WO2009110074A1 - Process for producing plasma display panel and process for producing magnesium oxide crystal powder - Google Patents

Process for producing plasma display panel and process for producing magnesium oxide crystal powder Download PDF

Info

Publication number
WO2009110074A1
WO2009110074A1 PCT/JP2008/053975 JP2008053975W WO2009110074A1 WO 2009110074 A1 WO2009110074 A1 WO 2009110074A1 JP 2008053975 W JP2008053975 W JP 2008053975W WO 2009110074 A1 WO2009110074 A1 WO 2009110074A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
oxide crystal
crystal powder
display panel
manufacturing
Prior art date
Application number
PCT/JP2008/053975
Other languages
French (fr)
Japanese (ja)
Inventor
智也 三澤
小坂 忠義
瀬尾 欣穂
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to KR1020107015555A priority Critical patent/KR101106830B1/en
Priority to CN200880125140.4A priority patent/CN101919019B/en
Priority to PCT/JP2008/053975 priority patent/WO2009110074A1/en
Priority to JP2010501719A priority patent/JP4961495B2/en
Priority to US12/863,613 priority patent/US20110018169A1/en
Publication of WO2009110074A1 publication Critical patent/WO2009110074A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Definitions

  • the present invention relates to a plasma display panel (PDP) and a manufacturing method thereof, and more particularly to a magnesium oxide crystal powder contained in a priming particle emission layer (electron emission layer) and a technique effective when applied to the manufacturing method. is there.
  • PDP plasma display panel
  • a priming particle emission layer electron emission layer
  • the resolution of PDP is increasing, and the address operation time for selecting and deciding lighting / non-lighting of the display cell increases as the number of pixels increases.
  • it is effective to reduce the pulse width of the address discharge voltage (address voltage).
  • the pulse width of the address voltage is too small, no discharge may occur even when a pulse is applied. In that case, the display cell does not light correctly during the sustain period, resulting in image quality degradation.
  • JP-A-2006-59786 As a means for improving the discharge delay of the PDP, as described in JP-A-2006-59786 (Patent Document 1), so as to be exposed to a discharge space between two opposing substrate structures, There is a technique of providing a magnesium oxide crystal layer as a priming particle emission layer (electron emission layer). JP 2006-59786 A
  • the present invention has been made in view of the problems as described above, and its purpose is to provide a technique that makes it possible to achieve both the suppression of aggregation of the heat-treated magnesium oxide crystal powder and the effect of improving the discharge delay. There is to do.
  • the PDP manufacturing method manufactures a PDP in which a priming particle emitting layer including magnesium oxide crystal powder that has been heat-treated at high temperature is disposed so as to be exposed to the discharge space.
  • the method is characterized in that a high-temperature heat treatment is performed after a pretreatment step for making the shape and size of the particle group of the raw material magnesium oxide crystal powder uniform.
  • FIG. 4 is a diagram showing an example of a fusion state when particles (particle groups) are subjected to high-temperature heat treatment.
  • FIG. 4A when the shape and size of the particles (particle group) 40 are not uniform during high temperature heating, the contact between the particles (particle group) 40 is increased, and the fusion 41 after high temperature heating is performed. Since the area of the substrate becomes larger, the aggregation becomes stronger.
  • FIG. 4B when the shape and size of the particles (particle groups) 40 are uniform, the contact between the particles (particle groups) 40 can be minimized, and after high-temperature heating. The area of the fusion 41 is reduced and aggregation is weakened.
  • the magnesium oxide crystal powder before the high-temperature heat treatment of the magnesium oxide crystal powder, if the shape and size of the particles (particle groups) are not uniform, make them uniform to reduce contact between the particles (particle groups). Thus, aggregation due to fusion of particles (particle groups) during high-temperature heat treatment is suppressed.
  • the magnesium oxide crystal powder in which aggregation is suppressed for the priming particle emitting layer it is possible to realize a PDP that achieves both improvement in discharge delay and suppression of display defects and display unevenness.
  • FIG. 5 is a diagram showing an example of a basic structure of a PDP (panel) 1 according to an embodiment of the present invention.
  • FIG. 5 shows a set of display cells (Cr, Cg, Cb) corresponding to pixels.
  • the x direction first direction, horizontal direction
  • y direction second direction, vertical direction
  • z direction third direction, panel surface vertical direction
  • the PDP 1 is formed by combining the front substrate structure 10 and the rear substrate structure 20 and has a discharge space 26 therebetween.
  • a group of display electrodes 12 (12X, 12Y) is arranged on the front glass substrate 11 in the x direction.
  • the display electrode 12 includes a sustain electrode 12X for a sustain operation and a scan electrode 12Y for a sustain operation and a scan operation (shared).
  • the display electrode 12 (12X, 12Y) is composed of, for example, a transparent electrode and a bus electrode.
  • the display electrode 12 group is covered with a dielectric layer 13.
  • a protective layer 14 is further formed on the dielectric layer 13.
  • the dielectric layer 13 and the protective layer 14 are formed on the entire surface corresponding to the display area (screen) of the PDP 1.
  • a group of address electrodes 22 is arranged on the back glass substrate 21 in the y direction intersecting with the display electrodes 12.
  • the group of address electrodes 22 is covered with a dielectric layer 23.
  • a partition wall 24 is formed at a position corresponding to between the address electrodes 22 on the dielectric layer 23, for example, in the y direction.
  • the barrier ribs 24 divide the discharge space 26 corresponding to the unit light emitting areas (display cells).
  • phosphors (phosphor layers) 25 25r, 25g, R) of each color of R (red), G (green), and B (blue) 25b) are formed by color-coding in order for each region (column).
  • the internal region formed by bonding the front substrate structure 10 and the back substrate structure 20 is sealed with a discharge gas (for example, a gas in which Ne is mixed with several percent of Xe), thereby being airtight.
  • a discharge gas for example, a gas in which Ne is mixed with several percent of Xe
  • the discharge space 26 is configured.
  • the peripheral part of PDP1 is bonded together with a sealing material.
  • a display cell is configured corresponding to the intersection of the sustain electrode 12X, the scan electrode 12Y, and the address electrode 22.
  • a discharge is generated by applying a voltage between the address electrode 22 and the scan electrode 12Y in the selected display cell (address operation period).
  • a discharge is generated between the pair of display electrodes 12 (12X, 12Y) with respect to the selected display cell (sustain discharge (display discharge)) (sustain operation period).
  • light emission is performed in a desired display cell in the subfield.
  • the luminance of the pixel is expressed by selecting a subfield to be lit in the field.
  • FIG. 6 is a diagram illustrating an example of a cross-sectional configuration of the front substrate structure 10 including the priming particle emitting layer in the PDP 1 according to the embodiment of the present invention.
  • the front substrate structure 10 of the PDP 1 has a priming particle emitting layer 15 formed on the surface of the protective layer 14 so as to be exposed to the discharge space 26.
  • the priming particle release layer 15 is a magnesium oxide crystal layer containing magnesium oxide (MgO) crystal powder.
  • the priming particle emitting layer 15 includes a magnesium oxide crystal powder to which a halogen element such as fluorine (F) is added.
  • the magnesium oxide crystal powder is densely or sparsely distributed with respect to the target surface (protective layer 14) (the sparsely distributed layer is also called a layer (film)).
  • the display electrode 12 can be composed of, for example, a transparent electrode 12a having a wide width formed of ITO (indium tin oxide) or the like and a bus electrode 12b having a narrow width made of a metal such as Cu or Cr and reducing the electrode resistance.
  • the electrode shape is not particularly limited.
  • the transparent electrode 12a has a plate shape or a T shape for each display cell, and the bus electrode 12b has a linear shape.
  • the display electrode 12 forms a display line by a pair of the adjacent sustain electrode 12X and the scan electrode 12Y.
  • an electrode arrangement configuration a normal configuration in which a pair of display electrodes 12 serving as non-discharge regions (reverse slits) is provided, or display electrodes 12 (12X, 12Y) are alternately arranged at equal intervals, and all adjacent display electrodes 12 are arranged.
  • a so-called ALIS (Alternate Lighting Surfaces Method) configuration in which a display line is configured by a pair of the above is possible.
  • the dielectric layer 13 is formed, for example, by applying a low melting point glass paste on the front glass substrate 11 by screen printing or the like and baking it.
