WO2009109688A1 - Particle measurement process and apparatus - Google Patents
Particle measurement process and apparatus Download PDFInfo
- Publication number
- WO2009109688A1 WO2009109688A1 PCT/FI2009/000031 FI2009000031W WO2009109688A1 WO 2009109688 A1 WO2009109688 A1 WO 2009109688A1 FI 2009000031 W FI2009000031 W FI 2009000031W WO 2009109688 A1 WO2009109688 A1 WO 2009109688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particle
- flow
- gas
- particles
- essentially
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000008569 process Effects 0.000 title claims abstract description 36
- 238000005259 measurement Methods 0.000 title claims description 56
- 238000002156 mixing Methods 0.000 claims abstract description 34
- 150000002500 ions Chemical class 0.000 claims description 34
- 238000005040 ion trap Methods 0.000 claims description 23
- 238000012544 monitoring process Methods 0.000 claims description 14
- 238000009825 accumulation Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- 241000269627 Amphiuma means Species 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 abstract description 17
- 239000007789 gas Substances 0.000 description 73
- 239000000443 aerosol Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000010419 fine particle Substances 0.000 description 9
- 238000013461 design Methods 0.000 description 6
- 108010085603 SFLLRNPND Proteins 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000004071 soot Substances 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000000615 nonconductor Substances 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/0656—Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/12—Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/38—Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/41—Ionising-electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/45—Collecting-electrodes
- B03C3/47—Collecting-electrodes flat, e.g. plates, discs, gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2247—Sampling from a flowing stream of gas
- G01N1/2252—Sampling from a flowing stream of gas in a vehicle exhaust
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/1031—Investigating individual particles by measuring electrical or magnetic effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/68—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
- G01N27/70—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas and measuring current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/06—Ionising electrode being a needle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2247—Sampling from a flowing stream of gas
- G01N2001/2264—Sampling from a flowing stream of gas with dilution
Definitions
- the invention relates to a process for measuring particle concentrations in an aerosol.
- the invention also relates to an apparatus implementing such process.
- the process and the apparatus can be utilized for example in measuring particle concentrations in an exhaust system of a combustion engine.
- the size distribution of the diesel engine exhaust particles generally shows three different modes: - the nuclei mode consists of particles having a diameter of less than approximately 50 nm, the accumulation mode consists of particles having diameters between 50 nm and 1 ⁇ m and in the coarse mode the particle diameter is greater than 1 ⁇ m. A majority of the diesel engine exhaust particles is born after the exhaust gases escape from the exhaust pipe and these particles typically belong to the nuclei mode.
- a particle trap is typically installed to the combustion engine exhaust pipe to keep the fine particle concentrations below the exhaust limits.
- the trap requires a frequent regeneration and the trapped particles are combusted by increasing the temperature of the trap and simultaneously feeding excess air to the trap, so that the carbon containing particles are burnt.
- the patent publication Fl 118278 B, Dekati Oy, 25.12.2004 relates to a method and a sensor device for determining particle emissions from exhaust gases of a combustion engine substantially during the use in an exhaust pipe system or a corresponding exhaust gas duct, in which method emitted particles contained in the exhaust gases are charged and the particle emissions are determined by measuring the electric charge carried by the emitted particles in said exhaust gas duct.
- the emitted particles are charged by varying the way of charging or the charging power with respect to time in such a manner that as a result of said charging, emitted particles brought into at least two different electrical charge states are present, wherein the charge of the emitted particles is further determined as a difference value/values measured from the emitted particles brought into said at least two different electrical charge states.
- the problem of the described method is that the particles are charged by a charger placed inside the exhaust gas duct, where the charged easily gets soiled which soiling shortens the lifetime and reliability of the charger. Varying particle concentration and constant ion generation cause problems in e.g. maintaining constant particle charging.
- Patent publication US 6,544,484 Bl, TSI Inc., 8.4.2003 describes a system for analyzing aerosols.
- the system incorporates a corona discharge ion generator with a positively or negatively charged corona discharge needle formed of platinum or a platinum alloy.
- a high speed (40-210 meter per second) air flow sweeps the ions away from the corona discharge, and propels the ions into a mixing chamber in a turbulent jet that encounters an aerosol, also provided to the mixing chamber.
- the ions are carried into the mixing chamber through an orifice formed in a positively or negatively biased plate.
- the aerosol droplets are electrostatically generated, and propelled into the mixing chamber as an aerosol jet that confronts the ion jet to enhance a mixing of the charged droplets and the ions.;
- the droplets are advantageously neutralized to leave predominantly singly charged positive and negative particles.
- the problem with system is that the flow ratio of the aerosol and the clean air may change during the measurement e.g. due to the contamination of the filter.
- the confront mixing of the ionized air and the aerosol by contrary jets is difficult, because the set-up is very sensitive to jet properties, like jet direction and jet velocity and thus the jets tend to be unstable. Ion losses is such set-up are very high, typically more than 99% and even higher than 99,9%
- An aerosol chamber unit having a gas ionizing device and diffusion chamber imparts a unipolar charge on aerosol particles in proportion to the size of the particles.
- the charged particles are delivered to a mobility analyzer having a housing with an elongated chamber.
- a particle collecting electrode projects axially into the chamber above a current -collector and sensor filter connected to an electrometer. Collecting voltages up to 30 kV are used in the system. The mixing in the system is inefficient and thus the ion losses are probably very high, typically more than 99,9%.
- Patent application US 2006/0144124 Al Takeshi Kusaka, et al., 6.7.2006, describes An soluble organic fraction, SOF, measuring system that can continuously measure SOF and a soot measuring system that can continuously measure soot are connected with an exhaust gas line.
- the soot measuring system comprises a ejector diluter that selectively dilutes either one of the exhaust gas and standard gas whose hydrocarbon concentration is known with diluent gas and extrudes it.
- a dilution ratio adjusting device can adjust a dilution ratio of the diluter.
- a soot detector continuously detects soot in the exhaust gas or the standard gas diluted by the diluter.
- the SOF measuring system can be connected with the diluter so that an exhaust gas analyzer can measure the hydrocarbon concentration in the standard gas diluted by the diluter.
- the publication does not mention charging the diluting air.
- the problems with the prior art systems are: charger soiling, poor mixing of ionized air and aerosol, varying sample flow and high ion losses. All these problems make the prior-art systems unstable especially for the on-line measurement of combustion engine exhaust gas particles.
