WO2009105992A1 - 基于无线通信时分双工系统的下行重传和上行重传方法 - Google Patents

基于无线通信时分双工系统的下行重传和上行重传方法 Download PDF

Info

Publication number
WO2009105992A1
WO2009105992A1 PCT/CN2009/070520 CN2009070520W WO2009105992A1 WO 2009105992 A1 WO2009105992 A1 WO 2009105992A1 CN 2009070520 W CN2009070520 W CN 2009070520W WO 2009105992 A1 WO2009105992 A1 WO 2009105992A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
physical frame
uplink
data sub
packet
Prior art date
Application number
PCT/CN2009/070520
Other languages
English (en)
French (fr)
Inventor
辛雨
方永刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200810081602 external-priority patent/CN101521564B/zh
Priority claimed from CN 200810085415 external-priority patent/CN101534178B/zh
Priority claimed from CN 200810084796 external-priority patent/CN101547039B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2009105992A1 publication Critical patent/WO2009105992A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a downlink retransmission and uplink retransmission method based on a wireless communication time division duplex system.
  • uplink/downlinks of wireless air interface transmission generally transmit data in units of superframes; wherein each superframe is composed of a reamble (preamble) It is composed of a number of PHY Frames (physical frames), and both the preamble and the PHY Frame are based on OFDM (Orthogonal Frequency Division Multiplexing) Symbol (symbol).
  • the current UMB Ultra Mobile Broadband
  • LTE Long-Term Evolution, Long Term Evolution
  • Wimax Worldwide Interoperability for Microwave Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the uplink/downlink links use different frequency bands for data transmission.
  • the resource allocation of the uplink/downlink PHY Frames of the system is relatively independent, that is, resource allocation can be performed separately for the downlink PHY Frames and the uplink PHY Frames.
  • the TDD mode is that the uplink/downlink uses the same frequency band for time division transmission. This method needs to divide the PHY frame into uplink and downlink time divisions for transmission.
  • the uplink/downlink PHY frame can generally be transmitted in the following manner: The base station and the terminal transmit data in units of superframes, and within a superframe duration, the base station first sends a preamble to the terminal, and then passes The downlink transport block consisting of n consecutive downlink physical frames sends downlink data to the terminal. After that, the base station and the terminal do not send data at the first time interval. Next, the base station receives the uplink transmission formed by the terminal through m consecutive uplink physical frames.
  • the uplink data sent by the block after which the base station and the terminal do not send data at the second time interval, and then the base station sends downlink data to the terminal through another downlink transport block composed of n consecutive downlink physical frames, and then, in the The base station and the terminal do not transmit data at the three time intervals, and then the base station receives the uplink data sent by the terminal through another uplink transport block composed of m consecutive uplink physical frames; at the fourth time interval, the base station And the terminal does not send data, and then the base station sends downlink data to the terminal through another downlink transport block consisting of n consecutive downlink physical frames.
  • the base station and the terminal do not send data, and then the base station receives the terminal again.
  • m: n can be 5:3, 3:5 or 6:2.
  • the retransmission mechanism is indispensable, but in the TDD mode, how to use the same frequency band for data transmission in the uplink/downlink, how to go up or down in the TDD m:n mode During the transmission of data, retransmission of uplink data or downlink data is performed, and no effective solution has been proposed yet.
  • the present invention has been made in view of the need in the related art to solve the problem of how to perform retransmission of uplink data or downlink data during transmission of uplink or downlink data in the TDD m:n mode. Accordingly, it is a primary object of the present invention to provide a downlink retransmission method based on a wireless communication time division duplex system to solve the above problems. According to an aspect of the present invention, a downlink retransmission method based on a wireless communication time division duplex system is provided, which is based on downlink transmission blocks including five consecutive downlink physical frames for downlink transmission, The uplink transport block including three consecutive uplink physical frames is used for time division duplex mode of uplink transmission.
  • the downlink retransmission method based on the wireless communication time division duplex system includes: presetting the mapping relationship between the uplink physical frame and the downlink physical frame, such that each uplink physical frame corresponds to one downlink physical frame or two consecutive downlink physics. a frame, and each uplink physical frame corresponds to a different downlink physical frame; the base station uses the downlink physical frame of the downlink transport block to send one or more data sub-packets to one or more terminals; and the terminal demodulates the received downlink physical frame data.
  • Sub-packet based on the demodulation result and the mapping relationship, the terminal sends a response message indicating whether the data sub-packet is successfully demodulated, or the terminal transmits the response message only if the demodulation is successful;
  • the failed data sub-packet is transmitted, and the base station transmits a retransmission data sub-packet of the demodulated data sub-packet in the corresponding downlink physical frame in the next downlink transport block.
  • a downlink retransmission method based on a wireless communication time division duplex system is provided, which is based on downlink transmission blocks including three consecutive downlink physical frames for downlink transmission, Uplink transport block including 5 consecutive uplink physical frames for uplink Time division duplex mode of transmission.
  • the downlink retransmission method based on the wireless communication time division duplex system includes: presetting the mapping relationship between the uplink physical frame and the downlink physical frame, such that 3 of the downlink physical frame and the uplink transmission block in the downlink transmission block Physical frame-corresponding; the base station transmits one or more data sub-packets to one or more terminals using the downlink physical frame of the downlink transport block; the terminal demodulates the received data sub-packet; based on the demodulation result, the terminal sends the Indicates whether the response message of the data sub-packet is successfully demodulated, or the terminal transmits the response message only when the demodulation is successful; wherein, for the demodulated data sub-packet, the base station correspondingly in the next downlink transmission block The downlink physical frame sends a retransmission data sub-packet.
  • a downlink retransmission method based on a wireless communication time division duplex system is provided, which is based on downlink transmission blocks including consecutive 6 downlink physical frames for downlink transmission,
  • the uplink transport block including two consecutive uplink physical frames is used for the time division duplex mode of the uplink transmission.
  • the downlink retransmission method based on the wireless communication time division duplex system includes: presetting the mapping relationship between the uplink physical frame and the downlink physical frame, so that the first three downlink physical frames and the uplink transmission block in the downlink transmission block are Corresponding to one physical frame, the last three downlink physical frames in the downlink transport block correspond to the second physical frame in the uplink transport block; the base station sends one or more one or more terminals to the one or more terminals by using the downlink physical frame of the downlink transport block a data sub-packet; the terminal demodulates the received data sub-packet; based on the demodulation result and the mapping relationship, the terminal sends a response message indicating whether the data sub-packet is successfully demodulated, or the terminal only succeeds in demodulation The sending of the response message is performed.
  • the base station sends a retransmission data sub-packet in the corresponding downlink physical frame in the subsequent downlink transport block.
  • an uplink retransmission method based on a wireless communication time division duplex system based on a downlink transmission block including a continuous five downlink physical frames, for downlink transmission,
  • the uplink transport block including three consecutive uplink physical frames is used for time division duplex mode of uplink transmission.
  • the uplink retransmission method based on the wireless communication time division duplex system according to the present invention includes: presetting the mapping relationship between the uplink physical frame and the downlink physical frame, such that each uplink physical frame corresponds to one downlink physical frame or two consecutive downlink physics.
  • each uplink physical frame corresponds to a different downlink physical frame
  • one or more terminals use the uplink physical frame of the uplink transport block to send one or more data sub-packets to the base station
  • the base station demodulates the received uplink physical frame data.
  • Sub-package based on demodulation results and mapping
  • the base station sends a response message indicating whether the data sub-packet is successfully demodulated, or the base station transmits the response message only if the demodulation is successful; wherein, for the uplink physical frame in which the data sub-packet fails to be demodulated,
  • the terminal transmits a retransmission data sub-packet of the demodulated data sub-packet in a corresponding uplink physical frame in the next uplink transport block.
  • an uplink retransmission method based on a wireless communication time division duplex system based on a downlink transmission block including three consecutive downlink physical frames, for downlink transmission,
  • the uplink transport block including consecutive 5 uplink physical frames is used for time division duplex mode of uplink transmission.
  • the uplink retransmission method based on the wireless communication time division duplex system according to the present invention includes: presetting the mapping relationship between the uplink physical frame and the downlink physical frame, such that each downlink physical frame corresponds to one uplink physical frame or two consecutive uplink physics.
  • each downlink physical frame corresponds to a different uplink physical frame
  • one or more terminals use the uplink physical frame of the uplink transport block to send one or more data sub-packets to the base station
  • the base station demodulates the received uplink physical frame data.
  • Sub-packet based on the demodulation result and the mapping relationship, the base station sends a response message indicating whether the data sub-packet is successfully demodulated, or the base station transmits the response message only if the demodulation is successful;
  • the packet demodulates the failed uplink physical frame, and the terminal transmits the retransmitted data sub-packet of the demodulated data sub-packet in the corresponding uplink physical frame in the next uplink transport block.
  • an uplink retransmission method based on a wireless communication time division duplex system is provided, which is based on downlink transmission blocks including consecutive 6 downlink physical frames for downlink transmission,
  • the uplink transport block including two consecutive uplink physical frames is used for the time division duplex mode of the uplink transmission.
  • the uplink retransmission method based on the wireless communication time division duplex system includes: presetting the mapping relationship between the uplink physical frame and the downlink physical frame, so that each uplink physical frame corresponds to two consecutive downlink physical frames;
  • the plurality of terminals send one or more data sub-packets to the base station by using the uplink physical frame of the uplink transport block;
  • the base station demodulates the data sub-packets of the received uplink physical frame; based on the demodulation result and the mapping relationship, the base station sends whether to indicate whether The response message of the data sub-packet is successfully demodulated, or the base station transmits the response message only if the demodulation is successful; wherein, for the uplink physical frame in which the data sub-packet demodulation fails, the terminal corresponds in the next uplink transport block.
  • the uplink physical frame transmits a retransmission data sub-packet of the demodulated data sub-packet.
  • the base station and the terminal in the downlink transmission process of the TDD mode, by transmitting a response symbol (response message) in the corresponding uplink physical frame, the base station and the terminal can be enabled. Relatively sufficient time to parse the data or message from the other party and perform subsequent processing to achieve data retransmission; in the uplink transmission process of the TDD mode, the data is weighted by transmitting the response symbol in the corresponding downlink physical frame. Passing, thus making up for the lack of a retransmission mechanism in the related technology.
  • FIG. 1 is a flow chart of a downlink retransmission method based on a TDD system according to a first embodiment of the method of the present invention
  • FIG. 2 (a) and FIG. 2 (b) are examples of the method of FIG. 3 is a structural block diagram of a downlink retransmission system based on a TDD system according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of an uplink retransmission method based on a TDD system according to Embodiment 2 of the method of the present invention. (a) and FIG.
  • FIG. 5(b) are schematic diagrams of an example 2 of the method shown in FIG. 4.
  • FIG. 6 is a structural block diagram of an uplink retransmission system based on a TDD system according to a second embodiment of the system of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 8(a) and FIG. 8(b) are schematic diagrams of an example 3 of the method shown in FIG. 7;
  • FIG. 9 is a system implementation according to the present invention.
  • FIG. 10 is a flowchart of a TDD system-based uplink retransmission method according to Embodiment 4 of the present invention;
  • FIG. 11 (a) and FIG. 11 (b) Is a schematic diagram of Example 4 of the method shown in FIG.
  • FIG. 10; 12 is a structural block diagram of a TDD system-based uplink retransmission system according to Embodiment 4 of the present invention
  • FIG. 13 is a flowchart of a TDD system-based downlink retransmission method according to Embodiment 5 of the present invention
  • (a) and FIG. 14(b) are schematic views of Example 5 shown in FIG. 13
  • FIGS. 15(a) and 15(b) are schematic views of Example 6 shown in FIG. 13
  • FIG. 16 is a method according to the present invention.
  • FIG. 17 (a) and FIG. 17 (b) are schematic diagrams of the example 7 shown in FIG. 16.
  • the uplink/downlink uses the same frequency band for time-division data transmission, since it is different from the frequency division duplex (FDD) method.
  • / Downlink uses different frequency bands for data transmission, so that when the system's uplink/downlink PHY Frames allocate resources, the downlink PHY Frames and the uplink PHY Frames can be allocated resources respectively.
  • TDD mode how to be in the TDD m : During the transmission of uplink or downlink data in the n mode, retransmission of uplink data or downlink data is an urgent problem to be solved.
  • the present invention provides a downlink retransmission and uplink transmission scheme based on a wireless communication TDD system, wherein, in a downlink transmission process, data retransmission is implemented by transmitting a response symbol (response message) in a corresponding uplink physical frame; During transmission, data retransmission is achieved by transmitting a response symbol in the corresponding downlink physical frame.
  • the downlink data transmission method and the uplink data transmission method in which the m:n values in the TDD m:n mode are 5:3, 5:3, 5:3 are respectively described in detail.
  • the m: n value is 5:3.
  • the first embodiment of the present invention provides a retransmission mechanism for the downlink data transmission in the TDD 5:3 mode.
  • a downlink retransmission method based on a wireless communication TDD system, wherein the wireless communication TDD system is configured to use a downlink transmission block including five consecutive downlink physical frames for downlink transmission, and includes uplink transmission of three consecutive uplink physical frames.
  • the block is used for TDD mode of uplink transmission (ie, TDD 5:3 mode).
  • Step S102 The mapping relationship between the uplink physical frame and the downlink physical frame group is set in advance, so that each downlink physical frame has an uplink physical frame corresponding thereto, where each uplink physical frame corresponds to one downlink physical frame or two consecutive frames.
  • the downlink physical frame, and each uplink physical frame corresponds to a different downlink physical frame, where each downlink physical frame group includes one downlink physical frame or two adjacent downlink physical frames, and one downlink transmission block is divided into three.
  • Step S104 the base station sends one or more data sub-packets to one or more terminals by using a downlink physical frame group of the downlink transport block;
  • Step S106 the terminal demodulates the received data of the downlink physical frame group a packet;
  • step S108 the terminal sends a response message indicating whether the data sub-packet is successfully demodulated based on the demodulation result and the mapping relationship, or the terminal transmits the response message only when the demodulation is successful; specifically, If the terminal demodulates the data sub-packet successfully, the terminal transmits the corresponding uplink physical frame of the uplink transport block after the downlink transport block to the base station.
  • step S110 the base station receives and demodulates the response message, and determines, according to the response message, whether the data sub-packet is demodulated successfully, if If the base station does not receive any message, it indicates that the terminal fails to demodulate the data sub-packet; for the demodulated data sub-packet, the base station sends a retransmission of the demodulated data sub-packet in the corresponding downlink physical frame group in the next downlink transport block.
  • Step S102 The mapping relationship mentioned in the step is: the five consecutive downlink physical frames in the downlink transport block are divided into three downlink physical frame groups according to the positional order, and one of the downlink physical frame groups includes one downlink physical frame group.
  • the other two downlink physical frame groups respectively include two adjacent downlink physical frames
  • each of the downlink physical frame groups and the consecutive three uplink physical frames in the uplink transport block are in a sequential order corresponding to each other, that is,
  • the first downlink physical frame group in the downlink transport block corresponds to the first uplink physical frame in the uplink transport block
  • the second downlink physical frame group corresponds to the second uplink physical frame in the uplink transport block
  • the third The downlink physical frame group corresponds to the third uplink physical frame in the uplink transport block.
  • other correspondences may also be set, and the present invention is not limited thereto.
  • the downlink transport block may be grouped according to any one of the following manners: Mode 1: The first and second downlink physical frames form a downlink physical frame group, and the third and fourth downlink physical frames form a downlink physical frame.
  • the fifth downlink physical frame constitutes a downlink physical frame group;
  • mode 2 the first downlink physical frame constitutes a downlink physical frame group, and the second and third downlink physical frames constitute a downlink physical frame group, and the fourth sum The fifth downlink physical frame constitutes a downlink physical frame group;
  • mode 3 the first and second downlink physical frames form a downlink physical frame group, and the third downlink physical frame constitutes a downlink physical frame group, fourth and fifth The downlink physical frames form a downlink physical frame group.
  • each uplink physical frame corresponds to one or two downlink physical frames in a downlink physical frame group corresponding to the existing relationship.
  • the first uplink physical frame in the uplink transport block may correspond to the first downlink physical frame in the first downlink physical frame group
  • the first uplink physical frame may be corresponding to the first downlink.
  • the second downlink physical frame in the physical frame group may also correspond to the first and second downlink physical frames.
  • the positions of the three physical frame groups are respectively defined as L0, L1, and L2, and the data sub-packets transmitted from the three downlink physical frame group positions are respectively Defined as P0, Pl, P2, that is, the data sub-packet sent in the first physical frame group of the downlink transport block is defined as P0 (if the first physical frame group contains the first and second physical frames, Then, the data sub-packets transmitted in either or both of the two physical frames are defined as ⁇ ), and so on.
  • the data sub-packets of the three different locations can be sent to the same terminal or to different terminals.
  • the starting position of the transmit data sub-packet may be in the first downlink transport block of the superframe or in the second downlink transport block of the superframe.
  • the data sub-packets are first transmitted from the first downlink transport block of the superframe, and it is assumed that data sub-packets are transmitted in all three locations, and three data sub-packets are transmitted to the same terminal. .
  • Steps S106 and S108 After the terminal demodulates the data sub-packets of the three different positions, the terminal will respectively send an ACK or NACK message on the uplink transport block composed of the next three consecutive uplink physical frames.
  • the ACK/NACK messages of the three different locations respectively correspond to the data sub-packets of the three different positions P0, P1, and P2.
  • Step S110 the operation of the base station transmitting the retransmission data sub-packet in the corresponding downlink physical frame group in the next downlink transport block is specifically: the base station determines the response message (ACK/NACK) corresponding to the mapping relationship. a location of the downlink physical frame group; the base station determines, according to the determined location, a corresponding downlink physical frame group in the next downlink transport block, where the position of the corresponding downlink physical frame group in the next downlink transport block is consistent with the determined location; Thereafter, the base station transmits a retransmission data packet in the corresponding downlink physical frame group.
  • ACK/NACK response message
  • the base station first demodulates the ACK/NACK messages of the three different locations, and if it is a NACK message, indicating that the terminal does not successfully demodulate the data, the base station performs a downlink transport block consisting of the next five consecutive downlink physical frames (ie, And transmitting, by the next downlink transport block, the first-level retransmission data sub-packet on the corresponding channel resource of the corresponding downlink physical frame group location.
  • the retransmission data sub-packets may be the same as or different from the data sub-packets originally transmitted.
  • step S110 For the downlink physical frame in which the data sub-packet is successfully demodulated, the base station sends other data sub-packets in the corresponding downlink physical frame group in the next downlink transport block. That is, if it is an ACK message, indicating that the terminal successfully demodulates the data, the base station sends other data sub-packets in the corresponding physical frame group position on the downlink transport block composed of the next five consecutive downlink physical frames (other data sub-packets)
  • the HARQ retransmission processing method is the same as the data subpacket).
  • the retransmission threshold is set in advance, and in the case that the number of retransmissions of the demodulated data sub-packets reaches the retransmission threshold, retransmission is not performed.
  • the terminal After the terminal correctly demodulates the first-level retransmission data sub-packet, the terminal sends an ACK message to the corresponding physical frame position on the uplink transport block composed of the next three consecutive uplink physical frames; If the first-level retransmission data sub-packet is not correctly demodulated, the NACK message is sent at the corresponding physical frame position on the uplink transport block composed of the next three consecutive uplink physical frames. Afterwards, the base station demodulates the ACK/NACK messages of the three different locations. If it is an ACK message, indicating that the terminal successfully demodulates the data, the base station corresponding downlink physicals on the downlink transport blocks composed of the next five consecutive downlink physical frames.
  • the frame group location sends other data sub-packets; if it is a NACK message, indicating that the terminal still does not successfully demodulate the data, the base station corresponds to the downlink physical frame group position on the downlink transport block composed of the following five consecutive downlink physical frames.
  • the second level retransmission data sub-packet is sent on the corresponding channel resource.
  • the ACK message is sent at the corresponding uplink physical frame position, and the base station receives the ACK message, and sends other data sub-packets at the corresponding downlink physical frame position; If the downlink data sub-packet is not correctly demodulated, the NACK message is sent on the corresponding uplink physical frame position, and the base station receives the NACK message, and needs to send the Nth-level retransmission data on the corresponding channel resource of the corresponding downlink physical frame position.
  • the retransmission threshold N may be set to 5 or other positive integers.
  • Example 1 In a superframe transmission unit, a base station sends downlink data to a terminal by using a downlink transmission block consisting of five consecutive downlink physical frames, and the five downlink physical frames are grouped according to the foregoing manner, that is, the first sum.
  • the second physical frame is set to one group
  • the third physical frame is set to one group
  • the fourth and fifth physical frames are set as one group.
  • the positions of the three physical frame groups are respectively defined as L0.
  • the data sub-packets sent for the three downlink physical frame group positions are respectively defined as P0, Pl, P2, that is, the first physical frame group in the downlink transport block (which may be the first physical frame,
  • the data sub-packet sent by the second physical frame or across the first and second physical frames is defined as P0
  • the data sub-packet sent by the second physical frame group is defined as P1.
  • the data subpackages The downlink transmission block to be transmitted is not limited in the position of the superframe, and may be the first downlink transmission block or the second downlink transmission block.
  • the boundary of the Superframe has no limitation on the HARQ retransmission processing of the data sub-packets.
  • P0 is sent on the downlink first physical frame group L0 shown in FIG. 2(a), that is, P0 can be transmitted on the physical frame F0 or F1, or can span two physical frames. Send, that is, send on both physical frames F0 and F1 at the same time. If the terminal correctly demodulates P0, the ACK message is sent at the position of R0. As shown in FIG. 2(a), that is, P0 can be transmitted on the physical frame F0 or F1, or can span two physical frames. Send, that is, send on both physical frames F0 and F1 at the same time. If the terminal correctly demodulates P0, the ACK message is sent at the position of R0. As shown in FIG.
  • the base station after receiving the ACK message, the base station is in the first physical frame group of the next downlink transmission block, that is, The positions of F5 and F6 transmit other data sub-packets P, 0; the HARQ retransmission processing method of other data sub-packets P, 0 is the same as the processing method of the data sub-packet P0. If the terminal does not correctly demodulate P0, the NACK message is sent at the position of R0. As shown in FIG. 2(b), after receiving the NACK message, the base station is in the first physical frame group of the next downlink transmission block.
  • the first-level retransmission data sub-packet R1P0 is transmitted on the corresponding channel resource of the location of F5 and F6. If the terminal correctly demodulates the first-level retransmitted data sub-packet, the ACK message is sent at the location of R3; after receiving the ACK message, the base station sends the other physical frame group at the next downlink transport block. Data subpacket P,0. If the terminal does not correctly demodulate the first-level retransmission data sub-packet, the terminal sends a NACK message at the location of R3.
