the intracellular granules is relatively broadly distributed within a certain pixel from the cell nucleus or cell membrane of the target cell. However, if the granules are accumulated on the adhesion surface with the target cells, the distribution is biased closer to the nucleus and the cell membrane than in the case of the uniform case described above.
  • the method for staining the nucleus or cell membrane of the target cell is not particularly limited.
  • DAPI 6-diamino-2-phenylindole
  • the cell membrane may be stained by a method of staining a molecule specifically expressed in the cell membrane of the cell depending on the type of target cell to be used.
  • a method of fluorescently labeling only target cells using a lipophilic fluorescent material such as PKH-26 (manufactured by Sigma) is used. It doesn't matter.
  • kits for measuring changes at various cellular and molecular levels occurring in effector cells and / or target cells as described above.
  • the kit comprises a cell culture vessel used for co-culture of cells and / or measurement of various parameters, and a reagent such as a specific antibody and a fluorescent dye for identifying cells and molecules.
  • the cell culture vessel which is one of the components of the kit, is used for culturing effector cells and target cells, and as a place to arrange cells in a single layer at the time of measurement, both of which are so-called microtiter plates and microplates.
  • Any container can be used as long as it is used for general cell culture and can be used for antibody staining by an immunochemical technique.
  • containers contained in one kit may be at least two different types for culture and measurement.
  • a petri dish, a slide glass, a flask, or the like may be used as long as the measuring device allows.
  • the measurement container is preferably a multi-well microtiter plate or microplate.
  • the number of wells of the microtiter plate or microplate is not particularly limited, however, for example, a 6-, 12-, 24-, 48-, or 96-well microtiter plate generally used for cell culture is preferable.
  • a microtiter plate or a microplate having wells with holes is preferred.
  • the material of the above-mentioned microtiter plate or microplate is not particularly limited.
  • a commercially available standard plastic plate for cell culture or ELISA, a glass plate, or the like can be used.
  • the bottom surface of these plates that is, the material and shape of the surface in contact with the cells, the charged state of the surface, etc. are not particularly limited.
  • Surface treatment with molecules for assisting cell attachment such as proteins such as collagen, polymer compounds such as poly-D-lysine, and other substances, as long as they do not interfere with fluorescence measurement. It can also be used.
  • other containers such as petri dishes, slide glasses, and flasks may be used, not limited to microtiter plates and microplates, but these containers are similarly materials that assist cell adhesion. Or surface-treated ones can be used.
  • the operation of fixing the cells to the bottom surface of the container is indispensable.
  • the method is not particularly limited, for example, when using a microtiter plate or a microplate, after seeding a cell suspension, the plate is centrifuged to submerge the cells, and then dried. Cells can be attached and extended to the bottom of the plate.
  • a microtiter plate or a microplate that has been subjected to a surface processing treatment for assisting the adhesion of cells as described above can be used as long as it does not hinder fluorescence measurement. Even when another container such as a microtiter plate or a microplate, a petri dish, a slide glass, or a flask is used, the cells can be fixed in the same manner.
  • kits for example, commercially available antibodies and reagents can be used as the reagent that is one of the components of the kit.
  • a specific antibody against NKp46 or NKp30, or a combination of CD56 antibody and CD3 antibody (for example, all manufactured by Beckman Coulter) and in the case of MHC tetramer, for example, HLA type is A0201 type
  • reagents such as PE-labeled Her2 / neu (KIFGSLAFL) MHC tetramer (manufactured by MBL) can be used.
  • specific antibodies against commercially available perforin, granzyme A, granzyme B and granulysin can also be used, and commercially available specific antibodies can also be used for cytokine detection.
  • cytokine detection it is possible to use a procedure for adding a protein transport inhibitor to the culture medium and accumulating the cytokine in the cell.
  • the protein transport inhibitor used for this purpose For example, commercially available reagents such as monensin A and brefeldin A can be used.
  • the above-mentioned specific antibody may be an antibody already labeled with a fluorescent dye, but may be a combination of an unlabeled antibody and a commercially available fluorescently labeled secondary antibody that specifically recognizes the antibody.
  • the fluorescent dye at that time is not particularly limited, but for a kit for simultaneously identifying at least three different molecules, for example, a fluorescent dye made by Invitrogen: Molecular Probes, Alexa Fluor (registered trademark) ) 488, Alexa Fluor (registered trademark) 555, Alexa Fluor (registered trademark) 647 can be combined with primary or secondary antibodies labeled with three types of fluorescent dyes.
  • the reagent for discriminating cell death and apoptosis is not particularly limited, but the kit uses PI (propidium iodide), 7-AAD (7-aminoactinomycin D), etc., for example, for the identification of dead cells. be able to.
  • PI sodium iodide
  • 7-AAD 7-aminoactinomycin D
  • a fluorescent labeling reagent that specifically binds to an intracellular active caspase such as APO LOGIX reagent manufactured by Cell Technologies may be used, or a fluorescent molecule is released by the action of the active caspase.
  • a substrate may be used, for example, a reagent such as a BioVision 7-AFC binding substrate.
  • a fluorescent labeling reagent such as FITC-labeled annexin V manufactured by Immunotech can be used for annexin V detection.
  • a commercially available antibody or anti-cytokeratin 18 antibody that specifically recognizes active caspase 3 can be used.
  • the antibody may be an antibody already labeled with a fluorescent dye, or may be a combination of an unlabeled antibody and a commercially available secondary antibody that binds to a fluorescent substance that specifically recognizes the antibody. .
  • the kind of fluorescent dye at that time is not particularly limited.
  • the properties of the effector cells themselves and the phenomenon at the multiple cellular and molecular levels when the cells kill target cells can be simultaneously and / or It becomes possible to measure at any time.
  • Example 1 of this invention It is a schematic diagram of the setting method of the measurement area
  • A It is a schematic diagram which shows selection of the immunostaining image of a cell
  • B Cell nucleus It is a schematic diagram showing recognition of (main object)
  • C is a schematic diagram showing recognition of cell surface antigens
  • D is a schematic diagram showing recognition of barforin
  • Example 1 of the present invention An example of analysis of perforin positive NK cells in PBMC.
  • (A) is a graph which is an example of analysis by the effector cell function measurement method according to the present invention, in which CD56-positive CD3-negative cells (NK cells) are selected and the ratio of perforin-positive cells in the cell group is calculated.
  • (B) A CD56-positive CD3-negative cell is selected by a conventional flow cytometer, and the ratio of perforin-positive cells in the cell group is calculated. It is the graph and imaging of an example of the image analysis of a perforin positive NK cell by the function measuring method of the effector cell which concerns on Example 1 of this invention.
  • An arbitrary dot indicated by an arrow in the dot plot of (A) is an imaging corresponding to an image of a cell in the region indicated by the arrow in (B).
  • FIG. 1 It is an imaging and analysis image which show an example of the analysis of the perforin containing granule of NK cell by the function measuring method of effector cell concerning Example 2 of the present invention.
  • A is one arbitrarily selected NK cell (perforin positive, CD56 positive)
  • B is an analysis image showing an example of a granule detection method when analyzing the number of granules of the cell.
  • It is imaging of an example of the image data of the culture mixture of PBL and K562 cell by the function measuring method of the effector cell which concerns on Example 3 of this invention. Arrows indicate K562 cells, and expression of active caspase 3 was observed in the cytoplasm of some cells.
  • indicates a CD56-positive cell (NK cell).
  • indicates a CD56-positive NK cell
  • an arrow indicates an active caspase-positive K562 cell.
  • indicates a CD56-positive NK cell
  • an arrow indicates an active caspase-positive K562 cell.
  • indicates a CD56-positive NK cell
  • an arrow indicates an active caspase-positive K562 cell.
  • indicates a CD56-positive NK cell
  • an arrow indicates an active caspase-positive K562 cell.
  • the perforin granules of NK (*) are relatively uniformly distributed in the cytoplasm, but in the other two NK cells, the perforin granules on the cell adhesion surface with K562 cells Accumulation is recognized.
  • a schematic diagram and imaging of an example of analysis of MAGE-3-specific killer T cells in peripheral blood by a conventional method are shown.
  • (A) is an example of an analysis chart of the MHC tetramer method
  • (B) is an example of a result of the ELISPOT method, and shows spots of IFN ⁇ produced by the specific killer T cell group.
  • the schematic diagram and imaging of an example of the analysis of a MAGE-3-specific killer T cell by the method which concerns on Example 4 of this invention are shown.
  • the histogram of (A) shows an example of analysis of intracellular IFN ⁇ positive cells.
  • (B) shows an image of all cells in the range of IFN ⁇ positive in the histogram of (A).
  • the X-marked portion at the bottom left was judged as noise because it did not actually show cell morphology.
  • (C) shows an image corresponding to the portion of the X mark in the image data. The portion that was mistakenly recognized as a cell is indicated by an arrow, and this portion is actually non-specific fluorescence. It was reconfirmed that the noise was radiating.
  • PBMC peripheral blood mononuclear cells
  • a flat-bottom 96-well microplate (Corning 3596) was seeded with 100,000 cells per well, and then the plate was centrifuged at 50 ⁇ g for 10 minutes, and then the supernatant was removed for 30 minutes. Air dried. The cells were then fixed with 4% paraformaldehyde for 30 minutes.
  • cytoplasmic perforin is stained with mouse anti-human perforin monoclonal antibody (ANCELL) and Alexa Fluor (registered trademark) 647-labeled anti-mouse IgG antibody (Invitrogen), and FITC-labeled anti-human CD3 antibody (Beckman Coulter) And R-PE labeled anti-human CD56 antibody (manufactured by Beckman Coulter) were used to label the cell surface antigen of lymphocytes.
  • ANCELL mouse anti-human perforin monoclonal antibody
  • Alexa Fluor registered trademark
  • 647-labeled anti-mouse IgG antibody Invitrogen
  • FITC-labeled anti-human CD3 antibody Beckman Coulter
  • R-PE labeled anti-human CD56 antibody manufactured by Beckman Coulter
  • the cell nuclei were stained with DAPI, and after staining, the ratio of NK cells (CD3 negative, CD56 positive) in PBL and the ratio of perforin positive cells were analyzed using a cell image analyzer (OLYMPUS CELAVIEW RS100).
  • FIG. 1A An outline of a specific method for setting a measurement region in image analysis is shown in FIG. 1.
  • 101 indicates cell surface antigens (CD3 and CD56)
  • 102 indicates perforin
  • 103 indicates a nucleus.
  • a plurality of arbitrary cell images subjected to these staining processes were selected.
  • a region that recognizes the nucleus region 104 that is, a region stained with DAPI, as a main object is set (B).
  • the nuclear region is set by the maximum and minimum values of the area of the DAPI-stained portion and the threshold value of the fluorescence intensity.
  • the watershed algorithm method is used. Regions were set to recognize individual cells by recognizing the constriction between nuclei.
  • a recognized main object that is, a donut-shaped area 105 existing at equal intervals and an area 107 covering all the cells, with each cell nucleus as a center, was created.
  • the innermost start point of the donut from the outermost nuclear line and the end point that is the outermost line of the donut can be freely set.
  • the cell surface antigens CD3 and CD56
  • C When a donut area such as the region 105 in which all or at least a part of the cell membrane 106 is included in the area is set, and the perforin 108 in the cell is a measurement target (D), the cell nucleus 109 A region 107 including the cell membrane 110 was set as a measurement target.
  • D the cell nucleus 109 A region 107 including the cell membrane 110 was set as a measurement target.
  • the region 111 that specifies the cell population by the description factor of the shape of the cell nucleus (main object) such as the area of the nucleus (Area) and the circularity factor is selected as the measurement target
  • noise was eliminated to improve the accuracy of the analysis data (E).
  • the gallery function (F) of the analysis software of the device is used to check the individual images of the cells in the region selected above, and an error such as recognizing the mixed foreign substance 112 or a plurality of cells as one cell. When recognition 113 grade
  • a sample for a flow cytometer is used to detect cell surface antigens of lymphocytes using a PC-5 labeled anti-human CD3 antibody (manufactured by Beckman Coulter) and an R-PE labeled anti-human CD56 antibody (manufactured by Beckman Coulter).
  • NK cells CD3 negative, CD56 positive
  • perforin positive cells in PBL was also analyzed.
  • FIG. 2 and FIG. As a result of analyzing a total of 5,008 PBLs by the method according to the present invention, there were 952 CD56-positive CD3-negative cells, that is, NK cells, and the ratio was 19.0%, and in these 952 NK cells The number of perforin positive cells was 899, and the ratio was 94.4% (FIG. 2 (A)). This result is the result of measuring the same sample with a conventional flow cytometer, that is, the ratio of NK cells is 19.3%, and the perforin positive ratio in the NK cells is 95.2% (FIG. 2 ( B)), and the method according to the present invention can identify and measure specific cells with the same accuracy as the conventional flow cytometer method even if a plurality of cells are mixed. It was confirmed that it was possible.
  • the measurement method according to the present invention stores the analysis data of each cell as an image image, so that each of the graphs in the dot plot analysis is one by one. It was possible to visually confirm whether the dots were actually cells.
  • FIG. 3 shows an example in which an image image corresponding to the arbitrarily selected dot (A) in the CD56 positive CD3 negative region is displayed on the display of (B).
  • (A) was confirmed to be CD56-positive NK cells that actually express perforin granules.
  • a foreign substance or the like is mixed for some reason at the time of sample preparation or measurement, it is difficult to distinguish noise caused by such a foreign substance from cells by the conventional method, and as a result, the noise is excluded during analysis.
  • FIG. 4 shows an example of the analysis.
  • the perforin granules in the original cell image shown in FIG. 4A are recognized as a plurality of spots by the spot detection function, and the total number of the spots is 17.
  • B NK cells in PBL were selected from the image data of the specimen, and the number of intracellular perforin positive granules was measured.
  • Example 2 Culture mixture analysis in mixed culture with K562 cells by healthy human PBL
  • a U-bottom 96-well microplate (Falcon 3077) previously seeded with 20,000 cells / well of K562 cells (human chronic myeloid leukemia cell line) was seeded with 400,000 cells / well of the above PBL. Both cells were co-cultured for a time.
  • the microplate was centrifuged at 50 ⁇ g for 10 minutes, immediately 4% paraformaldehyde was added, and the cells were fixed for 30 minutes. Thereafter, the fixed cells were divided in half, and one was used as a sample for measurement with the cell image analyzer according to the present invention, and the other was used as a sample for flow cytometry analysis, which is a conventional method.
  • NK cells with two antibodies, R-PE labeled anti-human CD56 antibody (manufactured by Beckman Coulter) and FITC-labeled anti-human CD3 antibody (manufactured by Beckman Coulter), or R-PE labeled anti-human CD56 antibody (manufactured by Beckman Coulter) alone Labeled.
  • Samples of NK cells labeled with the latter R-PE-labeled anti-human CD56 antibody alone consist of mouse anti-human perforin monoclonal antibody (manufactured by ANCELL) and Alexa Fluor (registered trademark) 488-labeled anti-mouse IgG antibody (manufactured by Invitrogen). ).
  • a rabbit anti-human active caspase 3 polyclonal antibody manufactured by TREVIGEN
  • Alexa Fluor registered trademark
  • NK cells CD3 negative, CD56 positive
  • PBL cell image analyzer
  • the ratio of NK cells (CD3 negative, CD56 positive) in PBL is analyzed using a cell image analyzer (OLYMPUS CELAVIEW RS100), the expression of perforin granules in NK cells, and The ratio of active caspase 3 positive cells in K562 cells was measured.
  • samples for measurement / analysis with a flow cytometer were subjected to treatment with PC-5 labeled anti-CD3 antibody and R-PE labeled anti-CD56 antibody in the same manner as in [Example 1] to identify NK cells.
  • active caspase 3 was stained using a rabbit anti-human active caspase 3 polyclonal antibody (manufactured by TREVIGEN) and a FITC-labeled anti-rabbit IgG antibody (manufactured by Beckman Coulter). Immediately using Epix XL (manufactured by Beckman Coulter), the ratio of NK cells (CD3 negative, CD56 positive) in PBL and the ratio of active caspase 3 positive cells in K562 cells were measured.
  • the ratio of CD56 positive and CD3 negative NK cells in PBL is almost the same as 8.7% in the measurement / analysis method according to the present invention and 8.6% in the measurement / analysis with the flow cytometer.
  • the ratio of active caspase 3 positive cells in K562 cells was 16.0% in the measurement / analysis method according to the present invention, and 16.9% in the measurement / analysis method using a flow cytometer. It was rate.
  • FIG. 5 shows an example of image data actually used for analysis in the measurement / analysis method according to the present invention, that is, an example of an image of a culture mixture of PBL and K562 after 4 hours of culture.
  • small cells such as lymphocytes
  • large K562 cells are mixed in the culture mixture, and CD56 molecules are expressed exclusively in the cell membrane of some small cells (NK cells).
  • NK cells some small cells
  • the expression of active caspase 3 was limited to the cytoplasm of some large cells (K562 cells). That is, in the measurement / analysis method according to the present invention, morphological observation using the acquired image data is possible, and the validity of the numerical data can be morphologically confirmed.
  • FIG. 6 shows another example of image data actually used in the analysis in Example 2.
  • NK cells expressing CD56 molecules were attached to K562 cells in which apoptosis occurred.
  • 47 active Caspase 3 positive K562 cells were confirmed, of which 13 active caspase 3 It was confirmed that NK cells were attached to positive K562 cells.
  • the number of NK cells adhering to the K562 cells was There were a total of 66, of which the total number of NK cells with perforin granules accumulating on the adhesion surface with K562 cells was 25, 38% of the total NK cells measured.
  • Example 4 Detection of MAGE-3-specific killer T cells in peripheral blood of cancer patients MAGE-3 peptide was administered to colon cancer patients (HLA-A2402) who were positive for tumor antigen MAGE by immunohistochemical staining of surgically excised specimens.
  • the peptide dendritic cell vaccine therapy used was performed. That is, 10 million to 100 million mature autologous dendritic cells previously treated with MAGE-3 peptide (IMPKAGLLI) are inoculated once a week into the skin near the inguinal lymph nodes of the patient. In vivo, MAGE-3-specific killer T cells were induced.
  • peripheral blood of the patient was collected, and the presence / absence of MAGE-3-specific killer T cells in the peripheral blood was analyzed by the measurement / analysis method according to the present invention.
  • the peripheral blood was used as a specimen, and MAGE-3-specific killer T cells in the peripheral blood were similarly analyzed using the conventional MHC tetramer method and ELISPOT method.
  • PBMCs are prepared from the collected peripheral blood by the same method as described above, and some PBMCs are immediately frozen and stored, and some PBMCs are obtained by magnetic microbeads (Miltenyi Biotech). CD14-positive cells or CD8-positive cells were collected and stored frozen, and then thawed and used as necessary.
  • the measurement / analysis according to the present invention was performed according to the following procedure. First, the cryopreserved CD14-positive cells are thawed, and then cultured in the presence of GM-CSF and IL-4 for 5 days according to a conventional method. Further, TNF ⁇ is added and cultured for 2 days to obtain mature dendritic cells. Induced. The mature dendritic cells cultured in AIM-V medium (manufactured by Invitrogen) containing 10 ⁇ g of synthetic MAGE-3 peptide (IMPKAGLLI) per mL were used as antigen-presenting cells.
  • AIM-V medium manufactured by Invitrogen
  • IMPKAGLLI synthetic MAGE-3 peptide
  • these antigen-presenting cells (20,000) and PBMC (200,000) separately thawed were suspended in AIM-V medium (manufactured by Invitrogen) containing 10% human AB serum at a final concentration.
  • AIM-V medium manufactured by Invitrogen
  • monensin A (manufactured by Sigma) was added to a final concentration of 2 ⁇ M, and the culture was further continued for 4 hours, for a total of 24 hours.
  • the cells were fixed with 4% paraformaldehyde for 30 minutes after centrifugation at 50 ⁇ g for 10 minutes, and after washing the fixed cells, the cells were all seeded in a flat-bottom 96-well microplate.
  • the microplate on which the cells were seeded was immediately centrifuged at 450 ⁇ g for 10 minutes and air-dried for 60 minutes to allow the cells to adhere to the plate. Thereafter, intracellular IFN ⁇ is stained with a mouse anti-human IFN ⁇ antibody (BD Farmingen), Alexa Fluor (registered trademark) 647-labeled anti-mouse IgG antibody (Invitrogen), and FITC-labeled anti-human CD3 antibody (Beckman).
  • Killer T cells were labeled using a Coulter) and R-PE labeled anti-human CD8 antibody (Beckman Coulter), and the cell nuclei were stained with DAPI. After staining, the ratio of IFN ⁇ -producing cells in CD3 and CD8 positive killer T cells was analyzed using a cell image analyzer (Olympus CELAVIEW RS100).
  • MHC tetramer method thawed PBMC is used as a material, and the MAGE-3 peptide MHC tetramer for FITC-labeled HLA-A2402 (manufactured by Proimmune) and the PC-5-labeled anti-human CD3 antibody (manufactured by Beckman Coulter) and PE-labeled anti-antibody Fluorescent labeling of PBMC using a human CD8 antibody (manufactured by Beckman Coulter) as usual, and immediately measuring the ratio of MAGE-3-specific killer T cells in the PBMC using Epix XL (manufactured by Beckman Coulter) Analyzed.
  • the ELISPOT method used IFN ⁇ ELISPOT SET (manufactured by BD) and AEC SUBSTRATE SET (manufactured by BD) to detect and measure the spot of IFN ⁇ produced from killer T cells by antigen stimulation according to the procedure described in the kit. Specifically, CD8-positive cells (100,000) that had been sorted and stored in advance and MAGE-3-labeled mature dendritic cells (10,000) prepared by the same procedure as described above were used as antigen-presenting cells. Samples co-cultured for 24 hours were used as specimens, and the number of detected IFN ⁇ spots was counted.
  • Table 2 summarizes the ratios of MAGE-3-specific killer T cells in peripheral blood measured by each test method.
  • the ratio of MAGE-3-specific killer T cells was similar, and was as low as 1% or less of killer T cells (CD8 + T cells).
  • the method according to the present invention enables more detailed data analysis than the conventional method.
  • FIG. 8 shows an example of data of the conventional MHC tetramer method (A) and ELISPOT method (B), but it is impossible to discriminate between cells and noise (nonspecific positive signal) by either method.
  • the presence or absence of false positive data could not be confirmed from either the dot plot in the MHC tetramer method (A) or the spot image in the ELISPOT method (B).
  • FIG. 9 shows an example of data analysis by the measurement method according to the present invention. 16 cells were detected in the range of IFN ⁇ positive cells on the histogram of (A), but images of individual cells (B) As a result, one was determined to be false positive data due to noise, not cells.
  • the present invention provides a new cell function measurement method for measuring details of functions of NK cells and antigen-specific killer T cells, a kit for the measurement, and a measurement system.
  • a new cell function measurement method for measuring details of functions of NK cells and antigen-specific killer T cells
  • a kit for the measurement for example, in cancer immune cell therapy
  • the function of an effector cell in an example of a patient is monitored in detail. It becomes possible to do.
  • it becomes possible to measure the details of the immune response of a subject which could not be analyzed by conventional NK activity, more easily and multifacetedly. It becomes possible to provide the subject with information. It is also an extremely useful assay tool when confirming the effectiveness of foods and drugs that regulate immune function.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Disclosed is a novel cell function measurement method that overcomes the various shortcomings and problems of previous effector cell function measurement methods, and a measurement kit and measurement system for the measurement concerned. By measuring/analyzing effector cell counts, properties and functions thereof simultaneously or as needed using a cell-based assay device capable of cell image analysis, this invention makes it possible to obtain highly detailed and reliable data that is superior to combinations of previous methods.

