WO2009106501A1 - Multi-layer composite material, production and use thereof - Google Patents

Multi-layer composite material, production and use thereof Download PDF

Info

Publication number
WO2009106501A1
WO2009106501A1 PCT/EP2009/052111 EP2009052111W WO2009106501A1 WO 2009106501 A1 WO2009106501 A1 WO 2009106501A1 EP 2009052111 W EP2009052111 W EP 2009052111W WO 2009106501 A1 WO2009106501 A1 WO 2009106501A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer composite
polyurethane
composite material
polyurethane layer
Prior art date
Application number
PCT/EP2009/052111
Other languages
German (de)
French (fr)
Inventor
Carl Jokisch
Jürgen WEISER
Peter Rudolf
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2009106501A1 publication Critical patent/WO2009106501A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0892Insulating elements, e.g. for sound insulation for humidity insulation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C27/00Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
    • A47C27/002Mattress or cushion tickings or covers
    • A47C27/007Mattress or cushion tickings or covers permeable to liquid or air in a special way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/002Layered products comprising a layer of paper or cardboard as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • B32B9/025Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch comprising leather
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0246Acrylic resin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0292Polyurethane fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • B32B2262/065Lignocellulosic fibres, e.g. jute, sisal, hemp, flax, bamboo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0242Vinyl halide, e.g. PVC, PVDC, PVF or PVDF (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/025Acrylic resin particles, e.g. polymethyl methacrylate or ethylene-acrylate copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/06Vegetal particles
    • B32B2264/062Cellulose particles, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0242Acrylic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0285Condensation resins of aldehydes, e.g. with phenols, ureas, melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/06Open cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2601/00Upholstery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings

