WO2009106945A2 - Electricity generating arrangement - Google Patents

Electricity generating arrangement Download PDF

Info

Publication number
WO2009106945A2
WO2009106945A2 PCT/IB2009/000277 IB2009000277W WO2009106945A2 WO 2009106945 A2 WO2009106945 A2 WO 2009106945A2 IB 2009000277 W IB2009000277 W IB 2009000277W WO 2009106945 A2 WO2009106945 A2 WO 2009106945A2
Authority
WO
WIPO (PCT)
Prior art keywords
water conduit
primary
secondary water
conduit
turbine
Prior art date
Application number
PCT/IB2009/000277
Other languages
French (fr)
Other versions
WO2009106945A4 (en
WO2009106945A3 (en
Inventor
Coenraad Frederik Van Blerk
Original Assignee
Coenraad Frederik Van Blerk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coenraad Frederik Van Blerk filed Critical Coenraad Frederik Van Blerk
Priority to US12/919,297 priority Critical patent/US20110006530A1/en
Priority to EP09714497.6A priority patent/EP2279344B1/en
Publication of WO2009106945A2 publication Critical patent/WO2009106945A2/en
Publication of WO2009106945A3 publication Critical patent/WO2009106945A3/en
Publication of WO2009106945A4 publication Critical patent/WO2009106945A4/en
Priority to US14/284,243 priority patent/US20140265328A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/07Arrangement of devices, e.g. filters, flow controls, measuring devices, siphons or valves, in the pipe systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/60Application making use of surplus or waste energy
    • F05B2220/602Application making use of surplus or waste energy with energy recovery turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • This invention relates to an electricity generating arrangement. *5
  • an electricity generating arrangement comprising:
  • the secondary water conduit defining an inlet for allowing water flowing through the primary water conduit to enter the secondary water conduit and an outlet for allowing water flowing through the secondary water conduit to exit the secondary water conduit so as to rejoin the primary water conduit;
  • each turbine being connectable to a generator so that under the influence of the water flowing through the secondary water conduit, the turbine can rotate so as to drive the generator to generate electricity.
  • an inlet valve is located within the secondary water conduit, adjacent the inlet, and an outlet valve is located within the secondary water conduit, adjacent the outlet.
  • the secondary water conduit comprises a substantially elongate portion that runs substantially parallel to the primary water conduit.
  • the turbine comprises either a fin arrangement or a threaded screw.
  • the primary water conduit is part of a residential/municipal water distribution system.
  • the primary water conduit is defined by a natural conduit carrying water, such as a river.
  • a method of fitting an electricity generating arrangement to a primary water conduit comprising:
  • the secondary water conduit defining an inlet that can be in fluid communication with the outlet defined in the primary water conduit, the secondary water conduit defining an outlet that can be in fluid communication with the inlet defined in the primary water conduit, the secondary water conduit housing a rotatable turbine, the turbine being connectable to a generator,
  • water flowing through the primary water conduit can enter the secondary water conduit, flow through the secondary water conduit and exit the secondary water conduit so as to rejoin the primary water conduit, so that under the influence of the water flowing through the secondary water conduit, the turbine can rotate so as to drive the generator to generate electricity.
  • the method includes fitting an inlet valve within the secondary water conduit, adjacent its inlet, and fitting an outlet valve within the secondary water conduit, adjacent its outlet.
  • a third aspect of the invention there is provided a method of fitting an electricity generating arrangement to a primary water conduit, the primary water conduit comprising a pressure reducing device, the method comprising:
  • the method includes fitting the pressure reducing device adjacent the primary water conduit, in parallel with the rotatable turbine.
  • Figure 1 shows a schematic top view of an electricity generating arrangement according to a first example embodiment of the present invention
  • Figure 2 shows a schematic view of the arrangement shown in Figure 1 connected to a reticulation grid
  • Figure 3 shows a flow chart representing a method of fitting an electricity generating arrangement to a primary water conduit, according to a first example embodiment
  • Figure 4 shows a schematic top view of an electricity generating arrangement according to a second example embodiment of the present invention
  • Figure 5 shows a schematic top view of an electricity generating arrangement according to a third example embodiment of the present invention.
  • Figure 6 shows a flow chart representing a method of fitting an electricity generating arrangement to a primary water conduit, according to a second example embodiment.
  • an electricity generating arrangement 10 comprises a secondary water conduit 12, typically in the form of a pipe, fitted to a primary water conduit 14, which, again, is typically also in the form of a pipe.
  • the secondary water pipe 12 defines an inlet 16 for allowing water flowing through the primary water pipe 14 to enter the secondary water pipe 12.
  • the secondary water pipe 12 further defines an outlet 18 for allowing water flowing through the secondary water pipe 12 to exit the secondary water pipe 12 so as to rejoin the primary water pipe 14, as indicated by the arrows in the figure.
  • the primary water pipe 14 typically includes a pressure reducing device, such as a pressure reducing valve 20, as is well known in the art.
  • a rotatable turbine 22 is located within the secondary water pipe 12, the turbine 20 being connectable to a generator 24 so that under the influence of the water flowing through the secondary water pipe 12, the turbine 22 can rotate so as to drive the generator 24 to generate electricity for distribution or storage.
  • an inlet valve 26 is located within the secondary water pipe 12, adjacent the inlet 16, and an outlet valve 28 is located within the secondary water pipe 12, adjacent the outlet 18.
  • the valves 26, 28 may take the form of a non return valve and/or pressure reducing valve, depending on a number of factors, such as the size of supply and location, the water pressure and the anticipated water flow speed.