- the current systems are also large and cannot be used in e.g. monitoring the particle emissions from diesel vehicles.
- the large mixing chamber in some prior-art systems also slows down the time response of the measurement result.
- the aim of the current invention is to introduce a process and an apparatus which solves the problems of the prior art.
- 'Ejector' is a device using a jet of gas 1, to withdraw gas 2 from a space.
- the jet gas 1 flow is called 'main flow * and gas 2 flow is called 'side flow'.
- 'Swirl' is a process to cause gas to move with a twisting or whirling motion.
- 'Ion trap' is a device using a combination of electric or magnetic fields or diffusion that captures ions in a region.
- the process for monitoring the particle concentration in a gas uses efficient mixing in an ejector for solving the problems of the prior art systems.
- the main flow of the ejector consists of essentially clean ionized gas flow.
- the phrase 'essentially clean' means that the particle concentration in the ionized gas is so low that it does not adversely affect the monitoring process.
- the speed of the clean air is preferably sonic or close to sonic, however lower speeds can be utilized as well.
- the main flow causes suction to the side flow channel and thus a sample flow from the particle-containing gas is sucked to the monitoring apparatus.
- the ionized clean gas forms the main flow and the sample flow forms the side flow.
- the main flow should advantageously be as small as possible.
- the inventor has surprisingly found that a reasonable suction pressure to the side flow channel can preferably be achieved with main flow to side flow ratio 1:1 and even more preferably with main flow to side flow ratio 1:3.
- the inventor has also surprisingly found that when an ejector is used as described in the invention, two different phenomena, efficient transfer of momentum and effective particle charging happen in a single process step which is advantageous in shortening the process time and thus reducing the ion losses.
- the efficient mixing makes it possible to design small measurement apparatuses with fast response time, which is a great advantage when measuring vehicle emissions.
- the mass flow in e.g. the exhaust duct of a combustion engine is anything but constant, typically depending on the rotation speed of the engine.
- Using an ejector for sucking the sample flow from the exhaust duct results an essentially constant side flow, the flow being typically pulse-free, i.e. constant.
- Such a flow can then be e.g. modulated or switched in a controlled way.
- One of the problems of the prior art technology is inefficient mixing of clean air and particle- containing gas.
- the inventor has found that an ejector is efficient in mixing the main flow and the side flow, especially with swirling main flow.
- the main and side flows are advantageously fed close to each other which greatly improves mixing homogeneity and rate when compared to prior art systems.
- the instability problems existing with the prior art systems are surprisingly avoided with the ejector.
- the high gas velocity of the main flow and the efficient mixing reduce the ion losses and ion losses prior to particle charging are preferably less than 99% and more preferably less than 90%.
- the ionizer power supply needs to be smaller providing economical benefit.
- it may be advantageous to switch or modulate the mean flow thus carrying out the measurement in AC-mode rather than in DC-mode.
- Another embodiment for realizing the AC-mode is to connect a chamber parallel to a constant gas flow and to change the volume of the chamber to create a pulsing flow.
- the ions that are not attached to the particles have to be removed after the mixing.
- the ions are removed by an ion trap; the removal mechanism being either electrical or magnetic field or diffusion, these mechanisms can also be combined.
- the nuclei mode particles can also be trapped to the ion trap, if the trap voltage is increased to a suitable value, the absolute voltage depending e.g. on the geometry of the ion trap, gas flow speed, etc.
- the size of the trapped particles can be further increased by increasing the trap voltage.
- Measuring the electrical current corresponding to different ion trap voltages allows the estimation of various parameters of the nuclei mode and the accumulation mode, like the particle concentration and the mean particle size.
- the ion trap voltage can be either switched or modulated between at least two different voltages.
- the particle concentration may change in the measurement apparatus as well as the cooling gas generates nuclei mode particles.
- the ion trap can be adjusted to a high enough voltage to trap these nuclei mode particles and thus the particles formed in the measurement apparatus itself do not adversely affect the measurement result.
- the birth of such nuclei can be intensified by cooling the ejector mean flow.
- the ion trap voltage switching or modulation can be used for analyzing various parameters from the exhaust gas of a combustion engine.
- a preferred embodiment for ionizing the clean gas is to use corona discharger.
- the clean gas is advantageously fed with high speed from the close vicinity of the corona discharger so that the corona needle or equivalent is protected by the clean gas flow.
- the high-speed gas flow also increases ion production compared to a free-space corona discharging and decreases ion losses to the apparatus walls etc.
- the electrical corona discharge may produce particles which disturb the measurement when the particle concentration in the measured gas is low. This may be the case e.g. when the process is used to monitor particle concentrations before and after a particle trap typically present in the diesel combustion engine exhaust duct. Such a measurement can provide an indication on the filtering capacity or maintenance need of the particle trap.
- the corona needle and the nozzle surrounding the corona needle from a refractory metal or metal alloy, such as tungsten, rhenium, tantalum, molybdenum, iridium, niobium, ruthenium, hafnium, zirconium, vanadium, chrome, alloy C-103, alloy KBI-3, nickel-chrome alloys, tungsten carbide or similar. It is also advantageous to use dry clean gas flow to minimize particle production in the corona discharge.
- a refractory metal or metal alloy such as tungsten, rhenium, tantalum, molybdenum, iridium, niobium, ruthenium, hafnium, zirconium, vanadium, chrome, alloy C-103, alloy KBI-3, nickel-chrome alloys, tungsten carbide or similar. It is also advantageous to use dry clean gas flow to minimize particle production in the corona discharge.
- Clean gas ionization can also be carried out by sparking, thermal emission, surface charging or ionizing radiation.
- the measurement value can be processed with the value of the mass flow of the particle-containing gas and thus e.g. the emissions from a combustion engine can be calculated.
- the electrical charge carried by the particles is monitored by measuring the electrical current escaping with the particles.
- This current measurement method is known from the prior art and with the current invention it provides a benefit by removing the need of capturing the charged particles.
- the present invention can be utilized e.g. in monitoring particles in ventilation systems, industrial processes utilizing nanosized particles and in personal particle measurement apparatuses.
- Fig. 1 shows an embodiment which clarifies the invented process and apparatus for monitoring the particle concentration in gas
- Fig. 2 shows a detail of the ejector
- Fig. 3 shows an embodiment where the main flow and the side flow are directed to flow to the same direction;
- Fig. 4 shows an embodiment for modulating the clean air flow
- Fig. 5 shows the different functional modules of the process.