  • the base station After receiving the NACK message, the base station sends the second-level retransmission data sub-packet R2P0 on the corresponding channel resource of the first physical frame group position of the next downlink transport block.
  • the ACK message is sent at the corresponding uplink physical frame position, and the base station receives the ACK message, and sends other data sub-packets at the corresponding downlink physical frame group position; as long as the terminal does not have a correct solution
  • the downlink data sub-packet is transmitted, and the NACK message is sent on the corresponding uplink physical frame position, and the base station receives the NACK message, and needs to send the N-th retransmission data sub-packet on the corresponding channel resource of the corresponding downlink physical frame group position.
  • the retransmission threshold N may be set to 5 or other positive integers.
  • the HARQ retransmission processing method of the data sub-packet is the same as that of the data sub-packet P0, and is briefly described below.
  • the base station transmits at F2, referring again to Figure 2(a), if the terminal is correctly demodulated, Then, the R1 sends an ACK, and then the base station sends the data sub-packet P'1 on the F7 of the next downlink transport block; the HARQ retransmission processing method of the other data sub-packet P'1 is the same as the data sub-packet P1; otherwise, the reference map 2 (b), if the terminal is not correctly demodulated, the NACK is sent at the position of R1, after which the base station transmits the first-level retransmission data sub-packet R1P1 on F7 of the next downlink transport block. For P2, the base station transmits at F3 and/or F4.
  • the ACK is transmitted at the position of R2, and then the base station correspondingly transmits F8 and/or of the next downlink transmission block.
  • the data sub-packet P, 2 is sent on F9; the HARQ retransmission processing method of the other data sub-packets P, 2 is the same as that of the data sub-packet P2; otherwise, referring to FIG. 2(b), if the terminal is not correctly demodulated, it is at R2.
  • the location transmits a NACK, after which the base station transmits a first-level retransmission data sub-packet R1P2 on F8 and/or F9 of the next downlink transport block.
  • a downlink retransmission system based on a wireless communication TDD system is provided.
  • the foregoing wireless communication TDD system is configured to use a downlink transmission block including five consecutive downlink physical frames for downlink transmission.
  • the uplink transport block including three consecutive uplink physical frames is used for the TDD mode of uplink transmission (ie, TDD 5:3 mode).
  • the downlink retransmission system can include a base station and one or more terminals. For convenience of description, only one base station and one terminal are shown in FIG. As shown in FIG.
  • a base station in a downlink retransmission system according to an embodiment of the present invention, includes a downlink transmission unit 302, a response message demodulation unit 304, and a retransmission unit 306.
  • the terminal includes a demodulation unit 308 and an uplink transmission unit 310. The function of each module shown in FIG. 3 will be described below.
  • the downlink transmission unit 302 is configured to send one or more data sub-packets to one or more terminals by using a downlink physical frame group of the downlink transport block, where each downlink physical frame group includes one downlink physical frame or two neighbors.
  • the downlink physical frame is divided into three downlink physical frame groups; the response message demodulating unit 304 is configured to receive and demodulate the response message sent by the terminal, and determine whether the data sub-packet is demodulated successfully according to the response message;
  • the transmitting unit 306 is configured to send a retransmission data sub-packet of the demodulated data sub-packet in a corresponding downlink physical frame group in the next downlink transport block.
  • the demodulation unit 308 is connected to the downlink transmission unit 302 and the retransmission unit 306, and is configured to demodulate the data sub-packets of the downlink physical frame group received by the terminal; the uplink transmission unit 310 can be connected to the demodulation list.
  • the element 308 and the response message demodulating unit 304 are configured to send, to the base station, a response message indicating whether the data sub-packet is successfully demodulated, in the corresponding uplink physical frame in the uplink transport block.
  • the corresponding uplink physical frame is an uplink physical frame corresponding to a downlink physical frame group of the data sub-packet determined according to a preset mapping relationship, where the mapping relationship is: consecutive in the downlink transport block.
  • the five downlink physical frames are divided into three downlink physical frame groups according to the positional order.
  • One of the downlink physical frame groups includes one downlink physical frame, and the other two downlink physical frame groups respectively include two adjacent downlink physical frames.
  • the physical frame group and the consecutive 3 uplink physical frames in the uplink transport block are in position in the order-corresponding.
  • the downlink transport block may be grouped according to any one of the following manners: Mode 1: The first and second downlink physical frames form a downlink physical frame group, and the third and fourth downlink physical frames form a downlink physical frame.
  • the fifth downlink physical frame constitutes a downlink physical frame group; mode 2: the first downlink physical frame constitutes a downlink physical frame group, and the second and third downlink physical frames constitute a downlink physical frame group, and the fourth sum The fifth downlink physical frame constitutes a downlink physical frame group; mode 3: the first and second downlink physical frames form a downlink physical frame group, and the third downlink physical frame constitutes a downlink physical frame group, fourth and fifth The downlink physical frames form a downlink physical frame group.
  • the position of the corresponding downlink physical frame group in the next downlink transport block is consistent with the position of the downlink physical frame group of the data sub-packet that transmits the demodulation failure in the downlink transport block.
  • the technical details in the first embodiment of the system can be understood and implemented by referring to the technical solutions of the first embodiment of the method. For the same or similar content, the description is not repeated here. It can be seen from the above description that, by means of the technical solution provided by the first embodiment or the first embodiment, in the downlink data transmission in the TDD 5:3 mode, the terminal is on the uplink physical frame corresponding to the downlink physical frame group. Sending a response message, the base station can retransmit the downlink data, thereby ensuring the accuracy of downlink data transmission.
  • Method Embodiment 2 According to an embodiment of the present invention, an uplink retransmission party based on a wireless communication TDD system is provided.
  • FIG. 4 is a flowchart of an uplink retransmission method according to an embodiment of the present invention. As shown in FIG. 4, the following processing is included (step S402 to step S410). Step S402, the mapping relationship between the uplink physical frame and the downlink physical frame group is set in advance, so that each downlink physical frame has an uplink physical frame corresponding thereto, where each uplink physical frame corresponds to one downlink physical frame or two consecutive frames.
  • each uplink physical frame corresponds to a different downlink physical frame, where each downlink physical frame group includes one downlink physical frame or two adjacent downlink physical frames, and one downlink transmission block is divided into three.
  • a downlink physical frame group the one or more terminals send one or more data sub-packets to the base station by using the uplink physical frame of the uplink transport block;
  • Step S406 the base station demodulates the data sub-packets of the received uplink physical frame; S408.
  • the base station sends a response message indicating whether the data sub-packet is successfully demodulated based on the demodulation result and the mapping relationship, or the base station sends the response message only if the demodulation is successful.
  • the base station demodulates the data sub-packet successfully, the corresponding downlink physical frame of the downlink transport block of the base station after the uplink transport block Sending a response message indicating that the data sub-packet is successfully demodulated to the terminal; if the base station demodulates the data sub-packet fails, the base station sends a corresponding downlink physical frame group of the downlink transport block after the uplink transport block to the terminal for indicating demodulation The response message of the data sub-packet failure, or if the base station fails to demodulate the data sub-packet, the base station does not send any message to the terminal; Step S410, the terminal receives and demodulates the response message, and determines whether the data sub-package is based on the response message.
  • the terminal If the terminal does not receive any message, it indicates that the base station fails to demodulate the data sub-packet. For the uplink physical frame where the data sub-packet demodulation fails, the terminal fails to transmit the corresponding uplink physical frame in the next uplink transport block. The data sub-packet retransmits the data sub-package.
  • Step S402 The mapping relationship mentioned in the step is: the consecutive five downlink physical frames in the downlink transport block are divided into three downlink physical frame groups according to the positional order, and one of the downlink physical frame groups includes one The downlink physical frame, the other two downlink physical frame groups respectively include two adjacent downlink physical frames, and each of the downlink physical frame groups and the consecutive three uplink physical frames in the uplink transport block are in a sequential order-corresponding manner. That is, the first downlink physical frame group in the downlink transport block corresponds to the first uplink physical frame in the uplink transport block, and the second downlink physical frame group corresponds to the second uplink physical frame in the uplink transport block, The three downlink physical frame groups correspond to the third uplink physical frame in the uplink transport block.
  • the downlink transport block may be grouped according to any one of the following manners: Mode 1: The first and second downlink physical frames form a downlink physical frame group, and the third and fourth downlink physical frames form a downlink physical frame.
  • the fifth downlink physical frame constitutes a downlink physical frame group; mode 2: the first downlink physical frame constitutes a downlink physical frame group, and the second and third downlink physical frames constitute a downlink physical frame group, and the fourth sum The fifth downlink physical frame constitutes a downlink physical frame group; mode 3: the first and second downlink physical frames form a downlink physical frame group, and the third downlink physical frame constitutes a downlink physical frame group, fourth and fifth The downlink physical frames form a downlink physical frame group.
  • each uplink physical frame corresponds to one or two downlink physical frames in a downlink physical frame group corresponding to the existing relationship.
  • the third uplink physical frame in the uplink transport block may correspond to the fourth downlink physical frame in the third downlink physical frame group
  • the third uplink physical frame may also correspond to the third downlink physical frame group.
  • the 5th downlink physical frame may also correspond to the 4th and 5th downlink physical frames.
  • Step S404 For example, in a superframe transmission unit, the downlink transmission blocks composed of 5 consecutive downlink physical frames are divided into three groups according to the foregoing grouping manner, that is, in the five downlink physical frames, for convenience of explanation
  • the positions of the three physical frame groups are respectively defined as L0, L1, and L2, and the data sub-packets that are sent by the terminal through three consecutive uplink physical frame positions are defined as P0, Pl, and P2, respectively.
  • the data sub-packets of the three different locations may be sent by one terminal to the base station, or may be sent by different terminals to the base station.
  • the starting position of the transmit data sub-packet may be on the first uplink transport block of the superframe or on the second uplink transport block of the superframe.
  • the data sub-packets are first transmitted from the first uplink transport block of the superframe, and it is assumed that data sub-packets are transmitted in all three locations, and three data sub-packets are transmitted by the same terminal. To the base station.
  • Step S406 and step S408 After demodulating the three data sub-packets, the base station sends an ACK or a NACK to the corresponding downlink physical frame group position on the downlink transport block composed of the next five consecutive downlink physical frames. Message. ACK indicates that the base station successfully demodulates data, and NACK indicates that the base station has not successfully demodulated data. According to the mapping relationship set in step S402, the ACK/NACK messages of the three different locations respectively correspond to three different data sub-packets P0, P1, and P2.
  • Step S410 In this step, the operation of the terminal transmitting the retransmission data sub-packet in the corresponding uplink physical frame in the next uplink transport block is specifically: the terminal determines the uplink physical frame corresponding to the response message (ACK/NACK) according to the mapping relationship. The location determines, according to the determined location, the terminal determines a corresponding uplink physical frame in the next uplink transport block, where the position of the corresponding uplink physical frame in the next uplink transmission is consistent with the determined location; after that, the terminal is in the corresponding uplink. The physical frame sends a retransmission packet.
  • ACK/NACK response message
  • the terminal first demodulates the ACK/NACK messages of the three different locations, and if it is a NACK message, indicating that the base station does not successfully demodulate the data, the terminal is in the uplink transport block composed of the next three consecutive uplink physical frames (ie, And transmitting, by the next uplink transport block, the first-level retransmission data sub-packet on the corresponding channel resource of the corresponding uplink physical frame position.
  • the retransmission data sub-packets may be the same as or different from the data sub-packets originally transmitted.
  • step S410 For the uplink physical frame in which the data sub-packet is successfully demodulated, the terminal transmits another data sub-packet in the corresponding uplink physical frame in the next uplink transport block. That is, if it is an ACK message, indicating that the base station successfully demodulates the data, the terminal transmits other data sub-packets corresponding to the physical frame position on the uplink transport block composed of the next three consecutive uplink physical frames (the HARQ weight of other data sub-packets) The transfer processing method is the same as the data sub-package).
  • the retransmission threshold is set in advance, and in the case that the number of retransmissions of the demodulated data sub-packets reaches the retransmission threshold, retransmission is not performed.
  • the base station After the base station correctly demodulates the first-level retransmission data sub-packet, the base station sends an ACK message to the corresponding downlink physical frame group position on the downlink transport block composed of the next five consecutive downlink physical frames. If the base station does not correctly demodulate the first-level retransmission data sub-packet, the base station sends a NACK message to the corresponding downlink physical frame group position on the downlink transport block composed of the next five consecutive downlink physical frames. After that, the terminal separately demodulates the ACK/NACK messages of the three different locations. If the ACK message indicates that the base station successfully demodulates the data, the terminal uplinks on the uplink transport block composed of the next three consecutive uplink physical frames.
  • the physical frame position sends other data sub-packets; if it is a NACK message, indicating that the base station still does not successfully demodulate the data, the terminal is in the corresponding uplink physical frame position on the uplink transport block composed of the next three consecutive uplink physical frames.
  • the second level retransmission data sub-packet is sent on the corresponding channel resource.
  • the ACK message is sent at the corresponding downlink physical frame group position, and the terminal receives the ACK message, and sends other data sub-packets at the corresponding uplink physical frame position;
  • the base station does not correctly demodulate the uplink data sub-packet, and sends a NACK message on the corresponding downlink physical frame group position.
  • the terminal After receiving the NACK message, the terminal sends the Nth-level retransmission data on the corresponding channel resource of the corresponding uplink physical frame position.
  • the retransmission threshold N may be set to 5 or other positive integers.
  • Example 2 In a superframe transmission unit, the terminal sends uplink data to the base station through an uplink transmission block composed of three consecutive uplink physical frames, and the data sub-packets transmitted for the three uplink physical frame positions are respectively defined as P0, Pl, and P2, that is, the data sub-packet sent in the first physical frame of the uplink transport block is defined as P0, the data sub-packet sent in the second physical frame is defined as P1, and the data sub-packet sent in the third physical frame is defined as P2.
  • the uplink transport block that is initially transmitted by the data sub-packet is not limited in the position of the superframe, and may be the first uplink transport block or the second uplink transport block.
  • the boundary of the Superframe has no limitation on the HARQ retransmission processing of the data sub-packets.
  • P0 is transmitted on the uplink first physical frame R0 shown in FIG. 5(a).
  • the ACK message is sent at the location of the first physical frame group of the next downlink transport block, that is, the ACK message can be sent on the physical frame F5 or F6, where F5 is the downlink physical frame.
  • the first downlink physical frame of the group, and F6 is the second of the downlink physical frame group.
  • the downlink physical frame that is, the base station sends a response message in the first or second downlink physical frame in the downlink physical frame group.
  • the terminal after receiving the ACK message, the terminal sends other data sub-packets P, 0 in the first physical frame of the next uplink transport block, that is, the location of R3; other data sub-packets P
  • the HARQ retransmission processing method of 0 is the same as the data sub-packet P0. If the base station does not correctly demodulate P0, a NACK message is transmitted at the location of the first physical frame group of the next downlink transport block, that is, the NACK message can be transmitted on the physical frame F5 or F6. As shown in FIG.
  • the terminal after receiving the NACK message, the terminal sends the first-level retransmission data sub-packet R1P0 on the first physical frame of the next uplink transport block, that is, the corresponding channel resource at the R3 position. If the base station correctly demodulates the first-level retransmission data sub-packet, the ACK message is sent in the first physical frame group position of the next downlink transport block; after receiving the ACK message, the terminal is in the next uplink transport block. The location of the first physical frame sends the other data subpacket P,0.
  • the NACK message is sent in the first physical frame group position of the next downlink transport block; after receiving the NACK message, the terminal is in the next uplink transport block.
  • the second level retransmission data sub-packet R2P0 is transmitted on the corresponding channel resource of the first physical frame position.
  • the ACK message is sent at the corresponding downlink physical frame group position, and the terminal receives the ACK message, and transmits other data sub-packets at the corresponding uplink physical frame position; If the downlink data sub-packet is not correctly demodulated, the NACK message is sent on the corresponding downlink physical frame group position, and the terminal receives the NACK message, and needs to send the N-th retransmission data on the corresponding channel resource of the corresponding uplink physical frame position.
  • the sub-packet, where the retransmission threshold N can be set to 5 or other positive integers.
  • the HARQ retransmission processing method for the P1 and P2 data sub-packets is the same as that of the data sub-packet P0, and is briefly described below.
  • the terminal transmits at R1, referring again to FIG. 5(a), if the base station correctly demodulates, the ACK is sent on F7, and then the terminal transmits the data sub-packet P, l at the position of R4 of the next uplink transport block;
  • the HARQ retransmission processing method of the other data sub-packets P, l is the same as the data sub-packet PI; otherwise, referring to FIG.
  • the NACK is sent on F7, and then the terminal is in the next downlink.
  • the position of R4 of the transport block transmits the first level retransmission data sub-packet R1P1.
  • the terminal transmits at R2, referring again to Figure 5(a), if the base station demodulates correctly, Then, the ACK is sent on F8 and/or F9, and then the terminal sends the data sub-packet P, 2 correspondingly at the position of R5 of the next downlink transport block; the HARQ retransmission processing method and the data sub-package of the other data sub-packets P, 2 P2 is the same; otherwise, referring to FIG.
  • an uplink retransmission system based on a wireless communication TDD system is provided, wherein the wireless communication TDD system is based on downlink transmission blocks including five consecutive downlink physical frames for downlink transmission
  • the uplink transmission block including three consecutive uplink physical frames is used for the TDD mode of uplink transmission (ie, TDD 5:3 mode).
  • the uplink retransmission system may include a base station and one or more terminals.
  • the terminal includes: an uplink transmission unit 602, a response message demodulation unit 604, and a retransmission unit 606.
  • the base station includes: a demodulation unit 608, and a downlink transmission unit. 610.
  • the function of each module shown in Fig. 6 will be described below.
  • the uplink transmission unit 602 is configured to send one or more data sub-packets to the base station by using the uplink physical frame of the uplink transport block.
  • the response message demodulation unit 604 is configured to receive and demodulate the response message sent by the base station, and then respond to the response.
  • the message determines whether the data sub-packet is successfully demodulated; the retransmission unit 606 is configured to send a retransmission data sub-packet of the demodulated data sub-packet in the corresponding uplink physical frame in the next uplink transport block.
  • the demodulation unit 608 is connected to the uplink transmission unit 602 and the retransmission unit 606, and is configured to demodulate the data sub-packets of the uplink physical frame received by the base station; the downlink transmission unit 610 can be connected to the demodulation unit 608 and the response message demodulation unit. 604.
  • the corresponding downlink physical frame group used in the downlink transport block sends a response message indicating whether the data sub-packet is successfully demodulated to the terminal, where each downlink physical frame group includes one downlink physical frame or two.
  • One adjacent downlink physical frame, and one downlink transmission block is divided into three downlink physical frame groups.
  • the corresponding downlink physical frame group is a downlink physical frame corresponding to an uplink physical frame of the data packet to be transmitted according to a preset mapping relationship, where the mapping relationship is:
  • the consecutive five downlink physical frames in the input block are divided into three downlink physical frame groups according to the positional order, one of the downlink physical frame groups includes one downlink physical frame, and the other two downlink physical frame groups respectively include two adjacent ones.
  • each of the downlink physical frame groups and the consecutive three uplink physical frames in the uplink transport block are in a sequential order-corresponding.
  • the downlink transport block may be grouped according to any one of the following manners: Mode 1: The first and second downlink physical frames form a downlink physical frame group, and the third and fourth downlink physical frames form a downlink physical frame.
  • the fifth downlink physical frame constitutes a downlink physical frame group; mode 2: the first downlink physical frame constitutes a downlink physical frame group, and the second and third downlink physical frames constitute a downlink physical frame group, and the fourth sum The fifth downlink physical frame constitutes a downlink physical frame group; mode 3: the first and second downlink physical frames form a downlink physical frame group, and the third downlink physical frame constitutes a downlink physical frame group, fourth and fifth The downlink physical frames form a downlink physical frame group.
  • the position of the corresponding uplink physical frame in the next uplink transport block is consistent with the position of the uplink physical frame of the data sub-packet that fails to be demodulated in the uplink transport block.
  • the base station in the uplink data transmission in the TDD 5:3 mode, is in the downlink physical frame corresponding to the uplink physical frame.
  • the group sends a response message, and the terminal can retransmit the uplink data, thereby ensuring the accuracy of the uplink data transmission.
  • the response symbol is transmitted by the uplink physical frame corresponding to the downlink physical frame group in the uplink transport block, or in the uplink transmission, by corresponding to the uplink physical frame.
  • the corresponding downlink physical frame group in the downlink transport block transmits the response symbol, realizing the retransmission of the data, thereby making up for the defect that the related art lacks a retransmission mechanism.
  • the embodiment of the present invention provides a downlink retransmission method based on the TDD system of the wireless communication, and the foregoing wireless communication TDD system is based on The downlink transport blocks of the three consecutive downlink physical frames are used for downlink transmission, and the uplink transport blocks including five consecutive uplink physical frames are used for the TDD mode of uplink transmission (ie, TDD 3:5 mode).
  • FIG. 7 is a flowchart of a downlink retransmission method based on a wireless communication TDD system according to an embodiment of the present invention. As shown in FIG.
  • the method includes the following processing (step S702 to step S710).
  • Step S702 the mapping relationship between the uplink physical frame and the downlink physical frame is set in advance, so that the three downlink physical frames in the downlink transport block and the three physical frames in the uplink transport block are in the order of position-corresponding;
  • step S704 the base station uses The downlink physical frame of the downlink transport block sends one or more data sub-packets to one or more terminals;
  • Step S706 the terminal demodulates the received data sub-packets;
  • the response message of the data sub-packet is demodulated, or the terminal transmits the response message only if the demodulation is successful; specifically, if the terminal demodulates the data sub-packet successfully, the terminal transmits the uplink transmission block after the downlink transmission block.
  • the corresponding uplink physical frame of the three uplink physical frames sends a response message for indicating the successful demodulation of the data sub-packet to the base station; if the terminal demodulates the data sub-packet fails, the terminal transmits the uplink transmission block after the downlink transport block
  • the corresponding uplink physical frame of the three uplink physical frames sends a response cancellation indicating that the demodulated data sub-packet fails to the base station.
  • Step S710 the base station demodulates the response message, and determines whether the data sub-packet is demodulated successfully according to the response message, if the base station does not receive the message Any message indicates that the terminal demodulates the data sub-packet.
  • the base station transmits the retransmitted data sub-packet in the corresponding downlink physical frame in the next downlink transport block.
  • the three uplink physical frames are the middle three uplink physical frames of the uplink transport block; and the middle three physical frames are selected to send the response message because, compared to the first one in the uplink transport block
  • the uplink physical frame and the last uplink physical frame the intermediate physical frame can be selected to protect
  • the terminal and the base station have relatively more processing time. For example, if the first physical frame is sent to send a response message, the terminal does not have enough time to perform the response processing because the downlink physical frame of the downlink data sub-packet is sent too close to the base station. If the last physical frame is selected, the response message is sent.