  • one or more booster pumps may be fitted, if and when needed.
  • the secondary water pipe 12 comprises a substantially elongate portion 30 that runs substantially parallel to the primary water pipe 14.
  • the turbine 22 comprises either a fin arrangement or a threaded screw.
  • the primary water pipe 14 is part of a residential/municipal water pipe system.
  • the water pipe system may be part of a local government, government, semi-government or privately owned water distribution network.
  • the primary water pipe is defined by anatural conduit carrying water, such as a river.
  • pumps may be fitted to pump the water out of the river, through the secondary water pipe, and then back into the river.
  • FIG 2 shows the secondary water pipe 12, turbine 22 and generator 24, as described above.
  • the generator 24 may be housed within a suitable power station 42, with connection cables 44 extending from the generator 24 to a transformer station 46. From the transformer station 46, overhead cables 48 connect the transformer station 46 to a mast 50, and then from the mast 50 to another transformer station 52. A further overhead cable 54 may carry the electricity to another mast 56, which can then further distribute the electricity as needed.
  • underground cables 58, 60 may also be used to carry the electricity to a transformer station 46 or 52, and then onto a mini substation or directly to a consumer.
  • the reticulation network may be designed in any one of a number of well-known ways, with the grid shown in Figure 3 representing only one illustrative way of doing this.
  • This method 70 comprises stopping the flow of water through the primary water pipe, as indicated by block 72.
  • the method 70 then comprises defining an outlet and an inlet in a side wall of the primary water pipe, as indicated by block 74.
  • the method 70 concludes by fitting a secondary water pipe to the primary water pipe, as indicated by block 76.
  • the secondary water pipe defines an inlet that can be in fluid communication with the outlet defined in the primary water pipe.
  • the secondary water pipe further defines an outlet that can be in fluid communication with the inlet defined in the primary water pipe.
  • the secondary water pipe houses a rotatable turbine, the turbine being connectable to a generator, so that water flowing through the primary water pipe can enter the secondary water pipe, flow through the secondary water pipe and exit the secondary water pipe so as to rejoin the primary water pipe, so that under the influence of the water flowing through the secondary water pipe, the turbine can rotate so as to drive the generator to generate electricity.
  • the method includes fitting an inlet valve within the secondary water pipe, adjacent its inlet, and fitting an outlet valve within the secondary water pipe, adjacent its outlet.
  • an electricity generating arrangement 80 comprises a main secondary water conduit 82, typically in the form of a pipe, fitted to a primary water conduit 84, which, again, is typically also in the form of a pipe.
  • the main secondary water pipe 82 defines an inlet 86 for allowing water flowing through the primary water pipe 84 to enter the main secondary water pipe 82.
  • the main secondary water pipe 82 further defines an outlet 88 for allowing water flowing through the main secondary water pipe 82 to exit the main secondary water pipe 82 so as to rejoin the primary water pipe 84, as described above.
  • the primary water pipe 84 typically includes a pressure reducing device, such as a pressure reducing valve 90, as is well known in the art.
  • a plurality of additional secondary water conduits 92, 94 extend across the ends of the main secondary water pipe 82 so as to define a parallel arrangement of secondary water pipes 82, 92 and 94.
  • Rotatable turbines 96, 98 and 100 are located within the secondary water pipes 82, 92 and 94, respectively. Each turbine 96, 98 and 100 is connectable to a generator 102, 104 and 106 so that under the influence of the water flowing through the secondary water pipes 82, 92 and 94 the turbines 96, 98 and 100 can rotate so as to drive the generators 102, 104 and 106 to generate electricity.
  • the generated electricity may either be distributed locally via a local cable distribution network, as indicated by arrow 108, or the voltage may be stepped up using suitable transformers 110 for long distance distribution over a high voltage network, as indicated by arrow 112.
  • an electricity generating arrangement 120 comprises replacing a pressure reducing device, which is typically fitted within a primary water conduit 122, with a rotatable turbine 124.
  • the turbine 124 may then in turn be connected to a generator 126, so that water flowing through the primary water conduit can drive the generator 126 to generate electricity.
  • the generated electricity may either be distributed locally via a local cable distribution network, as indicated by arrow 128, or the voltage may be stepped up using suitable transformers 130 for long distance distribution over a high voltage network, as indicated by arrow 132.
  • a pressure reducing device such as a pressure reducing valve 134, may be fitted adjacent the primary water conduit 122, so as to be substantially in parallel with the rotatable turbine 124.
  • a secondary/by-pass may be fitted in parallel with the primary water conduit 122, for use when the turbine 124 is not operational.
  • a further aspect of the present invention provides a method 140 of fitting an electricity generating arrangement to a primary water conduit, the primary water conduit comprising a pressure reducing device.
  • the method 140 comprises stopping the flow of water through the primary water conduit, as indicated by block 142, and then replacing the pressure reducing device within the primary water conduit with a rotatable turbine.
  • the turbine is connectable to a generator, so that water flowing through the primary water conduit can drive the generator to generate electricity.
  • the method 140 may further include fitting the pressure reducing device adjacent the primary water conduit, in parallel with the rotatable turbine.
  • the present invention discloses an electricity generating arrangement that is relatively quick, easy and inexpensive to setup.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)