- Figure 5 shows the invented process as separated to different functional blocks.
- the sample flow NV is sucked from the duct or channel where the particle-containing gas flows via an ejector E.
- Pressurized air flow Pl forms the main flow and an ionizer IG is used to ionize the pressurized air flow.
- the ionizer IG is preferably based on corona discharging, and the necessary high voltage for the corona discharge is generated with the high voltage source HV electrically isolated with the transformer M.
- the ionized air flow is mixed with the sample flow and the particles of the sample flow are charged in the charging chamber VK.
- the charging chamber is really a functional block and the charging preferably takes place in the ejector essentially at the point where the main flow and the side flow meet each other.
- the ions not attached to the particles are removed by the ion trap IL before the flow PV escapes from the measurement apparatus.
- the current escaping from the measurement apparatus is measured by the electrometer EM.
- Figure 1 shows an embodiment where the process is used to monitor the particle concentration from the exhaust duct of a combustion engine and the apparatus can be used to monitor the fine particle emissions from a diesel engine.
- the measurement apparatus 1 comprises the means 3 for directing the sample flow to the measurement channel 4, means 5 for directing the essentially clean, ionized gas to the measurement channel 4, means 6 for mixing the clean gas flow and the sample flow, means 7 for ionizing the clean gas, at least one charging chamber 8 for charging the particles, at least one ion trap 9 and at least one current measurement unit 10 for measuring the current carried by the particles. Additionally the apparatus 1 comprises means 16 for switching or modulating the essentially clean gas flow as well as means 17 for regulating the temperature of the clean gas.
- Figure 1 also shows means 20 for connecting the apparatus 1 to the exhaust duct, means 21 for connecting the apparatus to a pressurized air line, pressurized air chamber, or to a similar gas flow production unit.
- the embodiment also includes means 22 for controlling the clean air flow, means 23 for filtering the pressurized air and means 24 for directing the pressurized air to the measurement apparatus 1.
- the pressurized air is fed from the air source P to the temperature regulator 17, which can either heat or cool the air.
- the magnetic valve 16 is switched to feed the air to the flow controller 22, so that the flow can be set to a desired value.
- the flow controller 22 can be e.g. adjustable valve, critical aperture, flowmeter, mass flow controller or similar.
- the flow controller 22 is connected to a filter 23, which essentially removes the particles from the pressurized air, so that the particle concentration in the pressurized air is remarkably lower than the particle concentration in the sample flow.
- the clean air is then fed to the measurement apparatus 1 through the connector 24.
- the pressurized air flows to the center channel 18 of the measurement apparatus and the flow may be stabilized with a restrictor plate 26.
- the center channel 18 may also be designed and constructed so that the flow will be forced to swirl, which is advantageous for various purposes as described above.
- the flow then escapes through the nozzle 27.
- the ionization device 7 ionizes the gas escaping from the nozzle 27.
- the nozzle 27 is advantageously constructed so that the gas flow escapes from the essential vicinity of the corona needle 28. This helps the corona needle 28 to stay clean and improves the ion production.
- the high flow velocity in the nozzle 27 reduces ion losses.
- a high voltage is connected to the corona needle 28 via the electrode 29.
- the high voltage source 34 is electrically isolated from the other system via the transformer 35 and electrical insulator 33. Electrode 29 is in the same electrical potential as the electrode shield 30.
- the ionized gas flow is fed into the measurement channel 4. Also the sample flow from the duct 2 is fed to the measurement channel 4 through the sampling means 3.
- the sampling means 3 is preferably the side flow 14 of the ejector 11 shown in Figure 2.
- the ionized clean gas flow 13 forms the main flow of the ejector 11 and creates a suction to the side flow channel 14, the side flow value depending essentially only from the geometry of ejector 11 and from the value of the mean flow. In a preferred embodiment the ratio of the mean flow to the side flow is small.
- the geometry and thus the behavior of the main flow channel 13 can be adjusted e.g. by the design of the electrode shield 30. E.g.
- the gas velocity or the electrical field intensity can be changed either locally or throughout the whole measurement channel.
- the ionized clean gas flow and the sample flow is mixed in the mixing section 6 of the measurement channel 4.
- the mixing section 6 should be understood as a functional block which may or may not be physically separated from the measurement channel 4.
- the mixing section 6 is designed so that the clean gas and particle containing gas are effectively mixed together in a minimum time. Thus e.g.the as flows can be set to swirling motion for effective and stable mixing process.
- the particles are charged during the mixing and thus also the ionization chamber 8 should be considered as a functional block and the mixing chamber and ionization chamber may be overlapping functions.
- the ions not attached to the particles are removed by the ion trap 9.
- the ion trap 9 can also be adjusted to trap nuclei mode particles and even the smallest particles in the accumulation mode.
- a preferred embodiment is to adjust the ion trap voltage, the higher voltage trapping larger particles.
- the actual voltage of the ion trap depends on the other design ang gas flow parameters, but typically the ion trap voltage area may be 1 to 30 kV.
- the charge carried by the ionized particles 32 flowing through the measurement channel 4 can be measured by measuring the net current escaping from the ionization device 7.
- the ionization device 7 is electrically isolated from the other system by the electrical insulator 33 and isolating transformer 35.
- the electrometer 10 is assembled between the ionization device 7 and to a point having a galvanic contact with the wall 31 of the measurement channel 4.
- the first contact of the high voltage source 34 is connected to the electrode of the ionization device 7 via means 25 and the second contact is connected to the amplifier of the current measurement device 10.
- the other input of the electrometer 10 is connected to the wall 31 of the measurement channel 4, which also has a galvanic contact to the ion trap 9.
- the electrometer 10 measures the charge escaping from the measurement channel via the ionized particles, e.g. measures the escaping current.
- the net-like electrodes 36 prevent the free ions existing in the measurement channel 4 from escaping to the duct 2.
- the net-like electrodes 36 are assembled to both flow apertures of the double-skinned measurement apparatus 1, which is beneficial in preventing the ion escape even though the net-like electrodes are designed to have sufficiently large net apertures, which are not easily blocked by the particles flowing through them.
- the net like electrodes 36 are however, not absolutely necessary in the apparatus 1, because ion escape can be prevented also e.g. with suitable gas flows.