  • the protective layer 14 has functions such as protecting the dielectric layer 13 and emitting secondary electrons.
  • the protective layer 14 is made of, for example, a metal oxide such as magnesium oxide, calcium oxide, strontium oxide, or barium oxide, and is preferably made of a magnesium oxide layer having a high secondary electron emission coefficient.
  • the protective layer 14 is formed by, for example, an electron beam evaporation method (or a sputtering method, a coating method, etc.).
  • the back substrate structure 20 can be manufactured using a known technique as follows, for example.
  • the rear glass substrate 21, the address electrode 22, the dielectric layer 23, and the like can be manufactured in the same manner as the front substrate structure 10.
  • the partition wall 24 can be, for example, a stripe shape only in the y direction, or a box shape having partition walls in the x direction and the y direction.
  • the phosphor 25 is formed for each of R, G, and B, for example, by applying a phosphor paste to a region between the barrier ribs 24 by a method such as a screen printing method or a dispenser and baking it.
  • the priming particle emitting layer (magnesium oxide crystal layer) 15 is disposed at any location exposed to the discharge space 26 in the substrate structure constituting the PDP 1.
  • a configuration directly disposed on the dielectric layer 13 or a configuration disposed on the protective layer 14 on the dielectric layer 13 is possible.
  • the front substrate structure 10 is arranged on the protective layer 14.
  • the priming particle emitting layer 15 has a priming particle emitting powder material.
  • the priming particle emitting powder material is made of magnesium oxide crystal powder (powder) or magnesium oxide crystal powder to which a halogen element is added.
  • the kind of halogen element to be added is, for example, one or more of fluorine (F), chlorine, bromine, iodine and the like. In the case of using fluorine, it has been confirmed that the effect of improving the discharge delay lasts for a long time.
  • the amount of halogen element added is, for example, 1 to 10,000 ppm.
  • the halogen-containing material include magnesium fluoride (MgF 2 ), which is a halide of magnesium, and halides of Al, Li, Mn, Zn, Ca, and Ce.
  • Calcination of the substance containing magnesium oxide crystal powder is performed within a range of 1000 to 1700 ° C., for example.
  • the particle size after heat treatment of the magnesium oxide crystal powder or the magnesium oxide crystal powder to which a halogen element is added is preferably within a predetermined range (50 nm to 20 ⁇ m). If the particle size is too small, the effect of improving the discharge delay by the priming particle emitting layer 15 is small. On the other hand, if the particle size is too large, the priming particle releasing layer 15 is difficult to be formed uniformly.
  • the basic formation method of the priming particle emitting layer 15 is, for example, as follows.
  • a paste or slurry (priming particle emitting powder-containing material) prepared by mixing magnesium oxide crystal powder with a solvent (solvent) is prepared.
  • This material is deposited on the target surface by a method such as spraying (spreading) or coating.
  • a slurry spraying method or a paste spraying method by a printing method can be used.
  • the priming particle emitting layer 15 is completed by removing the solvent component or the like by drying or baking the deposited material and fixing the powder component to the target surface.
  • the priming particle emitting layer 15 is formed to have a predetermined thickness over the entire target surface (the surface of the protective layer 14).
  • the manufacturing method of PDP1 which has the priming particle
  • the manufacturing method of PDP 1 of the present embodiment includes a pretreatment step for making the shape and size of the particle groups uniform before heat-treating the raw material powder of the magnesium oxide crystal powder at a high temperature.
  • FIG. 1 is a diagram showing an outline of an example of a pretreatment process for making the shape and size of the particle group uniform in the present embodiment
  • FIG. 2 is an oxidation including the pretreatment process in the present embodiment
  • FIG. 5 is a diagram showing a manufacturing flow of a magnesium crystal powder and a priming particle release layer 15.
  • a magnesium oxide (MgO) crystal powder 201 is added to a flux (a substance that lowers the melting point of magnesium oxide).
  • Flux a substance that lowers the melting point of magnesium oxide.
  • Flux magnesium fluoride
  • the state of the raw material powder 103 may be a slurry mixed with a volatile solvent or a mixture of a binder in addition to a dry powder.
  • the raw powder 103 is processed as shown in FIG. 1 as a pretreatment step (step S1) for making the shape and size of the particle group uniform.
  • a substrate 101 having a plurality of concave holes 102 on the surface is prepared.
  • the size (width and depth of the opening) of the concave hole 102 is 1 ⁇ m to 100 ⁇ m, although it depends on the particle size distribution of the powder after heat treatment, the design of the upper limit of allowable aggregation, the heat treatment conditions, the size of the display cell, etc. It is desirable.
  • the material of the substrate 101 is not particularly limited, but metal, glass, resin, or the like can be used. In the present embodiment, it is assumed that a concave hole 102 having an opening width of 50 ⁇ m and a depth of 25 ⁇ m is formed on the surface of a flat substrate 101 made of glass by a sandblast method.
  • the substrate 101 may be other than a flat plate, such as a roll.
  • the shape of the concave hole 102 is illustrated as a hemispherical shape in FIG. 1, it is not particularly limited to this.
  • the raw material powder 103 is filled in the concave hole 102 on the substrate 101 by using a squeegee 104 or the like. Thereafter, by turning the substrate 101 upside down and applying vibrations or the like, a particle group 105 made of the raw material powder 103 that is uniformly shaped into the shape and size of the concave hole 102 is obtained.
  • the obtained particle group 105 is collected in a high-temperature heating tray, and a high-temperature heat treatment (step S2) in FIG. 2 is performed.
  • a drying process is performed before collection
  • care is taken not to apply vibration, pressure, or the like to the obtained particle group 105 from after collection until high-temperature heat treatment.
  • the heat-treated magnesium oxide crystal powder 203 is mixed at a rate of 2 g (2 g / L) with respect to 1 L of IPA (isopropyl alcohol) as the solvent 204 (step S3) to obtain a slurry 205.
  • IPA isopropyl alcohol
  • the slurry 205 is sprayed on the surface (target surface) of the front substrate structure 10 on which the protective layer 14 (magnesium oxide layer) in FIG.
  • the layer (film) is formed by spraying or coating.
  • release layer 15 is completed by drying the said layer (slurry 205) by heating (solvent component removal etc.) (process S4).
  • the amount of formation (application) of the slurry 205 is set to 2 g / m 2 .
  • the shape and size of the particle group 105 made of the magnesium oxide crystal powder 201 are made uniform by including the pretreatment step (step S1).
  • the magnesium oxide crystal powder 203 in which aggregation is suppressed can be obtained without impairing the effect of improving the discharge delay. .
  • the priming particle emitting layer 15 including the magnesium oxide crystal powder 203 it is possible to realize a PDP 1 that achieves both improvement in discharge delay and suppression of display defects and display unevenness.
  • FIG. 3 is a diagram showing an outline of an example of a pretreatment step (step S1) for making the shape and size of the particle group uniform in the present embodiment.
  • a substrate 101 having a plurality of through holes 106 on the surface is prepared.
  • the size of the through-hole 106 depends on the particle size distribution of the heat-treated powder, the design of the upper limit of allowable aggregation, the heat treatment conditions, the size of the display cell, etc., but 1 ⁇ m to 100 ⁇ m It is desirable that
  • the material of the substrate 101 is not particularly limited, but metal, glass, resin, or the like can be used.
  • the substrate 101 may have a plate shape or a shape in which a wire or the like is knitted. In this embodiment, it is assumed that the substrate 101 is knitted with a SUS wire so that the width of the opening is 50 ⁇ m.
  • the shape of the through-hole 106 is illustrated as a cylindrical shape in FIG. 3, it is not particularly limited thereto.
  • the raw material powder 103 is pushed into the through hole 106 of the substrate 101 with a constant pressure using a squeegee 104 or the like, and is passed through the through hole 106.
  • the raw material powder 103 is the same as that in Embodiment 1.
  • the state of the raw material powder 103 may be a slurry mixed with a volatile solvent or a mixture of a binder in addition to a dry powder.
  • the pretreatment step includes the particle group 105 made of the magnesium oxide crystal powder 201.
  • Magnesium oxide crystals that can be made uniform in shape and size and have reduced aggregation without impairing the effect of improving discharge delay by reducing the contact between the particle groups 105 during the high-temperature heat treatment (step S2) Powder 203 can be obtained.
  • the present invention can be used for a PDP and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