  • the base station does not have enough time to perform a transmission or retransmission operation according to the response message of the terminal.
  • the above problem can be avoided by selecting the middle 3 downlink physical frames to send a response message.
  • other uplink physical frames may also be selected, which are all within the protection scope of the present invention.
  • the middle three physical frames will be described below as an example.
  • the starting position of the data sub-packet transmission may be the first downlink transport block of the superframe, or the second downlink transport block of the superframe, and the boundary of the superframe has no limitation on the HARQ retransmission processing of the data sub-packet. .
  • the terminal may select any physical frame of the three intermediate physical frames in the middle according to the predetermined corresponding rule to send a response message, and according to implementation requirements, different corresponding rules may be set, as long as the three uplink physical frames are in the middle. Any physical frame may be used, and the present invention is not limited thereto, and is within the protection scope of the present invention.
  • step S710 for the data sub-packet of demodulation success (ACK), the base station sends other data sub-packets in the corresponding downlink physical frame in the next downlink transport block (the HARQ retransmission processing method of other data sub-packets and the data described above) Sub-packets are handled the same way).
  • the retransmission threshold ( ⁇ ) may be set in advance, and in the case where the number of transmissions of the uplink extended data sub-packets failed to be demodulated reaches the retransmission threshold, retransmission is not performed. For example, you can set ⁇ to 5.
  • Example 3 In a superframe transmission unit, a base station transmits downlink data to a terminal through a downlink transmission block composed of three consecutive downlink physical frames.
  • the positions of the three physical frames are respectively defined as L0, L1, L2, and the data sub-packets sent from these three positions are respectively defined as P0, Pl, P2, and the data sub-packets of the three different positions may be Send it to a terminal, or send it to a different terminal.
  • F0 corresponds to R1
  • F1 corresponds to R2
  • F2 corresponds to R3.
  • the starting position of the data sub-packet transmission may be in the first downlink transmission block of the superframe, or in the second or third downlink transmission block of the superframe.
  • the data sub-package first comes from the first one of the superframe.
  • the transmission starts on the downstream transport block.
  • P0 is transmitted at the L0 position in FIG. 8, that is, P0 is transmitted on the physical frame F0. If the terminal correctly demodulates P0, it sends an ACK message at the location of R1. As shown in FIG.
  • the base station after receiving the ACK message, the base station sends other data sub-packets at the position of the first physical frame of the next downlink transport block. P, 0.
  • the HARQ retransmission processing method of the other data sub-packets P, 0 is the same as that of the data sub-packet P0.
  • the terminal if it does not correctly demodulate P0, it sends a NACK message at the location of R1. As shown in FIG. 3, after receiving the NACK message, the base station is in the first physical frame position of the next downlink transport block.
  • the first level retransmission data sub-packet R1P0 is sent on the corresponding channel resource.
  • the terminal If the terminal correctly demodulates the first-level retransmitted data sub-packet, it sends an ACK message at the location of R6; after receiving the ACK message, the base station sends the other physical frame at the position of the next downlink transport block. Data subpacket P'0. On the other hand, if the terminal does not correctly demodulate the first-level retransmission data sub-packet, the terminal sends a NACK message at the location of R6. After receiving the NACK message, the base station sends the second-level retransmission data sub-packet R2P0 on the corresponding channel resource of the first physical frame position of the next downlink transport block.
  • the ACK message is sent at the corresponding physical frame position, and the base station receives the ACK message, and transmits other data sub-packets at the corresponding physical frame position; as long as the terminal does not correctly demodulate the downlink
  • the data sub-packet sends a NACK message at the corresponding physical frame position, and the base station receives the NACK message, and needs to send the N-th retransmission data sub-packet on the corresponding channel resource of the corresponding physical frame position.
  • the N value is It can be 5 or other positive integers.
  • the HARQ retransmission processing method of the data sub-packets P1 and P2 is the same as that of the data sub-packet P0, except that the downlink transport blocks respectively correspond to the second to third physical frame positions, and the uplink transport blocks respectively correspond to the third to The fourth physical frame position only, that is, P1 corresponds to the second physical frame position of the downlink transport block, corresponding to the third physical frame position of the uplink transport block; P1 corresponds to the third physical frame position of the downlink transport block, corresponding to the uplink The fourth physical frame position of the transport block.
  • the downlink transport block that is initially transmitted by the data sub-packet is not limited in the position of the superframe, and may be the first downlink transport block or the second downlink transport block.
  • the boundary of the Superframe has no limitation on the HARQ retransmission processing of the data sub-packets.
  • System Embodiment 3 According to an embodiment of the present invention, a downlink retransmission system based on a wireless communication time division duplex system is provided.
  • the wireless communication time division duplex system includes a base station and one or more terminals, and is based on including three consecutive
  • the downlink transport block of the downlink physical frame is used for downlink transmission
  • the uplink transport block including the consecutive 5 uplink physical frames is used for the time division duplex mode of uplink transmission (ie, TDD 3:5 mode).
  • the downlink retransmission system can include a base station and one or more terminals. For convenience of description, only one base station and one terminal are shown in FIG.
  • the base station includes a downlink transmission unit 902, a response message demodulation unit 904, and a retransmission unit 906.
  • the terminal includes a demodulation unit. 908 and an uplink transmission unit 910.
  • the function of each module shown in Fig. 9 will be described below.
  • the downlink transmission unit 902 is configured to send one or more data sub-packets to one or more terminals by using the downlink physical frame of the downlink transport block
  • the response message demodulation unit 904 is configured to receive and demodulate the response message sent by the terminal, and Determining whether the data sub-packet is successfully demodulated according to the response message
  • the retransmission unit 906 is configured to send, by using a corresponding downlink physical frame in the next downlink transport block, a retransmission data sub-packet of the demodulated data sub-packet.
  • the demodulation unit 908 is configured to demodulate the data sub-packets received by the terminal, and the uplink transmission unit 910 is configured to send, in the three uplink physical frames of the uplink transport block, a corresponding uplink physical frame to the base station, to indicate whether the solution is successful.
  • the response message of the data sub-packet is adjusted, wherein the corresponding uplink physical frame is an uplink physical frame determined according to a predetermined mapping relationship, and the predetermined mapping relationship is: three uplink physical frames of the uplink transport block and three downlink blocks of the downlink transport block Physical frames are ordered in order - corresponding.
  • the three uplink physical frames are the middle three physical frames with fast uplink transmission.
  • the base station may further include: a retransmission threshold setting unit, configured to set a retransmission threshold, and in the case that the number of transmissions of the demodulated data sub-packets reaches a retransmission threshold, no retransmission is performed.
  • the location of the corresponding downlink physical frame used by the retransmission unit in the next downlink transport block is consistent with the location of the downlink physical frame used by the downlink transmission unit in the downlink transport block.
  • the foregoing wireless communication TDD system is configured to use a downlink transmission block including three consecutive downlink physical frames for downlink transmission, and The uplink transmission block including five consecutive uplink physical frames is used for the TDD mode of uplink transmission (TDD 3:5 mode).
  • the uplink retransmission method according to the embodiment of the present invention includes the following processing: Step S1002: Pre-setting a mapping relationship between an uplink physical frame and a downlink physical frame, where each uplink physical frame has a downlink physical medium corresponding thereto a frame, where each downlink physical frame corresponds to one uplink physical frame or two consecutive uplink physical frames, and each downlink physical frame corresponds to a different uplink physical frame.
  • each uplink physical frame group includes one uplink physical frame or two adjacent frames.
  • An uplink physical frame, an uplink transport block may be divided into three uplink physical frame groups; in step S1004, one or more terminals use the uplink physical frame (group) of the uplink transport block to send one or more data sub-packets to the base station; S1006: The base station demodulates the received data sub-packets of the uplink physical frame group.
  • Step S1008 based on the demodulation result and the mapping
  • the base station sends a response message indicating whether the data sub-packet is successfully demodulated, or the base station performs the transmission of the response message only if the demodulation is successful; specifically, if the base station demodulates If the data sub-packet is successful, the terminal sends a response message indicating that the data sub-packet is successfully demodulated; if the base station fails to demodulate the data sub-packet, the base station is downlinked after the uplink transport block.
  • Step S1010 The terminal receives and demodulates the response message, and determines whether the data sub-packet is successfully demodulated according to the response message. If the terminal does not receive any message, it indicates that the base station demodulates the data sub-packet failed; for the demodulated data sub-packet, the terminal is under A corresponding uplink physical frame group in an uplink transport block transmits a retransmission data sub-packet of the demodulated data sub-packet.
  • Step S1002 The mapping relationship mentioned in the step is: the five consecutive uplink physical frames in the uplink transport block are divided into three uplink physical frame groups according to the positional order, and one of the uplink physical frame groups includes one uplink physical group.
  • the other two uplink physical frame groups respectively include two adjacent uplink physical frames
  • each of the uplink physical frame groups and the consecutive three downlink physical frames in the uplink transport block are in a sequential order corresponding to each other, that is,
  • the first uplink physical frame group in the uplink transport block corresponds to the first downlink physical frame in the downlink transport block
  • the second uplink physical frame group corresponds to the second downlink physical frame in the downlink transport block
  • the third The uplink physical frame group corresponds to the third downlink physical frame in the downlink transport block.
  • other correspondences may also be set, and the present invention is not limited thereto.
  • the downlink transport block may be grouped according to any one of the following manners: Mode 1: The first and second uplink physical frames form an uplink physical frame group, and the third and fourth uplink physical frames form an uplink physical frame. Group, the fifth uplink physical frame constitutes an uplink physical frame group; mode 2: the first uplink physical frame constitutes an uplink physical frame group, and the second and third uplink physical frames constitute an uplink physical frame group, and the fourth sum The fifth uplink physical frame constitutes an uplink physical frame group; mode 3: the first and second uplink physical frames form an uplink physical frame group, and the third uplink physical frame constitutes an uplink physical frame group, fourth and fifth The uplink physical frames form an uplink physical frame group.
  • each downlink physical frame corresponds to one or two uplink physical frames in the uplink physical frame group corresponding to the existing relationship.
  • the third downlink physical frame in the downlink transport block may correspond to the fourth uplink physical frame in the third uplink physical frame group
  • the third uplink physical frame may also correspond to the third uplink physical frame.
  • the fifth uplink physical frame in the group may also correspond to the 4th and 5th uplink physical frames.
  • Step S1004 For example, in a superframe transmission unit, the uplink transmission blocks composed of 5 consecutive uplink physical frames are divided into three groups according to the foregoing grouping manner, that is, in the five uplink physical frames, for convenience of explanation
  • the positions of the three physical frame groups are respectively defined as L0, L1, and L2, and the data sub-packets that are sent by the terminal through the three uplink physical frame group positions are defined as P0, Pl, and P2, respectively.
  • the data sub-packets of the three different locations may be sent by one terminal to the base station, or may be sent by different terminals to the base station.
  • the starting position of the transmit data sub-packet may be on the first uplink transport block of the superframe or on the second uplink transport block of the superframe.
  • the data sub-packets are first transmitted from the first uplink transport block of the superframe, and it is assumed that data sub-packets are transmitted in all three locations, and three data sub-packets are transmitted by the same terminal. To the base station.
  • Step S1006 and step S1008 After demodulating the three data sub-packets, the base station respectively sends an ACK or NACK message to the corresponding downlink physical frame position on the downlink transport block composed of the next three consecutive downlink physical frames. . ACK indicates that the base station successfully demodulates data, and NACK indicates that the base station has not successfully demodulated data. According to the mapping relationship set in step S1002, the ACK/NACK messages of the three different locations respectively correspond to three different data sub-packets P0, P1, and P2.
  • Step S1010 In this step, the operation of the terminal transmitting the retransmission data sub-packet in the corresponding uplink physical frame group in the next uplink transport block is specifically: the terminal determines the uplink physics corresponding to the response message (ACK/NACK) according to the mapping relationship. a location of the frame group; the terminal determines, according to the determined location, a corresponding uplink physical frame group in the next uplink transport block, where the position of the corresponding uplink physical frame group in the next uplink transmission is consistent with the determined location; thereafter, the terminal The retransmission data packet is sent in the corresponding uplink physical frame group.
  • ACK/NACK response message
  • the terminal first demodulates the ACK/NACK messages of the three different locations, and if it is a NACK message, indicating that the base station does not successfully demodulate the data, the terminal is on the next uplink transport block (ie, the next uplink transport block).
  • the first level retransmission data sub-packet is sent on the corresponding channel resource of the corresponding uplink physical frame group location. It should be noted that the retransmission data sub-packets may be the same as or different from the data sub-packets originally transmitted.
  • step S1010 For the data sub-packets that are successfully demodulated, the terminal transmits other data sub-packets in the corresponding uplink physical frame group in the next uplink transport block.
  • the terminal transmits other data sub-packets at the corresponding physical frame group position on the next uplink transport block (the HARQ retransmission processing method and the data sub-packets of other data sub-packets) The same package).
  • the following processing is further included: setting a retransmission threshold in advance, and If the number of retransmissions of the demodulated data sub-packets reaches the retransmission threshold, no retransmission is performed.
  • the eNB After the base station correctly demodulates the first-level retransmission data sub-packet, the eNB sends an ACK message to the corresponding downlink physical frame position on the downlink transport block composed of the next three consecutive downlink physical frames.
  • the base station If the base station does not correctly demodulate the first-level retransmission data sub-packet, the base station sends a NACK message to the corresponding downlink physical frame position on the downlink transport block composed of the next three consecutive downlink physical frames. After that, the terminal separately demodulates the ACK/NACK messages of the three different locations. If the ACK message indicates that the base station successfully demodulates the data, the terminal sends other data sub-locations in the corresponding uplink physical frame group position on the next uplink transport block.
  • the terminal sends the second-level retransmission data sub-packet on the corresponding channel resource of the corresponding uplink physical frame group position on the next uplink transport block.
  • the ACK message is sent at the corresponding downlink physical frame position, and the terminal receives the ACK message, and sends other data sub-packets at the corresponding uplink physical frame group position; If the base station does not correctly demodulate the uplink data sub-packet, the NACK message is sent at the corresponding downlink physical frame position, and the terminal receives the NACK message, and sends the Nth-level retransmission data on the corresponding channel resource of the corresponding uplink physical frame group position.
  • the retransmission threshold N may be set to 5 or other positive integers.
  • Example 4 In a superframe transmission unit, according to the above division manner, an uplink transmission block composed of five consecutive uplink physical frames is divided into three uplink physical frame groups, that is, the first and second uplink physical frames are The first uplink physical frame group, the third uplink physical frame is the second uplink physical frame group, and the fourth and fifth uplink physical frames are the third uplink physical frame group, and the terminal uses the three physical frame groups.
  • the uplink data is sent to the base station, and the data sub-packets sent by the three uplink physical frame group positions L0, L1, and L2 are respectively defined as P0, P1, and P2, that is, data sent in the first physical frame group of the uplink transport block.
  • the sub-packet is defined as P0
  • the data sub-packet sent by the second physical frame group is defined as P1
  • the data sub-packet sent by the third physical frame group is defined as P2.
  • the uplink transport block that is initially transmitted by the data sub-packet is not limited in the position of the superframe, and may be the first uplink transport block or the second uplink transport block.
  • the boundary of the Superframe has no limitation on the HARQ retransmission processing of the data sub-packets. Taking the transmission data sub-packet P0 as an example, P0 is transmitted on the uplink first physical frame group position shown in FIG. 11 (a), that is, R0 or R1, or simultaneously transmitted through R0 and R1.
  • the ACK message is transmitted at the position of the first physical frame F3 of the next downlink transport block.
  • the terminal after receiving the ACK message, the terminal sends other data sub-packets P, 0 on the corresponding channel resources of the first physical frame group position (R5/R6) of the next uplink transport block.
  • the HARQ retransmission processing method of the other data sub-packets P, 0 is the same as the data sub-packet P0.
  • the base station does not correctly demodulate P0, the base station transmits a NACK message at the location of the first physical frame of the next downlink transport block. As shown in FIG.
  • the terminal after receiving the NACK message, the terminal sends the first-level retransmission data on the corresponding channel resource of the first physical frame group position (R5/R6) of the next uplink transport block.
  • Package R1P0 If the base station correctly demodulates the first-level retransmission data sub-packet, the ACK message is sent at the first physical frame position of the next downlink transport block; after the terminal receives the ACK message, it is in the next uplink transport block. The location of the first physical frame group sends other data subpackets P, 0.
  • the NACK message is sent in the first physical frame position of the next downlink transport block; after receiving the NACK message, the terminal in the next uplink transport block
  • the second level retransmission data sub-packet R2P0 is transmitted on the corresponding channel resource of the first physical frame group location.
  • the ACK message is sent at the corresponding downlink physical frame position, and the terminal receives the ACK message, and transmits other data sub-packets at the corresponding uplink physical frame group position; If the downlink data sub-packet is not correctly demodulated, the NACK message is sent on the corresponding downlink physical frame position, and the terminal receives the NACK message, and needs to send the N-th retransmission data on the corresponding channel resource of the corresponding uplink physical frame group position.
  • the sub-packet, where the retransmission threshold N can be set to 5 or other positive integers.
  • the HARQ retransmission processing method of the P2 data sub-packet is the same as that of the data sub-packet P0, and is briefly described below.
  • the terminal transmits at R2, referring again to FIG. 11(a), if the base station correctly demodulates, the ACK is sent on F4, and then the terminal transmits the data sub-packet P, l at the position of R7 of the next uplink transport block;
  • the HARQ retransmission processing method of the other data sub-packets P, l is the same as the data sub-packet PI; otherwise, referring to FIG. 11 (b), if the base station does not correctly demodulate, the NACK is sent on F4.
  • the terminal transmits the first-level retransmission data sub-packet R1P1 at the position of R7 of the next downlink transport block.
  • the terminal transmits at R3, R4, or across R3 and R4, referring again to Figure 11.
  • an uplink retransmission system based on a wireless communication TDD system is provided, wherein the wireless communication TDD system is based on downlink transmission blocks including three consecutive downlink physical frames for downlink transmission
  • the uplink transmission block including the consecutive 5 uplink physical frames is used for the TDD mode of the uplink transmission (ie, the TDD 3:5 mode).
  • the uplink retransmission system may include one base station and one or more terminals.
  • the terminal includes: an uplink transmission unit 1202, a response message demodulation unit 1204, and a retransmission unit 1206.
  • the base station includes: a demodulation unit 1208, and a downlink transmission unit. 1210. The function of each module shown in Fig. 12 will be described below.
  • the uplink transmission unit 1202 is configured to send one or more data sub-packets to the base station by using an uplink physical frame group of the uplink transport block, where each uplink physical frame group includes one uplink physical frame or two adjacent uplink physical groups.
  • an uplink transmission block is divided into three uplink physical frame groups;
  • a response message demodulating unit 1204 is configured to receive and demodulate a response message sent by the base station, and determine, according to the response message, whether the data sub-packet is demodulated successfully; 1206.
  • the retransmitted data sub-packet for transmitting a demodulated data sub-packet is sent in a corresponding uplink physical frame group in the next uplink transport block.
  • the demodulation unit 1208 is connected to the uplink transmission unit 1202 and the retransmission unit 1206, and is configured to demodulate the data sub-packets of the uplink physical frame group received by the base station; the downlink transmission unit 1210 can be connected to the demodulation unit 1208 and the response message demodulation.
  • the unit 1204 is configured to send, to the terminal, a response message indicating whether the data sub-packet is successfully demodulated, in a corresponding downlink physical frame in the downlink transport block.
  • the corresponding downlink physical frame is a downlink physical frame corresponding to an uplink physical frame group of the transmitted data sub-packet determined according to a preset mapping relationship, where the mapping relationship is: consecutive five in the uplink transport block
  • the uplink physical frame is divided into three uplink physical frame groups according to the positional order.
  • One of the uplink physical frame groups includes one uplink physical frame, and the other two uplink physical frame groups respectively include two adjacent uplink physical frames, and each uplink physical frame.
  • the consecutive 3 downlink physical frames in the group and the downlink transport block are in the order of position-corresponding.
  • the uplink transport block may be grouped according to any one of the following manners: Mode 1: The first and second uplink physical frames form an uplink physical frame group, and the third and fourth uplink physical frames form an uplink physical frame. Group, the fifth uplink physical frame constitutes an uplink physical frame group; mode 2: the first uplink physical frame constitutes an uplink physical frame group, and the second and third uplink physical frames constitute an uplink physical frame group, and the fourth sum The fifth uplink physical frame constitutes an uplink physical frame group; mode 3: the first and second uplink physical frames form an uplink physical frame group, and the third uplink physical frame constitutes an uplink physical frame group, fourth and fifth The uplink physical frames form an uplink physical frame group.
  • the position of the corresponding uplink physical frame group in the next uplink transport block is consistent with the position of the uplink physical frame group of the data sub-packet that transmits the demodulation failure in the uplink transport block.
  • the technical details in the fourth embodiment of the system can be understood and implemented by referring to the technical solutions of the foregoing method embodiment 4. For the same or similar content, the description is not repeated here. It can be seen from the above description that, by means of the technical solution provided by the method embodiment 4 or the system embodiment 4, in the uplink data transmission in the TDD 3:5 mode, the base station is in the downlink physical medium corresponding to the uplink physical frame group.
  • the frame sends a response message, and the terminal can retransmit the uplink data, thereby ensuring the accuracy of the uplink data transmission.
  • the base station and the terminal in the downlink transmission, by transmitting the response symbol (response message) in the intermediate uplink physical frame, the base station and the terminal can have relatively sufficient time to parse the data or message from the other party. And performing subsequent processing to implement data retransmission.
  • the data is retransmitted by transmitting the response symbol in the downlink physical frame corresponding to the uplink physical frame group, thereby compensating for a lack of related technology. The defect of the retransmission mechanism.
  • m:n takes a value of 6:2.
  • FIG. 13 is a flowchart of a downlink retransmission method based on a wireless communication TDD system according to an embodiment of the present invention. As shown in FIG. 13, the method includes the following processing (step S1302 to step S1310).
  • Step S1302 Pre-set the mapping relationship between the uplink physical frame and the downlink physical frame, so that the first three downlink physical frames in the downlink transport block correspond to the first physical frame in the uplink transport block, and the last three downlinks in the downlink transport block.
  • the physical frame corresponds to the second physical frame in the uplink transport block;
  • Step S1304 the base station sends one or more data sub-packets to the one or more terminals by using the downlink physical frame of the downlink transport block;
  • Step S1306, the terminal demodulates and receives a data sub-packet;
  • the base station If the base station does not receive any message, it indicates that the terminal demodulates the data sub-packet. For the demodulated data sub-packet, the base station transmits the retransmitted data sub-packet in the corresponding downlink physical frame in the subsequent downlink transport block.