- the flow in the measurement channel 4 can be pulsed by switching or modulating the mean flow of the ejector 11 e.g. by pulsing the magnetic valve 16.
- the mean flow switching or modulation causes a similar switching or modulation of the side flow as well. And thus the total flow is either switched or modulated in a well-controlled way.
- the measurement flow may also be switched or modulated.
- Figure 2 shows an embodiment where the sample flow may be modulated by a rotating disc 15 assembled to the sample flow channel 14.
- FIG 3 shows a detail of an embodiment describing a way to organize the sample gas flow and the clean ionized gas flow in the invented apparatus.
- the ionizing device 7 uses a corona needle 28 to ionize the clean gas flow flowing in the center channel 18. Gas escapes from the nozzle 27, which essentially forms the main channel 13 of the ejector 11. The main flow and the sample flow sucked through channel 14 are effectively mixed in the mixing zone 8.
- the center channel 18 may be designed to force the gas to a swirling motion which further increases the mixing efficiency. Because the gas residence time in the ionizing device 7 is short and an efficient mixing is carried out in ejector 11, the ion losses in the apparatus are preferably less than 99% , more preferably less than 90% and most preferably less than 80%. This means a considerably improvement to the prior art systems, providing great economical benefits, e.g. to the power supply 34.
- Figure 4 shows a principle drawing of an embodiment where the gas flow modulation is carried out by connecting a variable-volume chamber parallel to the constant clean air flow.
- An essential part of the structure is a piston or a diaphragm 39, whose movement or position can be varied at a certain range.
- Figure 4a shows the construction in principle while Figure 4b shows the formation of a cycling flow 37 as the sum function of the constant flow 38 and the moving piston 39.
- the figure shows the modulation of the piston by a square-wave and the amplitude of the modulation is set in a way that the minimum value of the cycling flow is zero.
- the moving part may be a diaphragm similar to an audio element.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980107507.4A CN101960288B (en) | 2008-03-04 | 2009-03-04 | Particle measurement process and apparatus |
JP2010549166A JP5690144B2 (en) | 2008-03-04 | 2009-03-04 | Particle measuring method and apparatus |
MX2010009745A MX2010009745A (en) | 2008-03-04 | 2009-03-04 | Particle measurement process and apparatus. |
EA201071026A EA018507B1 (en) | 2008-03-04 | 2009-03-04 | Particle measurement process and apparatus |
EP20090718494 EP2247939B1 (en) | 2008-03-04 | 2009-03-04 | Particle measurement process and apparatus |
US12/920,361 US8710849B2 (en) | 2008-03-04 | 2009-03-04 | Particle measurement process and apparatus |
BRPI0909419A BRPI0909419A2 (en) | 2008-03-04 | 2009-03-04 | process and apparatus for measuring particles. |
CA2716962A CA2716962A1 (en) | 2008-03-04 | 2009-03-04 | Particle measurement process and apparatus |
AU2009221011A AU2009221011A1 (en) | 2008-03-04 | 2009-03-04 | Particle measurement process and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20080182 | 2008-03-04 | ||
FI20080182A FI20080182A0 (en) | 2008-03-04 | 2008-03-04 | Measurement method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009109688A1 true WO2009109688A1 (en) | 2009-09-11 |
Family
ID=39269420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FI2009/000031 WO2009109688A1 (en) | 2008-03-04 | 2009-03-04 | Particle measurement process and apparatus |
Country Status (12)
Country | Link |
---|---|
US (1) | US8710849B2 (en) |
EP (1) | EP2247939B1 (en) |
JP (1) | JP5690144B2 (en) |
KR (1) | KR101556252B1 (en) |
CN (1) | CN101960288B (en) |
AU (1) | AU2009221011A1 (en) |
BR (1) | BRPI0909419A2 (en) |
CA (1) | CA2716962A1 (en) |
EA (1) | EA018507B1 (en) |
FI (1) | FI20080182A0 (en) |
MX (1) | MX2010009745A (en) |
WO (1) | WO2009109688A1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011058481A3 (en) * | 2009-11-10 | 2011-07-14 | Koninklijke Philips Electronics N.V. | Particle sensor |
WO2011104425A1 (en) | 2010-02-25 | 2011-09-01 | Pegasor Oy | Apparatus and method for monitoring particles |
WO2011104426A1 (en) | 2010-02-25 | 2011-09-01 | Pegasor Oy | Apparatus for monitoring particles |
WO2011129294A1 (en) | 2010-04-15 | 2011-10-20 | いすゞ自動車株式会社 | Exhaust sensor alignment structure |
WO2011129296A1 (en) | 2010-04-15 | 2011-10-20 | いすゞ自動車株式会社 | Exhaust sensor |
WO2012022842A1 (en) | 2010-08-20 | 2012-02-23 | Pegasor Oy | Process and apparatus for particle measurement |
WO2012062964A1 (en) * | 2010-11-12 | 2012-05-18 | Pegasor Oy | Apparatus and method for monitoring particles |
WO2012089923A1 (en) | 2010-12-31 | 2012-07-05 | Pegasor Oy | Apparatus for monitoring particles |
WO2012089924A1 (en) | 2010-12-31 | 2012-07-05 | Pegasor Oy | Apparatus for monitoring particles in an aerosol |
WO2012098290A1 (en) | 2011-01-18 | 2012-07-26 | Pegasor Oy | Apparatus and method for monitoring particles |
EP2500709A1 (en) | 2011-03-17 | 2012-09-19 | NGK Spark Plug Co., Ltd. | Fine particle sensor and mounting structure therefor |
WO2012127104A1 (en) | 2011-03-21 | 2012-09-27 | Pegasor Oy | Apparatus for monitoring particles |
JP2012194079A (en) * | 2011-03-17 | 2012-10-11 | Ngk Spark Plug Co Ltd | Fine particle sensor |