Abstract

According to a first aspect of the invention there is provided an electricity generating arrangement comprising at least one secondary water conduit fitted to a primary water conduit, the secondary water conduit defining an inlet for allowing water flowing through the primary water conduit to enter the secondary water conduit and an outlet for allowing water flowing through the secondary water conduit to exit the secondary water conduit so as to rejoin the primary water conduit. The arrangement further comprises at least one rotatable turbine located within the secondary water conduit, each turbine being connectable to a generator so that under the influence of the water flowing through the secondary water conduit, the turbine can rotate so as to drive the generator to generate electricity. In an example embodiment, an inlet valve is located within the secondary water conduit, adjacent the inlet, and an outlet valve is located within the secondary water conduit, adjacent the outlet.

Description

ELECTRICITY GENERATING ARRANGEMENT
0
FIELD OF THE INVENTION
This invention relates to an electricity generating arrangement. *5
BACKGROUND OF THE INVENTION
There are many different ways of generating electricity. With the ever-growing shortage of natural resources, there is a continuous need of finding alternative0 ways of generating electricity. The well-known alternative ways make use of water, solar energy or wind to ultimately generate electricity. Each of these options have their disadvantages, with cost and long timeframes for installing and commissioning the associated equipment making these alternative ways not feasible in situations where electricity is needed urgently. 5
OBJECT OF THE INVENTION
It is therefore an aim of the present invention to provide an arrangement that0 makes use of flowing water to generate electricity, but that is relatively quick, easy and inexpensive to setup. SUMMARY OF THE INVENTION
According to a first aspect of the invention there is provided an electricity generating arrangement comprising:
at least one secondary water conduit fitted to a primary water conduit, the secondary water conduit defining an inlet for allowing water flowing through the primary water conduit to enter the secondary water conduit and an outlet for allowing water flowing through the secondary water conduit to exit the secondary water conduit so as to rejoin the primary water conduit; and
at least one rotatable turbine located within the secondary water conduit, each turbine being connectable to a generator so that under the influence of the water flowing through the secondary water conduit, the turbine can rotate so as to drive the generator to generate electricity.
In an example embodiment, an inlet valve is located within the secondary water conduit, adjacent the inlet, and an outlet valve is located within the secondary water conduit, adjacent the outlet.
In an example embodiment, the secondary water conduit comprises a substantially elongate portion that runs substantially parallel to the primary water conduit.
In an example embodiment, the turbine comprises either a fin arrangement or a threaded screw.
In an example embodiment, the primary water conduit is part of a residential/municipal water distribution system. In an alternate example embodiment, the primary water conduit is defined by a natural conduit carrying water, such as a river.
According to a second aspect of the invention there is provided a method of fitting an electricity generating arrangement to a primary water conduit, the method comprising:
stopping the flow of water through the primary water conduit;
defining an outlet and an inlet in a side wall of the primary water conduit; and
fitting a secondary water conduit to the primary water conduit, the secondary water conduit defining an inlet that can be in fluid communication with the outlet defined in the primary water conduit, the secondary water conduit defining an outlet that can be in fluid communication with the inlet defined in the primary water conduit, the secondary water conduit housing a rotatable turbine, the turbine being connectable to a generator,
so that water flowing through the primary water conduit can enter the secondary water conduit, flow through the secondary water conduit and exit the secondary water conduit so as to rejoin the primary water conduit, so that under the influence of the water flowing through the secondary water conduit, the turbine can rotate so as to drive the generator to generate electricity.
In an example embodiment, the method includes fitting an inlet valve within the secondary water conduit, adjacent its inlet, and fitting an outlet valve within the secondary water conduit, adjacent its outlet. -A-
According to a third aspect of the invention there is provided a method of fitting an electricity generating arrangement to a primary water conduit, the primary water conduit comprising a pressure reducing device, the method comprising:
stopping the flow of water through the primary water conduit; and