  • the position of the corresponding downlink physical frame mentioned here is in the downlink transport block to which it belongs and the position of the downlink physical frame of the transmit data sub-packet in the downlink transport block.
  • six downlink physical frames of a downlink transport block are divided into two groups, and the first, second, and third physical frames are set as one group, and the fourth, fifth, and sixth physics are set.
  • the positions of the two physical frame groups are respectively defined as L0, L1, and the data sub-packets sent from these two positions are respectively defined as P0, PI, that is, in the downlink transport block
  • a data sub-packet sent by a physical frame group is defined as P0 (that is, a data sub-packet that is transmitted in any one of the physical frame groups or simultaneously across two consecutive or three physical frames is defined as P0), and in the downlink transport block
  • the data sub-packets sent by the two physical frame groups are defined as P1.
  • the data sub-packets of these two different locations can be sent to one terminal or to different terminals.
  • the starting position of the data sub-packet transmission may be in the first downlink transport block of the superframe, or in the second or third downlink transport block of the superframe.
  • the terminal can perform different processing according to the delay sensitivity of the service and the processing capability of the device. Specifically, in the case that the service delay is not sensitive, for the data sub-packets sent by using one or more physical frames in the first three downlink physical frames of the downlink transport block, in step S 1308, the terminal is in the uplink physical frame.
  • the first uplink physical frame of the first uplink transport block after the downlink transport block sends a response message; for the data sub-packet sent by using one or more of the last three downlink physical frames of the downlink transport block,
  • the terminal sends a response message to the second uplink physical frame of the second uplink transport block after the downlink transport block; and, in step S1308, the base station sends the second downlink transport block after the downlink transport block. Retransmit the data subpackage.
  • step S 1308 the terminal is in the uplink physical a first uplink physical frame transmission response message of the first uplink transmission block after the downlink transmission block; and a data sub-packet transmitted for one or more physical frames of the last three downlink physical frames of the downlink transmission block,
  • step S 1310 the terminal sends a response message to the second uplink physical frame of the first uplink transport block after the downlink transport block; and, in step S1308, the base station sends the first downlink transport block after the downlink transport block. Retransmit the data subpackage.
  • the retransmission threshold (N) may also be set in advance, and in the case that the number of transmissions of the demodulated data sub-packets reaches the retransmission threshold, the retransmission is not performed.
  • N may be set to 5.
  • the base station sends other data sub-packets in the corresponding downlink physical frames in the subsequent downlink transport blocks. The method shown in Fig.
  • the ACK/NACK message corresponding to the L0 position is handled as follows: For the data sub-packet of the L0 position, the terminal demodulates the data sub-packet of the L0 position. Thereafter, in step S108, an ACK or NACK message is transmitted in the first physical frame on the uplink transport block formed by the next two consecutive uplink physical frames. In step S110, the base station demodulates the ACK/NACK message. If it is an ACK message, indicating that the terminal successfully demodulates the data, the base station sends other data on the first physical frame group on the next second downlink transport block.
  • the sub-packet (the HARQ retransmission processing method of other data sub-packets is the same as the original data sub-packet). If it is a NACK message, indicating that the terminal does not successfully demodulate the data, the base station transmits the first-level retransmission data sub-packet on the corresponding channel resource of the first physical frame group on the next second downlink transport block.
  • the ACK message is sent in the first physical frame position on the uplink transport block formed by the next two consecutive uplink physical frames; if the terminal does not have a correct solution
  • the NACK message is sent at the first physical frame position on the uplink transport block formed by the next two consecutive uplink physical frames.
  • the base station demodulates the ACK/NACK message. If it is an ACK message, the base station sends other data sub-packets on the first physical frame group position on the next second downlink transport block (HARQ of other data sub-packets)
  • the retransmission processing method is the same as the original data subpackage).
  • the base station transmits a second level retransmission data sub-packet on the corresponding channel resource of the first physical frame group on the next second downlink transport block. That is, as long as the terminal correctly demodulates the downlink data sub-packet at the L0 position, an ACK message is sent on the first physical frame position on the next uplink transport block, and the base station receives the ACK message, in the next Sending other data sub-packets on the first physical frame group on the two downlink transport blocks; as long as the terminal does not correctly demodulate the downlink data sub-packets at the L0 position, the first physical frame position on the next uplink transport block Sending a NACK message, the base station receives the NACK message, and needs to send the Nth retransmission data sub-packet on the corresponding channel resource of the first physical frame group on the next second downlink transport block, preferably, N is taken.
  • the value can be 5 or other positive integers.
  • the processing of the ACK/NACK message corresponding to the L1 position the following: After the terminal demodulates the data sub-packet of the L1 position, on the next second uplink transport block The second physical frame location sends an ACK or NACK message. The base station demodulates the ACK/NACK message. If it is an ACK message, indicating that the terminal successfully demodulates the data, the base station sends other data sub-packets on the second physical frame group on the next downlink transport block (other data sub-packets The HARQ retransmission processing method is the same as the original data subpacket).
  • the base station transmits the first-level retransmission data sub-packet on the corresponding channel resource of the second physical frame group on the next downlink transport block. If the terminal correctly demodulates the first-level retransmission data sub-packet, the ACK message is sent in the second physical frame position on the next second uplink transport block; if the terminal does not correctly demodulate the first-level retransmission The data sub-packet sends a NACK message at the second physical frame position on the next second uplink transport block. The base station demodulates the ACK/NACK message.
  • the base station sends other data sub-packets on the second physical frame group on the next downlink transport block (the HARQ retransmission processing method of other data sub-packets and the original The same data subpackage). If it is a NACK message, the base station transmits a second level retransmission data sub-packet on the corresponding channel resource of the second physical frame group on the next downlink transport block. Similarly, as long as the terminal correctly demodulates the downlink data sub-packet at the L1 position, an ACK message is sent at the second physical frame position on the next second uplink transport block, and the base station receives the ACK message, which is in the next downlink transmission.
  • the NACK is sent at the second physical frame position on the next second uplink transport block.
  • the message, the base station receives the NACK message, and needs to send the Nth retransmission data sub-packet on the corresponding channel resource of the second physical frame group on the next downlink transport block, where the maximum value of N is ⁇ 5. It can also be taken as other positive integers.
  • P0 is transmitted on the downlink first physical frame group L0 shown in Fig. 14 (a) and Fig. 14 (b). That is to say, P0 is sent on the physical frame F0 or F1 or F2, and can also be transmitted across two consecutive physical frames, that is, simultaneously on two physical frames F0 and F1 or F1 and F2, or across three physical frames. That is, it is sent on three physical frames F0, F1, and F2 at the same time. (corresponding to step S104 described above). If the terminal correctly demodulates P0, it sends an ACK message at the position of R0, as shown in FIG.
  • the base station after receiving the ACK message, the base station follows the second downlink.
  • the other physical sub-packet P,0 is transmitted on the first physical frame group of the transport block (consisting of three physical frames F12, F13 and F14).
  • the HARQ retransmission processing method of the other data sub-packets P, 0 is the same as that of the data sub-packet P0. (corresponding to step S110 described above). If the terminal does not correctly demodulate P0, the NACK message is sent at the position of R0. As shown in FIG. 14(b), after receiving the NACK message, the base station transmits the first physical frame of the next second downlink transmission block.
  • the first level retransmission data sub-packet R1P0 is sent on the corresponding channel resource of the group.
  • the ACK message is sent at the position of R4; after receiving the ACK message, the base station follows the second downlink.
  • the location of the first physical frame group of the transport block transmits the other data subpacket P,0. If the terminal does not correctly demodulate the first-level retransmission data sub-packet, as shown in FIG. 14(b), a NACK message is transmitted at the position of R4.
  • the base station After receiving the NACK message, the base station sends the second-level retransmission data sub-packet R2P0 on the corresponding channel resource of the first physical frame group of the next second downlink transport block. Similarly, if the terminal correctly demodulates the downlink data sub-packet at the L0 position, the ACK message is sent at the first physical frame position on the next uplink transport block, and the base station receives the ACK message, which is the next second. Sending another data sub-packet on the first physical frame group on the downlink transport block; if the terminal does not correctly demodulate the downlink data sub-packet at the L0 position, the terminal sends a NACK message at the first physical frame position on the next uplink transport block.
  • the base station receives the NACK message, and needs to send the Nth retransmission data sub-packet on the corresponding channel resource of the first physical frame group on the next second downlink transport block, where the maximum value of N is ⁇ : 5, can also be taken as other positive integers.
  • P1 is transmitted on the second physical frame group L1 in the downlink shown in Fig. 14 (a) and Fig. 14 (b). That is to say, P1 is sent on physical frame F3 or F4 or F5, and can also be transmitted across two consecutive physical frames, that is, simultaneously on two physical frames F3 and F4 or F4 and F5, or across three physical frames. That is, it is transmitted on three physical frames F3, F4 and F5 at the same time. If the terminal correctly demodulates P1, it sends an ACK message at the location of R3. As shown in Figure 14 (a), after receiving the ACK message, the base station is in the second physical frame group of the next downlink transmission block.
  • the other data sub-packets P, l are transmitted on the three physical frames F15, F16 and F17.
  • the HARQ retransmission processing method of the other data sub-packets P, l is the same as that of the data sub-packet P1. If the terminal does not correctly demodulate the PI, the NACK message is sent at the location of R3. As shown in FIG. 14(b), after receiving the NACK message, the base station corresponding to the second physical frame group of the next downlink transmission block.
  • the first level retransmission data sub-packet R1P1 is transmitted on the channel resource.
  • the ACK message is sent at the location of the second physical frame of the next second uplink transport block; after receiving the ACK message, the base station is next The location of the second physical frame group of the downlink transport block transmits other data sub-packets P, 1. If the terminal does not correctly demodulate the first-level retransmission data sub-packet, the NACK message is sent at the location of the second physical frame of the next second uplink transport block. After receiving the NACK message, the base station sends the second-level retransmission data sub-packet R2P1 on the corresponding channel resource of the second physical frame group of the next downlink transport block.
  • the ACK message is sent at the second physical frame position on the next second uplink transport block, and the base station receives the ACK message, which is next Sending another data sub-packet on the second physical frame group on the second downlink transport block; if the terminal does not correctly demodulate the downlink data sub-packet at the L1 position, the second on the next second uplink transport block
  • the physical frame position sends a NACK message, and the base station receives the NACK message, and needs to send the Nth retransmission data sub-packet on the corresponding channel resource of the second physical frame group on the next second downlink transport block, N
  • the maximum value of ⁇ : is 5, which can also be taken as other positive integers.
  • Example 2 Service processing with delay sensitivity and fast processing capability of the device
  • the terminal after demodulating the data sub-packets of the L0 and L1 positions, the terminal is on the uplink transport block composed of the next two consecutive uplink physical frames.
  • ACK indicates that the terminal successfully demodulates data
  • NACK indicates that the terminal has not successfully demodulated data.
  • the ACK/NACK messages of the two different locations respectively correspond to the data sub-packets P0 and P1 of the two different positions L0 and L1, respectively.
  • the base station demodulates the ACK/NACK messages of the two different locations.
  • the base station If it is an ACK message, indicating that the terminal successfully demodulates the data, the base station corresponding to the physical frame group position on the downlink transport block composed of the next six consecutive downlink physical frames. Send other data sub-packets (the HARQ retransmission processing method of other data sub-packets is the same as the original data sub-packet). If it is a NACK message, indicating that the terminal does not successfully demodulate the data, the base station sends the first-level retransmission data on the corresponding channel resource of the corresponding physical frame group position on the downlink transport block composed of the next six consecutive downlink physical frames. package.
  • the terminal correctly demodulates the first-level retransmission data sub-package then the next two consecutive Sending an ACK message to the corresponding physical frame position on the uplink transport block composed of the physical frame; if the terminal does not correctly demodulate the first-level retransmitted data sub-packet, on the uplink transport block composed of the next two consecutive uplink physical frames A corresponding physical frame position sends a NACK message.
  • the base station demodulates the ACK/NACK messages of the two different locations. If it is an ACK message, indicating that the terminal successfully demodulates the data, the base station corresponding to the physical frame group position on the downlink transport block composed of the next six consecutive downlink physical frames. Send other data subpackages.
  • the base station If it is a NACK message, indicating that the terminal still does not successfully demodulate the data, the base station sends the second-level retransmission data on the corresponding channel resource of the corresponding physical frame group position on the downlink transport block composed of the next six consecutive downlink physical frames. Sub-package.
  • the ACK message is sent at the corresponding uplink physical frame position, and the base station receives the ACK message, and sends other data sub-packets at the corresponding physical frame group position; If the downlink data sub-packet is correctly demodulated, the NACK message is sent at the corresponding uplink physical frame position, and the base station receives the NACK message, and needs to send the N-th retransmission data sub-packet on the corresponding channel resource of the corresponding physical frame group position.
  • the maximum value of N is ⁇ : 5, which can also be taken as other positive integers.
  • the data sub-packet P0 sent at the L0 position is taken as an example.
  • P0 is transmitted on the downlink first physical frame group L0 shown in Fig. 15 (a) and Fig. 15 (b). That is to say, P0 is sent on the physical frame F0 or F1 or F2, and can also be transmitted across two consecutive physical frames, that is, simultaneously on two physical frames F0 and F1 or F1 and F2, or across three physical frames. That is, it is transmitted on three physical frames F0, F1, and F2 at the same time.
  • the terminal correctly demodulates P0, it sends an ACK message at the position of R0.
  • the base station is in the first physical frame group of the next downlink transmission block (by three).
  • the position of the physical frames F6, F7 and F8) transmits the other data sub-packet P,0.
  • the HARQ retransmission processing method of the other data sub-packets P, 0 is the same as that of the data sub-packet P0. If the terminal does not correctly demodulate P0, the NACK message is sent at the position of R0. As shown in FIG. 15(b), after receiving the NACK message, the base station is in the position of the first physical frame group of the next downlink transmission block.
  • the first level retransmission data sub-packet R1P0 is sent on the corresponding channel resource.
  • the terminal If the terminal correctly demodulates the first-level retransmitted data sub-packet, it sends an ACK message at the location of R2; after receiving the ACK message, the base station transmits the first physical frame of the next downlink transport block. The location of the group sends other data sub-packets P,0. If the terminal does not correctly demodulate the first-level retransmission data sub-packet, the terminal sends a NACK message at the location of R2. After receiving the NACK message, the base station sends the second-level retransmission data sub-packet R2P0 on the corresponding channel resource of the first physical frame group position of the next downlink transport block.
  • the ACK message is sent at the corresponding physical frame position, and the base station receives the ACK message, and sends other data sub-packets at the corresponding physical frame group position; If the downlink data sub-packet is not correctly demodulated, the NACK message is sent at the corresponding physical frame position, and the base station receives the NACK message, and sends the N-th retransmission data sub-packet on the corresponding channel resource of the corresponding physical frame group position.
  • the maximum value of N is ⁇ : 5, which can also be taken as other positive integers.
  • the HARQ retransmission processing method of the data sub-packet is substantially the same as the data sub-packet P0, except that P1 is transmitted at the position of the second physical frame group of the downlink transport block, and the response symbol is transmitted in the uplink. The location of the second physical frame of the block is sent.
  • Method Embodiment 6 According to an embodiment of the present invention, an uplink retransmission method based on a wireless communication TDD system is provided.
  • the foregoing wireless communication TDD system is configured to use a downlink transmission block including six consecutive downlink physical frames for downlink transmission, The uplink transmission block including two consecutive uplink physical frames is used for the TDD mode of uplink transmission (TDD 6:2 mode).
  • Step S 16 is a flowchart of an uplink retransmission method based on a wireless communication TDD system according to an embodiment of the present invention. As shown in 16, the following processing is included (step S1602 to step S1610).
  • Step S 1602 The mapping relationship between the uplink physical frame and the downlink physical frame is preset, so that each uplink physical frame corresponds to two consecutive downlink physical frames.
  • Step S1604 One or more terminals use the uplink physical frame of the uplink transport block.
  • Step S 1606 The base station demodulates the data sub-packets of the received uplink physical frame; Step S1608, based on the demodulation result and the mapping relationship, the base station sends a message indicating whether the demodulation is successfully demodulated.
  • the response message of the data sub-packet, or the base station sends the response message only if the demodulation is successful; specifically, if the base station demodulates the data sub-packet successfully, the base station is after the uplink transport block
  • the corresponding downlink physical frame of the downlink transport block sends a response message indicating that the data sub-packet is successfully demodulated to the terminal; if the base station demodulates the data sub-packet fails, the corresponding downlink physical frame of the downlink transport block of the base station after the uplink transport block Sending a response message indicating that the demodulation data sub-packet failed, or if the base station demodulates the data sub-packet fails, the base station does not send any message to the terminal; Step S1610, the terminal receives and demodulates the response message, and Determining whether the data sub-packet is successfully demodulated according to the response message, if the terminal does not receive any message, it indicates that the base station demodulates the data sub-
  • the corresponding uplink physical frame transmits a retransmission data sub-packet of the demodulated data sub-packet.
  • the mapping relationship in step S1602 is that the first uplink physical frame in the uplink transport block corresponds to the second and third downlink physical frames in the downlink transport block, and the second uplink physical frame corresponds to the downlink transport block.
  • step S1608 the operation of the base station transmitting a response message indicating whether the data sub-packet is successfully demodulated in the corresponding downlink physical frame of the downlink transport block after the uplink transport block is specifically: when the terminal uses the first uplink physical frame to send When the data sub-packet, the base station sends a response message in any of the second and third downlink physical frames; when the terminal uses the second uplink physical frame to send the data sub-packet, the base station is in the fourth and fifth downlink Any one of the physical frames sends a reply message.
  • the foregoing method further includes: for the uplink physical frame in which the data sub-packet is successfully demodulated, the terminal sends another data sub-packet in the corresponding uplink physical frame in the next uplink transport block.
  • the method further includes: pre-setting a retransmission threshold, and in case the retransmission threshold of the demodulated data sub-packet reaches a retransmission threshold, no retransmission is performed, wherein the terminal transmits the nth time
  • one downlink transport block is composed of 6 consecutive downlink physical frames.
  • the second and third physical frames are set as the first physical frame group
  • the fourth and fifth physical frames are set as the second physical frame group.
  • the positions of the two physical frame groups are respectively defined as L0, L1.
  • the terminal sends uplink data to the base station through an uplink transport block composed of two consecutive uplink physical frames
  • the data sub-packets transmitted from the two uplink physical frames are respectively defined as P0 and P1.
  • the data sub-packets of the two different physical frames may be sent by one terminal to the base station, or may be sent to the base station by different terminals.
  • the starting position of the data sub-packet can be the first in the superframe
  • the uplink transport block may also be in the second or third uplink transport block of the superframe.
  • the base station After demodulating the data sub-packets of the two different locations, the base station sends an ACK or NACK message to the corresponding physical frame group position on the downlink transport block composed of the next six consecutive downlink physical frames.
  • ACK indicates that the base station successfully demodulates data
  • NACK indicates that the base station has not successfully demodulated data.
  • the ACK/NACK messages of the two different physical frame group positions respectively correspond to the data sub-packets of the two different positions P0 and PI.
  • the terminal demodulates the ACK/NACK message of the two different physical frame group positions. If it is an ACK message, indicating that the base station successfully demodulates the data, the terminal corresponds to the physical entity on the uplink transport block composed of the next two consecutive uplink physical frames.
  • the frame position transmits other data sub-packets (the HARQ retransmission processing method of other data sub-packets is the same as the original data sub-packet).
  • the terminal sends the first-level retransmission data sub-packet on the corresponding channel resource of the corresponding physical frame position on the uplink transport block composed of the next two consecutive uplink physical frames. .
  • the ACK message is sent in the corresponding physical frame group position on the downlink transport block composed of the next six consecutive downlink physical frames; if the base station is not correctly demodulated The first level retransmits the data sub-packet, and then sends a NACK message to the corresponding physical frame group position on the downlink transport block composed of the next six consecutive downlink physical frames.
  • the terminal demodulates the ACK/NACK message of the two different physical frame group positions. If it is an ACK message, indicating that the base station successfully demodulates the data, the terminal corresponds to the physical entity on the uplink transport block composed of the next two consecutive uplink physical frames. The frame position sends other data sub-packets. If it is a NACK message, indicating that the base station still does not successfully demodulate the data, the terminal sends the second-level retransmission data on the corresponding channel resource of the corresponding physical frame position on the uplink transport block composed of the next two consecutive uplink physical frames. package.
  • the ACK message is sent at the corresponding physical frame group position, and the terminal receives the ACK message, and transmits other data sub-packets at the corresponding physical frame position; if the base station does not correctly demodulate The uplink data sub-packet sends a NACK message at the corresponding physical frame group position, and the terminal receives the NACK message, and sends the N-th retransmission data sub-packet on the corresponding channel resource of the corresponding physical frame position, and the maximum value of N is one.
  • ⁇ : is 5 and can also be taken as other positive integers. This embodiment can be better understood by the schematic diagrams given in Figs.
  • P0 is transmitted on the first physical frame of the uplink shown in FIG. 17 (a) and FIG. 17 (b), that is, on the physical frame R0. As shown in FIG. 17 (a) and FIG. 17 (b), that is, on the physical frame R0.
  • the ACK message is sent at the position of the first physical frame group of the next downlink transport block, that is, the ACK message can be in the physical frame F7 or F8 is sent, where F7 is the second downlink physical frame of the downlink physical frame group, and F8 is the third downlink physical frame of the downlink physical frame group, that is, the second or third of the downlink physical frame group of the base station
  • the downlink physical frame sends a response message.
  • the terminal After receiving the ACK message, the terminal sends other data sub-packets P, 0 on the first physical frame position R2 of the next uplink transport block.
  • the HARQ retransmission processing method of the other data sub-packets P, 0 is the same as that of the data sub-packet P0.
  • the base station transmits a NACK message at the position of the first physical frame group of the next downlink transport block, that is, the NACK message can be in the physical frame F7 or Send on F8.
  • the terminal After receiving the NACK message, the terminal sends the first-level retransmission data sub-packet R1P0 on the corresponding channel resource on the first physical frame position R2 of the next uplink transport block.
  • the ACK message is sent in the first physical frame group position of the next downlink transport block; after receiving the ACK message, the terminal is in the next uplink transport block.
  • the location of the first physical frame sends the other data subpacket P,0.
  • the NACK message is sent at the location of the first physical frame group of the next downlink transport block.
  • the terminal After receiving the NACK message, the terminal sends the second-level retransmission data sub-packet R2P0 on the corresponding channel resource of the first physical frame position of the next uplink transport block.
  • the ACK message is sent at the corresponding physical frame group position, and the terminal receives the ACK message, and transmits other data sub-packets at the corresponding physical frame position; if the base station does not correctly solve the solution If the uplink data sub-packet is adjusted, the NACK message is sent in the corresponding physical frame group position, and the terminal receives the NACK message, and needs to send the N-th re-transmitted data sub-packet on the corresponding channel resource of the corresponding physical frame position, where N is the largest.