JP2012194077A (en) * | 2011-03-17 | 2012-10-11 | Ngk Spark Plug Co Ltd | Fine particle sensor |
EP2511690A2 (en) | 2011-04-12 | 2012-10-17 | NGK Spark Plug Co., Ltd. | Fine particle detection system |
EP2522840A2 (en) | 2011-05-11 | 2012-11-14 | NGK Sparkplug Co., Ltd. | Particulate detection system |
DE202012007226U1 (en) | 2011-07-29 | 2012-11-26 | Pegasor Oy | Device for particle measurement |
JP2012255661A (en) * | 2011-06-07 | 2012-12-27 | Ngk Spark Plug Co Ltd | Fine particle sensor |
WO2013083879A2 (en) | 2011-12-08 | 2013-06-13 | Pegasor Oy | Apparatus for monitoring particles |
WO2013121095A1 (en) | 2012-02-18 | 2013-08-22 | Pegasor Oy | Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow |
WO2013121094A1 (en) | 2012-02-18 | 2013-08-22 | Pegasor Oy | Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow |
WO2013121096A1 (en) | 2012-02-19 | 2013-08-22 | Pegasor Oy | Apparatus and method for particle measurement |
WO2013121115A1 (en) | 2012-02-19 | 2013-08-22 | Pegasor Oy | Apparatus and method for flushing particle measurement device |
WO2013125181A1 (en) | 2012-02-21 | 2013-08-29 | 日本特殊陶業株式会社 | Microparticle sensor |
WO2013124934A1 (en) | 2012-02-21 | 2013-08-29 | 日本特殊陶業株式会社 | Microparticle detection system |
JP2013170914A (en) * | 2012-02-21 | 2013-09-02 | Ngk Spark Plug Co Ltd | Fine particle sensor |
JP2013535015A (en) * | 2010-06-29 | 2013-09-09 | エンパイア テクノロジー ディベロップメント エルエルシー | Method and system for detecting or collecting particles |
WO2013132154A1 (en) | 2012-03-05 | 2013-09-12 | Pegasor Oy | Apparatus and process for particle mass concentration measurement and use of an apparatus for particle mass concentration measurement |
WO2013136745A1 (en) | 2012-03-15 | 2013-09-19 | 日本特殊陶業株式会社 | Microparticle detection system |
WO2013161226A1 (en) | 2012-04-23 | 2013-10-31 | 日本特殊陶業株式会社 | Fine particle sensing system |
WO2013175548A1 (en) | 2012-05-21 | 2013-11-28 | 株式会社島津製作所 | Particle count measurement device |
DE202014007548U1 (en) | 2014-09-16 | 2014-12-02 | Pegasor Oy | Apparatus for flushing a particle measuring device |
WO2017077190A1 (en) | 2015-11-02 | 2017-05-11 | Pegasor Oy | Apparatus and process for measuring characteristics of particle flow |
WO2020108836A1 (en) * | 2018-11-26 | 2020-06-04 | Robert Bosch Gmbh | Method for operating a corona discharge particle sensor unit |
US11101622B2 (en) | 2015-10-26 | 2021-08-24 | Dekati Oy | Charging unit for a particle monitoring apparatus, and a particle monitoring apparatus |
US11703437B2 (en) | 2017-07-14 | 2023-07-18 | Pegasor Oy | Method and apparatus for monitoring particles |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201113478D0 (en) * | 2011-08-04 | 2011-09-21 | Cambridge Entpr Ltd | Sensing systems |
JP5588471B2 (en) * | 2012-02-21 | 2014-09-10 | 日本特殊陶業株式会社 | Particle detection system |
JP2013174181A (en) * | 2012-02-24 | 2013-09-05 | Ngk Spark Plug Co Ltd | Particulate detection system |
JP5841016B2 (en) * | 2012-07-02 | 2016-01-06 | 日本特殊陶業株式会社 | Particle detection system |
JP5782412B2 (en) * | 2012-08-09 | 2015-09-24 | 日本特殊陶業株式会社 | Particle detection system |
IN2015DN02279A (en) * | 2012-09-21 | 2015-08-21 | Smiths Detection Watford Ltd | |
WO2014054390A1 (en) | 2012-10-04 | 2014-04-10 | 日本特殊陶業株式会社 | Particulate sensor |
JP6134572B2 (en) * | 2013-04-24 | 2017-05-24 | 日本特殊陶業株式会社 | Fine particle measuring device |
JP6182018B2 (en) | 2013-08-21 | 2017-08-16 | 日本特殊陶業株式会社 | Particle detection system |
JP6251515B2 (en) | 2013-08-21 | 2017-12-20 | 日本特殊陶業株式会社 | Particle detection system |
CN103926178A (en) * | 2014-04-30 | 2014-07-16 | 天津圣纳科技有限公司 | Mechanism for classifying inhalable particles and measuring concentration as well as detection method thereof |
WO2015189089A1 (en) * | 2014-06-10 | 2015-12-17 | Koninklijke Philips N.V. | Aerosol sensor and sensing method |
JP2016075674A (en) * | 2014-10-07 | 2016-05-12 | 日本特殊陶業株式会社 | Fine particle measurement system |
SE538762C2 (en) * | 2015-03-24 | 2016-11-15 | Scania Cv Ab | An apparatus with a particulate filter and a related method |
JP5941575B2 (en) * | 2015-04-24 | 2016-06-29 | 日本特殊陶業株式会社 | Particle detection system |
CN104792676B (en) * | 2015-04-27 | 2018-07-03 | 无锡信大气象传感网科技有限公司 | The method that air nano-scale particle concentration is measured using ionization method |
JP6797846B2 (en) * | 2015-07-03 | 2020-12-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Particle sensor and particle sensing method |
JP6329197B2 (en) * | 2015-07-06 | 2018-05-23 | 日本特殊陶業株式会社 | Fine particle detection apparatus and fine particle detection system |
US10101257B2 (en) | 2015-07-06 | 2018-10-16 | Ngk Spark Plug Co., Ltd. | Particulate detection apparatus and particulate detection system |
JP6335861B2 (en) * | 2015-10-27 | 2018-05-30 | 日本特殊陶業株式会社 | Fine particle measurement system |
US10424469B2 (en) | 2015-11-02 | 2019-09-24 | Pegasor Oy | Apparatus and method for particle measurement |
DE102015016820A1 (en) * | 2015-12-22 | 2017-06-22 | Testo SE & Co. KGaA | Particles measuring arrangement |
CN107138277B (en) * | 2017-04-20 | 2018-10-23 | 中国科学院合肥物质科学研究院 | The unipolarity particulate matter charge device and method of integrated free ion trapping function |
DE102017214357A1 (en) * | 2017-08-17 | 2019-02-21 | Robert Bosch Gmbh | A particle sensor unit having a particle sensor and a controller, and a method of operating the particle sensor unit |