Description

エフェクター細胞の機能測定法及び測定用キット並びに測定システムEffector cell function measuring method, measuring kit and measuring system
 この発明は、リンパ球の細胞傷害活性を中心とする細胞機能を測定する方法、及びそのための測定用キット並びに測定システムに関するものである。 The present invention relates to a method for measuring cell functions centering on the cytotoxic activity of lymphocytes, and a measurement kit and measurement system therefor.
 我々の体には異物を認識して排除する免疫機構が備わっている。外部から侵入した病原体や、生体内で生じた癌細胞等の異常な細胞は異物として認識され、様々な免疫系のメカニズムによって生体から排除される。このような免疫機能は、血液やリンパ液の流れに乗って全身をくまなく循環する白血球によって巧妙に制御されている。 Our body has an immune mechanism that recognizes and eliminates foreign objects. Abnormal cells such as pathogens that enter from the outside and cancer cells generated in the living body are recognized as foreign substances and are excluded from the living body by various immune system mechanisms. Such immune functions are skillfully controlled by leukocytes that circulate throughout the whole body on the flow of blood or lymph.
 白血球のうち、いわゆる細胞性免疫の効果相(エフェクター・フェーズ)で主役を担うのがリンパ球である。リンパ球のうち、ナチュラルキラー細胞(以下、NK細胞と略す場合がある)や細胞傷害性T細胞(以下キラーT細胞と略す場合がある)等の、いわゆるエフェクター細胞と呼ばれる細胞群は、例えばウイルスに感染した細胞や癌細胞等、生体内の、自分自身の細胞に生じた異常を探知し、そしてその異常細胞を殺傷することによって排除する(例えば、非特許文献1)。 Among the white blood cells, lymphocytes play the main role in the so-called effector phase of cellular immunity. Among lymphocytes, cell groups called so-called effector cells such as natural killer cells (hereinafter sometimes abbreviated as NK cells) and cytotoxic T cells (hereinafter sometimes abbreviated as killer T cells) include, for example, viruses. Detecting abnormalities occurring in their own cells in the body, such as cells infected with cancer and cancer cells, and eliminating them by killing the abnormal cells (for example, Non-Patent Document 1).
 エフェクター細胞がウイルス感染細胞や癌細胞を殺傷するメカニズムは複数報告されているが、特にNK細胞とキラーT細胞の場合には、パーフォリンとグランザイム類を介した細胞傷害活性のメカニズムが重要な役割を果たしている(例えば、非特許文献1参照)。これらのエフェクター細胞は、標的細胞に接着した後に、パーフォリンやグランザイム類等を放出する。パーフォリンは標的細胞の細胞膜に孔を開け、グランザイムがその孔を通して標的細胞内に注入される。ヒトのグランザイムには少なくともA,B,H,M,Kの5種類が存在するが、この内、グランザイムBは、標的細胞内に存在するカスパーゼ3等のアポトーシス関連酵素を活性化することで標的細胞にアポトーシスを誘導し、そして最終的に標的細胞を死に到らしめるとされる。一方グランザイムAは、その詳細な作用メカニズムは不明だが、少なくともカスパーゼ非依存的な経路によって標的細胞にアポトーシスを誘導するとされる。またパーフォリンとグランザイムと同時に、脂質結合性蛋白であるグラニュライシンも細胞外に放出される。グラニュライシンの作用メカニズムやその生理的意義にはまだ不明な点も多いが、標的細胞の細胞膜に直接結合することで標的細胞に細胞死を誘導する可能性が指摘されている(例えば、非特許文献2参照)。 Several mechanisms have been reported for effector cells to kill virus-infected cells and cancer cells, but especially in the case of NK cells and killer T cells, the mechanism of cytotoxic activity via perforin and granzymes plays an important role. (For example, refer nonpatent literature 1). These effector cells release perforin and granzymes after adhering to the target cells. Perforin makes a hole in the cell membrane of the target cell, and granzyme is injected into the target cell through the hole. There are at least five types of human granzymes, A, B, H, M, and K. Among them, granzyme B is targeted by activating apoptosis-related enzymes such as caspase 3 present in target cells. It is said that it induces apoptosis in the cell and eventually kills the target cell. Granzyme A, on the other hand, is known to induce apoptosis in target cells through at least a caspase-independent pathway, although the detailed mechanism of action is unknown. Simultaneously with perforin and granzyme, granulysin, a lipid-binding protein, is also released extracellularly. Although there are many unclear points regarding the mechanism of action of granulysin and its physiological significance, it has been pointed out that it may induce cell death in the target cell by directly binding to the cell membrane of the target cell (eg, non-patented). Reference 2).
 近年になって、このエフェクター細胞の機能を応用した免疫細胞療法が、癌の治療や予防に適用されている。その代表的なものに「LAK療法」と「活性化リンパ球移入療法」がある(例えば、非特許文献3参照)。 In recent years, immune cell therapy applying the function of this effector cell has been applied to the treatment and prevention of cancer. Typical examples include “LAK therapy” and “activated lymphocyte transfer therapy” (see, for example, Non-Patent Document 3).
 この内、「LAK療法」は、体外に取り出したリンパ球をインターロイキン2等によって癌細胞殺傷能力が高まるように活性化し、その細胞を再度生体内に戻す療法である。実際にリンパ球をインターロイキン2存在下で培養すると、リンパ球中のNK細胞のパーフォリン含有量が顕著に高まることが報告されている(例えば、非特許論文4)。また「活性化リンパ球移入療法」は、体外に取り出したリンパ球中のキラーT細胞を特異的に活性化させる免疫細胞療法だが、「LAK療法」同様に、パーフォリン・グランザイム等による標的細胞殺傷能力を亢進させることが、治療効果を高める重要な要素となる。 Among these, “LAK therapy” is a therapy in which lymphocytes taken out of the body are activated by interleukin 2 or the like so as to increase the ability to kill cancer cells, and the cells are returned to the living body again. It has been reported that when lymphocytes are actually cultured in the presence of interleukin 2, the perforin content of NK cells in lymphocytes is significantly increased (for example, Non-Patent Paper 4). “Activated lymphocyte transfer therapy” is an immune cell therapy that specifically activates killer T cells in lymphocytes removed outside the body. Like “LAK therapy”, the target cell killing ability by perforin granzyme etc. It is an important factor to enhance the therapeutic effect.
 したがって、上記の免疫細胞療法を施行するにあたって、投与される治療用細胞のエフェクター細胞としての機能を、事前の検査で十分に確認しておくことが重要である。すなわち治療用細胞、それは純化された均一な細胞集団ではなく、ほとんどの場合は抗原特異性の異なる多様性に富んだリンパ球の集合であるが、少なくともその細胞集団の中に、目的とするエフェクター細胞がどの程度の比率で存在しているか、加えてそのエフェクター細胞が、実際にパーフォリンやグランザイムB等の殺傷成分を発現しているかどうか、その発現量がどの程度なのか、そして当該治療用細胞が、実際に標的となる癌細胞を殺傷する細胞傷害活性を有しているか否かを確認しておくことが重要である。さらに治療前後の、患者の血液中に存在するエフェクター細胞の比率やその機能を検査すること、また治療の経過に伴うそれらの変動を随時モニタリングすることは、治療効果を的確に把握するために重要であるのみならず、将来の適切な治療方針を決定する上でも極めて重要である。 Therefore, when performing the above-described immune cell therapy, it is important to sufficiently confirm the function of the therapeutic cells to be administered as effector cells by a prior examination. That is, therapeutic cells, which are not purified, uniform cell populations, but mostly a collection of diverse lymphocytes with different antigen specificities, but at least in the cell population, the desired effector In what ratio the cells are present, in addition to whether the effector cells actually express killing components such as perforin and granzyme B, the level of expression, and the therapeutic cells However, it is important to confirm whether or not it has a cytotoxic activity to actually kill target cancer cells. Furthermore, it is important to examine the ratio and function of effector cells in the patient's blood before and after treatment, and to monitor their fluctuations as the treatment progresses, in order to accurately grasp the therapeutic effect. It is also extremely important in determining an appropriate future treatment policy.
 一方、生体本来が備える免疫機能は、免疫細胞療法による癌治療の場面に限らず、予防医学的な観点からも注目されている。特にNK細胞が癌細胞を殺傷する機能はNK活性とも呼ばれ、生体の免疫機能の代表的な指標の一つとして広く認知されている。 On the other hand, the immune function inherent in the living body is attracting attention not only from the scene of cancer treatment by immune cell therapy but also from the viewpoint of preventive medicine. In particular, the function of NK cells to kill cancer cells is also called NK activity, and is widely recognized as one of the representative indicators of the immune function of the living body.
 NK活性は、一般的には、クロミウム遊離試験と呼ばれる検査やフローサイトメトリーによる細胞傷害活性試験によって評価されるが(例えば、非特許文献5参照)、その活性は年齢や生活習慣によって変動することが報告されており(例えば、非特許文献6参照)、さらにその活性が、ある種の健康食品やサプリメントの摂取等によって亢進することも報告されている(例えば、非特許文献7参照)。すなわちNK活性は、今日では健康増進のバロメータとして、さらには生体の免疫機能に対する薬品、食品、サプリメント等の効果を確認するための手段としても重要な検査項目として位置付けられている。 The NK activity is generally evaluated by a test called a chromium release test or a cytotoxic activity test by flow cytometry (see, for example, Non-Patent Document 5), but the activity varies depending on age and lifestyle. It has also been reported (for example, see Non-patent Document 6), and it has also been reported that its activity is enhanced by the intake of certain health foods and supplements (for example, see Non-Patent Document 7). That is, NK activity is positioned as an important test item today as a barometer for promoting health and as a means for confirming the effects of drugs, foods, supplements and the like on the immune function of the living body.
 上述のように、エフェクター細胞の機能の測定は、生体の免疫能を知る上で重要な検査項目である。そして現状では様々な手法によってエフェクター細胞の活性が評価されている。しかし以下に述べるように、個々の検査内容には様々な短所や問題点が内在している。 As described above, the measurement of effector cell functions is an important test item for knowing the immunity of a living body. At present, the activity of effector cells is evaluated by various methods. However, as described below, there are various disadvantages and problems inherent in each inspection content.
 NK細胞の機能は、NK活性を測定するのが一般的である。すなわち被験者の末梢血等をエフェクター細胞とし、骨髄性白血病細胞株であるK562細胞を標的細胞とし、各検査施設が独自に定めた比率でこれらの細胞を共培養し、そして一定時間後に、標的細胞であるK562細胞の傷害の程度を測定する。細胞傷害の測定は、クロミウム遊離試験によって評価されるのが一般的である。そしてその結果は、例えば末梢血中のリンパ球とK562細胞を10:1の比率で混合して4時間培養し、そして培養4時間後の時点で、傷害を受けたK562細胞が全体の60%であったとすると、NK活性が60%であると定義する。 The function of NK cells is generally to measure NK activity. That is, the peripheral blood of the subject is used as an effector cell, the myeloid leukemia cell line K562 cell is used as a target cell, and these cells are co-cultured at a ratio uniquely determined by each laboratory, and after a certain time, the target cell The degree of injury of K562 cells is measured. The measurement of cytotoxicity is generally assessed by a chromium release test. As a result, for example, lymphocytes in peripheral blood and K562 cells were mixed at a ratio of 10: 1 and cultured for 4 hours, and at 4 hours after culture, the damaged K562 cells were 60% of the whole. The NK activity is defined as 60%.
 しかしこの検査は、一般にNK活性と称されるものの、実際の検査材料は、血液または単核球細胞を中心とする白血球の細胞集団である。そしてNK細胞は、これらの検体中に、通常は十数パーセント程度かそれ以下しか含まれない。また各試験での検体中のNK細胞数は一定ではない。加えて検体中に存在するNK細胞は、数だけでなく、その機能面でも均質ではないと考えられる。例えば前述の非特許論文4には、NK細胞のパーフォリン含有量が、性別や年齢によって異なっていることが記されている。 However, although this test is generally referred to as NK activity, the actual test material is a cell population of leukocytes centered on blood or mononuclear cells. And, NK cells are usually contained in these specimens by about a dozen percent or less. In addition, the number of NK cells in the specimen in each test is not constant. In addition, the number of NK cells present in the specimen is considered to be not homogeneous in terms of their function. For example, in the aforementioned non-patent paper 4, it is described that the perforin content of NK cells varies depending on sex and age.
 すなわちクロミウム遊離試験のような、従来のNK活性評価とその測定結果は、検体中のNK細胞数やその質の違いを考慮に入れず、単に標的細胞に生じる細胞死という最終結果を表わすものに過ぎない。よってNK細胞数が多い検体は、一般に、より高いNK活性値を示す傾向があり、逆にNK細胞数が少ない検体は低いNK活性値を示す傾向がある。また複数の検体を比較してNK活性に違いが認められた場合、その違いがNK細胞数の違いによるものか、個々のNK細胞の機能に違いがあるためなのか、様々な可能性が考えられるが、上述の検査法ではその詳細を明らかにすることはできない。 In other words, conventional NK activity evaluation and its measurement results, such as the chromium release test, do not take into account the difference in the number of NK cells in the sample and their quality, but simply represent the final results of cell death occurring in the target cells. Not too much. Therefore, a specimen having a large number of NK cells generally tends to exhibit a higher NK activity value, and a specimen having a small number of NK cells tends to exhibit a low NK activity value. In addition, when there are differences in NK activity when comparing multiple specimens, there are various possibilities whether the difference is due to the difference in the number of NK cells or the function of individual NK cells. However, the details cannot be clarified by the above-described inspection method.
 クロミウム遊離試験に加えて、フローサイトメトリーやRT―PCR等の別の手法を用いて、検査材料中のNK細胞の比率やパーフォリン・グランザイムBの発現量を解析することも可能である。しかしそれらの追加検査を行うには、より多くの時間と労力ならびに費用を要し、さらに検査に要する細胞量も多くなるため、例えば免疫細胞療法においては、検査に用いる細胞数が増えることで、本来の治療に用いるべき細胞数が減る、という不都合も生じることになる。 In addition to the chromium release test, it is also possible to analyze the ratio of NK cells in the test material and the expression level of perforin granzyme B using another technique such as flow cytometry or RT-PCR. However, in order to perform these additional tests, more time, labor, and cost are required, and the amount of cells required for the test also increases. For example, in immune cell therapy, the number of cells used for the test increases, There is also a disadvantage that the number of cells to be used for the original treatment is reduced.
 一方、非特許文献5でも開示されているように、近年ではクロミウム遊離試験の代替法として、フローサイトメーターによる細胞傷害活性試験も開発されている。このフローサイトメーターでの試験では、複数の抗体と蛍光色素を適切に組み合わせることで、標的細胞に生じた細胞傷害の程度の測定と同時に、その検査に用いた検体中のNK細胞の比率、またそのNK細胞のグランザイムの発現頻度等を測定することも可能である。しかしそれらの複数の検査データは、例えば単位細胞あたりの細胞傷害活性を算出する等、NK活性を補正する場合には有用であるが、その一方で、いずれも個々に独立したデータであって、単にそれらのデータの集積や組合せだけでは、NK細胞と標的細胞間の相互作用の詳細や、個々の細胞に生じた細胞レベル・分子レベルでの現象の詳細を解析することは困難である。 On the other hand, as disclosed in Non-Patent Document 5, in recent years, a cytotoxic activity test using a flow cytometer has also been developed as an alternative method of the chromium release test. In this flow cytometer test, by appropriately combining a plurality of antibodies and fluorescent dyes, the degree of cytotoxicity generated in the target cells is measured, and at the same time, the ratio of NK cells in the specimen used for the test, It is also possible to measure the frequency of granzyme expression in the NK cells. However, these multiple test data are useful for correcting NK activity, for example, calculating the cytotoxic activity per unit cell, but on the other hand, all of them are independent data, It is difficult to analyze the details of the interaction between NK cells and target cells and the details of the phenomena at the cellular level and molecular level that have occurred in individual cells by simply collecting and combining these data.
 そもそもフローサイトメーターでの測定と解析において、測定時に保存され、また解析に使用されるデータは、細胞が装置内の流路を流れた時に検出された散乱光や蛍光強度等の数値データであり、それらの複数のパラメータをリストモードデータに変換したものを統計解析処理するのであって、細胞そのものを直接解析対象としているわけではない。よって解析ソフト上で様々な解析手法を駆使したとしても、解析できる現象とそのデータの精度には限度がある。例えば、前出の非特許文献5では、フローサイトメーターによって、NK細胞やT細胞と標的細胞との接着を解析する事例が開示されている。しかし散乱光や蛍光強度等の数値データとそのデータ解析手法の工夫だけで、細胞同士の接合を検出したり解析するのには限界があり、顕微鏡で細胞像を直接確認して解析する場合と比べて、その解析データの信頼性が劣ることは明らかである。またフローサイトメーターでは、その機器の特性として、測定対象とした個々の細胞を測定後に回収することは困難である。よって、仮に解析結果の信頼性に何らかの疑義が生じたとしても、もはや個々の細胞を回収して再測定することは極めて困難であり、実質的には解析結果の信頼性を後になって立証する術はない。 In the first place, in the measurement and analysis with a flow cytometer, the data that is stored at the time of measurement and used for the analysis is numerical data such as scattered light and fluorescence intensity detected when the cells flow through the flow path in the device. A statistical analysis process is performed on a plurality of parameters converted into list mode data, and the cell itself is not directly analyzed. Therefore, even if various analysis methods are used in the analysis software, there are limits to the phenomena that can be analyzed and the accuracy of the data. For example, in the aforementioned Non-Patent Document 5, an example is disclosed in which adhesion between NK cells or T cells and target cells is analyzed by a flow cytometer. However, there are limits to detecting and analyzing cell junctions only with numerical data such as scattered light and fluorescence intensity and data analysis techniques, and there are cases where cell images are directly confirmed and analyzed with a microscope. In comparison, it is clear that the reliability of the analysis data is inferior. Moreover, with a flow cytometer, it is difficult to collect individual cells as measurement objects after measurement as a characteristic of the instrument. Therefore, even if there is any doubt about the reliability of the analysis result, it is extremely difficult to collect and remeasure individual cells, and the reliability of the analysis result is proved later. There is no art.
 一方、キラーT細胞の場合には、NK細胞と比べてその細胞数が少ないが故に、当該細胞の機能測定は極めて困難となり、生体内のある特定の細胞集団、例えば末梢血単核球中の当該細胞の頻度の測定しかできない場合も少なくない。特に、癌患者の末梢血中に検出される、ある特定の腫瘍抗原に対する特異的キラーT細胞の数は極めて微量であり、例えば、その検出頻度はキラーT細胞全体の0.1%、末梢血単核球画分中では0.01%にも満たない場合が少なくない。このような状況では、通常の採血で回収できる腫瘍抗原特異的なキラーT細胞数は極めて微量であり、上述のクロミウム遊離試験やフローサイトメーターを用いた細胞傷害活性試験等を実施するための、必要最低限度の細胞数すら確保できず、結果として、標的癌細胞に対する細胞傷害活性を直接測定することもできない場合が多い。よって現状では、ほとんどの場合、MHCテトラマー法やELISPOT法等により、末梢血のキラーT細胞中の、ある特定の抗原に応答する特異的キラーT細胞の頻度の測定を限度とする検査しか行われない。 On the other hand, in the case of killer T cells, since the number of cells is smaller than that of NK cells, it is very difficult to measure the function of the cells, so that a certain cell population in a living body such as peripheral blood mononuclear cells In many cases, only the frequency of the cells can be measured. In particular, the number of specific killer T cells against a specific tumor antigen detected in the peripheral blood of cancer patients is extremely small. For example, the detection frequency is 0.1% of the total killer T cells, and the peripheral blood. In the mononuclear cell fraction, it is often less than 0.01%. In such a situation, the number of tumor antigen-specific killer T cells that can be collected by normal blood collection is extremely small, and for carrying out the above-described chromium release test or cytotoxic activity test using a flow cytometer, In many cases, even the minimum number of cells cannot be secured, and as a result, the cytotoxic activity against the target cancer cells cannot be directly measured. Therefore, at present, in most cases, only MHC tetramer method, ELISPOT method, etc. are used to limit the measurement of the frequency of specific killer T cells responding to a specific antigen in peripheral blood killer T cells. Absent.
 そしてそのMHCテトラマー法やELISPOT法による頻度測定ですら、測定対象となる細胞が微量であるが故に、データの信頼性や再現性の確保が困難である、と言わざるを得ない。例えばMHCテトラマー法は、抗原ペプチドとMHCクラスI様分子との複合体を蛍光色素等で標識し、当該分子と結合するキラーT細胞をフローサイトメーターで検出して解析する方法であり、感染症研究分野では、ウイルス抗原を特異的に認識するキラーT細胞を検出するための代表的な手法の一つとして広く用いられている。しかしフローサイトメトリーでの解析では、例えば測定対象が測定する細胞の0.01%にも満たないような微量の場合には、一般にデータの信頼性確保が困難となる。そして上述のように、データ解析の時点で仮に何らかの疑義が生じた場合、例えばあるドットプロット解析における、一つの細胞の存在を示すドットが、測定対象である細胞に由来するシグナルなのか、あるいは混入したノイズによるアーチファクトなのかということに疑問を持ったとしても、もはやその一つのドットを対象として再測定や再解析することは叶わない。 And even in the frequency measurement by the MHC tetramer method or ELISPOT method, it must be said that it is difficult to ensure the reliability and reproducibility of data because the amount of cells to be measured is very small. For example, the MHC tetramer method is a method in which a complex of an antigenic peptide and an MHC class I-like molecule is labeled with a fluorescent dye, and killer T cells bound to the molecule are detected and analyzed with a flow cytometer. In the research field, it is widely used as one of representative techniques for detecting killer T cells that specifically recognize viral antigens. However, in analysis by flow cytometry, it is generally difficult to ensure the reliability of data, for example, when the amount of measurement is less than 0.01% of cells to be measured. As described above, if any doubt occurs at the time of data analysis, for example, in a dot plot analysis, a dot indicating the presence of one cell is a signal derived from a cell to be measured or mixed Even if there is a question about whether this artifact is caused by noise, it is no longer possible to remeasure or reanalyze that single dot.
 一方、ELISPOT法は、特異抗原で活性化されたキラーT細胞が産生するインターフェロンγ(以下、IFNγと略す場合がある)やグランザイムB等を検出する方法であり、MHCテトラマー法と同様に、抗原特異的キラーT細胞を検出するための代表的手法の一つとして汎用されている。しかし、低頻度の細胞解析におけるデータの信頼性確保は、MHCテトラマー法同様に困難である。加えて、測定対象は、膜に点在するスポット、すなわち細胞が産生したIFNγやグランザイムB等を酵素抗体法等で染色して可視化したスポットであって、やはり細胞を直接測定対象としているのではない。それらの物質が検出された場所(スポット)に、かつてその物質を産生した細胞が存在していたと解釈する。従って測定後に、反応の特異性に疑義が生じたとしても、そのスポットの位置に本当にその物質を産生した細胞が存在していたのかどうかを、後になって立証する術はない。 On the other hand, the ELISPOT method is a method for detecting interferon γ (hereinafter sometimes abbreviated as IFNγ) or granzyme B produced by killer T cells activated with a specific antigen. It is widely used as one of representative techniques for detecting specific killer T cells. However, it is difficult to ensure the reliability of data in low-frequency cell analysis as in the MHC tetramer method. In addition, the measurement target is a spot scattered in the membrane, that is, a spot visualized by staining an IFNγ or granzyme B produced by a cell with an enzyme antibody method or the like, and the cell is also a direct measurement target. Absent. It is interpreted that the cell that produced the substance once existed at the place (spot) where the substance was detected. Therefore, even if there is doubt about the specificity of the reaction after the measurement, there is no way to prove later whether the cells that actually produced the substance were present at the spot position.