replacing the pressure reducing device within the primary water conduit with a rotatable turbine, the turbine being connectable to a generator, so that water flowing through the primary water conduit can drive the generator to generate electricity.
In an example embodiment, the method includes fitting the pressure reducing device adjacent the primary water conduit, in parallel with the rotatable turbine.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a schematic top view of an electricity generating arrangement according to a first example embodiment of the present invention;
Figure 2 shows a schematic view of the arrangement shown in Figure 1 connected to a reticulation grid;
Figure 3 shows a flow chart representing a method of fitting an electricity generating arrangement to a primary water conduit, according to a first example embodiment;
Figure 4 shows a schematic top view of an electricity generating arrangement according to a second example embodiment of the present invention; Figure 5 shows a schematic top view of an electricity generating arrangement according to a third example embodiment of the present invention; and
Figure 6 shows a flow chart representing a method of fitting an electricity generating arrangement to a primary water conduit, according to a second example embodiment.
DESCRIPTION OF PREFERRED EMBODIMENTS
Referring first to Figure 1 , an electricity generating arrangement 10 comprises a secondary water conduit 12, typically in the form of a pipe, fitted to a primary water conduit 14, which, again, is typically also in the form of a pipe. The secondary water pipe 12 defines an inlet 16 for allowing water flowing through the primary water pipe 14 to enter the secondary water pipe 12.
The secondary water pipe 12 further defines an outlet 18 for allowing water flowing through the secondary water pipe 12 to exit the secondary water pipe 12 so as to rejoin the primary water pipe 14, as indicated by the arrows in the figure.
The primary water pipe 14 typically includes a pressure reducing device, such as a pressure reducing valve 20, as is well known in the art.
Significantly, a rotatable turbine 22 is located within the secondary water pipe 12, the turbine 20 being connectable to a generator 24 so that under the influence of the water flowing through the secondary water pipe 12, the turbine 22 can rotate so as to drive the generator 24 to generate electricity for distribution or storage. In an example embodiment, an inlet valve 26 is located within the secondary water pipe 12, adjacent the inlet 16, and an outlet valve 28 is located within the secondary water pipe 12, adjacent the outlet 18. The valves 26, 28 may take the form of a non return valve and/or pressure reducing valve, depending on a number of factors, such as the size of supply and location, the water pressure and the anticipated water flow speed.
In addition, although not shown in Figure 1 , one or more booster pumps may be fitted, if and when needed.
In an example embodiment, the secondary water pipe 12 comprises a substantially elongate portion 30 that runs substantially parallel to the primary water pipe 14.
In an example embodiment, the turbine 22 comprises either a fin arrangement or a threaded screw.
In an example embodiment, the primary water pipe 14 is part of a residential/municipal water pipe system. In particular, the water pipe system may be part of a local government, government, semi-government or privately owned water distribution network.
In an alternate example embodiment, the primary water pipe is defined by anatural conduit carrying water, such as a river. In this embodiment, pumps may be fitted to pump the water out of the river, through the secondary water pipe, and then back into the river.
Turning now to Figure 2, the relationship between the electricity generating arrangement 10 shown in Figure 1 and an electrical reticulation grid or network is shown. Figure 2 shows the secondary water pipe 12, turbine 22 and generator 24, as described above. The generator 24 may be housed within a suitable power station 42, with connection cables 44 extending from the generator 24 to a transformer station 46. From the transformer station 46, overhead cables 48 connect the transformer station 46 to a mast 50, and then from the mast 50 to another transformer station 52. A further overhead cable 54 may carry the electricity to another mast 56, which can then further distribute the electricity as needed.
Alternatively, or in addition, underground cables 58, 60 may also be used to carry the electricity to a transformer station 46 or 52, and then onto a mini substation or directly to a consumer. Clearly, the reticulation network may be designed in any one of a number of well-known ways, with the grid shown in Figure 3 representing only one illustrative way of doing this.
Turning now to Figure 3, a method 70 of fitting an electricity generating arrangement to a primary water pipe will be described. This method 70 comprises stopping the flow of water through the primary water pipe, as indicated by block 72. The method 70 then comprises defining an outlet and an inlet in a side wall of the primary water pipe, as indicated by block 74. The method 70 concludes by fitting a secondary water pipe to the primary water pipe, as indicated by block 76.