A process for producing a plasma display panel (PDP) provided with a priming particle releasing layer containing a magnesium oxide crystal simultaneously exerting aggregation and discharge delay remedying effects. In particular, there is provided a process for producing PDP having, arranged so as to be exposed to discharge space, a priming particle releasing layer containing a magnesium oxide crystal having undergone high-temperature heating treatment, wherein in the step of heat treatment of magnesium oxide crystal powder as a raw material, the configuration and size of particle mass of magnesium oxide crystal powder are uniformized before the high-temperature heating treatment.

Description

プラズマディスプレイパネルの製造方法、酸化マグネシウム結晶体粉体の製造方法Method for manufacturing plasma display panel, method for manufacturing magnesium oxide crystal powder
 本発明は、プラズマディスプレイパネル(PDP)およびその製造方法に関し、特に、プライミング粒子放出層(電子放出層)に含まれる酸化マグネシウム結晶体粉体およびその製造方法に適用して有効な技術に関するものである。 The present invention relates to a plasma display panel (PDP) and a manufacturing method thereof, and more particularly to a magnesium oxide crystal powder contained in a priming particle emission layer (electron emission layer) and a technique effective when applied to the manufacturing method. is there.
 PDPは高精細化が進んでおり、画素数が増加することにより表示セルの点灯/非点灯を選択決定するアドレス動作の時間が増大する。この増大を抑制するためには、アドレス放電用の電圧(アドレス電圧)のパルス幅を小さくすることが有効である。しかし、電圧を印加してから放電が発生するまでの時間(放電遅れ)にはばらつきがある。そのため、アドレス電圧のパルス幅が小さすぎると、パルスを印加しても放電が発生しないことがあり得る。その場合、サステイン期間で当該表示セルが正しく点灯せず画質劣化を招く。 The resolution of PDP is increasing, and the address operation time for selecting and deciding lighting / non-lighting of the display cell increases as the number of pixels increases. In order to suppress this increase, it is effective to reduce the pulse width of the address discharge voltage (address voltage). However, there is a variation in the time (discharge delay) from when a voltage is applied to when discharge occurs. Therefore, if the pulse width of the address voltage is too small, no discharge may occur even when a pulse is applied. In that case, the display cell does not light correctly during the sustain period, resulting in image quality degradation.
 PDPの放電遅れを改善する手段としては、特開2006-59786号公報(特許文献1)に記載されているように、対向配置された2つの基板構造体間の放電空間に露出するように、プライミング粒子放出層(電子放出層)として酸化マグネシウム結晶体層を設ける技術がある。
特開2006-59786号公報
As a means for improving the discharge delay of the PDP, as described in JP-A-2006-59786 (Patent Document 1), so as to be exposed to a discharge space between two opposing substrate structures, There is a technique of providing a magnesium oxide crystal layer as a priming particle emission layer (electron emission layer).
JP 2006-59786 A
 上述の酸化マグネシウム結晶体層において、より高い放電遅れ改善効果を得る手段として、本発明者等による以前の出願である特願2007-124718によれば、酸化マグネシウム結晶体粉体にハロゲン元素を混合して焼成する技術がある。また、同じく本発明者等による以前の出願であるPCT/JP2007/68348によれば、酸化マグネシウム結晶体粉体に対して酸化雰囲気で熱処理をする技術がある。 According to Japanese Patent Application No. 2007-124718, which was a previous application by the present inventors, as a means for obtaining a higher discharge delay improvement effect in the above-described magnesium oxide crystal layer, a halogen element was mixed in the magnesium oxide crystal powder. And there is a technique of firing. Further, according to PCT / JP2007 / 68348, which is a previous application filed by the present inventors, there is a technique for heat-treating magnesium oxide crystal powder in an oxidizing atmosphere.
 しかしながら、これらの技術によって熱処理した酸化マグネシウム結晶体粉体には、凝集塊が存在している場合がある。大きな凝集塊がPDP内のプライミング粒子放出層に存在すると、放電の広がりを阻害して表示欠点が発生したり、セル間の特性のばらつきにより表示ムラが発生したりする場合がある。 However, there are cases where aggregates are present in the magnesium oxide crystal powder heat-treated by these techniques. If a large agglomerate is present in the priming particle emitting layer in the PDP, the spread of discharge may be hindered to cause display defects, or display unevenness may occur due to variations in characteristics between cells.
 凝集塊を解消する方法としては、熱処理後の酸化マグネシウム結晶体粉体に対して乳鉢と乳棒による粉砕処理を施す方法や、パネルへの湿式塗布時にスラリーに対して超音波などの分散処理を施す方法などがある。しかし、これらの方法では酸化マグネシウムの結晶を破壊し、放電遅れ改善効果を損なう場合がある。 As a method for eliminating the agglomerates, a method of pulverizing the magnesium oxide crystal powder after the heat treatment with a mortar and a pestle, or performing a dispersion treatment such as ultrasonic waves on the slurry during wet application to the panel There are methods. However, these methods sometimes destroy the magnesium oxide crystals and impair the discharge delay improvement effect.
 本発明は以上のような課題に鑑みてなされたものであり、その目的は、熱処理した酸化マグネシウム結晶体粉体の凝集抑制と、放電遅れ改善効果とを両立することを可能とする技術を提供することにある。 The present invention has been made in view of the problems as described above, and its purpose is to provide a technique that makes it possible to achieve both the suppression of aggregation of the heat-treated magnesium oxide crystal powder and the effect of improving the discharge delay. There is to do.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。すなわち、本発明の代表的な実施の形態によるPDPの製造方法は、放電空間に露出するように、高温加熱処理された酸化マグネシウム結晶体粉体を含むプライミング粒子放出層が配置されたPDPの製造方法であって、原料の酸化マグネシウム結晶体粉体の粒子群の形状、サイズを均一にする前処理工程を行った後に高温加熱処理を行うことを特徴とするものである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows. That is, the PDP manufacturing method according to the exemplary embodiment of the present invention manufactures a PDP in which a priming particle emitting layer including magnesium oxide crystal powder that has been heat-treated at high temperature is disposed so as to be exposed to the discharge space. The method is characterized in that a high-temperature heat treatment is performed after a pretreatment step for making the shape and size of the particle group of the raw material magnesium oxide crystal powder uniform.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。すなわち、本発明の代表的な実施の形態によれば、高温加熱時の粒子群同士の接触が少なくなるため、放電遅れ改善効果を損なうことなく凝集が抑制された酸化マグネシウム結晶体粉体を得ることができる。この酸化マグネシウム結晶体粉体を含むプライミング粒子放出層を配置することにより、放電遅れの改善と、表示欠点、表示ムラの抑制とを両立したPDPを実現することができる。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows. That is, according to a typical embodiment of the present invention, since contact between particle groups during high-temperature heating is reduced, a magnesium oxide crystal powder in which aggregation is suppressed without impairing the effect of improving discharge delay is obtained. be able to. By disposing the priming particle emitting layer containing the magnesium oxide crystal powder, it is possible to realize a PDP that achieves both improvement in discharge delay and suppression of display defects and display unevenness.
本発明の実施の形態1における粒子群の形状、サイズを均一にする前処理工程の例についての概要を示した図である。It is the figure which showed the outline | summary about the example of the pre-processing process which makes the shape and size of a particle group uniform in Embodiment 1 of this invention. 本発明の実施の形態1における前処理工程を含む酸化マグネシウム結晶体粉体およびプライミング粒子放出層の製造フローを示した図である。It is the figure which showed the manufacturing flow of the magnesium oxide crystalline substance powder and the priming particle | grain release layer including the pre-processing process in Embodiment 1 of this invention. 本発明の実施の形態2における粒子群の形状、サイズを均一にする前処理工程の例についての概要を示した図である。It is the figure which showed the outline | summary about the example of the pre-processing process which makes the shape and size of the particle group uniform in Embodiment 2 of this invention. (a)、(b)は、粒子(粒子群)を高温加熱した場合の融着の状態の例を示した図である。(A), (b) is the figure which showed the example of the state of the fusion | melting at the time of heating a particle | grain (particle group) at high temperature. 本発明の一実施の形態であるPDPの基本構造の一例を、要部を拡大して分解斜視構成として示した図である。It is the figure which expanded and showed the example of the basic structure of PDP which is one embodiment of this invention as an exploded perspective structure. 本発明の一実施の形態のPDPにおけるプライミング粒子放出層を含む前面基板構造体の断面構成の例を示した図である。It is the figure which showed the example of the cross-sectional structure of the front substrate structure containing the priming particle | grain discharge | release layer in PDP of one embodiment of this invention.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 <概要>
 本発明の一実施の形態であるPDPの製造方法では、プライミング粒子放出層において、上述した課題である、熱処理した酸化マグネシウム結晶体の凝集抑制と、放電遅れ改善効果との両立を実現させるため、酸化マグネシウム結晶体粉体の熱処理工程において、熱処理を行う前に、原料の酸化マグネシウム結晶体粉体の粒子群の形状、サイズを均一にすることで、高温加熱処理時の粒子群同士の接触を少なくする。
<Overview>
In the method for producing a PDP according to an embodiment of the present invention, in the priming particle emitting layer, in order to realize both the suppression of aggregation of the heat-treated magnesium oxide crystal and the effect of improving the discharge delay, which are the problems described above, In the heat treatment step of the magnesium oxide crystal powder, before the heat treatment, the shape and size of the particle group of the raw material magnesium oxide crystal powder are made uniform so that the particle groups can be in contact with each other during the high-temperature heat treatment. Reduce.