 以上のように現状のキラーT細胞の検査は、測定対象となる細胞を十分量確保することが困難であるが故に、その細胞の細胞傷害活性を直接評価することが難しく、さらにその細胞の頻度の測定ですら、信頼性や再現性の確保が容易ではないのが現状である。 As described above, since the current killer T cell test is difficult to secure a sufficient amount of cells to be measured, it is difficult to directly evaluate the cytotoxic activity of the cells, and the frequency of the cells. Even in this measurement, it is not easy to ensure reliability and reproducibility.
 本発明は、上述のような、従来までのエフェクター細胞の機能測定法の短所や課題を克服するための、新たな細胞機能測定法を提供すること、及び当該測定を実施するためのキット並びにその測定システムを提供することを目的とする。すなわち本発明は、エフェクター細胞の、標的細胞に対する細胞傷害活性等の機能を詳細且つ網羅的に、かつ高い精度で測定するための新たな細胞機能測定法及び当該測定を実施するためのキット並びにその測定システムを提供する。 The present invention provides a new cell function measurement method for overcoming the disadvantages and problems of the conventional effector cell function measurement method as described above, and a kit for carrying out the measurement and its kit An object is to provide a measurement system. That is, the present invention provides a novel cell function measurement method for measuring the function of an effector cell, such as cytotoxic activity against a target cell, in detail and exhaustively, with high accuracy, a kit for performing the measurement, and its Provide a measurement system.
 かかる問題を解決するために鋭意検討した結果、発明者らは、エフェクター細胞の機能を評価するためには、細胞傷害活性のメカニズム全体を検査対象として、エフェクター細胞が標的細胞を死滅させる際の様々な細胞生物学的な現象を、詳細且つ網羅的に解析することが不可欠であると考えるに至った。そして種々の細胞レベル、分子レベルでの現象を同時に、さらに必要に応じて随時測定しなければならないと考えた。加えて、低頻度の細胞の機能の測定に際して、そのデータの信頼性や再現性の確保のために、必要に応じて再解析することが可能な測定法でなければならないと考えた。そして最終的に、種々の細胞レベル、分子レベルでの現象を画像イメージとして取得し、それらの画像データを様々な解析手法を用いて解析する新たな細胞機能評価法を確立し、発明を完成するに至った。 As a result of diligent studies to solve such problems, the inventors have examined the mechanism of the cytotoxic activity in order to evaluate the function of the effector cell, and various effects when the effector cell kills the target cell. It came to be thought that it was indispensable to analyze the detailed cell biological phenomenon in detail and exhaustively. And I thought that phenomena at various cellular and molecular levels should be measured at the same time as needed. In addition, when measuring the function of low-frequency cells, we thought that it should be a measurement method that can be reanalyzed as necessary to ensure the reliability and reproducibility of the data. Eventually, various cell-level and molecular-level phenomena are acquired as image images, and new cell function evaluation methods for analyzing these image data using various analysis methods are established, and the invention is completed. It came to.
 本発明の一態様は、例えば標準マイクロタイタープレート中でエフェクター細胞と標的細胞を任意の時間、任意の割合で混合して培養し、必要に応じて、複数の分子を蛍光標識抗体や蛍光物質等により標識し、その後、上記のプレート中の細胞の一つ一つの画像イメージの取得と解析が可能なセルベースドアッセイ装置を用いて、複数の分子の発現を同時に、また必要に応じて随時測定し、そしてそれらの測定結果を定性及び定量的に解析することを特徴とするエフェクター細胞評価法を提供するものである。 In one embodiment of the present invention, for example, effector cells and target cells are mixed and cultured in an arbitrary time at an arbitrary ratio in a standard microtiter plate. If necessary, a plurality of molecules are fluorescently labeled antibodies, fluorescent substances, etc. And then measure the expression of multiple molecules simultaneously and as needed using a cell-based assay device capable of acquiring and analyzing individual images of the cells in the plate. And an effector cell evaluation method characterized by qualitatively and quantitatively analyzing the measurement results.
 ここで、標準マイクロタイタープレートの底は平底であることが望ましく、また、サンプルとなる細胞は、一つまたは複数のいずれでもよい。さらに、複数の細胞をサンプルとする場合は、前記平底の底面に単層で配置することが望ましい。 Here, the bottom of the standard microtiter plate is desirably a flat bottom, and the number of cells used as a sample may be one or more. Further, when a plurality of cells are used as a sample, it is desirable to arrange them in a single layer on the bottom surface of the flat bottom.
 すなわち本発明では、検体中の、目的とするエフェクター細胞の比率、細胞内にパーフォリン・グランザイムを発現するエフェクター細胞の比率、また個々のエフェクター細胞内のパーフォリン・グランザイム含有量等、従来までフローサイトメーター等を用いて測定していた項目と、個々のエフェクター細胞中のパーフォリン・グランザイム等の局在、並びにエフェクター細胞が標的細胞に遭遇することによって生じるパーフォリン・グランザイム等を含有する細胞内顆粒の細胞内動態等、従来までは蛍光顕微鏡やレーザー共焦点顕微鏡等で観察していた項目とを同時に測定する。加えて、エフェクター細胞の標的細胞への接着や、標的細胞でのアポトーシスに係る変化等の細胞生物学的な現象も、同一サンプル中で同時に測定する。これら複数のパラメータを同時に計測することで、エフェクター細胞の機能の詳細を網羅的に、かつ包括的に解析することが可能となる。 That is, in the present invention, the flow cytometer has been used so far, such as the ratio of the desired effector cells in the specimen, the ratio of the effector cells expressing perforin granzyme in the cells, and the content of perforin granzyme in each effector cell. Intracellular granule containing perforin granzyme etc. produced by encountering target cells with the localization of perforin granzyme etc. in individual effector cells The dynamics and other items that have been observed with a fluorescence microscope or a laser confocal microscope until now are measured simultaneously. In addition, cell biological phenomena such as adhesion of effector cells to target cells and changes related to apoptosis in target cells are also measured simultaneously in the same sample. By measuring these multiple parameters simultaneously, it becomes possible to comprehensively and comprehensively analyze the details of the function of the effector cells.
 具体的には、標的細胞の細胞傷害を測定して定量化する際に、当該現象が、例えばアポトーシスによるものなのかどうか、そして標的細胞へのエフェクター細胞の付着はどの程度なのか、エフェクター細胞の細胞質内に、標的細胞にアポトーシスを誘導せしめる殺傷成分、例えばグランザイムBが発現しているか、そしてそのエフェクター細胞が標的細胞を殺傷せんがために、当該細胞内のグランザイムBを含む細胞内顆粒を標的細胞との接着面に移動させているか否か、といった諸現象を同時に測定・解析する。さらに検体中に存在するエフェクター細胞の比率、グランザイムBを発現するエフェクター細胞の比率、また個々のエフェクター細胞のグランザイムB発現量も同時に測定して解析する。すなわち本発明に係る方法によれば、エフェクター細胞の量と質、そしてその機能を詳細に、また同時に、かつ多面的に解析することが可能となり、それによって当該現象の特異性と妥当性を確認することが可能となる。 Specifically, when measuring and quantifying the cytotoxicity of a target cell, whether the phenomenon is due to, for example, apoptosis, and how much the effector cell adheres to the target cell. Targeting intracellular granules containing granzyme B in the cytoplasm, because a killing component that induces apoptosis in the target cell, such as granzyme B, is expressed, and the effector cell kills the target cell Simultaneously measure and analyze various phenomena such as whether or not the cell is moved to the adhesive surface. Furthermore, the ratio of the effector cells present in the specimen, the ratio of the effector cells expressing granzyme B, and the granzyme B expression level of individual effector cells are simultaneously measured and analyzed. That is, according to the method of the present invention, it is possible to analyze the quantity and quality of effector cells, and their functions in detail, simultaneously and in a multifaceted manner, thereby confirming the specificity and validity of the phenomenon. It becomes possible to do.
 さらに本発命は、細胞個々の画像データを取得し、そしてその画像データを解析対象とするため、上記のような、細胞の詳細な形態学的観察や解析が可能となることに加え、データ解析時に細胞一つ一つの画像を確認することで、検体の調製や測定時に混入した異物を発見したり、その異物に由来する疑陽性データを発見することが容易となる。そして当該疑陽性データを除いた真の陽性データのみで結果を再解析することが可能となる。このような疑陽性データの排除と再解析は、従来法であるクロミウム遊離試験やフローサイトメトリーによるNK活性測定、またMHCテトラマー法やELISPOT法でのキラーT細胞の頻度の測定では行うことのできない、当該発明の優れた特性の一つである。従ってキラーT細胞のような低頻度の細胞群を測定対象とする場合であっても、従来法と比べて、より信頼性の高い測定と解析を行うことが可能となる。 Furthermore, since this image acquisition obtains image data of individual cells and makes the image data subject to analysis, in addition to enabling detailed morphological observation and analysis of cells as described above, data By confirming the image of each cell at the time of analysis, it becomes easy to find foreign substances mixed during sample preparation and measurement, or to find false positive data derived from the foreign substances. And it becomes possible to reanalyze a result only with the true positive data except the said false positive data. Such exclusion of false positive data and reanalysis cannot be performed by conventional methods such as chromium release test, NK activity measurement by flow cytometry, or measurement of killer T cell frequency by MHC tetramer method or ELISPOT method. This is one of the excellent characteristics of the present invention. Therefore, even when a low-frequency cell group such as a killer T cell is used as a measurement target, measurement and analysis with higher reliability can be performed as compared with the conventional method.
 あわせて本発明では、ある複数パラメータを測定して解析が終了した後であっても、必要に応じて、別のパラメータを加えて再測定し、再度データを解析し直すことが可能である。前述の例では、エフェクター細胞のグランザイムBの発現を測定・解析する例を提示したが、本発明では、当該測定及び解析が終了した後に、改めて当該測定対象のエフェクター細胞が、別の殺傷成分であるグラニュライシンを発現しているか否かを調べたい場合、免疫学的に交差しない適切な抗体を用い、また光学的に検出可能で、かつ他のパラメータ測定に用いた蛍光色素等と分離測定可能な波長を有する標識色素を用いることで、マイクロタイタープレート中の同一細胞のグラニュライシンを染色し、他の複数パラメータとともに、改めて測定や解析をやり直すことが可能となる。このような利便性、すなわち同一検体を用いて、ある一連の測定と解析が終了した後に、別のパラメータを加えて再測定・再解析を行うことができるという利便性は、従来法にはない、本発明の優れた特性の別の一面である。従来法であるクロミウム遊離試験やフローサイトメトリーによるNK活性測定、またMHCテトラマー法やELISPOT法でのキラーT細胞の頻度の測定では、このような、同一検体での、新たなパラメータを加えた再測定・再解析は不可能である。 In addition, in the present invention, even after a plurality of parameters are measured and the analysis is completed, if necessary, another parameter can be added and remeasured, and the data can be analyzed again. In the above-described example, an example of measuring and analyzing the expression of granzyme B in an effector cell has been presented. However, in the present invention, after the measurement and analysis are completed, the effector cell to be measured is again a different killing component. If you want to investigate whether or not a certain granulysin is expressed, use an appropriate antibody that does not cross immunologically, and can be detected optically and separated from fluorescent dyes used for other parameter measurements. By using a labeling dye having an appropriate wavelength, it is possible to stain granulinisin of the same cell in the microtiter plate and perform measurement and analysis again together with other multiple parameters. Such convenience, that is, the convenience that remeasurement / reanalysis can be performed by adding another parameter after a series of measurements and analysis using the same specimen is completed is not available in the conventional method. This is another aspect of the excellent characteristics of the present invention. Conventional methods such as chromium release measurement and flow cytometry for NK activity measurement, and MHC tetramer method and ELISPOT method for measuring the frequency of killer T cells, re-addition of these same samples with new parameters added. Measurement and reanalysis are not possible.
 上述のような測定・解析を行うための装置は、具体的には特定されないが、例えばオリンパス製のRS-100のような細胞イメージ解析装置等、細胞の蛍光顕微鏡画像を全自動で取得し、さらに蛍光輝度情報や細胞形態情報などを解析して数値化することで統計的なデータを得ることができるような装置であることが望ましい。すなわち当該測定装置は、例えば測定対象が、標準平底96穴のマイクロタイタープレートのウェル底部に固着し、かつ、様々な蛍光標識を施した細胞単層であった場合、その96穴マイクロタイタープレートを保持するために適合したステージを有し、そしてそのステージを移動させる手段を有し、また例えばCCDカメラのようなデジタルカメラ、励起光を細胞に方向付ける光源、および細胞から放射された蛍光をデジタルカメラに方向付けるための手段を備え、さらにそのデジタルカメラからのデジタルデータを受信及び処理するためのコンピューターシステムを有するセルベースドアッセイ装置である。そして当該96穴マイクロタイタープレートの全領域を画像描出し、この画像を解析して、個々の細胞の表面抗原や細胞内抗原の発現量等を定量解析することが可能な装置である。 A device for performing the measurement and analysis as described above is not specifically specified, but a fluorescence microscope image of a cell is acquired fully automatically, for example, a cell image analysis device such as Olympus RS-100, Furthermore, it is desirable that the apparatus can obtain statistical data by analyzing and digitizing fluorescence luminance information and cell morphology information. That is, for example, when the measurement target is a cell monolayer fixed to the well bottom of a standard flat bottom 96-well microtiter plate and subjected to various fluorescent labels, the 96-well microtiter plate is used. Has a stage adapted to hold and has means to move the stage, and also digitally captures the fluorescence emitted from the cell, such as a digital camera such as a CCD camera, a light source that directs excitation light to the cell A cell-based assay device comprising means for directing to a camera and further comprising a computer system for receiving and processing digital data from the digital camera. Then, the entire region of the 96-well microtiter plate is imaged, and this image is analyzed to quantitatively analyze the expression level of surface antigens and intracellular antigens of individual cells.
 上述の装置は、少なくとも10倍の対物レンズ、好ましくは20倍以上、さらに好ましくは40倍以上の対物レンズを装備する高倍率蛍光光学系装置であって、細胞の内部構造を詳細に観察するための顕微鏡画像の取得が可能な装置であることが好ましい。また高感度検出のために、異なる励起波長と蛍光波長を持つ多くの蛍光分子を幅広く検出することが可能な光源と検出器を備えていることが好ましい。その際、同一検体で複数のパラメータの検出を行うためにも、複数の蛍光色素で多重染色した場合に、各々の色素ごとの蛍光強度を独立して精度よく測定するための光学的分離機能、光学フィルタ等を有していることが好ましい。そして、独立して同時に測定できる蛍光色素の数は少なくとも2種以上、望ましくは4種以上の色素を同時に用いることができる光学的測定機能を有する装置であることがさらに好ましい。 The above-described apparatus is a high-magnification fluorescent optical system apparatus equipped with an objective lens of at least 10 times, preferably 20 times or more, more preferably 40 times or more, for observing the internal structure of a cell in detail. It is preferable that the apparatus is capable of acquiring a microscopic image. For high-sensitivity detection, it is preferable to include a light source and a detector capable of widely detecting many fluorescent molecules having different excitation wavelengths and fluorescence wavelengths. At that time, in order to detect multiple parameters with the same specimen, when performing multiple staining with multiple fluorescent dyes, an optical separation function for accurately and independently measuring the fluorescence intensity of each dye, It is preferable to have an optical filter or the like. The number of fluorescent dyes that can be measured simultaneously and independently is more preferably an apparatus having an optical measurement function capable of simultaneously using at least two kinds, preferably four or more kinds of dyes.
 そして上述の装置は、例えばCCDカメラからのデジタルデータを受信して処理するためのコンピュータ手段を有するものであり、具体的にはデータを画像イメージとして保存し、必要に応じて当該画像イメージを加工し、また定量的に解析することができるような画像解析機能を搭載しているか、または外部の画像解析装置と連動して測定データを加工・解析できる装置であることが好ましい。加えて、例えば標準96穴マイクロタイタープレート等の多数のウェルを有するプレートを使用した場合でも、測定時に自動的にアライメント及びフォーカスする機能を搭載することで、多様な処理を施した、より多くの細胞の画像イメージデータを、自動で高速に取得する機能を有する装置であればさらに好ましい。 The above-mentioned apparatus has computer means for receiving and processing digital data from, for example, a CCD camera, specifically storing the data as an image image and processing the image image as necessary. In addition, it is preferable that an image analysis function capable of quantitative analysis is installed, or an apparatus that can process and analyze measurement data in conjunction with an external image analysis apparatus. In addition, even when using a plate with a large number of wells, such as a standard 96-well microtiter plate, a function that automatically aligns and focuses at the time of measurement is installed, so that more processing is performed. It is more preferable if the apparatus has a function of automatically acquiring high-speed image image data of cells.
 例えば、前述の非特許文献5では、イメージングフローサイトメーター装置を用い、散乱光や蛍光データからバーチャルな細胞像をディスプレイ上で再現し、あたかも顕微鏡画像による形態学的観察を行っているような解析事例が示されている。しかしこの論文で開示されている方法は、基本的にフローサイトメトリー手法を改変した方法であって、細胞の画像データを解析対象とする当該発明とは本質的に異なっている。すなわち本発明に係る方法では、CCDカメラ等で取得した細胞の画像イメージを測定・解析対象として保存し、そしてその画像データを様々な画像処理によって数値化データとして換算して統計解析等を行う。しかし上記の論文での測定方法は、従来までのフローサイトメトリーでの解析法、すなわちある特定の流路を連続的に流れる細胞にレーザー光等の光を照射した際の、個々の細胞が発生する散乱光や蛍光の強度を発光位置情報と共にデータとして保存し、その光学的データを様々な手法で解析する方法である。従って当該非特許文献に記載の方法は、細胞を直接観察し、その画像データを直接解析対象とする本発明とは本質的に異なる方法である。加えて、前述のように、フローサイトメトリーを用いた測定法であるが故に、疑陽性データの排除と再解析ができず、また同一検体での新たなパラメータを加えた再測定・再解析も不可能であり、この点からも、本発明に係る測定法とは本質的に異なる方法であると考えられる。 For example, in Non-Patent Document 5 described above, an analysis is performed in which a virtual cell image is reproduced on a display from a scattered light or fluorescence data using an imaging flow cytometer device, and morphological observation is performed using a microscope image. A case is shown. However, the method disclosed in this paper is basically a method obtained by modifying the flow cytometry method, and is essentially different from the present invention in which cell image data is analyzed. That is, in the method according to the present invention, an image image of a cell acquired by a CCD camera or the like is stored as a measurement / analysis target, and the image data is converted into digitized data by various image processing to perform statistical analysis or the like. However, the measurement method in the above paper is the conventional analysis method in flow cytometry, that is, individual cells are generated when light such as laser light is irradiated to cells that continuously flow through a specific flow path. In this method, the intensity of scattered light or fluorescence is stored as data together with light emission position information, and the optical data is analyzed by various methods. Therefore, the method described in the non-patent document is essentially a method different from the present invention in which cells are directly observed and the image data is directly analyzed. In addition, as described above, because it is a measurement method using flow cytometry, false positive data cannot be excluded and reanalyzed, and remeasurement and reanalysis with new parameters for the same sample is also possible. It is impossible, and from this point, it is considered that the method is essentially different from the measurement method according to the present invention.
 なお、撮像装置としては、CCDイメージセンサを含むCCDカメラの他にCMOSイメージセンサを用いることもでき、300nm乃至800nmの蛍光を含む光を検出して、撮影対象物から発した光をレンズなどの光学系によって撮像素子の受光平面に結像させ、その像の光による明暗を電荷の量に光電変換し、それを順次読み出して電気信号に変換する。 As an imaging device, a CMOS image sensor can be used in addition to a CCD camera including a CCD image sensor, and light including fluorescence of 300 nm to 800 nm is detected, and light emitted from an object to be photographed is used as a lens. The optical system forms an image on the light receiving plane of the image pickup device, and the light and darkness of the image is photoelectrically converted into an amount of electric charge, which is sequentially read and converted into an electric signal.
 すなわち発明に用いる装置は、CCDイメージセンサやCMOSイメージセンサ等のイメージを撮像して測定・解析を行うための装置デジタル画像撮像手段と、撮像した画像を波長別に分光するフィルタと、分光した撮像データから輝度情報と位置情報と波長情報毎に格納するメモリと、撮像データを波長毎の光強度としてその波長対周波数のグラフを入手して分析する中央演算部と、演算結果を表示する表示部を備えるものである。 In other words, the apparatus used in the invention is a digital image capturing means for capturing an image of a CCD image sensor, a CMOS image sensor or the like to perform measurement / analysis, a filter for spectrally separating the captured image by wavelength, and spectrally captured imaging data. A memory that stores brightness information, position information, and wavelength information from each other, a central processing unit that obtains and analyzes a graph of the wavelength vs. frequency of the imaging data as light intensity for each wavelength, and a display unit that displays the calculation results It is to be prepared.
 発明の別の好ましい実施態様として、本発明は、標的細胞に生じた傷害を検出する方法として、細胞死を検出する方法乃至アポトーシスを検出する方法を提供するものである。 As another preferred embodiment of the present invention, the present invention provides a method for detecting cell death or a method for detecting apoptosis as a method for detecting injury caused to a target cell.
 細胞死の検出方法は特に限定されるものではないが、例えば常法に従って、PI(プロピジウムイオダイド)や7-AAD(7-アミノアクチノマイシンD)等を用いて、生細胞と死細胞を識別する方法も用いることができる。 The method for detecting cell death is not particularly limited. For example, in accordance with conventional methods, PI (propidium iodide), 7-AAD (7-aminoactinomycin D), etc. are used to distinguish between live cells and dead cells. The method of doing can also be used.