CN109016076B (en) * | 2018-08-28 | 2019-06-28 | 山东科技大学 | Concrete individual particle aggregate feeding injector |
DE102018219726A1 (en) | 2018-11-16 | 2020-05-20 | Robert Bosch Gmbh | Particle sensor with a sample gas flow driven by ions |
DE102018220141A1 (en) | 2018-11-23 | 2020-05-28 | Robert Bosch Gmbh | Compact particle sensor with internal sample gas flow |
CN109612871B (en) * | 2019-01-15 | 2021-09-21 | 东莞维科电池有限公司 | Method for testing mixing uniformity of lithium battery negative electrode material |
CN110118709B (en) * | 2019-04-17 | 2024-04-12 | 华电电力科学研究院有限公司 | Online grading sampling measurement system capable of capturing particulate matters and online grading sampling measurement method thereof |
EP3819628A1 (en) * | 2019-11-05 | 2021-05-12 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO | In-line identification of aerosol particles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60209167A (en) * | 1984-03-31 | 1985-10-21 | Shimadzu Corp | Method and device for capturing and detecting electron |
US4631482A (en) * | 1984-10-09 | 1986-12-23 | Auburn International, Inc. | Dust flow inducing monitor |
US5528150A (en) * | 1991-02-28 | 1996-06-18 | Stearns; Stanley D. | Gas sampling apparatus including a sealed chamber cooperative with a separate detector chamber |
US20060284077A1 (en) * | 2005-05-23 | 2006-12-21 | Tsi Incorporated | Instruments for measuring nanoparticle exposure |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3518461A (en) * | 1967-06-23 | 1970-06-30 | Alvin M Marks | Charged aerosol power conversion device and method |
US3943407A (en) * | 1973-08-01 | 1976-03-09 | Scientific Enterprises, Inc. | Method and apparatus for producing increased quantities of ions and higher energy ions |
JPS543391B2 (en) * | 1974-05-07 | 1979-02-22 | ||
DE4008348A1 (en) * | 1990-03-15 | 1991-09-19 | Norbert B Dipl Ing Bernigau | Measuring concn. for size parameters for aerosol particles - involves charging with positive ions and encasing by moving gas shield |
JP2003315244A (en) * | 2002-04-24 | 2003-11-06 | Shimadzu Corp | Method for measuring granular substances floating in the air |
FI118278B (en) | 2003-06-24 | 2007-09-14 | Dekati Oy | Method and sensor device for measuring particulate emissions from combustion engine exhaust |
JP4652786B2 (en) | 2004-11-30 | 2011-03-16 | 株式会社堀場製作所 | Exhaust gas analyzer and mixing system |
JP4618421B2 (en) * | 2005-03-08 | 2011-01-26 | 株式会社島津製作所 | Particle size distribution measuring device |
CN100454477C (en) * | 2005-12-16 | 2009-01-21 | 广州禾信自动化系统有限公司 | Single-particle aerosol online ionization source and realization method thereof |
-
2008
- 2008-03-04 FI FI20080182A patent/FI20080182A0/en not_active Application Discontinuation
-
2009
- 2009-03-04 AU AU2009221011A patent/AU2009221011A1/en not_active Abandoned
- 2009-03-04 EA EA201071026A patent/EA018507B1/en not_active IP Right Cessation
- 2009-03-04 EP EP20090718494 patent/EP2247939B1/en active Active
- 2009-03-04 US US12/920,361 patent/US8710849B2/en active Active
- 2009-03-04 KR KR1020107019437A patent/KR101556252B1/en not_active IP Right Cessation
- 2009-03-04 CN CN200980107507.4A patent/CN101960288B/en active Active
- 2009-03-04 MX MX2010009745A patent/MX2010009745A/en active IP Right Grant
- 2009-03-04 BR BRPI0909419A patent/BRPI0909419A2/en not_active IP Right Cessation
- 2009-03-04 JP JP2010549166A patent/JP5690144B2/en active Active
- 2009-03-04 WO PCT/FI2009/000031 patent/WO2009109688A1/en active Application Filing
- 2009-03-04 CA CA2716962A patent/CA2716962A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60209167A (en) * | 1984-03-31 | 1985-10-21 | Shimadzu Corp | Method and device for capturing and detecting electron |
US4631482A (en) * | 1984-10-09 | 1986-12-23 | Auburn International, Inc. | Dust flow inducing monitor |
US5528150A (en) * | 1991-02-28 | 1996-06-18 | Stearns; Stanley D. | Gas sampling apparatus including a sealed chamber cooperative with a separate detector chamber |
US20060284077A1 (en) * | 2005-05-23 | 2006-12-21 | Tsi Incorporated | Instruments for measuring nanoparticle exposure |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN * |
See also references of EP2247939A4 * |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011058481A3 (en) * | 2009-11-10 | 2011-07-14 | Koninklijke Philips Electronics N.V. | Particle sensor |
KR200478194Y1 (en) * | 2010-02-25 | 2015-09-07 | 페가소 오와이 | Apparatus for monitoring fine particle concentration |
US9714895B2 (en) | 2010-02-25 | 2017-07-25 | Pegasor Oy | Apparatus for monitoring particles |
WO2011104425A1 (en) | 2010-02-25 | 2011-09-01 | Pegasor Oy | Apparatus and method for monitoring particles |
CN102792142A (en) * | 2010-02-25 | 2012-11-21 | 皮卡索尔公司 | Apparatus and method for monitoring particles |
EP2539682A4 (en) * | 2010-02-25 | 2017-10-04 | Pegasor OY | Apparatus for monitoring particles |
EA024372B1 (en) * | 2010-02-25 | 2016-09-30 | Пегасор Ой | Apparatus and method for monitoring fine particles in aerosol |
JP2013520669A (en) * | 2010-02-25 | 2013-06-06 | ペガソー オーワイ | Particle monitoring device |
WO2011104426A1 (en) | 2010-02-25 | 2011-09-01 | Pegasor Oy | Apparatus for monitoring particles |
WO2011129294A1 (en) | 2010-04-15 | 2011-10-20 | いすゞ自動車株式会社 | Exhaust sensor alignment structure |
EP2559989A1 (en) * | 2010-04-15 | 2013-02-20 | Isuzu Motors Limited | Exhaust sensor alignment structure |