Definitions

  • Multilayer composite material its manufacture and use
  • the present invention relates to a multilayer composite material comprising as components: (A) a sheet,
  • (D) a polyurethane layer having capillaries extending the full thickness of the polyurethane layer, (E) and at least one intermediate layer between the combination of fabric (A) and absorbent material (B) on the one hand and polyurethane layer (D) on the other, with intermediate layer (E) is selected from textile, paper, nonwovens, artificial leather and open-cell foam.
  • the present invention relates to a method for producing multilayer composite materials according to the invention. Moreover, the present invention relates to the use of multilayer composite materials according to the invention, for example in the interior of vehicles, for the production of seats and for room climate management.
  • Cellulose cloths can in many cases absorb water or aqueous liquids well. An even more versatile use than today, however, fails in many cases because moist cellulose cloths are unsightly and have only a very low mechanical strength.
  • Superabsorbents known in their form as superabsorbent polymers (SAP) are used in numerous products intended to absorb large quantities of liquid, in particular body fluid, for example in diapers.
  • SAP superabsorbent polymers
  • many of these products have the disadvantage that they do not look pleasing from the outside. They can quickly become dirty, for example, by dusting, and then look grubby. Many of these products are disposable.
  • Multilayer composite materials according to the invention comprise as component
  • a sheet for example in the form of a film, in particular a plastic film, or a foam.
  • Suitable plastic films are for example made of polyethylene, polyamide, preferably polyester or block copolymers of styrene and 1, 3-butadiene.
  • Suitable foams are produced, for example, by foaming polypropylene, polyurethane, polystyrene, in each case with or without one or more additives, for example particles of graphite.
  • Textile (A) is preferably a textile fabric, in the context of the present invention also referred to as a textile fabric (A) or, for short, as a textile (A).
  • textile (A) is understood as meaning, for example, fabrics such as felts, woven fabrics, knitted fabrics, knits, nonwovens and wadding.
  • Textile (A) may be of natural origin, for example cotton, wool or flax, or synthetic, for example polyamide, polyester, modified polyester, polyester blend, polyamide blend, polyacrylonitrile, triacetate, acetate, polycarbonate, polyolefins such as polyethylene and polypropylene, polyvinyl chloride, furthermore microfibers and micro hollow fibers such as polyester microfibers and glass fiber fabrics.
  • polyesters such as polyethylene and polypropylene
  • selected blended fabrics selected from cotton-polyester blended fabrics, polyolefin-polyester blend fabrics, and polyolefin-cotton blended fabrics.
  • textile (A) are polyester fabrics and nonwovens.
  • Multilayer composite materials according to the invention furthermore comprise
  • absorbent material (B) a material which can absorb water or aqueous liquids, which in the context of the present application is also referred to as absorptive material (B) for short.
  • absorbent materials (B) are pulp or cotton textile. If you want to choose cotton textile as absorbent material (B), you choose as fabric (A) another material than cotton.
  • Under water and aqueous liquids is in particular water in the gaseous state of matter to understand, for example, as moisture, most preferably atmospheric humidity.
  • absorbent material (B) is a superabsorbent, which is also referred to as superabsorber (B) in the context of the present invention.
  • superabsorbent (B) in the context of the present invention is a substance which is many times its own weight, for example up to a thousand times, of liquid liquids, in particular aqueous liquids, for example, aqueous body fluids such as blood, urine or sweat and of course water.
  • superabsorbent (B) is a synthetic organic copolymer having superabsorbent properties.
  • Synthetic organic copolymers with superabsorbent properties hereinafter also referred to as superabsorbent polymers (SAP) or superabsorbent copolymers (B), are preferably copolymers which are prepared by copolymerization of at least two SAPs or SAP-forming monomers.
  • superabsorbent or SAP-forming monomers are to be understood as meaning polymerizable compounds which contribute to the absorbency of the copolymers formed therefrom.
  • examples are monoethylenically unsaturated compounds or compounds having a polymerizable double bond with at least one hydrophilic radical, such as carboxyl, carboxylic anhydride, carboxylic acid salt, sulfonic acid, sulfonic acid salt, hydroxyl, ether, amide, amino or quaternary ammonium salt groups .
  • Suitable superabsorbent or SAP-forming monomers are, for example:
  • carboxyl group-containing monomers monoethylenically unsaturated mono- or polycarboxylic acids such as (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, sorbic acid and itaconic acid;
  • carboxylic acid anhydride group-containing monomers monoethylenically unsaturated polycarboxylic anhydrides such as maleic anhydride;
  • Carboxylic acid salt-containing monomers water-soluble salts (alkali salts, ammonium salts, amine salts, etc.) of monoethylenically unsaturated mono- or polycarboxylic acids, such as sodium (meth) acrylate, trimethylamine (meth) acrylate, triethanolamine (meth) acrylate, sodium maleate, methylamine maleate;
  • monomers containing sulfonic acid groups aliphatic or aromatic vinylsulfonic acids such as vinylsulfonic acid, allylsulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid), (meth) acrylic sulfonic acid, sulfopropyl (meth) acrylate, 2-hydroxy-3-
  • monomers containing sulfonic acid salt groups alkali salts, ammonium salts, amine salts of sulfonic acid group-containing monomers as mentioned above;
  • hydroxyl-containing monomers monoethylenically unsaturated alcohols, such as (meth) allyl alcohol, monoethylenically unsaturated ethers or esters of polyols, for example, alkylene glycols, glycerol, polyoxyalkylene polyols such as hydroxyethyl (meth) acrylate, triethylene glycol (meth) acrylate, poly (oxyethyleneoxypropylene) glycol mono (meth) allyl ethers, wherein the hydroxy groups are optionally etherified or esterified;
  • monoethylenically unsaturated alcohols such as (meth) allyl alcohol, monoethylenically unsaturated ethers or esters of polyols, for example, alkylene glycols, glycerol, polyoxyalkylene polyols such as hydroxyethyl (meth) acrylate, triethylene glycol (meth) acrylate, poly (oxyethyleneoxypropylene
  • amide group-containing monomers vinylformamide, (meth) acrylamide, N-alkyl (meth) acrylamides such as N-methacrylamide, N-hexylacrylamide, furthermore N, N-dialkyl (meth) acrylamides such as N, N-dimethylacrylamide or N, N-di n-propylacrylamide, N-hydroxyalkyl (meth) acrylamides such as N-methylol (meth) acrylamide or N-hydroxyethyl (meth) acrylamide, N, N-dihydroxyalkyl (meth) acrylamides such as N, N
  • Amino group-containing monomers e.g. Dialkylaminoalkyl esters, dihydroxyalkylaminoalkyl esters, morpholinoalkyl esters, monoethylenically unsaturated mono- or dicarboxylic acids, such as dimethylaminoethyl (meth) acrylate,
  • N 1 N 1 N-trialkyl-N- (meth) acryloyloxyalkylammoniumsalze such as N 1 N 1 NT rimethyl-N- (meth) acryloyl-oxyethylammoniumchlorid 1 N, N, N-triethyl-N- ( meth) acryloyloxyethylammonium chloride, 2-hydroxy-3- (meth) acryloyloxypropyltrimethylammonium chloride, and monomers according to GB-PS 1, 034,296.
  • Monomers which are suitable for use in place of or in combination with the SAP-forming monomers and which become water-soluble by hydrolysis include monoethylenically unsaturated compounds having at least one hydrolyzable group, such as esters, amide and nitrile groups.
  • Such monomers having an ester group include, for example, C 1 -C 4 -alkyl esters of monoethylenically unsaturated carboxylic acids, such as methyl (meth) acrylate and ethyl (meth) acrylate, and furthermore 2-ethylhexyl (meth) acrylate and esters of monoethylenically unsaturated alcohols [vinyl ester, (Meth allyl ester, etc.] such as vinyl acetate and (meth) allyl acetate.
  • Suitable nitrile group-containing monomers include (meth) acrylonitrile.
  • SAP-forming monomers are water-soluble monomers which, for example, at 20 ° C., may have a solubility of at least 5 g / l in distilled water.
  • water-soluble or hydrolysis-water-soluble monomers are water-soluble monomers which do not require hydrolysis after polymerization, due to the ease of processing in the production of absorbent MA. materials (B) are preferred.
  • absorbent materials (B) having high water absorption include monomers containing carboxyl groups, such as (meth) acrylic acid and maleic anhydride; carboxylic acid salt group-containing monomers such as sodium (meth) acrylate, trimethylamine (meth) acrylate and triethanolamine (meth) acrylate and quaternary ammonium salt group-containing monomers such as N, N, N-trimethyl-N- (meth) acryloyloxyethylammonium chloride preferred.
  • Very particularly preferred superabsorbent monomers include, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, sorbic acid, itaconic acid, cinnamic acid, vinylsulfonic acid, allylsulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid, sulfo (meth) acrylate, sulfopropyl (meth) acrylate, 2-acrylamide 2-methylpropanesulfonic acid, 2-hydroxyethyl (meth) acryloyl phosphate, phenyl-2-acryloyloxyethyl phosphate, their sodium, potassium and ammonium salts, maleic anhydride and combinations thereof, for example as free acid or at least partially neutralized, preferably from 1 to 100 mol% , Particularly preferably 10 to 80 mol% and most preferably 15 to 75 mol% is neutralized. Most preferably, the superabsorbent
  • Superabsorber (B) is preferably in the form of particles.
  • SAP particles in particulate form
  • SAP particles are lightly crosslinked polymers in particulate form, which are prepared from at least one of the abovementioned SAP-forming monomers and at least one internal crosslinker , the polymers thus available are highly absorbent.
  • Preferred SAP particles are, on average, sufficiently small that they can easily be prepared by spray-drying or by spraying, preferably with a diameter of less than 150 ⁇ m, more preferably less than 100 ⁇ m.
  • Such a morphology can be obtained directly as a result of the polymerization process, or the high-absorbency polymers can also be brought to the desired average particle size of the SAP particles by sieving, milling, pulverizing, rubbing or a combination thereof.
  • the average diameter of the SAP particles is, for example, in the range of 10 to 130 ⁇ m, preferably 15 to 100 ⁇ m, and most preferably 40 to 90 ⁇ m.
  • At least one SAP-forming monomer is copolymerized with at least one crosslinker.
  • the production of particles of superabsorbent (B) is carried out from one or more SAP-forming monomer and at least one internally crosslinking compound, also referred to as internal crosslinker, wherein the particles of superabsorbent (B) preferably from 50 to 99.9 mole percent of SAP-forming monomer or SAP-forming monomers are formed.
  • internal crosslinker gives particles of superabsorbent (B) which comprise a slightly crosslinked polymer.
  • Suitable internal crosslinkers are those compounds having two or more groups reactive with the monoethylenically unsaturated monomers which are at least partially soluble or dispersible in water or an aqueous monomer mixture.
  • the internal crosslinker may be selected from an unsaturated monomer such as divinylbenzene, a compound having at least two functional groups reactive toward a monoethylenically unsaturated monomer such as ethylenediamine, a compound having at least one unsaturated bond and at least one reactive functional group such as glycidyl (meth) acrylate.
  • Exemplary internal crosslinkers are: tetraallyloxyethane, N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, triallylamine, trimethylolpropane triacrylate, glycerol propoxytriacrylate, divinylbenzene, N-methylolacrylamide, N-methylolmethacrylamide, glycidyl methacrylate, polyethylene polyamines, ethylenediamine, ethylene glycol and glycerol , Preferred internal crosslinkers are those having at least two allyl groups, very particularly preferably three or four allyl groups.
  • Preferred internal crosslinkers are tetraallyloxyethane and the triallyl ether of pentaerythritol.
  • the amount of internal crosslinker used according to the invention depends on the internal crosslinker and the polymerization process. Typically, the amount of internal crosslinker is from about 0.005 to about 1.0 mole percent, based on moles of the SAP-forming monomer.
  • Components optionally used in the production of particles of superabsorbent (B) are water-soluble hydroxyl-containing polymers such as polysaccharides and vinyl or acrylic polymers.
  • water-soluble polysaccharides are starches, water-soluble celluloses and polygalactomannans.
  • Suitable starches include the native starches such as sweet potato starch, potato starch, wheat starch, corn starch, rice starch, tapioca starch and the like.
  • refined or modified starches such as dialdehyde starch, starch etherified with alkyl alcohols, in particular methanol-etherified starch, allyl-etherified starch, oxyalkylated starch, aminoethyl etherified starch and cyanomethyl-etherified starch.
  • polyvinyl alcohol and polyvinyl alcohol copolymers are also suitable.
  • Suitable water-soluble cellulose is cellulose obtained from such sources as wood, stems, bast, seed fluff and the like, which is then derivatized to hydroxyalkylcellulose, carboxymethylcellulose, methylcellulose and the like.
  • Suitable polygalactomannans are guar gum and locust bean gum as well as their hydroxyalkyl, carboxyalkyl and aminoalkyl derivatives.
  • Water-soluble vinyl and acrylic polymers include polyvinyl alcohol and polyhydroxyethyl acrylate.
  • Preferred polysaccharide is native starch, such as wheat starch, corn starch and alpha starch.
  • These optionally prefabricated hydroxy-containing polymers can be used in an amount of 1 to 15 wt .-%, preferably from 1 to 10 wt .-% and most preferably 5 wt .-%, based on solids content of absorbent material (B).
  • Particles of superabsorbent (B) can be prepared by known polymerization.
  • the polymerization takes place in the presence of, for example, redox initiators and thermal initiators. It is possible to work primarily with the redox initiators, with the thermal polymerization initiators optionally being used only to suppress the residual monomer content of the final polymerization product to below 0.1 percent by weight.
  • thermal initiators or redox initiators can be used as the sole initiator system. Examples of various initiator systems can be found in US 4,497,930, which describes a two-component initiator system of persulfate and hydroperoxide, and in US 5,145,906, which discloses a three component initiator system, i. Redox system plus thermal initiator disclosed.
  • Particles of superabsorbent (B) may be prepared by the solution or reverse-suspension polymerization method or by a suitable bulk polymerization method.
  • the solution polymerization and reverse polymerization processes are known per se in the art, see, for example, U.S. Patents 4,076,663; 4,286,082; 4,654,039 and 5,145,906, in which the Weglymerisati- onsclar is described, and US Pat. Nos. 4,340,706; 4,497,930; 4,666,975; 4,507,438 and 4,683,274, which describe the reverse-suspension polymerization process.
  • absorbent material (B) and in particular superabsorbent (B) are physically or chemically bonded to fabric (A).
  • fabric (A) one can choose the type of physical or chemical combination of absorbent material (B) and in particular superabsorbent (B) with fabric (A) according to the geometric dimensions of absorbent material (B) and in particular superabsorbent (B).
  • absorbent material (B) in the form of cellulose wipes, which is adhered or glued to the fabric (A).
  • absorbent material (B) and in particular superabsorbent (B) in the form of particles for example granular or spherical particles, with a mean diameter (number average) in the range of 1 .mu.m to 1 cm, preferably 10 .mu.m to 1 mm, and stores them in the pores of sheets.
  • B absorptive material
  • superabsorber (B) in the form of particles, such as granular or spherical particles, with a mean diameter (number average) in the range of 1 .mu.m to 1 cm, preferably 10 .mu.m to 1 mm , and fixes them to sheet (A) with the aid of a binder or an adhesive.
  • superabsorbent (B) can be prepared in the presence of fabrics (A), in particular of textile fabric (A).
  • a mixture of one or more SAP-forming monomers, water and one or more initiators is first prepared and then the (co) polymerization is initiated. After a certain time, one then adds sheet (A) or applies the reacting mixture to textile fabric and then completes the (co) polymerization.
  • Particles of superabsorbent (B) are preferably contained in the polymerization mixture at about 1 to 20% by weight, preferably at 2 to 15% by weight and most preferably at 5 to 10% by weight. It has been found that if the content of SAP particles is too high, premature polymerization may occur in the polymerization mixture in some cases.
  • the polymerization mixture has a viscosity of at least 20 mPas measured at 20 ° C. in the Brookfield Viscometer, spindle 02, 20 rpm.
  • the polymerization mixture may additionally contain a crosslinking agent and / or a plasticizer and / or at least one odor-controlling agent and / or a skin care agent, such as panthotenol, aloe vera, having a pH range corresponding to that of the skin.
  • the SAP particles contained in the polymerization mixture may contain at least one odor-controlling agent and / or one skin care agent, such as panthotenol, aloe vera, having a pH range corresponding to that of the skin.
  • the acquisition layer and the storage layer of the absorbent body have a pH of from 2.0 to 7.5, and preferably from 4.0 to 6.5.
  • the acquisition layer and the storage layer have a different pH.
  • the pH of the acquisition layer is 4.0 to 6.5, and preferably 4.2 to 4.5 and that of the storage layer is 5.0 to 6.0.
  • the SAP particles consist of MBIE SAP particles or multi-zone compositions of SAP particles, e.g. in WO 99/25393, preferably having a ratio of SAP anionic to cationic of from about 5: 1 to about 1: 5.
  • the combination of textile fabric (A) and absorbent material (B) comprises fibers of superabsorbent (B), which are processed together with fibers of other material to form a nonwoven fabric, as described in WO 2004/039493.
  • the combination of textile fabric (A) and absorbent material (B) is a foamy superabsorber which is fixed on textile.
  • sheet (A) and absorbent material (B) together have an average thickness in the range of 100 ⁇ m to 10 mm, preferably 1 mm.
  • Multilayer composite material according to the invention furthermore comprises (D) at least one polyurethane layer which has capillaries which extend over the entire thickness of the polyurethane layer, in the context of the present invention also referred to as polyurethane layer (D) for short.
  • polyurethane layer (D) has an average thickness in the range from 15 to 300 ⁇ m, preferably from 20 to 150 ⁇ m, particularly preferably from 25 to 80 ⁇ m.
  • Polyurethane layer (D) has capillaries that go over the entire thickness (cross section) of the polyurethane layer (D).
  • polyurethane layer (D) has on average at least 100, preferably at least 250 capillaries per 100 cm 2 .
  • the capillaries have an average diameter in the range of 0.005 to 0.05 mm, preferably 0.009 to 0.03 mm.
  • the capillaries are evenly distributed over polyurethane layer (D). In a preferred embodiment of the present invention, however, the capillaries are unevenly distributed over the polyurethane layer (D).
  • the capillaries are substantially bent. In another embodiment of the present invention, the capillaries have a substantially straight course.
  • the capillaries impart air and water vapor permeability to the polyurethane layer (D) without the need for perforation.
  • the water vapor permeability of the polyurethane layer (D) can be above 1.5 mg / cm 2 -h, measured according to DIN 53333.
  • moisture such as sweat
  • polyurethane layer (D) has a pattern.
  • the pattern can be arbitrary and, for example, the pattern of a leather or a wooden surface play. In one embodiment of the present invention, the pattern may reflect a nubuck leather. In one embodiment of the present invention, polyurethane layer (D) has a velvet-like appearance.
  • the pattern may correspond to a velvet surface, for example with hairs having an average length of 20 to 500 ⁇ m, preferably 30 to 200 ⁇ m and particularly preferably 60 to 100 ⁇ m.
  • the hairs may, for example, have a circular diameter.
  • the hairs have a conical shape.
  • polyurethane layer (D) has hairs which are arranged at an average distance of 50 to 350, preferably 100 to 250 microns to each other.
  • the information on the average thickness on the polyurethane layer (D) without the hairs refer.
  • the multilayer composite material according to the invention may comprise a tie layer (C), which will be explained in more detail below.
  • Bonding layer (C) may have a uniform or uneven thickness, wherein the bonding layer (C) ensures a total air permeability.
  • composite material according to the invention contains no bonding layer (C).
  • the combination of combination of fabrics (A) and absorbent material (B) can then be made, for example, by welding, in particular by ultrasonic welding, for example at frequencies in the range of 19 to 25 kHz or in the range of 40 to 70 kHz.
  • Bonding layer (C) may be a perforated layer, that is to say not the entire surface, of a distinct layer, preferably a hardened organic adhesive.
  • tie layer (C) is a layer in the form of dots, stripes or lattices, for example in the form of diamonds, rectangles, squares or a honeycomb structure. Then, polyurethane layer (D) comes in contact with sheet (A) or absorbent material (B) at the gaps of bonding layer (C).
  • tie layer (C) is a layer of a cured organic adhesive, for example based on polyvinyl acetate, polyacrylate or, in particular, polyurethane, preferably of polyurethanes with a glass transition temperature below 0 ° C.
  • the curing of the organic adhesive may be effected, for example, thermally, by actinic radiation or by aging.
  • bonding layer (C) is an adhesive net.
  • the bonding layer (C) has a maximum thickness of 100 ⁇ m, preferably 50 ⁇ m, more preferably 30 ⁇ m, most preferably 15 ⁇ m.
  • tie layer (C) may include hollow microspheres.
  • hollow microspheres are spherical particles having an average diameter in the range from 5 to 20 ⁇ m of polymeric material, in particular of halogenated polymer such as, for example, polyvinyl chloride or polyvinylidene chloride or copolymer of vinyl chloride with vinylidene chloride.
  • Hollow microspheres can be empty or preferably filled with a substance whose boiling point is slightly lower than the room temperature, for example with n-butane and especially with isobutane.
  • polyurethane layer (D) may be bonded to sheet (A) or absorbent material (B) via at least two tie layers (C) having the same or different composition, such that the polyurethane layer (D ) comes into direct contact with fabric (A) or with absorbent material (B) at at least one location.
  • one bonding layer (C) may contain one pigment and the other bonding layer (C) may be pigment-free.
  • one connecting layer (C) may contain hollow microspheres and the other connecting layer (C) may not.
  • the multilayer composite material according to the invention can have no further layers.
  • the multilayer composite material according to the invention comprises at least one intermediate layer (E) between absorbent material (B) and bonding layer (C), between bonding layer (C) and polyurethane layer (D) or between two bonding layers (C). , which may be the same or different, lies.
  • Intermediate layer (E) is selected from tex- til, paper, nonwovens, nonwovens of synthetic materials such as polypropylene or polyurethane, in particular nonwoven thermoplastic polyurethane, synthetic leather and open-cell foam, for example melamine-formaldehyde foam or polyurethane foam.
  • intermediate layer (E) may have an average diameter (thickness) in the range of 0.05 mm to 5 cm, preferably 0.1 mm to 0.5 cm, particularly preferably 0.2 mm to 2 mm.
  • intermediate layer (E) has a water vapor permeability in the range of greater than 1, 5 mg / cm 2 -h, measured according to DIN 53333.
  • Multilayer composite materials according to the invention have a high mechanical strength and fastness properties. Furthermore, they have a high water vapor permeability. In addition, multilayer composite materials according to the invention have a pleasing appearance and a very pleasant soft feel. In addition, if desired, the combination of fabric (A) and absorbent material (B) is easily replaced, for example, by severing and then attaching a new combination of fabric (A) and absorbent material (B).
  • inventive multilayer composite material for example, in seats for means of transport such as boats, automobiles, aircraft, railways, trams, buses and especially in child seats.
  • multilayer composite material according to the invention can advantageously be used, for example in steering wheels, armrests, headliners, interior trim pieces, center consoles, parcel shelves and dashboards.
  • multilayer composite material according to the invention can advantageously be used for room climate management.
  • the room climate management is effected by the fact that multi-layer composite materials according to the invention absorb (absorb) moisture in a humid environment and release (desorb) in a dry environment, thus being able to ensure a uniformly humid climate.
  • multilayer composite materials according to the invention are sports articles, for example sports bags, rucksacks, rackets such as, for example, tennis or hockey sticks, sports shoes and the inside of helmets.
  • Another use of multilayer composites of the invention are electrical devices and their packaging, such as mobile phones and mobile phone cases, game consoles, computer keyboards.
  • Another use for multilayer composite materials according to the invention are furniture, such as sofas, reclining furniture such as chairs, armchairs and chairs.
  • Another use for composite materials according to the invention are elements for the Interior of buildings, such as curtains, curtains and wall coverings.
  • a further subject of the present invention is a process for the production of multilayer composite materials according to the invention, also referred to in the context of the present invention as a production process according to the invention.
  • the procedure is such that material (B) which can absorb water or aqueous liquids, also referred to as absorbent material (B) for short, is joined to a fabric (A), preferably to a textile fabric (A) in that a polyurethane layer (D) is formed by means of a matrix, at least one organic adhesive is applied over all or part of the sheet (A) and / or polyurethane layer (D) bonded to the absorbent material (B), and then polyurethane layer (D) is applied the area combined with material (B) sheet (A) connects point-like, strip-like or flat.
  • absorbent material (B) is a superabsorbent (B).
  • Sheet (A) is preferably a textile fabric (A).
  • the multilayer composite material of the present invention is prepared by a coating process by first preparing a combination of sheet (A) and absorbent material (B), further providing a polyurethane film (D), at least the combination of absorbent material (B ) and sheet (A) or the polyurethane film (D) or both on each surface partially, for example, pattern-coated, with organic adhesive and then brings the two surfaces into contact. Then you can still press the system so available together or thermally treated or pressed together with heating.
  • the polyurethane film (D) forms the later polyurethane layer (D) of the multilayer composite material according to the invention.
  • the polyurethane film (D) can be prepared as follows.
  • aqueous polyurethane dispersion is applied to a die which is preheated, allowing the water to evaporate, and thereafter transferring the resulting polyurethane film (D) to the combination of sheet (A) and absorbent material (B).
  • the application of aqueous polyurethane dispersion on the die can be carried out by methods known per se, in particular by spraying, for example with a spray gun.
  • the matrix may have a pattern, also called structuring, which is produced for example by laser engraving or by molding.
  • a die which has an elastomeric layer or a layer composite comprising an elastomeric layer on a support, wherein the elastomeric layer comprises a binder and optionally further additives and auxiliaries.
  • the provision of a template may then include the following steps:
  • a support for example a metal plate or a metal cylinder.
  • the procedure is to apply a liquid silicone to a pattern that ages and thus hardens silicone and then peels it off.
  • the silicone film is then glued on an aluminum carrier.
  • a die which has a laser-engravable layer or a layer composite comprising a laser-engravable layer on a support, wherein the laser-engravable layer comprises a binder and optionally further additives and auxiliaries.
  • the laser-engravable layer is also preferably elastomeric.
  • the provision of a template comprises the following steps:
  • thermochemical, photochemical or actinic amplification of the laser-engravable layer 3) engraving a surface structure corresponding to the surface structure of the surface-structured coating into the laser-engravable layer with a laser.
  • the laser-engravable layer which is preferably elastomeric, or the layer composite can be present on a support, preferably they are present on a support.
  • suitable supports include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyethylene, polypropylene, polyamide or polycarbonate fabrics and films, preferably PET or PEN films.
  • a carrier papers and knitted fabrics such as cellulose.
  • suitable for sleeves are glass fiber fabrics or composite materials made of glass fibers and polymeric materials.
  • metallic carriers such as, for example, solid or tissue-shaped, flat or cylindrical carriers made of aluminum, steel, magnetizable spring steel or other iron alloys.
  • the support may be coated with an adhesive layer for better adhesion of the laser-engravable layer. In another embodiment of the present invention, no adhesive layer is required.
  • the laser-engravable layer comprises at least one binder, which may be a prepolymer, which reacts to a polymer in the course of a thermochemical reinforcement.
  • Suitable binders can be selected depending on the desired properties of the laser-engravable layer or the matrix, for example with regard to hardness, elasticity or flexibility. Suitable binders can be subdivided essentially into 3 groups, without the binders being intended to be limited thereto.
  • the first group includes such binders having ethylenically unsaturated groups.
  • the ethylenically unsaturated groups can be crosslinked photochemically, thermochemically, by means of electron beams or with any combination of these processes.
  • a mechanical reinforcement can be made by means of fillers.
  • Such binders are, for example, those which comprise copolymerized 1,3-diene monomers, such as isoprene or 1,3-butadiene.
  • the ethylenically unsaturated group can function once as a chain building block of the polymer (1, 4-incorporation), or it can be bound as a side group (1, 2-incorporation) to the polymer chain.
  • Examples include natural rubber, polybutadiene, polyisoprene, styrene-butadiene rubber, nitrile-butadiene rubber, acrylonitrile-butadiene-styrene (ABS) copolymer, butyl rubber, styrene-isoprene rubber, polychloroprene, polynorbornene rubber, ethylene Propylene-diene rubber (EPDM) or polyurethane elastomers having ethylenically unsaturated groups.
  • Other examples include thermoplastic elastomeric block copolymers of alkenyl aromatics and 1,3-dienes. The block copolymers may be either linear block copolymers or radial block copolymers.
  • ABA-type triblock copolymers usually ABA-type triblock copolymers, but they can also be AB-type diblock polymers, or those having a plurality of alternating elastomeric and thermoplastic blocks, eg ABABA. It is also possible to use mixtures of two or more different block copolymers. Commercially available triblock copolymers often contain certain proportions of diblock copolymers. Diene units can be 1, 2, or 1, 4 linked. Both block copolymers of styrene-butadiene and of styrene-isoprene type can be used. They are available, for example under the name Kraton ® commercially. Furthermore possible to employ thermoplastic-elastomeric block copolymers having end blocks of styrene and a random styrene-butadiene middle block, which are available under the name Styroflex ®.
  • ethylenically unsaturated binder examples include modified binders in which crosslinkable groups are introduced into the polymeric molecule by grafting reactions.
  • the second group includes such binders having functional groups.
  • the functional groups can be thermochemically crosslinked by means of electron beams, photochemically or with any combination of these processes.
  • a mechanical reinforcement can be made by means of fillers.
  • suitable functional groups include -Si (HR 1 ) O-, -Si (R 1 R 2 ) O-, -OH, -NH 2 , -NHR 1 , -COOH, -COOR 1 , -COHN 2 , -O- C (O) NHR 1 , -SO 3 H or -CO-.
  • binders include silicone elastomers, acrylate rubbers, ethylene-acrylate rubbers, ethylene-acrylic acid rubbers or ethylene-vinyl acetate rubbers and their partially hydrolyzed derivatives, thermoplastic elastomeric polyurethanes, sulfonated polyethylenes or thermoplastic elastomeric polyesters.
  • R 1 and, if present, R 2 are different or preferably identical and selected from organic groups and in particular C 1 -C 6 -alkyl.
  • binders which have both ethylenically unsaturated groups and functional groups.
  • examples include addition-crosslinking silicone elastomers having functional and ethylenically unsaturated groups, copolymers of butadiene with (meth) acrylates, (meth) acrylic acid or acrylonitrile, and also copolymers or block copolymers of butadiene or isoprene with functionalized styrene derivatives, for example block copolymers of butadiene and hydroxystyrene.
  • the third group of binders includes those which have neither ethylenically unsaturated groups nor functional groups. These include, for example, polyolefins or ethylene / propylene elastomers or products obtained by hydrogenation of diene units, such as, for example, SEBS rubbers.
  • Polymer layers which contain binders without ethylenically unsaturated or functional groups generally have to be reinforced mechanically, with the aid of high-energy radiation or a combination thereof, in order to enable optimum sharp-edged structuring by means of laser.
  • binders which may be both binders from in each case only one of the groups described, or mixtures of binders from two or all three groups.
  • the possible combinations are limited only insofar as the suitability of the polymer layer for the laser structuring process and the molding process must not be adversely affected.
  • a mixture of at least one elastomeric binder which has no functional groups can advantageously be used with at least one further binder which has functional groups or ethylenically unsaturated groups.
  • the proportion of the binder (s) in the elastomeric layer or laser-engravable layer is from 30% by weight to 99% by weight relative to the sum of all the constituents of the elastomeric layer or laser-engravable layer concerned, preferably 40 to 95 wt .-%, and most preferably 50 to 90 wt .-%.
  • polyurethane layer (D) is formed by means of a silicone matrix.
  • silicone matrices are those matrices which are prepared using at least one binder which has at least one, preferably at least three O-Si (R 1 R 2 ) -O- groups per molecule, the variables being as defined above are.
  • the elastomeric layer or laser-engravable layer may comprise reactive low molecular weight or oligomeric compounds.
  • Oligomeric compounds generally have a molecular weight of not more than 20,000 g / mol. Reactive low molecular weight and oligomeric compounds will hereinafter be referred to as monomers for the sake of simplicity.
  • monomers can be added in order to increase the rate of photochemical or thermochemical crosslinking or crosslinking by means of high-energy radiation, if desired.
  • binders from the first and second groups the addition of monomers to the Acceleration generally not mandatory.
  • binders from the third group the addition of monomers is generally recommended, without this necessarily being necessary in every case.
  • monomers can also be used to control the crosslink density. Depending on the nature and amount of the low molecular weight compounds added, further or narrower networks are obtained.
  • monomers on the one hand known ethylenically unsaturated monomers can be used.
  • the monomers should be substantially compatible with the binders and have at least one photochemically or thermochemically reactive group. They should not be volatile.
  • the boiling point of suitable monomers is preferably at least 150 ° C.
  • Examples include n-butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol diacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, dipropylene glycol diacrylate, tripropyric acid. glycol diacrylate, dioctyl fumarate, N-dodecyl maleimide and triallyl isocyanurate.
  • thermochemical reinforcement monomers include reactive low molecular weight silicones such as cyclic siloxanes, Si-H-functional siloxanes, siloxanes with alkoxy or ester groups, sulfur-containing siloxanes and silanes, dialcohols such as 1, 4-butanediol, 1, 6-hexanediol, 1, 8-octanediol, 1, 9-nonanediol, diamines such as 1, 6-hexanediamine, 1, 8-octanediamine, amino alcohols such as ethanolamine, diethanolamine, butylethanolamine, dicarboxylic acids such as 1, 6-hexanedicarboxylic acid, terephthalic acid , Maleic acid or fumaric acid.
  • reactive low molecular weight silicones such as cyclic siloxanes, Si-H-functional siloxanes, siloxanes with alkoxy or ester groups, sulfur-containing siloxanes and silanes, dialcohols such as 1, 4-
  • monomers which have both ethylenically unsaturated groups and functional groups are also possible to use monomers which have both ethylenically unsaturated groups and functional groups.
  • ⁇ -hydroxyalkyl (meth) acrylates such as ethylene glycol mono (meth) acrylate, 1, 4-butanediol mono (meth) acrylate or 1, 6-hexanediol mono (meth) acrylate.
  • the amount of added monomers 0 to 40 wt .-% with respect to the amount of all components of the elastomeric layer or the laser-engravable layer concerned, preferably 1 to 20 wt .-%.
  • one or more monomers may be employed with one or more catalysts. So it is possible to make silicone matrices by adding one or more acids or by organotin compounds to accelerate the step 2) of providing the template.
  • Suitable organotin compounds may be: di-n-butyltin dilaurate, di-n-butyltin diactanoate, di-n-butyltin di-2-ethylhexanoate, di-n-octyltin di-2-ethylhexanoate and di-n-butylbis (1-oxoneodecyloxy) stannane.
  • the elastomeric layer or the laser-engravable layer may further comprise additives and auxiliaries, for example IR absorbers, dyes, dispersing aids, antistatic agents, plasticizers or abrasive particles.
  • additives and auxiliaries for example IR absorbers, dyes, dispersing aids, antistatic agents, plasticizers or abrasive particles.
  • the amount of such additives and auxiliaries should as a rule not exceed 30% by weight with respect to the amount of all components of the elastomeric layer or the relevant laser-engravable layer.
  • the elastomeric layer or the laser-engravable layer can be constructed from a plurality of individual layers. These individual layers can be of the same, approximately the same or different material composition.
  • the thickness of the laser-engravable layer or all individual layers together is generally between 0.1 and 10 mm, preferably 0.5 to 3 mm. The thickness can be suitably selected depending on application and machine process parameters of the laser engraving process and the molding process.
  • the elastomeric layer or the laser-engravable layer may optionally further comprise a top layer having a thickness of not more than 300 ⁇ m.
  • the composition of such a topsheet can be selected for optimal engravability and mechanical stability while selecting the composition of the underlying layer for optimum hardness or elasticity.
  • the topsheet itself is laser engravable or can be removed by laser engraving together with the underlying layer.
  • the topsheet comprises at least one binder. It may further comprise an absorber for laser radiation or even monomers or auxiliaries.
  • the silicone matrix is a laser-engraved silicone matrix.
  • thermoplastic elastomeric binders or silicone elastomers are used for the process according to the invention.
  • the preparation is preferably carried out by extrusion between a carrier film and a cover film or a cover element followed by calendering, as disclosed, for example, for flexographic printing elements in EP-A 0 084 851. In this way even thicker layers can be produced in a single work make a gear. Multilayer elements can be produced by coextrusion.
  • the laser-engravable layer before laser engraving by heating (thermochemically), by irradiation with UV light (photochemically) or by irradiation with energy ( actinic) or any combination thereof.
  • the laser-engravable layer or the layer composite is applied to a cylindrical (temporary) support, for example made of plastic, glass fiber reinforced plastic, metal or foam, for example by means of adhesive tape, negative pressure, clamping devices or magnetic force, and engraved as described above.
  • a cylindrical (temporary) support for example made of plastic, glass fiber reinforced plastic, metal or foam, for example by means of adhesive tape, negative pressure, clamping devices or magnetic force, and engraved as described above.
  • the plane layer or the layer composite can also be engraved as described above.
  • the laser engravable layer is washed with a round washer or a continuous washer with a debris removal cleaner.
  • the die can be produced as a negative die or as a positive die.
  • the matrix has a negative structure, so that the coating connectable to the sheet (A) and absorbent material (B) can be obtained directly by applying a liquid plastic material to the surface of the matrix and then solidifying the polyurethane ,
  • the die has a positive structure, so that first a negative die is produced by molding of the laser-structured positive die.
  • the coating which can be bonded to a flat support can then be obtained from this negative die by applying a liquid plastic material to the surface of the negative die and then solidifying the plastic material.
  • structural elements having dimensions in the range from 10 to 500 ⁇ m are engraved into the matrix.
  • the structural elements may be formed as elevations or depressions.
  • the structural elements have a simple geometric shape and are, for example, circles, ellipses, squares, diamonds, triangles and stars.
  • the structural elements can form a regular or irregular grid. Examples are a classical dot matrix or a stochastic screen, for example a frequency-modulated screen.
  • cells are introduced into the matrix having an average depth in the range from 50 to 250 ⁇ m and a center distance in the range from 50 to 250 ⁇ m.
  • the die may be engraved to have "cups" (depressions) having a diameter in the range of 10 to 500 microns at the surface of the die
  • the diameter at the die surface is 20 to 250 microns and more particularly
  • the spacing of the wells may be, for example, 10 to 500 ⁇ m, preferably 20 to 200 ⁇ m, particularly preferably up to 80 ⁇ m.
  • the tone values of the grid are generally between 3% and 50%.
  • the die preferably still has a surface fine structure in addition to a surface coarse structure.
  • Both coarse and fine structure can be produced by laser engraving.
  • the fine structure may be, for example, a microroughness with a roughness amplitude in the range of 1 to 30 ⁇ m and a roughness frequency of 0.5 to 30 ⁇ m.
  • the dimensions of the microroughness are preferably in the range from 1 to 20 .mu.m, more preferably from 2 to 15 .mu.m, and particularly preferably from 3 to 10 .mu.m.
  • Laser engraving is especially suitable for IR lasers. However, it is also possible to use lasers with shorter wavelengths, provided the laser has sufficient intensity. For example, a frequency doubled (532nm) or frequency tripled (355nm) Nd-Y AG laser can be used, or even an excimer laser (e.g., 248nm). For laser engraving, for example, a CO 2 laser with a wavelength of 10640 nm can be used. Particular preference is given to using lasers having a wavelength of 600 to 2000 nm. For example, Nd-Y AG lasers (1064 nm), IR diode lasers or solid-state lasers can be used. Particularly preferred are Nd / YAG lasers.
  • the image information to be engraved is transmitted directly from the lay-out computer system to the laser apparatus. The lasers can be operated either continuously or pulsed.
  • the template obtained can be used directly after production. If desired, the resulting template can still be cleaned. By such a cleaning step detached, but not yet completely removed from the surface layer components are removed.
  • simple treatment with water, water / surfactant, alcohols or inert organic cleaning agents is sufficient, which are preferably low in swelling.
  • an aqueous formulation of polyurethane is applied to the matrix.
  • the application can preferably be effected by spraying.
  • the matrix should be heated when applying the formulation of polyurethane, for example to temperatures of at least 80 0 C, preferably at least 90 0 C.
  • the water from the aqueous formulation of polyurethane evaporates and forms the capillaries in the solidifying polyurethane layer.
  • aqueous in connection with the polyurethane dispersion, is meant that it contains water, but less than 5% by weight, based on the dispersion, preferably less than 1% by weight of organic solvent. Most preferably, no volatile organic solvent can be detected.
  • Volatile organic sol- vents are understood to be organic solvent in the present invention, which have a boiling point of up to 200 0 C at atmospheric pressure.
  • the aqueous polyurethane dispersion may have a solids content in the range from 5 to 60 wt .-%, preferably 10 to 50 wt .-% and particularly preferably 25 to 45 wt .-%.
  • Polyurethanes are well known, commercially available and generally consist of a soft phase of higher molecular weight polyhydroxyl compounds, e.g. polycarbonate, polyester or polyether segments, and a urethane
  • Hard phase formed from low molecular weight chain extenders and di- or polyisocyanates.
  • isocyanate-reactive compounds usually having a molecular weight (Mw) of 500 to 10,000 g / mol, preferably 500 to 5,000 g / mol, more preferably 800 to 3,000 g / mol, and (c) chain extenders having a molecular weight of 50 to 499 g / mol, optionally in the presence of
  • the starting components and processes for the preparation of the preferred polyurethanes (PU) are set forth.
  • the components (a), (b), (c) and optionally (d) and / or (e) usually used in the preparation of the polyurethanes (PU) are described below by way of example:
  • isocyanates (a) it is possible to use generally known aliphatic, cycloaliphatic, araliphatic and / or aromatic isocyanates, for example tri-, tetra-, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2-methylpentamethylene diisocyanate-1, 5, 2-ethyl-butylene-diisocyanate-1, 4, pentamethylene-diisocyanate-1, 5, butylene-diisocyanate-1, 4, 1-isocyanato-3,3,5-trimethyl-5- isocyanato-methyl-cyclohexane (isophorone diisocyanate, IPDI), 1, 4- and / or 1, 3-bis (isocyanatomethyl) cyclohexane (HXDI), 1, 4-cyclohexane diisocyanate, 1-methyl-2,4- and / or -2, 6-cyclohexane diis
  • 4,4'-MDI is used.
  • aliphatic diisocyanates in particular hexamethylene diisocyanate (HDI)
  • aromatic diisocyanates such as 2,2'-, 2,4'- and / or 4,4'-diphenylmethane diisocyanate (MDI) and mixtures of the above-mentioned isomers.
  • isocyanate-reactive compounds (b) it is possible to use the generally known isocyanate-reactive compounds, for example polyesterols, polyetherols and / or polycarbonatediols, which are usually also grouped under the term "polyols", with molecular weights (M w ) in the region of 500 and 8,000 g / mol, preferably 600 to 6,000 g / mol, in particular 800 to 3,000 g / mol, and preferably an average functionality to isocyanates of 1, 8 to 2.3, preferably 1, 9 to 2.2, in particular 2.
  • polyesterols polyetherols and / or polycarbonatediols
  • M w molecular weights
  • Polyether polyols are preferably used, for example those based on generally known starter substances and customary alkylene oxides, for example ethylene oxide, 1,2-propylene oxide and / or 1,2-butylene oxide, preferably polyetherols based on polyoxytetramethylene (polyTHF), 1 , 2-propylene oxide and ethylene oxide.
  • Polyetherols have the advantage that they have a higher hydrolytic stability than polyesterols, and are preferably as component (b), in particular for the production of soft polyurethanes polyurethane (PU 1).
  • Particularly suitable polycarbonate diols are aliphatic polycarbonate diols, for example 1,4-butanediol polycarbonate and 1,6-hexanediol polycarbonate.
  • polyester diols are those mentioned by polycondensation of at least one primary diol, preferably at least one primary aliphatic diol, for example ethylene glycol, 1, 4-butanediol, 1, 6-hexanediol, neopentyl glycol or more preferably 1, 4-dihydroxymethylcyclohexane (as Mixture of isomers) or mixtures of at least two of the aforementioned diols on the one hand and at least one, preferably at least two dicarboxylic acids or their anhydrides on the other hand.
  • primary diol preferably at least one primary aliphatic diol
  • ethylene glycol 1, 4-butanediol, 1, 6-hexanediol, neopentyl glycol or more preferably 1, 4-dihydroxymethylcyclohexane (as Mixture of isomers) or mixtures of at least two of the aforementioned diols on the one hand and at least one, preferably
  • Preferred dicarboxylic acids are aliphatic dicarboxylic acids such as adipic acid, glutaric acid, succinic acid and aromatic dicarboxylic acids such as phthalic acid and in particular isophthalic acid.
  • Polyetherols are preferably by addition of alkylene oxides, in particular ethylene oxide, propylene oxide and mixtures thereof, of diols such as ethylene glycol, 1, 2-propylene glycol, 1, 2-butylene glycol, 1, 4-butanediol, 1, 3-propanediol, or at Triols such as glycerin, prepared in the presence of highly active catalysts.
  • Such highly active catalysts include cesium hydroxide and dimetal cyanide catalysts, also referred to as DMC catalysts.
  • DMC catalysts include cesium hydroxide and dimetal cyanide catalysts, also referred to as DMC catalysts.
  • a frequently used DMC catalyst is zinc hexacyanocobaltate.
  • the DMC catalyst can be left in the polyetherol after the reaction, preferably it is removed, for example by sedimentation or filtration.
  • isocyanate-reactive compounds proportionately one or more diols or diamines having a carboxylic acid group or sulfonic acid group (b '), in particular alkali metal or ammonium salts of 1, 1-dimethylolbutanoic, 1, 1-dimethylolpropionic or
  • Chain extenders (c) used are aliphatic, araliphatic, aromatic and / or cycloaliphatic compounds having a molecular weight of 50 to 499 g / mol and at least two functional groups, preferably compounds having exactly two functional groups per molecule, known per se -
  • diamines and / or alkanediols having 2 to 10 carbon atoms in the alkylene radical in particular 1, 3-propanediol, butanediol-1, 4, hexanediol-1, 6 and / or di-, tri-, tetra-, penta-, Hexa, hepta, octa, nona and / or Dekaalkylenglykole having 3 to 8 carbon atoms per molecule, preferably corresponding oligo- and / or polypropylene glycols, whereby mixtures of chain extenders (c) can be used.
  • components (a) to (c) are difunctional compounds, i. Diisocyanates (a), difunctional polyols, preferably polyetherols (b) and difunctional chain extenders, preferably diols.
  • Suitable catalysts (d), which in particular accelerate the reaction between the NCO groups of the diisocyanates (a) and the hydroxyl groups of the synthesis components (b) and (c), are known per se tertiary amines, such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine , N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) ethanol, diazabicyclo- (2,2,2) octane ("DABCO”) and the like tertiary amines, and in particular organic metal compounds such as titanic acid esters, iron compounds such. For example, iron (III) acetylacetonate, tin compounds, e.g.
  • tin diacetate As tin diacetate, tin dioctoate, tin dilaurate or Zinndialkylsalze aliphatic carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate or the like.
  • the catalysts are usually used in amounts of from 0.0001 to 0.1 parts by weight per 100 parts by weight of component (b).
  • auxiliaries and / or additives (e) can also be added to components (a) to (c).
  • components (a) to (c) are blowing agents, anti-blocking agents, surface-active substances, fillers, for example nanoparticle-based fillers, in particular fillers based on CaCC 3, nucleating agents, lubricants, dyes and pigments, antioxidants, for example against hydrolysis, light, heat or discoloration
  • component (e) also includes hydrolysis stabilizers such as, for example, polymeric and low molecular weight carbodiimides
  • the soft polyurethane contains triazole and / or triazole derivative and antioxidants in one From 0.1 to 5% by weight, based on the total weight of the relevant soft polyurethane, antioxidants are generally suitable substances which inhibit or prevent undesired oxidative processes in the plastic to be protected commercially available.
  • antioxidants are hindered phenols, aromatic amines, thiosynergists, trivalent phosphorus organophosphorus compounds, and hindered amine light stabilizers.
  • examples of sterically hindered phenols can be found in Plastics Additive Handbook, 5th edition, H. Zweifel, ed, Hanser Publishers, Kunststoff, 2001 ([1]), pp. 98-107 and pp.116-p121 aromatic amines can be found in [1] pp. 107-108.
  • thiosynergists are given in [1], p.104-105 and p.112-1 13.
  • Examples of phosphites can be found in [1], p.109-112.
  • antioxidants examples include hindered amine light stabilizers.
  • phenolic antioxidants are preferred.
  • the antioxidants in particular the phenolic antioxidants, have a molecular weight of greater than 350 g / mol, more preferably greater than 700 g / mol and a maximum molecular weight (M w ) of at most 10,000 g / mol, preferably up to a maximum of 3,000 g / mol on.
  • M w maximum molecular weight
  • they preferably have a melting point of at most 180 0 C.
  • advertising the preferred antioxidants used which are amorphous or liquid.
  • component (e) mixtures of two or more antioxidants may be used.
  • chain regulators chain terminators
  • chain regulators chain terminators
  • Such chain regulators are compounds which have only one isocyanate-reactive functional group. such as monofunctional alcohols, monofunctional amines and / or monofunctional polyols.
  • chain regulators can generally be used in an amount of 0 to 5, preferably 0.1 to 1, parts by weight, based on 100 parts by weight of component (b), and fall by definition under component (c).
  • crosslinking agents having two or more isocyanate-reactive groups towards the end of the synthesis reaction, for example hydrazine hydrate.
  • components (b) and (c) can be selected in relatively wide molar ratios. Molar ratios of component (b) to total chain extenders (c) of 10: 1 to 1:10, in particular from 1: 1 to 1: 4, have proven useful, the hardness of the soft polyurethanes increasing with increasing content of (c ) increases.
  • the reaction for the preparation of polyurethane (PU) may be at a ratio of 0.8 to 1, 4: 1, preferably at a ratio of 0.9 to 1, 2: 1, more preferably at a ratio of 1, 05 to 1 , 2: 1.
  • the index is defined by the ratio of the total isocyanate groups used in the reaction of component (a) to the isocyanate-reactive groups, i. the active hydrogens, the components (b) and optionally (c) and optionally monofunctional isocyanate-reactive components as chain terminators such as e.g. Monoalcohols.
  • polyurethane (PU) can be carried out continuously by processes known per se, for example by one-shot or the prepolymer process, or batchwise by the prepolymer process known per se.
  • the reacting components (a), (b), (c) and optionally (d) and / or (e) may be mixed together successively or simultaneously with the reaction starting immediately.
  • Polyurethane (PU) can be dispersed in water by methods known per se, for example by dissolving polyurethane (PU) in acetone or preparing it as a solution in acetone, adding water and then removing the acetone, for example by distilling off.
  • polyurethane (PU) is prepared as a solution in N-methylpyrrolidone or N-ethylpyrrolidone, water is added and the N-methylpyrrolidone or N-ethylpyrrolidone is removed.
  • aqueous dispersions according to the invention comprise two different polyurethanes polyurethane (PU 1) and polyurethane (PU 2), of which polyurethane (PU 1) is a so-called soft polyurethane is, which is constructed as described above as polyurethane (PU), and at least one hard polyurethane (PU2).
  • PU 1 polyurethane
  • PU 2 polyurethane
  • Hard polyurethane (PU2) can in principle be prepared analogously to soft polyurethane (PU 1), but other isocyanate-reactive compounds (b) or other mixtures of isocyanate-reactive compounds (b) are also used in the context of the present invention Isocyanate-reactive compounds (b2) or abbreviated to compound (b2).
  • Examples of compounds (b2) are in particular 1, 4-butanediol, 1, 6-hexanediol and neopentyl glycol, either in admixture with one another or in admixture with polyethylene glycol.
  • mixtures of diisocyanates for example mixtures of HDI and IPDI, are selected as the diisocyanate (a) and polyurethane (PU2), larger amounts of IPDI being selected for the preparation of hard polyurethane (PU2) than for production of soft polyurethane (PU1).
  • polyurethane has a Shore A hardness in the range of more than 60 to a maximum of 100, the Shore hardness A according to DIN 53505 being determined after 3 seconds.
  • polyurethane has a mean particle diameter in the range of 100 to 300 nm, preferably 120 to 150 nm, determined by laser light scattering.
  • soft polyurethane (PU1) has an average particle diameter in the range of 100 to 300 nm, preferably 120 to 150 nm, determined by laser light scattering.
  • polyurethane has a mean particle diameter in the range from 100 to 300 nm, preferably from 120 to 150 nm, determined by laser light scattering.
  • the aqueous polyurethane dispersion may further comprise at least one curing agent, which may also be referred to as a crosslinker.
  • Suitable hardeners are compounds which can crosslink a plurality of polyurethane molecules with one another, for example during thermal activation.
  • Crosslinking agents based on trimeric diisocyanates, in particular based on aliphatic diisocyanates such as hexamethylene diisocyanate, are particularly suitable.
  • very particular preference is given to crosslinkers of the formula Ia or Ib, in the context of the present invention also referred to as compound (V), O-V, N-, O, N .0
  • R 3 , R 4 and R 5 may be different or preferably the same and are selected from A 1 -NCO and A 1 -NH-CO-X, wherein
  • a 1 is a spacer having 2 to 20 carbon atoms, selected from arylene, unsubstituted or substituted by one to four C 1 -C 4 -alkyl groups, alkylene and cycloalkylene, for example 1, 4-cyclohexylene.
  • Preferred spacers A 1 are phenylene, in particular para-phenylene, furthermore toluene, especially para-toluylene, and C 2 -C 12 -alkylene, such as ethylene (CH 2 CH 2 ), furthermore - (CH 2 ) 3 -, - (CH 2 ) 4 -, - (CH 2 ) 5 -, - (CH 2 ) 6 -, - (CH 2 ) 8 -, - (CH 2 ) io-,
  • X is chosen 0 (AO) x R 6 , where
  • AO is C 2 -C 4 -alkylene oxide, for example butylene oxide, in particular ethylene oxide (CH 2 CH 2 O) or propylene oxide (CH (CH 3 ) CH 2 O) or (CH 2 CH (CH 3 ) O),
  • x is an integer in the range of 1 to 50, preferably 5 to 25, and
  • R 6 is selected from hydrogen and C 1 -C 30 -alkyl, in particular C 1 -C 10 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl, neo-pentyl, 1,2-dimethylpropyl, iso-amyl, n-hexyl, iso-hexyl, sec-hexyl, n-heptyl, n-octyl, 2-ethylhexyl , n-nonyl, n-decyl, more preferably C1-C4 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-buty
  • Particularly preferred compounds (V) are those in which R 3 , R 4 and R 5 are each the same (CH 2 ) 4 -NCO, (CH 2 ) 6 -NCO or (CH 2 ) i 2 -NCO.
  • Aqueous polyurethane dispersions may contain other ingredients, for example
  • silicone compound (f) a silicone compound having reactive groups, also called silicone compound (f) in the present invention.
  • reactive groups in connection with silicone compounds (f) are, for example, carboxylic acid groups, carboxylic acid derivatives such as, for example, carboxylic acid methyl esters or carboxylic anhydrides, in particular succinic anhydride groups, and particularly preferably carboxylic acid groups.
  • reactive groups are further primary and secondary amino groups, for example NH (iso-C3H 7) groups, NH (n-C3H 7) groups, NH (cyclo-C6Hn) - groups, and NH (n-C4H9) groups, particularly NH (C2H 5) groups, and NH (CH 3) - groups, and most preferably NH 2 groups.
  • NH (iso-C3H 7) groups for example NH (iso-C3H 7) groups, NH (n-C3H 7) groups, NH (cyclo-C6Hn) - groups, and NH (n-C4H9) groups, particularly NH (C2H 5) groups, and NH (CH 3) - groups, and most preferably NH 2 groups.
  • aminoalkylamino preferably such as -NH-CH 2 -CH 2 -NH 2 groups, -NH-CH2-CH 2 -CH 2 NH 2 groups, -NH-CH 2 -CH 2 -NH (C 2 H 5 ) Groups, -NH-CH 2 -CH 2 -CH 2 -NH (C 2 H 5 ) groups, -NH-CH 2 -CH 2 -NH (CH 3 ) groups, -NH-CH 2 -CH 2 -CH 2 -NH (CH 3 ) groups.
  • a 2 is selected from arylene, unsubstituted or substituted by one to four C 1 -C 4 -alkyl groups, alkylene and cycloalkylene such as 1, 4-cyclohexylene.
  • Preferred spacers A 2 are phenylene, in particular para-phenylene, furthermore toluene, in particular para-toluylene, and C 2 -C 18 -alkylene, such as ethylene (CH 2 CH 2 ), furthermore - (CH 2 ) 3 -, - (CH 2 ) 4-, - (CH2) S-, - (CH 2 J 6 -, - (CH 2) S-, - (CH2) io-, - (CH2) i2-, - (CH 2) i 4 -, - (CH 2 ) 16 - and - (CH 2 ) i 8 -.
  • ethylene CH 2
  • C 2 -C 18 -alkylene such as ethylene (CH 2 CH 2 ), furthermore - (CH 2 ) 3 -, - (CH 2 ) 4-, - (CH2) S-, - (CH 2 J 6 -, - (CH 2) S-, - (CH2) io-,
  • silicone compound (f) contains non-reactive groups, in particular di-C 1 -C 10 -alkyl-SiO 2 groups or phenyl-C 1 -C 10 -alkyl-SiO 2 -
  • Groups in particular dimethyl-SiO 2 groups, and optionally one or more Si (CH 3 ) 2 -OH groups or Si (CH 3 ) 3 groups.
  • silicone compound (f) has on average one to four reactive groups per molecule.
  • silicone compound (f) has on average one to four COOH groups per molecule.
  • silicone compound (f) has on average one to four amino groups or aminoalkylamino groups per molecule.
  • Silicone compound (f) has catenated or branched Si-O-Si units.
  • silicone compound (f) has a molecular weight M n in the range of 500 to 10,000 g / mol, preferably up to 5,000 g / mol.
  • silicone compound (f) has a plurality of reactive groups per molecule, these reactive groups may be bonded directly or via spacer A 2 via several Si atoms or in pairs via the same Si atom to the Si-O-Si chain.
  • the reactive groups or the reactive group can be bonded to one or more of the terminal Si atoms of silicone compound (f) - directly or via spacer A 2 .
  • the reactive group or groups are bonded to one or more of the non-terminal Si atoms of silicone compound (f) - directly or via spacer A 2 -.
  • aqueous polyurethane dispersion furthermore comprises a polydi-C 1 -C 4 -alkylsiloxane (g) which has neither amino groups nor COOH groups, preferably a polydimethylsiloxane, in the context of the present invention also briefly polydialkylsiloxane (g) or polydimethylsiloxane ( g) called.
  • C 1 -C 4 -alkyl in polydialkylsiloxane (g) can be different or preferably identical and selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl where unbranched C 1 -C 4 -alkyl is preferred, particularly preferred is methyl.
  • Polydialkylsiloxane (g) and preferably polydimethylsiloxane (g) are preferably unbranched polysiloxanes with Si-O-Si chains or those polysiloxanes which have up to 3, preferably at most one branch per molecule.
  • Polydialkylsiloxane (D) and in particular polydimethylsiloxane (g) may have one or more Si (C 1 -C 4 -alkyl) 2 -OH groups.
  • aqueous polyurethane dispersion contains in total in the range from 20 to 30% by weight of polyurethane (PU) or in total in the range from 20 to 30% by weight of polyurethanes (PU1) and (PU2), optionally in the range from 1 to 10, preferably from 2 to 5,% by weight of hardener, optionally in the range of from 1 to 10% by weight of silicone compound (f), in the range from zero to 10, preferably from 0.5 to 5,% by weight of polydialkylsiloxane ( G).
  • PU polyurethane
  • PU1 and PU2 polyurethanes
  • hardener optionally in the range of from 1 to 10% by weight of silicone compound (f)
  • silicone compound (f) silicone compound
  • G polydialkylsiloxane
  • aqueous polyurethane dispersion contains in the range of 10 to 30 wt .-% soft polyurethane (PU 1) and in the range of zero to 20 wt .-% hard polyurethane (PU2).
  • aqueous polyurethane dispersion has a total solids content of 5 to 60% by weight, preferably 10 to 50% by weight and more preferably 25 to 45% by weight.
  • statements in% by weight each denote the active ingredient or solid and are based on the total aqueous polyurethane dispersion.
  • the remainder to 100 wt .-% missing remainder is preferably continuous phase, for example water or a mixture of one or more organic solvents and water.
  • aqueous polyurethane dispersion contains at least one additive (h) selected from pigments, matting agents, light stabilizers, antistatic agents, antisoil, anticancer resin, thickening agents, in particular polyurethane-based thickeners, and hollow microspheres.
  • additive selected from pigments, matting agents, light stabilizers, antistatic agents, antisoil, anticancer resin, thickening agents, in particular polyurethane-based thickeners, and hollow microspheres.
  • aqueous polyurethane dispersion contains a total of up to 20% by weight of additive (h).
  • Aqueous polyurethane dispersion may also contain one or more organic solvents.
  • Suitable organic solvents are, for example, alcohols such as ethanol or isopropanol and in particular glycols, diglycols, triglycols or tetra-glycols and di- or preferably monohydric glycols, diglycols, triglycols or tetraglycols which are etherified with C 1 -C 4 -alkyl.
  • Suitable organic solvents are ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, 1,2-dimethoxyethane, methyltriethylene glycol ("methyltriglycol”) and triethylene glycol n-butyl ether (“butyltriglycol”).
  • polyurethane (PU), hardener and silicone compound (f) can be mixed with water and optionally one or more of the abovementioned organic solvents. Furthermore, if desired, it is mixed with polydialkylsiloxane (g) and additives (h). The mixing can be carried out, for example, by stirring.
  • the order of addition of polyurethane (PU), hardener, silicone compound (f) and water and optionally one or more of the abovementioned organic solvents and - if desired - polydialkylsiloxane (g) and additives (h) is arbitrary.
  • PU organic solvent polyurethane
  • PU 1 dispersed soft polyurethane
  • PU2 hard polyurethane
  • PU2 preferably with stirring, curing agent and silicone compound (f ) and, if desired, polydialkylsiloxane (g) and optionally one or more organic solvents.
  • thickening agent is added last as an example of an additive (h) and thus sets the desired viscosity of the aqueous polyurethane dispersion.
  • the polyurethane layer (D) After the polyurethane layer (D) has cured, it is separated from the matrix, for example by peeling, to obtain a polyurethane film (D) which forms the polyurethane layer (D) in the multilayer composite material according to the invention.
  • a preferably organic adhesive is applied to the polyurethane film (D) and a preferably organic adhesive to the combination of fabric (A) and absorbent material (B), the two adhesives differing, for example by one or more adhesives several additives or in that it is chemically different preferably organic adhesives.
  • polyurethane film (D) and the combination of fabric (A) and absorbent material (B) are joined so that the layer (s) of adhesive between polyurethane film (D) and the combination of fabric (A) and absorbent material (B) come to rest.
  • the adhesive or adhesives are cured, for example thermally, by actinic radiation or by aging, and obtains a multilayer composite material according to the invention.
  • an intermediate layer (E) is placed between absorbent material (B) and tie layer (C), between tie layer (C) and polyurethane layer (D) or between two tie layers (C).
  • the intermediate layer (E) is as defined above.
  • Placement can be manual or mechanical, continuous or discontinuous.
  • a further subject of the present invention is the use of multilayer composite materials according to the invention for producing seats.
  • Seats are for example seats for means of transport such as boats, automobiles, aircraft, railways, trams, buses and especially in child seats.
  • Another object of the present invention is a method for producing seats under Use of multilayer composite materials according to the invention.
  • Another object of the present invention are seats, comprising a multilayer composite material according to the invention. On surfaces of seats according to the invention, only little sweat is deposited, moisture and other liquids are absorbed.
  • multilayer composite material according to the invention can advantageously be used, for example in steering wheels, armrests, headliners, interior trim pieces, center consoles, parcel shelves and dashboards.
  • multilayer composite material according to the invention can advantageously be used for room climate management.
  • the room climate management is brought about by the fact that multi-layer composite materials according to the invention absorb (absorb) moisture in a moist environment and release (desorb) again in a dry environment, thus being able to ensure a uniformly humid climate.
  • Another object of the present invention is thus the use of multilayer composite materials according to the invention for room climate management.
  • Another object of the present invention is the use of inventive multilayer composite materials in sports articles, such as sports bags, backpacks, rackets such as tennis or hockey sticks, sports shoes and the inside of helmets.
  • Another object of the present invention is the use of multilayer composite materials according to the invention in electrical appliances and their packaging, for example mobile telephones and cases for mobile phones, game consoles, keyboards for computers.
  • Another object of the present invention is the use of multilayer composite materials according to the invention for the production of furniture, such as sofas, reclining furniture such as chairs, armchairs and chairs.
  • Another object of the present invention is the use of composite materials according to the invention as or for the production of elements for the interior of buildings, such as curtains, curtains and wall coverings.
  • aqueous dispersion 7% by weight of an aqueous dispersion (particle diameter 125 nm, solids content: 40%) of a soft polyurethane (PU1.1), prepared from hexamethylene diisocyanate (a 1.1) and isophorone diisocyanate (a1.2), were mixed with stirring in a stirred vessel. in the weight ratio 13:10 as diisocyanates and as diols a polyester diol (b1.1) having a molecular weight M w of 800 g / mol, prepared by polycondensation of isophthalic acid, adipic acid and 1, 4-dihydroxymethylcyclohexane (mixture of isomers) in a molar ratio of 1: 1: 2, 5 wt.
  • PU1.1 soft polyurethane
  • a 1.1 hexamethylene diisocyanate
  • a1.2 isophorone diisocyanate
  • aqueous dispersion Disp.1 having a solids content of 35% and a kinematic viscosity of 25 seconds at 23 ° C, determined according to DIN EN ISO 2431, as of May 1996.
  • a monomer solution was sprayed on and cured by UV radiation for 2 minutes. It was then dried for 5 minutes at 90 ° C. in a countercurrent dryer.
  • the monomer solution contained 19.6 kg of a 37.5% by weight aqueous sodium acrylate solution (corresponding to 24.5% by weight).
  • polyethylene glycol diacrylate (diacrylate of a polyethylene glycol with a middle
  • the amount of monomer solution was chosen so that the loading of the polyethylene terephthalate nonwoven (A.1) with polymerized water-absorbing polymer (B.1) was 160 g / m 2 , in short also “combination of textile fabric (A.1). and superabsorbers (B.1) "called.
  • the template from II. was placed on a heatable pad and heated to 91 0 C. The mixture was then sprayed through a spray nozzle Disp.1, namely 88 g / m 2 (wet). The application was carried out without admixing air with a spray nozzle having a diameter of 0.46 mm, at a pressure of 65 bar. It was allowed to solidify at 91 0 C until the surface was no longer sticky.
  • the spray nozzle was mobile at a height of 20 cm from the continuous base in the direction of movement thereof and moved transversely to the direction of movement of the base.
  • the pad had passed the spray nozzle after about 14 seconds and had a temperature of 59 ° C. After about two minutes exposure to dry, 85 ° C warm air, the net-looking polyurethane film (D.1) thus prepared was nearly anhydrous.
  • a die coated with polyurethane film (D.1) and tie layer (C.1) was obtained.
  • a non-woven polyurethane (E.1) 300 ⁇ m thick, 150 g / m 2 basis weight, was sprayed with a spray nozzle having a nozzle diameter of 0.52 mm under a spray angle exiting the spray nozzles from 60 ° Disp.2 to.
  • the application amount was 15 g / m 2 wet.
  • the mixture was allowed to dry for three minutes and was given a combination of bonding layer (C.2) and intermediate layer (E.1).
  • the multilayer composite material MSV.1 according to the invention thus obtained was distinguished by a pleasant feel, optics that were identical to the look of a leather surface, and breathability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention relates to a multi-layer composite material which comprises the following components: (A) a sheet material, (B) a material which is capable of absorbing water or aqueous liquids, (C) optionally at least one connecting layer, (D) a polyurethane layer having capillaries that extend through the entire thickness of the polyurethane layer, (E) and at least one intermediate layer between the combination of sheet material (A) and absorbent material (B) and the polyurethane layer (D), the intermediate layer (E) being selected from textile, paper, nonwovens, synthetic leather and open-cell foam.