 一方、アポトーシスを検出する方法も特に限定されるものではないが、例えばアポトーシス初期段階で細胞に発現する特徴的な分子である活性型カスパーゼ3を測定対象として用いることができる。カスパーゼ3は、例えばエフェクター細胞から標的細胞内に注入されたグランザイムBの作用によって切断されることで、細胞質内で活性型となるが、この活性型カスパーゼ3を特異抗体を用いて免疫染色により可視化することで、アポトーシスの発現を評価する。また標的となる癌細胞が上皮系細胞の場合には、サイトケラチン18をアポトーシスの指標とすることもできる。サイトケラチン18は、活性化されたカスパーゼ3(またはカスパーゼ7)により切断されるが、その切断されたサイトケラチン18を免疫化学的に検出することで、標的細胞に生じたアポトーシスを検出することも可能である。 On the other hand, the method for detecting apoptosis is not particularly limited. For example, active caspase 3 which is a characteristic molecule expressed in cells at the early stage of apoptosis can be used as a measurement target. Caspase 3 becomes active in the cytoplasm by being cleaved by the action of granzyme B injected into the target cell from, for example, an effector cell. This activated caspase 3 is visualized by immunostaining using a specific antibody. To evaluate the expression of apoptosis. When the target cancer cell is an epithelial cell, cytokeratin 18 can also be used as an index of apoptosis. Cytokeratin 18 is cleaved by activated caspase 3 (or caspase 7). By detecting the cleaved cytokeratin 18 immunochemically, it is also possible to detect apoptosis occurring in the target cell. Is possible.
 またアポトーシスの検出には、上述のような免疫化学的手法に加えて、例えば活性型カスパーゼ3に特異的に結合する蛍光標識化合物や、カスペース3によって切断されることで蛍光発色するような特異的な基質等の化学物質を用いて、活性型カスパーゼ3の量や、その酵素活性を測定する方法でもよい。また蛍光標識したアネキシンVを用いて、アポトーシス初期段階で細胞表面に露出するフォスファチジルセリンを検出する方法や、細胞核をDAPI等の色素で染色することで、核の濃縮・断片化等のアポトーシス細胞に特徴的な形態学変化を指標として定量解析する方法を用いてもよい。 For detection of apoptosis, in addition to the immunochemical techniques as described above, for example, a fluorescent labeling compound that specifically binds to active caspase 3 or a specific color that develops fluorescence when cleaved by caspase 3 is used. Alternatively, a chemical substance such as a typical substrate may be used to measure the amount of active caspase 3 and its enzyme activity. In addition, by using fluorescence-labeled annexin V to detect phosphatidylserine exposed on the cell surface in the early stage of apoptosis, or by staining the cell nucleus with a dye such as DAPI, apoptosis such as nuclear concentration / fragmentation A method of quantitative analysis using morphological changes characteristic of cells as an index may be used.
 そして本発明のある好ましい実施態様では、標的細胞そのもの、又は上述のような様々な指標によって選別された、何らかの傷害を受けた標的細胞や、アポトーシスを生じた標的細胞及び/又はアポトーシスに特徴的な分子を発現している標的細胞に、実際にエフェクター細胞が接着しているかどうかを確認する工程を含むことを特徴とするエフェクター細胞の機能測定法を提供する。エフェクター細胞と標的細胞との接着は、エフェクター細胞が標的細胞を殺傷するために不可欠な現象である。したがって経時的にこの現象を解析する工程を含むことによって、当該エフェクター細胞が、実際に標的細胞を識別して接着する能力を有する機能的な細胞であるか否かを確認することができる。  In a preferred embodiment of the present invention, the target cell itself, or a target cell that has been subjected to some kind of injury, selected by various indicators as described above, a target cell that has undergone apoptosis, and / or a characteristic of apoptosis. There is provided a method for measuring the function of an effector cell, comprising the step of confirming whether or not the effector cell is actually attached to a target cell expressing a molecule. Adhesion between effector cells and target cells is an essential phenomenon for effector cells to kill target cells. Therefore, by including the step of analyzing this phenomenon over time, it is possible to confirm whether or not the effector cell is a functional cell having the ability to actually identify and adhere to the target cell. *
 エフェクター細胞の特定には様々な方法を用いることができるが、当該エフェクター細胞に特徴的な分子の検出、例えばNK細胞の場合には、NKp46やNKp30等のNK細胞の細胞表面に特徴的に発現する分子を利用して特定する方法を用いることができる。ただ検体によっては、これらの分子の発現が極端に低いために細胞の特定が困難な場合もあるので、例えばCD56陽性且つCD3陰性の細胞を選択する等、他の複数の抗原分子を組み合わせて特定してもかまわない。 Although various methods can be used to identify effector cells, detection of molecules characteristic of the effector cells, for example, in the case of NK cells, characteristic expression on the cell surface of NK cells such as NKp46 and NKp30 It is possible to use a method of specifying using molecules to be identified. However, depending on the sample, the expression of these molecules may be extremely low, which may make it difficult to identify the cells. For example, select CD56-positive and CD3-negative cells to identify them in combination with other antigen molecules. It doesn't matter.
 また抗原特異的なキラーT細胞を識別するためには、主要組織適合性抗原クラスI分子上に提示されているペプチド抗原を検出する方法を用いるのが好ましく、具体的には蛍光標識MHCテトラマー分子等によって検出する方法が好ましい。しかし抗原によっては、当該MHCテトラマー分子を容易に作製できない場合もあるので、CD3陽性且つCD8陽性の細胞を選別する等、他の複数の分子の発現の有無を指標に識別する方法を用いてもよい。 In order to identify antigen-specific killer T cells, it is preferable to use a method of detecting peptide antigens presented on major histocompatibility antigen class I molecules. Specifically, fluorescently labeled MHC tetramer molecules are used. A method of detecting by, for example, is preferable. However, depending on the antigen, the MHC tetramer molecule may not be easily prepared. Therefore, it is possible to use a method of identifying the presence or absence of expression of a plurality of other molecules as an indicator, such as selecting CD3 positive and CD8 positive cells. Good.
 さらに抗原特異的なキラーT細胞の識別には、特異抗原による刺激に応じて、当該抗原特異的キラーT細胞から産生される分子、あるいは特異抗原刺激に応じて発現量が変化する、当該抗原特異的キラーT細胞の細胞内の分子の発現量等を指標とすることもできる。具体的には、特異抗原の刺激による、キラーT細胞からのIFNγ等のサイトカインの産生、または当該サイトカイン等の細胞内での蓄積、またパーフォリン、グランザイムA、グランザイムB、グラニュライシン等の細胞殺傷成分の細胞内での発現の亢進等を指標とすることができる。 Furthermore, for identification of antigen-specific killer T cells, molecules produced from the antigen-specific killer T cells or the expression level of the antigen-specific killer T cells changes depending on the stimulation of the specific antigen. The expression level of intracellular killer T cells can be used as an index. Specifically, production of cytokines such as IFNγ from killer T cells by stimulation of specific antigens, accumulation of such cytokines in cells, and cell killing components such as perforin, granzyme A, granzyme B, granulysin Increased expression in cells can be used as an index.
 もし純化されたエフェクター細胞を用いることが可能であれば、上記の方法に加えて、例えばGFP等を発現させるための蛍光マーカー遺伝子、または蛍光分子そのものを直接当該細胞に取り込ませることで識別する方法、あるいは事前に特定の分子、例えば細胞分裂時にブロモデオキシウリジン等を細胞内に取り込ませ、その分子の発現の有無を指標としてエフェクター細胞を識別する方法を用いてもかまわない。 If it is possible to use purified effector cells, in addition to the above method, for example, a method of discriminating by directly incorporating the fluorescent marker gene for expressing GFP or the like into the cell. Alternatively, a method may be used in which a specific molecule, for example, bromodeoxyuridine or the like is taken into a cell at the time of cell division and the effector cell is identified using the presence or absence of the expression of the molecule as an index.
 一方、標的細胞は、例えば細胞のサイズの違い等、その形態学的な特徴だけでエフェクター細胞と識別可能であれば、特に蛍光分子等で標識する必要はない。しかし他細胞と識別する必要がある場合には、エフェクター細胞の標識と同様に、当該標的細胞に特徴的な分子を認識する抗体等を用いて蛍光標識すればよい。また標的細胞が上記のK562細胞のような株化細胞であれば、例えばGFP等を発現させるための蛍光マーカー遺伝子、または蛍光分子そのものを直接標的細胞に取り込ませることで標的細胞を標識して識別する方法、あるいは前述のように、例えばブロモデオキシウリジン等を細胞内に取り込ませて標識し、その分子の発現の有無を指標として標的細胞を識別する方法を用いてもかまわない。 On the other hand, the target cell does not need to be labeled with a fluorescent molecule or the like as long as it can be distinguished from the effector cell only by its morphological characteristics such as the difference in cell size. However, when it is necessary to distinguish from other cells, fluorescent labeling may be performed using an antibody that recognizes a molecule characteristic of the target cell, similarly to labeling of effector cells. Further, if the target cell is a cell line such as the above K562 cell, for example, the target cell is labeled and identified by directly incorporating the fluorescent marker gene for expressing GFP or the like into the target cell. Alternatively, as described above, for example, bromodeoxyuridine or the like may be incorporated into a cell and labeled, and the target cell may be identified using the presence or absence of the expression of the molecule as an index.
 エフェクター細胞と標的細胞の接着を検出する方法は特に限定されない。例えば、画像データ中の標的細胞を一つ一つ観察し、実際にエフェクター細胞が付着する細胞の比率を計測するのが最も容易である。一方、マスキング・ツールを有する画像解析装置であれば、当該解析ツールを用いて解析を行ってもよい。その場合、例えば標的細胞の核乃至細胞膜を染色し、そして任意の標的細胞の、当該染色部位の外周に、その周囲に付着するリンパ球が含まれる程度の領域、画像上では標的細胞の細胞核乃至細胞膜の周囲の一定ピクセル外側に、細胞核乃至細胞膜の形状と相似形の領域を設定(マスク)し、その領域内にエフェクター細胞を起源とする蛍光シグナルが存在するかどうかを調べることで、エフェクター細胞が接着する標的細胞と、エフェクター細胞が接着していない標的細胞とを自動的に選別して計測することが可能となる。 The method for detecting the adhesion between the effector cell and the target cell is not particularly limited. For example, it is easiest to observe the target cells in the image data one by one and measure the ratio of cells to which effector cells actually attach. On the other hand, if the image analysis apparatus has a masking tool, the analysis may be performed using the analysis tool. In that case, for example, the nucleus or cell membrane of the target cell is stained, and the area of the target cell where the lymphocyte adhering to the periphery is included on the outer periphery of the staining site. By setting (masking) a region similar to the shape of the cell nucleus or cell membrane outside a certain pixel around the cell membrane, and examining whether there is a fluorescent signal originating from the effector cell in that region, the effector cell It becomes possible to automatically select and measure the target cell to which the cell adheres and the target cell to which the effector cell does not adhere.
 さらに本発明の別の好ましい実施態様では、エフェクター細胞の細胞内にある細胞殺傷成分の量と、その動態を確認する工程を含むことを特徴とするエフェクター細胞評価法を提供するものである。測定対象となるパーフォリン、グランザイムA、グランザイムB、グラニュライシンの量は、常法通りに特異抗体を用いて免疫蛍光染色を施し、その蛍光強度を測定して定量化することができる。また高倍率で解像度の高い画像を取得できれば、細胞内の顆粒数を計測して算出することもできる。 Furthermore, in another preferred embodiment of the present invention, there is provided an effector cell evaluation method comprising the step of confirming the amount of cell killing components in the effector cell and the kinetics thereof. The amounts of perforin, granzyme A, granzyme B, and granulysin to be measured can be quantified by performing immunofluorescence staining using a specific antibody as usual, and measuring the fluorescence intensity. If an image with high magnification and high resolution can be obtained, the number of granules in the cell can be measured and calculated.
 一方、これら細胞殺傷成分のエフェクター細胞内での動態を解析する方法は特に限定されないが、上述と同様に、直接細胞の画像を観察して解析する方法及び画像解析装置による自動解析のどちらかの方法を用いることができる。すなわち、これらの殺傷成分を含む細胞内顆粒は、通常はエフェクター細胞内に比較的均一に分布しているが、エフェクター細胞と標的細胞とが接着すると、標的細胞内に注入される前段階として、細胞内細胞殺傷成分がその細胞接着面付近に集積する(例えば、前述の非特許論文2参照)。この現象を利用して、エフェクター細胞の殺傷成分の細胞内での動態を解析する。 On the other hand, the method for analyzing the dynamics of these cell killing components in the effector cells is not particularly limited, but, as described above, either the method for directly observing and analyzing the image of the cell or the automatic analysis by the image analyzer. The method can be used. That is, intracellular granules containing these killing ingredients are normally distributed relatively uniformly in effector cells, but when the effector cells and target cells adhere, as a pre-stage that is injected into the target cells, Intracellular cell killing components accumulate near the cell adhesion surface (see, for example, Non-Patent Document 2 above). Using this phenomenon, the intracellular dynamics of the killing component of effector cells are analyzed.
 具体的には、細胞画像を直接観察し、標的細胞との接着面の周辺に細胞内顆粒を集積させているエフェクター細胞数を計測し、その比率を算出する方法があげられる。一方、画像解析機能を利用する場合には、例えばエフェクター細胞とその細胞内顆粒、及び標的細胞の核乃至細胞膜を染色した画像データを用い、上記と同じくマスキング・ツール等の解析手法を用い、当該画像データ上で、標的細胞の核の外周乃至細胞膜から等間隔ごとに拡がる任意のドーナツ型の領域を設定し、そのドーナツ型の領域内に含まれるエフェクター細胞の細胞内顆粒の数及び/又はその蛍光強度の分布を統計的に解析することで、標的細胞との接着面の周辺に細胞内顆粒を集積させているエフェクター細胞の比率を算出することができる。すなわち細胞内顆粒が細胞内に比較的均一に存在していれば、細胞内顆粒の分布は、標的細胞の細胞核乃至細胞膜からある一定のピクセルの範囲内に比較的幅広く分布する。しかし顆粒が標的細胞との接着面に集積していれば、その分布は上述の均一な場合と比べて、より核や細胞膜に近い位置に偏ることになる。この顆粒の分布の変化を統計的に解析することで、エフェクター細胞の細胞内顆粒の動態を解析することもできる。 Specifically, there is a method of directly observing a cell image, measuring the number of effector cells in which intracellular granules are accumulated around the adhesion surface with the target cell, and calculating the ratio thereof. On the other hand, when using the image analysis function, for example, using effector cells and intracellular granules thereof, and image data obtained by staining the nucleus or cell membrane of the target cell, and using the same analysis method as the above, such as a masking tool, On the image data, an arbitrary donut-shaped region extending from the outer periphery of the target cell nucleus or the cell membrane at equal intervals is set, and the number and / or the number of intracellular granules of effector cells contained in the donut-shaped region By statistically analyzing the distribution of the fluorescence intensity, it is possible to calculate the ratio of effector cells in which intracellular granules are accumulated around the adhesion surface with the target cells. That is, if the intracellular granules are present relatively uniformly in the cells, the distribution of the intracellular granules is relatively broadly distributed within a certain pixel from the cell nucleus or cell membrane of the target cell. However, if the granules are accumulated on the adhesion surface with the target cells, the distribution is biased closer to the nucleus and the cell membrane than in the case of the uniform case described above. By analyzing the change in the distribution of the granules statistically, the dynamics of the intracellular granules of the effector cells can also be analyzed.
 標的細胞の核や細胞膜を染色する方法は特に限定されないが、例えば核染色はDAPI(4’,6-ジアミノ-2-フェニルインドール)を用いることができる。また細胞膜の染色は、用いる標的細胞の種類に応じ、その細胞の細胞膜に特異的に発現している分子を染色する方法等を用いればよい。また上述の画像解析のためには、例えばエフェクター細胞との共培養の前に、PKH-26(シグマ製)のような親油性の蛍光物質を用いて標的細胞だけを蛍光標識する方法を用いてもかまわない。 The method for staining the nucleus or cell membrane of the target cell is not particularly limited. For example, DAPI (4 ', 6-diamino-2-phenylindole) can be used for nuclear staining. The cell membrane may be stained by a method of staining a molecule specifically expressed in the cell membrane of the cell depending on the type of target cell to be used. For the above-mentioned image analysis, for example, before co-culture with effector cells, a method of fluorescently labeling only target cells using a lipophilic fluorescent material such as PKH-26 (manufactured by Sigma) is used. It doesn't matter.
 本発明の別の態様として、上述のような、エフェクター細胞及び/又は標的細胞に生じる様々な細胞レベル、分子レベルでの変化を測定するためのキットを提供するものである。当該キットは、細胞の共培養及び/又は様々なパラメータを測定する際に用いる細胞培養容器、及び細胞や分子を識別するための特異抗体と蛍光色素等の試薬から構成される。 As another aspect of the present invention, there is provided a kit for measuring changes at various cellular and molecular levels occurring in effector cells and / or target cells as described above. The kit comprises a cell culture vessel used for co-culture of cells and / or measurement of various parameters, and a reagent such as a specific antibody and a fluorescent dye for identifying cells and molecules.
 キットの構成要素の一つである細胞培養容器は、エフェクター細胞と標的細胞の培養に、また測定時には細胞を単層に配列させる場として用いられるが、いずれも、いわゆるマイクロタイタープレートやマイクロプレートと称する容器で、一般の細胞培養に用いられ、また免疫化学的手法による抗体染色処理等に使用できるものであればよい。また必ずしも細胞の培養と測定を同一の容器で行う必要はなく、例えば一つのキットに含まれる容器が、少なくとも培養用と測定用の2種以上の異なるものであってもよい。また測定装置が許容する範囲で、マイクロタイタープレートやマイクロプレートに限らず、シャーレ、あるいはスライドグラスやフラスコ等を用いてもよい。しかし同一条件で培養した細胞群に多様な条件で染色を施して多様な解析を行うことを想定した場合には、少なくとも測定用の容器は多ウェルのマイクロタイタープレートやマイクロプレートであることが望ましい。当該マイクロタイタープレートやマイクロプレートのウェル数も特に限定されるものではないが、例えば細胞培養等で汎用される6穴、12穴、24穴、48穴、96穴マイクロタイタープレートが好ましく、特に96穴のウェルを有するマイクロタイタープレートやマイクロプレートが好ましい。 The cell culture vessel, which is one of the components of the kit, is used for culturing effector cells and target cells, and as a place to arrange cells in a single layer at the time of measurement, both of which are so-called microtiter plates and microplates. Any container can be used as long as it is used for general cell culture and can be used for antibody staining by an immunochemical technique. In addition, it is not always necessary to perform cell culture and measurement in the same container. For example, containers contained in one kit may be at least two different types for culture and measurement. Further, a petri dish, a slide glass, a flask, or the like may be used as long as the measuring device allows. However, when it is assumed that the cells cultured under the same conditions are stained under various conditions and subjected to various analyses, at least the measurement container is preferably a multi-well microtiter plate or microplate. . The number of wells of the microtiter plate or microplate is not particularly limited, however, for example, a 6-, 12-, 24-, 48-, or 96-well microtiter plate generally used for cell culture is preferable. A microtiter plate or a microplate having wells with holes is preferred.
 上記のマイクロタイタープレートやマイクロプレートの材質は特に限定されないが、細胞の培養及び測定に際して、共に、市販の細胞培養用やELISA用の標準プラスティックプレート、またはガラス製のプレート等を用いることができる。これらのプレートの底面、すなわち細胞が接触する表面の材質や形状、表面の荷電状態等も特に限定されるものではない。必要に応じて、また蛍光測定の障害にならない範囲で、細胞の付着を補助するための分子、例えばコラーゲン等のタンパク質やポリDリジン等の高分子化合物、またその他の物質で表面加工したものを用いることもできる。また前記のように、マイクロタイタープレートやマイクロプレートに限らず、シャーレ、スライドグラス、フラスコ等の別の容器を用いてもよいが、これらの容器も同様に、細胞の付着を補助するような素材や表面加工処理をしたものを用いることができる。 The material of the above-mentioned microtiter plate or microplate is not particularly limited. For cell culture and measurement, a commercially available standard plastic plate for cell culture or ELISA, a glass plate, or the like can be used. The bottom surface of these plates, that is, the material and shape of the surface in contact with the cells, the charged state of the surface, etc. are not particularly limited. Surface treatment with molecules for assisting cell attachment, such as proteins such as collagen, polymer compounds such as poly-D-lysine, and other substances, as long as they do not interfere with fluorescence measurement. It can also be used. In addition, as described above, other containers such as petri dishes, slide glasses, and flasks may be used, not limited to microtiter plates and microplates, but these containers are similarly materials that assist cell adhesion. Or surface-treated ones can be used.
 測定に際しては、測定対象である細胞の剥離を防ぐために、細胞を測定用容器の底面に固着させる必要がある。特にリンパ球等、ほとんどのエフェクター細胞が浮遊系細胞であるために、細胞を容器の底面に固着させる操作は不可欠となる。その方法は特に限定されるものではないが、例えばマイクロタイタープレートやマイクロプレートを用いる場合には、細胞浮遊液を播種した後に、当該プレートを遠心処理して細胞を沈め、その後乾燥させることで、細胞をプレート底面に付着伸展させることができる。また蛍光測定の障害にならない範囲で、上記のような細胞の付着を補助するための表面加工処理をしたマイクロタイタープレートやマイクロプレートを用いることもできる。マイクロタイタープレートやマイクロプレート以外の容器、シャーレ、スライドグラス、フラスコ等の別の容器を用いる場合にも同様の方法で細胞を固着させることができる。 During measurement, it is necessary to fix the cells to the bottom surface of the measurement container in order to prevent the cells to be measured from being detached. In particular, since most effector cells such as lymphocytes are suspension cells, the operation of fixing the cells to the bottom surface of the container is indispensable. Although the method is not particularly limited, for example, when using a microtiter plate or a microplate, after seeding a cell suspension, the plate is centrifuged to submerge the cells, and then dried. Cells can be attached and extended to the bottom of the plate. In addition, a microtiter plate or a microplate that has been subjected to a surface processing treatment for assisting the adhesion of cells as described above can be used as long as it does not hinder fluorescence measurement. Even when another container such as a microtiter plate or a microplate, a petri dish, a slide glass, or a flask is used, the cells can be fixed in the same manner.
 一方、キットの構成要素の一つである試薬は、市販の抗体や試薬を用いることができる。例えばNK細胞の識別用には、前述のようにNKp46やNKp30に対する特異抗体、又はCD56抗体とCD3抗体の組合せ(例えば、いずれもベックマンコールター製)、またMHCテトラマーの場合、例えばHLAタイプがA0201型のHer2/neu特異的なキラー細胞の識別用には、例えばPE標識Her2/neu(KIFGSLAFL)MHCテトラマー(MBL製)等の市販の試薬を用いることができる。さらに細胞内の顆粒の識別には、やはり市販のパーフォリン、グランザイムA、グランザイムB、グラニュライシン各々に対する特異抗体を用いることができるし、サイトカインの検出にも市販の特異抗体を用いることができる。また細胞内のサイトカインを検出する際には、培養液中にタンパク輸送阻害剤を加え、細胞内にサイトカインを蓄積させる手順を用いることができるが、この目的のために使用されるタンパク輸送阻害剤としては、例えばモネンシンA、ブレフェルジンA等の市販の試薬を用いることができる。 On the other hand, commercially available antibodies and reagents can be used as the reagent that is one of the components of the kit. For example, for the identification of NK cells, as described above, a specific antibody against NKp46 or NKp30, or a combination of CD56 antibody and CD3 antibody (for example, all manufactured by Beckman Coulter), and in the case of MHC tetramer, for example, HLA type is A0201 type For identifying Her2 / neu-specific killer cells, for example, commercially available reagents such as PE-labeled Her2 / neu (KIFGSLAFL) MHC tetramer (manufactured by MBL) can be used. Furthermore, for identifying intracellular granules, specific antibodies against commercially available perforin, granzyme A, granzyme B and granulysin can also be used, and commercially available specific antibodies can also be used for cytokine detection. In addition, when detecting intracellular cytokines, it is possible to use a procedure for adding a protein transport inhibitor to the culture medium and accumulating the cytokine in the cell. The protein transport inhibitor used for this purpose For example, commercially available reagents such as monensin A and brefeldin A can be used.