 ここで、粒子もしくは粒子群の凝集は、高温加熱時に接する粒子(粒子群)同士が融着することで起こる。図4は、粒子(粒子群)を高温加熱処理した場合の融着の状態の例を示した図である。図4(a)に示すように、高温加熱時に、粒子(粒子群)40の形状、サイズが均一でない場合は、粒子(粒子群)40同士の接触が大きくなり、高温加熱後の融着41の面積が大きくなるため、凝集が強くなる。これに対し、図4(b)に示すように、粒子(粒子群)40の形状、サイズが均一である場合は、粒子(粒子群)40同士の接触が最小限に抑えられ、高温加熱後の融着41の面積が少なくなり、凝集が弱くなる。 Here, aggregation of particles or particle groups occurs when particles (particle groups) in contact with each other at high temperature heating are fused together. FIG. 4 is a diagram showing an example of a fusion state when particles (particle groups) are subjected to high-temperature heat treatment. As shown in FIG. 4A, when the shape and size of the particles (particle group) 40 are not uniform during high temperature heating, the contact between the particles (particle group) 40 is increased, and the fusion 41 after high temperature heating is performed. Since the area of the substrate becomes larger, the aggregation becomes stronger. On the other hand, as shown in FIG. 4B, when the shape and size of the particles (particle groups) 40 are uniform, the contact between the particles (particle groups) 40 can be minimized, and after high-temperature heating. The area of the fusion 41 is reduced and aggregation is weakened.
 従って、酸化マグネシウム結晶体粉体に高温加熱処理を行う前に、粒子(粒子群)の形状、サイズが均一でない場合にはこれらを均一にして、粒子(粒子群)同士の接触を少なくすることで、高温加熱処理時の粒子(粒子群)同士の融着による凝集が抑制される。凝集が抑制された酸化マグネシウム結晶体粉体をプライミング粒子放出層に用いることによって、放電遅れの改善と、表示欠点、表示ムラの抑制とを両立したPDPを実現することができる。 Therefore, before the high-temperature heat treatment of the magnesium oxide crystal powder, if the shape and size of the particles (particle groups) are not uniform, make them uniform to reduce contact between the particles (particle groups). Thus, aggregation due to fusion of particles (particle groups) during high-temperature heat treatment is suppressed. By using the magnesium oxide crystal powder in which aggregation is suppressed for the priming particle emitting layer, it is possible to realize a PDP that achieves both improvement in discharge delay and suppression of display defects and display unevenness.
 <PDP(基本構造)>
 図5は、本発明の一実施の形態であるPDP(パネル)1の基本構造の一例を示した図である。図5では、画素に対応する表示セルのセット(Cr、Cg、Cb)の部分を示している。なお、説明のために、x方向(第1方向、横方向)、y方向(第2方向、縦方向)、z方向(第3方向、パネル面垂直方向)を図示している。
<PDP (basic structure)>
FIG. 5 is a diagram showing an example of a basic structure of a PDP (panel) 1 according to an embodiment of the present invention. FIG. 5 shows a set of display cells (Cr, Cg, Cb) corresponding to pixels. For the sake of explanation, the x direction (first direction, horizontal direction), y direction (second direction, vertical direction), and z direction (third direction, panel surface vertical direction) are shown.
 PDP1は、前面基板構造体10と、背面基板構造体20とを組み合わせて成り、その間に放電空間26を有する。前面基板構造体10においては、前面ガラス基板11上に、x方向に表示電極12(12X、12Y)群が配置されている。表示電極12は、サステイン動作用のサステイン電極12Xと、サステイン動作およびスキャン動作(兼用)のスキャン電極12Yとを有する。表示電極12(12X、12Y)は、例えば、透明電極とバス電極とからなる。前面ガラス基板11上で、表示電極12群は、誘電体層13により覆われている。誘電体層13上に、さらに保護層14が形成されている。誘電体層13および保護層14は、PDP1の表示領域(画面)に対応した全面に形成されている。 The PDP 1 is formed by combining the front substrate structure 10 and the rear substrate structure 20 and has a discharge space 26 therebetween. In the front substrate structure 10, a group of display electrodes 12 (12X, 12Y) is arranged on the front glass substrate 11 in the x direction. The display electrode 12 includes a sustain electrode 12X for a sustain operation and a scan electrode 12Y for a sustain operation and a scan operation (shared). The display electrode 12 (12X, 12Y) is composed of, for example, a transparent electrode and a bus electrode. On the front glass substrate 11, the display electrode 12 group is covered with a dielectric layer 13. A protective layer 14 is further formed on the dielectric layer 13. The dielectric layer 13 and the protective layer 14 are formed on the entire surface corresponding to the display area (screen) of the PDP 1.
 背面基板構造体20においては、背面ガラス基板21上に、表示電極12と交差するy方向にアドレス電極22群が配置されている。アドレス電極22群は、誘電体層23に覆われている。誘電体層23上のアドレス電極22間に対応する位置に、例えばy方向に、隔壁24が形成されている。隔壁24は、単位発光領域(表示セル)に対応して放電空間26を区画する。アドレス電極22の上方(z方向)の隔壁24で区画された領域には、R(赤)、G(緑)、B(青)の各色の蛍光体(蛍光体層)25(25r、25g、25b)が、領域(列)毎に順に色分けして形成されている。 In the back substrate structure 20, a group of address electrodes 22 is arranged on the back glass substrate 21 in the y direction intersecting with the display electrodes 12. The group of address electrodes 22 is covered with a dielectric layer 23. A partition wall 24 is formed at a position corresponding to between the address electrodes 22 on the dielectric layer 23, for example, in the y direction. The barrier ribs 24 divide the discharge space 26 corresponding to the unit light emitting areas (display cells). In the region partitioned by the partition wall 24 above the address electrode 22 (z direction), phosphors (phosphor layers) 25 (25r, 25g, R) of each color of R (red), G (green), and B (blue) 25b) are formed by color-coding in order for each region (column).
 前面基板構造体10と背面基板構造体20とが貼り合わされることによって形成される内部領域には、放電ガス(例えばNeに数%程度のXeを混合したガス)が封入されることで、気密な放電空間26が構成される。PDP1の周縁部は、封着材により貼り合わされる。サステイン電極12X、スキャン電極12Y、アドレス電極22の交差部分に対応して表示セルが構成される。 The internal region formed by bonding the front substrate structure 10 and the back substrate structure 20 is sealed with a discharge gas (for example, a gas in which Ne is mixed with several percent of Xe), thereby being airtight. The discharge space 26 is configured. The peripheral part of PDP1 is bonded together with a sealing material. A display cell is configured corresponding to the intersection of the sustain electrode 12X, the scan electrode 12Y, and the address electrode 22.
 PDP1の駆動(サブフィールド法およびアドレス表示分離方式)においては、選択する表示セルで、アドレス電極22とスキャン電極12Yとの間に電圧印加により放電(アドレス放電)を発生させる(アドレス動作期間)。また、選択された表示セルに対して、表示電極12の対(12X、12Y)の間に電圧印加により放電(サステイン放電(表示放電)など)を発生させる(サステイン動作期間)。これらにより、サブフィールドの所望の表示セルにおける発光(点灯)が行われる。また、フィールド中での点灯するサブフィールドを選択することで、画素(表示セル)の輝度が表現される。 In the driving of the PDP 1 (subfield method and address display separation method), a discharge (address discharge) is generated by applying a voltage between the address electrode 22 and the scan electrode 12Y in the selected display cell (address operation period). In addition, a discharge (sustain discharge (display discharge) or the like) is generated between the pair of display electrodes 12 (12X, 12Y) with respect to the selected display cell (sustain discharge (display discharge)) (sustain operation period). Thus, light emission (lighting) is performed in a desired display cell in the subfield. In addition, the luminance of the pixel (display cell) is expressed by selecting a subfield to be lit in the field.
 <PDP(詳細構造)>
 図6は、本発明の一実施の形態のPDP1における、プライミング粒子放出層を含む前面基板構造体10の断面構成の例を示した図である。PDP1の前面基板構造体10は、保護層14の表面に、放電空間26に露出して形成されるプライミング粒子放出層15を有する。プライミング粒子放出層15は、酸化マグネシウム(MgO)結晶体粉体を含んでなる酸化マグネシウム結晶体層である。あるいは、プライミング粒子放出層15は、フッ素(F)等のハロゲン元素が添加された酸化マグネシウム結晶体粉体を含んでなる。なお、プライミング粒子放出層15では、対象面(保護層14)に対し、酸化マグネシウム結晶体粉体が、密あるいは疎に分布する(なお、疎に分布する場合も層(膜)と称する)。
<PDP (detailed structure)>
FIG. 6 is a diagram illustrating an example of a cross-sectional configuration of the front substrate structure 10 including the priming particle emitting layer in the PDP 1 according to the embodiment of the present invention. The front substrate structure 10 of the PDP 1 has a priming particle emitting layer 15 formed on the surface of the protective layer 14 so as to be exposed to the discharge space 26. The priming particle release layer 15 is a magnesium oxide crystal layer containing magnesium oxide (MgO) crystal powder. Alternatively, the priming particle emitting layer 15 includes a magnesium oxide crystal powder to which a halogen element such as fluorine (F) is added. In the priming particle emitting layer 15, the magnesium oxide crystal powder is densely or sparsely distributed with respect to the target surface (protective layer 14) (the sparsely distributed layer is also called a layer (film)).
 前面ガラス基板11には、ガラス等の透明材料を使用することができる。表示電極12は、例えば、ITO(インジウムスズ酸化物)等による幅が広く放電ギャップを形成する透明電極12aと、Cu、Cr等の金属による幅が狭く電極抵抗を下げるバス電極12bとから構成できる。電極形状は、特に限定されないが、例えば、透明電極12aは板状あるいは表示セル毎のT字形状などであり、バス電極12bは直線状である。 A transparent material such as glass can be used for the front glass substrate 11. The display electrode 12 can be composed of, for example, a transparent electrode 12a having a wide width formed of ITO (indium tin oxide) or the like and a bus electrode 12b having a narrow width made of a metal such as Cu or Cr and reducing the electrode resistance. . The electrode shape is not particularly limited. For example, the transparent electrode 12a has a plate shape or a T shape for each display cell, and the bus electrode 12b has a linear shape.
 表示電極12は、隣接するサステイン電極12Xとスキャン電極12Yの対により表示ラインを構成する。電極配列構成としては、非放電領域(逆スリット)となる表示電極12の対を設けるノーマル構成や、表示電極12(12X、12Y)を等間隔で交互に配列し、隣接するすべての表示電極12の対により表示ラインを構成するいわゆるALIS(Alternate Lighting of Surfaces Method)構成が可能である。 The display electrode 12 forms a display line by a pair of the adjacent sustain electrode 12X and the scan electrode 12Y. As an electrode arrangement configuration, a normal configuration in which a pair of display electrodes 12 serving as non-discharge regions (reverse slits) is provided, or display electrodes 12 (12X, 12Y) are alternately arranged at equal intervals, and all adjacent display electrodes 12 are arranged. A so-called ALIS (Alternate Lighting Surfaces Method) configuration in which a display line is configured by a pair of the above is possible.