Description

Mehrschichtiges Verbundmaterial, seine Herstellung und Verwendung Multilayer composite material, its manufacture and use
Die vorliegende Erfindung betrifft ein mehrschichtiges Verbundmaterial, umfassend als Komponenten: (A) ein Flächengebilde,The present invention relates to a multilayer composite material comprising as components: (A) a sheet,
(B) ein Material, welches Wasser oder wässrige Flüssigkeiten absorbieren kann,(B) a material which can absorb water or aqueous liquids,
(C) gegebenenfalls mindestens eine Verbindungsschicht,(C) optionally at least one tie layer,
(D) eine Polyurethanschicht, die Kapillaren aufweist, die über die gesamte Dicke der Polyurethanschicht gehen, (E) und mindestens eine Zwischenschicht zwischen der Kombination aus Flächengebilde (A) und absorptionsfähigem Material (B) einerseits und Polyurethanschicht (D) andererseits, wobei Zwischenschicht (E) gewählt ist aus Textil, Papier, Vliesstoffen, Kunstleder und offenzelligem Schaumstoff.(D) a polyurethane layer having capillaries extending the full thickness of the polyurethane layer, (E) and at least one intermediate layer between the combination of fabric (A) and absorbent material (B) on the one hand and polyurethane layer (D) on the other, with intermediate layer (E) is selected from textile, paper, nonwovens, artificial leather and open-cell foam.
Weiterhin betrifft die vorliegende Erfindung ein Verfahren zur Herstellung von erfindungsgemäßen mehrschichtigen Verbundmaterialien. Außerdem betrifft die vorliegende Erfindung die Verwendung von erfindungsgemäßen mehrschichtigen Verbundmaterialien, beispielsweise im Innenraum von Fahrzeugen, zur Herstellung von Sitzen und zum Raumklimamanagement.Furthermore, the present invention relates to a method for producing multilayer composite materials according to the invention. Moreover, the present invention relates to the use of multilayer composite materials according to the invention, for example in the interior of vehicles, for the production of seats and for room climate management.
Zellstofftücher können in vielen Fällen gut Wasser oder wässrige Flüssigkeiten absorbieren. Ein noch vielseitigerer Einsatz als bereits heute scheitert jedoch in vielen Fällen daran, dass feuchte Zellstofftücher unansehnlich sind und nur eine äußerst geringe mechanische Festigkeit aufweisen.Cellulose cloths can in many cases absorb water or aqueous liquids well. An even more versatile use than today, however, fails in many cases because moist cellulose cloths are unsightly and have only a very low mechanical strength.
Superabsorber, in ihrer Ausprägung als superabsorbierende Polymere (SAP) bekannt, finden Anwendung in zahlreiche Produkten, die große Mengen Flüssigkeit, insbesondere Körperflüssigkeit aufsaugen sollen, beispielsweise in Windeln. Viele dieser Produkte haben jedoch den Nachteil, dass sie von außen nicht gefällig wirken. Sie können rasch verschmutzen, beispielsweise durch Verstauben, und sehen dann schmuddelig aus. Bei vielen dieser Produkte handelt es sich daher um Wegwerfprodukte.Superabsorbents, known in their form as superabsorbent polymers (SAP), are used in numerous products intended to absorb large quantities of liquid, in particular body fluid, for example in diapers. However, many of these products have the disadvantage that they do not look pleasing from the outside. They can quickly become dirty, for example, by dusting, and then look grubby. Many of these products are disposable.
Gegen einen dauerhaften Einsatz von Superabsorbern spricht außerdem, dass diese in vielen Varianten kein gefälliges Aussehen haben.Another argument against a permanent use of superabsorbers is that they do not have a pleasing appearance in many variants.
Es bestand also die Aufgabe, ein Material bereit zu stellen, das gute Flüssigkeitsabsorbierende Eigenschaften kombiniert mit einem gefälligen Aussehen. Außerdem soll das Material äußerlich gut zu reinigen sein.It was therefore the object to provide a material that combines good fluid-absorbing properties with a pleasing appearance. In addition, the material should be good to clean externally.
Dem entsprechend wurden die eingangs definierten mehrschichtigen Verbundmaterialien gefunden. Erfindungsgemäße mehrschichtige Verbundmaterialien umfassen als KomponenteAccordingly, the above-defined multilayer composite materials were found. Multilayer composite materials according to the invention comprise as component
(A) ein Flächengebilde, beispielsweise in Form einer Folie, insbesondere einer Kunststofffolie, oder eines Schaumstoffes. Geeignete Kunststofffolien sind beispielsweise hergestellt aus Polyethylen, Polyamid, bevorzugt Polyester oder Block-Copolymeren von Styrol und 1 ,3-Butadien. Geeignete Schaumstoffe sind beispielsweise hergestellt durch Verschäumen von Polypropylen, Polyurethan, Polystyrol, jeweils mit oder ohne einem oder mehreren Zusätzen wie beispielsweise Partikeln aus Graphit.(A) a sheet, for example in the form of a film, in particular a plastic film, or a foam. Suitable plastic films are for example made of polyethylene, polyamide, preferably polyester or block copolymers of styrene and 1, 3-butadiene. Suitable foams are produced, for example, by foaming polypropylene, polyurethane, polystyrene, in each case with or without one or more additives, for example particles of graphite.
Vorzugsweise handelt es sich bei Flächengebilde (A) um ein textiles Flächengebilde, im Rahmen der vorliegenden Erfindung auch als textiles Flächengebilde (A) oder kurz als Textil (A) bezeichnet. Unter Textil (A) wird im Rahmen der vorliegenden Erfindung beispielsweise Flächengebilde wie zum Beispiel Filze, Gewebe, Gewirke, Strickwaren, Gelege, Vliesstoffe (Non-wovens) und Watten verstanden. Textil (A) kann natürlichen Ursprungs sein, beispielsweise Baumwolle, Wolle oder Flachs, oder synthetisch, beispielsweise Polyamid, Polyester, modifizierte Polyester, Polyestermischgewebe, Polyamidmischgewebe, Polyacrylnitril, Triacetat, Acetat, Polycarbonat, Polyolefine wie beispielsweise Polyethylen und Polypropylen, Polyvinylchlorid, weiterhin Mikrofasern und Mikrohohlfasern wie beispielsweise Polyestermikrofasern und Glasfasergewebe. Be- sonders bevorzugt sind Polyester, Baumwolle und Polyolefine wie beispielsweise Polyethylen und Polypropylen sowie ausgewählte Mischgewebe, gewählt aus Baumwolle- Polyester-Mischgewebe, Polyolefin-Polyester-Mischgewebe und Polyolefin-Baumwolle- Mischgewebe. Ganz besonders bevorzugte Ausführungsformen von Textil (A) sind Gewebe und Vliesstoffe aus Polyester.Sheet (A) is preferably a textile fabric, in the context of the present invention also referred to as a textile fabric (A) or, for short, as a textile (A). For the purposes of the present invention, textile (A) is understood as meaning, for example, fabrics such as felts, woven fabrics, knitted fabrics, knits, nonwovens and wadding. Textile (A) may be of natural origin, for example cotton, wool or flax, or synthetic, for example polyamide, polyester, modified polyester, polyester blend, polyamide blend, polyacrylonitrile, triacetate, acetate, polycarbonate, polyolefins such as polyethylene and polypropylene, polyvinyl chloride, furthermore microfibers and micro hollow fibers such as polyester microfibers and glass fiber fabrics. Particularly preferred are polyesters, cotton and polyolefins such as polyethylene and polypropylene, as well as selected blended fabrics selected from cotton-polyester blended fabrics, polyolefin-polyester blend fabrics, and polyolefin-cotton blended fabrics. Especially preferred embodiments of textile (A) are polyester fabrics and nonwovens.
Erfindungsgemäße mehrschichtige Verbundmaterialien umfassen weiterhinMultilayer composite materials according to the invention furthermore comprise
(B) ein Material, welches Wasser oder wässrige Flüssigkeiten absorbieren kann, das im Rahmen der vorliegenden Anmeldung auch kurz als absorptionsfähiges Material (B) bezeichnet wird. Beispiele für absorptionsfähige Materialien (B) sind Zellstofftü- eher oder Baumwolltextil. Wenn man als absorptionsfähiges Material (B) Baumwolltextil wählen möchte, so wählt man als Flächengebilde (A) ein anderes Material als Baumwolle.(B) a material which can absorb water or aqueous liquids, which in the context of the present application is also referred to as absorptive material (B) for short. Examples of absorbent materials (B) are pulp or cotton textile. If you want to choose cotton textile as absorbent material (B), you choose as fabric (A) another material than cotton.
Unter Wasser und wässrigen Flüssigkeiten ist insbesondere Wasser in gasförmigem Aggregatszustand zu verstehen, beispielsweise als Feuchtigkeit, ganz besonders bevorzugt Luftfeuchtigkeit.Under water and aqueous liquids is in particular water in the gaseous state of matter to understand, for example, as moisture, most preferably atmospheric humidity.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei absorptionsfähigem Material (B) um einen Superabsorber, der im Rahmen der vorlie- genden Erfindung auch als Superabsorber (B) bezeichnet wird. Bei Superabsorber (B) handelt es sich im Rahmen der vorliegenden Erfindung um einen Stoff, der ein vielfaches seines Eigengewichts, beispielsweise das bis zu Tausendfache, an Flüssigkeit aufsaugen kann, wobei Flüssigkeiten insbesondere wässrige Flüssigkeiten bedeuten, beispielsweise wässrige Körperflüssigkeiten wie Blut, Urin oder Schweiß und natürlich Wasser.In a preferred embodiment of the present invention, absorbent material (B) is a superabsorbent, which is also referred to as superabsorber (B) in the context of the present invention. Superabsorbent (B) in the context of the present invention is a substance which is many times its own weight, for example up to a thousand times, of liquid liquids, in particular aqueous liquids, for example, aqueous body fluids such as blood, urine or sweat and of course water.
Vorzugsweise handelt es sich bei Superabsorber (B) um ein synthetisches organisches Copolymer mit superabsorbierenden Eigenschaften. Bei synthetischen organischen Copolymeren mit superabsorbierenden Eigenschaften, im folgenden auch superabsorbierende Polymere (SAP) oder superabsorbierende Copolymere (B) genannt, handelt es sich vorzugsweise um Copolymere, die durch Copolymerisation von mindestens zwei Superabsorber- bzw. SAP-bildenden Monomeren hergestellt werden.Preferably, superabsorbent (B) is a synthetic organic copolymer having superabsorbent properties. Synthetic organic copolymers with superabsorbent properties, hereinafter also referred to as superabsorbent polymers (SAP) or superabsorbent copolymers (B), are preferably copolymers which are prepared by copolymerization of at least two SAPs or SAP-forming monomers.
Unter Superabsorber- bzw. SAP-bildenden Monomeren sind im Rahmen der vorliegenden Anmeldung solche polymerisierbare Verbindungen zu verstehen, die zu der Saugfähigkeit der daraus gebildeten Copolymere beitragen. Beispiele sind monoethy- lenisch ungesättigte Verbindungen bzw. Verbindungen mit einer polymerisierbaren Doppelbindung mit mindestens einem hydrophilen Rest, wie Carboxyl-, Carbonsäureanhydrid-, Carbonsäuresalz-, Sulfonsäure-, Sulfonsäuresalz-, Hydroxy-, Ether-, Amid-, Amino- oder quartäre Ammoniumsalzgruppen. Geeignete Superabsorber- bzw. SAP-bildende Monomere sind zum Beispiel:For the purposes of the present application, superabsorbent or SAP-forming monomers are to be understood as meaning polymerizable compounds which contribute to the absorbency of the copolymers formed therefrom. Examples are monoethylenically unsaturated compounds or compounds having a polymerizable double bond with at least one hydrophilic radical, such as carboxyl, carboxylic anhydride, carboxylic acid salt, sulfonic acid, sulfonic acid salt, hydroxyl, ether, amide, amino or quaternary ammonium salt groups , Suitable superabsorbent or SAP-forming monomers are, for example:
1. carboxylgruppenhaltige Monomere: monoethylenisch ungesättigte Mono- oder Po- lycarbonsäuren wie (Meth)acrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Sorbinsäure und Itaconsäure;1. carboxyl group-containing monomers: monoethylenically unsaturated mono- or polycarboxylic acids such as (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, sorbic acid and itaconic acid;
2. carbonsäureanhydridgruppenhaltige Monomere: monoethylenisch ungesättigte Polycarbonsäureanhydride wie Maleinsäureanhydrid;2. carboxylic acid anhydride group-containing monomers: monoethylenically unsaturated polycarboxylic anhydrides such as maleic anhydride;
3. carbonsäuresalzhaltige Monomere: wasserlösliche Salze (Alkalisalze, Ammoniumsalze, Aminsalze usw.) monoethylenisch ungesättigter Mono- oder Polycarbonsäu- ren wie Natrium(meth)acrylat, Trimethylamin(meth)acrylat, Triethanolamin(meth)- acrylat, Natriummaleat, Methylaminmaleat;3. Carboxylic acid salt-containing monomers: water-soluble salts (alkali salts, ammonium salts, amine salts, etc.) of monoethylenically unsaturated mono- or polycarboxylic acids, such as sodium (meth) acrylate, trimethylamine (meth) acrylate, triethanolamine (meth) acrylate, sodium maleate, methylamine maleate;
4. sulfonsäuregruppenhaltige Monomere: aliphatische oder aromatische Vinylsulfon- säuren wie Vinylsulfonsäure, Allylsulfonsäure, Vinyltoluolsulfonsäure, Styrol- sulfonsäure), (Meth)acrylsulfonsäure, Sulfopropyl(meth)acrylat, 2-Hydroxy-3-4. monomers containing sulfonic acid groups: aliphatic or aromatic vinylsulfonic acids such as vinylsulfonic acid, allylsulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid), (meth) acrylic sulfonic acid, sulfopropyl (meth) acrylate, 2-hydroxy-3-
(meth)acryloxy-propylsulfonsäure);(Meth) acryloxy-propylsulphonic);
5. sulfonsäuresalzgruppenhaltige Monomere: Alkalisalze, Ammoniumsalze, Aminsalze von sulfonsäuregruppenhaltigen Monomeren wie oben erwähnt;5. monomers containing sulfonic acid salt groups: alkali salts, ammonium salts, amine salts of sulfonic acid group-containing monomers as mentioned above;
6. hydroxygruppenhaltige Monomere: monoethylenisch ungesättigte Alkohole wie (Meth)allylalkohol, monoethylenisch ungesättigte Ether oder Ester von Polyolen, beispielsweise von Alkylenglykolen, Glycerin, Polyoxyalkylenpolyolen, wie Hydro- xyethyl(meth)acrylat, Triethylenglykol(meth)acrylat, Poly(oxyethylenoxypropylen)- glykolmono(meth)allylether, wobei die Hydroxygruppen gegebenenfalls verethert oder verestert sind;6. hydroxyl-containing monomers: monoethylenically unsaturated alcohols, such as (meth) allyl alcohol, monoethylenically unsaturated ethers or esters of polyols, for example, alkylene glycols, glycerol, polyoxyalkylene polyols such as hydroxyethyl (meth) acrylate, triethylene glycol (meth) acrylate, poly (oxyethyleneoxypropylene) glycol mono (meth) allyl ethers, wherein the hydroxy groups are optionally etherified or esterified;
7. amidgruppenhaltige Monomere: Vinylformamid, (Meth)acrylamid, N- Alkyl(meth)acrylamide wie N-Methacrylamid, N-Hexylacrylamid, weiterhin N, N- Dialkyl(meth)acrylamide wie N,N-Dimethylacrylamid oder N,N-Di-n-propylacrylamid, N-Hydroxyalkyl(meth)acrylamide wie N-Methylol(meth)acrylamid oder N- Hydroxyethyl(meth)acrylamid, N,N-Dihydroxyalkyl(meth)acrylamide wie N, N-7. amide group-containing monomers: vinylformamide, (meth) acrylamide, N-alkyl (meth) acrylamides such as N-methacrylamide, N-hexylacrylamide, furthermore N, N-dialkyl (meth) acrylamides such as N, N-dimethylacrylamide or N, N-di n-propylacrylamide, N-hydroxyalkyl (meth) acrylamides such as N-methylol (meth) acrylamide or N-hydroxyethyl (meth) acrylamide, N, N-dihydroxyalkyl (meth) acrylamides such as N, N
Dihydroxyethyl(meth)acrylamid] Vinyllactame wie N-Vinylpyrrolidon;Dihydroxyethyl (meth) acrylamide] vinyl lactams such as N-vinylpyrrolidone;
8. aminogruppenhaltige Monomere: Aminogruppenhaltige Ester, z.B. Dialkylaminoal- kylester, Dihydroxyalkylaminoalkylester, Morpholinoalkylester, monoethylenisch ungesättigte Mono- oder Dicarbonsäuren wie Dimethylaminoethyl(meth)acrylat,8. Amino group-containing monomers: Amino group-containing esters, e.g. Dialkylaminoalkyl esters, dihydroxyalkylaminoalkyl esters, morpholinoalkyl esters, monoethylenically unsaturated mono- or dicarboxylic acids, such as dimethylaminoethyl (meth) acrylate,
Diethylaminoethyl(meth)acrylat, Morpholinoethyl(meth)acrylat oder Dimethylami- noethylfumarat, heterocyclische Vinylverbindungen wie Vinylpyridine, z.B. 2- Vinylpyridin, 4-Vinylpyridin, N-Vinylpyridin, außerdem N-Vinylimidazol; sowieDiethylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate or dimethylaminoethyl fumarate, heterocyclic vinyl compounds such as vinylpyridines, e.g. 2-vinylpyridine, 4-vinylpyridine, N-vinylpyridine, also N-vinylimidazole; such as
9. quartäre Ammoniumsalzgruppen enthaltende Monomere: beispielsweise N1N1N- Trialkyl-N-(meth)acryloyloxyalkylammoniumsalze wie N1N1N-T rimethyl-N- (meth)acryloyl-oxyethylammoniumchlorid1 N,N,N-Triethyl-N-(meth)acryloyloxy- ethylammonium-chlorid, 2-Hydroxy-3-(meth)acryloyloxypropyltrimethylammonium- chlorid, und Monomere gemäß GB-PS 1 ,034,296.9. quaternary ammonium salt groups-containing monomers: for example, N 1 N 1 N-trialkyl-N- (meth) acryloyloxyalkylammoniumsalze such as N 1 N 1 NT rimethyl-N- (meth) acryloyl-oxyethylammoniumchlorid 1 N, N, N-triethyl-N- ( meth) acryloyloxyethylammonium chloride, 2-hydroxy-3- (meth) acryloyloxypropyltrimethylammonium chloride, and monomers according to GB-PS 1, 034,296.
Zu anstelle von oder in Verbindung mit den SAP-bildenden Monomeren geeigneten Monomeren, die durch Hydrolyse wasserlöslich werden, zählen monoethylenisch ungesättigte Verbindungen mit mindestens einer hydrolysierbaren Gruppe, wie Estern, Amid- und Nitrilgruppen. Zu solchen Monomeren mit einer Estergruppe zählen zum Beispiel Ci-C4-Alkylester monoethylenisch ungesättigter Carbonsäuren wie Me- thyl(meth)acrylat und Ethyl(meth)acrylat und weiterhin 2-Ethylhexyl(meth)acrylat sowie Ester monoethylenisch ungesättigter Alkohole [Vinylester, (Meth)allylester usw.] wie Vinylacetat und (Meth)allylacetat. Zu geeigneten nitrilgruppenhaltigen Monomeren zählt (Meth)acrylnitril.Monomers which are suitable for use in place of or in combination with the SAP-forming monomers and which become water-soluble by hydrolysis include monoethylenically unsaturated compounds having at least one hydrolyzable group, such as esters, amide and nitrile groups. Such monomers having an ester group include, for example, C 1 -C 4 -alkyl esters of monoethylenically unsaturated carboxylic acids, such as methyl (meth) acrylate and ethyl (meth) acrylate, and furthermore 2-ethylhexyl (meth) acrylate and esters of monoethylenically unsaturated alcohols [vinyl ester, (Meth allyl ester, etc.] such as vinyl acetate and (meth) allyl acetate. Suitable nitrile group-containing monomers include (meth) acrylonitrile.
In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei SAP- bildenden Monomeren um wasserlösliche Monomere, die beispielsweise bei 200C eine Löslichkeit von mindestens 5 g/l in destilliertem Wasser aufweisen können.In one embodiment of the present invention, SAP-forming monomers are water-soluble monomers which, for example, at 20 ° C., may have a solubility of at least 5 g / l in distilled water.
Unter diesen wasserlöslichen oder durch Hydrolyse wasserlöslichen Monomeren sind wasserlösliche Monomere, die nach Polymerisation keine Hydrolyse erfordern, aufgrund der leichten Verfahrensführung bei der Herstellung von absorptionsfähigen Ma- terialien (B) bevorzugt. Ferner sind als wasserlösliche Monomere herstellungsbedingt absorptionsfähigen Materialien (B) mit hoher Wasserabsorption carboxylgruppenhaltige Monomere wie (Meth)acrylsäure und Maleinsäureanhydrid; carbonsäuresalzgruppen- haltige Monomere wie Natrium(meth)acrylat, Trimethylamin(meth)acrylat und Trietha- nolamin(meth)acrylat und quartäre Ammoniumsalzgruppen enthaltende Monomere wie N,N,N-Trimethyl-N-(meth)acryloyloxyethylammoniumchlorid bevorzugt.Among these water-soluble or hydrolysis-water-soluble monomers are water-soluble monomers which do not require hydrolysis after polymerization, due to the ease of processing in the production of absorbent MA. materials (B) are preferred. Further, as water-soluble monomers, by way of preparation, absorbent materials (B) having high water absorption include monomers containing carboxyl groups, such as (meth) acrylic acid and maleic anhydride; carboxylic acid salt group-containing monomers such as sodium (meth) acrylate, trimethylamine (meth) acrylate and triethanolamine (meth) acrylate and quaternary ammonium salt group-containing monomers such as N, N, N-trimethyl-N- (meth) acryloyloxyethylammonium chloride preferred.
Zu ganz besonders bevorzugten superabsorberbildenden Monomeren zählen zum Beispiel Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Sorbinsäu- re, Itaconsäure, Zimtsäure, Vinylsulfonsäure, Allylsulfonsäure, Vinyltoluolsulfonsäure, Styrolsulfonsäure, Sulfo(meth)acrylat, Sulfopropyl(meth)acrylat, 2-Acrylamid-2- methylpropansulfonsäure, 2-Hydroxyethyl(meth)acryloylphosphat, Phenyl-2- acryloyloxyethylphosphat, deren Natrium-, Kalium- und Ammoniumsalze, Maleinsäureanhydrid und deren Kombinationen, beispielsweise als freie Säure oder mindestens partiell neutralisiert, vorzugsweise zu 1 bis 100 mol-%, besonders bevorzugt 10 bis 80 mol-% und ganz besonders bevorzugt 15 bis 75 mol-% neutralisiert ist. Ganz besonders bevorzugt handelt es sich bei dem Superabsorber bildenden Monomer um neutralisierte Acrylsäure.Very particularly preferred superabsorbent monomers include, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, sorbic acid, itaconic acid, cinnamic acid, vinylsulfonic acid, allylsulfonic acid, vinyltoluenesulfonic acid, styrenesulfonic acid, sulfo (meth) acrylate, sulfopropyl (meth) acrylate, 2-acrylamide 2-methylpropanesulfonic acid, 2-hydroxyethyl (meth) acryloyl phosphate, phenyl-2-acryloyloxyethyl phosphate, their sodium, potassium and ammonium salts, maleic anhydride and combinations thereof, for example as free acid or at least partially neutralized, preferably from 1 to 100 mol% , Particularly preferably 10 to 80 mol% and most preferably 15 to 75 mol% is neutralized. Most preferably, the superabsorbent-forming monomer is neutralized acrylic acid.
Superabsorber (B) liegt vorzugsweise in Form von Partikeln vor.Superabsorber (B) is preferably in the form of particles.
Bei Superabsorber (B) in partikulärer Form, im Rahmen der vorliegenden Erfindung auch SAP-Teilchen genannt, handelt es sich um leichtvernetzte Polymere in partikulärer Form, die aus mindestens einem der vorstehend genannten SAP-bildenden Mono- mere und mindestens einem internen Vernetzer hergestellt werden, die so erhältlichen Polymere sind hochsaugfähig. Bevorzugte SAP-Teilchen sind im Durchschnitt ausreichend klein, dass sie leicht durch Sprühtrocknung hergestellt oder durch Versprühen verarbeitet werden können, vorzugsweise mit einem Durchmesser kleiner als 150 μm, besonders bevorzugt kleiner als 100 μm. Eine solche Morphologie kann man direkt als Ergebnis des Polymerisationsverfahrens erhalten, oder man kann die hochsaugfähigen Polymere auch durch Sieben, Mahlen, Pulverisieren, Reiben oder eine Kombination davon auf die gewünschte mittlere Teilchengröße der SAP-Teilchen bringen. Der mittlere Durchmesser der SAP-Teilchen liegt zum Beispiel im Bereich von 10 bis 130 μm, vorzugsweise von 15 bis 100 μm und ganz besonders bevorzugt von 40 bis 90 μm.Superabsorbents (B) in particulate form, also referred to as SAP particles in the context of the present invention, are lightly crosslinked polymers in particulate form, which are prepared from at least one of the abovementioned SAP-forming monomers and at least one internal crosslinker , the polymers thus available are highly absorbent. Preferred SAP particles are, on average, sufficiently small that they can easily be prepared by spray-drying or by spraying, preferably with a diameter of less than 150 μm, more preferably less than 100 μm. Such a morphology can be obtained directly as a result of the polymerization process, or the high-absorbency polymers can also be brought to the desired average particle size of the SAP particles by sieving, milling, pulverizing, rubbing or a combination thereof. The average diameter of the SAP particles is, for example, in the range of 10 to 130 μm, preferably 15 to 100 μm, and most preferably 40 to 90 μm.
Um Partikel von Superabsorber (B) herzustellen, copolymerisiert man in vielen Ausführungsformen mindestens ein SAP-bildendes Monomer mit mindestens einem Vernetzer.In order to produce particles of superabsorbent (B), in many embodiments at least one SAP-forming monomer is copolymerized with at least one crosslinker.
Die Herstellung von Partikeln von Superabsorber (B) erfolgt aus einem oder mehreren SAP-bildenden Monomer und mindestens einer intern vernetztenden Verbindung, auch als interner Vernetzer bezeichnet wird, wobei die Partikel von Superabsorber (B) be- vorzugt zu 50 bis 99,9 Molprozent aus SAP-bildendem Monomer bzw. SAP-bildenden Monomeren gebildet werden. Durch den zusätzlichen Einsatz von internem Vernetzer erhält man Partikel von Superabsorber (B), die ein leicht vernetztes Polymer umfassen.The production of particles of superabsorbent (B) is carried out from one or more SAP-forming monomer and at least one internally crosslinking compound, also referred to as internal crosslinker, wherein the particles of superabsorbent (B) preferably from 50 to 99.9 mole percent of SAP-forming monomer or SAP-forming monomers are formed. The additional use of internal crosslinker gives particles of superabsorbent (B) which comprise a slightly crosslinked polymer.
Dabei erfolgt die Vernetzung im wesentlichen einheitlich über das ganze Partikel von Superabsorber (B) erfolgt. Geeignete interne Vernetzer sind solche Verbindungen mit zwei oder mehr mit den monoethylenisch ungesättigten Monomeren reaktionsfähigen Gruppen, die mindestens teilweise in Wasser oder einer wässrigen Monomermischung löslich oder dispergierbar sind. Die interne Vernetzer kann gewählt werden aus einem ungesättigten Monomeren wie Divinylbenzol, einer Verbindung mit mindestens zwei gegenüber einem monoethylenisch ungesättigten Monomer reaktionsfähigen funktionellen Gruppen wie Ethylendiamin, einer Verbindung mit mindestens einer ungesättigten Bindung und mindestens einer reaktionsfähigen funktionellen Gruppe wie Glycidyl- (meth)acrylat.The crosslinking takes place essentially uniformly over the entire particle of superabsorber (B). Suitable internal crosslinkers are those compounds having two or more groups reactive with the monoethylenically unsaturated monomers which are at least partially soluble or dispersible in water or an aqueous monomer mixture. The internal crosslinker may be selected from an unsaturated monomer such as divinylbenzene, a compound having at least two functional groups reactive toward a monoethylenically unsaturated monomer such as ethylenediamine, a compound having at least one unsaturated bond and at least one reactive functional group such as glycidyl (meth) acrylate.
Beispielhafte interne Vernetzer sind: Tetraallyloxyethan, N,N'-Methylenbisacrylamid, N,N'-Methylenbismethacrylamid, Triallylamin, Trimethylolpropantriacrylat, Glycerinpro- poxytriacrylat, Divinylbenzol, N-Methylolacrylamid, N-Methylolmethacrylamid, Glycidyl- methacrylat, Polyethylenpolyamine, Ethylendiamin, Ethylenglykol und Glycerin. Bevor- zugte interne Vernetzer sind solche mit mindestens zwei Allylgruppen, ganz besonders bevorzugt drei oder vier Allylgruppen. Bevorzugte interne Vernetzer sind Tetraallyloxyethan und der Triallylether des Pentaerythrits. Die erfindungsgemäß eingesetzte Menge des internen Vernetzers richtet sich nach dem internen Vernetzer und dem Polymerisationsverfahren. In der Regel liegt die Menge des internen Vernetzers bei etwa 0,005 bis etwa 1 ,0 Mol-Prozent, bezogen auf Mol des SAP-bildenden Monomers.Exemplary internal crosslinkers are: tetraallyloxyethane, N, N'-methylenebisacrylamide, N, N'-methylenebismethacrylamide, triallylamine, trimethylolpropane triacrylate, glycerol propoxytriacrylate, divinylbenzene, N-methylolacrylamide, N-methylolmethacrylamide, glycidyl methacrylate, polyethylene polyamines, ethylenediamine, ethylene glycol and glycerol , Preferred internal crosslinkers are those having at least two allyl groups, very particularly preferably three or four allyl groups. Preferred internal crosslinkers are tetraallyloxyethane and the triallyl ether of pentaerythritol. The amount of internal crosslinker used according to the invention depends on the internal crosslinker and the polymerization process. Typically, the amount of internal crosslinker is from about 0.005 to about 1.0 mole percent, based on moles of the SAP-forming monomer.
Bei der Herstellung von Partikeln von Superabsorber (B) fakultativ eingesetzte Komponenten sind wasserlösliche hydroxygruppenhaltige Polymere wie Polysaccharide und Vinyl- oder Acrylpolymere. Beispiele für wasserlösliche Polysaccharide sind Stärken, wasserlösliche Cellulosen und Polygalactomannane. Zu geeigneten Stärken zählen die nativen Stärken, wie Süßkartoffelstärke, Kartoffelstärke, Weizenstärke, Maisstärke, Reisstärke, Tapiokastärke und dergleichen. Geeignet sind auch veredelte oder modifizierte Stärken, wie Dialdehydstärke, mit Alkylalkoholen veretherte Stärke, insbesondere mit Methanol veretherte Stärke, allyletherifizierte Stärke, oxyalkylierte Stärke, ami- noethyletherifizierte Stärke und cyanomethyletherifizierte Stärke. Weiterhin eignen sich Polyvinylalkohol und Polyvinylalkoholcopolymere.Components optionally used in the production of particles of superabsorbent (B) are water-soluble hydroxyl-containing polymers such as polysaccharides and vinyl or acrylic polymers. Examples of water-soluble polysaccharides are starches, water-soluble celluloses and polygalactomannans. Suitable starches include the native starches such as sweet potato starch, potato starch, wheat starch, corn starch, rice starch, tapioca starch and the like. Also suitable are refined or modified starches, such as dialdehyde starch, starch etherified with alkyl alcohols, in particular methanol-etherified starch, allyl-etherified starch, oxyalkylated starch, aminoethyl etherified starch and cyanomethyl-etherified starch. Also suitable are polyvinyl alcohol and polyvinyl alcohol copolymers.
Als wasserlösliche Cellulose eignet sich aus solchen Quellen wie Holz, Stängeln, Bast, Samenflusen und dergleichen gewonnene Cellulose, die dann zu Hydroxyalkylcellulo- se, Carboxymethylcellulose, Methylcellulose und dergleichen derivatisiert wird. Geeignete Polygalactomannane sind Guargummi und Johannisbrotkernmehl sowie deren Hydroxyalkyl-, Carboxyalkyl- und Aminoalkylderivate. Zu wasserlöslichen Vinyl- und Acrylpolymeren zählen Polyvinylalkohol und Polyhydroxyethylacrylat. Bevorzugtes Polysaccharid ist native Stärke, wie Weizenstärke, Maisstärke und Alphastärken. Diese gegebenenfalls vorgefertigten hydroxygruppenhaltigen Polymere können in einer Menge von 1 bis 15 Gew.-%, bevorzugt von 1 bis 10 Gew.-% und ganz besonders bevorzugt 5 Gew.-% eingesetzt werden, bezogen auf Feststoffanteil von absorptionsfähigem Material (B).Suitable water-soluble cellulose is cellulose obtained from such sources as wood, stems, bast, seed fluff and the like, which is then derivatized to hydroxyalkylcellulose, carboxymethylcellulose, methylcellulose and the like. Suitable polygalactomannans are guar gum and locust bean gum as well as their hydroxyalkyl, carboxyalkyl and aminoalkyl derivatives. Water-soluble vinyl and acrylic polymers include polyvinyl alcohol and polyhydroxyethyl acrylate. Preferred polysaccharide is native starch, such as wheat starch, corn starch and alpha starch. These optionally prefabricated hydroxy-containing polymers can be used in an amount of 1 to 15 wt .-%, preferably from 1 to 10 wt .-% and most preferably 5 wt .-%, based on solids content of absorbent material (B).
Partikel von Superabsorber (B) können nach an sich bekannten Polymerisationsverfahren hergestellt werden. Die Polymerisation erfolgt in Gegenwart von beispielsweise Redoxinitiatoren und thermischen Initiatoren. Man kann primär mit den Redoxinitiato- ren arbeiten, wobei die thermischen Polymerisationsinitiatoren gegebenenfalls erst dann eingesetzt werden, um den Restmonomergehalt des Polymerisationsendproduk- tes auf unter 0,1 Gewichtsprozent zu drücken. Gegebenenfalls können thermische Initiatoren oder Redoxinitiatoren als alleiniges Initiatorensystem eingesetzt werden. Beispiele für verschiedene Initiatorensysteme finden sich in der US 4,497,930, in der ein Zweikomponenteninitiatorensystem aus Persulfat und Hydroperoxid beschrieben ist, sowie in der US 5,145,906, in der ein Dreikomponenteninitiatorensystem, d.h. Redox- System plus thermischer Initiator, offenbart ist.Particles of superabsorbent (B) can be prepared by known polymerization. The polymerization takes place in the presence of, for example, redox initiators and thermal initiators. It is possible to work primarily with the redox initiators, with the thermal polymerization initiators optionally being used only to suppress the residual monomer content of the final polymerization product to below 0.1 percent by weight. Optionally, thermal initiators or redox initiators can be used as the sole initiator system. Examples of various initiator systems can be found in US 4,497,930, which describes a two-component initiator system of persulfate and hydroperoxide, and in US 5,145,906, which discloses a three component initiator system, i. Redox system plus thermal initiator disclosed.
Partikel von Superabsorber (B) kann man nach dem Verfahren der Lösungs- oder Umkehrsuspensionspolymerisation oder nach einem geeigneten Substanzpolymerisationsverfahren herstellen. Die Lösungspolymerisations- und Umkehrpolymerisationsver- fahren sind in der Technik an sich bekannt, siehe zum Beispiel die US-Patentschriften 4,076,663; 4,286,082; 4,654,039 und 5,145,906, in denen das Lösungspolymerisati- onsverfahren beschrieben ist, und die US-Patentschriften 4,340,706; 4,497,930; 4,666,975; 4,507,438 und 4,683,274, in denen das Umkehrsuspensionspolymerisati- onsverfahren beschrieben ist.Particles of superabsorbent (B) may be prepared by the solution or reverse-suspension polymerization method or by a suitable bulk polymerization method. The solution polymerization and reverse polymerization processes are known per se in the art, see, for example, U.S. Patents 4,076,663; 4,286,082; 4,654,039 and 5,145,906, in which the Lösungspolymerisati- onsverfahren is described, and US Pat. Nos. 4,340,706; 4,497,930; 4,666,975; 4,507,438 and 4,683,274, which describe the reverse-suspension polymerization process.
In einer Ausführungsform der vorliegenden Erfindung sind absorptionsfähiges Material (B) und insbesondere Superabsorber (B) mit Flächengebilde (A) physikalisch oder chemisch verbunden. Dabei kann man die Art der physikalischen oder chemischen Verbindung von absorptionsfähigem Material (B) und insbesondere Superabsorber (B) mit Flächengebilde (A) nach den geometrischen Abmessungen von absorptionsfähigem Material (B) und insbesondere Superabsorber (B) wählen. So ist es beispielsweise möglich, absorptionsfähiges Material (B) in Form von Zellstofftüchern auszugestalten, welches an das Flächengebilde (A) geheftet oder geklebt wird. In einer anderen Variante gestaltet man absorptionsfähiges Material (B) und insbesondere Superabsor- ber (B) in Form von Partikeln, beispielsweise granulären oder sphärischen Partikeln, mit einem mittleren Durchmesser (Zahlenmittel) im Bereich von 1 μm bis 1 cm, bevorzugt 10 μm bis 1 mm, und lagert sie in die Poren von Flächengebilde ein. In einer an- deren Variante gestaltet man absorptionsfähiges Material (B) und insbesondere Su- perabsorber (B) in Form von Partikeln, beispielsweise granulären oder sphärischen Partikeln, mit einem mittleren Durchmesser (Zahlenmittel) im Bereich von 1 μm bis 1 cm, bevorzugt 10 μm bis 1 mm, und fixiert sie mit Hilfe eines Bindemittels oder eines Klebstoffs an Flächengebilde (A).In one embodiment of the present invention, absorbent material (B) and in particular superabsorbent (B) are physically or chemically bonded to fabric (A). In this case, one can choose the type of physical or chemical combination of absorbent material (B) and in particular superabsorbent (B) with fabric (A) according to the geometric dimensions of absorbent material (B) and in particular superabsorbent (B). Thus it is possible, for example, to design absorbent material (B) in the form of cellulose wipes, which is adhered or glued to the fabric (A). In another variant, absorbent material (B) and in particular superabsorbent (B) in the form of particles, for example granular or spherical particles, with a mean diameter (number average) in the range of 1 .mu.m to 1 cm, preferably 10 .mu.m to 1 mm, and stores them in the pores of sheets. In a their variant is designed absorptive material (B) and in particular superabsorber (B) in the form of particles, such as granular or spherical particles, with a mean diameter (number average) in the range of 1 .mu.m to 1 cm, preferably 10 .mu.m to 1 mm , and fixes them to sheet (A) with the aid of a binder or an adhesive.