As described above, the secondary water pipe defines an inlet that can be in fluid communication with the outlet defined in the primary water pipe. The secondary water pipe further defines an outlet that can be in fluid communication with the inlet defined in the primary water pipe. The secondary water pipe houses a rotatable turbine, the turbine being connectable to a generator, so that water flowing through the primary water pipe can enter the secondary water pipe, flow through the secondary water pipe and exit the secondary water pipe so as to rejoin the primary water pipe, so that under the influence of the water flowing through the secondary water pipe, the turbine can rotate so as to drive the generator to generate electricity.
In an example embodiment, although not shown in Figure 3, the method includes fitting an inlet valve within the secondary water pipe, adjacent its inlet, and fitting an outlet valve within the secondary water pipe, adjacent its outlet.
Turning now to Figure 4, a variation of the electricity generating arrangement 10 shown in Figure 1 is disclosed, in which a plurality of turbines and generators is provided. In particular, an electricity generating arrangement 80 comprises a main secondary water conduit 82, typically in the form of a pipe, fitted to a primary water conduit 84, which, again, is typically also in the form of a pipe.
The main secondary water pipe 82 defines an inlet 86 for allowing water flowing through the primary water pipe 84 to enter the main secondary water pipe 82. The main secondary water pipe 82 further defines an outlet 88 for allowing water flowing through the main secondary water pipe 82 to exit the main secondary water pipe 82 so as to rejoin the primary water pipe 84, as described above.
The primary water pipe 84 typically includes a pressure reducing device, such as a pressure reducing valve 90, as is well known in the art.
Significantly, a plurality of additional secondary water conduits 92, 94 extend across the ends of the main secondary water pipe 82 so as to define a parallel arrangement of secondary water pipes 82, 92 and 94.
Rotatable turbines 96, 98 and 100 are located within the secondary water pipes 82, 92 and 94, respectively. Each turbine 96, 98 and 100 is connectable to a generator 102, 104 and 106 so that under the influence of the water flowing through the secondary water pipes 82, 92 and 94 the turbines 96, 98 and 100 can rotate so as to drive the generators 102, 104 and 106 to generate electricity. The generated electricity may either be distributed locally via a local cable distribution network, as indicated by arrow 108, or the voltage may be stepped up using suitable transformers 110 for long distance distribution over a high voltage network, as indicated by arrow 112.
In a further version of the invention, turning now to Figure 5, an electricity generating arrangement 120 comprises replacing a pressure reducing device, which is typically fitted within a primary water conduit 122, with a rotatable turbine 124. The turbine 124 may then in turn be connected to a generator 126, so that water flowing through the primary water conduit can drive the generator 126 to generate electricity. As described above, the generated electricity may either be distributed locally via a local cable distribution network, as indicated by arrow 128, or the voltage may be stepped up using suitable transformers 130 for long distance distribution over a high voltage network, as indicated by arrow 132.
A pressure reducing device, such as a pressure reducing valve 134, may be fitted adjacent the primary water conduit 122, so as to be substantially in parallel with the rotatable turbine 124.
In one version of the embodiment shown in Figure 5, a secondary/by-pass may be fitted in parallel with the primary water conduit 122, for use when the turbine 124 is not operational.
Turning now to Figure 6, which is related to the arrangement shown in Figure 5, a further aspect of the present invention provides a method 140 of fitting an electricity generating arrangement to a primary water conduit, the primary water conduit comprising a pressure reducing device. The method 140 comprises stopping the flow of water through the primary water conduit, as indicated by block 142, and then replacing the pressure reducing device within the primary water conduit with a rotatable turbine. As described above, the turbine is connectable to a generator, so that water flowing through the primary water conduit can drive the generator to generate electricity.
Although not shown in Figure 6, the method 140 may further include fitting the pressure reducing device adjacent the primary water conduit, in parallel with the rotatable turbine.
Since it is envisaged that the primary water pipe will form part of a residential/municipal water pipe system, the present invention discloses an electricity generating arrangement that is relatively quick, easy and inexpensive to setup.