CN102859342A (en) * | 2010-04-15 | 2013-01-02 | 五十铃自动车株式会社 | Exhaust sensor alignment structure |
EP2559989A4 (en) * | 2010-04-15 | 2014-08-06 | Isuzu Motors Ltd | Exhaust sensor alignment structure |
US8919187B2 (en) | 2010-04-15 | 2014-12-30 | Isuzu Motors Limited | Exhaust sensor arrangement structure |
EP2559887B1 (en) * | 2010-04-15 | 2018-09-05 | Isuzu Motors Limited | Exhaust sensor |
CN102844553A (en) * | 2010-04-15 | 2012-12-26 | 五十铃自动车株式会社 | Exhaust sensor |
CN102844553B (en) * | 2010-04-15 | 2015-11-25 | 五十铃自动车株式会社 | Exhaust sensor |
US9212592B2 (en) | 2010-04-15 | 2015-12-15 | Isuzu Motors Limited | Exhaust sensor |
JP2011226313A (en) * | 2010-04-15 | 2011-11-10 | Isuzu Motors Ltd | Exhaust gas sensor |
WO2011129296A1 (en) | 2010-04-15 | 2011-10-20 | いすゞ自動車株式会社 | Exhaust sensor |
US8809766B2 (en) | 2010-06-29 | 2014-08-19 | Empire Technology Development Llc | Methods and systems for detecting or collecting particles |
JP2013535015A (en) * | 2010-06-29 | 2013-09-09 | エンパイア テクノロジー ディベロップメント エルエルシー | Method and system for detecting or collecting particles |
WO2012022843A1 (en) | 2010-08-20 | 2012-02-23 | Pegasor Oy | Particle sensor |
WO2012022842A1 (en) | 2010-08-20 | 2012-02-23 | Pegasor Oy | Process and apparatus for particle measurement |
WO2012062964A1 (en) * | 2010-11-12 | 2012-05-18 | Pegasor Oy | Apparatus and method for monitoring particles |
WO2012089924A1 (en) | 2010-12-31 | 2012-07-05 | Pegasor Oy | Apparatus for monitoring particles in an aerosol |
KR20140038933A (en) * | 2010-12-31 | 2014-03-31 | 페가소 오와이 | Apparatus for monitoring particles in an aerosol |
US9683962B2 (en) | 2010-12-31 | 2017-06-20 | Pegasor Oy | Apparatus for monitoring particles in an aerosol |
KR101659486B1 (en) * | 2010-12-31 | 2016-09-23 | 페가소 오와이 | Apparatus for monitoring particles in an aerosol |
JP2014501391A (en) * | 2010-12-31 | 2014-01-20 | ペガソー オーワイ | A device for monitoring particles in aerosols |
WO2012089923A1 (en) | 2010-12-31 | 2012-07-05 | Pegasor Oy | Apparatus for monitoring particles |
CN103354898A (en) * | 2010-12-31 | 2013-10-16 | 皮卡索尔公司 | Apparatus for monitoring particles in an aerosol |
US20140069169A1 (en) * | 2010-12-31 | 2014-03-13 | Pegasor Oy | Apparatus for Monitoring Particles in an Aerosol |
WO2012089922A1 (en) | 2010-12-31 | 2012-07-05 | Pegasor Oy | Particle measurement unit |
EA025811B1 (en) * | 2010-12-31 | 2017-01-30 | Пегасор Ой | Apparatus for monitoring particles in an aerosol |
WO2012098290A1 (en) | 2011-01-18 | 2012-07-26 | Pegasor Oy | Apparatus and method for monitoring particles |
CN103443611A (en) * | 2011-01-18 | 2013-12-11 | 皮卡索尔公司 | Apparatus and method for monitoring particles |
JP2014503077A (en) * | 2011-01-18 | 2014-02-06 | ペガソー オーワイ | Particle monitoring apparatus and method |
CN103443611B (en) * | 2011-01-18 | 2016-05-11 | 皮卡索尔公司 | For the apparatus and method of monitor particles |
EP2500709A1 (en) | 2011-03-17 | 2012-09-19 | NGK Spark Plug Co., Ltd. | Fine particle sensor and mounting structure therefor |
JP2012194079A (en) * | 2011-03-17 | 2012-10-11 | Ngk Spark Plug Co Ltd | Fine particle sensor |
US8652240B2 (en) | 2011-03-17 | 2014-02-18 | Ngk Spark Plug Co., Ltd. | Fine particle sensor and mounting structure therefor |
JP2012194077A (en) * | 2011-03-17 | 2012-10-11 | Ngk Spark Plug Co Ltd | Fine particle sensor |
JP2012194078A (en) * | 2011-03-17 | 2012-10-11 | Ngk Spark Plug Co Ltd | Fine particle sensor and installation structure thereof |
DE212012000076U1 (en) | 2011-03-21 | 2013-10-24 | Pegasor Oy | Device for measuring particles |
WO2012127104A1 (en) | 2011-03-21 | 2012-09-27 | Pegasor Oy | Apparatus for monitoring particles |
EP2511690A2 (en) | 2011-04-12 | 2012-10-17 | NGK Spark Plug Co., Ltd. | Fine particle detection system |
JP2012220423A (en) * | 2011-04-12 | 2012-11-12 | Ngk Spark Plug Co Ltd | Particle detection system |
US8823384B2 (en) | 2011-04-12 | 2014-09-02 | Ngk Spark Plug Co., Ltd. | Fine particle detection system |
US9206757B2 (en) | 2011-05-11 | 2015-12-08 | Ngk Spark Plug Co., Ltd. | Particulate detection system |
EP2522840A2 (en) | 2011-05-11 | 2012-11-14 | NGK Sparkplug Co., Ltd. | Particulate detection system |
JP2012255661A (en) * | 2011-06-07 | 2012-12-27 | Ngk Spark Plug Co Ltd | Fine particle sensor |
DE202012007226U1 (en) | 2011-07-29 | 2012-11-26 | Pegasor Oy | Device for particle measurement |
WO2013083879A2 (en) | 2011-12-08 | 2013-06-13 | Pegasor Oy | Apparatus for monitoring particles |
US9574986B2 (en) | 2012-02-18 | 2017-02-21 | Pegasor Oy | Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow |
KR200484692Y1 (en) * | 2012-02-18 | 2017-10-18 | 페가소 오와이 | Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow |
JP2015507208A (en) * | 2012-02-18 | 2015-03-05 | ペガソー オーワイ | Apparatus and method for generating an approved air stream and use of such apparatus in measuring particle concentration in an approved air stream |
KR20140005288U (en) * | 2012-02-18 | 2014-10-10 | 페가소 오와이 | Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow |
WO2013121094A1 (en) | 2012-02-18 | 2013-08-22 | Pegasor Oy | Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow |
WO2013121095A1 (en) | 2012-02-18 | 2013-08-22 | Pegasor Oy | Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow |
WO2013121115A1 (en) | 2012-02-19 | 2013-08-22 | Pegasor Oy | Apparatus and method for flushing particle measurement device |