In einer bevorzugten Variante der vorliegenden Erfindung kann man Superabsorber (B) in Gegenwart von Flächengebilde (A), insbesondere von textilem Flächengebilde (A) herstellen. In einer Ausführungsform der vorliegenden Erfindung kann man Superab- sorber (B) auf Flächengebilde (A) aufpolymerisieren, beispielsweise indem man die (Co)polymerisation ganz oder zeitweise in Gegenwart von Flächengebilde (A) durchführt. So ist es beispielsweise möglich, eine Mischung von einem oder mehreren SAP- bildenden Monomeren mit Wasser und einem oder mehreren Initiatoren herzustellen und auf ein textiles Flächengebilde aufzutragen. Danach löst man die (Co)polymerisation aus. In einer anderen Ausführungsform der vorliegenden Erfindung geht man so vor, dass man zunächst eine Mischung von einem oder mehreren SAP- bildenden Monomeren, Wasser und einem oder mehreren Initiatoren herstellt und danach die (Co)polymerisation auslöst. Nach einer gewissen Zeit dann fügt man Flächengebilde (A) zu oder trägt die reagierende Mischung auf textiles Flächengebilde auf und führt danach die (Co)polymerisation zu Ende.In a preferred variant of the present invention, superabsorbent (B) can be prepared in the presence of fabrics (A), in particular of textile fabric (A). In one embodiment of the present invention, it is possible to polymerize superabsorber (B) onto sheets (A), for example by carrying out the (co) polymerization completely or temporarily in the presence of sheet (A). For example, it is possible to prepare a mixture of one or more SAP-forming monomers with water and one or more initiators and apply them to a textile fabric. Thereafter, the (co) polymerization is initiated. In another embodiment of the present invention, a mixture of one or more SAP-forming monomers, water and one or more initiators is first prepared and then the (co) polymerization is initiated. After a certain time, one then adds sheet (A) or applies the reacting mixture to textile fabric and then completes the (co) polymerization.
In einer bevorzugten Variante der vorliegenden Erfindung kann man Superabsorber (B) in Gegenwart von Flächengebilde (A), insbesondere von textilem Flächengebilde (A) fertig stellen. Dazu ist es beispielsweise möglich, eine Mischung von einem oder meh- reren SAP-bildenden Monomeren mit Superabsorber (B) in partikulärer Form, Wasser und einem oder mehreren Initiatoren zu mischen und auf ein textiles Flächengebilde aufzutragen. Danach löst man die (Co)polymerisation aus.In a preferred variant of the present invention, it is possible to finish superabsorbent (B) in the presence of flat structures (A), in particular of textile fabric (A). For this purpose it is possible, for example, to mix a mixture of one or more SAP-forming monomers with superabsorbent (B) in particulate form, water and one or more initiators and to apply them to a textile fabric. Thereafter, the (co) polymerization is initiated.
Dazu kann man beispielsweise so vorgehen, dass man eine Polymerisationsmischung, enthaltend Partikel von Superabsorber (B) mit SAP-bildendem Monomer, Wasser und einem oder mehreren Initiatoren auf Flächengebilde (A) aufbringt, beispielsweise aufsprüht, aufklotzt oder aufgießt, und dann die Polymerisation auslöst.This can be done, for example, by applying a polymerization mixture containing particles of superabsorbent (B) with SAP-forming monomer, water and one or more initiators on sheet (A), for example, sprayed, paddled or poured, and then triggers the polymerization ,
Partikel von Superabsorber (B) sind in der Polymerisationsmischung vorzugsweise zu etwa 1 bis 20 Gewichtsprozent, vorzugsweise zu 2 bis 15 Gewichtsprozent und ganz besonders bevorzugt zu 5 bis 10 Gewichtsprozent enthalten. Es hat sich gezeigt, dass bei einem zu hohen Gehalt an SAP-Teilchen es in der Polymerisationsmischung in einigen Fällen zu einer vorzeitigen Polymerisation kommen kann.Particles of superabsorbent (B) are preferably contained in the polymerization mixture at about 1 to 20% by weight, preferably at 2 to 15% by weight and most preferably at 5 to 10% by weight. It has been found that if the content of SAP particles is too high, premature polymerization may occur in the polymerization mixture in some cases.
In einer Ausführungsform der vorliegenden Erfindung hat die Polymerisationsmischung eine Viskosität von mindestens 20 mPa-s, gemessen bei 200C in dem Viskosimeter Brookfield, Spindel 02, 20 UpM. Die Polymerisationsmischung kann zusätzlich ein Vernetzungsmittel und/oder einen Weichmacher und/oder mindestens ein geruchsbindendes Mittel und/oder ein Hautpflegemittel, wie zum Beispiel Panthotenol, Aloe vera, mit einem pH-Wert-Bereich, der dem der Haut entspricht, enthalten. Alternativ dazu können die in der Polymerisationsmischung enthaltenen SAP-Teilchen mindestens ein geruchsbindendes Mittel und/oder ein Hautpflegemittel, wie zum Beispiel Panthotenol, Aloe vera, mit einem pH-Wert- Bereich, der dem der Haut entspricht, enthalten.In one embodiment of the present invention, the polymerization mixture has a viscosity of at least 20 mPas measured at 20 ° C. in the Brookfield Viscometer, spindle 02, 20 rpm. The polymerization mixture may additionally contain a crosslinking agent and / or a plasticizer and / or at least one odor-controlling agent and / or a skin care agent, such as panthotenol, aloe vera, having a pH range corresponding to that of the skin. Alternatively, the SAP particles contained in the polymerization mixture may contain at least one odor-controlling agent and / or one skin care agent, such as panthotenol, aloe vera, having a pH range corresponding to that of the skin.
Die Akquisitionsschicht und die Speicherschicht des Saugkörpers weisen beispielsweise einen pH-Wert von 2,0 bis 7,5 und vorzugsweise von 4,0 bis 6,5 auf. Nach einer bevorzugten Ausführungsform der Erfindung haben Akquisitionsschicht und Speicherschicht einen unterschiedlichen pH-Wert. So kann z.B. der pH-Wert der Akquisitionsschicht bei 4,0 bis 6,5 und vorzugsweise bei 4,2 bis 4,5 und der der Speicherschicht bei 5,0 bis 6,0 liegen.For example, the acquisition layer and the storage layer of the absorbent body have a pH of from 2.0 to 7.5, and preferably from 4.0 to 6.5. According to a preferred embodiment of the invention, the acquisition layer and the storage layer have a different pH. Thus, e.g. the pH of the acquisition layer is 4.0 to 6.5, and preferably 4.2 to 4.5 and that of the storage layer is 5.0 to 6.0.
Nach einer weiteren bevorzugten Ausführungsform der Erfindung bestehen die Superabsorberteilchen aus MBIE-Superabsorberteilchen oder Mehrbereichskompositionen von Superabsorberteilchen, wie z.B. in WO 99/25393 beschrieben, mit vorzugsweise einem Verhältnis von SAP anionisch zu kationisch von etwa 5:1 bis etwa 1 :5.According to another preferred embodiment of the invention, the SAP particles consist of MBIE SAP particles or multi-zone compositions of SAP particles, e.g. in WO 99/25393, preferably having a ratio of SAP anionic to cationic of from about 5: 1 to about 1: 5.
Weitere Varianten, nach denen man Superabsorber (B) mit textilem Flächengebilde (A) verbinden kann, sind in den Schriften WO 03/053487, EP 0 764 223, US 7,1 15,321 und EP 1 178 149 WO 2004/039493 beschrieben.Further variants by which superabsorbent (B) can be combined with textile fabric (A) are described in the publications WO 03/053487, EP 0 764 223, US Pat. No. 7,115,321 and EP 1 178 149 WO 2004/039493.
In einer Variante handelt es sich bei der Kombination aus textilem Flächengebilde (A) und absorptionsfähigem Material (B) Fasern von Superabsorber (B), die zusammen mit Fasern aus anderem Material zu einem Vliesstoff verarbeitet werden, wie in WO 2004/039493 beschrieben.In a variant, the combination of textile fabric (A) and absorbent material (B) comprises fibers of superabsorbent (B), which are processed together with fibers of other material to form a nonwoven fabric, as described in WO 2004/039493.
In einer anderen Variante der vorliegenden Erfindung handelt es sich bei der Kombination aus textilem Flächengebilde (A) und absorptionsfähigem Material (B) um schaum- förmigen Superabsorber, der auf Textil fixiert ist.In another variant of the present invention, the combination of textile fabric (A) and absorbent material (B) is a foamy superabsorber which is fixed on textile.
In einer Ausführungsform der vorliegenden Erfindung weisen Flächengebilde (A) und absorptionsfähiges Material (B) zusammen eine mittlere Dicke im Bereich von 100 μm bis 10 mm, bevorzugt bis 1 mm auf.In one embodiment of the present invention, sheet (A) and absorbent material (B) together have an average thickness in the range of 100 μm to 10 mm, preferably 1 mm.
Erfindungsgemäßes mehrschichtiges Verbundmaterial umfasst weiterhin (D) mindestens eine Polyurethanschicht, die Kapillaren aufweist, die über die gesamte Dicke der Polyurethanschicht gehen, im Rahmen der vorliegenden Erfindung auch kurz als Polyurethanschicht (D) bezeichnet. In einer Ausführungsform der vorliegenden Erfindung weist Polyurethanschicht (D) eine mittlere Dicke im Bereich von 15 bis 300 μm, bevorzugt von 20 bis 150 μm, besonders bevorzugt von 25 bis 80 μm auf.Multilayer composite material according to the invention furthermore comprises (D) at least one polyurethane layer which has capillaries which extend over the entire thickness of the polyurethane layer, in the context of the present invention also referred to as polyurethane layer (D) for short. In one embodiment of the present invention, polyurethane layer (D) has an average thickness in the range from 15 to 300 μm, preferably from 20 to 150 μm, particularly preferably from 25 to 80 μm.
Polyurethanschicht (D) weist Kapillaren auf, die über die gesamte Dicke (Querschnitt) der Polyurethanschicht (D) gehen.Polyurethane layer (D) has capillaries that go over the entire thickness (cross section) of the polyurethane layer (D).
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethanschicht (D) im Mittel mindestens 100, bevorzugt mindestens 250 Kapillaren pro 100 cm2 auf.In one embodiment of the present invention, polyurethane layer (D) has on average at least 100, preferably at least 250 capillaries per 100 cm 2 .
In einer Ausführungsform der vorliegenden Erfindung weisen die Kapillaren einen mittleren Durchmesser im Bereich von 0,005 bis 0,05 mm, bevorzugt 0,009 bis 0,03 mm auf.In one embodiment of the present invention, the capillaries have an average diameter in the range of 0.005 to 0.05 mm, preferably 0.009 to 0.03 mm.
In einer Ausführungsform der vorliegenden Erfindung sind die Kapillaren gleichmäßig über Polyurethanschicht (D) verteilt. In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind die Kapillaren jedoch ungleichmäßig über die Polyurethanschicht (D) verteilt.In one embodiment of the present invention, the capillaries are evenly distributed over polyurethane layer (D). In a preferred embodiment of the present invention, however, the capillaries are unevenly distributed over the polyurethane layer (D).
In einer Ausführungsform der vorliegenden Erfindung sind die Kapillaren im Wesentlichen gebogen. In einer anderen Ausführungsform der vorliegenden Erfindung weisen die Kapillaren einen im Wesentlichen gradlinigen Verlauf auf.In one embodiment of the present invention, the capillaries are substantially bent. In another embodiment of the present invention, the capillaries have a substantially straight course.
Die Kapillaren verleihen der Polyurethanschicht (D) eine Luft- und Wasserdampfdurchlässigkeit, ohne dass eine Perforierung erforderlich wäre. In einer Ausführungsform der vorliegenden Erfindung kann die Wasserdampfdurchlässigkeit der Polyurethanschicht (D) über 1 ,5 mg/cm2-h liegen, gemessen nach DIN 53333. So ist es möglich, dass Feuchtigkeit wie beispielsweise Schweiß durch die Polyurethanschicht (D) hindurch migrieren und von absorptionsfähigem Material (B) gebunden werden kann. Wenn die Umgebung sehr trocken ist, kann absorptionsfähiges Material die Feuchtigkeit wieder abgeben.The capillaries impart air and water vapor permeability to the polyurethane layer (D) without the need for perforation. In one embodiment of the present invention, the water vapor permeability of the polyurethane layer (D) can be above 1.5 mg / cm 2 -h, measured according to DIN 53333. Thus it is possible for moisture, such as sweat, to migrate through the polyurethane layer (D) and of absorbent material (B). If the environment is very dry, absorbent material can release the moisture.
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethanschicht (D) zusätzlich zu den Kapillaren noch Poren auf, die nicht über die gesamte Dicke der Polyurethanschicht (D) gehen.In one embodiment of the present invention, polyurethane layer (D), in addition to the capillaries, still has pores which do not extend over the entire thickness of the polyurethane layer (D).
In einer Ausführungsform weist Polyurethanschicht (D) eine Musterung auf. Die Musterung kann beliebig sein und beispielsweise die Musterung eines Leders oder einer Holzoberfläche wiedergeben. In einer Ausführungsform der vorliegenden Erfindung kann die Musterung ein Nubukleder wiedergeben. In einer Ausführungsform der vorliegenden Erfindung weist Polyurethanschicht (D) eine samtartige Erscheinung auf.In one embodiment, polyurethane layer (D) has a pattern. The pattern can be arbitrary and, for example, the pattern of a leather or a wooden surface play. In one embodiment of the present invention, the pattern may reflect a nubuck leather. In one embodiment of the present invention, polyurethane layer (D) has a velvet-like appearance.
In einer Ausführungsform der vorliegenden Erfindung kann die Musterung einer Samt- Oberfläche entsprechen, beispielsweise mit Härchen mit einer mittleren Länge von 20 bis 500 μm, bevorzugt 30 bis 200 μm und besonders bevorzugt 60 bis 100 μm. Die Härchen können beispielsweise einen kreisförmigen Durchmesser aufweisen. In einer besonderen Ausführungsform der vorliegenden Erfindung haben die Härchen eine kegelförmige Form.In one embodiment of the present invention, the pattern may correspond to a velvet surface, for example with hairs having an average length of 20 to 500 μm, preferably 30 to 200 μm and particularly preferably 60 to 100 μm. The hairs may, for example, have a circular diameter. In a particular embodiment of the present invention, the hairs have a conical shape.
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethanschicht (D) Härchen auf, die in einem mittleren Abstand von 50 bis 350, bevorzugt 100 bis 250 μm zueinander angeordnet sind.In one embodiment of the present invention, polyurethane layer (D) has hairs which are arranged at an average distance of 50 to 350, preferably 100 to 250 microns to each other.
Für den Fall, dass die Polyurethanschicht (D) Härchen aufweist, beziehen sich die Angaben über die mittlere Dicke auf die Polyurethanschicht (D) ohne die Härchen.In the event that the polyurethane layer (D) has hair, the information on the average thickness on the polyurethane layer (D) without the hairs refer.
In einer Ausführungsform der vorliegenden Erfindung kann erfindungsgemäßes mehrschichtiges Verbundmaterial eine Verbindungsschicht (C) enthalten, die unten näher erläutert wird. Verbindungsschicht (C) kann eine gleichmäßige oder ungleichmäßige Dicke aufweisen, wobei die Verbindungsschicht (C) insgesamt eine gewisse Luftdurchlässigkeit gewährleistet.In one embodiment of the present invention, the multilayer composite material according to the invention may comprise a tie layer (C), which will be explained in more detail below. Bonding layer (C) may have a uniform or uneven thickness, wherein the bonding layer (C) ensures a total air permeability.
In einer anderen Ausführungsform der vorliegenden Erfindung enthält erfindungsge- mäßes Verbundmaterial keine Verbindungsschicht (C). Die Verbindung von Kombination von Flächengebilde (A) mit absorptionsfähigem Material (B) kann dann beispielsweise durch Verschweißen, insbesondere durch Ultraschallschweißen, beispielsweise bei Frequenzen im Bereich von 19 bis 25 kHz oder im Bereich von 40 bis 70 kHz, hergestellt werden.In another embodiment of the present invention composite material according to the invention contains no bonding layer (C). The combination of combination of fabrics (A) and absorbent material (B) can then be made, for example, by welding, in particular by ultrasonic welding, for example at frequencies in the range of 19 to 25 kHz or in the range of 40 to 70 kHz.
Bei Verbindungsschicht (C) kann es sich um eine durchbrochene, das heißt nicht vollflächig, ausgeprägte Schicht handeln, vorzugsweise eines gehärteten organischen Klebstoffs.Bonding layer (C) may be a perforated layer, that is to say not the entire surface, of a distinct layer, preferably a hardened organic adhesive.
In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei Verbindungsschicht (C) um eine punktförmig, streifenförmig oder gitterförmig, beispielsweise in Form von Rauten, Rechtecken, Quadraten oder einer Bienenwabenstruktur aufgebrachte Schicht. Dann kommt Polyurethanschicht (D) mit Flächengebilde (A) oder mit absorptionsfähigem Material (B) an den Lücken der Verbindungsschicht (C) in Berüh- rung. In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei Verbindungsschicht (C) um eine Schicht eines gehärteten organischen Klebstoffs, beispielsweise af Basis von Polyvinylacetat, Polyacrylat oder insbesondere Polyurethan, vorzugsweise von Polyurethanen mit einer Glastemperatur unter 0°C.In one embodiment of the present invention, tie layer (C) is a layer in the form of dots, stripes or lattices, for example in the form of diamonds, rectangles, squares or a honeycomb structure. Then, polyurethane layer (D) comes in contact with sheet (A) or absorbent material (B) at the gaps of bonding layer (C). In one embodiment of the present invention, tie layer (C) is a layer of a cured organic adhesive, for example based on polyvinyl acetate, polyacrylate or, in particular, polyurethane, preferably of polyurethanes with a glass transition temperature below 0 ° C.
Dabei kann die Härtung des organischen Klebstoffs beispielsweise thermisch, durch aktinische Strahlung oder durch Altern erfolgt sein.The curing of the organic adhesive may be effected, for example, thermally, by actinic radiation or by aging.
In einer anderen Ausführungsform der vorliegenden Erfindung handelt es sich bei Ver- bindungsschicht (C) um ein Klebenetz.In another embodiment of the present invention, bonding layer (C) is an adhesive net.
In einer Ausführungsform der vorliegenden Erfindung weist die Verbindungsschicht (C) eine maximale Dicke von 100 μm, bevorzugt 50 μm, besonders bevorzugt 30 μm, ganz besonders bevorzugt 15 μm auf.In one embodiment of the present invention, the bonding layer (C) has a maximum thickness of 100 μm, preferably 50 μm, more preferably 30 μm, most preferably 15 μm.
In einer Ausführungsform der vorliegenden Erfindung kann Verbindungsschicht (C) Mikrohohlkugeln enthalten. Unter Mikrohohlkugeln sind im Rahmen der vorliegenden Erfindung kugelförmige Partikel mit einem mittleren Durchmesser im Bereich von 5 bis 20 μm aus polymerem Material, insbesondre aus halogeniertem Polymer wie bei- spielsweise Polyvinylchlorid oder Polyvinylidenchlorid oder Copolymer von Vinylchlorid mit Vinylidenchlorid, zu verstehen. Mikrohohlkugeln können leer sein oder vorzugsweise gefüllt mit einer Substanz, deren Siedepunkt geringfügig tiefer liegt als die Zimmertemperatur, beispielsweise mit n-Butan und insbesondere mit Isobutan.In one embodiment of the present invention, tie layer (C) may include hollow microspheres. For the purposes of the present invention, hollow microspheres are spherical particles having an average diameter in the range from 5 to 20 μm of polymeric material, in particular of halogenated polymer such as, for example, polyvinyl chloride or polyvinylidene chloride or copolymer of vinyl chloride with vinylidene chloride. Hollow microspheres can be empty or preferably filled with a substance whose boiling point is slightly lower than the room temperature, for example with n-butane and especially with isobutane.
In einer Ausführungsform der vorliegenden Erfindung kann Polyurethanschicht (D) mit Flächengebilde (A) oder mit absorptionsfähigem Material (B) über mindestens zwei Verbindungsschichten (C) verbunden sein, die eine gleiche oder unterschiedliche Zusammensetzung aufweisen, und zwar so, dass die Polyurethanschicht (D) an mindestens einer Stelle direkt mit Flächengebilde (A) oder mit absorptionsfähigem Material (B) in Berührung kommt. So kann die eine Verbindungsschicht (C) ein Pigment enthalten und die andere Verbindungsschicht (C) pigmentfrei sein.In one embodiment of the present invention, polyurethane layer (D) may be bonded to sheet (A) or absorbent material (B) via at least two tie layers (C) having the same or different composition, such that the polyurethane layer (D ) comes into direct contact with fabric (A) or with absorbent material (B) at at least one location. Thus, one bonding layer (C) may contain one pigment and the other bonding layer (C) may be pigment-free.
In einer Variante kann die eine Verbindungsschicht (C) Mikrohohlkugeln enthalten und die andere Verbindungsschicht (C) nicht.In one variant, one connecting layer (C) may contain hollow microspheres and the other connecting layer (C) may not.
In einer Ausführungsform der vorliegenden Erfindung kann erfindungsgemäßes mehrschichtiges Verbundmaterial keine weiteren Schichten aufweisen. In einer anderen Ausführungsform der vorliegenden Erfindung umfasst erfindungsgemäßes mehrschichtiges Verbundmaterial mindestens eine Zwischenschicht (E), die zwischen absorptions- fähigem Material (B) und Verbindungsschicht (C), zwischen Verbindungsschicht (C) und Polyurethanschicht (D) oder zwischen zwei Verbindungsschichten (C), die gleich oder verschieden sein können, liegt. Dabei wird Zwischenschicht (E) gewählt aus Tex- til, Papier, Vliesstoffen, Nonwoven aus synthetischen Materialien wie Polypropylen oder Polyurethan, insbesondere Nonwoven aus thermoplastischem Polyurethan, Kunstleder und offenzelligem Schaumstoff, beispielsweise Melamin-Formaldehyd- Schaumstoff oder Polyurethanschaumstoff.In one embodiment of the present invention, the multilayer composite material according to the invention can have no further layers. In another embodiment of the present invention, the multilayer composite material according to the invention comprises at least one intermediate layer (E) between absorbent material (B) and bonding layer (C), between bonding layer (C) and polyurethane layer (D) or between two bonding layers (C). , which may be the same or different, lies. Intermediate layer (E) is selected from tex- til, paper, nonwovens, nonwovens of synthetic materials such as polypropylene or polyurethane, in particular nonwoven thermoplastic polyurethane, synthetic leather and open-cell foam, for example melamine-formaldehyde foam or polyurethane foam.
In einer Ausführungsform der vorliegenden Erfindung kann Zwischenschicht (E) einen mittleren Durchmesser (Dicke) im Bereich von 0,05 mm bis 5 cm, bevorzugt 0,1 mm bis 0,5 cm, besonders bevorzugt 0,2 mm bis 2 mm aufweisen.In an embodiment of the present invention, intermediate layer (E) may have an average diameter (thickness) in the range of 0.05 mm to 5 cm, preferably 0.1 mm to 0.5 cm, particularly preferably 0.2 mm to 2 mm.
Vorzugsweise weist Zwischenschicht (E) eine Wasserdampfdurchlässigkeit im Bereich von größer als 1 ,5 mg/cm2-h auf, gemessen nach DIN 53333.Preferably, intermediate layer (E) has a water vapor permeability in the range of greater than 1, 5 mg / cm 2 -h, measured according to DIN 53333.
Erfindungsgemäße mehrschichtige Verbundmaterialien weisen eine hohe mechanische Festigkeit und Echtheiten auf. Weiterhin weisen sie eine hohe Wasserdampfdurchläs- sigkeit auf. Außerdem weisen erfindungsgemäße mehrschichtige Verbundmaterialien ein gefälliges Aussehen und einen sehr angenehmen weichen Griff auf. Außerdem lässt sich - falls es gewünscht ist - die Kombination aus Flächengebilde (A) und absorptionsfähigem Material (B) leicht austauschen, beispielsweise durch Abtrennen und anschließendem Befestigen einer neuen Kombination aus Flächengebilde (A) und ab- sorptionsfähigem Material (B). Vorteilhaft ist die Anwendung von erfindungsgemäßem mehrschichtigem Verbundmaterial beispielsweise in Sitzen für Transportmittel wie Boote, Automobile, Flugzeuge, Eisenbahnen, Straßenbahnen, Busse und insbesondere in Kindersitzen. Auch an weiteren Stellen im Innenraum von Fahrzeugen lässt sich erfindungsgemäßes mehrschichtiges Verbundmaterial vorteilhaft anwenden, beispielsweise bei Lenkrädern, Armlehnen, Dachhimmel, Innenraum-Verkleidungsstücken, Mittelkonsolen, Hutablagen und Armaturenbrettern. Weiterhin lässt sich erfindungsgemäßes mehrschichtiges Verbundmaterial vorteilhaft zum Raumklimamanagement verwenden. Das Raumklimamanagement wird dadurch bewirkt, dass erfindungsgemäße mehrschichtige Verbundmaterialien in feuchter Umgebung Feuchtigkeit aufnehmen (absor- bieren) und in trockener Umgebung wieder abgeben (desorbieren), also für ein gleichmäßig feuchtes Klima sorgen können.Multilayer composite materials according to the invention have a high mechanical strength and fastness properties. Furthermore, they have a high water vapor permeability. In addition, multilayer composite materials according to the invention have a pleasing appearance and a very pleasant soft feel. In addition, if desired, the combination of fabric (A) and absorbent material (B) is easily replaced, for example, by severing and then attaching a new combination of fabric (A) and absorbent material (B). Advantageously, the application of inventive multilayer composite material, for example, in seats for means of transport such as boats, automobiles, aircraft, railways, trams, buses and especially in child seats. Also in other areas in the interior of vehicles, multilayer composite material according to the invention can advantageously be used, for example in steering wheels, armrests, headliners, interior trim pieces, center consoles, parcel shelves and dashboards. Furthermore, multilayer composite material according to the invention can advantageously be used for room climate management. The room climate management is effected by the fact that multi-layer composite materials according to the invention absorb (absorb) moisture in a humid environment and release (desorb) in a dry environment, thus being able to ensure a uniformly humid climate.
Eine weitere Verwendung von erfindungsgemäßen mehrschichtigen Verbundmaterialien sind Sportartikel, beispielsweise Sporttaschen, Rucksäcke, Schläger wie bei- spielsweise Tennis- oder Hockeyschläger, Sportschuhe und die Innenseite von Helmen. Eine weitere Verwendung von erfindungsgemäßen mehrschichtigen Verbundmaterialien sind elektrische Geräte und ihre Verpackungen, beispielsweise Mobiltelefone und Hüllen für Mobiltelefone, Spielekonsolen, Keyboards (Tastaturen) für Computer. Eine weitere Verwendung für erfindungsgemäße mehrschichtige Verbundmaterialien sind Möbel, beispielsweise Sofas, Liegemöbel wie Liegen, Sessel und Stühle. Eine weitere Verwendung für erfindungsgemäße Verbundmaterialien sind Elemente für den Innenraum von Gebäuden, beispielsweise Vorhänge, Gardinen und Wandverkleidungen.Another use of multilayer composite materials according to the invention are sports articles, for example sports bags, rucksacks, rackets such as, for example, tennis or hockey sticks, sports shoes and the inside of helmets. Another use of multilayer composites of the invention are electrical devices and their packaging, such as mobile phones and mobile phone cases, game consoles, computer keyboards. Another use for multilayer composite materials according to the invention are furniture, such as sofas, reclining furniture such as chairs, armchairs and chairs. Another use for composite materials according to the invention are elements for the Interior of buildings, such as curtains, curtains and wall coverings.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von erfindungsgemäßen mehrschichtigen Verbundmaterialien, im Rahmen der vorliegenden Erfindung auch als erfindungsgemäßes Herstellungsverfahren bezeichnet. In einer Ausführungsform des erfindungsgemäßen Herstellungsverfahrens geht man so vor, dass man Material (B), welches Wasser oder wässrige Flüssigkeiten absorbieren kann, kurz auch absorptionsfähiges Material (B) genannt, mit einem Flächengebilde (A), vorzugsweise einem textilen Flächengebilde (A) verbindet, dass man mit Hilfe einer Matrize eine Polyurethanschicht (D) bildet, mindestens einen organischen Klebstoff vollflächig oder partiell auf mit dem absorptionsfähigem Material (B) verbundenen Flächengebilde (A) und/oder auf Polyurethanschicht (D) aufbringt und dann Polyurethanschicht (D) mit dem mit Material (B) kombinierten Flächengebilde (A) punktförmig, strei- fenartig oder flächig verbindet.A further subject of the present invention is a process for the production of multilayer composite materials according to the invention, also referred to in the context of the present invention as a production process according to the invention. In one embodiment of the production process according to the invention, the procedure is such that material (B) which can absorb water or aqueous liquids, also referred to as absorbent material (B) for short, is joined to a fabric (A), preferably to a textile fabric (A) in that a polyurethane layer (D) is formed by means of a matrix, at least one organic adhesive is applied over all or part of the sheet (A) and / or polyurethane layer (D) bonded to the absorbent material (B), and then polyurethane layer (D) is applied the area combined with material (B) sheet (A) connects point-like, strip-like or flat.
Definition und Herstellung von absorptionsfähigem Material (B) und von Flächengebilde (A) sind vorstehend beschrieben. Bevorzugt handelt es sich bei absorptionsfähigem Material (B) um einen Superabsorber (B). Bevorzugt handelt es sich bei Flächengebil- de (A) um ein textiles Flächengebilde (A).Definition and preparation of absorbent material (B) and of sheet (A) are described above. Preferably, absorbent material (B) is a superabsorbent (B). Sheet (A) is preferably a textile fabric (A).
In einer Ausführungsform der vorliegenden Erfindung stellt man erfindungsgemäßes mehrschichtiges Verbundmaterial durch ein Beschichtungsverfahren her, indem man zunächst eine Kombination aus Flächengebilde (A) und absorptionsfähigem Material (B) herstellt, weiterhin einen Polyurethanfilm (D) bereitstellt, mindestens die Kombination aus absorptionsfähigem Material (B) und Flächengebilde (A) oder den Polyurethanfilm (D) oder beides auf je einer Fläche teilweise, beispielsweise musterförmig, mit organischem Klebstoff bestreicht und dann die beiden Flächen miteinander in Kontakt bringt. Danach kann man noch das so erhältliche System aneinanderpressen oder thermisch behandeln oder unter Erwärmen aneinanderpressen.In one embodiment of the present invention, the multilayer composite material of the present invention is prepared by a coating process by first preparing a combination of sheet (A) and absorbent material (B), further providing a polyurethane film (D), at least the combination of absorbent material (B ) and sheet (A) or the polyurethane film (D) or both on each surface partially, for example, pattern-coated, with organic adhesive and then brings the two surfaces into contact. Then you can still press the system so available together or thermally treated or pressed together with heating.
Der Polyurethanfilm (D) bildet die spätere Polyurethanschicht (D) des erfindungsgemäßen mehrschichtigen Verbundmaterials. Den Polyurethanfilm (D) kann man wie folgt herstellen.The polyurethane film (D) forms the later polyurethane layer (D) of the multilayer composite material according to the invention. The polyurethane film (D) can be prepared as follows.
Man bringt eine wässrige Polyurethan-Dispersion auf eine Matrize auf, die vorgewärmt ist, lässt das Wasser verdunsten und überführt danach den sich so bildenden Polyurethanfilm (D) auf die Kombination aus Flächengebilde (A) und absorptionsfähigem Material (B). Das Aufbringen von wässriger Polyurethan-Dispersion auf die Matrize kann nach an sich bekannten Methoden erfolgen, insbesondere durch Aufsprühen, beispielsweise mit einer Sprühpistole.An aqueous polyurethane dispersion is applied to a die which is preheated, allowing the water to evaporate, and thereafter transferring the resulting polyurethane film (D) to the combination of sheet (A) and absorbent material (B). The application of aqueous polyurethane dispersion on the die can be carried out by methods known per se, in particular by spraying, for example with a spray gun.
Die Matrize kann eine Musterung, auch Strukturierung genannt, aufweisen, die man beispielsweise durch Lasergravur erzeugt oder durch Abformen.The matrix may have a pattern, also called structuring, which is produced for example by laser engraving or by molding.
In einer Ausführungsform der vorliegenden Erfindung stellt man eine Matrize bereit, die eine elastomere Schicht oder einen Schichtverbund aufweist, umfassend eine elasto- mere Schicht auf einem Träger, wobei die elastomere Schicht ein Bindemittel sowie gegebenenfalls weitere Zusatz- und Hilfsstoffe umfasst. Die Bereitstellung einer Matrize kann dann die folgenden Schritte umfassen:In one embodiment of the present invention, a die is provided which has an elastomeric layer or a layer composite comprising an elastomeric layer on a support, wherein the elastomeric layer comprises a binder and optionally further additives and auxiliaries. The provision of a template may then include the following steps:
1 ) Aufbringen eines flüssigen Bindemittels, das gegebenenfalls Zusatz- und/oder Hilfsstoffe enthält, auf eine gemusterte Oberfläche, beispielsweise eine andere1) applying a liquid binder, optionally containing additives and / or adjuvants, on a patterned surface, for example another
Matrize oder ein Originalmuster,Die or an original pattern,
2) Aushärten des Bindemittels, beispielsweise durch thermisches Aushärten, Strahlungshärtung oder durch Alternlassen,2) curing the binder, for example by thermal curing, radiation curing or by aging,
3) Trennen der so erhältlichen Matrize und gegebenenfalls Aufbringen auf einen Träger, beispielsweise eine Metallplatte oder einen Metalizylinder.3) separating the thus obtainable template and optionally applying to a support, for example a metal plate or a metal cylinder.
In einer Ausführungsform der vorliegenden Erfindung geht man so vor, dass man ein flüssiges Silikon auf ein Muster aufgibt, das Silikon altern und somit aushärten lässt und dann abzieht. Die Silikonfolie wird dann auf einem Aluträger geklebt.In one embodiment of the present invention, the procedure is to apply a liquid silicone to a pattern that ages and thus hardens silicone and then peels it off. The silicone film is then glued on an aluminum carrier.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung stellt man eine Matrize bereit, die eine lasergravierbare Schicht oder einen Schichtverbund aufweist, um- fassend eine lasergravierbare Schicht auf einem Träger, wobei die lasergravierbare Schicht ein Bindemittel sowie gegebenenfalls weitere Zusatz- und Hilfsstoffe umfasst. Die lasergravierbare Schicht ist vorzugsweise außerdem elastomer.In a preferred embodiment of the present invention, a die is provided which has a laser-engravable layer or a layer composite comprising a laser-engravable layer on a support, wherein the laser-engravable layer comprises a binder and optionally further additives and auxiliaries. The laser-engravable layer is also preferably elastomeric.