 誘電体層13は、例えば、前面ガラス基板11上に低融点ガラスペーストをスクリーン印刷法などにより塗布し、焼成することで形成される。保護層14は、誘電体層13の保護や、2次電子を放出する等の機能を持つ。保護層14は、例えば、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム等の金属酸化物から成り、好ましくは、2次電子放出係数の高い酸化マグネシウム層からなる。保護層14は、例えば、電子ビーム蒸着法(あるいはスパッタ法、塗布方法など)により形成される。 The dielectric layer 13 is formed, for example, by applying a low melting point glass paste on the front glass substrate 11 by screen printing or the like and baking it. The protective layer 14 has functions such as protecting the dielectric layer 13 and emitting secondary electrons. The protective layer 14 is made of, for example, a metal oxide such as magnesium oxide, calcium oxide, strontium oxide, or barium oxide, and is preferably made of a magnesium oxide layer having a high secondary electron emission coefficient. The protective layer 14 is formed by, for example, an electron beam evaporation method (or a sputtering method, a coating method, etc.).
 背面基板構造体20は、公知技術を用いて例えば以下のように作製できる。背面ガラス基板21、アドレス電極22、誘電体層23等については、前面基板構造体10の場合と同様に作製できる。隔壁24は、例えば、y方向のみのストライプ形状、あるいは、x方向およびy方向の隔壁部を持つボックス形状などが可能である。蛍光体25は、R、G、B毎に、例えば、隔壁24の間の領域に蛍光体ペーストをスクリーン印刷法、ディスペンサ等の方法により塗布し、焼成することで形成される。 The back substrate structure 20 can be manufactured using a known technique as follows, for example. The rear glass substrate 21, the address electrode 22, the dielectric layer 23, and the like can be manufactured in the same manner as the front substrate structure 10. The partition wall 24 can be, for example, a stripe shape only in the y direction, or a box shape having partition walls in the x direction and the y direction. The phosphor 25 is formed for each of R, G, and B, for example, by applying a phosphor paste to a region between the barrier ribs 24 by a method such as a screen printing method or a dispenser and baking it.
 <プライミング粒子放出層(酸化マグネシウム結晶体層)>
 プライミング粒子放出層(酸化マグネシウム結晶体層)15は、PDP1を構成する基板構造体において、放電空間26に露出するいずれかの箇所に配置される。例えば、誘電体層13上に直接配置する構成、あるいは、誘電体層13上の保護層14上に配置する構成などが可能である。本実施の形態では、図6に示すように、前面基板構造体10において、保護層14上に配置する構成とする。放電空間26に露出してプライミング粒子放出層15が配置される構成とすることにより、プライミング粒子放出層15(これを構成する酸化マグネシウム結晶体粉体)により、放電空間26にプライミング粒子を放出する機能、およびPDP1での放電遅れが改善される効果などが得られる。
<Priming particle release layer (magnesium oxide crystal layer)>
The priming particle emitting layer (magnesium oxide crystal layer) 15 is disposed at any location exposed to the discharge space 26 in the substrate structure constituting the PDP 1. For example, a configuration directly disposed on the dielectric layer 13 or a configuration disposed on the protective layer 14 on the dielectric layer 13 is possible. In the present embodiment, as shown in FIG. 6, the front substrate structure 10 is arranged on the protective layer 14. By adopting a configuration in which the priming particle emission layer 15 is disposed so as to be exposed to the discharge space 26, the priming particles are emitted to the discharge space 26 by the priming particle emission layer 15 (magnesium oxide crystal powder constituting the same). The function and the effect of improving the discharge delay in the PDP 1 can be obtained.
 プライミング粒子放出層15は、プライミング粒子放出粉体材料を有してなる。プライミング粒子放出粉体材料は、酸化マグネシウム結晶体粉体(粉末)、あるいはハロゲン元素を添加した酸化マグネシウム結晶体粉体などからなる。 The priming particle emitting layer 15 has a priming particle emitting powder material. The priming particle emitting powder material is made of magnesium oxide crystal powder (powder) or magnesium oxide crystal powder to which a halogen element is added.
 添加されるハロゲン元素の種類は、例えば、フッ素(F)、塩素、臭素、ヨウ素などのうち1種または2種以上からなる。フッ素を用いる場合、放電遅れの改善効果が長時間持続することが確認されている。添加されるハロゲン元素の量は、例えば1~10000ppmである。ハロゲン元素含有物質としては、例えば、マグネシウムのハロゲン化物であるフッ化マグネシウム(MgF)や、Al、Li、Mn、Zn、Ca、Ceのハロゲン化物が挙げられる。 The kind of halogen element to be added is, for example, one or more of fluorine (F), chlorine, bromine, iodine and the like. In the case of using fluorine, it has been confirmed that the effect of improving the discharge delay lasts for a long time. The amount of halogen element added is, for example, 1 to 10,000 ppm. Examples of the halogen-containing material include magnesium fluoride (MgF 2 ), which is a halide of magnesium, and halides of Al, Li, Mn, Zn, Ca, and Ce.
 酸化マグネシウム結晶体粉体を含む物質の焼成は、例えば1000~1700℃の範囲内で行う。酸化マグネシウム結晶体粉体、あるいはハロゲン元素を添加した酸化マグネシウム結晶体粉体に熱処理を行った後の粒径は、所定範囲内(50nm~20μm)になることが好ましい。粒径が小さ過ぎるとプライミング粒子放出層15による放電遅れの改善効果が小さい。また、逆に粒径が大きすぎるとプライミング粒子放出層15が均一に形成されにくい。 Calcination of the substance containing magnesium oxide crystal powder is performed within a range of 1000 to 1700 ° C., for example. The particle size after heat treatment of the magnesium oxide crystal powder or the magnesium oxide crystal powder to which a halogen element is added is preferably within a predetermined range (50 nm to 20 μm). If the particle size is too small, the effect of improving the discharge delay by the priming particle emitting layer 15 is small. On the other hand, if the particle size is too large, the priming particle releasing layer 15 is difficult to be formed uniformly.
 プライミング粒子放出層15の基本的な形成方法は、例えば以下の通りである。酸化マグネシウム結晶体粉体を溶媒(溶剤)に混合等させてなるペーストやスラリーなどの状態の物(プライミング粒子放出粉体含有材料)を用意する。この材料を、対象面に対して噴霧(散布)や塗布などの方法により成膜する。例えばスラリーの噴霧の方法、あるいは、印刷法などによるペーストの散布の方法などを使用できる。また、成膜された材料を乾燥や焼成することで溶剤成分等を除去し、粉体成分を対象面に固着させることで、プライミング粒子放出層15として完成する。プライミング粒子放出層15は、例えば、対象面(保護層14の表面)の全面に所定の厚さとなるように形成される。 The basic formation method of the priming particle emitting layer 15 is, for example, as follows. A paste or slurry (priming particle emitting powder-containing material) prepared by mixing magnesium oxide crystal powder with a solvent (solvent) is prepared. This material is deposited on the target surface by a method such as spraying (spreading) or coating. For example, a slurry spraying method or a paste spraying method by a printing method can be used. Moreover, the priming particle emitting layer 15 is completed by removing the solvent component or the like by drying or baking the deposited material and fixing the powder component to the target surface. For example, the priming particle emitting layer 15 is formed to have a predetermined thickness over the entire target surface (the surface of the protective layer 14).
 <実施の形態1>
 以下に、本発明の実施の形態1である酸化マグネシウム結晶体粉体およびこの酸化マグネシウム結晶体粉体を含むプライミング粒子放出層15を有するPDP1の製造方法について説明する。本実施の形態のPDP1の製造方法は、酸化マグネシウム結晶体粉体の原料粉末を高温加熱処理する前に、粒子群同士の形状、サイズを均一にする前処理工程を有するものである。
<Embodiment 1>
Below, the manufacturing method of PDP1 which has the priming particle | grain discharge | release layer 15 containing the magnesium oxide crystal powder which is Embodiment 1 of this invention and this magnesium oxide crystal powder is demonstrated. The manufacturing method of PDP 1 of the present embodiment includes a pretreatment step for making the shape and size of the particle groups uniform before heat-treating the raw material powder of the magnesium oxide crystal powder at a high temperature.
 図1は、本実施の形態における粒子群の形状、サイズを均一にする前処理工程の例についての概要を示した図であり、図2は、本実施の形態における上記前処理工程を含む酸化マグネシウム結晶体粉体およびプライミング粒子放出層15の製造フローを示した図である。 FIG. 1 is a diagram showing an outline of an example of a pretreatment process for making the shape and size of the particle group uniform in the present embodiment, and FIG. 2 is an oxidation including the pretreatment process in the present embodiment. FIG. 5 is a diagram showing a manufacturing flow of a magnesium crystal powder and a priming particle release layer 15.
 図2において、本実施の形態では、高温加熱処理(工程S2)を行う前の原料粉末103として、酸化マグネシウム(MgO)結晶体粉体201に、フラックス(酸化マグネシウムの融点を下げる働きを持つ物質(融剤))202として、マグネシウムのハロゲン化物であるフッ化マグネシウム(MgF)を添加したものを用いる。 In FIG. 2, in the present embodiment, as the raw material powder 103 before the high-temperature heat treatment (step S2), a magnesium oxide (MgO) crystal powder 201 is added to a flux (a substance that lowers the melting point of magnesium oxide). (Flux)) 202 is added with magnesium fluoride (MgF 2 ) which is a halide of magnesium.
 ここで、酸化マグネシウム結晶体粉体201には、宇部マテリアルズ株式会社製、商品名:気相法高純度超微粉マグネシア(2000A)を用い、フラックス202にはフルウチ化学株式会社製、フッ化マグネシウム(MgF)(純度99.99%)を用い、これらをモル比でMgO:MgF=1:0.0001の比率となるように混合したものとする。なお、原料粉末103の状態は、乾燥粉末状以外に、揮発性溶媒と混合したスラリー状や、バインダを混合したものであってもよい。 Here, the magnesium oxide crystal powder 201 is manufactured by Ube Materials Co., Ltd., trade name: high-purity ultrafine powder magnesia (2000A), and flux 202 is manufactured by Furuuchi Chemical Co., Ltd., magnesium fluoride. (MgF 2 ) (purity 99.99%) is used, and these are mixed so that the molar ratio is MgO: MgF 2 = 1: 0.0001. The state of the raw material powder 103 may be a slurry mixed with a volatile solvent or a mixture of a binder in addition to a dry powder.