  • the value ⁇ : is 5, which can also be taken as other positive integers.
  • the HARQ retransmission processing method for the P1 data sub-packet is substantially the same as the data sub-packet P0, except that P1 is transmitted at the second physical frame position of the uplink transport block, and the response symbol is second in the downlink transport block.
  • the physical frame group location is sent.
  • the uplink transport block that is initially transmitted by the data sub-packet is not limited in the position of the superframe, and may be the first uplink transport block or the second or third uplink transport block.
  • the boundary of the Superframe has no limitation on the HARQ retransmission processing of the data sub-packets.
  • the base station and the terminal in the downlink transmission, by transmitting the response symbol (response message) in the corresponding uplink physical frame, the base station and the terminal can have relatively sufficient time to parse the data or message from the other party. And subsequent processing to achieve data retransmission, in the uplink transmission, through the transmission of the response symbol in the corresponding downlink physical frame, the same data retransmission is achieved, thereby making up for the lack of a retransmission mechanism in the related art. .
  • the base station and the terminal in the downlink transmission process of the TDD mode, by transmitting a response symbol (response message) in the corresponding uplink physical frame, the base station and the terminal can have relatively sufficient time to parse data or message from the other party. After the subsequent processing, the data is retransmitted. In the uplink transmission process of the TDD mode, the data is retransmitted by transmitting the response symbol in the corresponding downlink physical frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

基于无线通信时分双工系统的下行重传和上行重传方法 技术领域 本发明涉及通信领域,尤其涉及一种基于无线通信时分双工系统的下行 重传和上行重传方法。 背景技术 在以 superframe (超帧) 为单位进行数据传输的无线系统中, 无线空口 传输的上 /下行链路一般是以 superframe为单位进行传输数据的; 其中, 每个 superframe由一个 reamble (前导 ) 和若干个 PHY Frame (物理帧) 组成, 并且, preamble和 PHY Frame均以 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频分复用) Symbol (符号) 为基本单位。 目前的 UMB( Ultra Mobile Broadband,超级移动宽带)、 LTE( Long-Term Evolution , 长期演进)、 Wimax ( Worldwide Interoperability for Microwave Access , 波接入全球互通)系统啫有两种双工方式: FDD( Frequency Division Duplex, 频分双工) 方式和 TDD ( Time Division Duplex, 时分双工) 方式。 在 FDD方式下, 上 /下行链路采用不同的频带进行数据传输, 这样, 系 统的上 /下行 PHY Frames 的资源分配相对比较独立, 即, 可以对下行 PHY Frames和上行 PHY Frames分别进行资源分配。
TDD方式是上 /下行链路使用相同的频段分时进行传输, 该方式需要将 PHY frame分成上行和下行分时进行传输。 在 TDD m:n方式下, 上行 /下行 PHY frame一般可以按照下面的方式传 输: 基站和终端以超帧为单位进行数据传输, 在一个超帧的时长内, 基站首 先向终端发送前导, 然后通过 n个连续下行物理帧组成的下行传输块向终端 发送下行数据, 之后, 在第一时间间隔上基站和终端都不发送数据, 接下来, 基站接收终端通过 m个连续上行物理帧组成的上行传输块发送的上行数据, 之后, 在第二时间间隔上基站和终端都不发送数据, 然后, 基站再通过 n个 连续下行物理帧组成的另一下行传输块向终端发送下行数据, 然后, 在第三 时间间隔上基站和终端不发送数据, 然后, 基站再接收终端通过 m个连续上 行物理帧组成的另一上行传输块发送的上行数据; 在第四时间间隔上, 基站 和终端都不发送数据, 然后基站再通过 n个连续下行物理帧组成的另一下行 传输块向终端发送下行数据, 在第五时间间隔上基站和终端不发送数据, 然 后,基站再接收终端通过 m个连续上行物理帧组成的另一上行传输块发送的 上行数据。 按照上述方式进行传输时, m: n取值可以为 5:3、 3:5或 6:2。 在数据的发送和接收过程中, 重传机制必不可少, 但在 TDD方式下, 由于上 /下行链路使用相同的频段分时进行数据传输, 如何在 TDD m:n方式 下的上行或下行数据的传输过程中, 进行上行数据或下行数据的重传, 目前 尚未提出有效的解决方案。 发明内容 考虑到相关技术中存在的需要一种技术来解决如何在 TDD m:n方式下 的上行或下行数据的传输过程中, 进行上行数据或下行数据的重传的问题而 提出本发明, 为此, 本发明的主要目的在于提供一种基于无线通信时分双工 系统的下行重传方法, 以解决上述问题。 根据本发明的一个方面,提供一种基于无线通信时分双工系统的下行重 传方法, 该无线通信时分双工系统基于将包括连续的 5个下行物理帧的下行 传输块用于下行传输, 将包括连续的 3个上行物理帧的上行传输块用于上行 传输的时分双工方式。 根据本发明的基于无线通信时分双工系统的下行重传方法包括:预先设 置上行物理帧与下行物理帧的映射关系, 使得每个上行物理帧对应于一个下 行物理帧或两个连续的下行物理帧, 且每个上行物理帧对应不同的下行物理 帧; 基站使用下行传输块的下行物理帧向一个或多个终端发送一个或多个数 据子包; 终端解调接收到的下行物理帧的数据子包; 基于解调结果以及映射 关系, 终端发送用于表示是否成功解调了数据子包的应答消息, 或者, 终端 仅在解调成功的情况下进行应答消息的发送; 其中, 对于终端解调失败的数 据子包, 基站在下一下行传输块中相应的下行物理帧发送解调失败的数据子 包的重传数据子包。 根据本发明的一个方面,提供一种基于无线通信时分双工系统的下行重 传方法, 该无线通信时分双工系统基于将包括连续的 3个下行物理帧的下行 传输块用于下行传输, 将包括连续的 5个上行物理帧的上行传输块用于上行 传输的时分双工方式。 根据本发明的基于无线通信时分双工系统的下行重传方法包括:预先设 置上行物理帧与下行物理帧的映射关系, 使得下行传输块中的 3个下行物理 帧与上行传输块中的其中 3个物理帧——对应; 基站使用下行传输块的下行 物理帧向一个或多个终端发送一个或多个数据子包; 终端解调接收到的数据 子包; 基于解调结果, 终端发送用于表示是否成功解调了数据子包的应答消 息, 或者, 终端仅在解调成功的情况下进行应答消息的发送; 其中, 对于解 调失败的数据子包, 基站在下一下行传输块中相应的下行物理帧发送重传数 据子包。 根据本发明的一个方面,提供一种基于无线通信时分双工系统的下行重 传方法, 该无线通信时分双工系统基于将包括连续的 6个下行物理帧的下行 传输块用于下行传输, 将包括连续的 2个上行物理帧的上行传输块用于上行 传输的时分双工方式。 根据本发明的基于无线通信时分双工系统的下行重传方法包括:预先设 置上行物理帧与下行物理帧的映射关系, 使得下行传输块中的前三个下行物 理帧与上行传输块中的第一个物理帧对应, 下行传输块中的后三个下行物理 帧与上行传输块中的第二个物理帧对应; 基站使用下行传输块的下行物理帧 向一个或多个终端发送一个或多个数据子包; 终端解调接收到的数据子包; 基于解调结果以及映射关系, 终端发送用于表示是否成功解调了数据子包的 应答消息, 或者, 终端仅在解调成功的情况下进行应答消息的发送; 其中, 对于解调失败的数据子包, 基站在后续下行传输块中相应的下行物理帧发送 重传数据子包。 根据本发明的一个方面,提供一种基于无线通信时分双工系统的上行重 传方法, 该无线通信时分双工系统基于将包括连续的 5个下行物理帧的下行 传输块用于下行传输, 将包括连续的 3个上行物理帧的上行传输块用于上行 传输的时分双工方式。 根据本发明的基于无线通信时分双工系统的上行重传方法包括:预先设 置上行物理帧与下行物理帧的映射关系, 使得每个上行物理帧对应于一个下 行物理帧或两个连续的下行物理帧, 且每个上行物理帧对应不同的下行物理 帧; 一个或多个终端使用上行传输块的上行物理帧向基站发送一个或多个数 据子包; 基站解调接收到的上行物理帧的数据子包; 基于解调结果以及映射 关系, 基站发送用于表示是否成功解调了数据子包的应答消息, 或者, 基站 仅在解调成功的情况下进行应答消息的发送; 其中, 对于数据子包解调失败 的上行物理帧, 终端在下一上行传输块中相应的上行物理帧发送解调失败的 数据子包的重传数据子包。 根据本发明的一个方面,提供一种基于无线通信时分双工系统的上行重 传方法, 该无线通信时分双工系统基于将包括连续的 3个下行物理帧的下行 传输块用于下行传输, 将包括连续的 5个上行物理帧的上行传输块用于上行 传输的时分双工方式。 根据本发明的基于无线通信时分双工系统的上行重传方法包括:预先设 置上行物理帧与下行物理帧的映射关系, 使得每个下行物理帧对应于一个上 行物理帧或两个连续的上行物理帧, 且每个下行物理帧对应不同的上行物理 帧; 一个或多个终端使用上行传输块的上行物理帧向基站发送一个或多个数 据子包; 基站解调接收到的上行物理帧的数据子包; 基于解调结果以及映射 关系, 基站发送用于表示是否成功解调了数据子包的应答消息, 或者, 基站 仅在解调成功的情况下进行应答消息的发送; 其中, 对于数据子包解调失败 的上行物理帧, 终端在下一上行传输块中相应的上行物理帧发送解调失败的 数据子包的重传数据子包。 根据本发明的一个方面,提供一种基于无线通信时分双工系统的上行重 传方法, 该无线通信时分双工系统基于将包括连续的 6个下行物理帧的下行 传输块用于下行传输, 将包括连续的 2个上行物理帧的上行传输块用于上行 传输的时分双工方式。 根据本发明的基于无线通信时分双工系统的上行重传方法包括:预先设 置上行物理帧与下行物理帧的映射关系, 使得每个上行物理帧均对应于两个 连续的下行物理帧; 一个或多个终端使用上行传输块的上行物理帧向基站发 送一个或多个数据子包; 基站解调接收到的上行物理帧的数据子包; 基于解 调结果以及映射关系, 基站发送用于表示是否成功解调了数据子包的应答消 息, 或者, 基站仅在解调成功的情况下进行应答消息的发送; 其中, 对于数 据子包解调失败的上行物理帧, 终端在下一上行传输块中相应的上行物理帧 发送解调失败的数据子包的重传数据子包。 通过本发明的上述至少一个技术方案,在 TDD方式的下行传输过程中, 通过在相应的上行物理帧传输应答符号(应答消息),可以使得基站和终端有 相对充足的时间来解析来自对方的数据或消息并进行后续处理, 实现了数据 的重传; 在 TDD 方式的上行传输过程中, 通过在相应的下行物理帧传输应 答符号, 同样实现了数据的重传, 从而弥补了相关技术中缺少一种重传机制 的缺陷。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明, 并不构成对本发明的限制。 在附图中: 图 1是根据本发明方法实施例一的基于 TDD系统的下行重传方法的流 程图; 图 2 (a) 和图 2 (b) 是图 1所示的方法的实例 1的示意图; 图 3是根据本发明系统实施例一的基于 TDD系统的下行重传系统的结 构框图; 图 4是根据本发明方法实施例二的基于 TDD系统的上行重传方法的流 程图; 图 5 (a) 和图 5 (b) 是图 4所示的方法的实例 2的示意图; 图 6是根据本发明系统实施例二的基于 TDD系统的上行重传系统的结 构框图; 图 7是根据本发明方法实施例三的基于 TDD系统的下行重传方法的流 程图; 图 8 (a) 和图 8 (b) 是图 7所示的方法的实例 3的示意图; 图 9是根据本发明系统实施例三的基于 TDD系统的下行重传系统的结 构框图; 图 10是才艮据本发明方法实施例四的基于 TDD系统的上行重传方法的流 程图; 图 11 (a) 和图 11 (b) 是图 10所示的方法的实例 4的示意图; 图 12是根据本发明系统实施例四的基于 TDD系统的上行重传系统的结 构框图; 图 13是才艮据本发明方法实施例五的基于 TDD系统的下行重传方法的流 程图; 图 14 ( a ) 和图 14 ( b ) 是图 13所示的实例 5的示意图; 图 15 ( a ) 和图 15 ( b ) 是图 13所示的实例 6的示意图; 图 16是根据本发明方法实施例六的基于 TDD系统的上行重传方法的流 程图; 图 17 ( a ) 和图 17 ( b ) 是图 16所示的实例 7的示意图。 具体实施方式 功能相克述 如上所述, 在时分双工 (TDD ) 方式下, 其上 /下行链路使用相同的频 段分时进行数据传输, 由于其不同于频分双工(FDD )方式, 上 /下行链路采 用不同的频带进行数据传输, 使得系统的上 /下行 PHY Frames进行资源分配 时, 可以对下行 PHY Frames和上行 PHY Frames分别进行资源分配, 这样, 在 TDD方式下, 如何在 TDD m:n方式下的上行或下行数据的传输过程中, 进行上行数据或下行数据的重传是急待解决的一个问题。 基于此, 本发明提供基于无线通信 TDD系统的下行重传和上行传输方 案, 其中, 在下行传输过程中, 通过在相应的上行物理帧传输应答符号 (应 答消息) 实现数据的重传; 在上行传输过程中, 通过在相应的下行物理帧传 输应答符号实现数据的重传。 在不沖突的情况下, 本申请中的实施例及实施例中的特征可以相互组 合。 以下结合附图对本发明的优选实施例进行说明, 应当理解, 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 在本发明中, 分别对 TDD m:n方式下的 m:n取值为 5: 3、 5: 3、 5 : 3 的下行数据传输方法和上行数据传输方法进行详细说明。 TDD m:n方式中, m: n取值为 5:3的说明 方法实施例一 首先, 针对 TDD 5 :3方式的下行数据传输中缺少一种重传机制的问题, 本发明实施例提供了一种基于无线通信 TDD 系统的下行重传方法, 上述的 无线通信 TDD 系统基于将包括连续的 5个下行物理帧的下行传输块用于下 行传输, 将包括连续的 3 个上行物理帧的上行传输块用于上行传输的 TDD 方式 (即, TDD 5:3方式)。 图 1是根据本发明实施例的基于无线通信 TDD系统的下行重传方法的 流程图。 如图 1所示, 该方法包括以下处理 (步骤 S 102至步骤 S 110 )。 步骤 S102 , 预先设置上行物理帧与下行物理帧组的映射关系, 使得每 个下行物理帧均具有与之对应的上行物理帧, 其中, 每个上行物理帧对应于 一个下行物理帧或两个连续的下行物理帧, 且每个上行物理帧对应不同的下 行物理帧, 其中, 每个下行物理帧组都包括 1个下行物理帧或者 2个相邻的 下行物理帧, 一个下行传输块分为 3个下行物理帧组; 步骤 S104 , 基站使用下行传输块的下行物理帧组向一个或多个终端发 送一个或多个数据子包; 步骤 S106 , 终端解调接收到的下行物理帧组的数据子包; 步骤 S108 , 基于解调结果以及映射关系, 终端发送用于表示是否成功 解调了数据子包的应答消息, 或者, 终端仅在解调成功的情况下进行应答消 息的发送; 具体地, 如果终端解调数据子包成功, 则终端在下行传输块之后 的上行传输块的相应上行物理帧向基站发送用于表示成功解调数据子包的应 答消息; 如果终端解调数据子包失败, 则终端在下行传输块之后的上行传输 块的相应上行物理帧向基站发送用于表示解调数据子包失败的应答消息, 或 者, 如果终端解调数据子包失败, 则终端不向基站发送任何消息; 步骤 S110 , 基站接收并解调应答消息, 并根据应答消息判断数据子包 是否解调成功, 如果基站没有接收到任何消息, 则表示终端解调数据子包失 败; 对于解调失败的数据子包, 基站在下一下行传输块中相应的下行物理帧 组发送解调失败的数据子包的重传数据子包。 以下将进一步描述图 1所示方法中各个步骤的细节处理。 (一) 步骤 S102 该步骤中提到的映射关系为:下行传输块中的连续的 5个下行物理帧按 照位置先后顺序分成 3个下行物理帧组, 其中的一个下行物理帧组包括一个 下行物理帧, 另外两个下行物理帧组分别包括两个相邻的下行物理帧, 各个 下行物理帧组与上行传输块中的连续的 3个上行物理帧在位置上按照先后顺 序——对应, 即, 下行传输块中的第一个下行物理帧组对应于上行传输块中 的第一个上行物理帧, 第二个下行物理帧组对应于上行传输块中的第二个上 行物理帧, 第三个下行物理帧组对应于上行传输块中的第三个上行物理帧。 当然, 也可以设置其它对应关系, 本发明对此没有限制。 其中, 下行传输块可以按照如下方式中的任一种进行分组: 方式一: 第一和第二个下行物理帧构成一个下行物理帧组, 第三和第四 个下行物理帧构成一个下行物理帧组, 第五个下行物理帧构成一个下行物理 帧组; 方式二: 第一个下行物理帧构成一个下行物理帧组, 第二和第三个下行 物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理 帧组; 方式三: 第一和第二个下行物理帧构成一个下行物理帧组, 第三个下行 物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理 帧组。 具体地,每个上行物理帧都对应于与其存在对应关系的下行物理帧组中 的一个或两个下行物理帧。 例如, 如果按照上述的分组方式方式一:, 上行传 输块中的第 1个上行物理帧可以对应于第一下行物理帧组中的第 1个下行物 理帧, 也可以对应于第一下行物理帧组中的第 2个下行物理帧, 也可以对应 于第 1和第 2下行物理帧。 (二) 步骤 S104 例如, 在一个 superframe的传输单位里,基站通过 5个连续下行物理帧 组成的下行传输块向终端发送下行数据, 如上面提到的分组方式, 可以将这 5个下行物理帧分成三组。 为了阐述方便, 将这 3个物理帧组的位置分别定 义为 L0、 Ll、 L2 , 对于从这 3 个下行物理帧组位置发送的数据子包, 分别 定义为 P0、 Pl、 P2 , 也就是说, 在下行传输块第一个物理帧组发送的数据子 包定义为 P0 (如果第一个物理帧组包含第一和第二这两个物理帧, 则在这两 个物理帧中任何一个或者同时跨这两个物理帧发送的数据子包定义为 ρο ), 其它依次类推。 这 3个不同位置的数据子包可以发给同一个终端, 也可以是 发给不同的终端。 发送数据子包的起始位置可以在 superframe的第一个下行 传输块, 也可以在 superframe的第二个下行传输块。 在本发明中, 为了便于描述, 假定数据子包先从 superframe的第一个下 行传输块上开始传输 , 并且假定 3个位置都发送了数据子包, 且 3个数据子 包发送给同一个终端。 (三) 步骤 S106及步骤 S108 终端解调了这 3个不同位置的数据子包之后,将在接下来的 3个连续上 行物理帧组成的上行传输块上分别发送 ACK或者 NACK消息。 ACK表示终 端成功解调数据, NACK表示终端没有成功解调数据。 根据步骤 S102 中设 置的映射关系, 这 3个不同位置的 ACK/NACK消息依次分别对应 P0、 Pl、 P2这 3个不同位置的数据子包。