In einer bevorzugten Ausführungsform umfasst die Bereitstellung einer Matrize die fol- genden Schritte:In a preferred embodiment, the provision of a template comprises the following steps:
1 ) Bereitstellen einer lasergravierbaren Schicht oder eines Schichtverbunds, umfassend eine lasergravierbare Schicht auf einem Träger, wobei die lasergravierbare Schicht ein Bindemittel sowie vorzugsweise Zusatz- und Hilfsstoffe umfasst,1) providing a laser-engravable layer or a layer composite comprising a laser-engravable layer on a support, wherein the laser-engravable layer comprises a binder and preferably additives and auxiliaries,
2) thermochemische, photochemische oder aktinische Verstärkung der lasergravierbaren Schicht, 3) Eingravieren einer der Oberflächenstruktur der oberflächenstrukturierten Be- schichtung entsprechenden Oberflächenstruktur in die lasergravierbare Schicht mit einem Laser.2) thermochemical, photochemical or actinic amplification of the laser-engravable layer, 3) engraving a surface structure corresponding to the surface structure of the surface-structured coating into the laser-engravable layer with a laser.
Die lasergravierbare Schicht, die vorzugsweise elastomer ist, oder der Schichtverbund können auf einem Träger vorliegen, vorzugsweise liegen sie auf einem Träger vor. Beispiele für geeignete Träger umfassen Gewebe und Folien aus Polyethylentere- phthalat (PET), Polyethylennaphthalat (PEN), Polybutylenterephthalat (PBT), Polyethy- len, Polypropylen, Polyamid oder Polycarbonat, bevorzugt PET- oder PEN-Folien.The laser-engravable layer, which is preferably elastomeric, or the layer composite can be present on a support, preferably they are present on a support. Examples of suitable supports include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polyethylene, polypropylene, polyamide or polycarbonate fabrics and films, preferably PET or PEN films.
Ebenfalls als Träger geeignet sind Papiere und Gewirke, beispielsweise aus Cellulose. Als Träger können auch konische oder zylindrische Röhren aus den besagten Materialien, so genannte Sleeves, eingesetzt werden. Für Sleeves eignen sich auch Glasfasergewebe oder Verbundmaterialien aus Glasfasern und polymeren Werkstoffen. Wei- terhin geeignete Trägermaterialien sind metallische Träger wie beispielsweise massive oder gewebeförmige, flächige oder zylindrische Träger aus Aluminium, Stahl, magneti- sierbarem Federstahl oder anderen Eisenlegierungen.Also suitable as a carrier papers and knitted fabrics, such as cellulose. Conical or cylindrical tubes made of the said materials, so-called sleeves, can also be used as the carrier. Also suitable for sleeves are glass fiber fabrics or composite materials made of glass fibers and polymeric materials. Further suitable carrier materials are metallic carriers such as, for example, solid or tissue-shaped, flat or cylindrical carriers made of aluminum, steel, magnetizable spring steel or other iron alloys.
In einer Ausführungsform der vorliegenden Erfindung kann der Träger zur besseren Haftung der lasergravierbaren Schicht mit einer Haftschicht beschichtet sein. In einer anderen Ausführungsform der vorliegenden Erfindung ist keine Haftschicht erforderlich.In one embodiment of the present invention, the support may be coated with an adhesive layer for better adhesion of the laser-engravable layer. In another embodiment of the present invention, no adhesive layer is required.
Die lasergravierbare Schicht umfasst mindestens ein Bindemittel, das ein Präpolymer sein kann, welches im Zuge einer thermochemischen Verstärkung zu einem Polymer reagiert. Geeignete Bindemittel kann man je nach den gewünschten Eigenschaften der lasergravierbaren Schicht bzw. der Matrize, beispielsweise im Hinblick auf Härte, Elastizität oder Flexibilität, auswählen. Geeignete Bindemittel lassen sich im Wesentlichen in 3 Gruppen einteilen, ohne dass die Bindemittel hierauf beschränkt sein sollen.The laser-engravable layer comprises at least one binder, which may be a prepolymer, which reacts to a polymer in the course of a thermochemical reinforcement. Suitable binders can be selected depending on the desired properties of the laser-engravable layer or the matrix, for example with regard to hardness, elasticity or flexibility. Suitable binders can be subdivided essentially into 3 groups, without the binders being intended to be limited thereto.
Die erste Gruppe umfasst solche Bindemittel, die über ethylenisch ungesättigte Gruppen verfügen. Die ethylenisch ungesättigten Gruppen sind photochemisch, thermo- chemisch, mittels Elektronenstrahlen oder mit einer beliebigen Kombination dieser Prozesse vernetzbar. Zusätzlich kann eine mechanische Verstärkung mittels Füllstoffen vorgenommen werden. Derartige Bindemittel sind beispielsweise solche, die 1 ,3- Dien-Monomere wie Isopren oder 1 ,3-Butadien einpolymerisiert enthalten. Die ethylenisch ungesättigte Gruppe kann dabei einmal als Kettenbaustein des Polymeren fungieren (1 ,4-Einbau), oder sie kann als Seitengruppe (1 ,2-Einbau) an die Polymerkette gebunden sein. Als Beispiele seien Naturkautschuk, Polybutadien, Polyisopren, Styrol- Butadien-Kautschuk, Nitril-Butadien-Kautschuk, Acrylnitril-Butadien-Styrol (ABS) Copo- lymer, Butyl-Kautschuk, Styrol-Isopren-Kautschuk, Polychloropren, Polynorbornen- Kautschuk, Ethylen-Propylen-Dien-Kautschuk (EPDM) oder Polyurethan-Elastomere mit ethylenisch ungesättigten Gruppen genannt. Weitere Beispiele umfassen thermoplastisch elastomere Blockcopolymere aus Alkenyl- aromaten und 1 ,3-Dienen. Bei den Blockcopolymeren kann es sich sowohl um lineare Blockcopolymere oder auch um radiale Blockcopolymere handeln. Üblicherweise han- delt es sich um Dreiblockcopolymere vom A-B-A-Typ, es kann sich aber auch um Zweiblockpolymere vom A-B-Typ handeln, oder um solche mit mehreren alternierenden elastomeren und thermoplastischen Blöcken, z.B. A-B-A-B-A. Es können auch Gemische zweier oder mehrerer unterschiedlicher Blockcopolymere eingesetzt werden. Handelsübliche Dreiblockcopolymere enthalten häufig gewisse Anteile an Zweiblockcopolymeren. Dien-Einheiten können 1 ,2- oder 1 ,4-verknüpft sein. Es können sowohl Blockcopolymere vom Styrol-Butadien wie vom Styrol-Isopren-Typ eingesetzt werden. Sie sind beispielsweise unter dem Namen Kraton® im Handel erhältlich. Weiterhin einsetzbar sind auch thermoplastisch elastomere Blockcopolymere mit Endblöcken aus Styrol und einem statistischen Styrol-Butadien-Mittelblock, die unter dem Namen Styroflex® erhältlich sind.The first group includes such binders having ethylenically unsaturated groups. The ethylenically unsaturated groups can be crosslinked photochemically, thermochemically, by means of electron beams or with any combination of these processes. In addition, a mechanical reinforcement can be made by means of fillers. Such binders are, for example, those which comprise copolymerized 1,3-diene monomers, such as isoprene or 1,3-butadiene. The ethylenically unsaturated group can function once as a chain building block of the polymer (1, 4-incorporation), or it can be bound as a side group (1, 2-incorporation) to the polymer chain. Examples include natural rubber, polybutadiene, polyisoprene, styrene-butadiene rubber, nitrile-butadiene rubber, acrylonitrile-butadiene-styrene (ABS) copolymer, butyl rubber, styrene-isoprene rubber, polychloroprene, polynorbornene rubber, ethylene Propylene-diene rubber (EPDM) or polyurethane elastomers having ethylenically unsaturated groups. Other examples include thermoplastic elastomeric block copolymers of alkenyl aromatics and 1,3-dienes. The block copolymers may be either linear block copolymers or radial block copolymers. These are usually ABA-type triblock copolymers, but they can also be AB-type diblock polymers, or those having a plurality of alternating elastomeric and thermoplastic blocks, eg ABABA. It is also possible to use mixtures of two or more different block copolymers. Commercially available triblock copolymers often contain certain proportions of diblock copolymers. Diene units can be 1, 2, or 1, 4 linked. Both block copolymers of styrene-butadiene and of styrene-isoprene type can be used. They are available, for example under the name Kraton ® commercially. Furthermore possible to employ thermoplastic-elastomeric block copolymers having end blocks of styrene and a random styrene-butadiene middle block, which are available under the name Styroflex ®.
Weitere Beispiele von Bindemitteln mit ethylenisch ungesättigten Gruppen umfassen modifizierte Bindemittel, bei denen vernetzbare Gruppen durch Pfropfungsreaktionen in das polymere Molekül eingeführt werden.Other examples of ethylenically unsaturated binder include modified binders in which crosslinkable groups are introduced into the polymeric molecule by grafting reactions.
Die zweite Gruppe umfasst solche Bindemittel, die über funktionelle Gruppen verfügen. Die funktionellen Gruppen sind thermochemisch, mittels Elektronenstrahlen, photochemisch oder mit einer beliebigen Kombination dieser Prozesse vernetzbar. Zusätzlich kann eine mechanische Verstärkung mittels Füllstoffen vorgenommen werden. Beispiele geeigneter funktioneller Gruppen umfassen -Si(HR1)O-, -Si(R1R2)O-, -OH, -NH2, -NHR1, -COOH, -COOR1, -COHN2, -0-C(O)NHR1, -SO3H oder -CO-. Beispiele von Bindemitteln umfassen Silikonelastomere, Acrylat-Kautschuke, Ethylen-Acrylat- Kautschuke, Ethylen-Acrylsäure-Kautschuke oder Ethylen-Vinylacetat-Kautschuke sowie deren teilweise hydrolysierte Derivate, thermoplastisch elastomere Polyurethane, sulfonierte Polyethylene oder thermoplastisch elastomere Polyester. Dabei sind R1 und - so vorhanden - R2 verschieden oder vorzugsweise gleich und gewählt aus organischen Gruppen und insbesondere Ci-Cβ-Alkyl.The second group includes such binders having functional groups. The functional groups can be thermochemically crosslinked by means of electron beams, photochemically or with any combination of these processes. In addition, a mechanical reinforcement can be made by means of fillers. Examples of suitable functional groups include -Si (HR 1 ) O-, -Si (R 1 R 2 ) O-, -OH, -NH 2 , -NHR 1 , -COOH, -COOR 1 , -COHN 2 , -O- C (O) NHR 1 , -SO 3 H or -CO-. Examples of binders include silicone elastomers, acrylate rubbers, ethylene-acrylate rubbers, ethylene-acrylic acid rubbers or ethylene-vinyl acetate rubbers and their partially hydrolyzed derivatives, thermoplastic elastomeric polyurethanes, sulfonated polyethylenes or thermoplastic elastomeric polyesters. R 1 and, if present, R 2 are different or preferably identical and selected from organic groups and in particular C 1 -C 6 -alkyl.
In einer Ausführungsform der vorliegenden Erfindung kann man Bindemittel einsetzen, die sowohl über ethylenisch ungesättigte Gruppen als auch über funktionelle Gruppen verfügen. Beispiele umfassen additionsvernetzende Silikonelastomere mit funktionellen und ethylenisch ungesättigten Gruppen, Copolymere von Butadien mit (Meth)acrylaten, (Meth)acrylsäure oder Acrylnitril, sowie weiterhin Copolymere bzw. Blockcopolymere von Butadien oder Isopren mit funktionelle Gruppen aufweisenden Styrolderivaten, beispielsweise Blockcopolymere aus Butadien und 4-Hydroxystyrol. Die dritte Gruppe von Bindemitteln umfasst solche, die weder über ethylenisch ungesättigte Gruppen noch über funktionelle Gruppen verfügen. Zu nennen sind hier beispielsweise Polyolefine oder Ethylen/Propylen-Elastomere oder durch Hydrierung von Dien-Einheiten erhaltene Produkte, wie beispielsweise SEBS-Kautschuke.In one embodiment of the present invention, it is possible to use binders which have both ethylenically unsaturated groups and functional groups. Examples include addition-crosslinking silicone elastomers having functional and ethylenically unsaturated groups, copolymers of butadiene with (meth) acrylates, (meth) acrylic acid or acrylonitrile, and also copolymers or block copolymers of butadiene or isoprene with functionalized styrene derivatives, for example block copolymers of butadiene and hydroxystyrene. The third group of binders includes those which have neither ethylenically unsaturated groups nor functional groups. These include, for example, polyolefins or ethylene / propylene elastomers or products obtained by hydrogenation of diene units, such as, for example, SEBS rubbers.
Polymerschichten, die Bindemittel ohne ethylenisch ungesättigte oder funktionelle Gruppen enthalten, müssen in der Regel mechanisch, mit Hilfe energiereicher Strahlung oder einer Kombination daraus verstärkt werden, um eine optimal scharfkantige Strukturierbarkeit mittels Laser zu ermöglichen.Polymer layers which contain binders without ethylenically unsaturated or functional groups generally have to be reinforced mechanically, with the aid of high-energy radiation or a combination thereof, in order to enable optimum sharp-edged structuring by means of laser.
Man kann auch Gemische zweier oder mehrerer Bindemittel einsetzen, wobei es sich dabei sowohl um Bindemittel aus jeweils nur einer der geschilderten Gruppen handeln kann oder um Gemische von Bindemitteln aus zwei oder allen drei Gruppen. Die Kombinationsmöglichkeiten sind nur insofern beschränkt, als die Eignung der Polymer- schicht für den Laserstrukturierungsprozess und den Abformvorgang nicht negativ be- einflusst werden darf. Vorteilhaft kann beispielsweise ein Gemisch von mindestens einem elastomeren Bindemittel, welches keine funktionellen Gruppen aufweist, mit mindestens einem weiteren Bindemittel, welches funktionelle Gruppen oder ethylenisch ungesättigte Gruppen aufweist, eingesetzt werden.It is also possible to use mixtures of two or more binders, which may be both binders from in each case only one of the groups described, or mixtures of binders from two or all three groups. The possible combinations are limited only insofar as the suitability of the polymer layer for the laser structuring process and the molding process must not be adversely affected. For example, a mixture of at least one elastomeric binder which has no functional groups can advantageously be used with at least one further binder which has functional groups or ethylenically unsaturated groups.
In einer Ausführungsform der vorliegenden Erfindung beträgt der Anteil des oder der Bindemittel in der elastomeren Schicht bzw. der betreffenden lasergravierbaren Schicht 30 Gew.-% bis 99 Gew.-% bezüglich der Summe aller Bestandteile der betreffenden elastomeren Schicht bzw. der betreffenden lasergravierbaren Schicht, bevorzugt 40 bis 95 Gew.-%, und ganz besonders bevorzugt 50 bis 90 Gew.-%.In one embodiment of the present invention, the proportion of the binder (s) in the elastomeric layer or laser-engravable layer is from 30% by weight to 99% by weight relative to the sum of all the constituents of the elastomeric layer or laser-engravable layer concerned, preferably 40 to 95 wt .-%, and most preferably 50 to 90 wt .-%.
In einer Ausführungsform der vorliegenden Erfindung bildet man Polyurethanschicht (D) mit Hilfe einer Silikonmatrize. Unter Silikonmatrizen werden im Rahmen der vorliegenden solche Matrizen verstanden, zu deren Herstellung mindestens ein Bindemittel eingesetzt wird, das mindestens eine, bevorzugt mindestens drei O-Si(R1R2)-O- Gruppen pro Molekül aufweist, wobei die Variablen wie vorstehend definiert sind.In one embodiment of the present invention, polyurethane layer (D) is formed by means of a silicone matrix. For the purposes of the present invention, silicone matrices are those matrices which are prepared using at least one binder which has at least one, preferably at least three O-Si (R 1 R 2 ) -O- groups per molecule, the variables being as defined above are.
Optional kann die elastomere Schicht bzw. lasergravierbare Schicht reaktive niedermolekulare oder oligomere Verbindungen umfassen. Oligomere Verbindungen weisen im Allgemeinen ein Molekulargewicht von nicht mehr als 20.000 g/mol auf. Reaktive niedermolekulare und oligomere Verbindungen sollen im Folgenden der Einfachheit halber als Monomere bezeichnet werden.Optionally, the elastomeric layer or laser-engravable layer may comprise reactive low molecular weight or oligomeric compounds. Oligomeric compounds generally have a molecular weight of not more than 20,000 g / mol. Reactive low molecular weight and oligomeric compounds will hereinafter be referred to as monomers for the sake of simplicity.
Monomere können einerseits zugesetzt werden, um die Geschwindigkeit der fotoche- mischen oder thermochemischen Vernetzung oder der Vernetzung mittels energiereicher Strahlung zu erhöhen, sofern dies gewünscht wird. Bei Verwendung von Bindemitteln aus der ersten und zweiten Gruppe ist der Zusatz von Monomeren zur Be- schleunigung im Allgemeinen nicht zwingend notwendig. Bei Bindemitteln aus der dritten Gruppe ist der Zusatz von Monomeren im Regelfalle empfehlenswert, ohne dass dies zwingend in jedem Falle notwendig wäre.On the one hand, monomers can be added in order to increase the rate of photochemical or thermochemical crosslinking or crosslinking by means of high-energy radiation, if desired. When using binders from the first and second groups, the addition of monomers to the Acceleration generally not mandatory. In the case of binders from the third group, the addition of monomers is generally recommended, without this necessarily being necessary in every case.
Unabhängig von der Frage der Vernetzungsgeschwindigkeit können Monomere auch zur Steuerung der Vernetzungsdichte eingesetzt werden. Je nach Art und Menge der zugesetzten niedermolekularen Verbindungen werden weitere oder engere Netzwerke erhalten. Als Monomere können einerseits bekannte ethylenisch ungesättigte Monomere eingesetzt werden. Die Monomeren sollen mit den Bindemitteln im Wesentlichen verträglich sein und mindestens eine fotochemisch oder thermochemisch reaktive Gruppe aufweisen. Sie sollten nicht leichtflüchtig sein. Bevorzugt beträgt der Siedepunkt von geeigneten Monomeren mindestens 1500C. Besonders geeignet sind Amide der Acrylsäure oder Methacrylsäure mit mono- oder polyfunktionellen Alkoholen, Aminen, Aminoalkoholen oder Hydroxyethern und -estern, Styrol oder substituierte Styrole, Ester der Fumar- oder Maleinsäure oder Allylverbindungen. Beispiele umfassen n- Butylacrylat, 2-Ethylhexylacrylat, Laurylacrylat, 1 ,4-Butandioldi(meth)acrylat, 1 ,6- Hexandioldiacrylat, 1 ,6-Hexandioldimethacrylat, 1 ,9-Nonandioldiacrylat, Trimethylol- propantrimethacrylat, Trimethylolpropantriacrylat, Dipropylenglykoldiacrylat, Tripropy- lenglykoldiacrylat, Dioctylfumarat, N-Dodecylmaleimid und Triallylisocyanurat.Regardless of the crosslink speed issue, monomers can also be used to control the crosslink density. Depending on the nature and amount of the low molecular weight compounds added, further or narrower networks are obtained. As monomers on the one hand known ethylenically unsaturated monomers can be used. The monomers should be substantially compatible with the binders and have at least one photochemically or thermochemically reactive group. They should not be volatile. The boiling point of suitable monomers is preferably at least 150 ° C. Particularly suitable are amides of acrylic acid or methacrylic acid with monofunctional or polyfunctional alcohols, amines, aminoalcohols or hydroxyethers and esters, styrene or substituted styrenes, esters of fumaric or maleic acid or allyl compounds. Examples include n-butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol diacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, dipropylene glycol diacrylate, tripropyric acid. glycol diacrylate, dioctyl fumarate, N-dodecyl maleimide and triallyl isocyanurate.
Insbesondere für die thermochemische Verstärkung geeignete Monomere umfassen reaktive niedermolekulare Silikone wie beispielsweise zyklische Siloxane, Si-H- funktionelle Siloxane, Siloxane mit Alkoxy- oder Estergruppen, schwefelhaltige Siloxane und Silane, Dialkohole wie beispielsweise 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,8-Octan- diol, 1 ,9-Nonandiol, Diamine wie beispielsweise 1 ,6-Hexandiamin, 1 ,8-Octandiamin, Aminoalkohole wie beispielsweise Ethanolamin, Diethanolamin, Butylethanolamin, Di- carbonsäuren wie beispielsweise 1 ,6-Hexandicarbonsäure, Terephthalsäure, Maleinsäure oder Fumarsäure.Particularly suitable for the thermochemical reinforcement monomers include reactive low molecular weight silicones such as cyclic siloxanes, Si-H-functional siloxanes, siloxanes with alkoxy or ester groups, sulfur-containing siloxanes and silanes, dialcohols such as 1, 4-butanediol, 1, 6-hexanediol, 1, 8-octanediol, 1, 9-nonanediol, diamines such as 1, 6-hexanediamine, 1, 8-octanediamine, amino alcohols such as ethanolamine, diethanolamine, butylethanolamine, dicarboxylic acids such as 1, 6-hexanedicarboxylic acid, terephthalic acid , Maleic acid or fumaric acid.
Es können auch Monomere eingesetzt werden, die sowohl ethylenisch ungesättigte Gruppen wie funktionelle Gruppen aufweisen. Als Beispiele seinen ω-Hydroxy- alkyl(meth)acrylate genannt, wie beispielsweise Ethylenglykolmono(meth)acrylat, 1 ,4- Butandiolmono(meth)acrylat oder 1 ,6-Hexandiolmono(meth)acrylat.It is also possible to use monomers which have both ethylenically unsaturated groups and functional groups. As examples of its ω-hydroxyalkyl (meth) acrylates, such as ethylene glycol mono (meth) acrylate, 1, 4-butanediol mono (meth) acrylate or 1, 6-hexanediol mono (meth) acrylate.
Selbstverständlich können auch Gemische verschiedener Monomerer eingesetzt werden, vorausgesetzt die Eigenschaften der elastomeren Schicht werden durch die Mischung nicht negativ beeinflusst. Im Regelfalle beträgt die Menge zugesetzter Monomere 0 bis 40 Gew.-% bezüglich der Menge aller Bestandteile der elastomeren Schicht bzw. der betreffenden lasergravierbaren Schicht, bevorzugt 1 bis 20 Gew.-%.Of course, mixtures of different monomers can be used, provided that the properties of the elastomeric layer are not adversely affected by the mixture. In general, the amount of added monomers 0 to 40 wt .-% with respect to the amount of all components of the elastomeric layer or the laser-engravable layer concerned, preferably 1 to 20 wt .-%.
In einer Ausführungsform kann man ein oder mehrere Monomere mit einem oder mehreren Katalysatoren einsetzen. So ist es möglich, Silikonmatrizen durch Zugabe von einer oder mehrerer Säuren oder durch Organozinnverbindungen den Schritt 2) der Bereitstellung der Matrize zu beschleunigen. Geeignete Organozinnverbindungen können sein: Di-n-butylzinndilaureat, Di-n-butylzinndiactanoat, Di-n-butylzinndi-2- ethylhexanoat, Di-n-octylzinndi-2-ethylhexanoat und Di-n-butylbis(1- oxoneodecyloxy)stannan.In one embodiment, one or more monomers may be employed with one or more catalysts. So it is possible to make silicone matrices by adding one or more acids or by organotin compounds to accelerate the step 2) of providing the template. Suitable organotin compounds may be: di-n-butyltin dilaurate, di-n-butyltin diactanoate, di-n-butyltin di-2-ethylhexanoate, di-n-octyltin di-2-ethylhexanoate and di-n-butylbis (1-oxoneodecyloxy) stannane.
Die elastomere Schicht bzw. die lasergravierbare Schicht kann weiterhin Zusatz- und Hilfsstoffe wie beispielsweise IR-Absorber, Farbstoffe, Dispergierhilfsmittel, Antistatika, Weichmacher oder abrasive Partikel umfassen. Die Menge derartiger Zusatz- und Hilfsstoffe sollte im Regelfalle 30 Gew.-% bezüglich der Menge aller Komponenten der elastomeren Schicht bzw. der betreffenden lasergravierbaren Schicht nicht überschreiten.The elastomeric layer or the laser-engravable layer may further comprise additives and auxiliaries, for example IR absorbers, dyes, dispersing aids, antistatic agents, plasticizers or abrasive particles. The amount of such additives and auxiliaries should as a rule not exceed 30% by weight with respect to the amount of all components of the elastomeric layer or the relevant laser-engravable layer.
Die elastomere Schicht bzw. die lasergravierbare Schicht kann aus mehreren Einzel- schichten aufgebaut werden. Diese Einzelschichten können von gleicher, in etwa gleicher oder von unterschiedlicher stofflicher Zusammensetzung sein. Die Dicke der lasergravierbaren Schicht bzw. aller Einzelschichten zusammen beträgt im Regelfalle zwischen 0,1 und 10 mm, bevorzugt 0,5 bis 3 mm. Die Dicke kann man abhängig von anwendungstechnischen und maschinentechnischen Prozessparametern des Laser- gravurvorgangs und des Abformvorgangs geeignet auswählen.The elastomeric layer or the laser-engravable layer can be constructed from a plurality of individual layers. These individual layers can be of the same, approximately the same or different material composition. The thickness of the laser-engravable layer or all individual layers together is generally between 0.1 and 10 mm, preferably 0.5 to 3 mm. The thickness can be suitably selected depending on application and machine process parameters of the laser engraving process and the molding process.
Die elastomere Schicht bzw. die lasergravierbare Schicht kann optional weiterhin eine Oberschicht mit einer Dicke von nicht mehr als 300 μm aufweisen. Die Zusammensetzung einer solchen Oberschicht kann man im Hinblick auf optimale Gravierbarkeit und mechanische Stabilität auswählen, während die Zusammensetzung der darunter liegenden Schicht im Hinblick auf optimale Härte oder Elastizität ausgewählt wird.The elastomeric layer or the laser-engravable layer may optionally further comprise a top layer having a thickness of not more than 300 μm. The composition of such a topsheet can be selected for optimal engravability and mechanical stability while selecting the composition of the underlying layer for optimum hardness or elasticity.
In einer Ausführungsform der vorliegenden Erfindung ist die Oberschicht selbst laser- gravierbar oder im Zuge der Lasergravur zusammen mit der darunter liegenden Schicht entfernbar. Die Oberschicht umfasst mindestens ein Bindemittel. Sie kann weiterhin einen Absorber für Laserstrahlung oder auch Monomere oder Hilfsmittel umfassen.In one embodiment of the present invention, the topsheet itself is laser engravable or can be removed by laser engraving together with the underlying layer. The topsheet comprises at least one binder. It may further comprise an absorber for laser radiation or even monomers or auxiliaries.
In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei der Silikon- matrize um eine mit Hilfe von Lasergravur strukturierte Silikonmatrize.In one embodiment of the present invention, the silicone matrix is a laser-engraved silicone matrix.
Von ganz besonderem Vorteil werden für das erfindungsgemäße Verfahren thermoplastisch elastomere Bindemittel oder Silikonelastomere eingesetzt. Bei Verwendung thermoplastisch elastomerer Bindemittel erfolgt die Herstellung bevorzugt durch Extru- dieren zwischen eine Trägerfolie und eine Deckfolie oder ein Deckelement gefolgt von Kalandrieren, wie beispielsweise für Flexodruckelemente in EP-A 0 084 851 offenbart. Auf diese Art und Weise lassen sich auch dickere Schichten in einem einzigen Arbeits- gang herstellen. Mehrschichtige Elemente können mittels Coextrusion hergestellt werden.Of very particular advantage thermoplastic elastomeric binders or silicone elastomers are used for the process according to the invention. When using thermoplastically elastomeric binders, the preparation is preferably carried out by extrusion between a carrier film and a cover film or a cover element followed by calendering, as disclosed, for example, for flexographic printing elements in EP-A 0 084 851. In this way even thicker layers can be produced in a single work make a gear. Multilayer elements can be produced by coextrusion.
Wünscht man die Matrize mit Hilfe von Lasergravur zu strukturieren, so ist es bevor- zugt, die lasergravierbare Schicht vor der Lasergravur durch Erwärmen (thermoche- misch), durch Bestrahlen mit UV-Licht (photochemisch) oder durch Bestrahlen mit e- nergiereicher Strahlung (aktinisch) oder einer beliebigen Kombination davon zu verstärken.If it is desired to pattern the template by means of laser engraving, it is preferable to apply the laser-engravable layer before laser engraving by heating (thermochemically), by irradiation with UV light (photochemically) or by irradiation with energy ( actinic) or any combination thereof.
Anschließend wird die lasergravierbare Schicht oder der Schichtverbund auf einen zylindrischen (temporären) Träger, beispielsweise aus Kunststoff, glasfaserverstärktem Kunststoff, Metall oder Schaum, beispielsweise mittels Klebeband, Unterdruck, Klemmvorrichtungen oder Magnetkraft, aufgebracht und wie oben beschrieben graviert. Alternativ kann auch die plane Schicht bzw. der Schichtverbund wie oben be- schrieben graviert werden. Optional wird während des Lasergravurvorgangs die lasergravierbare Schicht mit einem Rundwascher oder einem Durchlaufwascher mit einem Reinigungsmittel zur Entfernung von Gravurrückständen gewaschen.Subsequently, the laser-engravable layer or the layer composite is applied to a cylindrical (temporary) support, for example made of plastic, glass fiber reinforced plastic, metal or foam, for example by means of adhesive tape, negative pressure, clamping devices or magnetic force, and engraved as described above. Alternatively, the plane layer or the layer composite can also be engraved as described above. Optionally, during the laser engraving process, the laser engravable layer is washed with a round washer or a continuous washer with a debris removal cleaner.
Auf die beschriebene Weise kann die Matrize als Negativmatrize oder als Positivmatri- ze hergestellt werden.In the manner described, the die can be produced as a negative die or as a positive die.
In einer ersten Variante weist die Matrize eine Negativ-Struktur auf, so dass die mit Flächengebilde (A) und absorptionsfähigem Material (B) verbindbare Beschichtung direkt durch Auftragen eines flüssigen Kunststoffmaterials auf die Oberfläche der Mat- rize und anschließender Verfestigung des Polyurethans erhalten werden kann.In a first variant, the matrix has a negative structure, so that the coating connectable to the sheet (A) and absorbent material (B) can be obtained directly by applying a liquid plastic material to the surface of the matrix and then solidifying the polyurethane ,
In einer zweiten Variante weist die Matrize eine Positiv-Struktur auf, so dass zunächst eine Negativ-Matrize durch Abformung von der laserstrukturierten Positivmatrize hergestellt wird. Von dieser Negativ-Matrize kann die mit einem flächigen Träger verbind- bare Beschichtung anschließend durch Auftragen eines flüssigen Kunststoffmaterials auf die Oberfläche der Negativmatrize und anschließender Verfestigung des Kunststoffmaterials erhalten werden.In a second variant, the die has a positive structure, so that first a negative die is produced by molding of the laser-structured positive die. The coating which can be bonded to a flat support can then be obtained from this negative die by applying a liquid plastic material to the surface of the negative die and then solidifying the plastic material.
Vorzugsweise werden in die Matrize Strukturelemente mit Abmessungen im Bereich von 10 bis 500 μm eingraviert. Die Strukturelemente können als Erhebungen oder Vertiefungen ausgebildet sein. Vorzugsweise haben die Strukturelemente eine einfache geometrische Form und sind beispielsweise Kreise, Ellipsen, Quadraten, Rauten, Dreiecken und Sterne. Die Strukturelemente können ein regelmäßiges oder unregelmäßiges Raster bilden. Beispiele sind ein klassisches Punktraster oder ein stochastisches Raster, beispielsweise ein frequenzmoduliertes Raster. In einer Ausführungsform der vorliegenden Erfindung arbeitet man zur Strukturierung der Matrize mit Hilfe eines Lasers Näpfchen in die Matrize ein, die eine mittlere Tiefe im Bereich von 50 bis 250 μm aufweisen und einen Mittenabstand im Bereich von 50 bis 250 μm.Preferably, structural elements having dimensions in the range from 10 to 500 μm are engraved into the matrix. The structural elements may be formed as elevations or depressions. Preferably, the structural elements have a simple geometric shape and are, for example, circles, ellipses, squares, diamonds, triangles and stars. The structural elements can form a regular or irregular grid. Examples are a classical dot matrix or a stochastic screen, for example a frequency-modulated screen. In one embodiment of the present invention, for structuring the template by means of a laser, cells are introduced into the matrix having an average depth in the range from 50 to 250 μm and a center distance in the range from 50 to 250 μm.
Beispielsweise kann man die Matrize so gravieren, dass sie „Näpfchen" (Vertiefungen) aufweist, welche einen Durchmesser im Bereich von 10 bis 500 μm an der Oberfläche der Matrize aufweisen. Vorzugsweise beträgt der Durchmesser an der Oberfläche der Matrize 20 bis 250 μm und besonders bevorzugt 30 - 150 μm. Der Abstand der Näpf- chen kann beispielsweise 10 bis 500 μm, vorzugsweise 20 bis 200 μm, besonders bevorzugt bis 80 μm betragen. Die Tonwerte des Rasters liegen im Allgemeinen zwischen 3 % und 50 %.For example, the die may be engraved to have "cups" (depressions) having a diameter in the range of 10 to 500 microns at the surface of the die Preferably, the diameter at the die surface is 20 to 250 microns and more particularly The spacing of the wells may be, for example, 10 to 500 μm, preferably 20 to 200 μm, particularly preferably up to 80 μm. The tone values of the grid are generally between 3% and 50%.
In einer Ausführungsform der vorliegenden Erfindung weist die Matrize vorzugsweise neben einer Oberflächen-Grobstruktur noch eine Oberflächen-Feinstruktur auf. Sowohl Grob- als auch Feinstruktur können durch Lasergravur erzeugt werden. Die Feinstruktur kann beispielsweise eine Mikrorauhigkeit mit einer Rauhigkeitsamplitude im Bereich von 1 bis 30 μm und einer Rauhigkeitsfrequenz von 0,5 bis 30 μm sein. Bevorzugt liegen die Dimensionen der Mikrorauhigkeit im Bereich von 1 bis 20 μm, besonders be- vorzugt 2 bis 15 μm und besonders bevorzugt 3 bis 10 μm.In one embodiment of the present invention, the die preferably still has a surface fine structure in addition to a surface coarse structure. Both coarse and fine structure can be produced by laser engraving. The fine structure may be, for example, a microroughness with a roughness amplitude in the range of 1 to 30 μm and a roughness frequency of 0.5 to 30 μm. The dimensions of the microroughness are preferably in the range from 1 to 20 .mu.m, more preferably from 2 to 15 .mu.m, and particularly preferably from 3 to 10 .mu.m.
Zur Lasergravur eigenen sich insbesondere IR-Laser. Es können aber auch Laser mit kürzeren Wellenlängen eingesetzt werden, vorausgesetzt der Laser weist eine ausreichende Intensität auf. Beispielsweise kann ein frequenzverdoppelter (532 nm) oder frequenzverdreifachter (355 nm) Nd-Y AG-Laser eingesetzt werden, oder auch ein Ex- cimer-Laser (z.B. 248 nm). Zur Lasergravur kann beispielsweise ein Cθ2-Laser mit einer Wellenlänge von 10640 nm eingesetzt werden. Besonders bevorzugt werden Laser mit einer Wellenlänge von 600 bis 2000 nm eingesetzt. Beispielsweise können Nd-Y AG-Laser (1064 nm), IR-Diodenlaser oder Festkörperlaser eingesetzt werden. Besonders bevorzugt sind Nd/YAG-Laser. Die einzugravierende Bildinformation wird direkt aus dem Lay-Out-Computersystem zur Laserapparatur übertragen. Die Laser können entweder kontinuierlich oder gepulst betrieben werden.Laser engraving is especially suitable for IR lasers. However, it is also possible to use lasers with shorter wavelengths, provided the laser has sufficient intensity. For example, a frequency doubled (532nm) or frequency tripled (355nm) Nd-Y AG laser can be used, or even an excimer laser (e.g., 248nm). For laser engraving, for example, a CO 2 laser with a wavelength of 10640 nm can be used. Particular preference is given to using lasers having a wavelength of 600 to 2000 nm. For example, Nd-Y AG lasers (1064 nm), IR diode lasers or solid-state lasers can be used. Particularly preferred are Nd / YAG lasers. The image information to be engraved is transmitted directly from the lay-out computer system to the laser apparatus. The lasers can be operated either continuously or pulsed.