 この原料粉末103に対して、粒子群の形状、サイズを均一にする前処理工程(工程S1)として、例えば、図1に示すような処理を行う。図1において、まず表面に複数の凹状孔102を設けた基板101を用意する。凹状孔102のサイズ(開口部の幅および深さ)は、加熱処理後の粉体の粒度分布、許容凝集上限の設計、熱処理条件、表示セルのサイズ等に依存するが、1μm~100μmであることが望ましい。 For example, the raw powder 103 is processed as shown in FIG. 1 as a pretreatment step (step S1) for making the shape and size of the particle group uniform. In FIG. 1, first, a substrate 101 having a plurality of concave holes 102 on the surface is prepared. The size (width and depth of the opening) of the concave hole 102 is 1 μm to 100 μm, although it depends on the particle size distribution of the powder after heat treatment, the design of the upper limit of allowable aggregation, the heat treatment conditions, the size of the display cell, etc. It is desirable.
 基板101の材質は特に限定されないが、金属、ガラス、樹脂などを用いることができる。本実施の形態では、ガラスを用いた平板の基板101の表面にサンドブラスト法によって開口部の幅50μm、深さ25μmの凹状孔102を形成したものとする。なお、基板101は平板以外の、例えばロール状などであってもよい。また、凹状孔102の形状は、図1では半球状として図示されているが、特にこれに限定されない。 The material of the substrate 101 is not particularly limited, but metal, glass, resin, or the like can be used. In the present embodiment, it is assumed that a concave hole 102 having an opening width of 50 μm and a depth of 25 μm is formed on the surface of a flat substrate 101 made of glass by a sandblast method. The substrate 101 may be other than a flat plate, such as a roll. Moreover, although the shape of the concave hole 102 is illustrated as a hemispherical shape in FIG. 1, it is not particularly limited to this.
 この基板101上の凹状孔102に、スキージ104等を用いて原料粉末103を刷りきりで充填する。その後、基板101を裏返して振動等を与えることによって、凹状孔102の形状、サイズに均一に成型された原料粉末103からなる粒子群105が得られる。 The raw material powder 103 is filled in the concave hole 102 on the substrate 101 by using a squeegee 104 or the like. Thereafter, by turning the substrate 101 upside down and applying vibrations or the like, a particle group 105 made of the raw material powder 103 that is uniformly shaped into the shape and size of the concave hole 102 is obtained.
 次に、得られた粒子群105を高温加熱用トレイに回収し、図2における高温加熱処理(工程S2)を行う。原料粉末103にスラリー、バインダを混合した場合は、回収前に乾燥処理を行う。また粒子群105同士の接触を最小限に抑えるために、回収後から高温加熱処理までは、得られた粒子群105に対して振動、圧力等を加えないよう注意する。本実施の形態では、得られた粒子群105を、酸化雰囲気として、窒素(N):酸素(O)=4:1の雰囲気中で、1450℃、4時間の熱処理を施す。 Next, the obtained particle group 105 is collected in a high-temperature heating tray, and a high-temperature heat treatment (step S2) in FIG. 2 is performed. When slurry and a binder are mixed with the raw material powder 103, a drying process is performed before collection | recovery. Further, in order to minimize contact between the particle groups 105, care is taken not to apply vibration, pressure, or the like to the obtained particle group 105 from after collection until high-temperature heat treatment. In this embodiment, the obtained particle group 105 is heat-treated at 1450 ° C. for 4 hours in an atmosphere of nitrogen (N): oxygen (O) = 4: 1 as an oxidizing atmosphere.
 上記熱処理後の酸化マグネシウム結晶体粉体203を、溶剤204であるIPA(イソプロピルアルコール)1Lに対して2gの割合(2g/L)で混合し(工程S3)、スラリー205を得る。 The heat-treated magnesium oxide crystal powder 203 is mixed at a rate of 2 g (2 g / L) with respect to 1 L of IPA (isopropyl alcohol) as the solvent 204 (step S3) to obtain a slurry 205.
 このスラリー205を、図6における保護層14(酸化マグネシウム層)が蒸着により形成済みである前面基板構造体10の保護層14表面(対象面)に対し、塗装用スプレーガン等を用いた噴霧(散布)または塗布などにより、当該層(膜)を形成する。そして、当該層(スラリー205)を加温により乾燥(溶剤成分除去等)させることで、プライミング粒子放出層15として完成させる(工程S4)。なお、スラリー205の形成(塗布)の量は、2g/mとなるようにする。 The slurry 205 is sprayed on the surface (target surface) of the front substrate structure 10 on which the protective layer 14 (magnesium oxide layer) in FIG. The layer (film) is formed by spraying or coating. And the said priming particle | grain discharge | release layer 15 is completed by drying the said layer (slurry 205) by heating (solvent component removal etc.) (process S4). In addition, the amount of formation (application) of the slurry 205 is set to 2 g / m 2 .
 上記の工程によりプライミング粒子放出層15が形成された前面基板構造体10を用いて、図5に示す構成のPDP1を作製する。 5 is manufactured using the front substrate structure 10 on which the priming particle emitting layer 15 is formed by the above-described process.
 以上のように、プライミング粒子放出層15を作製する工程において、上記前処理工程(工程S1)を有することによって、酸化マグネシウム結晶体粉体201からなる粒子群105の形状、サイズを均一にすることができ、高温加熱処理(工程S2)時の粒子群105同士の接触を少なくすることによって、放電遅れ改善効果を損なうことなく、凝集が抑制された酸化マグネシウム結晶体粉体203を得ることができる。この酸化マグネシウム結晶体粉体203を含むプライミング粒子放出層15を配置することにより、放電遅れの改善と、表示欠点、表示ムラの抑制とを両立したPDP1を実現することができる。 As described above, in the step of producing the priming particle emitting layer 15, the shape and size of the particle group 105 made of the magnesium oxide crystal powder 201 are made uniform by including the pretreatment step (step S1). By reducing the contact between the particle groups 105 during the high-temperature heat treatment (step S2), the magnesium oxide crystal powder 203 in which aggregation is suppressed can be obtained without impairing the effect of improving the discharge delay. . By disposing the priming particle emitting layer 15 including the magnesium oxide crystal powder 203, it is possible to realize a PDP 1 that achieves both improvement in discharge delay and suppression of display defects and display unevenness.
 <実施の形態2>
 本発明の実施の形態2である酸化マグネシウム結晶体粉体およびこの酸化マグネシウム結晶体粉体を含むプライミング粒子放出層15を有するPDP1の製造方法は、実施の形態1の図2に示す酸化マグネシウム結晶体粉体203およびプライミング粒子放出層15の製造フローにおける、原料粉末103の粒子群の形状、サイズを均一にする前処理工程(工程S1)において、別な手段を用いるものである。他の工程の処理内容等は実施の形態1と同様である。
<Embodiment 2>
The manufacturing method of PDP 1 having the magnesium oxide crystal powder according to the second embodiment of the present invention and the priming particle releasing layer 15 including the magnesium oxide crystal powder is the same as the magnesium oxide crystal shown in FIG. In the production flow of the body powder 203 and the priming particle release layer 15, another means is used in the pretreatment step (step S1) for making the shape and size of the particle group of the raw material powder 103 uniform. The processing contents of other steps are the same as those in the first embodiment.
 図3は、本実施の形態における粒子群の形状、サイズを均一にする前処理工程(工程S1)の例についての概要を示した図である。まず表面に複数の貫通孔106を設けた基板101を用意する。貫通孔106のサイズ(開口部の幅および基板の厚さ)は、加熱処理後の粉体の粒度分布、許容凝集上限の設計、熱処理条件、表示セルのサイズ等に依存するが、1μm~100μmであることが望ましい。 FIG. 3 is a diagram showing an outline of an example of a pretreatment step (step S1) for making the shape and size of the particle group uniform in the present embodiment. First, a substrate 101 having a plurality of through holes 106 on the surface is prepared. The size of the through-hole 106 (the width of the opening and the thickness of the substrate) depends on the particle size distribution of the heat-treated powder, the design of the upper limit of allowable aggregation, the heat treatment conditions, the size of the display cell, etc., but 1 μm to 100 μm It is desirable that
 基板101の材質は特に限定されないが、金属、ガラス、樹脂などを用いることができる。また、基板101は、板状であってもよいし、ワイヤ等を編み込んだ形状のものであってもよい。本実施の形態では、基板101は、SUSワイヤを開口部の幅50μmとなるように編み込んだものとする。なお、貫通孔106の形状は、図3では円柱状として図示されているが、特にこれに限定されない。 The material of the substrate 101 is not particularly limited, but metal, glass, resin, or the like can be used. The substrate 101 may have a plate shape or a shape in which a wire or the like is knitted. In this embodiment, it is assumed that the substrate 101 is knitted with a SUS wire so that the width of the opening is 50 μm. In addition, although the shape of the through-hole 106 is illustrated as a cylindrical shape in FIG. 3, it is not particularly limited thereto.
 この基板101の貫通孔106に、スキージ104等を用いて一定の圧力で原料粉末103を押し込み、貫通孔106を通過させる。これにより、貫通孔106を通過した原料粉末103からなる粒子群105の形状、サイズは均一なものとなる。なお、原料粉末103には、実施の形態1と同様のものを用いる。また、実施の形態1と同様に、原料粉末103の状態は、乾燥粉末状以外に、揮発性溶媒と混合したスラリー状や、バインダを混合したものであってもよい。 The raw material powder 103 is pushed into the through hole 106 of the substrate 101 with a constant pressure using a squeegee 104 or the like, and is passed through the through hole 106. As a result, the shape and size of the particle group 105 made of the raw material powder 103 that has passed through the through-hole 106 become uniform. The raw material powder 103 is the same as that in Embodiment 1. Similarly to the first embodiment, the state of the raw material powder 103 may be a slurry mixed with a volatile solvent or a mixture of a binder in addition to a dry powder.
 以上のように、実施の形態1と同様に、プライミング粒子放出層15を作製する工程において、上記前処理工程(工程S1)を有することによって、酸化マグネシウム結晶体粉体201からなる粒子群105の形状、サイズを均一にすることができ、高温加熱処理(工程S2)時の粒子群105同士の接触を少なくすることによって、放電遅れ改善効果を損なうことなく、凝集が抑制された酸化マグネシウム結晶体粉体203を得ることができる。この酸化マグネシウム結晶体粉体203を含むプライミング粒子放出層15を配置することにより、放電遅れの改善と、表示欠点、表示ムラの抑制とを両立したPDP1を実現することができる。 As described above, as in the first embodiment, in the step of producing the priming particle emitting layer 15, the pretreatment step (step S1) includes the particle group 105 made of the magnesium oxide crystal powder 201. Magnesium oxide crystals that can be made uniform in shape and size and have reduced aggregation without impairing the effect of improving discharge delay by reducing the contact between the particle groups 105 during the high-temperature heat treatment (step S2) Powder 203 can be obtained. By disposing the priming particle emitting layer 15 including the magnesium oxide crystal powder 203, it is possible to realize a PDP 1 that achieves both improvement in discharge delay and suppression of display defects and display unevenness.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、PDPおよびその製造方法に利用可能である。 The present invention can be used for a PDP and a manufacturing method thereof.