(四) 步骤 S110 在该步骤中,基站在下一下行传输块中相应的下行物理帧组发送重传数 据子包的操作具体为: 基站才艮据映射关系确定应答消息( ACK/NACK )对应 的下行物理帧组的位置; 根据确定的位置, 基站确定下一下行传输块中的相 应的下行物理帧组, 其中, 相应的下行物理帧组在下一下行传输块中的位置 与确定的位置一致; 之后, 基站在相应的下行物理帧组发送重传数据包。 具体地, 基站首先解调这 3 个不同位置的 ACK/NACK 消息, 如果是 NACK消息, 表示终端没有成功解调数据, 则基站在接下来的 5个连续下行 物理帧组成的下行传输块 (即, 下一下行传输块) 上对应的下行物理帧组位 置的相应信道资源上发送第一级重传数据子包。 需要说明的是, 重传数据子 包与最初传输的数据子包可以相同, 也可以不相同。 另夕卜, 在步骤 S110中: 对于数据子包解调成功的下行物理帧, 基站在 下一下行传输块中相应的下行物理帧组发送其他数据子包。 即, 如果是 ACK 消息, 表示终端成功解调数据, 则基站在接下来的 5个连续下行物理帧组成 的下行传输块上对应的物理帧组位置发送其他数据子包 (其它数据子包的 HARQ重传处理方法与数据子包的相同)。 优选地, 在该实施例中, 还包括以下处理: 预先设置重传阈值, 并且在 解调失败的数据子包的重传次数达到重传阈值的情况下, 不再进行重传。 其 中, 基站第 n次发送的重传数据子包是第 n级重传数据子包, 其中, n<=N, N为重传阈值, n和 N均为正整数。 基于上述内容, 接下来, 终端如果正确解调了第一级重传数据子包后, 则在接下来的 3个连续上行物理帧组成的上行传输块上对应的物理帧位置发 送 ACK消息; 终端如果没有正确解调第一级重传数据子包, 则在接下来的 3 个连续上行物理帧组成的上行传输块上对应的物理帧位置发送 NACK消息。 之后, 基站解调这 3个不同位置的 ACK/NACK消息, 如果是 ACK消 息, 表示终端成功解调数据, 则基站在接下来的 5个连续下行物理帧组成的 下行传输块上对应的下行物理帧组位置发送其他数据子包;如果是 NACK消 息, 表示终端仍然没有成功解调数据, 则基站在上述的接下来的 5个连续下 行物理帧组成的下行传输块上对应的下行物理帧组位置的相应信道资源上发 送第二级重传数据子包。 也就是说, 终端如果正确解调下行数据子包, 就在对应的上行物理帧位 置上发送 ACK消息, 基站接收到 ACK消息, 就在对应的下行物理帧位置上 发送其他数据子包; 终端如果没有正确解调下行数据子包, 就在对应的上行 物理帧位置上发送 NACK消息, 基站接收到 NACK消息, 就在对应的下行 物理帧位置的相应信道资源上需要发送第 N级重传数据子包, 优选地, 可以 将重传阈值 N的设置为 5 , 也可以为其它的正整数。 实例 1 在一个 superframe的传输单位里,基站通过 5个连续下行物理帧组成的 下行传输块向终端发送下行数据, 这 5个下行物理帧中, 按照上述的方式三 进行分组, 即, 第 1和第 2个物理帧设为一组, 第 3个物理帧设为一组, 第 4和第 5个物理帧设为一组, 为了阐述方便, 将这 3个物理帧组的位置分别 定义为 L0、 Ll、 L2, 对于这 3 个下行物理帧组位置发送的数据子包, 分别 定义为 P0、 Pl、 P2, 即, 在下行传输块第一个物理帧组(可以是第一个物理 帧, 第二个物理帧,或者跨第一和第二个物理帧)发送的数据子包定义为 P0, 第二个物理帧组发送的数据子包定义为 Pl。 其中, 在该实例中, 数据子包起 始传输的下行传输块在 superframe的位置不受限制, 可以是第一个下行传输 块, 也可以是第二个下行传输块。 Superframe的边界对数据子包的 HARQ重 传处理没有限制。 以发送数据子包 P0为例, P0在图 2 ( a ) 所示的下行第一个物理帧组 L0上发送, 即, P0可以在物理帧 F0或者 F1上发送, 也可以跨越两个物理 帧发送, 也即同时在两个物理帧 F0和 F1上发送。 终端如果正确解调 P0, 则在 R0的位置发送 ACK消息, 如图 2 ( a )所 示, 基站接收到 ACK消息后, 则在接下来的下行传输块的第一个物理帧组, 也即 F5、 F6的位置发送其它数据子包 P,0; 其它数据子包 P,0的 HARQ重 传处理方法与数据子包 P0的处理方法相同。 终端如果没有正确解调 P0, 则在 R0的位置发送 NACK消息, 如图 2 ( b ) 所示, 基站接收到 NACK消息后, 则在接下来的下行传输块的第一个 物理帧组, 也即 F5、 F6 的位置的相应信道资源上发送第一级重传数据子包 R1P0。 终端如果正确解调了第一级重传数据子包, 则在 R3 的位置发送 ACK 消息; 基站接收到 ACK 消息后, 则在接下来的下行传输块的第一个物理帧 组的位置发送其它数据子包 P,0。 终端如果没有正确解调第一级重传数据子包, 则在 R3 的位置发送 NACK消息。基站接收到 NACK消息后, 则在接下来的下行传输块的第一个 物理帧组位置的相应信道资源上发送第二级重传数据子包 R2P0。 只要终端正确解调下行数据子包, 就在对应的上行物理帧位置上发送 ACK消息, 基站接收到 ACK消息, 就在对应的下行物理帧组位置上发送其 他数据子包; 只要终端没有正确解调下行数据子包, 就在对应的上行物理帧 位置上发送 NACK消息, 基站接收到 NACK消息, 就在对应的下行物理帧 组位置的相应信道资源上需要发送第 N级重传数据子包, 其中, 可以将重传 阈值 N设置为 5 , 也可以为其它的正整数。 以 jtb类推, 对于 Pl、 P2, 数据子包的 HARQ重传处理方法与数据子包 P0的相同, 以下进行简要描述。 对于 P1 , 基站在 F2进行发送, 再次参照图 2 ( a ), 终端如果正确解调, 则在 Rl发送 ACK,之后,基站在下一下行传输块的 F7上发送数据子包 P' l ; 其它数据子包 P' l的 HARQ重传处理方法与数据子包 P1的相同; 否则, 参 照图 2 ( b ), 终端如果没有正确解调, 则在 R1 的位置发送 NACK, 之后, 基站在下一下行传输块的 F7上发送第一级重传数据子包 R1P1。 对于 P2, 基站在 F3和 /或 F4进行发送, 再次参照图 2 ( a ), 终端如果 正确解调, 则在 R2的位置发送 ACK, 之后, 基站相应地在下一下行传输块 的 F8和 /或 F9上发送数据子包 P,2;其它数据子包 P,2的 HARQ重传处理方 法与数据子包 P2的相同; 否则, 参照图 2 ( b ), 终端如果没有正确解调, 则 在 R2的位置发送 NACK, 之后, 基站在下一下行传输块的 F8和 /或 F9上发 送第一级重传数据子包 R1P2。 系统实施例一 根据本发明实施例, 提供了一种基于无线通信 TDD系统的下行重传系 统, 上述的无线通信 TDD 系统基于将包括连续的 5个下行物理帧的下行传 输块用于下行传输, 将包括连续的 3个上行物理帧的上行传输块用于上行传 输的 TDD方式 (即, TDD 5:3方式)。 该下行重传系统可以包括一个基站、 以及一个或多个终端。 为了便于描 述, 图 3中仅示出了一个基站和一个终端。 如图 3所示, 在根据本发明实施例的下行重传系统中, 基站包括下行传 输单元 302、 应答消息解调单元 304、 重传单元 306; 终端包括解调单元 308 和上行传输单元 310。 下面对图 3所示的各模块的功能进行说明。 下行传输单元 302 用于使用下行传输块的下行物理帧组向一个或多个 终端发送一个或多个数据子包, 其中, 每个下行物理帧组都包括 1个下行物 理帧或者 2个相邻的下行物理帧, 一个下行传输块分为 3个下行物理帧组; 应答消息解调单元 304用于接收并解调终端发送的应答消息, 并根据应答消 息判断数据子包是否解调成功; 重传单元 306用于在下一下行传输块中的相 应下行物理帧组发送解调失败的数据子包的重传数据子包。 解调单元 308, 连接至下行传输单元 302和重传单元 306, 用于解调终 端接收到的下行物理帧组的数据子包; 上行传输单元 310可以连接至解调单 元 308和应答消息解调单元 304, 用于在上行传输块中的相应上行物理帧向 基站发送用于表示是否成功解调了数据子包的应答消息。 其中,上述的相应上行物理帧是才艮据预先设定的映射关系确定的与发送 数据子包的下行物理帧组相对应的上行物理帧, 其中, 映射关系为: 下行传 输块中的连续的 5个下行物理帧按照位置先后顺序分成 3个下行物理帧组, 其中的一个下行物理帧组包括一个下行物理帧, 另外两个下行物理帧组分别 包括两个相邻的下行物理帧, 各个下行物理帧组与上行传输块中的连续的 3 个上行物理帧在位置上按照先后顺序——对应。 其中, 下行传输块可以按照如下方式中的任一种进行分组: 方式一: 第一和第二个下行物理帧构成一个下行物理帧组, 第三和第四 个下行物理帧构成一个下行物理帧组, 第五个下行物理帧构成一个下行物理 帧组; 方式二: 第一个下行物理帧构成一个下行物理帧组, 第二和第三个下行 物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理 帧组; 方式三: 第一和第二个下行物理帧构成一个下行物理帧组, 第三个下行 物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理 帧组。 另外,上述相应下行物理帧组在下一下行传输块中的位置与发送解调失 败的数据子包的下行物理帧组在下行传输块中的位置一致。 该系统实施例一中的技术细节可以参照上述的方法实施例一的技术方 案来理解和实施, 对于相同或相似的内容, 在此不再进行重复描述。 通过上面的描述可以看出,借助于方法实施例一或系统实施例一提供的 技术方案, 在 TDD 5:3方式下行数据传输中, 通过使终端在与下行物理帧组 对应的上行物理帧上发送应答消息, 基站可以重传下行数据, 从而可以保证 下行数据传输的准确性。 方法实施例二 根据本发明实施例, 提供了一种基于无线通信 TDD系统的上行重传方 法, 上述无线通信 TDD 系统基于将包括连续的 5个下行物理帧的下行传输 块用于下行传输, 将包括连续的 3个上行物理帧的上行传输块用于上行传输 的 TDD方式 ( TDD 5 :3方式)。 图 4是才艮据本发明实施例的上行重传方法的流程图, 如图 4所示, 包括 以下处理 (步骤 S402至步骤 S410 )。 步骤 S402 , 预先设置上行物理帧与下行物理帧组的映射关系, 使得每 个下行物理帧均具有与之对应的上行物理帧, 其中, 每个上行物理帧对应于 一个下行物理帧或两个连续的下行物理帧, 且每个上行物理帧对应不同的下 行物理帧, 其中, 每个下行物理帧组包括 1个下行物理帧或者 2个相邻的下 行物理帧, 一个下行传输块分为 3个下行物理帧组; 步骤 S404 , 一个或多个终端使用上行传输块的上行物理帧向基站发送 一个或多个数据子包; 步骤 S406 , 基站解调接收到的上行物理帧的数据子包; 步骤 S408 , 基于解调结果以及所述映射关系, 所述基站发送用于表示 是否成功解调了所述数据子包的应答消息, 或者, 基站仅在解调成功的情况 下进行应答消息的发送; 具体地, 如果基站解调数据子包成功, 则基站在上 行传输块之后的下行传输块的相应下行物理帧组向终端发送用于表示成功解 调数据子包的应答消息; 如果基站解调数据子包失败, 则基站在上行传输块 之后的下行传输块的相应下行物理帧组向终端发送用于表示解调数据子包失 败的应答消息, 或者, 如果基站解调数据子包失败, 则基站不向终端发送任 何消息; 步骤 S410 , 终端接收并解调应答消息, 并才艮据应答消息判断数据子包 是否解调成功, 如果终端没有接收到任何消息, 则表示基站解调数据子包失 败; 对于数据子包解调失败的上行物理帧, 终端在下一上行传输块中相应的 上行物理帧发送解调失败的数据子包的重传数据子包。 以下将进一步描述图 4所示方法中各个步骤的细节处理。
(一) 步骤 S402 该步骤中提到的映射关系为:下行传输块中的连续的 5个下行物理帧按 照位置先后顺序分成 3个下行物理帧组, 其中的一个下行物理帧组包括一个 下行物理帧, 另外两个下行物理帧组分别包括两个相邻的下行物理帧, 各个 下行物理帧组与上行传输块中的连续的 3个上行物理帧在位置上按照先后顺 序——对应, 即, 下行传输块中的第一个下行物理帧组对应于上行传输块中 的第一个上行物理帧, 第二个下行物理帧组对应于上行传输块中的第二个上 行物理帧, 第三个下行物理帧组对应于上行传输块中的第三个上行物理帧。 当然, 也可以设置其它对应关系, 本发明对此没有限制。 其中, 下行传输块可以按照如下方式中的任一种进行分组: 方式一: 第一和第二个下行物理帧构成一个下行物理帧组, 第三和第四 个下行物理帧构成一个下行物理帧组, 第五个下行物理帧构成一个下行物理 帧组; 方式二: 第一个下行物理帧构成一个下行物理帧组, 第二和第三个下行 物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理 帧组; 方式三: 第一和第二个下行物理帧构成一个下行物理帧组, 第三个下行 物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理 帧组。 具体地,每个上行物理帧都对应于与其存在对应关系的下行物理帧组中 的一个或两个下行物理帧。 例如, 如果按照上述的分组方式三, 上行传输块 中的第 3 个上行物理帧可以对应于第三下行物理帧组中的第 4 个下行物理 帧, 也可以对应于第三下行物理帧组中的第 5个下行物理帧, 也可以对应于 第 4和第 5个下行物理帧。
(二) 步骤 S404 例如, 在一个 superframe的传输单位里, 按照上述分组方式, 将 5个连 续的下行物理帧组成的下行传输块分成 3组, 即, 这 5个下行物理帧中, 为 了阐述方便, 将这 3 个物理帧组的位置分别定义为 L0、 Ll、 L2 , 同时, 将 终端通过 3个连续上行物理帧位置发送的数据子包,分别定义为 P0、 Pl、 P2。 这 3个不同位置的数据子包可以由一个终端发送给基站, 也可以由不同的终 端发送给基站。 发送数据子包的起始位置可以在 superframe的第一个上行传 输块上, 也可以在 superframe的第二个上行传输块上。 在本发明中, 为了便于描述, 假定数据子包先从 superframe的第一个上 行传输块上开始传输 , 并且假定 3个位置都发送了数据子包, 且 3个数据子 包由同一个终端发送给基站。
(三) 步骤 S406和步骤 S408 基站解调了这 3个的数据子包之后,将在接下来的 5个连续下行物理帧 组成的下行传输块上对应的下行物理帧组位置分别发送 ACK或者 NACK消 息。 ACK表示基站成功解调数据, NACK表示基站没有成功解调数据。 根据 步骤 S402中设置的映射关系,这 3个不同位置的 ACK/NACK消息依次分别 对应 P0、 Pl、 P2这 3个不同的数据子包。 (四) 步骤 S410 在该步骤中,终端在下一上行传输块中相应的上行物理帧发送重传数据 子包的操作具体为: 终端根据映射关系确定应答消息(ACK/NACK )对应的 上行物理帧的位置; 根据确定的位置, 终端确定下一上行传输块中的相应的 上行物理帧, 其中, 相应的上行物理帧在下一上行传输中的位置与确定的位 置一致; 之后, 终端在相应的上行物理帧发送重传数据包。 具体地, 终端首先解调这 3 个不同位置的 ACK/NACK 消息, 如果是 NACK消息, 表示基站没有成功解调数据, 则终端在接下来的 3个连续上行 物理帧组成的上行传输块 (即, 下一上行传输块) 上对应的上行物理帧位置 的相应信道资源上发送第一级重传数据子包。 需要说明的是, 重传数据子包 与最初传输的数据子包可以相同, 也可以不相同。 另夕卜, 在步骤 S410中: 对于数据子包解调成功的上行物理帧, 终端在 下一上行传输块中相应的上行物理帧发送其他数据子包。 即, 如果是 ACK 消息, 表示基站成功解调数据, 则终端在接下来的 3个连续上行物理帧组成 的上行传输块上对应的物理帧位置发送其他数据子包 (其它数据子包的 HARQ重传处理方法与数据子包的相同)。 优选地, 在该实施例中, 还包括以下处理: 预先设置重传阈值, 并且在 解调失败的数据子包的重传次数达到重传阈值的情况下, 不再进行重传。 其 中, 终端第 n次发送的重传数据子包是第 n级重传数据子包, 其中, n<=N, N为重传阈值, n和 N均为正整数。 基于上述内容, 接下来, 基站如果正确解调了第一级重传数据子包后, 则在接下来的 5个连续下行物理帧组成的下行传输块上对应的下行物理帧组 位置发送 ACK 消息; 基站如果没有正确解调第一级重传数据子包, 则在接 下来的 5个连续下行物理帧组成的下行传输块上对应的下行物理帧组位置发 送 NACK消息。 之后, 终端分别解调这 3个不同位置的 ACK/NACK消息, 如果是 ACK 消息, 表示基站成功解调数据, 则终端在接下来的 3个连续上行物理帧组成 的上行传输块上对应的上行物理帧位置发送其他数据子包;如果是 NACK消 息, 表示基站仍然没有成功解调数据, 则终端在上述的接下来的 3个连续上 行物理帧组成的上行传输块上对应的上行物理帧位置的相应信道资源上发送 第二级重传数据子包。 也就是说, 只要基站正确解调下行数据子包, 就在对应的下行物理帧组 位置上发送 ACK消息, 终端接收到 ACK消息, 就在对应的上行物理帧位置 上发送其他数据子包; 只要基站没有正确解调上行数据子包, 就在对应的下 行物理帧组位置上发送 NACK消息, 终端接收到 NACK消息, 就在对应的 上行物理帧位置的相应信道资源上发送第 N级重传数据子包, 优选地, 可以 将重传阈值 N的设置为 5 , 也可以为其它的正整数。 实例 2 在一个 superframe的传输单位里,终端通过 3个连续上行物理帧组成的 上行传输块向基站发送上行数据, 对于这 3个上行物理帧位置发送的数据子 包, 分别定义为 P0、 Pl、 P2 , 即, 在上行传输块第一个物理帧发送的数据子 包定义为 P0, 第二个物理帧发送的数据子包定义为 P1 , 第三个物理帧发送 的数据子包定义为 P2。 其中, 在该实例中, 数据子包起始传输的上行传输块 在 superframe的位置不受限制, 可以是第一个上行传输块, 也可以是第二个 上行传输块。 Superframe的边界对数据子包的 HARQ重传处理没有限制。 以发送数据子包 P0为例, P0在图 5 ( a ) 所示的上行第一个物理帧 R0 上发送。 基站如果正确解调 P0, 则在接下来的下行传输块的第一个物理帧组的 位置发送 ACK消息, 也即, ACK消息可以在物理帧 F5或者 F6上发送, 其 中, F5 为下行物理帧组的第一个下行物理帧, F6 为下行物理帧组的第二个 下行物理帧, 即, 基站在下行物理帧组中的第一个或者第二个下行物理帧发 送应答消息。 如图 5 ( a ) 所示, 终端接收到 ACK消息后, 则在接下来的上 行传输块的第一个物理帧, 也即 R3的位置发送其它数据子包 P,0; 其它数据 子包 P,0的 HARQ重传处理方法与数据子包 P0相同。 基站如果没有正确解调 P0, 则在接下来的下行传输块的第一个物理帧 组的位置发送 NACK消息, 也即, NACK消息可以在物理帧 F5或者 F6上 发送。 如图 5 ( b ) 所示, 终端接收到 NACK消息后, 则在接下来的上行传 输块的第一个物理帧也即 R3位置的相应信道资源上发送第一级重传数据子 包 R1P0。 基站如果正确解调了第一级重传数据子包,则在接下来的下行传输块的 第一个物理帧组位置发送 ACK消息; 终端接收到 ACK消息后, 则在接下来 的上行传输块的第一个物理帧的位置发送其它数据子包 P,0。 基站如果没有正确解调第一级重传数据子包,则在接下来的下行传输块 的第一个物理帧组位置发送 NACK消息; 终端接收到 NACK消息后, 则在 接下来的上行传输块的第一个物理帧位置的相应信道资源上发送第二级重传 数据子包 R2P0。 同理, 只要基站正确解调下行数据子包, 就在对应的下行物理帧组位置 上发送 ACK消息, 终端接收到 ACK消息, 就在对应的上行物理帧位置上发 送其他数据子包; 只要基站没有正确解调下行数据子包, 就在对应的下行物 理帧组位置上发送 NACK消息, 终端接收到 NACK消息, 就在对应的上行 物理帧位置的相应信道资源上需要发送第 N级重传数据子包, 其中, 可以将 重传阈值 N设置为 5 , 也可以为其它的正整数。 以 jt匕类推, 对于 P1,P2数据子包的 HARQ重传处理方法与数据子包 P0 的相同, 以下进行简要描述。 对于 P1 , 终端在 R1进行发送, 再次参照图 5 ( a ), 基站如果正确解调, 则在 F7上发送 ACK, 之后, 终端在下一上行传输块的 R4的位置发送数据 子包 P,l ; 其它数据子包 P,l的 HARQ重传处理方法与数据子包 PI的相同; 否则, 参照图 5 ( b ), 基站如果没有正确解调, 则在 F7上发送 NACK, 之后, 终端在下一下行传输块的 R4的位置发送第一级重传数据子包 R1P1。 对于 P2 , 终端在 R2进行发送, 再次参照图 5 ( a ), 基站如果正确解调, 则在 F8和 /或 F9上发送 ACK, 之后, 终端相应地在下一下行传输块的 R5 的位置发送数据子包 P,2; 其它数据子包 P,2的 HARQ重传处理方法与数据 子包 P2的相同; 否则, 参照图 5 ( b ), 基站如果没有正确解调, 则在 F8和 / 或 F9上发送 NACK, 之后, 终端在下一下行传输块的 R5的位置发送第一级 重传数据子包 R1P2。 系统实施例二 根据本发明的另一方面, 提供了一种基于无线通信 TDD系统的上行重 传系统, 上述无线通信 TDD 系统基于将包括连续的 5个下行物理帧的下行 传输块用于下行传输, 将包括连续的 3个上行物理帧的上行传输块用于上行 传输的 TDD方式 (即, TDD 5:3方式)。 该上行重传系统可以包括一个基站、 以及一个或多个终端, 为了便于描 述, 图 6中示出了一个基站和一个终端。 如图 6所示, 在根据本发明实施例的上行重传系统中, 终端包括: 上行 传输单元 602、 应答消息解调单元 604、 重传单元 606, 基站包括: 解调单元 608、 下行传输单元 610。 下面对图 6所示的各模块的功能进行说明。 上行传输单元 602, 用于使用上行传输块的上行物理帧向基站发送一个 或多个数据子包; 应答消息解调单元 604 , 用于接收并解调基站发送的应答 消息, 并才艮据应答消息判断数据子包是否解调成功; 重传单元 606用于在下 一上行传输块中的相应上行物理帧发送解调失败的数据子包的重传数据子 包。 解调单元 608, 连接至上行传输单元 602和重传单元 606, 用于解调基 站接收到的上行物理帧的数据子包; 下行传输单元 610可以连接至解调单元 608 和应答消息解调单元 604 , 用于在下行传输块中的相应下行物理帧组向 终端发送用于表示是否成功解调了数据子包的应答消息, 其中, 每个下行物 理帧组都包括 1个下行物理帧或者 2个相邻的下行物理帧, 一个下行传输块 分为 3个下行物理帧组。 其中,上述的相应下行物理帧组是根据预先设定的映射关系确定的与发 送数据子包的上行物理帧相对应的下行物理帧, 其中, 映射关系为: 下行传 输块中的连续的 5个下行物理帧按照位置先后顺序分成 3个下行物理帧组, 其中的一个下行物理帧组包括一个下行物理帧, 另外两个下行物理帧组分别 包括两个相邻的下行物理帧, 各个下行物理帧组与上行传输块中的连续的 3 个上行物理帧在位置上按照先后顺序——对应。 其中, 下行传输块可以按照如下方式中的任一种进行分组: 方式一: 第一和第二个下行物理帧构成一个下行物理帧组, 第三和第四 个下行物理帧构成一个下行物理帧组, 第五个下行物理帧构成一个下行物理 帧组; 方式二: 第一个下行物理帧构成一个下行物理帧组, 第二和第三个下行 物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理 帧组; 方式三: 第一和第二个下行物理帧构成一个下行物理帧组, 第三个下行 物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理 帧组。 其中,上述的相应上行物理帧在下一上行传输块中的位置与发送解调失 败的数据子包的上行物理帧在上行传输块中的位置一致。 该系统实施例二中的技术细节可以参照上述的方法实施例二的技术方 案来理解和实施, 对于相同或相似的内容, 在此不再进行重复描述。 通过上面的描述可以看出,借助于方法实施例二或系统实施例二提供的 技术方案, 在 TDD 5:3方式下的上行数据传输中, 通过使基站在与上行物理 帧对应的下行物理帧组上发送应答消息, 终端可以重传上行数据, 从而可以 保证上行数据传输的准确性。 如上所述, 在 TDD 5:3方式下, 在下行传输中, 通过在上行传输块中与 下行物理帧组对应的上行物理帧传输应答符号, 或者在上行传输中, 通过在 与上行物理帧对应的下行传输块中的相应下行物理帧组传输应答符号, 实现 了数据的重传, 从而弥补了相关技术中缺少一种重传机制的缺陷。