Im Regelfall kann die erhaltene Matrize nach der Herstellung direkt eingesetzt werden. Falls gewünscht, kann die erhaltene Matrize noch nachgereinigt werden. Durch einen solchen Reinigungsschritt werden losgelöste, aber eventuell noch nicht vollständig von der Oberfläche entfernte Schichtbestandteile entfernt. Im Regelfalle ist einfaches Behandeln mit Wasser, Wasser/Tensid, Alkoholen oder inerten organischen Reinigungsmitteln ausreichend, die vorzugsweise quellungsarm sind.As a rule, the template obtained can be used directly after production. If desired, the resulting template can still be cleaned. By such a cleaning step detached, but not yet completely removed from the surface layer components are removed. As a rule, simple treatment with water, water / surfactant, alcohols or inert organic cleaning agents is sufficient, which are preferably low in swelling.
In einem weiteren Schritt bringt man eine wässrige Formulierung von Polyurethan auf die Matrize auf. Das Aufbringen kann vorzugsweise durch Aufsprühen erfolgen. Die Matrize sollte erwärmt sein, wenn man die Formulierung von Polyurethan aufbringt, beispielsweise auf Temperaturen von mindestens 800C, bevorzugt mindestens 900C. Das Wasser aus der wässrigen Formulierung von Polyurethan verdampft und bildet die Kapillaren in der sich verfestigenden Polyurethanschicht.In a further step, an aqueous formulation of polyurethane is applied to the matrix. The application can preferably be effected by spraying. The The matrix should be heated when applying the formulation of polyurethane, for example to temperatures of at least 80 0 C, preferably at least 90 0 C. The water from the aqueous formulation of polyurethane evaporates and forms the capillaries in the solidifying polyurethane layer.
Unter wässrig wird im Zusammenhang mit der Polyurethandispersion verstanden, dass sie Wasser enthält, aber weniger als 5 Gew.-%, bezogen auf die Dispersion, bevorzugt weniger als 1 Gew.-% organisches Lösungsmittel. Besonders bevorzugt lässt sich kein flüchtiges organisches Lösungsmittel nachweisen. Unter flüchtigen organischen Lö- sungsmitteln werden im Rahmen der vorliegenden Erfindung solche organischen Lösungsmittel verstanden, die bei Normaldruck einen Siedepunkt von bis zu 2000C aufweisen.By aqueous, in connection with the polyurethane dispersion, is meant that it contains water, but less than 5% by weight, based on the dispersion, preferably less than 1% by weight of organic solvent. Most preferably, no volatile organic solvent can be detected. Volatile organic sol- vents are understood to be organic solvent in the present invention, which have a boiling point of up to 200 0 C at atmospheric pressure.
Die wässrige Polyurethandispersion kann einen Feststoffgehalt im Bereich von 5 bis 60 Gew.-% auf, bevorzugt 10 bis 50 Gew.-% und besonders bevorzugt 25 bis 45 Gew.-% aufweisen.The aqueous polyurethane dispersion may have a solids content in the range from 5 to 60 wt .-%, preferably 10 to 50 wt .-% and particularly preferably 25 to 45 wt .-%.
Polyurethane (PU) sind allgemein bekannt, kommerziell erhältlich und bestehen im allgemeinen aus einer Weichphase aus höhermolekularen Polyhydroxylverbindungen, z.B. aus Polycarbonat, Polyester- oder Polyethersegmenten, und einer Urethan-Polyurethanes (PU) are well known, commercially available and generally consist of a soft phase of higher molecular weight polyhydroxyl compounds, e.g. polycarbonate, polyester or polyether segments, and a urethane
Hartphase, gebildet aus niedermolekularen Kettenverlängerungsmitteln und Di- oder Polyisocyanaten.Hard phase, formed from low molecular weight chain extenders and di- or polyisocyanates.
Verfahren zur Herstellung von Polyurethanen (PU) sind allgemein bekannt. Im allge- meinen werden Polyurethane (PU) durch Umsetzung vonProcesses for the preparation of polyurethanes (PU) are well known. In general, polyurethanes (PU) are converted by reaction of
(a) Isocyanaten, bevorzugt Diisocyanaten mit(a) isocyanates, preferably diisocyanates with
(b) gegenüber Isocyanaten reaktiven Verbindungen, üblicherweise mit einem Molekulargewicht (Mw) von 500 bis 10.000 g/mol, bevorzugt 500 bis 5.000 g/mol, besonders bevorzugt 800 bis 3.000 g/mol, und (c) Kettenverlängerungsmitteln mit einem Molekulargewicht von 50 bis 499 g/mol gegebenenfalls in Gegenwart von(b) isocyanate-reactive compounds, usually having a molecular weight (Mw) of 500 to 10,000 g / mol, preferably 500 to 5,000 g / mol, more preferably 800 to 3,000 g / mol, and (c) chain extenders having a molecular weight of 50 to 499 g / mol, optionally in the presence of
(d) Katalysatoren(d) catalysts
(e) und/oder üblichen Zusatzstoffen hergestellt.(e) and / or customary additives.
Im Folgenden sollen beispielhaft die Ausgangskomponenten und Verfahren zur Herstellung der bevorzugten Polyurethane (PU) dargelegt werden. Die bei der Herstellung der Polyurethane (PU) üblicherweise verwendeten Komponenten (a), (b), (c) sowie gegebenenfalls (d) und/oder (e) sollen im Folgenden beispielhaft beschrieben werden:In the following, by way of example, the starting components and processes for the preparation of the preferred polyurethanes (PU) are set forth. The components (a), (b), (c) and optionally (d) and / or (e) usually used in the preparation of the polyurethanes (PU) are described below by way of example:
Als Isocyanate (a) können allgemein bekannte aliphatische, cycloaliphatische, aralipha- tische und/oder aromatische Isocyanate eingesetzt werden, beispielsweise Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl-pentamethylen- diisocyanat-1 ,5, 2-Ethyl-butylen-diisocyanat-1 ,4, Pentamethylen-diisocyanat-1 ,5, Buty- len-diisocyanat-1 ,4, 1 -lsocyanato-3,3,5-trimethyl-5-isocyanato-methyl-cyclohexan (Isophorondiisocyanat, IPDI), 1 ,4- und/oder 1 ,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1 ,4-Cyclohexan-diisocyanat, 1-Methyl-2,4- und/oder -2, 6-cyclohexan-di- isocyanat und/oder 4,4'-, 2,4'- und 2,2'-Dicyclohexylmethan-diisocyanat, 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI), 1 ,5-Naphthylendiisocyanat (NDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), Diphenylmethandiisocyanat, 3,3'-Dimethyl- diphenyl-diisocyanat, 1 ,2-Diphenylethandiisocyanat und/oder Phenylendiisocyanat. Bevorzugt wird 4,4'-MDI verwendet. Bevorzugt sind zudem aliphatische Diisocyanate, insbesondere Hexamethylendiisocyanat (HDI), und besonders bevorzugt sind aromatische Diisocyanate wie 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI) und Mischungen der vorstehend genannten Isomere.As isocyanates (a) it is possible to use generally known aliphatic, cycloaliphatic, araliphatic and / or aromatic isocyanates, for example tri-, tetra-, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2-methylpentamethylene diisocyanate-1, 5, 2-ethyl-butylene-diisocyanate-1, 4, pentamethylene-diisocyanate-1, 5, butylene-diisocyanate-1, 4, 1-isocyanato-3,3,5-trimethyl-5- isocyanato-methyl-cyclohexane (isophorone diisocyanate, IPDI), 1, 4- and / or 1, 3-bis (isocyanatomethyl) cyclohexane (HXDI), 1, 4-cyclohexane diisocyanate, 1-methyl-2,4- and / or -2, 6-cyclohexane diisocyanate and / or 4,4'-, 2,4'- and 2,2'-dicyclohexylmethane diisocyanate, 2,2'-, 2,4'- and / or 4, 4'-diphenylmethane diisocyanate (MDI), 1, 5-naphthylene diisocyanate (NDI), 2,4- and / or 2,6-toluene diisocyanate (TDI), diphenylmethane diisocyanate, 3,3'-dimethyl-diphenyl-diisocyanate, 1, 2 Diphenylethane diisocyanate and / or phenylene diisocyanate. Preferably, 4,4'-MDI is used. Also preferred are aliphatic diisocyanates, in particular hexamethylene diisocyanate (HDI), and particularly preferred are aromatic diisocyanates such as 2,2'-, 2,4'- and / or 4,4'-diphenylmethane diisocyanate (MDI) and mixtures of the above-mentioned isomers.
Als gegenüber Isocyanaten reaktive Verbindungen (b) können die allgemein bekannten gegenüber Isocyanaten reaktiven Verbindungen eingesetzt werden, beispielsweise Polyesterole, Polyetherole und/oder Polycarbonatdiole, die üblicherweise auch unter dem Begriff „Polyole" zusammengefasst werden, mit Molekulargewichten (Mw) im Bereich von 500 und 8.000 g/mol, bevorzugt 600 bis 6.000 g/mol, insbesondere 800 bis 3.000 g/mol, und bevorzugt einer mittleren Funktionalität gegenüber Isocyanaten von 1 ,8 bis 2,3, bevorzugt 1 ,9 bis 2,2, insbesondere 2. Bevorzugt setzt man Polyetherpo- lyole ein, beispielsweise solche auf der Basis von allgemein bekannten Startersubstanzen und üblichen Alkylenoxiden, beispielsweise Ethylenoxid, 1 ,2-Propylenoxid und/oder 1 ,2-Butylenoxid, bevorzugt Polyetherole basierend auf Polyoxytetramethylen (PoIy-THF), 1 ,2-Propylenoxid und Ethylenoxid. Polyetherole weisen den Vorteil auf, dass sie eine höhere Hydrolysestabilität als Polyesterole besitzen, und sind bevorzugt als Komponente (b), insbesondere zur Herstellung von weichen Polyurethanen Polyurethan (PU 1 ).As isocyanate-reactive compounds (b) it is possible to use the generally known isocyanate-reactive compounds, for example polyesterols, polyetherols and / or polycarbonatediols, which are usually also grouped under the term "polyols", with molecular weights (M w ) in the region of 500 and 8,000 g / mol, preferably 600 to 6,000 g / mol, in particular 800 to 3,000 g / mol, and preferably an average functionality to isocyanates of 1, 8 to 2.3, preferably 1, 9 to 2.2, in particular 2. Polyether polyols are preferably used, for example those based on generally known starter substances and customary alkylene oxides, for example ethylene oxide, 1,2-propylene oxide and / or 1,2-butylene oxide, preferably polyetherols based on polyoxytetramethylene (polyTHF), 1 , 2-propylene oxide and ethylene oxide.Polyetherols have the advantage that they have a higher hydrolytic stability than polyesterols, and are preferably as component (b), in particular for the production of soft polyurethanes polyurethane (PU 1).
Als Polycarbonatdiole sind insbesondere aliphatische Polycarbonatdiole zu nennen, beispielsweise 1 ,4-Butandiol-Polycarbonat und 1 ,6-Hexandiol-Polycarbonat.Particularly suitable polycarbonate diols are aliphatic polycarbonate diols, for example 1,4-butanediol polycarbonate and 1,6-hexanediol polycarbonate.
Als Polyesterdiole sind solche zu nennen, die sich durch Polykondensation von mindestens einem primären Diol, vorzugsweise mindestens einen primären aliphatischen Diol, beispielsweise Ethylenglykol, 1 ,4-Butandiol, 1 ,6-Hexandiol, Neopentylglykol oder besonders bevorzugt 1 ,4-Dihydroxymethylcyclohexan (als Isomerengemisch) oder Mischungen von mindestens zwei der vorstehend genannten Diole einerseits und mindestens einer, bevorzugt mindestens zwei Dicarbonsäuren oder ihren Anhydriden andererseits herstellen lassen. Bevorzugte Dicarbonsäuren sind aliphatische Dicarbonsäuren wie Adipinsäure, Glutarsäure, Bernsteinsäure und aromatische Dicarbonsäuren wie beispielsweise Phthalsäure und insbesondere Isophthalsäure. Polyetherole werden bevorzugt durch Anlagerung von Alkylenoxiden, insbesondere Ethylenoxid, Propylenoxid und Mischungen daraus, an Diole wie beispielsweise Ethy- lenglykol, 1 ,2-Propylenglykol, 1 ,2-Butylenglykol, 1 ,4-Butandiol, 1 ,3-Propandiol, oder an Triole wie beispielsweise Glycerin, in Gegenwart von hochaktiven Katalysatoren her- gestellt. Derartige hochaktive Katalysatoren sind beispielsweise Cäsiumhydroxid und Dimetallcyanidkatalysatoren, auch als DMC-Katalysatoren bezeichnet. Ein häufig eingesetzter DMC-Katalysator ist das Zinkhexacyanocobaltat. Der DMC-Katalysator kann nach der Umsetzung im Polyetherol belassen werden, vorzugsweise wird er entfernt, beispielsweise durch Sedimentation oder Filtration.As the polyester diols are those mentioned by polycondensation of at least one primary diol, preferably at least one primary aliphatic diol, for example ethylene glycol, 1, 4-butanediol, 1, 6-hexanediol, neopentyl glycol or more preferably 1, 4-dihydroxymethylcyclohexane (as Mixture of isomers) or mixtures of at least two of the aforementioned diols on the one hand and at least one, preferably at least two dicarboxylic acids or their anhydrides on the other hand. Preferred dicarboxylic acids are aliphatic dicarboxylic acids such as adipic acid, glutaric acid, succinic acid and aromatic dicarboxylic acids such as phthalic acid and in particular isophthalic acid. Polyetherols are preferably by addition of alkylene oxides, in particular ethylene oxide, propylene oxide and mixtures thereof, of diols such as ethylene glycol, 1, 2-propylene glycol, 1, 2-butylene glycol, 1, 4-butanediol, 1, 3-propanediol, or at Triols such as glycerin, prepared in the presence of highly active catalysts. Such highly active catalysts include cesium hydroxide and dimetal cyanide catalysts, also referred to as DMC catalysts. A frequently used DMC catalyst is zinc hexacyanocobaltate. The DMC catalyst can be left in the polyetherol after the reaction, preferably it is removed, for example by sedimentation or filtration.
Statt eines Polyols können auch Mischungen verschiedener Polyole eingesetzt werden.Instead of a polyol, it is also possible to use mixtures of different polyols.
Zur Verbesserung der Dispergierbarkeit kann man als gegenüber Isocyanaten reaktive Verbindungen (b) anteilig auch ein oder mehr Diole oder Diamine mit einer Carbonsäuregruppe oder Sulfonsäuregruppe (b') einsetzen, insbesondere Alkalimetall- oder Ammoniumsalze von 1 ,1-Dimethylolbutansäure, 1 ,1-Dimethylolpropionsäure oderTo improve the dispersibility can be used as isocyanate-reactive compounds (b) proportionately one or more diols or diamines having a carboxylic acid group or sulfonic acid group (b '), in particular alkali metal or ammonium salts of 1, 1-dimethylolbutanoic, 1, 1-dimethylolpropionic or
Figure imgf000026_0001
Figure imgf000026_0001
Als Kettenverlängerungsmittel (c) werden an sich bekannte aliphatische, araliphati- sche, aromatische und/oder cycloaliphatische Verbindungen mit einem Molekulargewicht von 50 bis 499 g/mol und mindestens zwei funktionellen Gruppen, bevorzugt Verbindungen mit genau zwei funktionellen Gruppen pro Molekül, eingesetzt, bei- spielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alkylenrest, insbesondere 1 ,3-Propandiol, Butandiol-1 ,4, Hexandiol-1 ,6 und/oder Di-, Tri-, Tetra-, Penta-, Hexa-, Hepta-, Okta-, Nona- und/oder Dekaalkylenglykole mit 3 bis 8 Kohlenstoffatomen pro Molekül, bevorzugt entsprechende Oligo- und/oder Polypropylenglykole, wobei auch Mischungen an Kettenverlängerungsmitteln (c) eingesetzt werden können.Chain extenders (c) used are aliphatic, araliphatic, aromatic and / or cycloaliphatic compounds having a molecular weight of 50 to 499 g / mol and at least two functional groups, preferably compounds having exactly two functional groups per molecule, known per se - For example, diamines and / or alkanediols having 2 to 10 carbon atoms in the alkylene radical, in particular 1, 3-propanediol, butanediol-1, 4, hexanediol-1, 6 and / or di-, tri-, tetra-, penta-, Hexa, hepta, octa, nona and / or Dekaalkylenglykole having 3 to 8 carbon atoms per molecule, preferably corresponding oligo- and / or polypropylene glycols, whereby mixtures of chain extenders (c) can be used.
Besonders bevorzugt handelt es sich bei den Komponenten (a) bis (c) um difunktionel- Ie Verbindungen, d.h. Diisocyanate (a), difunktionelle Polyole, bevorzugt Polyetherole (b) und difunktionelle Kettenverlängerungsmittel, bevorzugt Diole.More preferably, components (a) to (c) are difunctional compounds, i. Diisocyanates (a), difunctional polyols, preferably polyetherols (b) and difunctional chain extenders, preferably diols.
Geeignete Katalysatoren (d), welche insbesondere die Reaktion zwischen den NCO- Gruppen der Diisocyanate (a) und den Hydroxylgruppen der Aufbaukomponenten (b) und (c) beschleunigen, sind an sich bekannte tertiäre Amine, wie z.B. Triethylamin, Dimethylcyclohexylamin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2- (Dimethylaminoethoxy)-ethanol, Diazabicyclo-(2,2,2)-octan („DABCO") und ähnliche tertiäre Amine, sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z. B. Eisen-(lll)- acetylacetonat, Zinnverbindungen, z. B. Zinndiacetat, Zinndioctoat, Zinndilaurat oder die Zinndialkylsalze aliphatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile Komponente (b) eingesetzt.Suitable catalysts (d), which in particular accelerate the reaction between the NCO groups of the diisocyanates (a) and the hydroxyl groups of the synthesis components (b) and (c), are known per se tertiary amines, such as triethylamine, dimethylcyclohexylamine, N-methylmorpholine , N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) ethanol, diazabicyclo- (2,2,2) octane ("DABCO") and the like tertiary amines, and in particular organic metal compounds such as titanic acid esters, iron compounds such. For example, iron (III) acetylacetonate, tin compounds, e.g. As tin diacetate, tin dioctoate, tin dilaurate or Zinndialkylsalze aliphatic carboxylic acids such as dibutyltin diacetate, dibutyltin dilaurate or the like. The catalysts are usually used in amounts of from 0.0001 to 0.1 parts by weight per 100 parts by weight of component (b).
Neben Katalysator (d) können den Komponenten (a) bis (c) auch Hilfsmittel und/oder Zusatzstoffe (e) hinzugefügt werden. Genannt seien beispielsweise Treibmittel, Anti- blockmittel, oberflächenaktive Substanzen, Füllstoffe, beispielsweise Füllstoffe auf Basis von Nanopartikeln, insbesondere Füllstoffe auf Basis von CaCC"3, weiterhin Keimbildungsmittel, Gleithilfemittel, Farbstoffe und Pigmente, Antioxidantien, z.B. gegen Hydrolyse, Licht, Hitze oder Verfärbung, anorganische und/oder organische Füllstoffe, Verstärkungsmittel und Weichmacher, Metalldeaktivatoren. In einer bevorzugten Aus- führungsform fallen unter die Komponente (e) auch Hydrolyseschutzmittel wie beispielsweise polymere und niedermolekulare Carbodiimide. Bevorzugt enthält das weiche Polyurethan Triazol und/oder Triazolderivat und Antioxidantien in einer Menge von 0,1 bis 5 Gew.-% bezogen auf das Gesamtgewicht des betreffenden weichen Polyurethans. Als Antioxidantien sind im allgemeinen Stoffe geeignet, welche unerwünschte oxidative Prozesse im zu schützenden Kunststoff hemmen oder verhindern. Im allgemeinen sind Antioxidantien kommerziell erhältlich. Beispiele für Antioxidantien sind sterisch gehinderte Phenole, aromatische Amine, Thiosynergisten, Organophosphorverbindungen des trivalenten Phosphors, und Hindered Amine Light Stabilizers. Beispiele für sterisch gehinderte Phenole finden sich in Plastics Additive Handbook, 5th edition, H. Zweifel, ed, Hanser Publishers, München, 2001 ([1]), S. 98-107 und S. 1 16 - S. 121. Beispiele für aromatische Amine finden sich in [1 ] S. 107-108. Beispiele für Thiosynergisten sind gegeben in [1], S.104-105 und S.112-1 13. Beispiele für Phosphite finden sich in [1], S.109-112. Beispiele für Hindered Amine Light Stabilizer sind gegeben in [1], S.123-136. Zur Verwendung im Antioxidantiengemisch eignen sich bevor- zugt phenolische Antioxidantien. In einer bevorzugten Ausführungsform weisen die Antioxidantien, insbesondere die phenolischen Antioxidantien, eine Molmasse von größer 350 g/mol, besonders bevorzugt von größer 700g/mol und einer maximalen Molmasse (Mw) bis maximal 10.000 g/mol, bevorzugt bis maximal 3.000 g/mol auf. Femer besitzen sie bevorzugt einen Schmelzpunkt von maximal 1800C. Weiterhin wer- den bevorzugt Antioxidantien verwendet, die amorph oder flüssig sind. Ebenfalls können als Komponente (e) auch Gemische von zwei oder mehr Antioxidantien verwendet werden.Besides catalyst (d), auxiliaries and / or additives (e) can also be added to components (a) to (c). Examples which may be mentioned are blowing agents, anti-blocking agents, surface-active substances, fillers, for example nanoparticle-based fillers, in particular fillers based on CaCC 3, nucleating agents, lubricants, dyes and pigments, antioxidants, for example against hydrolysis, light, heat or discoloration In a preferred embodiment, component (e) also includes hydrolysis stabilizers such as, for example, polymeric and low molecular weight carbodiimides Preferably, the soft polyurethane contains triazole and / or triazole derivative and antioxidants in one From 0.1 to 5% by weight, based on the total weight of the relevant soft polyurethane, antioxidants are generally suitable substances which inhibit or prevent undesired oxidative processes in the plastic to be protected commercially available. Examples of antioxidants are hindered phenols, aromatic amines, thiosynergists, trivalent phosphorus organophosphorus compounds, and hindered amine light stabilizers. Examples of sterically hindered phenols can be found in Plastics Additive Handbook, 5th edition, H. Zweifel, ed, Hanser Publishers, Munich, 2001 ([1]), pp. 98-107 and pp.116-p121 aromatic amines can be found in [1] pp. 107-108. Examples of thiosynergists are given in [1], p.104-105 and p.112-1 13. Examples of phosphites can be found in [1], p.109-112. Examples of hindered amine light stabilizers are given in [1], p.123-136. For use in the antioxidant mixture, phenolic antioxidants are preferred. In a preferred embodiment, the antioxidants, in particular the phenolic antioxidants, have a molecular weight of greater than 350 g / mol, more preferably greater than 700 g / mol and a maximum molecular weight (M w ) of at most 10,000 g / mol, preferably up to a maximum of 3,000 g / mol on. Furthermore they preferably have a melting point of at most 180 0 C. In addition, advertising the preferred antioxidants used which are amorphous or liquid. Also, as component (e), mixtures of two or more antioxidants may be used.
Neben den genannten Komponenten (a), (b) und (c) und gegebenenfalls (d) und (e) können auch Kettenregler (Kettenabbruchsmittel), üblicherweise mit einem Molekulargewicht von 31 bis 3000 g/mol, eingesetzt werden. Solche Kettenregler sind Verbindungen, die lediglich eine gegenüber Isocyanaten reaktive funktionelle Gruppe aufwei- sen, wie z.B. monofunktionelle Alkohole, monofunktionelle Amine und/oder monofunktionelle Polyole. Durch solche Kettenregler kann ein Fließverhalten, insbesondere bei weichen Polyurethanen, gezielt eingestellt werden. Kettenregler können im allgemeinen in einer Menge von 0 bis 5, bevorzugt 0,1 bis 1 Gew. -Teile, bezogen auf 100 Gew.-Teile der Komponente (b) eingesetzt werden und fallen definitionsgemäß unter die Komponente (c).In addition to the stated components (a), (b) and (c) and optionally (d) and (e), it is also possible to use chain regulators (chain terminators), usually having a molecular weight of from 31 to 3000 g / mol. Such chain regulators are compounds which have only one isocyanate-reactive functional group. such as monofunctional alcohols, monofunctional amines and / or monofunctional polyols. By means of such chain regulators, a flow behavior, in particular in the case of soft polyurethanes, can be adjusted in a targeted manner. Chain regulators can generally be used in an amount of 0 to 5, preferably 0.1 to 1, parts by weight, based on 100 parts by weight of component (b), and fall by definition under component (c).
Neben den genannten Komponenten (a), (b) und (c) und gegebenenfalls (d) und (e) können auch Vernetzungsmittel mit zwei oder mehr gegenüber Isocyanat reaktiven Gruppen gegen Schluss der Aufbaureaktion eingesetzt werden, beispielsweise Hydra- zinhydrat.In addition to the stated components (a), (b) and (c) and optionally (d) and (e) it is also possible to use crosslinking agents having two or more isocyanate-reactive groups towards the end of the synthesis reaction, for example hydrazine hydrate.
Zur Einstellung der Härte von Polyurethan (PU) können die Komponenten (b) und (c) in relativ breiten molaren Verhältnissen gewählt werden. Bewährt haben sich molare Ver- hältnisse von Komponente (b) zu insgesamt einzusetzenden Kettenverlängerungsmitteln (c) von 10 : 1 bis 1 : 10, insbesondere von 1 : 1 bis 1 : 4, wobei die Härte der weichen Polyurethane mit zunehmendem Gehalt an (c) ansteigt. Die Umsetzung zur Herstellung von Polyurethan (PU) kann bei einer Kennzahl von 0,8 bis 1 ,4 : 1 , bevorzugt bei einer Kennzahl von 0,9 bis 1 ,2 : 1 , besonders bevorzugt bei einer Kennzahl von 1 ,05 bis 1 ,2 : 1 erfolgen. Die Kennzahl ist definiert durch das Verhältnis der insgesamt bei der Umsetzung eingesetzten Isocyanatgruppen der Komponente (a) zu den gegenüber Isocyanaten reaktiven Gruppen, d.h. den aktiven Wasserstoffen, der Komponenten (b) und gegebenenfalls (c) und gegebenenfalls monofunktionellen gegenüber Isocyanaten reaktiven Komponenten als Kettenabbruchsmitteln wie z.B. Monoalkoholen.To adjust the hardness of polyurethane (PU), components (b) and (c) can be selected in relatively wide molar ratios. Molar ratios of component (b) to total chain extenders (c) of 10: 1 to 1:10, in particular from 1: 1 to 1: 4, have proven useful, the hardness of the soft polyurethanes increasing with increasing content of (c ) increases. The reaction for the preparation of polyurethane (PU) may be at a ratio of 0.8 to 1, 4: 1, preferably at a ratio of 0.9 to 1, 2: 1, more preferably at a ratio of 1, 05 to 1 , 2: 1. The index is defined by the ratio of the total isocyanate groups used in the reaction of component (a) to the isocyanate-reactive groups, i. the active hydrogens, the components (b) and optionally (c) and optionally monofunctional isocyanate-reactive components as chain terminators such as e.g. Monoalcohols.
Die Herstellung von Polyurethan (PU) kann nach an sich bekannten Verfahren kontinuierlich, beispielsweise nach One-shot oder dem Prepolymerverfahren, oder diskontinuierlich nach dem an sich bekannten Prepolymerprozess erfolgen. Bei diesen Verfahren können die zur Reaktion kommenden Komponenten (a), (b), (c) und gegebenenfalls (d) und/oder (e) nacheinander oder gleichzeitig miteinander vermischt werden, wobei die Reaktion unmittelbar einsetzt.The production of polyurethane (PU) can be carried out continuously by processes known per se, for example by one-shot or the prepolymer process, or batchwise by the prepolymer process known per se. In these processes, the reacting components (a), (b), (c) and optionally (d) and / or (e) may be mixed together successively or simultaneously with the reaction starting immediately.
Polyurethan (PU) kann man nach an sich bekannten Verfahren in Wasser dispergieren, beispielsweise indem man Polyurethan (PU) in Aceton löst oder als Lösung in Aceton herstellt, mit Wasser versetzt und danach das Aceton entfernt, beispielsweise durch Abdestillieren. In einer Variante stellt man Polyurethan (PU) als Lösung in N- Methylpyrrolidon oder N-Ethylpyrrolidon her, versetzt mit Wasser und entfernt das N- Methylpyrrolidon bzw. N-Ethylpyrrolidon.Polyurethane (PU) can be dispersed in water by methods known per se, for example by dissolving polyurethane (PU) in acetone or preparing it as a solution in acetone, adding water and then removing the acetone, for example by distilling off. In one variant, polyurethane (PU) is prepared as a solution in N-methylpyrrolidone or N-ethylpyrrolidone, water is added and the N-methylpyrrolidone or N-ethylpyrrolidone is removed.
In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße wässrige Dispersionen zwei verschiedene Polyurethane Polyurethan (PU 1) und Polyurethan (PU2) auf, von denen Polyurethan (PU 1 ) ein so genanntes weiches Polyurethan ist, das wie oben als Polyurethan (PU) beschrieben aufgebaut ist, und mindestens ein hartes Polyurethan (PU2).In one embodiment of the present invention, aqueous dispersions according to the invention comprise two different polyurethanes polyurethane (PU 1) and polyurethane (PU 2), of which polyurethane (PU 1) is a so-called soft polyurethane is, which is constructed as described above as polyurethane (PU), and at least one hard polyurethane (PU2).
Hartes Polyurethan (PU2) kann man im Grundsatz analog zu weichem Polyurethan (PU 1 ) herstellen, jedoch wählt man andere gegenüber Isocyanaten reaktiven Verbindungen (b) oder andere Mischungen von gegenüber Isocyanaten reaktiven Verbindungen (b), im Rahmen der vorliegenden Erfindung auch als gegenüber Isocyanaten reaktiven Verbindungen (b2) oder kurz Verbindung (b2) bezeichnet.Hard polyurethane (PU2) can in principle be prepared analogously to soft polyurethane (PU 1), but other isocyanate-reactive compounds (b) or other mixtures of isocyanate-reactive compounds (b) are also used in the context of the present invention Isocyanate-reactive compounds (b2) or abbreviated to compound (b2).
Beispiele für Verbindungen (b2) sind insbesondere 1 ,4-Butandiol, 1 ,6-Hexandiol und Neopentylglykol, entweder in Mischung miteinander oder in Mischung mit Polyethylen- glykol.Examples of compounds (b2) are in particular 1, 4-butanediol, 1, 6-hexanediol and neopentyl glycol, either in admixture with one another or in admixture with polyethylene glycol.
In einer Variante der vorliegenden Erfindung wählt man als Diisocyanat (a) und Polyu- rethan (PU2) jeweils Mischungen von Diisocyanaten, beispielsweise Mischungen von HDI und IPDI, wobei man zur Herstellung von hartem Polyurethan (PU2) größere Anteile an IPDI wählt als zur Herstellung von weichem Polyurethan (PU1).In one variant of the present invention, mixtures of diisocyanates, for example mixtures of HDI and IPDI, are selected as the diisocyanate (a) and polyurethane (PU2), larger amounts of IPDI being selected for the preparation of hard polyurethane (PU2) than for production of soft polyurethane (PU1).
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethan (PU2) einen Shore-Härte A im Bereich von über 60 bis maximal 100 auf, wobei die Shore-Härte A nach DIN 53505 nach 3 s bestimmt wurde.In one embodiment of the present invention, polyurethane (PU2) has a Shore A hardness in the range of more than 60 to a maximum of 100, the Shore hardness A according to DIN 53505 being determined after 3 seconds.
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethan (PU) einen mittleren Partikeldurchmesser im Bereich von 100 bis 300 nm, bevorzugt 120 bis 150 nm auf, bestimmt durch Laserlichtstreuung.In one embodiment of the present invention, polyurethane (PU) has a mean particle diameter in the range of 100 to 300 nm, preferably 120 to 150 nm, determined by laser light scattering.
In einer Ausführungsform der vorliegenden Erfindung weist weiches Polyurethan (PU1 ) einen mittleren Partikeldurchmesser im Bereich von 100 bis 300 nm, bevorzugt 120 bis 150 nm auf, bestimmt durch Laserlichtstreuung.In one embodiment of the present invention, soft polyurethane (PU1) has an average particle diameter in the range of 100 to 300 nm, preferably 120 to 150 nm, determined by laser light scattering.
In einer Ausführungsform der vorliegenden Erfindung weist Polyurethan (PU2) einen mittleren Partikeldurchmesser im Bereich im Bereich von 100 bis 300 nm, bevorzugt 120 bis 150 nm auf, bestimmt durch Laserlichtstreuung.In one embodiment of the present invention, polyurethane (PU2) has a mean particle diameter in the range from 100 to 300 nm, preferably from 120 to 150 nm, determined by laser light scattering.
Die wässrige Polyurethandispersion kann weiterhin mindestens einen Härter, der auch als Vernetzer bezeichnet werden kann, aufweisen. Als Härter sind Verbindungen geeignet, die mehrere Polyurethanmoleküle miteinander vernetzen können, beispielsweise bei thermischer Aktivierung. Besonders geeignet sind Vernetzer auf Basis von tri- meren Diisocyanaten, insbesondere auf Basis von aliphatischen Diisocyanaten wie Hexamethylendiisocyanat. Ganz besonders bevorzugt sind Vernetzer der Formel I a oder I b, im Rahmen der vorliegenden Erfindung auch kurz Verbindung (V) genannt, O -v ,N- -,O O. ,N .0The aqueous polyurethane dispersion may further comprise at least one curing agent, which may also be referred to as a crosslinker. Suitable hardeners are compounds which can crosslink a plurality of polyurethane molecules with one another, for example during thermal activation. Crosslinking agents based on trimeric diisocyanates, in particular based on aliphatic diisocyanates such as hexamethylene diisocyanate, are particularly suitable. Very particular preference is given to crosslinkers of the formula Ia or Ib, in the context of the present invention also referred to as compound (V), O-V, N-, O, N .0
^N N, NH HN,^ N N, NH HN,
I aI a
wobei R3, R4 und R5 verschieden oder vorzugsweise gleich sein können und gewählt werden aus A1-NCO und A1-NH-CO-X, wobeiwherein R 3 , R 4 and R 5 may be different or preferably the same and are selected from A 1 -NCO and A 1 -NH-CO-X, wherein
A1 ein Spacer mit 2 bis 20 C-Atomen ist, gewählt aus Arylen, unsubstituiert oder substituiert mit einer bis vier Ci-C4-Alkylgruppen, Alkylen und Cycloalkylen, beispielsweise 1 ,4-Cyclohexylen. Bevorzugte Spacer A1 sind Phenylen, insbesondere para-Phenylen, weiterhin Toluylen, insbesondere para-Toluylen, und C2-Ci2-Alkylen wie beispielsweise Ethylen (CH2CH2), weiterhin -(CH2)3-, -(CH2)4-, -(CH2)5-, -(CH2)6-, -(CH2)8-, -(CH2)io-,A 1 is a spacer having 2 to 20 carbon atoms, selected from arylene, unsubstituted or substituted by one to four C 1 -C 4 -alkyl groups, alkylene and cycloalkylene, for example 1, 4-cyclohexylene. Preferred spacers A 1 are phenylene, in particular para-phenylene, furthermore toluene, especially para-toluylene, and C 2 -C 12 -alkylene, such as ethylene (CH 2 CH 2 ), furthermore - (CH 2 ) 3 -, - (CH 2 ) 4 -, - (CH 2 ) 5 -, - (CH 2 ) 6 -, - (CH 2 ) 8 -, - (CH 2 ) io-,
X gewählt wird 0(AO)xR6, wobeiX is chosen 0 (AO) x R 6 , where
AO ist C2-C4-Alkylenoxid, beispielsweise Butylenoxid, insbesondere Ethylenoxid (CH2CH2O) oder Propylenoxid (CH(CH3)CH2O) bzw. (CH2CH(CH3)O),AO is C 2 -C 4 -alkylene oxide, for example butylene oxide, in particular ethylene oxide (CH 2 CH 2 O) or propylene oxide (CH (CH 3 ) CH 2 O) or (CH 2 CH (CH 3 ) O),
x ist eine ganze Zahl im Bereich von 1 bis 50, bevorzugt 5 bis 25, undx is an integer in the range of 1 to 50, preferably 5 to 25, and
R6 ist gewählt aus Wasserstoff und Ci-C3o-Alkyl, insbesondere Ci-Cio-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso- Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec- Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, besonders bevorzugt C1-C4- Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert- Butyl.R 6 is selected from hydrogen and C 1 -C 30 -alkyl, in particular C 1 -C 10 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl, neo-pentyl, 1,2-dimethylpropyl, iso-amyl, n-hexyl, iso-hexyl, sec-hexyl, n-heptyl, n-octyl, 2-ethylhexyl , n-nonyl, n-decyl, more preferably C1-C4 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and tert-butyl.
Besonders bevorzugte Verbindungen (V) sind solche, bei denen R3, R4 und R5 jeweils gleich (CH2)4-NCO, (CH2)6-NCO oder (CH2)i2-NCO sind.Particularly preferred compounds (V) are those in which R 3 , R 4 and R 5 are each the same (CH 2 ) 4 -NCO, (CH 2 ) 6 -NCO or (CH 2 ) i 2 -NCO.
Wässrige Polyurethandispersionen können weitere Bestandteile enthalten, beispielsweiseAqueous polyurethane dispersions may contain other ingredients, for example
(f) eine Silikonverbindung mit reaktiven Gruppen, im Rahmen der vorliegenden Erfindung auch Silikonverbindung (f) genannt. Beispiele für reaktive Gruppen im Zusammenhang mit Silikonverbindungen (f) sind beispielsweise Carbonsäuregruppen, Carbonsäurederivate wie beispielsweise Carbonsäuremethylester oder Carbonsäureanhydride, insbesondere Bernsteinsäureanhydridgruppen, und besonders bevorzugt Carbonsäuregruppen.(f) a silicone compound having reactive groups, also called silicone compound (f) in the present invention. Examples of reactive groups in connection with silicone compounds (f) are, for example, carboxylic acid groups, carboxylic acid derivatives such as, for example, carboxylic acid methyl esters or carboxylic anhydrides, in particular succinic anhydride groups, and particularly preferably carboxylic acid groups.
Beispiele für reaktive Gruppen sind weiterhin primäre und sekundäre Aminogruppen, beispielsweise NH(iso-C3H7)-Gruppen, NH(n-C3H7)-Gruppen, NH(cyclo-C6Hn)- Gruppen und NH(n-C4H9)-Gruppen, insbesondere NH(C2H5)-Gruppen und NH(CH3)- Gruppen, und ganz besonders bevorzugt NH2-Gruppen.Examples of reactive groups are further primary and secondary amino groups, for example NH (iso-C3H 7) groups, NH (n-C3H 7) groups, NH (cyclo-C6Hn) - groups, and NH (n-C4H9) groups, particularly NH (C2H 5) groups, and NH (CH 3) - groups, and most preferably NH 2 groups.
Weiterhin sind Aminoalkylaminogruppen bevorzugt wie beispielsweise -NH-CH2-CH2-NH2-Gruppen, -NH-CH2-CH2-CH2-NH2-Gruppen, -NH-CH2-CH2-NH(C2H5)-Gruppen, -NH-CH2-CH2-CH2-NH(C2H5)-Gruppen, -NH-CH2-CH2-NH(CH3)-Gruppen, -NH-CH2-CH2-CH2-NH(CH3)-Gruppen.Furthermore, aminoalkylamino preferably such as -NH-CH 2 -CH 2 -NH 2 groups, -NH-CH2-CH 2 -CH 2 NH 2 groups, -NH-CH 2 -CH 2 -NH (C 2 H 5 ) Groups, -NH-CH 2 -CH 2 -CH 2 -NH (C 2 H 5 ) groups, -NH-CH 2 -CH 2 -NH (CH 3 ) groups, -NH-CH 2 -CH 2 -CH 2 -NH (CH 3 ) groups.