Claims (11)

  1.  対向配置された2つの基板構造体間の放電空間に露出するように、高温加熱処理された酸化マグネシウム結晶体粉体を含むプライミング粒子放出層が配置されたプラズマディスプレイパネルの製造方法であって、
     前記酸化マグネシウム結晶体粉体に前記高温加熱処理を行う前に、前記酸化マグネシウム結晶体粉体の複数の粒子からなる粒子群の形状、サイズを均一にする前処理工程を有することを特徴とするプラズマディスプレイパネルの製造方法。
    A method of manufacturing a plasma display panel in which a priming particle emitting layer including a magnesium oxide crystal powder subjected to high-temperature heat treatment is disposed so as to be exposed to a discharge space between two opposing substrate structures,
    Before the magnesium oxide crystal powder is subjected to the high-temperature heat treatment, it has a pretreatment step for making the shape and size of a particle group composed of a plurality of particles of the magnesium oxide crystal powder uniform. A method for manufacturing a plasma display panel.
  2.  請求項1に記載のプラズマディスプレイパネルの製造方法において、
     前記前処理工程では、基板上に設けた凹状孔に前記酸化マグネシウム結晶体粉体を充填して成型することにより、前記酸化マグネシウム結晶体粉体の複数の粒子からなる粒子群の形状、サイズを均一にすることを特徴とするプラズマディスプレイパネルの製造方法。
    In the manufacturing method of the plasma display panel of Claim 1,
    In the pretreatment step, the shape and size of a particle group composed of a plurality of particles of the magnesium oxide crystal powder are formed by filling and molding the magnesium oxide crystal powder in a concave hole provided on the substrate. A method of manufacturing a plasma display panel, characterized in that the plasma display panel is uniform.
  3.  請求項2に記載のプラズマディスプレイパネルの製造方法において、
     前記凹状孔のサイズが1~100μmであることを特徴とするプラズマディスプレイパネルの製造方法。
    In the manufacturing method of the plasma display panel of Claim 2,
    A method of manufacturing a plasma display panel, wherein the size of the concave hole is 1 to 100 μm.
  4.  請求項1に記載のプラズマディスプレイパネルの製造方法において、
     前記前処理工程では、基板上に設けた貫通孔に前記酸化マグネシウム結晶体粉体を押し込んで通過させることにより、前記酸化マグネシウム結晶体粉体の複数の粒子からなる粒子群の形状、サイズを均一にすることを特徴とするプラズマディスプレイパネルの製造方法。
    In the manufacturing method of the plasma display panel of Claim 1,
    In the pretreatment step, the magnesium oxide crystal powder is pushed and passed through a through-hole provided on the substrate, so that the shape and size of the particle group composed of a plurality of particles of the magnesium oxide crystal powder are uniform. A method of manufacturing a plasma display panel, characterized by comprising:
  5.  請求項4に記載のプラズマディスプレイパネルの製造方法において、
     前記貫通孔のサイズが1~100μmであることを特徴とするプラズマディスプレイパネルの製造方法。
    In the manufacturing method of the plasma display panel of Claim 4,
    A method of manufacturing a plasma display panel, wherein the size of the through hole is 1 to 100 μm.
  6.  対向配置された2つの基板構造体間の放電空間に露出するように、高温加熱処理された酸化マグネシウム結晶体粉体を含むプライミング粒子放出層が配置されたプラズマディスプレイパネルの製造方法であって、
     前記酸化マグネシウム結晶体粉体に前記高温加熱処理を行う際に、前記酸化マグネシウム結晶体粉体の粒子もしくは複数の粒子からなる粒子群の形状、サイズが均一であるものを用いることを特徴とするプラズマディスプレイパネルの製造方法。
    A method of manufacturing a plasma display panel in which a priming particle emitting layer including a magnesium oxide crystal powder subjected to high-temperature heat treatment is disposed so as to be exposed to a discharge space between two opposing substrate structures,
    When the magnesium oxide crystal powder is subjected to the high-temperature heat treatment, the magnesium oxide crystal powder particles or particles having a uniform shape and size are used. A method for manufacturing a plasma display panel.
  7.  プラズマディスプレイパネルにおける、対向配置された2つの基板構造体間の放電空間に露出するように配置されたプライミング粒子放出層に含まれる、高温加熱処理された酸化マグネシウム結晶体粉体の製造方法であって、
     前記酸化マグネシウム結晶体粉体に前記高温加熱処理を行う前に、前記酸化マグネシウム結晶体粉体の複数の粒子からなる粒子群の形状、サイズを均一にする前処理工程を有することを特徴とする酸化マグネシウム結晶体粉体の製造方法。
    In a plasma display panel, a high-temperature heat-treated magnesium oxide crystal powder contained in a priming particle emitting layer disposed so as to be exposed to a discharge space between two opposing substrate structures. And
    Before the magnesium oxide crystal powder is subjected to the high-temperature heat treatment, it has a pretreatment step for making the shape and size of a particle group composed of a plurality of particles of the magnesium oxide crystal powder uniform. Method for producing magnesium oxide crystal powder.
  8.  請求項7に記載の酸化マグネシウム結晶体粉体の製造方法において、
     前記前処理工程では、基板上に設けた凹状孔に前記酸化マグネシウム結晶体粉体を充填して成型することにより、前記酸化マグネシウム結晶体粉体の複数の粒子からなる粒子群の形状、サイズを均一にすることを特徴とする酸化マグネシウム結晶体粉体の製造方法。
    In the manufacturing method of the magnesium oxide crystal powder according to claim 7,
    In the pretreatment step, the shape and size of a particle group composed of a plurality of particles of the magnesium oxide crystal powder are formed by filling and molding the magnesium oxide crystal powder in a concave hole provided on the substrate. A method for producing a magnesium oxide crystal powder characterized by making it uniform.
  9.  請求項8に記載の酸化マグネシウム結晶体粉体の製造方法において、
     前記凹状孔のサイズが1~100μmであることを特徴とする酸化マグネシウム結晶体粉体の製造方法。
    In the manufacturing method of the magnesium oxide crystal powder according to claim 8,
    A method for producing a magnesium oxide crystal powder, wherein the size of the concave hole is 1 to 100 μm.
  10.  請求項7に記載の酸化マグネシウム結晶体粉体の製造方法において、
     前記前処理工程では、基板上に設けた貫通孔に前記酸化マグネシウム結晶体粉体を押し込んで通過させることにより、前記酸化マグネシウム結晶体粉体の複数の粒子からなる粒子群の形状、サイズを均一にすることを特徴とする酸化マグネシウム結晶体粉体の製造方法。
    In the manufacturing method of the magnesium oxide crystal powder according to claim 7,
    In the pretreatment step, the magnesium oxide crystal powder is pushed and passed through a through-hole provided on the substrate, so that the shape and size of the particle group composed of a plurality of particles of the magnesium oxide crystal powder are uniform. A method for producing a magnesium oxide crystal powder characterized by comprising:
  11.  請求項10に記載の酸化マグネシウム結晶体粉体の製造方法において、
     前記貫通孔のサイズが1~100μmであることを特徴とする酸化マグネシウム結晶体粉体の製造方法。
    In the manufacturing method of the magnesium oxide crystal powder according to claim 10,
    A method for producing a magnesium oxide crystal powder, wherein the size of the through hole is 1 to 100 μm.
PCT/JP2008/053975 2008-03-05 2008-03-05 Process for producing plasma display panel and process for producing magnesium oxide crystal powder WO2009110074A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020107015555A KR101106830B1 (en) 2008-03-05 2008-03-05 Method of manufacturing plasma display panel and method of producing magnesium oxide powder
CN200880125140.4A CN101919019B (en) 2008-03-05 2008-03-05 Process for producing plasma display panel and process for producing magnesium oxide crystal powder
PCT/JP2008/053975 WO2009110074A1 (en) 2008-03-05 2008-03-05 Process for producing plasma display panel and process for producing magnesium oxide crystal powder
JP2010501719A JP4961495B2 (en) 2008-03-05 2008-03-05 Method for manufacturing plasma display panel, method for manufacturing magnesium oxide crystal powder
US12/863,613 US20110018169A1 (en) 2008-03-05 2008-03-05 Method of manufacturing plasma display panel and method of producing magnesium oxide crystal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/053975 WO2009110074A1 (en) 2008-03-05 2008-03-05 Process for producing plasma display panel and process for producing magnesium oxide crystal powder