TDD m:n方式中, m: n取值为 3:5的说明 方法实施例三 首先, 针对 TDD 3:5方式的下行数据传输中缺少一种重传机制的问题, 本发明实施例提供了一种基于无线通信 TDD 系统的下行重传方法, 上述的 无线通信 TDD 系统基于将包括连续的 3个下行物理帧的下行传输块用于下 行传输, 将包括连续的 5 个上行物理帧的上行传输块用于上行传输的 TDD 方式 (即, TDD 3:5方式)。 图 7是根据本发明实施例的基于无线通信 TDD系统的下行重传方法的 流程图, 如图 7所示, 该方法包括以下处理 (步骤 S702至步骤 S710 )。 步骤 S702, 预先设置上行物理帧与下行物理帧的映射关系, 使得下行 传输块中的 3个下行物理帧与上行传输块中的其中 3个物理帧按照位置先后 顺序—对应; 步骤 S704, 基站使用下行传输块的下行物理帧向一个或多个终端发送 一个或多个数据子包; 步骤 S706 , 终端解调接收到的数据子包; 步骤 S708 , 基于解调结果, 终端发送用于表示是否成功解调了数据子 包的应答消息, 或者, 终端仅在解调成功的情况下进行应答消息的发送; 具 体地, 如果终端解调数据子包成功, 则终端在下行传输块之后的上行传输块 的其中 3个上行物理帧中的相应上行物理帧向基站发送用于表示成功解调数 据子包的应答消息; 如果终端解调数据子包失败, 则终端在下行传输块之后 的上行传输块的其中 3个上行物理帧中的相应上行物理帧向基站发送用于表 示解调数据子包失败的应答消息, 或者, 如果终端解调数据子包失败, 则终 端不向基站发送任何消息; 步骤 S710, 基站解调应答消息, 并才艮据应答消息判断数据子包是否解 调成功, 如果基站没有接收到任何消息, 则表示终端解调数据子包失败; 对 于解调失败的数据子包, 基站在下一下行传输块中相应的下行物理帧发送重 传数据子包。 以下将进一步描述图 7所示方法中各个步骤的细节处理。 在步骤 S702中, 优选地, 该 3个上行物理帧为上行传输块的中间 3个 上行物理帧; 选择中间 3个物理帧来发送应答消息是因为, 相比于上行传输 块中的第一个上行物理帧和最后一个上行物理帧, 选择中间的物理帧可以保 证终端和基站有相对较多的处理时间。 例如, 如果选择第一个物理帧发送应 答消息, 则会因为离基站发送下行数据子包的下行物理帧太近而使得终端没 有足够的时间来进行应答处理, 如果选择最后一个物理帧发送应答消息, 虽 然终端的处理时间足够, 但是由于离下一下行传输块的位置太近, 而导致基 站没有足够的时间来根据终端的应答消息来进行发送或重传操作。 选择中间 3个下行物理帧来发送应答消息, 则可以避免上述问题。 当然, 也可以选择其他上行物理帧, 均在本发明的保护范围之内。 为了 便于描述, 以下仅以中间 3个物理帧为例进行说明。 在步骤 S704中, 数据子包发送的起始位置可以在 superframe的第一个 下行传输块, 也可以在 superframe的第二个下行传输块, superframe的边界 对数据子包的 HARQ重传处理没有限制。 为了便于描述, 在本文中, 将假设 数据子包从 superframe的第一个下行传输块开始传输。 在步骤 S708中, 终端可以根据预定的对应规则选择中间的 3个上行物 理帧的任一物理帧来发送应答消息, 根据实施的需要, 可以设置不同的对应 规则, 只要在中间 3个上行物理帧的任一物理帧即可,本发明对此没有限制, 均在本发明的保护范围之内。 在步骤 S710中, 对于解调成功 (ACK ) 的数据子包, 基站在下一下行 传输块中相应的下行物理帧发送其他数据子包(其他数据子包的 HARQ重传 处理方法与上面描述的数据子包的处理方法相同)。 ύ选地, 可以预先设置重传阈值 (Ν ), 并且在解调失败的上行扩展数 据子包的发送次数达到重传阈值的情况下, 不再进行重传。 例如, 可以将 Ν 设置为 5。 相应地, 基站第 η次发送的重传数据子包为第 η级重传数据子包, 其中, η<=Ν, η和 Ν均为正整数。 实例 3 在一个 superframe的传输单位里,基站通过 3个连续下行物理帧组成的 下行传输块向终端发送下行数据。 为了阐述方便, 将这三个物理帧的位置分 别定义为 L0、 Ll、 L2 , 从这三个位置发送的数据子包分别定义为 P0、 Pl、 P2 , 这三个不同位置的数据子包可以发给一个终端, 也可以是发给不同的终 端。 才艮据上文描述的映射关系, F0对应于 Rl , F 1对应于 R2 , F2对应于 R3。 数据子包发送的起始位置可以在 superframe的第一个下行传输块,也可 以在 superframe的第二个或者第三个下行传输块, 为了阐述方便, 假定数据 子包先从 superframe的第一个下行传输块上开始传输。 以发送数据子包 P0为例, P0在图 8中的 L0位置上发送, 也就是说, P0在物理帧 F0上发送。 终端如果正确解调 P0, 则在 R1的位置发送 ACK消息, 如图 8所示, 基站接收到 ACK 消息后, 则在接下来的下行传输块的第一个物理帧的位置 发送其它数据子包 P,0。 其它数据子包 P,0的 HARQ重传处理方法与数据子 包 P0的 目同。 另一方面, 终端如果没有正确解调 P0, 则在 R1的位置发送 NACK消 息, 如图 3所示, 基站接收到 NACK消息后, 则在接下来的下行传输块的第 一个物理帧位置的相应信道资源上发送第一级重传数据子包 R1P0。 终端如果正确解调了第一级重传数据子包后,则在 R6的位置发送 ACK 消息; 基站接收到 ACK 消息后, 则在接下来的下行传输块的第一个物理帧 的位置发送其它数据子包 P'0。 另一方面, 终端如果没有正确解调了第一级重传数据子包, 则在 R6的 位置发送 NACK消息。 基站接收到 NACK消息后, 则在接下来的下行传输 块的第一个物理帧位置的相应信道资源上发送第二级重传数据子包 R2P0。 同理, 只要终端正确解调下行数据子包, 则在对应的物理帧位置发送 ACK消息, 基站接收到 ACK消息, 就在对应的物理帧位置发送其他数据子 包;只要终端没有正确解调下行数据子包,则在对应的物理帧位置发送 NACK 消息, 基站接收到 NACK消息, 就在对应的物理帧位置的相应信道资源上需 要发送第 N级重传数据子包, 优选地, N取值可以为 5 , 也可以取为其它的 正整数。 以 jtb类推, 数据子包 Pl、 P2的 HARQ重传处理方法与数据子包 P0的 相同, 只不过在下行传输块分别对应第二至第三个物理帧位置, 上行传输块 分别对应第三至第四个物理帧位置而已, 即, P1对应下行传输块的第二个物 理帧位置, 对应上行传输块的第三个物理帧位置; P1对应下行传输块的第三 个物理帧位置, 对应上行传输块的第四个物理帧位置。 另外需要说明的是,数据子包起始传输的下行传输块在 superframe的位 置不受限制, 可以是第一个下行传输块, 也可以是第二个下行传输块。 Superframe的边界对数据子包的 HARQ重传处理没有限制。 系统实施例三 才艮据本发明实施例,提供了一种基于无线通信时分双工系统的下行重传 系统, 无线通信时分双工系统包括基站以及一个或多个终端, 并且基于将包 括连续的 3个下行物理帧的下行传输块用于下行传输, 将包括连续的 5个上 行物理帧的上行传输块用于上行传输的时分双工方式 (即, TDD 3:5方式)。 该下行重传系统可以包括一个基站、 以及一个或多个终端。 为了便于描 述, 图 3中仅示出了一个基站和一个终端。 如图 9所示,根据本发明实施例的基于无线通信时分双工系统的下行重 传系统中, 基站包括下行传输单元 902、 应答消息解调单元 904、 重传单元 906; 终端包括解调单元 908和上行传输单元 910。 下面对图 9所示的各模块的功能进行说明。 下行传输单元 902 , 用于使用下行传输块的下行物理帧向一个或多个终 端发送一个或多个数据子包; 应答消息解调单元 904 , 用于接收并解调终端 发送的应答消息, 并根据应答消息判断数据子包是否解调成功; 重传单元 906 , 用于使用下一下行传输块中的相应的下行物理帧发送解调失败的数据 子包的重传数据子包。 解调单元 908 , 用于解调终端接收到的数据子包; 上行传输单元 910 , 用于在上行传输块的其中 3个上行物理帧中的相应上行物理帧向基站发送用 于表示是否成功解调了数据子包的应答消息, 其中, 上述相应上行物理帧为 按照预定映射关系确定的上行物理帧, 预定映射关系为: 上行传输块的其中 3个上行物理帧与下行传输块的 3个下行物理帧按照位置先后顺序——对应。 优选地, 该 3个上行物理帧是上行传输快的中间 3个物理帧。 优选地,基站可以进一步包括: 重传阈值设置单元,用于设置重传阈值, 并且在解调失败的数据子包的发送次数达到重传阈值的情况下, 不再进行重 传。 其中, 重传单元使用的相应的下行物理帧在下一下行传输块中的位置, 与下行传输单元使用的下行物理帧在下行传输块中的位置一致。 方法实施例四 根据本发明实施例, 提供了一种基于无线通信 TDD系统的上行重传方 法, 上述无线通信 TDD 系统基于将包括连续的 3个下行物理帧的下行传输 块用于下行传输, 将包括连续的 5个上行物理帧的上行传输块用于上行传输 的 TDD方式 ( TDD 3:5方式)。 如图 10所示, 根据本发明实施例的上行重传方法包括以下处理: 步骤 S 1002 , 预先设置上行物理帧与下行物理帧的映射关系, 每个上行 物理帧均具有与之对应的下行物理帧, 其中, 每个下行物理帧对应于一个上 行物理帧或两个连续的上行物理帧, 且每个下行物理帧对应不同的上行物理 帧, 为了便于描述, 我们引入了上行物理帧组的概念, 将与一个下行物理帧 对应的一个上行物理帧或连续的两个上行物理帧称为上行物理帧组, 这样, 可以理解, 每个上行物理帧组包括 1个上行物理帧或者 2个相邻的上行物理 帧, 一个上行传输块可以分为 3个上行物理帧组; 步骤 S1004 , 一个或多个终端使用上行传输块的上行物理帧 (组)向基 站发送一个或多个数据子包; 步骤 S1006 , 基站解调接收到的上行物理帧组的数据子包; 步骤 S1008 , 基于解调结果以及所述映射关系, 所述基站发送用于表示 是否成功解调了所述数据子包的应答消息, 或者, 所述基站仅在解调成功的 情况下进行应答消息的发送; 具体地, 如果所述基站解调所述数据子包成功, 端发送用于表示解调所述数据子包成功的应答消息; 如果所述基站解调所述 数据子包失败, 则所述基站在所述上行传输块之后的下行传输块的相应下行 物理帧向所述终端发送用于表示解调所述数据子包失败的应答消息, 或者, 如果基站解调数据子包失败, 则基站不向终端发送任何消息; 步骤 S1010 , 终端接收并解调应答消息, 并根据应答消息判断数据子包 是否解调成功, 如果终端没有接收到任何消息, 则表示基站解调数据子包失 败; 对于解调失败的数据子包, 终端在下一上行传输块中相应的上行物理帧 组发送解调失败的数据子包的重传数据子包。 以下将进一步描述图 10所示方法中各个步骤的细节处理。 (一) 步骤 S1002 该步骤中提到的映射关系为:上行传输块中的连续的 5个上行物理帧按 照位置先后顺序分成 3个上行物理帧组, 其中的一个上行物理帧组包括一个 上行物理帧, 另外两个上行物理帧组分别包括两个相邻的上行物理帧, 各个 上行物理帧组与上行传输块中的连续的 3个下行物理帧在位置上按照先后顺 序——对应, 即, 上行传输块中的第一个上行物理帧组对应于下行传输块中 的第一个下行物理帧, 第二个上行物理帧组对应于下行传输块中的第二个下 行物理帧, 第三个上行物理帧组对应于下行传输块中的第三个下行物理帧。 当然, 也可以设置其它对应关系, 本发明对此没有限制。 其中, 下行传输块可以按照如下方式中的任一种进行分组: 方式一: 第一和第二个上行物理帧构成一个上行物理帧组, 第三和第四 个上行物理帧构成一个上行物理帧组, 第五个上行物理帧构成一个上行物理 帧组; 方式二: 第一个上行物理帧构成一个上行物理帧组, 第二和第三个上行 物理帧构成一个上行物理帧组, 第四和第五个上行物理帧构成一个上行物理 帧组; 方式三: 第一和第二个上行物理帧构成一个上行物理帧组, 第三个上行 物理帧构成一个上行物理帧组, 第四和第五个上行物理帧构成一个上行物理 帧组。 具体地,每个下行物理帧都对应于与其存在对应关系的上行物理帧组中 的一个或两个上行物理帧。 例如, 如果按照上述的分组方式三, 下行传输块 中的第 3个下行物理帧可以对应于第三个上行物理帧组中的第 4个上行物理 帧, 也可以对应于第三个上行物理帧组中的第 5个上行物理帧, 也可以对应 于第 4和第 5个上行物理帧。 (二) 步骤 S1004 例如, 在一个 superframe的传输单位里, 按照上述分组方式, 将 5个连 续的上行物理帧组成的上行传输块分成 3组, 即, 这 5个上行物理帧中, 为 了阐述方便, 将这 3 个物理帧组的位置分别定义为 L0、 Ll、 L2 , 同时, 将 终端通过 3个上行物理帧组位置发送的数据子包, 分别定义为 P0、 Pl、 P2。 这 3个不同位置的数据子包可以由一个终端发送给基站, 也可以由不同的终 端发送给基站。 发送数据子包的起始位置可以在 superframe的第一个上行传 输块上, 也可以在 superframe的第二个上行传输块上。 在本发明中, 为了便于描述, 假定数据子包先从 superframe的第一个上 行传输块上开始传输, 并且假定 3个位置都发送了数据子包, 且 3个数据子 包由同一个终端发送给基站。
(三) 步骤 S1006和步骤 S1008 基站解调了这 3个的数据子包之后,将在接下来的 3个连续下行物理帧 组成的下行传输块上的相应下行物理帧位置分别发送 ACK或者 NACK消息。 ACK表示基站成功解调数据, NACK表示基站没有成功解调数据。根据步骤 S1002 中设置的映射关系, 这 3个不同位置的 ACK/NACK消息依次分别对 应 P0、 Pl、 P2这 3个不同的数据子包。
(四) 步骤 S1010 在该步骤中,终端在下一上行传输块中相应的上行物理帧组发送重传数 据子包的操作具体为: 终端根据映射关系确定应答消息( ACK/NACK )对应 的上行物理帧组的位置; 根据确定的位置, 终端确定下一上行传输块中的相 应的上行物理帧组, 其中, 相应的上行物理帧组在下一上行传输中的位置与 确定的位置一致; 之后, 终端在相应的上行物理帧组发送重传数据包。 具体地, 终端首先解调这 3 个不同位置的 ACK/NACK 消息, 如果是 NACK消息,表示基站没有成功解调数据,则终端在接下来的上行传输块(即, 下一上行传输块) 上对应的上行物理帧组位置的相应信道资源上发送第一级 重传数据子包。 需要说明的是, 重传数据子包与最初传输的数据子包可以相 同, 也可以不 目同。 另外, 在步骤 S1010中: 对于解调成功的数据子包, 终端在下一上行传 输块中相应的上行物理帧组发送其他数据子包。 即, 如果是 ACK 消息, 表 示基站成功解调数据, 则终端在接下来的上行传输块上的对应的物理帧组位 置发送其他数据子包(其它数据子包的 HARQ重传处理方法与数据子包的相 同)。 优选地, 在该实施例中, 还包括以下处理: 预先设置重传阈值, 并且在 解调失败的数据子包的重传次数达到重传阈值的情况下, 不再进行重传。 其 中, 终端第 n次发送的重传数据子包是第 n级重传数据子包, 其中, n<=N, N为重传阈值, n和 N均为正整数。 基于上述内容, 接下来, 基站如果正确解调了第一级重传数据子包后, 则在接下来的 3个连续下行物理帧组成的下行传输块上对应的下行物理帧位 置发送 ACK 消息; 基站如果没有正确解调第一级重传数据子包, 则在接下 来的 3 个连续下行物理帧组成的下行传输块上对应的下行物理帧位置发送 NACK消息。 之后, 终端分别解调这 3个不同位置的 ACK/NACK消息, 如果是 ACK 消息, 表示基站成功解调数据, 则终端在接下来的上行传输块上对应的上行 物理帧组位置发送其他数据子包; 如果是 NACK消息, 表示基站仍然没有成 功解调数据, 则终端在上述的接下来的上行传输块上对应的上行物理帧组位 置的相应信道资源上发送第二级重传数据子包。 也就是说, 只要基站正确解调下行数据子包, 就在对应的下行物理帧位 置上发送 ACK消息, 终端接收到 ACK消息, 就在对应的上行物理帧组位置 上发送其他数据子包; 只要基站没有正确解调上行数据子包, 就在对应的下 行物理帧位置上发送 NACK消息, 终端接收到 NACK消息, 就在对应的上 行物理帧组位置的相应信道资源上发送第 N级重传数据子包, 优选地, 可以 将重传阈值 N的设置为 5 , 也可以为其它的正整数。 实例 4 在一个 superframe的传输单位里, 按照上面的划分方式, 将 5个连续上 行物理帧组成的上行传输块分为三个上行物理帧组, 即, 第 1个和第 2个上 行物理帧为第一个上行物理帧组,第 3个上行物理帧为第二个上行物理帧组, 第 4个和第 5个上行物理帧为第三个上行物理帧组, 终端使用这三个物理帧 组向基站发送上行数据, 对于这 3个上行物理帧组位置 L0、 Ll、 L2发送的 数据子包, 分别定义为 P0、 Pl、 P2, 即, 在上行传输块第一个物理帧组发送 的数据子包定义为 P0 , 第二个物理帧组发送的数据子包定义为 P1 , 第三个 物理帧组发送的数据子包定义为 P2。 其中, 在该实例中, 数据子包起始传输 的上行传输块在 superframe的位置不受限制, 可以是第一个上行传输块, 也 可以是第二个上行传输块。 Superframe的边界对数据子包的 HARQ重传处理 没有限制。 以发送数据子包 P0为例, P0在图 11 ( a ) 所示的上行第一个物理帧组 位置, 即 R0或 R1上发送, 或者同时跨 R0和 R1发送。 基站如果正确解调 P0, 则在接下来的下行传输块的第一个物理帧 F3的 位置发送 ACK消息。 如图 11 ( a ) 所示, 终端接收到 ACK消息后, 则在接 下来的上行传输块的第一个物理帧组位置 (R5/R6 ) 的相应信道资源上发送 其它数据子包 P,0; 其它数据子包 P,0的 HARQ重传处理方法与数据子包 P0 相同。 基站如果没有正确解调 P0, 则在接下来的下行传输块的第一个物理帧 的位置发送 NACK消息。 如图 11 ( b )所示, 终端接收到 NACK消息后, 则 在接下来的上行传输块的第一个物理帧组位置 (R5/R6 ) 的相应信道资源上 发送第一级重传数据子包 R1P0。 基站如果正确解调了第一级重传数据子包,则在接下来的下行传输块的 第一个物理帧位置发送 ACK消息; 终端接收到 ACK消息后, 则在接下来的 上行传输块的第一个物理帧组的位置发送其它数据子包 P, 0。 基站如果没有正确解调第一级重传数据子包,则在接下来的下行传输块 的第一个物理帧位置发送 NACK消息; 终端接收到 NACK消息后, 则在接 下来的上行传输块的第一个物理帧组位置的相应信道资源上发送第二级重传 数据子包 R2P0。 同理, 只要基站正确解调下行数据子包, 就在对应的下行物理帧位置上 发送 ACK消息, 终端接收到 ACK消息, 就在对应的上行物理帧组位置上发 送其他数据子包; 只要基站没有正确解调下行数据子包, 就在对应的下行物 理帧位置上发送 NACK消息, 终端接收到 NACK消息, 就在对应的上行物 理帧组位置的相应信道资源上需要发送第 N级重传数据子包, 其中, 可以将 重传阈值 N设置为 5 , 也可以为其它的正整数。 以此类推, 对于 P1,P2数据子包的 HARQ重传处理方法与数据子包 P0 的相同, 以下进行简要描述。 对于 P1 , 终端在 R2进行发送, 再次参照图 11 ( a ), 基站如果正确解 调, 则在 F4上发送 ACK, 之后, 终端在下一上行传输块的 R7的位置发送 数据子包 P,l ;其它数据子包 P,l的 HARQ重传处理方法与数据子包 PI的相 同; 否则, 参照图 11 ( b ), 基站如果没有正确解调, 则在 F4上发送 NACK, 之后, 终端在下一下行传输块的 R7的位置发送第一级重传数据子包 R1P1。 对于 P2, 终端在 R3、 R4、 或者跨 R3和 R4进行发送, 再次参照图 11
( a ) , 基站如果正确解调, 则在 F5上发送 ACK, 之后, 终端相应地在下一 下行传输块的 R8、 R9、 或者跨 R8和 R9的位置发送数据子包 P,2; 其它数 据子包 P,2的 HARQ重传处理方法与数据子包 P2的相同; 否则, 参照图 11