Die reaktive Gruppe bzw. die reaktiven Gruppen sind an Silikonverbindung (f) entweder direkt oder vorzugsweise über einen Spacer A2 gebunden. A2 wird gewählt aus Arylen, unsubstituiert oder substituiert mit einer bis vier Ci-C4-Alkylgruppen, Alkylen und Cyc- loalkylen wie beispielsweise 1 ,4-Cyclohexylen. Bevorzugte Spacer A2 sind Phenylen, insbesondere para-Phenylen, weiterhin Toluylen, insbesondere para-Toluylen, und C2- Ci8-Alkylen wie beispielsweise Ethylen (CH2CH2), weiterhin -(CH2)3-, -(CH2)4-, -(CH2)S-, -(CH2J6-, -(CH2)S-, -(CH2)io-, -(CH2)i2-, -(CH2)i4-, -(CH2)16- und -(CH2)i8-.The reactive group (s) are bonded to silicone compound (f) either directly or preferably via a spacer A 2 . A 2 is selected from arylene, unsubstituted or substituted by one to four C 1 -C 4 -alkyl groups, alkylene and cycloalkylene such as 1, 4-cyclohexylene. Preferred spacers A 2 are phenylene, in particular para-phenylene, furthermore toluene, in particular para-toluylene, and C 2 -C 18 -alkylene, such as ethylene (CH 2 CH 2 ), furthermore - (CH 2 ) 3 -, - (CH 2 ) 4-, - (CH2) S-, - (CH 2 J 6 -, - (CH 2) S-, - (CH2) io-, - (CH2) i2-, - (CH 2) i 4 -, - (CH 2 ) 16 - and - (CH 2 ) i 8 -.
Zusätzlich zu den reaktiven Gruppen enthält Silikonverbindung (f) nicht-reaktive Grup- pen, insbesondere Di-Ci-Cio-alkyl-Si02-Gruppen oder Phenyl-Ci-Cio-Alkyl-Si02-In addition to the reactive groups, silicone compound (f) contains non-reactive groups, in particular di-C 1 -C 10 -alkyl-SiO 2 groups or phenyl-C 1 -C 10 -alkyl-SiO 2 -
Gruppen, insbesondere Dimethyl-SiO2-Gruppen, und gegebenenfalls eine oder mehrere Si(CH3)2-OH-Gruppen oder Si(CH3)3-Gruppen.Groups, in particular dimethyl-SiO 2 groups, and optionally one or more Si (CH 3 ) 2 -OH groups or Si (CH 3 ) 3 groups.
In einer Ausführungsform der vorliegenden Erfindung weist Silikonverbindung (f) im Mittel ein bis vier reaktive Gruppen pro Molekül auf.In one embodiment of the present invention, silicone compound (f) has on average one to four reactive groups per molecule.
In einer speziellen Ausführungsform der vorliegenden Erfindung weist Silikonverbindung (f) im Mittel ein bis vier COOH-Gruppen pro Molekül auf.In a specific embodiment of the present invention, silicone compound (f) has on average one to four COOH groups per molecule.
In einer anderen speziellen Ausführungsform der vorliegenden Erfindung weist Silikonverbindung (f) im Mittel ein bis vier Aminogruppen oder Aminoalkylaminogruppen pro Molekül auf.In another specific embodiment of the present invention, silicone compound (f) has on average one to four amino groups or aminoalkylamino groups per molecule.
Silikonverbindung (f) weist kettenförmig oder verzweigt angeordnete Si-O-Si-Einheiten auf. In einer Ausführungsform der vorliegenden Erfindung weist Silikonverbindung (f) ein Molekulargewicht Mn im Bereich von 500 bis 10.000 g/mol auf, bevorzugt bis 5.000 g/mol.Silicone compound (f) has catenated or branched Si-O-Si units. In one embodiment of the present invention, silicone compound (f) has a molecular weight M n in the range of 500 to 10,000 g / mol, preferably up to 5,000 g / mol.
Wenn Silikonverbindung (f) mehrere reaktive Gruppen pro Molekül aufweist, so können diese reaktiven Gruppen - direkt oder über Spacer A2 - über mehrere Si-Atome oder paarweise über dasselbe Si-Atom an der Si-O-Si-Kette gebunden sein.If silicone compound (f) has a plurality of reactive groups per molecule, these reactive groups may be bonded directly or via spacer A 2 via several Si atoms or in pairs via the same Si atom to the Si-O-Si chain.
Die reaktiven Gruppen bzw. die reaktive Gruppe kann an einem oder mehreren der terminalen Si-Atome von Silikonverbindung (f) - direkt oder über Spacer A2 - gebunden sein. In einer anderen Ausführungsform der vorliegenden Erfindung ist die reaktive Gruppe bzw. sind die reaktiven Gruppen an einem oder mehreren der nicht terminalen Si-Atome von Silikonverbindung (f) - direkt oder über Spacer A2 - gebunden.The reactive groups or the reactive group can be bonded to one or more of the terminal Si atoms of silicone compound (f) - directly or via spacer A 2 . In another embodiment of the present invention, the reactive group or groups are bonded to one or more of the non-terminal Si atoms of silicone compound (f) - directly or via spacer A 2 -.
In einer Ausführungsform der vorliegenden Erfindung enthält wässrige Polyurethandispersion weiterhin ein Polydi-Ci-C4-Alkylsiloxan (g), das weder Aminogruppen noch COOH-Gruppen aufweist, vorzugsweise ein Polydimethylsiloxan, im Rahmen der vorliegenden Erfindung auch kurz Polydialkylsiloxan (g) bzw. Polydimethylsiloxan (g) genannt.In one embodiment of the present invention, aqueous polyurethane dispersion furthermore comprises a polydi-C 1 -C 4 -alkylsiloxane (g) which has neither amino groups nor COOH groups, preferably a polydimethylsiloxane, in the context of the present invention also briefly polydialkylsiloxane (g) or polydimethylsiloxane ( g) called.
Dabei kann Ci-C4-Alkyl in Polydialkylsiloxan (g) verschieden oder vorzugsweise gleich sein und gewählt aus Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl, wobei unverzweigtes Ci-C4-Alkyl bevorzugt ist, besonders bevorzugt ist Methyl.In this case, C 1 -C 4 -alkyl in polydialkylsiloxane (g) can be different or preferably identical and selected from methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl where unbranched C 1 -C 4 -alkyl is preferred, particularly preferred is methyl.
Bei Polydialkylsiloxan (g) und vorzugsweise bei Polydimethylsiloxan (g) handelt es sich vorzugsweise um unverzweigte Polysiloxane mit Si-O-Si-Ketten oder um solche Polysi- loxane, die bis zu 3, bevorzugt maximal eine Verzweigung pro Molekül aufweisen.Polydialkylsiloxane (g) and preferably polydimethylsiloxane (g) are preferably unbranched polysiloxanes with Si-O-Si chains or those polysiloxanes which have up to 3, preferably at most one branch per molecule.
Polydialkylsiloxan (D) und insbesondere Polydimethylsiloxan (g) kann eine oder mehrere Si(Ci-C4-Alkyl)2-OH-Gruppen aufweisen.Polydialkylsiloxane (D) and in particular polydimethylsiloxane (g) may have one or more Si (C 1 -C 4 -alkyl) 2 -OH groups.
In einer Ausführungsform der vorliegenden Erfindung enthält wässrige Polyurethandispersion insgesamt im Bereich von 20 bis 30 Gew.-% Polyurethan (PU), bzw. insgesamt im Bereich von 20 bis 30 Gew.-% Polyurethane (PU1 ) und (PU2), gegebenenfalls im Bereich von 1 bis 10, bevorzugt 2 bis 5 Gew.-% Härter, gegebenenfalls im Bereich von 1 bis 10 Gew.-% Silikonverbindung (f), im Bereich von null bis 10, bevorzugt 0,5 bis 5 Gew.-% Polydialkylsiloxan (g).In one embodiment of the present invention, aqueous polyurethane dispersion contains in total in the range from 20 to 30% by weight of polyurethane (PU) or in total in the range from 20 to 30% by weight of polyurethanes (PU1) and (PU2), optionally in the range from 1 to 10, preferably from 2 to 5,% by weight of hardener, optionally in the range of from 1 to 10% by weight of silicone compound (f), in the range from zero to 10, preferably from 0.5 to 5,% by weight of polydialkylsiloxane ( G).
In einer Ausführungsform der vorliegenden Erfindung enthält wässrige Polyurethandispersion im Bereich von 10 bis 30 Gew.-% weiches Polyurethan (PU 1) und im Bereich von null bis 20 Gew.-% hartes Polyurethan (PU2).In one embodiment of the present invention, aqueous polyurethane dispersion contains in the range of 10 to 30 wt .-% soft polyurethane (PU 1) and in the range of zero to 20 wt .-% hard polyurethane (PU2).
In einer Ausführungsform der vorliegenden Erfindung weist wässrige Polyurethan- dispersion einen Feststoffgehalt von insgesamt 5 bis 60 Gew.-% auf, bevorzugt 10 bis 50 Gew.-% und besonders bevorzugt 25 bis 45 Gew.-%.In one embodiment of the present invention, aqueous polyurethane dispersion has a total solids content of 5 to 60% by weight, preferably 10 to 50% by weight and more preferably 25 to 45% by weight.
Dabei bezeichnen Angaben in Gew.-% jeweils den Wirkstoff bzw. Feststoff und sind auf die gesamte wässrige Polyurethandispersion bezogen. Der zu 100 Gew.-% feh- lende Rest ist vorzugsweise kontinuierliche Phase, beispielsweise Wasser oder ein Gemisch von einem oder mehreren organischen Lösemitteln und Wasser.In this case, statements in% by weight each denote the active ingredient or solid and are based on the total aqueous polyurethane dispersion. The remainder to 100 wt .-% missing remainder is preferably continuous phase, for example water or a mixture of one or more organic solvents and water.
In einer Ausführungsform der vorliegenden Erfindung enthält wässrige Polyurethandispersion mindestens einen Zusatz (h), gewählt aus Pigmenten, Mattierungsmitteln, Lichtschutzmitteln, Antistatika, Antisoil, Antiknarz, Verdickungsmitteln, insbesondere Verdickungsmitteln auf Basis von Polyurethanen, und Mikrohohlkugeln.In one embodiment of the present invention, aqueous polyurethane dispersion contains at least one additive (h) selected from pigments, matting agents, light stabilizers, antistatic agents, antisoil, anticancer resin, thickening agents, in particular polyurethane-based thickeners, and hollow microspheres.
In einer Ausführungsform der vorliegenden Erfindung enthält wässrige Polyurethandispersion insgesamt bis zu 20 Gew.-% an Zusätzen (h).In one embodiment of the present invention, aqueous polyurethane dispersion contains a total of up to 20% by weight of additive (h).
Wässrige Polyurethandispersion kann außerdem ein oder mehrere organische Lösemittel enthalten. Geeignete organische Lösemittel sind beispielsweise Alkohole wie Ethanol oder Isopropanol und insbesondere Glykole, Diglykole, Triglykole oder Tetra- glykole und zweifach oder vorzugsweise einfach mit Ci-C4-AIkVl veretherte Glykole, Diglykole, Triglykole oder Tetraglykole. Beispiele für geeignete organische Lösemittel sind Ethylenglykol, Propylenglykol, Butylenglykol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylenglykol, 1 ,2-Dimethoxyethan, Methyltriethylenglykol („Me- thyltriglykol") und Triethylenglykol-n-butylether („Butyltriglykol").Aqueous polyurethane dispersion may also contain one or more organic solvents. Suitable organic solvents are, for example, alcohols such as ethanol or isopropanol and in particular glycols, diglycols, triglycols or tetra-glycols and di- or preferably monohydric glycols, diglycols, triglycols or tetraglycols which are etherified with C 1 -C 4 -alkyl. Examples of suitable organic solvents are ethylene glycol, propylene glycol, butylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, 1,2-dimethoxyethane, methyltriethylene glycol ("methyltriglycol") and triethylene glycol n-butyl ether ("butyltriglycol").
Zur Herstellung von wässrigen Polyurethandispersionen kann man Polyurethan (PU), Härter und Silikonverbindung (f) mit Wasser und gegebenenfalls einem oder mehreren der vorstehend genannten organischen Lösemittel vermischen. Weiterhin vermischt man, falls gewünscht, mit Polydialkylsiloxan (g) und Zusätzen (h). Das Vermischen kann man beispielsweise durch Verrühren durchführen. Dabei ist die Reihenfolge der Zugabe von Polyurethan (PU), Härter, Silikonverbindung (f) und Wasser und gegebenenfalls einem oder mehreren der vorstehend genannten organischen Lösemittel sowie - falls gewünscht - Polydialkylsiloxan (g) und Zusätzen (h) beliebig.For the preparation of aqueous polyurethane dispersions, polyurethane (PU), hardener and silicone compound (f) can be mixed with water and optionally one or more of the abovementioned organic solvents. Furthermore, if desired, it is mixed with polydialkylsiloxane (g) and additives (h). The mixing can be carried out, for example, by stirring. The order of addition of polyurethane (PU), hardener, silicone compound (f) and water and optionally one or more of the abovementioned organic solvents and - if desired - polydialkylsiloxane (g) and additives (h) is arbitrary.
Bevorzugt geht man von einem in Wasser oder einem Gemisch aus Wasser und orga- nischem Lösemittel dispergierten Polyurethan (PU) oder von dispergiertem weichem Polyurethan (PU 1 ) und hartem Polyurethan (PU2) aus und gibt, vorzugsweise unter Rühren, Härter und Silikonverbindung (f) sowie, falls gewünscht, Polydialkylsiloxan (g) und gegebenenfalls ein oder mehrere organische Lösemittel zu. Vorzugsweise unter- lässt man jedoch die Zugabe von organischem Lösemittel.Preference is given to starting from a dispersed in water or a mixture of water and organic solvent polyurethane (PU) or dispersed soft polyurethane (PU 1) and hard polyurethane (PU2) and are, preferably with stirring, curing agent and silicone compound (f ) and, if desired, polydialkylsiloxane (g) and optionally one or more organic solvents. However, it is preferable to omit the addition of organic solvent.
In einer speziellen Ausführungsform gibt man Verdickungsmittel als Beispiel für einen Zusatz (h) als letztes zu und stellt so die gewünschte Viskosität der wässrigen Polyurethandispersion ein.In a specific embodiment, thickening agent is added last as an example of an additive (h) and thus sets the desired viscosity of the aqueous polyurethane dispersion.
Nach dem Aushärten der Polyurethanschicht (D) trennt man sie von der Matrize, beispielsweise durch Abziehen, und erhält einen Polyurethanfilm (D), der in erfindungs- gemäßem mehrschichtigem Verbundmaterial die Polyurethanschicht (D) bildet.After the polyurethane layer (D) has cured, it is separated from the matrix, for example by peeling, to obtain a polyurethane film (D) which forms the polyurethane layer (D) in the multilayer composite material according to the invention.
In einem weiteren Arbeitsgang des erfindungsgemäßen Herstellverfahrens bringt man vorzugsweise organischen Klebstoff auf Polyurethanfilm (D) oder die Kombination aus Flächengebilde (A) und absorptionsfähigem Material (B) auf, und zwar nicht vollflächig, beispielsweise in Form von Punkten oder Streifen. In einer Variante der vorliegenden Erfindung bringt man einen vorzugsweise organischen Klebstoff auf den Polyurethanfilm (D) und einen vorzugsweise organischen Klebstoff auf die Kombination aus Flächengebilde (A) und absorptionsfähigem Material (B) auf, wobei sich die beiden Klebstoffe unterscheiden, beispielsweise durch einen oder mehrere Zusätze oder dadurch, dass es sich um chemisch verschiedene vorzugsweise organische Klebstoffe handelt. Anschließend verbindet man Polyurethanfilm (D) und die Kombination aus Flächengebilde (A) und absorptionsfähigem Material (B), und zwar so, dass die Schicht(en) von Klebstoff zwischen Polyurethanfilm (D) und die Kombination aus Flächengebilde (A) und absorptionsfähigem Material (B) zu liegen kommen. Man härtet den Klebstoff bzw. die Klebstoffe aus, beispielsweise thermisch, durch aktinische Strahlung oder durch Alterung, und erhält erfindungsgemäßes mehrschichtiges Verbundmaterial.In a further operation of the manufacturing process according to the invention is preferably applied to organic adhesive on polyurethane film (D) or the combination of fabric (A) and absorbent material (B), and not on the entire surface, for example in the form of dots or stripes. In a variant of the present invention, a preferably organic adhesive is applied to the polyurethane film (D) and a preferably organic adhesive to the combination of fabric (A) and absorbent material (B), the two adhesives differing, for example by one or more adhesives several additives or in that it is chemically different preferably organic adhesives. Subsequently, polyurethane film (D) and the combination of fabric (A) and absorbent material (B) are joined so that the layer (s) of adhesive between polyurethane film (D) and the combination of fabric (A) and absorbent material (B) come to rest. The adhesive or adhesives are cured, for example thermally, by actinic radiation or by aging, and obtains a multilayer composite material according to the invention.
In einer Ausführungsform der vorliegenden Erfindung platziert man eine Zwischenschicht (E) zwischen absorptionsfähigem Material (B) und Verbindungsschicht (C), zwischen Verbindungsschicht (C) und Polyurethanschicht (D) oder zwischen zwei Verbindungsschichten (C).In one embodiment of the present invention, an intermediate layer (E) is placed between absorbent material (B) and tie layer (C), between tie layer (C) and polyurethane layer (D) or between two tie layers (C).
Die Zwischenschicht (E) ist wie vorstehend definiert.The intermediate layer (E) is as defined above.
Das Platzieren kann manuell oder maschinell erfolgen, kontinuierlich oder diskontinuierlich.Placement can be manual or mechanical, continuous or discontinuous.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindun- gemäßen mehrschichtigen Verbundmaterialien zur Herstellung von Sitzen. Sitze sind beispielsweise Sitze für Transportmittel wie Boote, Automobile, Flugzeuge, Eisenbahnen, Straßenbahnen, Busse und insbesondere in Kindersitzen. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Sitzen unter Verwendung von erfindungsgemäßen mehrschichtigen Verbundmaterialien. Ein weiterer Gegenstand der vorliegenden Erfindung sind Sitze, umfassend ein erfindungsgemäßes mehrschichtiges Verbundmaterial. Auf Oberflächen von erfindungsgemäßen Sitzen scheidet sich nur wenig Schweiß ab, Feuchtigkeit und auch andere Flüssigkei- ten werden aufgesaugt.A further subject of the present invention is the use of multilayer composite materials according to the invention for producing seats. Seats are for example seats for means of transport such as boats, automobiles, aircraft, railways, trams, buses and especially in child seats. Another object of the present invention is a method for producing seats under Use of multilayer composite materials according to the invention. Another object of the present invention are seats, comprising a multilayer composite material according to the invention. On surfaces of seats according to the invention, only little sweat is deposited, moisture and other liquids are absorbed.
Auch an weiteren Stellen im Innenraum von Fahrzeugen lässt sich erfindungsgemäßes mehrschichtiges Verbundmaterial vorteilhaft anwenden, beispielsweise bei Lenkrädern, Armlehnen, Dachhimmel, Innenraum-Verkleidungsstücken, Mittelkonsolen, Hutablagen und Armaturenbrettern. Weiterhin lässt sich erfindungsgemäßes mehrschichtiges Verbundmaterial vorteilhaft zum Raumklimamanagement verwenden. Das Raumklimamanagement wird dadurch bewirkt, dass erfindungsgemäße mehrschichtige Verbundmaterialien in feuchter Umgebung Feuchtigkeit aufnehmen (absorbieren) und in trockener Umgebung wieder abgeben (desorbieren), also für ein gleichmäßig feuchtes Klima sorgen können. Ein weiterer Gegenstand der vorliegenden Erfindung ist somit die Verwendung von erfindungsgemäßen mehrschichtigen Verbundmaterialien zum Raumklimamanagement.Also in other areas in the interior of vehicles, multilayer composite material according to the invention can advantageously be used, for example in steering wheels, armrests, headliners, interior trim pieces, center consoles, parcel shelves and dashboards. Furthermore, multilayer composite material according to the invention can advantageously be used for room climate management. The room climate management is brought about by the fact that multi-layer composite materials according to the invention absorb (absorb) moisture in a moist environment and release (desorb) again in a dry environment, thus being able to ensure a uniformly humid climate. Another object of the present invention is thus the use of multilayer composite materials according to the invention for room climate management.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfin- dungsgemäßen mehrschichtigen Verbundmaterialien in Sportartikeln, beispielsweise Sporttaschen, Rucksäcken, Schlägern wie beispielsweise Tennis- oder Hockeyschlägern, Sportschuhen und der Innenseite von Helmen. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindungsgemäßen mehrschichtigen Verbundmaterialien in elektrischen Geräten und ihren Verpackungen, beispielsweise Mobiltelefonen und Hüllen für Mobiltelefone, Spielkonsolen, Keyboards (Tastaturen) für Computer. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindungsgemäßen mehrschichtigen Verbundmaterialien zur Herstellung von Möbeln, beispielsweise Sofas, Liegemöbel wie Liegen, Sessel und Stühle. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindungsgemäßen Verbundmaterialien als oder zur Herstellung von Elementen für den Innenraum von Gebäuden, beispielsweise Vorhänge, Gardinen und Wandverkleidungen.Another object of the present invention is the use of inventive multilayer composite materials in sports articles, such as sports bags, backpacks, rackets such as tennis or hockey sticks, sports shoes and the inside of helmets. Another object of the present invention is the use of multilayer composite materials according to the invention in electrical appliances and their packaging, for example mobile telephones and cases for mobile phones, game consoles, keyboards for computers. Another object of the present invention is the use of multilayer composite materials according to the invention for the production of furniture, such as sofas, reclining furniture such as chairs, armchairs and chairs. Another object of the present invention is the use of composite materials according to the invention as or for the production of elements for the interior of buildings, such as curtains, curtains and wall coverings.
Die Erfindung wird durch Arbeitsbeispiele weiter erläutert.The invention will be further explained by working examples.
I. Herstellung der AusgangsmaterialienI. Preparation of the starting materials
1.1 Herstellung einer wässrigen Polyurethandispersion Disp.11.1 Preparation of an Aqueous Polyurethane Dispersion Disp.1
In einem Rührgefäß vermischte man unter Rühren: 7 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser. 125 nm, Feststoffgehalt: 40%) eines weichen Polyurethans (PU1.1), hergestellt aus Hexamethylendiisocyanat (a 1.1 ) und Isophorondiisocyanat (a1.2) im Gew.-Verhältnis 13:10 als Diisocyanate und als Diole einem Polyesterdiol (b1.1) mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4- Dihydroxymethylcyclohexan (Isomerengemisch) in einem Molverhältnis von 1 :1 :2, 5 Gew.-% 1 ,4-Butandiol (b1.2), sowie 3 Gew.-% einfach methyliertem Polyethylenglykol (c.1) sowie 3 Gew.-% H2N-CH2CH2-NH-CH2CH2-COOH, Gew.-% jeweils bezogen auf Polyesterdiol (b1.1 ),7% by weight of an aqueous dispersion (particle diameter 125 nm, solids content: 40%) of a soft polyurethane (PU1.1), prepared from hexamethylene diisocyanate (a 1.1) and isophorone diisocyanate (a1.2), were mixed with stirring in a stirred vessel. in the weight ratio 13:10 as diisocyanates and as diols a polyester diol (b1.1) having a molecular weight M w of 800 g / mol, prepared by polycondensation of isophthalic acid, adipic acid and 1, 4-dihydroxymethylcyclohexane (mixture of isomers) in a molar ratio of 1: 1: 2, 5 wt. % 1, 4-butanediol (b1.2), and 3 wt .-% monomethylated polyethylene glycol (c.1) and 3 wt .-% H2N-CH2CH2-NH-CH2CH2-COOH, wt .-% each based on polyester diol (b1.1),
Erweichungspunkt von weichem Polyurethan (PU1.1): 62°C, Erweichung beginnt bei 55°C, Shore-Härte A 54,Softening point of soft polyurethane (PU1.1): 62 ° C, softening starts at 55 ° C, Shore hardness A 54,
65 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 150 nm) eines harten Polyurethans (PU2.2), erhältlich durch Umsetzung von Isophorondiisocyanat (a1.2), 1 ,4-Butandiol, 1 ,1-Dimethylolpropionsäure, Hydrazinhydrat und Polypropylenglykol mit einem Molekulargewicht Mw von 4200 g/mol, Erweichungspunkt von 195°C, Shore- Härte A 86, 3,5 Gew.-% einer 70 Gew.-% Lösung (in Propylencarbonat) von Verbindung (V.1 ),65 wt .-% of an aqueous dispersion (particle diameter: 150 nm) of a hard polyurethane (PU2.2), obtainable by reacting isophorone diisocyanate (a1.2), 1, 4-butanediol, 1, 1-dimethylolpropionic acid, hydrazine hydrate and polypropylene glycol with a molecular weight M w of 4200 g / mol, softening point of 195 ° C., Shore hardness A 86, 3.5% by weight of a 70% by weight solution (in propylene carbonate) of compound (V.1),
(CH2)6NCO(CH 2 ) 6 NCO
,N O, N O
T (V.1)T (V.1)
OCN-(CH2)^ Y ^(CH2)6NCO OOCN- (CH 2 ) ^ Y ^ (CH 2 ) 6 NCO O
6 Gew.-% einer 65 Gew.-% wässrigen Dispersion der Silikonverbindung nach Beispiel 2 aus EP-A 0 738 747 (f.1 ) 2 Gew.-% Ruß,6 wt .-% of a 65 wt .-% aqueous dispersion of the silicone compound according to Example 2 of EP-A 0 738 747 (f.1) 2 wt .-% carbon black,
0,5 Gew.-% eines Verdickungsmittels auf Polyurethanbasis,0.5% by weight of a polyurethane-based thickener,
1 Gew.-% Mikrohohlkugeln aus Polyvinylidenchlorid, gefüllt mit Isobutan, Durchmesser1 wt .-% hollow microspheres of polyvinylidene chloride, filled with isobutane, diameter
20 μm, kommerziell erhältlich z. B. als Expancel® der Fa. Akzo Nobel.20 μm, commercially available for. B. as Expancel® the Fa. Akzo Nobel.
Man erhielt wässrige Dispersion Disp.1 mit einem Feststoffgehalt von 35% und einer kinematischen Viskosität von 25 Sek. bei 23°C, bestimmt nach DIN EN ISO 2431 , Stand Mai 1996.This gave aqueous dispersion Disp.1 having a solids content of 35% and a kinematic viscosity of 25 seconds at 23 ° C, determined according to DIN EN ISO 2431, as of May 1996.
1.2 Herstellung einer wässrigen Formulierung Disp.21.2 Preparation of an Aqueous Formulation Disp.2
In einem Rührgefäß vermischte man unter Rühren:In a stirred vessel was mixed with stirring:
7 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 125 nm), Feststoffgehalt: 40%) eines weichen Polyurethans (PU1.1 ), hergestellt aus Hexamethylendiisocyanat (a 1.1 ) und Isophorondiisocyanat (a1.2) im Gew.-Verhältnis 13:10 als Diisocyanate und und als Diole einem Polyesterdiol (b1.1) mit einem Molekulargewicht Mw von 800 g/mol, hergestellt durch Polykondensation von Isophthalsäure, Adipinsäure und 1 ,4- Dihydroxymethylcyclohexan (Isomerengemisch) in einem Molverhältnis von 1 :1 :2, 5 Gew.-% 1 ,4-Butandiol (b1.2), 3 Gew.-% einfach methyliertem Polyethylenglykol (c.1 ) sowie 3 Gew.-% H2N-CH2CH2-N H-CH2CH2-COOH, Gew.-% jeweils bezogen auf PoIy- esterdiol (b1.1 ),7 wt .-% of an aqueous dispersion (particle diameter: 125 nm), solids content: 40%) of a soft polyurethane (PU1.1), prepared from hexamethylene diisocyanate (a 1.1) and isophorone diisocyanate (a1.2) in a ratio by weight 13: 10 as diisocyanates and as diols a polyester diol (b1.1) having a molecular weight M w of 800 g / mol, prepared by polycondensation of isophthalic acid, adipic acid and 1, 4-dihydroxymethylcyclohexane (mixture of isomers) in a molar ratio of 1: 1: 2 , 5% by weight of 1,4-butanediol (b1.2), 3% by weight of simply methylated polyethylene glycol (c.1) and 3% by weight of H 2 N-CH 2 CH 2 -NH-CH 2 CH 2 -COOH,% by weight, based in each case on polyether diol (b1.1),
Erweichungspunkt von 62°C, Erweichung beginnt bei 55°C, Shore-Härte A 54, 65 Gew.-% einer wässrigen Dispersion (Partikeldurchmesser: 150 nm) eines harten Polyurethans (α2.2), erhältlich durch Umsetzung von Isophorondiisocyanat (a1.2), 1 ,4- Butandiol (PU 1.2), 1 ,1-Dimethylolpropionsäure, Hydrazinhydrat und Polypropylenglykol mit einem Molekulargewicht Mw von 4200 g/mol (b1.3), Polyurethan (PU2.2) hatte einen Erweichungspunkt von 195°C, Shore-Härte A 90,Softening point of 62 ° C, softening starts at 55 ° C, Shore A 54 hardness, 65 wt .-% of an aqueous dispersion (particle diameter: 150 nm) of a hard polyurethane (α2.2), obtainable by reacting isophorone diisocyanate (a1. 2), 1, 4-butanediol (PU 1.2), 1, 1-dimethylolpropionic acid, hydrazine hydrate and polypropylene glycol having a molecular weight M w of 4200 g / mol (b1.3), polyurethane (PU2.2) had a softening point of 195 ° C, Shore hardness A 90,
3,5 Gew.-% einer 70 Gew.-% Lösung (in Propylencarbonat) von Verbindung (V.1), NCO-Gehalt 12%, 2 Gew.-% Ruß.3.5 wt .-% of a 70 wt .-% solution (in propylene carbonate) of compound (V.1), NCO content 12%, 2 wt .-% carbon black.
Man erhielt eine Polyurethandispersion Disp.2 mit einem Feststoffgehalt von 35% und einer kinematischen Viskosität von 25 Sek., bestimmt nach bei 23°C nach DIN EN ISO 2431 , Stand Mai 1996.This gave a polyurethane dispersion Disp.2 having a solids content of 35% and a kinematic viscosity of 25 sec., Determined after at 23 ° C according to DIN EN ISO 2431, as of May 1996.
1.3 Herstellung einer Kombination aus textilem Flächengebilde (A) und Superabsor- ber (B)1.3 Production of a combination of textile fabric (A) and superabsorbent (B)
Auf ein Polyethylenterephthalt-Vlies (A.1 ) mit einem Flächengewicht von 70 g/m2 wurde eine Monomerlösung aufgesprüht und 2 Minuten mittels UV-Strahlung gehärtet. Anschließend wurde für 5 Minuten bei 900C in einem Gegenstromtrockner getrocknet.On a polyethylene terephthalate nonwoven (A.1) having a basis weight of 70 g / m 2 , a monomer solution was sprayed on and cured by UV radiation for 2 minutes. It was then dried for 5 minutes at 90 ° C. in a countercurrent dryer.
Die Monomerlösung enthielt 19,6 kg einer 37,5 Gew.-% wässrigen Natriumacrylatlösung (entsprechend 24,5 Gew.-The monomer solution contained 19.6 kg of a 37.5% by weight aqueous sodium acrylate solution (corresponding to 24.5% by weight).
% Natriumacrylat in der gesamten Monomerlösung),% Sodium acrylate in the entire monomer solution),
435 g Acrylsäure (8,5 Gew.-%),435 g of acrylic acid (8.5% by weight),
900 g Polyethylenglykoldiacrylat (Diacrylat eines Polyethylenglykols mit einem mittleren900 g of polyethylene glycol diacrylate (diacrylate of a polyethylene glycol with a middle
Molekulargewicht Mn von 400 g/mol) (3 Gew.-%) als Vernetzer, 66 g 2-Hydroxy-1-[4-(hydroxyethoxy)phenyl]- 2-methyl-1-propanon (0,22 Gew.-%) alsMolecular weight M n of 400 g / mol) (3% by weight) as crosslinker, 66 g of 2-hydroxy-1- [4- (hydroxyethoxy) phenyl] -2-methyl-1-propanone (0.22% by weight). %) when
Initiator,Initiator,
1500 g Glycerin [5 Gew.-%) und1500 g of glycerol [5 wt .-%) and
7500 g einer 25 Gew.-% wässrigen Natriumchloridlösung (6,25 Gew.-% NaCI).7500 g of a 25% by weight aqueous sodium chloride solution (6.25% by weight NaCl).
Die Menge an Monomerlösung wurde so gewählt, dass die Beladung des Polyethylen- terephthalat-Vlieses (A.1 ) mit aufpolymerisiertem wasserabsorbierendem Polymer (B.1 ) 160 g/m2 betrug, kurz auch „Kombination von textilem Flächengebilde (A.1) und Superabsorber (B.1)" genannt.The amount of monomer solution was chosen so that the loading of the polyethylene terephthalate nonwoven (A.1) with polymerized water-absorbing polymer (B.1) was 160 g / m 2 , in short also "combination of textile fabric (A.1). and superabsorbers (B.1) "called.
II. Herstellung einer Matrize Ein flüssiges Silikon wurde auf eine Unterlage gegossen, die das Muster eines vollnarbigen Kalbsleders aufwies. Man ließ aushärten, indem man eine Lösung von Di-n- butylbis(1-oxoneodecyloxy)stannan als 25 Gew.-% Lösung in Tetraethoxysilan als sauren Härter dazu gab, und erhielt eine im Mittel 2 mm starke Silikonkautschukschicht, die als Matrize diente. Die Matrize wurde auf einen 1 ,5 mm dicken Aluminiumträger aufgeklebt.II. Preparation of a matrix A liquid silicone was poured onto a pad having the pattern of a full-grain calfskin. The mixture was allowed to cure by adding thereto a solution of di-n-butylbis (1-oxoneodecyloxy) stannane as a 25% by weight solution in tetraethoxysilane as an acidic hardener to obtain an average 2 mm thick silicone rubber layer which served as the template. The die was glued to a 1.5 mm thick aluminum support.
III. Auftragung von wässrigen Polyurethandispersionen auf Matrize aus II.III. Application of Aqueous Polyurethane Dispersions to Matrices from II.
Die Matrize aus II. wurde auf eine beheizbare Unterlage gelegt und auf 910C erwärmt. Anschließend wurde durch eine Sprühdüse Disp.1 aufgesprüht, und zwar 88 g/m2 (nass). Das Auftragen erfolgte ohne Luftbeimengung mit einer Sprühdüse, die einen Durchmesser von 0,46 mm besaß, bei einem Druck von 65 bar. Man ließ bei 910C verfestigen, bis die Oberfläche nicht mehr klebrig war.The template from II. Was placed on a heatable pad and heated to 91 0 C. The mixture was then sprayed through a spray nozzle Disp.1, namely 88 g / m 2 (wet). The application was carried out without admixing air with a spray nozzle having a diameter of 0.46 mm, at a pressure of 65 bar. It was allowed to solidify at 91 0 C until the surface was no longer sticky.
Die Sprühdüse war in einer Höhe von 20 cm von der durchlaufenden Unterlage in Bewegungsrichtung derselben mobil angeordnet und bewegte sich quer zu der Bewegungsrichtung der Unterlage. Die Unterlage hatte nach etwa 14 Sekunden die Sprühdüse passiert und besaß eine Temperatur von 59°C. Nach einer etwa zweiminütigen Beaufschlagung mit trockener, 85°C warmer Luft war der so hergestellte, netzartig aussehende Polyurethanfilm (D.1 ) nahezu wasserfrei.The spray nozzle was mobile at a height of 20 cm from the continuous base in the direction of movement thereof and moved transversely to the direction of movement of the base. The pad had passed the spray nozzle after about 14 seconds and had a temperature of 59 ° C. After about two minutes exposure to dry, 85 ° C warm air, the net-looking polyurethane film (D.1) thus prepared was nearly anhydrous.
In einer analogen Anordnung wurde unmittelbar im Anschluss auf die so beschichtete Matrize 50 g/m2 nass von Disp.2 als Verbindungsschicht (C.1 ) aufgetragen und an- schließend trocknen gelassen. Die Verbindungsschicht (C.1) war nicht geschlossen.In an analogous assembly was immediately subsequent to the thus coated die 50 g / m 2 wet from Disp.2 as a bonding layer (C.1) and was subsequently allowed to dry. The bonding layer (C.1) was not closed.
Man erhielt eine mit Polyurethanfilm (D.1) und Verbindungsschicht (C.1) beschichtete Matrize.A die coated with polyurethane film (D.1) and tie layer (C.1) was obtained.
IV. Herstellung eines erfindungsgemäßen mehrschichtigen VerbundmaterialsIV. Production of a Multilayer Composite Material According to the Invention
Man sprühte auf einen Vliesstoff (Non-woven) aus Polyurethan (E.1), Dicke 300 μm, Flächengewicht 150 g/m2, mit einer Sprühdüse, die einen Düsendurchmesser von 0,52 mm aufwies, unter einem aus den Sprühdüsen austretenden Sprühwinkel von 60° Disp.2 auf. Die Auftragsmenge betrug 15 g/m2 nass. Man ließ drei Minuten trocknen und erhielt eine Kombination von Verbindungsschicht (C.2) und Zwischenschicht (E.1 ).A non-woven polyurethane (E.1), 300 μm thick, 150 g / m 2 basis weight, was sprayed with a spray nozzle having a nozzle diameter of 0.52 mm under a spray angle exiting the spray nozzles from 60 ° Disp.2 to. The application amount was 15 g / m 2 wet. The mixture was allowed to dry for three minutes and was given a combination of bonding layer (C.2) and intermediate layer (E.1).
Anschließend wurde die Kombination von textilem Flächengebilde (A.1) und Superab- sorber (B.1 ) auf die besprühte Seite auf die von Verbindungsschicht (C.2) und Zwi- schenschicht (E.1) gelegt. Danach legte man den so erhaltenen Verbund mit der Zwischenschicht (E.1) auf die noch warme Verbindungsschicht (C.1), die sich zusammen mit Polyurethanfilm (D.1) auf der Matrize befand, und verpresste in einer Presse bei 4 bar und 1100C für 15 Sekunden. Anschließend entnahm man das so erhaltene erfindungsgemäße mehrschichtige Verbundmaterial MSV.1 aus der Presse und entfernte die Matrize.Subsequently, the combination of textile fabric (A.1) and super absorber (B.1) was placed on the sprayed side on that of bonding layer (C.2) and intermediate layer (E.1). Thereafter, the thus obtained composite with the intermediate layer (E.1) was applied to the still-warm bonding layer (C.1), which was on the matrix together with polyurethane film (D.1), and pressed in a press at 4 bar and 110 0 C for 15 seconds. Subsequently, the composite multilayer composite material MSV.1 according to the invention thus obtained was removed from the press and the die was removed.
Das so erhaltene erfindungsgemäße mehrschichtige Verbundmaterial MSV.1 zeichnete sich aus durch eine angenehme Haptik, eine Optik, die identisch mit der Optik einer Lederoberfläche war, sowie Atmungsaktivität aus. The multilayer composite material MSV.1 according to the invention thus obtained was distinguished by a pleasant feel, optics that were identical to the look of a leather surface, and breathability.