 上述の特異抗体は、すでに蛍光色素が標識されている抗体を用いてもよいが、非標識の抗体とその抗体を特異的に認識する市販の蛍光標識二次抗体との組合せであってもよい。その際の蛍光色素は特に限定されるものではないが、少なくとも3種類の異なった分子を同時に識別するためのキットには、例えばInvitrogen:Molecular  Probes製の蛍光色素であれば、Alexa Fluor(登録商標) 488、Alexa  Fluor(登録商標) 555、Alexa Fluor(登録商標) 647の3種類の蛍光色素を標識した一次抗体乃至二次抗体を組み合わせることができる。 The above-mentioned specific antibody may be an antibody already labeled with a fluorescent dye, but may be a combination of an unlabeled antibody and a commercially available fluorescently labeled secondary antibody that specifically recognizes the antibody. . The fluorescent dye at that time is not particularly limited, but for a kit for simultaneously identifying at least three different molecules, for example, a fluorescent dye made by Invitrogen: Molecular Probes, Alexa Fluor (registered trademark) ) 488, Alexa Fluor (registered trademark) 555, Alexa Fluor (registered trademark) 647 can be combined with primary or secondary antibodies labeled with three types of fluorescent dyes.
 細胞死やアポトーシスを識別するための試薬も特に限定されないが、当該キットには、例えば死細胞の識別用に、PI(プロピジウムイオダイド)や7-AAD(7-アミノアクチノマイシンD)等を用いることができる。アポトーシスの検出には、例えばCell Technologies製のAPO LOGIX試薬のような、細胞内活性型カスパーゼに特異的に結合する蛍光標識試薬を用いてもよいし、活性型カスパーゼの作用により蛍光分子が遊離するような基質、例えばBioVisionの7-AFC結合基質等の試薬を用いてもよい。またアネキシンV検出用にImmunotech製のFITC標識アネキシンV等の蛍光標識試薬等を用いることができる。 The reagent for discriminating cell death and apoptosis is not particularly limited, but the kit uses PI (propidium iodide), 7-AAD (7-aminoactinomycin D), etc., for example, for the identification of dead cells. be able to. For the detection of apoptosis, for example, a fluorescent labeling reagent that specifically binds to an intracellular active caspase such as APO LOGIX reagent manufactured by Cell Technologies may be used, or a fluorescent molecule is released by the action of the active caspase. Such a substrate may be used, for example, a reagent such as a BioVision 7-AFC binding substrate. In addition, a fluorescent labeling reagent such as FITC-labeled annexin V manufactured by Immunotech can be used for annexin V detection.
 一方、免疫化学的にアポトーシスを検出する場合には、上述のように、例えば市販の活性型カスパーゼ3を特異的に認識する抗体や抗サイトケラチン18抗体を用いることができる。抗体は、すでに蛍光色素で標識されている抗体を用いてもよいが、非標識の抗体とその抗体を特異的に認識する蛍光物質が結合する市販の二次抗体との組合せであってもよい。その際の蛍光色素の種類は特に限定されるものではない。 On the other hand, when detecting apoptosis immunochemically, as described above, for example, a commercially available antibody or anti-cytokeratin 18 antibody that specifically recognizes active caspase 3 can be used. The antibody may be an antibody already labeled with a fluorescent dye, or may be a combination of an unlabeled antibody and a commercially available secondary antibody that binds to a fluorescent substance that specifically recognizes the antibody. . The kind of fluorescent dye at that time is not particularly limited.
 本発明に係る方法、また本発明に係るキットを用いることで、エフェクター細胞そのものの性質、及び同細胞が標的細胞を殺傷する際の複数の細胞レベル及び分子レベルでの現象を、同時及び/又は随時測定することが可能となる。そしてそれらの解析データを組み合わせることで、従来までの細胞傷害活性測定法単独や、その他の複数の試験検査を組み合わせた解析法と比べて、より信頼度の高い有用な検査データを提供することが可能となる。 By using the method according to the present invention and the kit according to the present invention, the properties of the effector cells themselves and the phenomenon at the multiple cellular and molecular levels when the cells kill target cells can be simultaneously and / or It becomes possible to measure at any time. By combining these analysis data, it is possible to provide more reliable and useful test data compared to conventional methods for measuring cytotoxic activity alone and other analysis methods combining multiple test tests. It becomes possible.
本発明の実施例1に係るエフェクター細胞の機能測定法による画像解析における測定領域の設定方法の概要図であり、(A)細胞の免疫染色画像の選定を示す概要図であり、(B)細胞核(メインオブジェクト)の認識を示す概要図であり、(C)細胞表面抗原の認識を示す概要図であり、(D)バーフォリンの認識を示す概要図であり、(E)細胞集団の設定を示す概要図であり、(F)画像ギャラリーでの測定対象の確認を示す概要図である。It is a schematic diagram of the setting method of the measurement area | region in the image analysis by the function measuring method of the effector cell which concerns on Example 1 of this invention, (A) It is a schematic diagram which shows selection of the immunostaining image of a cell, (B) Cell nucleus It is a schematic diagram showing recognition of (main object), (C) is a schematic diagram showing recognition of cell surface antigens, (D) is a schematic diagram showing recognition of barforin, and (E) shows setting of cell population It is a schematic diagram and (F) is a schematic diagram showing confirmation of a measurement object in an image gallery. 本発明の実施例1PBMC中のパーフォリン陽性NK細胞の解析の一例。(A)は本発明に係るエフェクター細胞の機能測定法による解析例であるグラフで、CD56陽性CD3陰性の細胞(NK細胞)を選択し、当該細胞群のパーフォリン陽性細胞の比率を算出したもの。(B)従来法によるフローサイトメーターで、CD56陽性CD3陰性の細胞を選択し、当該細胞群のパーフォリン陽性細胞の比率を算出したものである。Example 1 of the present invention An example of analysis of perforin positive NK cells in PBMC. (A) is a graph which is an example of analysis by the effector cell function measurement method according to the present invention, in which CD56-positive CD3-negative cells (NK cells) are selected and the ratio of perforin-positive cells in the cell group is calculated. (B) A CD56-positive CD3-negative cell is selected by a conventional flow cytometer, and the ratio of perforin-positive cells in the cell group is calculated. 本発明の実施例1に係るエフェクター細胞の機能測定法によるパーフォリン陽性NK細胞の画像解析の一例のグラフと撮像である。(A)のドットプロット中の矢印で示した任意のドット一点が、(B)での矢印で示した領域内の細胞の画像に対応する撮像である。It is the graph and imaging of an example of the image analysis of a perforin positive NK cell by the function measuring method of the effector cell which concerns on Example 1 of this invention. An arbitrary dot indicated by an arrow in the dot plot of (A) is an imaging corresponding to an image of a cell in the region indicated by the arrow in (B). 本発明の実施例2に係るエフェクター細胞の機能測定法によるNK細胞の、パーフォリン含有顆粒の解析の一例を示す撮像と解析画像である。(A)は任意に選択した1個のNK細胞(パーフォリン陽性、CD56陽性)であり、(B)は当該細胞の顆粒数解析時の顆粒検出方法の一例を示す解析画像である。It is an imaging and analysis image which show an example of the analysis of the perforin containing granule of NK cell by the function measuring method of effector cell concerning Example 2 of the present invention. (A) is one arbitrarily selected NK cell (perforin positive, CD56 positive), and (B) is an analysis image showing an example of a granule detection method when analyzing the number of granules of the cell. 本発明の実施例3に係るエフェクター細胞の機能測定法によるPBLとK562細胞の培養混合物の画像データの一例の撮像である。矢印はK562細胞を示し、一部の細胞の細胞質に活性型カスパーゼ3の発現が認められた。Δ印はCD56陽性細胞(NK細胞)を示す。It is imaging of an example of the image data of the culture mixture of PBL and K562 cell by the function measuring method of the effector cell which concerns on Example 3 of this invention. Arrows indicate K562 cells, and expression of active caspase 3 was observed in the cytoplasm of some cells. Δ indicates a CD56-positive cell (NK cell). 本発明に係るエフェクター細胞の機能測定法によるアポトーシスを起したK562細胞に接着するNK細胞の一例の撮像である。Δ印はCD56陽性のNK細胞を示し、矢印は活性型カスパーゼ陽性のK562細胞を示す。It is an image of an example of the NK cell which adhere | attaches on the K562 cell which caused the apoptosis by the function measuring method of the effector cell which concerns on this invention. Δ indicates a CD56-positive NK cell, and an arrow indicates an active caspase-positive K562 cell. 本発明の実施例4に係るエフェクター細胞の機能測定法によるK562細胞に接着するNK細胞の一例の撮像である。矢印で示したNK細胞のうち、NK(*)のパーフォリン顆粒は、細胞質内に比較的均一に分布しているが、他の2つのNK細胞では、K562細胞との細胞接着面へのパーフォリン顆粒の集積が認められる。It is an imaging of an example of the NK cell adhere | attached on K562 cell by the function measuring method of the effector cell which concerns on Example 4 of this invention. Among the NK cells indicated by arrows, the perforin granules of NK (*) are relatively uniformly distributed in the cytoplasm, but in the other two NK cells, the perforin granules on the cell adhesion surface with K562 cells Accumulation is recognized. 従来法による末梢血中のMAGE-3特異的キラーT細胞の解析例の概要図と撮像を示す。(A)はMHCテトラマー法の解析チャートの一例、また(B)はELISPOT法での結果の一例で、当該特異的キラーT細胞群が産生したIFNγのスポットを示す。A schematic diagram and imaging of an example of analysis of MAGE-3-specific killer T cells in peripheral blood by a conventional method are shown. (A) is an example of an analysis chart of the MHC tetramer method, and (B) is an example of a result of the ELISPOT method, and shows spots of IFNγ produced by the specific killer T cell group. 本発明の実施例4に係る方法でのMAGE-3特異的キラーT細胞の解析の一例の概要図と撮像を示す。(A)のヒストグラムは細胞内IFNγ陽性細胞の解析の一例を示す。(B)は、(A)のヒストグラムでIFNγ陽性の範囲のすべての細胞のイメージを示す。16個の細胞イメージの内、左下のX印の部分は、実際に細胞の形態を示していないことからノイズと判断された。そして(C)は画像データ中のX印の部分に相当するイメージを示したが、誤って細胞と認識されていたのが矢印で示した部分であり、その部分が実際に非特異的な蛍光を放つノイズであることが再確認された。The schematic diagram and imaging of an example of the analysis of a MAGE-3-specific killer T cell by the method which concerns on Example 4 of this invention are shown. The histogram of (A) shows an example of analysis of intracellular IFNγ positive cells. (B) shows an image of all cells in the range of IFNγ positive in the histogram of (A). Of the 16 cell images, the X-marked portion at the bottom left was judged as noise because it did not actually show cell morphology. (C) shows an image corresponding to the portion of the X mark in the image data. The portion that was mistakenly recognized as a cell is indicated by an arrow, and this portion is actually non-specific fluorescence. It was reconfirmed that the noise was radiating.
 以下に具体的な例を記載して発明の効果を説明する。 The effects of the invention will be described below with specific examples.
  [実施例1]
健常人末梢血NK細胞のパーフォリン発現量の解析
 健常人末梢血30mLを採取し、常法に従って、Ficoll-Conray密度勾配遠心法によって末梢血単核球(以下PBMCと略す場合がある)を分離調製した。得られたPBMCは、AIM-V培地(Invitrogen製)に懸濁し、フラスコ(ファルコン3136)に播種して37℃で30分間培養した後に、軽いピペティングによって浮遊細胞だけを回収し、約1,500万個のリンパ球濃縮画分(以下PBLと略す場合がある)を得た。このPBLを半分に分け、一方を本発明に係る細胞イメージ解析装置での測定用の検体とし、もう一方を従来法であるフローサイトメトリー法での測定用の検体とした。
[Example 1]
Analysis of perforin expression in healthy human peripheral blood NK cells Collect 30 mL of healthy human peripheral blood and separate and prepare peripheral blood mononuclear cells (hereinafter abbreviated as PBMC) by Ficoll-Conray density gradient centrifugation according to conventional methods did. The obtained PBMC was suspended in AIM-V medium (manufactured by Invitrogen), seeded in a flask (Falcon 3136) and cultured at 37 ° C. for 30 minutes, and then only floating cells were collected by light pipetting. Ten thousand lymphocyte-enriched fractions (hereinafter sometimes abbreviated as PBL) were obtained. This PBL was divided in half, and one was used as a sample for measurement with the cell image analyzer according to the present invention, and the other was used as a sample for measurement with the conventional flow cytometry method.
 細胞イメージ解析用の検体は、平底96穴マイクロプレート(コーニング3596)に1穴あたり10万個の細胞を播種し、次にプレートを50xgで10分間遠心処理した後に、上清を除いて30分間風乾した。その後、細胞を4%のパラホルムアルデヒドで30分間固定した。洗浄後、細胞質内のパーフォリンをマウス抗ヒトパーフォリン・モノクローナル抗体(ANCELL製)とAlexa Fluor(登録商標) 647標識抗マウスIgG抗体(Invitrogen製)で染色し、またFITC標識抗ヒトCD3抗体(ベックマンコールター製)とR-PE標識抗ヒトCD56抗体(ベックマンコールター製)を用いて、リンパ球の細胞表面抗原を標識した。その後、DAPIで細胞核を染色し、染色後に細胞イメージ解析装置(オリンパス製CELAVIEW RS100)を用い、PBL中のNK細胞(CD3陰性、CD56陽性)の比率ならびにパーフォリン陽性細胞の比率を解析した。 As a specimen for cell image analysis, a flat-bottom 96-well microplate (Corning 3596) was seeded with 100,000 cells per well, and then the plate was centrifuged at 50 × g for 10 minutes, and then the supernatant was removed for 30 minutes. Air dried. The cells were then fixed with 4% paraformaldehyde for 30 minutes. After washing, cytoplasmic perforin is stained with mouse anti-human perforin monoclonal antibody (ANCELL) and Alexa Fluor (registered trademark) 647-labeled anti-mouse IgG antibody (Invitrogen), and FITC-labeled anti-human CD3 antibody (Beckman Coulter) And R-PE labeled anti-human CD56 antibody (manufactured by Beckman Coulter) were used to label the cell surface antigen of lymphocytes. Thereafter, the cell nuclei were stained with DAPI, and after staining, the ratio of NK cells (CD3 negative, CD56 positive) in PBL and the ratio of perforin positive cells were analyzed using a cell image analyzer (OLYMPUS CELAVIEW RS100).
 データ解析は以下の手順で行った。画像解析における測定領域の具体的な設定方法の概要を図1に示したが、図1(A)の101は細胞表面抗原(CD3とCD56)を示し、102はパーフォリン、103は核を示すが、まずこれら染色処理を施した任意の細胞画像を複数選択した。次に、画像解析の際に細胞一つ一つを自動的に識別するために、核領域104、すなわちDAPIで染色された領域をメインオブジェクトとして認識するような領域を設定した(B)。その際、核領域の設定は、DAPI染色部分の面積の最大値と最小値および蛍光強度の閾値により設定し、また細胞密度が高く、細胞が込み合っているような場合は、ウオーターシェッドアルゴリズム手法によって核同士のくびれを認識することにより個々の細胞を認識するようにして領域を設定した。次に認識されたメインオブジェクト、すなわち個々の細胞核を中心とし、等間隔に存在するドーナツ型のエリア105と細胞すべてを網羅する領域107を作成した。ドーナツエリア作成においては、核最外線からのドーナツの最内線開始地点とドーナツ最外線である終点を自由に設定できるが、細胞の表面抗原(CD3とCD56)を測定対象とする際(C)には、エリア内に細胞膜106のすべて乃至少なくともその一部含まれる状態となる領域105のようなドーナツエリアを設定し、また細胞内のパーフォリン108を測定対象とする場合(D)には、細胞核109と細胞膜110を含む、細胞内をもれなく測定対象とするような領域107を設定した。エリアを設定した後に、各々のエリア内におけるCD3、CD56、パーフォリンの平均蛍光強度(エリア内の1ピクセルあたりの平均蛍光強度)もしくは最大蛍光強度(エリア内の1ピクセルあたりで最大の蛍光強度)により1細胞あたりのそれぞれの蛍光強度を解析した。解析にあたって、核の誤認識を排除するため、核のエリア(Area)と例えばサーキュラリティーファクター等の細胞核(メインオブジェクト)の形状の記述ファクターにより細胞集団を特定するようなリージョン111を測定対象として選択し、ノイズを排除して解析データの精度を高めた(E)。また当該機器の解析ソフトのギャラリー機能(F)を用い、上記で選択したリージョン中の細胞個々の画像を確認し、混入した異物112や複数の細胞を一つの細胞として認識しているような誤認識113等が認められた場合には、データ解析対象から除外した。 Data analysis was performed according to the following procedure. An outline of a specific method for setting a measurement region in image analysis is shown in FIG. 1. In FIG. 1A, 101 indicates cell surface antigens (CD3 and CD56), 102 indicates perforin, and 103 indicates a nucleus. First, a plurality of arbitrary cell images subjected to these staining processes were selected. Next, in order to automatically identify each cell at the time of image analysis, a region that recognizes the nucleus region 104, that is, a region stained with DAPI, as a main object is set (B). At that time, the nuclear region is set by the maximum and minimum values of the area of the DAPI-stained portion and the threshold value of the fluorescence intensity. If the cell density is high and cells are crowded, the watershed algorithm method is used. Regions were set to recognize individual cells by recognizing the constriction between nuclei. Next, a recognized main object, that is, a donut-shaped area 105 existing at equal intervals and an area 107 covering all the cells, with each cell nucleus as a center, was created. In creating a donut area, the innermost start point of the donut from the outermost nuclear line and the end point that is the outermost line of the donut can be freely set. However, when the cell surface antigens (CD3 and CD56) are to be measured (C) When a donut area such as the region 105 in which all or at least a part of the cell membrane 106 is included in the area is set, and the perforin 108 in the cell is a measurement target (D), the cell nucleus 109 A region 107 including the cell membrane 110 was set as a measurement target. After setting the area, depending on the average fluorescence intensity of CD3, CD56, and perforin in each area (average fluorescence intensity per pixel in the area) or maximum fluorescence intensity (maximum fluorescence intensity per pixel in the area) Each fluorescence intensity per cell was analyzed. In the analysis, in order to eliminate misrecognition of the nucleus, the region 111 that specifies the cell population by the description factor of the shape of the cell nucleus (main object) such as the area of the nucleus (Area) and the circularity factor is selected as the measurement target In addition, noise was eliminated to improve the accuracy of the analysis data (E). In addition, the gallery function (F) of the analysis software of the device is used to check the individual images of the cells in the region selected above, and an error such as recognizing the mixed foreign substance 112 or a plurality of cells as one cell. When recognition 113 grade | etc., Was recognized, it excluded from the data analysis object.
 一方、フローサイトメーター用検体は、常法に従い、PC-5標識抗ヒトCD3抗体(ベックマンコールター製)とR-PE標識抗ヒトCD56抗体(ベックマンコールター製)を用いてリンパ球の細胞表面抗原を標識し、さらにマウス抗ヒトパーフォリン・モノクローナル抗体(ANCELL製)とFITC標識抗マウスIgG抗体(ベックマンコールター製)でパーフォリンを染色し、エピックスXL(ベックマンコールター製)とExpo32解析ソフト(ベックマンコールター製)を用いて、同じくPBL中のNK細胞(CD3陰性、CD56陽性)の比率ならびにパーフォリン陽性細胞の比率を解析した。 On the other hand, according to a conventional method, a sample for a flow cytometer is used to detect cell surface antigens of lymphocytes using a PC-5 labeled anti-human CD3 antibody (manufactured by Beckman Coulter) and an R-PE labeled anti-human CD56 antibody (manufactured by Beckman Coulter). Labeled, and further stained perforin with mouse anti-human perforin monoclonal antibody (ANCELL) and FITC-labeled anti-mouse IgG antibody (Beckman Coulter), and Epix XL (Beckman Coulter) and Expo32 analysis software (Beckman Coulter) The ratio of NK cells (CD3 negative, CD56 positive) and perforin positive cells in PBL was also analyzed.
 その結果を図2と図3に示した。本発明に係る方法でトータル5,008個のPBLを解析した結果、CD56陽性CD3陰性細胞、すなわちNK細胞は952個で、その比率は19.0%であり、またこの952個のNK細胞中のパーフォリン陽性細胞数は899個で、その比率は94.4%であった(図2(A))。この結果は、従来法であるフローサイトメーターで同一サンプルを測定した場合の結果、すなわちNK細胞の比率が19.3%で、同NK細胞中のパーフォリン陽性比率は95.2%(図2(B))と同程度であり、本発明に係る方法が、たとえ複数の細胞が混在していても、従来のフローサイトメーター法と同等の精度で、特定の細胞を識別して計測することが可能であると確認された。 The results are shown in FIG. 2 and FIG. As a result of analyzing a total of 5,008 PBLs by the method according to the present invention, there were 952 CD56-positive CD3-negative cells, that is, NK cells, and the ratio was 19.0%, and in these 952 NK cells The number of perforin positive cells was 899, and the ratio was 94.4% (FIG. 2 (A)). This result is the result of measuring the same sample with a conventional flow cytometer, that is, the ratio of NK cells is 19.3%, and the perforin positive ratio in the NK cells is 95.2% (FIG. 2 ( B)), and the method according to the present invention can identify and measure specific cells with the same accuracy as the conventional flow cytometer method even if a plurality of cells are mixed. It was confirmed that it was possible.
 さらに従来法であるフローサイトメーター法とは異なり、本発明に係る測定法では、細胞一つ一つの解析データを画像イメージとして保存しているため、ドットプロット分析でのグラフ中の一つ一つのドットが実際に細胞であるか否かを視覚的に確認することが可能であった。具体的には、図3に、CD56陽性CD3陰性の領域内の任意に選択したドット(A)に対応する画像イメージを、(B)のディスプレイ上で表示させた一例を示したが、当該ドットに対応する細胞が、実際にパーフォリン顆粒を発現するCD56陽性のNK細胞であることが確認された。すなわち仮に検体調製時や測定時に何らかの原因で異物等が混入した場合に、従来法ではそのような異物に起因するノイズと細胞を区別することが困難で、結果的に解析時に当該ノイズを排除することできなかったが、本発明に係る測定法では、グラフ上の全ドットの画像データを確認することが可能であり、仮に異物に起因するノイズを発見した場合には、そのノイズを省いて再度データ解析を行うことで、結果的により信頼性の高いデータ解析が可能となった。 Furthermore, unlike the conventional flow cytometer method, the measurement method according to the present invention stores the analysis data of each cell as an image image, so that each of the graphs in the dot plot analysis is one by one. It was possible to visually confirm whether the dots were actually cells. Specifically, FIG. 3 shows an example in which an image image corresponding to the arbitrarily selected dot (A) in the CD56 positive CD3 negative region is displayed on the display of (B). Was confirmed to be CD56-positive NK cells that actually express perforin granules. In other words, if a foreign substance or the like is mixed for some reason at the time of sample preparation or measurement, it is difficult to distinguish noise caused by such a foreign substance from cells by the conventional method, and as a result, the noise is excluded during analysis. However, in the measurement method according to the present invention, it is possible to check the image data of all the dots on the graph, and if noise caused by a foreign object is found, omit the noise again. By performing data analysis, it became possible to analyze data with higher reliability as a result.