WO2013121096A1 (en) | 2012-02-19 | 2013-08-22 | Pegasor Oy | Apparatus and method for particle measurement |
JP2013170914A (en) * | 2012-02-21 | 2013-09-02 | Ngk Spark Plug Co Ltd | Fine particle sensor |
WO2013125181A1 (en) | 2012-02-21 | 2013-08-29 | 日本特殊陶業株式会社 | Microparticle sensor |
WO2013124934A1 (en) | 2012-02-21 | 2013-08-29 | 日本特殊陶業株式会社 | Microparticle detection system |
US9476807B2 (en) | 2012-02-21 | 2016-10-25 | Ngk Spark Plug Co., Ltd. | Microparticle sensor |
US9395273B2 (en) | 2012-02-21 | 2016-07-19 | Ngk Spark Plug Co., Ltd. | Microparticle detection system |
JP2013170951A (en) * | 2012-02-21 | 2013-09-02 | Ngk Spark Plug Co Ltd | Fine particle detection system |
WO2013132154A1 (en) | 2012-03-05 | 2013-09-12 | Pegasor Oy | Apparatus and process for particle mass concentration measurement and use of an apparatus for particle mass concentration measurement |
US9581069B2 (en) | 2012-03-15 | 2017-02-28 | Ngk Spark Plug Co., Ltd. | Microparticle detection system |
EP3086108A1 (en) | 2012-03-15 | 2016-10-26 | NGK Spark Plug Co., Ltd. | Microparticle detection system |
WO2013136745A1 (en) | 2012-03-15 | 2013-09-19 | 日本特殊陶業株式会社 | Microparticle detection system |
WO2013161226A1 (en) | 2012-04-23 | 2013-10-31 | 日本特殊陶業株式会社 | Fine particle sensing system |
US9606038B2 (en) | 2012-05-21 | 2017-03-28 | Shimadzu Corporation | Particle count measurement device |
WO2013175548A1 (en) | 2012-05-21 | 2013-11-28 | 株式会社島津製作所 | Particle count measurement device |
DE202014007548U1 (en) | 2014-09-16 | 2014-12-02 | Pegasor Oy | Apparatus for flushing a particle measuring device |
US11101622B2 (en) | 2015-10-26 | 2021-08-24 | Dekati Oy | Charging unit for a particle monitoring apparatus, and a particle monitoring apparatus |
WO2017077190A1 (en) | 2015-11-02 | 2017-05-11 | Pegasor Oy | Apparatus and process for measuring characteristics of particle flow |
US10760997B2 (en) | 2015-11-02 | 2020-09-01 | Pegasor Oy | Apparatus and process for measuring characteristics of particle flow |
US11703437B2 (en) | 2017-07-14 | 2023-07-18 | Pegasor Oy | Method and apparatus for monitoring particles |
WO2020108836A1 (en) * | 2018-11-26 | 2020-06-04 | Robert Bosch Gmbh | Method for operating a corona discharge particle sensor unit |
Also Published As
Publication number | Publication date |
---|---|
FI20080182A0 (en) | 2008-03-04 |
EA201071026A1 (en) | 2011-04-29 |
US8710849B2 (en) | 2014-04-29 |
KR101556252B1 (en) | 2015-09-30 |
EP2247939B1 (en) | 2015-04-22 |
BRPI0909419A2 (en) | 2019-02-26 |
MX2010009745A (en) | 2011-03-15 |
US20110050243A1 (en) | 2011-03-03 |
AU2009221011A1 (en) | 2009-09-11 |
CA2716962A1 (en) | 2009-09-11 |
JP5690144B2 (en) | 2015-03-25 |
EA018507B1 (en) | 2013-08-30 |
KR20110005782A (en) | 2011-01-19 |
CN101960288A (en) | 2011-01-26 |
EP2247939A1 (en) | 2010-11-10 |
CN101960288B (en) | 2014-05-14 |
EP2247939A4 (en) | 2012-05-02 |
JP2011513742A (en) | 2011-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2247939B1 (en) | Particle measurement process and apparatus | |
US9909759B2 (en) | System for electrically-driven classification of combustion particles | |
JP5817929B2 (en) | Particle number measuring instrument | |
KR101659486B1 (en) | Apparatus for monitoring particles in an aerosol | |
US8044350B2 (en) | Miniaturized ultrafine particle sizer and monitor | |
Hautanen et al. | Electrical agglomeration of aerosol particles in an alternating electric field | |
JP2016526666A (en) | Device for charging aerosol particles or adjusting the charge of aerosol particles | |
JP2014501391A5 (en) | ||
Intra et al. | Progress in unipolar corona discharger designs for airborne particle charging: A literature review | |
Mermigkas et al. | Removal of fine and ultrafine particles from air by microelectrostatic precipitation | |
WO2012062964A1 (en) | Apparatus and method for monitoring particles | |
EP2666007B1 (en) | Apparatus and method for monitoring particles | |
Zhou et al. | Enhanced size-dependent efficiency of removal of ultrafine particles: New solution of two-stage electrostatic precipitator with thermophoresis | |
WO2017195723A1 (en) | Particle charging device | |
Yang et al. | Charging efficiency of nanoparticles in needle-to-plate chargers with micro discharge gaps | |
Kim et al. | EFFECTS OF ELECTROSPRAY NOZZLE ON THE COLLECTION EFFICIENCY OF ELECTROSTATIC PRECIPITATOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980107507.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09718494 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12010501937 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2716962 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1834/MUMNP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20107019437 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12920361 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010549166 Country of ref document: JP Ref document number: MX/A/2010/009745 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009718494 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201071026 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009221011 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2009221011 Country of ref document: AU Date of ref document: 20090304 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0909419 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100902 |