Claims

Patentansprüche claims
1. Mehrschichtiges Verbundmaterial, umfassend als Komponenten:1. Multilayer composite material comprising as components:
(A) ein Flächengebilde, (B) ein Material, welches Wasser oder wässrige Flüssigkeiten absorbieren kann,(A) a sheet, (B) a material which can absorb water or aqueous liquids,
(C) gegebenenfalls mindestens eine Verbindungsschicht,(C) optionally at least one tie layer,
(D) eine Polyurethanschicht, die Kapillaren aufweist, die über die gesamte Dicke der Polyurethanschicht gehen, (E) und mindestens eine Zwischenschicht zwischen der Kombination aus textilem Flächengebilde (A) und absorptionsfähigem Material (B) einerseits und Polyurethanschicht (D) andererseits, wobei Zwischenschicht (E) gewählt ist aus Textil, Papier, Vliesstoffen, Kunstleder und offenzel- ligem Schaumstoff.(D) a polyurethane layer having capillaries that run the full thickness of the polyurethane layer, (E) and at least one intermediate layer between the combination of fabric (A) and absorbent material (B) on the one hand and polyurethane layer (D) on the other hand Interlayer (E) is selected from textile, paper, nonwovens, artificial leather and open-cell foam.
2. Mehrschichtiges Verbundmaterial nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei dem Flächengebilde (A) um ein textiles Flächengebilde handelt.2. Multilayer composite material according to claim 1, characterized in that the fabric (A) is a textile fabric.
3. Mehrschichtiges Verbundmaterial nach Anspruch 2, dadurch gekennzeichnet, dass es sich bei dem textilen Flächengebilde (A) um ein Gewebe oder einen3. Multilayer composite material according to claim 2, characterized in that it is in the fabric (A) to a fabric or a
Vliesstoff aus Polyester handelt.Nonwoven fabric made of polyester.
4. Mehrschichtiges Verbundmaterial nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei Material (B), welches Wasser oder wässrige Flüssigkeiten absorbieren kann, um einen Superabsorber (B) handelt.4. Multilayer composite material according to one of claims 1 to 3, characterized in that material (B) which can absorb water or aqueous liquids is a superabsorber (B).
5. Mehrschichtiges Verbundmaterial nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei dem Superabsorber (B) um ein organisches Copolymer handelt, das auf Flächengebilde (A) aufpolymerisiert ist.5. Multilayer composite material according to one of claims 1 to 4, characterized in that it is the superabsorbent (B) is an organic copolymer, which is grafted onto sheets (A).
6. Mehrschichtiges Verbundmaterial nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich bei der Verbindungsschicht (C) um eine Schicht eines gehärteten organischen Klebstoffs handelt.6. Multilayer composite material according to one of claims 1 to 5, characterized in that the bonding layer (C) is a layer of a cured organic adhesive.
7. Mehrschichtiges Verbundmaterial nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Polyurethanschicht (D) eine Musterung aufweist.7. Multilayer composite material according to one of claims 1 to 6, characterized in that the polyurethane layer (D) has a pattern.
8. Mehrschichtiges Verbundmaterial nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Polyurethanschicht (D) eine samtartige Erscheinung aufweist. 8. Multilayer composite material according to one of claims 1 to 7, characterized in that the polyurethane layer (D) has a velvet-like appearance.
9. Mehrschichtiges Verbundmaterial nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es sich bei der Verbindungsschicht um eine durchbrochene Schicht eines gehärteten organischen Klebstoffs handelt.9. Multilayer composite material according to one of claims 1 to 8, characterized in that it is the connecting layer to a perforated layer of a cured organic adhesive.
10. Verfahren zur Herstellung von mehrschichtigen Verbundmaterialien nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man ein Material (B), welches Wasser oder wässrige Flüssigkeiten absorbieren kann, mit einem Flächengebilde (A) verbindet, mit Hilfe einer Matrize eine Polyurethanschicht (D) bildet, mindestens einen organischen Klebstoff vollflächig oder partiell auf mit absorpti- onsfähigem Material (B) verbundenen Flächengebilde (A) und/oder auf Polyurethanschicht (D) aufbringt und dann Polyurethanschicht (D) mit dem mit absorptionsfähigen Material (B) kombinierten Flächengebilde (A) punktförmig, streifenartig oder flächig verbindet.10. A process for producing multilayer composite materials according to any one of claims 1 to 8, characterized in that a material (B), which can absorb water or aqueous liquids, with a sheet (A) connects, using a die a polyurethane layer ( D), applying at least one organic adhesive over its entire surface or partially to fabrics (A) joined to absorptive material (B) and / or to polyurethane layer (D) and then to polyurethane layer (D) with the fabric combined with absorbent material (B) (A) connects point-like, strip-like or flat.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass man Polyurethanschicht (D) mit Hilfe einer Silikonmatrize bildet.1 1. A method according to claim 10, characterized in that one forms polyurethane layer (D) by means of a Silikonmatrize.
12. Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass es sich bei der Silikonmatrize um eine mit Hilfe von Lasergravur strukturierte Silikonmatrize handelt.12. The method according to claim 10 or 1 1, characterized in that it is the silicone die is a structured by means of laser engraving silicone matrix.
13. Verfahren nach einem der Ansprüche 10 bis 12, dass man zur Strukturierung der Matrize mit Hilfe eines Lasers Näpfchen in die Matrize einarbeitet, die eine mittlere Tiefe im Bereich von 50 bis 250 μm aufweisen und einen Mittenabstand im Bereich von 50 bis 250 μm.13. The method according to any one of claims 10 to 12, that for the structuring of the matrix by means of a laser cups incorporated in the die, which have an average depth in the range of 50 to 250 microns and a center distance in the range of 50 to 250 microns.
14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass man eine Zwischenschicht (E) zwischen absorptionsfähigem Material (B) und Verbindungsschicht (C), zwischen Verbindungsschicht (C) und Polyurethan- schicht (D) oder zwischen zwei Verbindungsschichten (C) platziert.14. The method according to any one of claims 10 to 13, characterized in that an intermediate layer (E) between absorbent material (B) and bonding layer (C), between bonding layer (C) and polyurethane layer (D) or between two bonding layers ( C).
15. Verwendung von mehrschichtigen Verbundmaterialien nach einem der Ansprüche 1 bis 9 zur Herstellung von Sitzen.15. Use of multilayer composite materials according to one of claims 1 to 9 for the production of seats.
16. Verfahren zur Herstellung von Sitzen unter Verwendung von mehrschichtigen Verbundmaterialien nach einem der Ansprüche 1 bis 9.16. A method for producing seats using multilayer composite materials according to any one of claims 1 to 9.
17. Sitze, umfassend ein mehrschichtiges Verbundmaterial nach einem der Ansprüche 1 bis 9.A seat comprising a multilayer composite according to any one of claims 1 to 9.
18. Verwendung von mehrschichtigen Verbundmaterialien nach einem der Ansprüche 1 bis 9 zum Raumklimamanagement. 18. Use of multilayer composite materials according to one of claims 1 to 9 for room climate management.
19. Verwendung von mehrschichtigen Verbundmaterialien nach einem der Ansprüche 1 bis 9 im Innenraum von Fahrzeugen.19. Use of multilayer composite materials according to one of claims 1 to 9 in the interior of vehicles.
20. Fahrzeuge, enthaltend im Innenraum mindestens ein mehrschichtiges Verbundmaterial nach einem der Ansprüche 1 bis 9. 20. Vehicles containing in the interior at least one multilayer composite material according to one of claims 1 to 9.
PCT/EP2009/052111 2008-02-27 2009-02-23 Multi-layer composite material, production and use thereof WO2009106501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08102077 2008-02-27
EP08102077.8 2008-02-27

Publications (1)

Publication Number Publication Date
WO2009106501A1 true WO2009106501A1 (en) 2009-09-03

Family

ID=40514041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/052111 WO2009106501A1 (en) 2008-02-27 2009-02-23 Multi-layer composite material, production and use thereof

Country Status (1)

Country Link
WO (1) WO2009106501A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011032862A1 (en) 2009-09-18 2011-03-24 Basf Se Open-cell foams having superabsorbers
DE202011004994U1 (en) * 2010-12-02 2012-03-05 Philipp Schaefer composite material
US8679278B2 (en) 2008-07-17 2014-03-25 Basf Se Method for continuously producing multi-layered composite bodies
AT14073U1 (en) * 2013-10-07 2015-04-15 Schaefer Philipp Leather exchange material
US20210155171A1 (en) * 2019-11-21 2021-05-27 Tesla, Inc. Vehicle dash with recycled materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373515A2 (en) * 1988-12-13 1990-06-20 J. H. Benecke AG Multi-layered polyurethane padding material
US5043209A (en) * 1988-11-22 1991-08-27 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Absorbent liner for impermeable clothing
US20020119300A1 (en) * 2000-12-22 2002-08-29 Taylor Jack D. Breathable and elastic polyurethane films and laminates containing same
EP1242015B1 (en) * 1999-11-10 2005-06-22 Tri-Sis Inc. Launderable, leak-proof, breathable fabric and articles made therefrom
WO2005065604A1 (en) * 2004-01-07 2005-07-21 Biopol Co., Ltd. Wound dressing
US20060149200A1 (en) * 2004-12-30 2006-07-06 Kimberly-Clark Worldwide, Inc. Degradable breathable multilayer film with improved properties and method of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043209A (en) * 1988-11-22 1991-08-27 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Absorbent liner for impermeable clothing
EP0373515A2 (en) * 1988-12-13 1990-06-20 J. H. Benecke AG Multi-layered polyurethane padding material
EP1242015B1 (en) * 1999-11-10 2005-06-22 Tri-Sis Inc. Launderable, leak-proof, breathable fabric and articles made therefrom
US20020119300A1 (en) * 2000-12-22 2002-08-29 Taylor Jack D. Breathable and elastic polyurethane films and laminates containing same
WO2005065604A1 (en) * 2004-01-07 2005-07-21 Biopol Co., Ltd. Wound dressing
US20060149200A1 (en) * 2004-12-30 2006-07-06 Kimberly-Clark Worldwide, Inc. Degradable breathable multilayer film with improved properties and method of making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679278B2 (en) 2008-07-17 2014-03-25 Basf Se Method for continuously producing multi-layered composite bodies
WO2011032862A1 (en) 2009-09-18 2011-03-24 Basf Se Open-cell foams having superabsorbers
DE202011004994U1 (en) * 2010-12-02 2012-03-05 Philipp Schaefer composite material
AT14073U1 (en) * 2013-10-07 2015-04-15 Schaefer Philipp Leather exchange material
US20210155171A1 (en) * 2019-11-21 2021-05-27 Tesla, Inc. Vehicle dash with recycled materials

Similar Documents

Publication Publication Date Title
EP2247441B1 (en) Multi-layer composite material, production and use thereof
EP2268483B1 (en) Multi-layer composite materials comprising a foam layer, corresponding method of production and use thereof
WO2009106503A1 (en) Multi-layer composite materials comprising a textile sheet material, corresponding method of production and use thereof
EP2247443B1 (en) Multi-layer composite materials comprising a plastic or metal foil, corresponding method of production and use thereof
EP2288493B1 (en) Multilayer composite materials which comprise a plastics foil permeable to water vapour, method for production of the same and use of the same
EP2646287B1 (en) Laminate material
CN101506278B (en) Highly breathable biodegradable films
EP2303569B1 (en) Method for continuously producing multi-layered composite bodies
DE69830198T2 (en) BREATHABLE FILMS WITH MICROSCREENS OF DECOMPOSABLE PLASTICS AND THERMOPLASTIC ELASTOMERS
WO2009106499A1 (en) Multi-layer composite materials comprising a cellulose-containing layer, corresponding method of production and use thereof
DE102012009055A1 (en) Thermally fixable fabric
WO2012072740A1 (en) Method for producing multi-layer composite bodies
WO2009106501A1 (en) Multi-layer composite material, production and use thereof
DE3637178C2 (en)
EP2349756A1 (en) Objects having at least one opening covered by a membrane, and method for production thereof
DE602004006653T2 (en) Stretchable leather-like sheet substrate and method for its production
JP2000248472A (en) Abrasion-resistant leather-like sheet
DE102009001121A1 (en) Multi-layer composite material, useful for manufacture of decorative material and automotive interior parts, comprises substrate, connecting layer and polyurethane layer having capillaries that extend over its entire thickness
WO2009106497A1 (en) Multi-layer composite materials comprising a manually not pliable layer, corresponding method of production and use thereof
KR102167927B1 (en) Disposable sanitary napkin pouch with waterproof function
DE102008024299B3 (en) Glove
JP2001098468A (en) Leather-like sheet having antimicrobial property

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09713953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09713953

Country of ref document: EP

Kind code of ref document: A1