 また当該機器ソフトが有するスポット検出機能を用い、NK細胞の細胞内パーフォリン陽性顆粒数を測定した。図4に、その解析の一事例を示したが、(A)に示した細胞の原画像内のパーフォリン顆粒が、スポット検出機能によって複数のスポットとして認識され、そのスポットの総数が17個であると計測された(B)。この方法を用いて、上記の検体の画像データよりPBL中のNK細胞を選択し、その細胞内パーフォリン陽性顆粒数を測定した。また同時にパーフォリンの替わりに抗ヒトグランザイムB抗体を用いてグランザイムB顆粒を染色した検体を調製し、当該細胞の細胞内グランザイムB陽性顆粒数を測定した。それらの結果を表1に示したが、NK細胞一個あたりのパーフォリン顆粒数は平均で17.2個であり、またグランザイムBの顆粒数は16.0個であった。以上の結果から、本発明に係る方法により、従来法と同様にNK細胞の比率を容易に算出でき、且つより信頼度の高いデータ解析が可能となり、加えて当該細胞群の細胞傷害活性機能に直接関与する細胞内のパーフォリンやグランザイムB等の顆粒の発現状態をより詳細に解析することが可能となった。 Moreover, the number of intracellular perforin positive granules of NK cells was measured using the spot detection function of the instrument software. FIG. 4 shows an example of the analysis. The perforin granules in the original cell image shown in FIG. 4A are recognized as a plurality of spots by the spot detection function, and the total number of the spots is 17. (B). Using this method, NK cells in PBL were selected from the image data of the specimen, and the number of intracellular perforin positive granules was measured. At the same time, a sample in which granzyme B granules were stained using an anti-human granzyme B antibody instead of perforin was prepared, and the number of intracellular granzyme B positive granules in the cells was measured. The results are shown in Table 1. The average number of perforin granules per NK cell was 17.2 and that of granzyme B was 16.0. From the above results, according to the method of the present invention, the ratio of NK cells can be easily calculated as in the conventional method, and more reliable data analysis can be performed. In addition, the cytotoxic activity function of the cell group can be improved. It became possible to analyze the expression state of granules such as perforin and granzyme B directly involved in cells in more detail.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
  [実施例2]
健常人PBLによるK562細胞との混合培養における培養混合物解析
 実施例1と同様の方法で、健常人末梢血より約2,000万個のPBLを得た。そして予め2万個/ウェルのK562細胞(ヒト慢性骨髄性白血病細胞株)を播種しておいたU底96穴マイクロプレート(ファルコン3077)に、上記のPBLを40万個/ウェル播種して4時間両細胞を共培養した。培養終了後にマイクロプレートを50xgで10分間遠心処理し、直ちに4%パラホルムアルデヒドを加えて30分間細胞に固定処理を施した。その後、固定した細胞を半分に分け、一方を本発明に係る細胞イメージ解析装置での測定用の検体とし、もう一方を従来法であるフローサイトメトリー解析用の検体とした。
[Example 2]
Culture mixture analysis in mixed culture with K562 cells by healthy human PBL In the same manner as in Example 1, about 20 million PBLs were obtained from peripheral blood of healthy humans. A U-bottom 96-well microplate (Falcon 3077) previously seeded with 20,000 cells / well of K562 cells (human chronic myeloid leukemia cell line) was seeded with 400,000 cells / well of the above PBL. Both cells were co-cultured for a time. After completion of the culture, the microplate was centrifuged at 50 × g for 10 minutes, immediately 4% paraformaldehyde was added, and the cells were fixed for 30 minutes. Thereafter, the fixed cells were divided in half, and one was used as a sample for measurement with the cell image analyzer according to the present invention, and the other was used as a sample for flow cytometry analysis, which is a conventional method.
 細胞イメージ測定・解析用の検体は、平底96穴マイクロプレート(コーニング3596)に播き直し、当該プレートを450xgで10分間遠心処理した後に、上清を除いて60分間風乾した。その後、R-PE標識抗ヒトCD56抗体(ベックマンコールター製)とFITC標識抗ヒトCD3抗体(ベックマンコールター製)の2つの抗体、またはR-PE標識抗ヒトCD56抗体(ベックマンコールター製)単独でNK細胞を標識した。そして後者のR-PE標識抗ヒトCD56抗体単独でNK細胞を標識した検体は、パーフォリンをマウス抗ヒトパーフォリン・モノクローナル抗体(ANCELL製)とAlexa Fluor(登録商標) 488標識抗マウスIgG抗体(Invitrogen製)を用いて染色した。そして両検体とも共存するK562細胞のアポトーシスの有無を調べるために、ウサギ抗ヒト活性型カスパーゼ3ポリクローナル抗体(TREVIGEN製)とAlexa Fluor(登録商標) 647標識抗ウサギIgG抗体(Invitrogen製)で染色した。その後DAPIで細胞核を染色し、染色後に細胞イメージ解析装置(オリンパス製CELAVIEW RS100)を用い、PBL中のNK細胞(CD3陰性、CD56陽性)の比率の解析、NK細胞中のパーフォリン顆粒の発現、そしてK562細胞中の活性型カスパーゼ3陽性細胞の比率を計測した。一方、フローサイトメーターでの測定・解析用の検体は、[実施例1]と同様の方法で、PC-5標識抗CD3抗体とR-PE標識抗CD56抗体処理を施してNK細胞を識別し、さらにウサギ抗ヒト活性型カスパーゼ3ポリクローナル抗体(TREVIGEN製)とFITC標識抗ウサギIgG抗体(ベックマンコールター製)を用いて活性型カスパーゼ3を染色した。そして直ちにエピックスXL(ベックマンコールター製)を用いて、PBL中のNK細胞(CD3陰性、CD56陽性)の比率と、K562細胞中の活性型カスパーゼ3陽性細胞の比率を計測した。 The specimen for cell image measurement / analysis was replated on a flat bottom 96-well microplate (Corning 3596), the plate was centrifuged at 450 × g for 10 minutes, the supernatant was removed, and the mixture was air-dried for 60 minutes. Thereafter, NK cells with two antibodies, R-PE labeled anti-human CD56 antibody (manufactured by Beckman Coulter) and FITC-labeled anti-human CD3 antibody (manufactured by Beckman Coulter), or R-PE labeled anti-human CD56 antibody (manufactured by Beckman Coulter) alone Labeled. Samples of NK cells labeled with the latter R-PE-labeled anti-human CD56 antibody alone consist of mouse anti-human perforin monoclonal antibody (manufactured by ANCELL) and Alexa Fluor (registered trademark) 488-labeled anti-mouse IgG antibody (manufactured by Invitrogen). ). In order to examine the presence or absence of apoptosis of K562 cells coexisting with both samples, a rabbit anti-human active caspase 3 polyclonal antibody (manufactured by TREVIGEN) and Alexa Fluor (registered trademark)   This was stained with a 647-labeled anti-rabbit IgG antibody (manufactured by Invitrogen). Thereafter, the cell nucleus is stained with DAPI, and after staining, the ratio of NK cells (CD3 negative, CD56 positive) in PBL is analyzed using a cell image analyzer (OLYMPUS CELAVIEW RS100), the expression of perforin granules in NK cells, and The ratio of active caspase 3 positive cells in K562 cells was measured. On the other hand, samples for measurement / analysis with a flow cytometer were subjected to treatment with PC-5 labeled anti-CD3 antibody and R-PE labeled anti-CD56 antibody in the same manner as in [Example 1] to identify NK cells. Furthermore, active caspase 3 was stained using a rabbit anti-human active caspase 3 polyclonal antibody (manufactured by TREVIGEN) and a FITC-labeled anti-rabbit IgG antibody (manufactured by Beckman Coulter). Immediately using Epix XL (manufactured by Beckman Coulter), the ratio of NK cells (CD3 negative, CD56 positive) in PBL and the ratio of active caspase 3 positive cells in K562 cells were measured.
 その結果、PBL中のCD56陽性かつCD3陰性のNK細胞の比率は、本発明に係る測定・解析方法で8.7%、またフローサイトメーターでの測定・解析で8.6%とほぼ同程度であった。またK562細胞中の活性型カスパーゼ3陽性細胞の比率は、本発明に係る測定・解析方法で16.0%、フローサイトメーターでの測定・解析方法で16.9%と、同じくほぼ同様の発現率であった。 As a result, the ratio of CD56 positive and CD3 negative NK cells in PBL is almost the same as 8.7% in the measurement / analysis method according to the present invention and 8.6% in the measurement / analysis with the flow cytometer. Met. The ratio of active caspase 3 positive cells in K562 cells was 16.0% in the measurement / analysis method according to the present invention, and 16.9% in the measurement / analysis method using a flow cytometer. It was rate.
 図5に、本発明に係る測定・解析方法において、実際に解析に用いた画像データの一例、すなわち培養4時間後のPBLとK562との培養混合物の画像の一例を示した。図に見られるように、培養混合物中には小型細胞(リンパ球等)と大型のK562細胞が混在し、そしてCD56分子が一部の小型細胞(NK細胞)の細胞膜に限局して発現している像が認められ、また活性型カスパーゼ3の発現が一部の大型細胞(K562細胞)の細胞質に限局して認められた。すなわち本発明に係る測定・解析方法では、取得した画像データを用いた形態学的な観察も可能であり、当該数値データの妥当性を形態学的に裏付けることが可能であった。 FIG. 5 shows an example of image data actually used for analysis in the measurement / analysis method according to the present invention, that is, an example of an image of a culture mixture of PBL and K562 after 4 hours of culture. As can be seen in the figure, small cells (such as lymphocytes) and large K562 cells are mixed in the culture mixture, and CD56 molecules are expressed exclusively in the cell membrane of some small cells (NK cells). In addition, the expression of active caspase 3 was limited to the cytoplasm of some large cells (K562 cells). That is, in the measurement / analysis method according to the present invention, morphological observation using the acquired image data is possible, and the validity of the numerical data can be morphologically confirmed.
  [実施例3]
健常人PBLによるK562細胞へのアポトーシス誘導、細胞の付着並びに細胞内顆粒動態の解析
 さらに図6に、実施例2で実際に解析に用いた他の画像データ例を示したが、実施例3では実施例2の結果を用いてCD56分子を発現するNK細胞がアポトーシスを起したK562細胞に付着している像を容易に識別することが可能であった。任意のK562細胞300個を選択し、活性型カスパーゼ3の発現とNK細胞の付着を解析した結果、47個の活性型カスパーゼ3陽性のK562細胞が確認され、その内13個の活性型カスパーゼ3陽性K562細胞にNK細胞が付着していることが確認された。また図7に示したように、K562細胞に付着する一部のNK細胞(図7のNK)の細胞内パーフォリン顆粒が、K562細胞との接着面に集積する像も確認され、細胞内に均質に顆粒が分布しているNK細胞(図7内のNK(*)))と容易に識別することが可能であった。これらの画像データを用い、NK細胞が付着する任意のK562細胞50個を選択し、それらのK562細胞に付着するNK細胞内のパーフォリン顆粒を観察した結果、当該K562細胞に付着するNK細胞数はトータルで66個あり、その内パーフォリン顆粒がK562細胞との接着面に集積しているNK細胞の総数は25個で、測定したNK細胞全体の38%であった。
[Example 3]
Analysis of Apoptosis Induction, Cell Adhesion, and Intracellular Granule Dynamics by Healthy Person PBL Further, FIG. 6 shows another example of image data actually used in the analysis in Example 2. Using the results of Example 2, it was possible to easily identify an image in which NK cells expressing CD56 molecules were attached to K562 cells in which apoptosis occurred. As a result of selecting 300 arbitrary K562 cells and analyzing the expression of active caspase 3 and the adhesion of NK cells, 47 active Caspase 3 positive K562 cells were confirmed, of which 13 active caspase 3 It was confirmed that NK cells were attached to positive K562 cells. In addition, as shown in FIG. 7, it was confirmed that intracellular perforin granules of some NK cells (NK in FIG. 7) attached to K562 cells accumulate on the adhesion surface with K562 cells. It was possible to easily distinguish them from NK cells in which granules were distributed (NK (*) in FIG. 7). Using these image data, 50 arbitrary K562 cells to which NK cells adhere were selected and perforin granules in NK cells adhering to those K562 cells were observed. As a result, the number of NK cells adhering to the K562 cells was There were a total of 66, of which the total number of NK cells with perforin granules accumulating on the adhesion surface with K562 cells was 25, 38% of the total NK cells measured.
  [実施例4]
がん患者末梢血中のMAGE-3特異的なキラーT細胞の検出
 外科切除標本の免疫組織染色で腫瘍抗原のMAGEが陽性であった大腸癌患者(HLA-A2402)に、MAGE-3ペプチドを用いたペプチド樹状細胞ワクチン療法を行った。すなわち事前にMAGE-3ペプチド(IMPKAGLLI)で処理した成熟自己樹状細胞の1千万個~1億個を、一週間に一度、当該患者の鼠径部リンパ節の近傍の皮内に接種して、生体内でMAGE-3特異的なキラーT細胞の誘導を行った。5回目の樹状細胞ワクチン接種の2日後に、接種部位にMAGE-3に特異的と思われるDTH様皮膚反応が認められたため、MAGE-3特異的なキラーT細胞が誘導がされたと判断し、最後のワクチン接種の1週間後に、当該患者の末梢血を採取し、本発明に係る測定・解析法により、末梢血中のMAGE-3特異的なキラーT細胞の有無を解析した。比較例として、同末梢血を検体とし、従来法であるMHCテトラマー法およびELISPOT法を用いて、同様に末梢血中のMAGE-3特異的なキラーT細胞を解析した。
[Example 4]
Detection of MAGE-3-specific killer T cells in peripheral blood of cancer patients MAGE-3 peptide was administered to colon cancer patients (HLA-A2402) who were positive for tumor antigen MAGE by immunohistochemical staining of surgically excised specimens. The peptide dendritic cell vaccine therapy used was performed. That is, 10 million to 100 million mature autologous dendritic cells previously treated with MAGE-3 peptide (IMPKAGLLI) are inoculated once a week into the skin near the inguinal lymph nodes of the patient. In vivo, MAGE-3-specific killer T cells were induced. Two days after the fifth dendritic cell vaccination, a DTH-like skin reaction that seems to be specific to MAGE-3 was observed at the site of inoculation, and it was judged that MAGE-3-specific killer T cells were induced. One week after the final vaccination, peripheral blood of the patient was collected, and the presence / absence of MAGE-3-specific killer T cells in the peripheral blood was analyzed by the measurement / analysis method according to the present invention. As a comparative example, the peripheral blood was used as a specimen, and MAGE-3-specific killer T cells in the peripheral blood were similarly analyzed using the conventional MHC tetramer method and ELISPOT method.
 具体的には、採取した末梢血より、前記と同様の方法でPBMCを調製し、一部のPBMCは直ちに凍結保存し、また一部のPBMCは、磁気マイクロビーズ(ミルテニーバイオテク社製)によってCD14陽性細胞もしくはCD8陽性細胞を分取して凍結保存し、その後必要に応じてそれらを解凍して用いた。 Specifically, PBMCs are prepared from the collected peripheral blood by the same method as described above, and some PBMCs are immediately frozen and stored, and some PBMCs are obtained by magnetic microbeads (Miltenyi Biotech). CD14-positive cells or CD8-positive cells were collected and stored frozen, and then thawed and used as necessary.
 本発明に係る測定・解析は以下の手順で行った。まず凍結保存しておいたCD14陽性細胞を解凍し、その後、常法に従ってGM-CSFとIL-4存在下で5日間培養し、さらにTNFαを加えて2日間培養することで成熟樹状細胞を誘導した。この成熟樹状細胞を1mLあたり10μgの合成MAGE-3ペプチド(IMPKAGLLI)を含むAIM-V培地(Invitrogen製)中で2時間培養したものを抗原提示細胞として用いた。その後、この抗原提示細胞(2万個)と別途解凍しておいたPBMC(20万個)とを最終濃度で10%のヒトAB血清を含むAIM-V培地(Invitrogen製)に懸濁した後に、U底の96穴マイクロプレートに播種し、37℃で20時間培養した。その後、最終濃度で2μMとなるようにモネンシンA(Sigma製)を加えてさらに4時間、合計で24時間培養を続けた。培養終了後、50xgで10分間遠心処理した後に4%パラホルムアルデヒドで細胞を30分間固定し、そして固定細胞を洗浄した後に、その細胞をすべて平底の96穴マイクロプレートに播種した。細胞を播種したマイクロプレートは直ちに450xgで10分間遠心処理し、60分間風乾して細胞をプレートに固着させた。その後、細胞内IFNγをマウス抗ヒトIFNγ抗体(BDファーミンジェン製)、Alexa Fluor(登録商標) 647標識抗マウスIgG抗体(Invitrogen製)を用いて染色し、またFITC標識抗ヒトCD3抗体(ベックマンコールター製)とR―PE標識抗ヒトCD8抗体(ベックマンコールター製)を用いてキラーT細胞を標識し、また細胞核をDAPIで染色した。染色後に細胞イメージ解析装置(オリンパス製CELAVIEW  RS100)を用い、CD3、CD8陽性キラーT細胞中のIFNγ産生細胞の比率を解析した。 The measurement / analysis according to the present invention was performed according to the following procedure. First, the cryopreserved CD14-positive cells are thawed, and then cultured in the presence of GM-CSF and IL-4 for 5 days according to a conventional method. Further, TNFα is added and cultured for 2 days to obtain mature dendritic cells. Induced. The mature dendritic cells cultured in AIM-V medium (manufactured by Invitrogen) containing 10 μg of synthetic MAGE-3 peptide (IMPKAGLLI) per mL were used as antigen-presenting cells. Thereafter, these antigen-presenting cells (20,000) and PBMC (200,000) separately thawed were suspended in AIM-V medium (manufactured by Invitrogen) containing 10% human AB serum at a final concentration. , Seeded in a U-bottom 96-well microplate and cultured at 37 ° C. for 20 hours. Thereafter, monensin A (manufactured by Sigma) was added to a final concentration of 2 μM, and the culture was further continued for 4 hours, for a total of 24 hours. After completion of the culture, the cells were fixed with 4% paraformaldehyde for 30 minutes after centrifugation at 50 × g for 10 minutes, and after washing the fixed cells, the cells were all seeded in a flat-bottom 96-well microplate. The microplate on which the cells were seeded was immediately centrifuged at 450 × g for 10 minutes and air-dried for 60 minutes to allow the cells to adhere to the plate. Thereafter, intracellular IFNγ is stained with a mouse anti-human IFNγ antibody (BD Farmingen), Alexa Fluor (registered trademark) 647-labeled anti-mouse IgG antibody (Invitrogen), and FITC-labeled anti-human CD3 antibody (Beckman). Killer T cells were labeled using a Coulter) and R-PE labeled anti-human CD8 antibody (Beckman Coulter), and the cell nuclei were stained with DAPI. After staining, the ratio of IFNγ-producing cells in CD3 and CD8 positive killer T cells was analyzed using a cell image analyzer (Olympus CELAVIEW RS100).
 一方、MHCテトラマー法では、解凍したPBMCを材料とし、FITC標識HLA-A2402用のMAGE-3ペプチドMHCテトラマー(Proimmune製)ならびにPC-5標識抗ヒトCD3抗体(ベックマンコールター製)とPE-標識抗ヒトCD8抗体(ベックマンコールター製)を用いて常法通りにPBMCを蛍光標識し、直ちにエピックスXL(ベックマンコールター製)を用いて、当該PBMC中のMAGE-3特異的キラーT細胞の比率を測定・解析した。ELISPOT法は、IFNγ ELISPOT SET(BD製)とAEC SUBSTRATE SET(BD製)を用い、当該キットに記載された手順に従って抗原刺激によってキラーT細胞から産生されたIFNγのスポットを検出し計測した。具体的には、予め分取・保存してあったCD8陽性細胞(10万個)と、上記と同様の手順で作製したMAGE-3標識成熟樹状細胞(1万個)を抗原提示細胞として24時間共培養したものを検体とし、検出されたIFNγのスポット数を計測した。 On the other hand, in the MHC tetramer method, thawed PBMC is used as a material, and the MAGE-3 peptide MHC tetramer for FITC-labeled HLA-A2402 (manufactured by Proimmune) and the PC-5-labeled anti-human CD3 antibody (manufactured by Beckman Coulter) and PE-labeled anti-antibody Fluorescent labeling of PBMC using a human CD8 antibody (manufactured by Beckman Coulter) as usual, and immediately measuring the ratio of MAGE-3-specific killer T cells in the PBMC using Epix XL (manufactured by Beckman Coulter) Analyzed. The ELISPOT method used IFNγ ELISPOT SET (manufactured by BD) and AEC SUBSTRATE SET (manufactured by BD) to detect and measure the spot of IFNγ produced from killer T cells by antigen stimulation according to the procedure described in the kit. Specifically, CD8-positive cells (100,000) that had been sorted and stored in advance and MAGE-3-labeled mature dendritic cells (10,000) prepared by the same procedure as described above were used as antigen-presenting cells. Samples co-cultured for 24 hours were used as specimens, and the number of detected IFNγ spots was counted.
 各々の試験法で計測した末梢血中のMAGE-3特異的なキラーT細胞の比率を表2にまとめた。いずれの測定法でも、MAGE-3特異的キラーT細胞の比率は同程度であり、キラーT細胞(CD8+T細胞)の1%以下と低値であった。しかしデータ解析過程において、当該発明に係る方法では、従来法と比べてより詳細なデータ解析が可能であった。 Table 2 summarizes the ratios of MAGE-3-specific killer T cells in peripheral blood measured by each test method. In any measurement method, the ratio of MAGE-3-specific killer T cells was similar, and was as low as 1% or less of killer T cells (CD8 + T cells). However, in the data analysis process, the method according to the present invention enables more detailed data analysis than the conventional method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図8に、従来法であるMHCテトラマー法(A)とELISPOT法(B)のデータの一例を示したが、いずれの方法でも細胞とノイズ(非特異的な陽性シグナル)との識別は不可能で、例えばMHCテトラマー法(A)でのドットプロットから、あるいはELISPOT法(B)でのスポット画像のいずれからも疑陽性データの有無を確認することはできなかったが、一方、本発明に係る測定法では、画像データの確認からノイズの検出は容易であった。図9に本発明に係る測定法でのデータ解析例を示したが、(A)のヒストグラム上でIFNγ陽性細胞の範囲に16個の細胞が検出されたが、個々の細胞の画像(B)を確認すると、1つが細胞ではなくノイズによる擬陽性データと判断された。実際に当該ノイズ部分の周辺の画像(C)を再確認すると、非特異的蛍光を放つ異物が細胞として誤認識されていることが判明した。従ってトータル3,520個のキラーT細胞中の15個(0.43%)の細胞がIFNγを産生する特異的キラー細胞であると判断された。以上のように、本法では疑陽性データを除くことが可能であり、たとえ測定対象となる細胞頻度が極めて低い場合であっても、従来法と比べてより信頼性の高いデータの解析が可能であると考えられた。 FIG. 8 shows an example of data of the conventional MHC tetramer method (A) and ELISPOT method (B), but it is impossible to discriminate between cells and noise (nonspecific positive signal) by either method. Thus, for example, the presence or absence of false positive data could not be confirmed from either the dot plot in the MHC tetramer method (A) or the spot image in the ELISPOT method (B). In the measurement method, it was easy to detect noise from confirmation of image data. FIG. 9 shows an example of data analysis by the measurement method according to the present invention. 16 cells were detected in the range of IFNγ positive cells on the histogram of (A), but images of individual cells (B) As a result, one was determined to be false positive data due to noise, not cells. When the image (C) around the noise part was actually reconfirmed, it was found that a foreign substance emitting nonspecific fluorescence was erroneously recognized as a cell. Therefore, 15 (0.43%) of the total 3,520 killer T cells were determined to be specific killer cells producing IFNγ. As described above, this method can eliminate false positive data, and can analyze data with higher reliability than conventional methods even when the frequency of cells to be measured is extremely low. It was thought that.
発明の産業上の利用分野Industrial use of the invention
 本発明は、NK細胞や抗原特異的キラーT細胞の機能の詳細を測定するための新たな細胞機能測定法と当該測定のためのキット並びに測定システムを提供するものである。本発明に係る方法で、また本発明に係るキット並びに測定システムを用いて細胞機能を測定して解析することで、例えば癌免疫細胞療法においては、患者一例一例のエフェクター細胞の機能を詳細にモニタリングすることが可能となる。また従来のNK活性では解析できなかった、被験者の免疫応答の詳細をより簡便に、かつ多面的に測定することも可能となり、結果的として健康増進や疾病予防といった観点からは、より詳細で的確な情報を被験者に提供することが可能となる。また免疫機能を調節する食品や薬物等の有効性を確認する際にも、極めて有用なアッセイツールとなる。 The present invention provides a new cell function measurement method for measuring details of functions of NK cells and antigen-specific killer T cells, a kit for the measurement, and a measurement system. By measuring and analyzing cell function using the method according to the present invention and the kit and measurement system according to the present invention, for example, in cancer immune cell therapy, the function of an effector cell in an example of a patient is monitored in detail. It becomes possible to do. In addition, it becomes possible to measure the details of the immune response of a subject, which could not be analyzed by conventional NK activity, more easily and multifacetedly. It becomes possible to provide the subject with information. It is also an extremely useful assay tool when confirming the effectiveness of foods and drugs that regulate immune function.