Claims

1. An electricity generating arrangement comprising:
at least one secondary water conduit fitted to a primary water conduit, the secondary water conduit defining an inlet for allowing water flowing through the primary water conduit to enter the secondary water conduit and an outlet for allowing water flowing through the secondary water conduit to exit the secondary water conduit so as to rejoin the primary water conduit; and
at least one rotatable turbine located within the secondary water conduit, each turbine being connectable to a generator so that under the influence of the water flowing through the secondary water conduit, the turbine can rotate so as to drive the generator to generate electricity.
2. The electricity generating arrangement of claim 1 , wherein an inlet valve is located within the secondary water conduit, adjacent the inlet, and an outlet valve is located within the secondary water conduit, adjacent the outlet.
3. The electricity generating arrangement of either claim 1 or claim 2, wherein the secondary water conduit comprises a substantially elongate portion that runs substantially parallel to the primary water conduit.
4. The electricity generating arrangement of any one of the preceding claims, wherein the turbine comprises either a fin arrangement or a threaded screw.
5. The electricity generating arrangement of any one of the preceding claims, wherein the primary water conduit is part of a residential/municipal water distribution system.
6. The electricity generating arrangement of any one of claims 1 to 4, wherein the primary water conduit is defined by a natural conduit carrying water.
7. A method of fitting an electricity generating arrangement to a primary water conduit, the method comprising:
stopping the flow of water through the primary water conduit;
defining an outlet and an inlet in a side wall of the primary water conduit; and
fitting a secondary water conduit to the primary water conduit, the secondary water conduit defining an inlet that can be in fluid communication with the outlet defined in the primary water conduit, the secondary water conduit defining an outlet that can be in fluid communication with the inlet defined in the primary water conduit, the secondary water conduit housing a rotatable turbine, the turbine being connectable to a generator,
so that water flowing through the primary water conduit can enter the secondary water conduit, flow through the secondary water conduit and exit the secondary water conduit so as to rejoin the primary water conduit, so that under the influence of the water flowing through the secondary water conduit, the turbine can rotate so as to drive the generator to generate electricity.
8. The method of claim 7, which includes fitting an inlet valve within the secondary water conduit, adjacent its inlet, and fitting an outlet valve within the secondary water conduit, adjacent its outlet.
9. A method of fitting an electricity generating arrangement to a primary water conduit, the primary water conduit comprising a pressure reducing device, the method comprising:
stopping the flow of water through the primary water conduit; and
replacing the pressure reducing device within the primary water conduit with a rotatable turbine, the turbine being connectable to a generator, so that water flowing through the primary water conduit can drive the generator to generate electricity.
10. The method of claim 9, which includes fitting the pressure reducing device adjacent the primary water conduit, in parallel with the rotatable turbine.
PCT/IB2009/000277 2008-02-25 2009-02-17 Electricity generating arrangement WO2009106945A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/919,297 US20110006530A1 (en) 2008-02-25 2009-02-17 Electricity generating arrangement
EP09714497.6A EP2279344B1 (en) 2008-02-25 2009-02-17 Electricity generating arrangement
US14/284,243 US20140265328A1 (en) 2008-02-25 2014-05-21 Electricity generating arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA2008/01762 2008-02-25
ZA200801762 2008-02-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/919,297 A-371-Of-International US20110006530A1 (en) 2008-02-25 2009-02-17 Electricity generating arrangement
US14/284,243 Continuation-In-Part US20140265328A1 (en) 2008-02-25 2014-05-21 Electricity generating arrangement