Publications (1)

Publication Number Publication Date
WO2009110074A1 true WO2009110074A1 (en) 2009-09-11

Family

ID=41055653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053975 WO2009110074A1 (en) 2008-03-05 2008-03-05 Process for producing plasma display panel and process for producing magnesium oxide crystal powder

Country Status (5)

Country Link
US (1) US20110018169A1 (en)
JP (1) JP4961495B2 (en)
KR (1) KR101106830B1 (en)
CN (1) CN101919019B (en)
WO (1) WO2009110074A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980972A1 (en) 2014-07-31 2016-02-03 Nxp B.V. Charge pump for negative voltage generation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059786A (en) * 2004-03-19 2006-03-02 Pioneer Electronic Corp Plasma display panel
JP2007128891A (en) * 2005-11-01 2007-05-24 Lg Electronics Inc Plasma display panel and its manufacturing method
JP2007254269A (en) * 2006-02-21 2007-10-04 Ube Material Industries Ltd Fluorine-containing magnesium oxide powder and method for producing the same
JP2008034390A (en) * 2006-07-28 2008-02-14 Lg Electronics Inc Plasma display panel and its manufacturing method
JP2008053012A (en) * 2006-08-23 2008-03-06 Fujitsu Hitachi Plasma Display Ltd Method of manufacturing substrate structure for plasma display panel, and plasma display panel

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773599A (en) * 1985-04-04 1988-09-27 Quadro Engineering Incorporated Series of screens for a size reduction machine
US5201916A (en) * 1992-07-23 1993-04-13 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
US6440252B1 (en) * 1999-12-17 2002-08-27 Xerox Corporation Method for rotatable element assembly
US6521004B1 (en) * 2000-10-16 2003-02-18 3M Innovative Properties Company Method of making an abrasive agglomerate particle
CA2423597A1 (en) * 2000-10-16 2002-04-25 3M Innovative Properties Company Method of making ceramic aggregate particles
US7632434B2 (en) * 2000-11-17 2009-12-15 Wayne O. Duescher Abrasive agglomerate coated raised island articles
US8256091B2 (en) * 2000-11-17 2012-09-04 Duescher Wayne O Equal sized spherical beads
US6677926B2 (en) * 2001-06-11 2004-01-13 Xerox Corporation Electrophoretic display device
JP4225761B2 (en) * 2002-10-10 2009-02-18 三菱マテリアル株式会社 Polycrystalline MgO vapor deposition material with adjusted Si concentration
US7713639B2 (en) * 2004-12-17 2010-05-11 Samsung Sdi Co., Ltd. Protective layer, composite for forming the protective layer, method of forming the protective layer, and plasma display panel including the protective layer
KR20070047075A (en) * 2005-11-01 2007-05-04 엘지전자 주식회사 Protect layer of plasma display panel
KR20070048017A (en) * 2005-11-03 2007-05-08 엘지전자 주식회사 A protect layer of plasma display panel
US20080157672A1 (en) * 2006-12-28 2008-07-03 Takuji Tsujita Plasma display panel and manufacturing method therefor
KR100983118B1 (en) * 2007-12-07 2010-09-17 삼성전기주식회사 Manufacturing methods of magnesium oxide nanoparticle and magmesium oxide nanosol
KR101043160B1 (en) * 2008-04-16 2011-06-20 파나소닉 주식회사 Plasma display device
JP2009258467A (en) * 2008-04-18 2009-11-05 Panasonic Corp Plasma display device
JP5415215B2 (en) * 2009-10-02 2014-02-12 タテホ化学工業株式会社 Magnesium oxide powder having excellent dispersibility and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059786A (en) * 2004-03-19 2006-03-02 Pioneer Electronic Corp Plasma display panel
JP2007128891A (en) * 2005-11-01 2007-05-24 Lg Electronics Inc Plasma display panel and its manufacturing method
JP2007254269A (en) * 2006-02-21 2007-10-04 Ube Material Industries Ltd Fluorine-containing magnesium oxide powder and method for producing the same
JP2008034390A (en) * 2006-07-28 2008-02-14 Lg Electronics Inc Plasma display panel and its manufacturing method
JP2008053012A (en) * 2006-08-23 2008-03-06 Fujitsu Hitachi Plasma Display Ltd Method of manufacturing substrate structure for plasma display panel, and plasma display panel

Also Published As

Publication number Publication date
JPWO2009110074A1 (en) 2011-07-14
KR101106830B1 (en) 2012-01-19
CN101919019B (en) 2013-02-13
JP4961495B2 (en) 2012-06-27
US20110018169A1 (en) 2011-01-27
KR20100090724A (en) 2010-08-16
CN101919019A (en) 2010-12-15

Similar Documents

Publication Publication Date Title
EP2214193B1 (en) Plasma display panel
EP2099052B1 (en) Plasma display panel
KR100990774B1 (en) Method of fabricating plasma display panel
US20100084973A1 (en) Plasma display panel
JP4961495B2 (en) Method for manufacturing plasma display panel, method for manufacturing magnesium oxide crystal powder
EP2099051B1 (en) Plasma display panel
JP2009277519A (en) Plasma display panel, method of manufacturing the same, and paste for protective layer formation
JPWO2009037777A1 (en) Method for manufacturing plasma display panel, magnesium oxide crystal, plasma display panel
JP2009218025A (en) Plasma display panel
EP2124241B1 (en) Plasma display panel
US20100047441A1 (en) Method of manufacturing plasma display panel
JP2010003423A (en) Manufacturing method for plasma display panel
WO2009113254A1 (en) Plasma display panel
JP2001118520A (en) Gas discharge panel
WO2009157145A1 (en) Method for producing a plasma display panel
US20120319560A1 (en) Plasma display panel
JP2005353338A (en) Manufacturing method of plasma display panel
JP2011192432A (en) Plasma display panel
JP2012195188A (en) Plasma display panel
JP2011192572A (en) Plasma display panel
JP2010267559A (en) Plasma display panel and paste for forming protective layer
JP2010135197A (en) Plasma display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125140.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010501719

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107015555

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12863613

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08721395

Country of ref document: EP

Kind code of ref document: A1