Claims (20)

  1.  少なくとも一つ以上の細胞を容器の底面に配列させ、その底面に配列する細胞を蛍光又は発光シグナルを検出できるデジタルカメラでデジタル画像を撮像し、撮像されたデジタル画像から当該細胞の細胞表面及び/又は細胞内に含有及び/又は結合している物質を起源とする蛍光及び/又は発光シグナルを計測し、そのシグナルの当該細胞内での分布や強度を測定する工程を含むことを特徴とするリンパ球の細胞機能の測定方法であって、少なくとも:
    a)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、細胞を識別するステップ;
    を含む測定方法。
    At least one or more cells are arranged on the bottom surface of the container, and the cells arranged on the bottom surface are imaged with a digital camera capable of detecting a fluorescent or luminescent signal, and the cell surface of the cells and / or Or measuring a fluorescence and / or luminescence signal originating from a substance contained and / or bound in the cell, and measuring the distribution and intensity of the signal in the cell. A method for measuring the cellular function of a sphere, at least:
    a) identifying the cell using the measurement result of the distribution and intensity of the fluorescence and / or luminescence signal;
    Measuring method including
  2.  さらに、
    b)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、細胞の傷害の有無を識別するステップを含む請求項1記載のリンパ球の細胞機能の測定方法。
    further,
    The method for measuring the cell function of lymphocytes according to claim 1, further comprising the step of: b) identifying the presence or absence of cell damage using the measurement results of the distribution and intensity of the fluorescence and / or luminescence signals.
  3.  さらに、
    c)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、細胞の産生する物質を検出するステップを含む請求項1に記載のリンパ球の細胞機能の測定方法。
    further,
    The method for measuring cell functions of lymphocytes according to claim 1, comprising the step of c) detecting a substance produced by the cells using the measurement results of the distribution and intensity of the fluorescence and / or luminescence signals.
  4.  さらに、
    c)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、細胞の産生する物質を検出するステップ;
    d)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、その測定結果によって細胞同士の接着の有無を検出するステップ;
    e)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、その測定結果によって細胞内分子の動態を検出するステップを含む請求項2に記載のリンパ球の細胞機能の測定方法。
    further,
    c) detecting a substance produced by the cell using the measurement result of the distribution and intensity of the fluorescence and / or luminescence signal;
    d) using the measurement results of the distribution and intensity of the fluorescence and / or luminescence signals, and detecting the presence or absence of adhesion between cells based on the measurement results;
    The measurement of the cellular function of lymphocytes according to claim 2, comprising the step of: e) detecting the distribution of the fluorescence and / or luminescence signal and the measurement result of the intracellular molecule based on the measurement result. Method.
  5.  前記の細胞機能の測定が、血液、血液中の単核球分画またはリンパ球分画、またはそれらの培養物をエフェクター細胞として用いて測定されることを特徴とする請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 5. The cell function is measured using blood, a mononuclear cell fraction or a lymphocyte fraction in blood, or a culture thereof as an effector cell. The method for measuring cell function of lymphocytes according to one.
  6.  前記のリンパ球が、ナチュラルキラー細胞または細胞傷害性T細胞のいずれか一種またはその両細胞であることを特徴とする請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 The method for measuring cell functions of lymphocytes according to any one of claims 1 to 4, wherein the lymphocytes are one or both of natural killer cells and cytotoxic T cells.
  7.  前記の容器が、マイクロプレート、マイクロタイタープレート、シャーレ、スライドグラス、フラスコからなる群から選ばれるいずれか一種である請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 The method for measuring cell function of lymphocytes according to any one of claims 1 to 4, wherein the container is any one selected from the group consisting of a microplate, a microtiter plate, a petri dish, a slide glass, and a flask.
  8.  前記の細胞を配列させる場所が、マイクロプレート内のマイクロウェルもしくはマイクロタータープレート内のウェルの底面であることを特徴とする請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 The method for measuring cell functions of lymphocytes according to any one of claims 1 to 4, wherein the place where the cells are arranged is a microwell in a microplate or a bottom surface of a well in a microtarter plate. .
  9.  細胞識別および細胞の傷害、細胞の産生する物質、細胞同士の接着ならびに細胞内分子の動態の検出の各ステップのうち、少なくとも一種以上のステップが、特異抗体を用いた免疫化学的方法であることを特徴とする請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 At least one of the steps of cell identification and cell injury, cell-produced substances, cell-cell adhesion, and intracellular molecular dynamics detection is an immunochemical method using a specific antibody. The method for measuring cell function of lymphocytes according to any one of claims 1 to 4, wherein:
  10.  前記の細胞を識別する方法が、当該細胞の細胞表面及び/又は細胞内に特徴的に存在する分子を認識する方法であることを特徴とする請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 The lymph according to any one of claims 1 to 4, wherein the method for identifying the cell is a method for recognizing a molecule characteristically present on the cell surface and / or in the cell. Sphere cell function measurement method.
  11.  前記の細胞を識別する方法が、主要組織適合性抗原クラスI分子上に提示されているペプチド分子を特異的に認識する方法であることを特徴とする請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 5. The method according to claim 1, wherein the method for identifying a cell is a method for specifically recognizing a peptide molecule presented on a major histocompatibility antigen class I molecule. For measuring cell function of lymphocytes.
  12.  前記の細胞の産生する物質が、サイトカイン及び/又は細胞殺傷成分であることを特徴とする請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 The method for measuring cell functions of lymphocytes according to any one of claims 1 to 4, wherein the substance produced by the cells is a cytokine and / or a cell killing component.
  13.  前記のサイトカインがインターフェロンγであることを特徴とする請求項12に記載のリンパ球の細胞機能測定方法。 The method for measuring cell functions of lymphocytes according to claim 12, wherein the cytokine is interferon γ.
  14.  前記の細胞殺傷成分がパーフォリン、グランザイムA、グランザイムB、グラニュライシンからなる群から選ばれる分子の一種または二種以上であることを特徴とする請求項12に記載のリンパ球の細胞機能測定方法。 13. The method for measuring cell functions of lymphocytes according to claim 12, wherein the cell killing component is one or more molecules selected from the group consisting of perforin, granzyme A, granzyme B, and granulysin.
  15.  前記の細胞傷害の検出が、細胞死及び/又はアポトーシスの検出であることを特徴とする請求項1乃至4いずれか一つに記載のリンパ球の細胞機能測定方法。 The method for measuring cell function of lymphocytes according to any one of claims 1 to 4, wherein the detection of the cell injury is detection of cell death and / or apoptosis.
  16.  少なくとも請求項1乃至14項のいずれか1項に記載の方法を実施するために必要な試薬・器具を構成要素として含む細胞傷害活性測定用キット。 A kit for measuring cytotoxic activity, comprising at least reagents and instruments necessary for carrying out the method according to any one of claims 1 to 14.
  17.  少なくとも一つ以上の細胞を容器の底面に配列させ、その底面に配列する細胞を蛍光又は発光シグナルを検出できるデジタルカメラでデジタル画像を撮像し、撮像されたデジタル画像から当該細胞の細胞表面及び/又は細胞内に含有及び/又は結合している物質を起源とする蛍光及び/又は発光シグナルを計測し、そのシグナルの当該細胞内での分布や強度を測定する機能を含むことを特徴とするリンパ球の細胞機能の測定システムであって、デジタル画像撮像手段と、撮像した画像を波長別に分光するフィルタと、分光した撮像データから輝度情報と位置情報と波長情報毎に格納するメモリと、撮像データを分析する中央演算部と、演算結果を表示する表示部を備え、
    a)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、細胞を識別する機能を備えるリンパ球の細胞機能の測定システム。
    At least one or more cells are arranged on the bottom surface of the container, and the cells arranged on the bottom surface are imaged with a digital camera capable of detecting a fluorescent or luminescent signal, and the cell surface of the cells and / or from the captured digital image Or a function of measuring a fluorescence and / or luminescence signal originating from a substance contained and / or bound in a cell and measuring the distribution and intensity of the signal in the cell. Sphere cell function measuring system, digital image imaging means, filter for spectrally separating the captured image by wavelength, memory for storing luminance information, position information and wavelength information from the spectrally captured imaging data, imaging data A central processing unit that analyzes the display, and a display unit that displays the calculation results,
    a) A system for measuring cell functions of lymphocytes having a function of identifying cells using the measurement results of the distribution and intensity of the fluorescence and / or luminescence signals.
  18.  さらに、
    b)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、細胞の傷害の有無を識別する機能を備える請求項17記載のリンパ球の細胞機能の測定システム。
    further,
    The system for measuring cell function of lymphocytes according to claim 17, comprising a function of discriminating the presence or absence of cell damage using the measurement results of the distribution and intensity of the fluorescence and / or luminescence signals.
  19.  さらに、
    c)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、細胞の産生する物質を検出する機能を備える請求項17記載のリンパ球の細胞機能の測定システム。
    further,
    18. The system for measuring cell function of lymphocytes according to claim 17, comprising a function of detecting a substance produced by a cell using the measurement result of the distribution and intensity of the fluorescence and / or luminescence signal.
  20.  さらに、
    c)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、細胞の産生する物質を検出する機能と;
    d)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、その測定結果によって細胞同士の接着の有無を検出する機能と;
    e)前記の蛍光及び/又は発光シグナルの分布や強度の測定結果を使用して、その測定結果によって細胞内分子の動態を検出する機能とを備える請求項18記載のリンパ球の細胞機能の測定システム。
    further,
    c) a function of detecting a substance produced by a cell using the measurement result of the distribution and intensity of the fluorescence and / or luminescence signal;
    d) a function of detecting the presence or absence of adhesion between cells using the measurement result of the distribution and intensity of the fluorescence and / or luminescence signal described above;
    The measurement of the cellular function of lymphocytes according to claim 18, comprising the function of e) using the measurement result of the distribution and intensity of the fluorescence and / or luminescence signal and detecting the dynamics of intracellular molecules based on the measurement result. system.
PCT/JP2009/054340 2008-03-07 2009-03-06 Effector cell function measurement method, measurement kit and measurement system WO2009110614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010501988A JPWO2009110614A1 (en) 2008-03-07 2009-03-06 Effector cell function measuring method, measuring kit and measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-098732 2008-03-07
JP2008098732 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009110614A1 true WO2009110614A1 (en) 2009-09-11