Publications (3)

Publication Number Publication Date
WO2009106945A2 true WO2009106945A2 (en) 2009-09-03
WO2009106945A3 WO2009106945A3 (en) 2010-07-29
WO2009106945A4 WO2009106945A4 (en) 2010-09-23

Family

ID=41016520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/000277 WO2009106945A2 (en) 2008-02-25 2009-02-17 Electricity generating arrangement

Country Status (4)

Country Link
US (1) US20110006530A1 (en)
EP (1) EP2279344B1 (en)
WO (1) WO2009106945A2 (en)
ZA (1) ZA200901070B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049549A3 (en) * 2010-10-11 2012-06-14 Cla-Val Co. System for controlled hydroelectric power generation
ITTO20100993A1 (en) * 2010-12-14 2012-06-15 Welt Company S R L SYSTEM FOR HYDROELECTRIC ENERGY GENERATION
WO2016185256A1 (en) * 2015-05-21 2016-11-24 Khachan Mohammad Closed-circuit hot water piping system capable to reduce water consumption at a low cost
EP3480915A1 (en) * 2017-11-06 2019-05-08 Vanbaleghem, Marc Installation for charging electric vehicles equipped with turbogenerator using the fluid networks
FR3111396A1 (en) * 2020-06-16 2021-12-17 Consomix ENERGY CONVERSION DEVICE, ELECTRIC ENERGY GENERATOR, SYSTEM

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2507044A (en) * 2012-10-16 2014-04-23 May Gurney Ltd Pipeline turbine with pressure and flow control
ES2744915T3 (en) * 2014-10-23 2020-02-26 Daikin Ind Ltd Fluid system
ITUA20161469A1 (en) * 2016-03-08 2017-09-08 Giorgio Filippini DEVICE FOR DETECTION AND INTERCEPTION OF FLUID DISPERSIONS
WO2018056163A1 (en) * 2016-09-20 2018-03-29 ダイキン工業株式会社 Hydroelectric power generation system
CN109716642A (en) * 2016-09-20 2019-05-03 大金工业株式会社 Hydroelectric power system
IT201800009417A1 (en) * 2018-10-12 2020-04-12 Sws Eng Spa WATER SYSTEM WITH OVERFLOW THRESHOLD
US11946604B2 (en) 2020-10-26 2024-04-02 InPipe Energy, Inc. Pipeline energy recovery system
US11242836B2 (en) * 2020-04-06 2022-02-08 BGH Designs, LLC Apparatuses, systems, and methods for providing power generation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717204A (en) 1980-07-04 1982-01-28 Fujitsu Ltd Transient sound prevention type power amplifying circuit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US716650A (en) * 1902-01-15 1902-12-23 Milo L G Wheeler Water-motor.
US1726405A (en) * 1927-11-28 1929-08-27 Samuel B Mchenry Current motor
CH610058A5 (en) * 1975-11-05 1979-03-30 Ernst Gasser Hydraulic engine with generators driven by it
US4241283A (en) * 1978-09-05 1980-12-23 Storer Richard R Sr Hydro-electric power plant
JPS5717024A (en) * 1980-07-04 1982-01-28 Hitachi Ltd Discharge flow rate automatic control method for motive power recovering device
US4352025A (en) * 1980-11-17 1982-09-28 Troyen Harry D System for generation of electrical power
JPS6047883A (en) * 1983-08-26 1985-03-15 Masao Kinemura Power plant accompanied by natural flow-down pipeline
DE3800192A1 (en) * 1987-02-02 1988-08-11 Karl Wilhelm Schneider Undershot water wheel arrangement
US5140254A (en) * 1990-10-10 1992-08-18 David Katzman Shower accessory
US6765308B1 (en) * 2002-04-22 2004-07-20 Harry Kazanjian Hydro-energy conversion system
DE202004003596U1 (en) * 2004-03-09 2004-05-27 Kümmerle, Detlef Modular regenerative energy system for building has rainwater module, flow module and wind module for providing energy for driving electrical generator
JP3763022B2 (en) * 2004-03-18 2006-04-05 株式会社カクダイ Hydroelectric power generator and water supply system provided with the same
US7084521B1 (en) * 2005-02-17 2006-08-01 Martin Gerald G Method and apparatus for generating hydro-electric power
US7357599B2 (en) * 2005-08-10 2008-04-15 Criptonic Energy Solutions, Inc. Waste water electrical power generating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717204A (en) 1980-07-04 1982-01-28 Fujitsu Ltd Transient sound prevention type power amplifying circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049549A3 (en) * 2010-10-11 2012-06-14 Cla-Val Co. System for controlled hydroelectric power generation
ITTO20100993A1 (en) * 2010-12-14 2012-06-15 Welt Company S R L SYSTEM FOR HYDROELECTRIC ENERGY GENERATION
WO2016185256A1 (en) * 2015-05-21 2016-11-24 Khachan Mohammad Closed-circuit hot water piping system capable to reduce water consumption at a low cost
EP3480915A1 (en) * 2017-11-06 2019-05-08 Vanbaleghem, Marc Installation for charging electric vehicles equipped with turbogenerator using the fluid networks
FR3073335A1 (en) * 2017-11-06 2019-05-10 Marc Vanbaleghem ELECTRIC VEHICLE RECHARGING INSTALLATION EQUIPPED WITH A TURBOGENERATOR OPERATING FLUID NETWORKS
FR3111396A1 (en) * 2020-06-16 2021-12-17 Consomix ENERGY CONVERSION DEVICE, ELECTRIC ENERGY GENERATOR, SYSTEM
WO2021255054A1 (en) * 2020-06-16 2021-12-23 Consomix Energy conversion device, electric energy generator, system

Also Published As

Publication number Publication date
EP2279344B1 (en) 2013-04-24
ZA200901070B (en) 2009-06-24
WO2009106945A4 (en) 2010-09-23
EP2279344A2 (en) 2011-02-02
WO2009106945A3 (en) 2010-07-29
US20110006530A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
EP2279344B1 (en) Electricity generating arrangement
Casini Harvesting energy from in-pipe hydro systems at urban and building scale
US20140265328A1 (en) Electricity generating arrangement
Weinstein et al. AquaBuOY-the offshore wave energy converter numerical modeling and optimization
US10344741B2 (en) Hydro-pneumatic energy storage system
Kusakana A survey of innovative technologies increasing the viability of micro-hydropower as a cost effective rural electrification option in South Africa
US7501712B2 (en) Process for using waste water from community sewer systems to generate electrical power
US20160036221A1 (en) Dc connection system for renewable power generators
Cazzaniga et al. DOGES: deep ocean gravitational energy storage
CN106998077A (en) A kind of determination method of the maximum digestion capability of long distance powedr transmission type power network photovoltaic
KR20060120873A (en) Hydraulic power generator system
JP2020109292A (en) Sea water power generation facility
KR101088381B1 (en) Micro generating system using hydraulic pressure difference in a water pipe
Arabali et al. Steady-state operation and control of an in-conduit hydro-powered generator
Ibe et al. A critical review of grid operations in Nigeria
US20130113220A1 (en) Fluid-driven power generation apparatus and system for generating electricity and method of assembling the fluid-driven power generation apparatus
US20160268810A1 (en) Pylon based power management system
KIM et al. Power generation system for using unused energy in district heating pipelines
JP4597257B1 (en) Hydroelectric power generation system
CN211006583U (en) Complementary joint power generation device of water light
WO2009100392A2 (en) Methods and apparatuses related to energy production and transmission
Karimov et al. The Economics of microhydro power plants
Kim et al. Hydroelectric Power Generation Using Differential Pressure of District Heating Pipe in a Thermal Grid
KR200396776Y1 (en) Hydraulic power generator system
RU69089U1 (en) RECYCLING HYDRO POWER PLANT

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12919297

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009714497

Country of ref document: EP