Family

ID=41056163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054340 WO2009110614A1 (en) 2008-03-07 2009-03-06 Effector cell function measurement method, measurement kit and measurement system

Country Status (2)

Country Link
JP (1) JPWO2009110614A1 (en)
WO (1) WO2009110614A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075278A (en) * 2009-09-29 2011-04-14 Olympus Corp Method of analyzing structure composing cell nucleus and method of analyzing form of cell nucleus
WO2013146841A1 (en) * 2012-03-30 2013-10-03 コニカミノルタ株式会社 Medical image processor and program
WO2017169267A1 (en) * 2016-03-30 2017-10-05 ソニー株式会社 Cell observation device, method for evaluating activity level of immune cells, and method for controlling quality of immune cells
US10690902B2 (en) 2017-10-25 2020-06-23 Olympus Corporation Image processing device and microscope system
WO2023103785A1 (en) * 2021-12-06 2023-06-15 Wuxi Biologics (Shanghai) Co., Ltd. 3d bioassays to measure antibody-dependent cell-mediated cytotoxicity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097411A (en) * 2005-09-30 2007-04-19 Toyama Univ Simultaneous assay method for responding to large number of cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097411A (en) * 2005-09-30 2007-04-19 Toyama Univ Simultaneous assay method for responding to large number of cells

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MUNN, L. L. ET AL.: "Kinetics of adhesion molecule expression and spatial organization using targeted sampling fluorometry", BIOTECHNIQUES, vol. 19, 1995, pages 622 - 631 *
SHUN'ICHI MIYAZAKI ET AL.: "Men'eki Saibo Kino Kaimei no Seirigakuteki Approach -Human Natural Killer Saibo no Hyoteki Saibo Shogai Kiko no Kaiseki", JOURNAL OF TOKYO WOMEN'S MEDICAL UNIVERSITY, vol. 67, no. 6, 1997, pages 372 - 380 *
TOSHIMI SUDO ET AL.: "Hi Tokuiteki Men 'eki Saibo Chiryo ni Okeru Koka Saibo no Kaiseki", JAPANESE JOURNAL OF CANCER AND CHEMOTHERAPY, vol. 30, no. 11, 2003, pages 1817 - 1820 *
YASUNOBU KOBAYASHI ET AL.: "Saibo Image Kaiseki Sochi o Mochiita NK Saibo Kino no Kaiseki", BIOTHERAPY, vol. 22, no. SUPPLE, 5 November 2008 (2008-11-05), pages 84 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075278A (en) * 2009-09-29 2011-04-14 Olympus Corp Method of analyzing structure composing cell nucleus and method of analyzing form of cell nucleus
WO2013146841A1 (en) * 2012-03-30 2013-10-03 コニカミノルタ株式会社 Medical image processor and program
US9483684B2 (en) 2012-03-30 2016-11-01 Konica Minolta, Inc. Medical image processor and storage medium
WO2017169267A1 (en) * 2016-03-30 2017-10-05 ソニー株式会社 Cell observation device, method for evaluating activity level of immune cells, and method for controlling quality of immune cells
CN108779427A (en) * 2016-03-30 2018-11-09 索尼公司 Cell observation device, the method for assessing immunologic cellular activity level and the method for controlling immunocyte quality
JPWO2017169267A1 (en) * 2016-03-30 2019-03-14 ソニー株式会社 Cell observation apparatus, immune cell activity evaluation method, and immune cell quality control method
JP7021633B2 (en) 2016-03-30 2022-02-17 ソニーグループ株式会社 Cell observation device and quality control method for immune cells
US10690902B2 (en) 2017-10-25 2020-06-23 Olympus Corporation Image processing device and microscope system
WO2023103785A1 (en) * 2021-12-06 2023-06-15 Wuxi Biologics (Shanghai) Co., Ltd. 3d bioassays to measure antibody-dependent cell-mediated cytotoxicity

Also Published As

Publication number Publication date
JPWO2009110614A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
CN102089418B (en) Systems and methods for counting cells and biomolecules
Zuba-Surma et al. The ImageStream System: a key step to a new era in imaging.
US9342734B2 (en) Systems and methods for counting cells and biomolecules
US8372590B2 (en) Isolation and enumeration of cells from a complex sample matrix
US20110262468A1 (en) Method for Monitoring Vaccine Response Using Single Cell Network Profiling
CN108761054B (en) Measurement of immune cell immune stimulation responsiveness, determination of immune cell immune synapse formation ability, and cell analyzer
WO2009110614A1 (en) Effector cell function measurement method, measurement kit and measurement system
US20210270812A1 (en) Method for analyzing immune cells
JP7510881B2 (en) Method for analyzing immune cells and cell analysis device
JP7165802B2 (en) Method for measuring immunostimulatory responsiveness of immune cells, method for determining ability of immune cells to form immune synapse, and cell analyzer
Lenz et al. Detection and quantitation of endothelial progenitor cells by flow and laser scanning cytometry
Mizenko et al. Tetraspanin immunocapture phenotypes extracellular vesicles according to biofluid source but may limit identification of multiplexed cancer biomarkers
US20230194410A1 (en) Method for detecting antigen-specific activated t cell
EP4057004A1 (en) Method for acquiring information on spinal muscular atrophy
Islands et al. Check for updates Chapter 3 Imaging Flow Cytometric Analysis of Primary Bone Marrow Erythroblastic Islands Joshua Tay, Kavita Bisht, Ingrid G. Winkler, and Jean-Pierre Levesque
US20240053250A1 (en) Threshold gating for flow cytometry methods
Carannante Towards Personalized Immunotherapy: Development of in Vitro Models for Imaging Natural Killer Cell Behavior in the Tumor Microenvironment
Safavinia Detection and Quantification of Bacterial Species and Mammalian Cells on a Smartphone Platform Using Fluorescence
Zenhausern et al. APPENDIX A: NATURAL KILLER CELL DETECTION, QUANTIFICATION, AND SUBPOPULATION IDENTIFICATION ON PAPER MICROFLUIDIC CELL CHROMATOGRAPHY USING SMARTPHONE-BASED MACHINE LEARNING CLASSIFICATION
Guan et al. Utilizing Flow Cytometry Effectively

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501988

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717932

Country of ref document: EP

Kind code of ref document: A1