( b ) , 基站如果没有正确解调, 则在 F5上发送 NACK, 之后, 终端在下一 下行传输块的 R8、 R9、 或者跨 R8 和 R9 的位置发送第一级重传数据子包 R1P2。 系统实施例四 根据本发明的另一方面, 提供了一种基于无线通信 TDD系统的上行重 传系统, 上述无线通信 TDD 系统基于将包括连续的 3个下行物理帧的下行 传输块用于下行传输, 将包括连续的 5个上行物理帧的上行传输块用于上行 传输的 TDD方式 (即, TDD 3:5方式)。 该上行重传系统可以包括一个基站以及一个或多个终端, 为了便于描 述, 图 12中示出了一个基站和一个终端。 如图 12所示, 在根据本发明实施例的上行重传系统中, 终端包括: 上 行传输单元 1202、 应答消息解调单元 1204、 重传单元 1206, 基站包括: 解 调单元 1208、 下行传输单元 1210。 下面对图 12所示的各模块的功能进行说明。 上行传输单元 1202 , 用于使用上行传输块的上行物理帧组向基站发送 一个或多个数据子包, 其中, 每个上行物理帧组都包括 1个上行物理帧或者 2个相邻的上行物理帧, 一个上行传输块分为 3个上行物理帧组; 应答消息 解调单元 1204, 用于接收并解调基站发送的应答消息, 并根据应答消息判断 数据子包是否解调成功; 重传单元 1206, 用于在下一上行传输块中的相应上 行物理帧组发送解调失败的数据子包的重传数据子包。 解调单元 1208, 连接至上行传输单元 1202和重传单元 1206, 用于解调 基站接收到的上行物理帧组的数据子包; 下行传输单元 1210 可以连接至解 调单元 1208和应答消息解调单元 1204 , 用于在下行传输块中的相应下行物 理帧向终端发送用于表示是否成功解调了数据子包的应答消息。 其中,上述的相应下行物理帧是根据预先设定的映射关系确定的与发送 数据子包的上行物理帧组相对应的下行物理帧, 其中, 映射关系为: 上行传 输块中的连续的 5个上行物理帧按照位置先后顺序分成 3个上行物理帧组, 其中的一个上行物理帧组包括一个上行物理帧, 另外两个上行物理帧组分别 包括两个相邻的上行物理帧, 各个上行物理帧组与下行传输块中的连续的 3 个下行物理帧在位置上按照先后顺序——对应。 其中, 上行传输块可以按照如下方式中的任一种进行分组: 方式一: 第一和第二个上行物理帧构成一个上行物理帧组, 第三和第四 个上行物理帧构成一个上行物理帧组, 第五个上行物理帧构成一个上行物理 帧组; 方式二: 第一个上行物理帧构成一个上行物理帧组, 第二和第三个上行 物理帧构成一个上行物理帧组, 第四和第五个上行物理帧构成一个上行物理 帧组; 方式三: 第一和第二个上行物理帧构成一个上行物理帧组, 第三个上行 物理帧构成一个上行物理帧组, 第四和第五个上行物理帧构成一个上行物理 帧组。 其中,上述的相应上行物理帧组在下一上行传输块中的位置与发送解调 失败的数据子包的上行物理帧组在上行传输块中的位置一致。 该系统实施例四中的技术细节可以参照上述的方法实施例四的技术方 案来理解和实施, 对于相同或相似的内容, 在此不再进行重复描述。 通过上面的描述可以看出,借助于方法实施例四或系统实施例四提供的 技术方案, 在 TDD 3:5方式下的上行数据传输中, 通过使基站在与上行物理 帧组对应的下行物理帧上发送应答消息, 终端可以重传上行数据, 从而可以 保证上行数据传输的准确性。 如上所述, 在 TDD 3:5方式下, 在下行传输中, 通过在中间的上行物理 帧传输应答符号(应答消息),可以使得基站和终端有相对充足的时间来解析 来自对方的数据或消息并进行后续处理, 实现了数据的重传,在上行传输中, 通过在与上行物理帧组对应的下行物理帧传输应答符号, 同样实现了数据的 重传, 从而弥补了相关技术中缺少一种重传机制的缺陷。 TDD m:n方式中, m: n取值为 6:2的说明 方法实施例五 首先, 针对 TDD 6:2方式的下行数据传输中缺少一种重传机制的问题, 本发明实施例提供了一种基于无线通信 TDD 系统的下行重传方法, 上述的 无线通信 TDD 系统基于将包括连续的 6个下行物理帧的下行传输块用于下 行传输, 将包括连续的 2 个上行物理帧的上行传输块用于上行传输的 TDD 方式 (即, TDD 6:2方式)。 图 13是根据本发明实施例的基于无线通信 TDD系统的下行重传方法的 流程图。 如图 13所示, 该方法包括以下处理 (步骤 S1302至步骤 S1310 )。 步骤 S1302 , 预先设置上行物理帧与下行物理帧的映射关系, 使得下行 传输块中的前三个下行物理帧与上行传输块中的第一个物理帧对应, 下行传 输块中的后三个下行物理帧与上行传输块中的第二个物理帧对应; 步骤 S 1304 ,基站使用下行传输块的下行物理帧向一个或多个终端发送 一个或多个数据子包; 步骤 S1306 , 终端解调接收到的数据子包; 步骤 S1308 , 基于解调结果以及映射关系, 终端发送用于表示是否成功 解调了数据子包的应答消息, 或者, 终端仅在解调成功的情况下进行应答消 息的发送; 具体地, 如果终端解调数据子包成功, 则终端在下行传输块之后 的上行传输块的相应上行物理帧向基站发送用于表示成功解调数据子包的应 答消息; 如果终端解调数据子包失败, 则终端在下行传输块之后的上行传输 块的相应上行物理帧向基站发送用于表示解调数据子包失败的应答消息, 或 者, 如果终端解调数据子包失败, 则终端不向基站发送任何消息; 步骤 S1310 , 基站解调应答消息, 并才艮据应答消息判断数据子包是否解 调成功, 如果基站没有接收到任何消息, 则表示终端解调数据子包失败; 对 于解调失败的数据子包, 基站在后续下行传输块中的相应下行物理帧发送重 传数据子包。 这里提到的相应下行物理帧在其所属的下行传输块中的位置与 发送数据子包的下行物理帧在下行传输块中的位置一致。 在本发明中, 为了便于描述, 假设将下行传输块的 6个下行物理帧分成 两组, 第一、 第二和第三个物理帧设为一组, 第四、 第五和第六个物理帧设 为一组, 为了阐述方便, 将这两个物理帧组的位置分别定义为 L0、 L1 , 从这 两个位置发送的数据子包分别定义为 P0、 PI , 也就是说, 在下行传输块第一 个物理帧组发送的数据子包定义为 P0 (即在这个物理帧组中任何一个或者同 时跨连续两个或者跨三个物理帧发送的数据子包定义为 P0 ), 在下行传输块 第二个物理帧组发送的数据子包定义为 Pl。这两个不同位置的数据子包可以 发给一个终端, 也可以是发给不同的终端。 数据子包发送的起始位置可以在 superframe的第一个下行传输块, 也可以在 superframe的第二个或者第三个 下行传输块。 另夕卜, 根据业务的时延敏感程度和设备的处理能力, 终端可以进行不同 的处理。 具体地, 在业务时延不敏感的情况下, 对于使用下行传输块的前三个下 行物理帧中的一个或多个物理帧发送的数据子包, 在步骤 S 1308中, 终端在 上行物理帧下行传输块之后的第一个上行传输块的第一个上行物理帧发送应 答消息; 对于使用下行传输块的后三个下行物理帧中的一个或多个物理帧发 送的数据子包, 在步骤 S 1310中, 终端在下行传输块之后的第二个上行传输 块的第二个上行物理帧发送应答消息; 并且, 在步骤 S 1308中, 基站在下行 传输块之后的第二个下行传输块发送重传数据子包。 在业务时延敏感且设备处理能力快的情况下,对于使用下行传输块的前 三个下行物理帧中的一个或多个物理帧发送的数据子包, 在步骤 S 1308中, 终端在上行物理帧下行传输块之后的第一个上行传输块的第一个上行物理帧 发送应答消息; 对于使用下行传输块的后三个下行物理帧中的一个或多个物 理帧发送的数据子包, 在步骤 S 1310中, 终端在下行传输块之后的第一个上 行传输块的第二个上行物理帧发送应答消息; 并且, 在步骤 S1308中, 基站 在下行传输块之后的第一个下行传输块发送重传数据子包。 在本发明实施例中, 还可以预先设置重传阈值 (N ), 并且在解调失败 的数据子包的发送次数达到重传阈值的情况下, 不再进行重传。 相应地, 基 站第 n次发送的重传数据子包为第 n级重传数据子包, 其中, n<=N, n和 N 均为正整数, 例如, 可以将 N设置为 5。 另外, 对于解调成功的数据子包, 基站在后续下行传输块中相应的下行 物理帧发送其他数据子包。 下面将结合实例 5和实例 6对图 13所示的方法进行详细说明。 实例 5: 对于时延不敏感的业务的处理 在该实施例中,对于 L0位置对应的 ACK/NACK消息的处理方式如下: 对于 L0位置的数据子包, 终端解调了 L0位置的数据子包之后, 在步 骤 S108 中, 在接下来的 2个连续上行物理帧成的上行传输块上的第一个物 理帧发送 ACK或者 NACK消息。在步骤 S110中,基站解调这个 ACK/NACK 消息, 如果是 ACK 消息, 表示终端成功解调数据, 则基站在接下来的第二 个下行传输块上的第一个物理帧组上发送其他数据子包 (其它数据子包的 HARQ重传处理方法与原数据子包的相同)。 如果是 NACK消息, 表示终端 没有成功解调数据, 则基站在接下来的第二个下行传输块上的第一个物理帧 组的相应信道资源上发送第一级重传数据子包。 之后, 终端如果正确解调了第一级重传数据子包后, 则在接下来的 2 个连续上行物理帧成的上行传输块上第一个物理帧位置发送 ACK 消息; 终 端如果没有正确解调了第一级重传数据子包, 则在接下来的 2个连续上行物 理帧成的上行传输块上第一个物理帧位置发送 NACK消息。 接下来, 基站解调 ACK/NACK消息, 如果是 ACK消息, 则基站在接 下来的第二个下行传输块上的第一个物理帧组位置上发送其他数据子包 (其 它数据子包的 HARQ重传处理方法与原数据子包的相同)。 如果是 NACK消 息, 则基站在接下来的第二个下行传输块上的第一个物理帧组的相应信道资 源上发送第二级重传数据子包。 也就是说, 只要终端正确解调了 L0位置的下行数据子包, 则在接下来 的上行传输块上第一个物理帧位置上发送 ACK消息,基站接收到 ACK消息, 就在接下来的第二个下行传输块上的第一个物理帧组上发送其他数据子包; 只要终端没有正确解调 L0位置的下行数据子包, 则在接下来的上行传输块 上第一个物理帧位置上发送 NACK消息, 基站接收到 NACK消息, 就在接 下来的第二个下行传输块上的第一个物理帧组的相应信道资源上需要发送第 N级重传数据子包, 优选地, N取值可以为 5 , 也可以取为其它的正整数。 对于 L1位置对应的 ACK/NACK消息的处理方式 ¾口下: 终端解调了 L1位置的数据子包之后, 在接下来的第二个上行传输块上 的第二个物理帧位置发送 ACK或者 NACK消息。 基站解调这个 ACK/NACK消息, 如果是 ACK消息, 表示终端成功解 调数据, 则基站在接下来的下行传输块上的第二个物理帧组上发送其他数据 子包 (其它数据子包的 HARQ重传处理方法与原数据子包的相同)。 如果是 NACK消息, 表示终端没有成功解调数据, 则基站在接下来的下行传输块上 的第二个物理帧组的相应信道资源上发送第一级重传数据子包。 终端如果正确解调了第一级重传数据子包后,则在接下来的第二个上行 传输块上第二个物理帧位置发送 ACK 消息; 终端如果没有正确解调了第一 级重传数据子包, 则在接下来的第二个上行传输块上第二个物理帧位置发送 NACK消息。 基站解调这个 ACK/NACK消息, 如果是 ACK消息, 则基站在接下来 的下行传输块上的第二个物理帧组上发送其他数据子包 (其它数据子包的 HARQ重传处理方法与原数据子包的相同)。 如果是 NACK消息, 则基站在 接下来的下行传输块上的第二个物理帧组的相应信道资源上发送第二级重传 数据子包。 同理, 只要终端正确解调 L1位置的下行数据子包, 则在接下来第二个 上行传输块上第二个物理帧位置发送 ACK消息, 基站接收到 ACK消息, 就 在接下来的下行传输块上的第二个物理帧组上发送其他数据子包; 只要终端 没有正确解调 L1 位置的下行数据子包, 则在接下来的第二个上行传输块上 第二个物理帧位置发送 NACK消息, 基站接收到 NACK消息, 就在接下来 的下行传输块上的第二个物理帧组的相应信道资源上需要发送第 N级重传数 据子包, N的最大值一 ^:为 5 , 也可以取为其它的正整数。 通过图 14给出的示意图可以更好地理解上述过程。
(一 ) 对于 L0位置发送数据子包 P0的处理: P0在图 14 ( a ) 和图 14 ( b ) 所示的下行第一个物理帧组 L0上发送。 也就是说, P0在物理帧 F0或者 F1或者 F2上发送, 也可以跨越连续两个物 理帧, 即同时在两个物理帧 F0和 F1或者 F1和 F2上发送, 也可以跨越三个 物理帧也即同时在三个物理帧 F0、 F1 和 F2 上发送。 (对应于上述的步骤 S104 )。 终端如果正确解调 P0 , 则在 R0的位置发送 ACK消息, 如图 14 ( a ) 所示, (对应于上述的步骤 S 108 )基站接收到 ACK消息后, 则在接下来的第 二个下行传输块的第一个物理帧组 (由三个物理帧 F12、 F13和 F14组成) 上发送其它数据子包 P,0。 其它数据子包 P,0的 HARQ重传处理方法与数据 子包 P0的相同。 (对应于上述的步骤 S110 )。 终端如果没有正确解调 P0, 则在 R0的位置发送 NACK消息, 如图 14 ( b ) 所示, 基站接收到 NACK消息后, 则在接下来的第二个下行传输块的 第一个物理帧组的相应信道资源上发送第一级重传数据子包 R1P0。 终端如果正确解调了第一级重传数据子包后, 则如图 14 ( a ) 所示, 在 R4的位置发送 ACK消息; 基站接收到 ACK消息后, 则在接下来的第二个 下行传输块的第一个物理帧组的位置发送其它数据子包 P,0。 终端如果没有 正确解调第一级重传数据子包,则如图 14( b )所示,在 R4的位置发送 NACK 消息。 基站接收到 NACK消息后, 则在接下来的第二个下行传输块的第一个 物理帧组的相应信道资源上发送第二级重传数据子包 R2P0。 同理, 终端如果正确解调了 L0位置的下行数据子包, 就在接下来的上 行传输块上第一个物理帧位置发送 ACK消息, 基站接收到 ACK消息, 就在 接下来的第二个下行传输块上的第一个物理帧组上发送其他数据子包; 终端 如果没有正确解调 L0位置的下行数据子包, 则在接下来的上行传输块上第 一个物理帧位置发送 NACK消息, 基站接收到 NACK消息, 就在接下来的 第二个下行传输块上的第一个物理帧组的相应信道资源上需要发送第 N级重 传数据子包, N的最大值一 ^:为 5 , 也可以取为其它的正整数。
(二) 对于 L1位置发送数据子包 P1的处理:
P1在图 14 ( a ) 和图 14 ( b ) 所示中下行第二个物理帧组 L1上发送。 也就是说, P1在物理帧 F3或者 F4或者 F5上发送, 也可以跨越连续两个物 理帧, 即同时在两个物理帧 F3和 F4或者 F4和 F5上发送, 也可以跨越三个 物理帧也即同时在三个物理帧 F3、 F4和 F5上发送。 终端如果正确解调了 P1 , 则在 R3的位置发送 ACK消息, 如图 14 ( a ) 所示, 基站接收到 ACK 消息后, 则在接下来的下行传输块的第二个物理帧 组(由三个物理帧 F15、 F16和 F17组成)上发送其它数据子包 P,l。 其它数 据子包 P,l的 HARQ重传处理方法与数据子包 P1的相同。 终端如果没有正确解调 PI , 则在 R3的位置发送 NACK消息, 如图 14 ( b ) 所示, 基站接收到 NACK消息后, 则在接下来的下行传输块的第二个 物理帧组的相应信道资源上发送第一级重传数据子包 R1P1。 终端如果正确解调了第一级重传数据子包,则在接下来的第二个上行传 输块的第二个物理帧的位置发送 ACK消息; 基站接收到 ACK消息后, 则在 接下来的下行传输块的第二个物理帧组的位置发送其它数据子包 P, 1。 终端如果没有正确解调第一级重传数据子包,则在接下来的第二个上行 传输块的第二个物理帧的位置发送 NACK消息。基站接收到 NACK消息后, 则在接下来的下行传输块的第二个物理帧组的相应信道资源上发送第二级重 传数据子包 R2P1。 同理, 终端如果正确解调了 L1位置的下行数据子包, 则在接下来的第 二个上行传输块上第二个物理帧位置发送 ACK消息,基站接收到 ACK消息, 就在接下来的第二个下行传输块上的第二个物理帧组上发送其他数据子包; 终端如果没有正确解调 L1 位置的下行数据子包, 则在接下来的第二个上行 传输块上第二个物理帧位置发送 NACK消息, 基站接收到 NACK消息, 就 在接下来的第二个下行传输块上的第二个物理帧组的相应信道资源上需要发 送第 N级重传数据子包, N的最大值一 ^:为 5 , 也可以取为其它的正整数。 实例 2: 时延敏感而且设备处理能力快的业务处理 在该实施例中, 终端解调了 L0和 L1位置的数据子包之后, 在接下来 的 2个连续上行物理帧组成的上行传输块上分别发送 ACK或者 NACK消息。 ACK表示终端成功解调数据, NACK表示终端没有成功解调数据。 这二个不 同位置的 ACK/NACK消息依次分别对应 L0、L1这 2个不同位置的数据子包 P0和 Pl。 基站解调这 2个不同位置的 ACK/NACK消息, 如果是 ACK消息, 表 示终端成功解调数据, 则基站在接下来的 6个连续下行物理帧组成的下行传 输块上对应的物理帧组位置发送其他数据子包(其它数据子包的 HARQ重传 处理方法与原数据子包的相同)。 如果是 NACK消息, 表示终端没有成功解 调数据, 则基站在接下来的 6个连续下行物理帧组成的下行传输块上对应的 物理帧组位置的相应信道资源上发送第一级重传数据子包。 终端如果正确解调了第一级重传数据子包后,则在接下来的 2个连续上 行物理帧组成的上行传输块上对应的物理帧位置发送 ACK 消息; 终端如果 没有正确解调第一级重传数据子包, 则在接下来的 2个连续上行物理帧组成 的上行传输块上对应的物理帧位置发送 NACK消息。 基站解调这 2个不同位置的 ACK/NACK消息, 如果是 ACK消息, 表 示终端成功解调数据, 则基站在接下来的 6个连续下行物理帧组成的下行传 输块上对应的物理帧组位置发送其他数据子包。 如果是 NACK消息, 表示终 端仍然没有成功解调数据, 则基站在接下来的 6个连续下行物理帧组成的下 行传输块上对应的物理帧组位置的相应信道资源上发送第二级重传数据子 包。 同理, 终端如果正确解调下行数据子包, 则在对应的上行物理帧位置上 发送 ACK消息, 基站接收到 ACK消息, 就在对应的物理帧组位置上发送其 他数据子包; 只要终端没有正确解调下行数据子包, 则在对应的上行物理帧 位置上发送 NACK消息, 基站接收到 NACK消息, 就在对应的物理帧组位 置的相应信道资源上需要发送第 N级重传数据子包, N的最大值一 ^:为 5 , 也可以取为其它的正整数。 通过图 15 ( a )和图 15 ( b )给出的示意图可以更好地理解上述实施例。 以 L0位置发送的数据子包 P0为例。 P0在图 15 ( a )和图 15 ( b )所示 的下行第一个物理帧组 L0上发送。 也就是说, P0在物理帧 F0或者 F1或者 F2上发送, 也可以跨越连续两个物理帧, 即同时在两个物理帧 F0和 F1或者 F1和 F2上发送, 也可以跨越三个物理帧也即同时在三个物理帧 F0、 F1和 F2上发送。 终端如果正确解调 P0 , 则在 R0的位置发送 ACK消息, 如图 15 ( a ) 所示, 基站接收到 ACK 消息后, 则在接下来的下行传输块的第一个物理帧 组 (由三个物理帧 F6、 F7和 F8组成) 的位置发送其它数据子包 P,0。 其它 数据子包 P,0的 HARQ重传处理方法与数据子包 P0的相同。 终端如果没有正确解调 P0 , 则在 R0的位置发送 NACK消息, 如图 15 ( b ) 所示, 基站接收到 NACK消息后, 则在接下来的下行传输块的第一个 物理帧组位置的相应信道资源上发送第一级重传数据子包 R1P0。 终端如果正确解调了第一级重传数据子包后,则在 R2的位置发送 ACK 消息; 基站接收到 ACK 消息后, 则在接下来的下行传输块的第一个物理帧 组的位置发送其它数据子包 P,0。 终端如果没有正确解调了第一级重传数据子包, 则在 R2 的位置发送 NACK消息。基站接收到 NACK消息后, 则在接下来的下行传输块的第一个 物理帧组位置的相应信道资源上发送第二级重传数据子包 R2P0。 同理, 终端如果正确解调了 L0位置发送的下行数据子包, 则在对应的 物理帧位置发送 ACK消息, 基站接收到 ACK消息, 就在对应的物理帧组位 置发送其他数据子包; 终端如果没有正确解调下行数据子包, 则在对应的物 理帧位置发送 NACK消息, 基站接收到 NACK消息, 就在对应的物理帧组 位置的相应信道资源上发送第 N级重传数据子包, N的最大值一 ^:为 5 , 也 可以取为其它的正整数。 类似、地, 对于 P1 , 数据子包的 HARQ重传处理方法与数据子包 P0的 大致相同, 不同的是, P1在下行传输块的第二个物理帧组的位置发送, 应答 符号在上行传输块的第二个物理帧的位置发送。 方法实施例六 根据本发明实施例, 提供了一种基于无线通信 TDD系统的上行重传方 法, 上述无线通信 TDD 系统基于将包括连续的 6个下行物理帧的下行传输 块用于下行传输, 将包括连续的 2个上行物理帧的上行传输块用于上行传输 的 TDD方式 ( TDD 6:2方式)。 图 16是根据本发明实施例的基于无线通信 TDD系统的上行重传方法的 流程图。 如 16所示, 包括以下处理 (步骤 S1602至步骤 S1610 )。 步骤 S 1602 , 预先设置上行物理帧与下行物理帧的映射关系, 使得每个 上行物理帧均对应于两个连续的下行物理帧; 步骤 S1604 , 一个或多个终端使用上行传输块的上行物理帧向基站发送 一个或多个数据子包; 步骤 S 1606 , 基站解调接收到的上行物理帧的数据子包; 步骤 S1608 , 基于解调结果以及映射关系, 基站发送用于表示是否成功 解调了数据子包的应答消息, 或者, 基站仅在解调成功的情况下进行应答消 息的发送; 具体地, 如果基站解调数据子包成功, 则基站在上行传输块之后 的下行传输块的相应下行物理帧向终端发送用于表示成功解调数据子包的应 答消息; 如果基站解调数据子包失败, 则基站在上行传输块之后的下行传输 块的相应下行物理帧向终端发送用于表示解调数据子包失败的应答消息, 或 者, 如果基站解调数据子包失败, 则基站不向终端发送任何消息; 步骤 S 1610 , 终端接收并解调应答消息, 并才艮据应答消息判断数据子包 是否解调成功, 如果终端没有接收到任何消息, 则表示基站解调数据子包失 败; 对于数据子包解调失败的上行物理帧, 终端在下一上行传输块中相应的 上行物理帧发送解调失败的数据子包的重传数据子包。 在步骤 S1602中的映射关系为:上行传输块中的第一个上行物理帧对应 于下行传输块中的第二个和第三个下行物理帧, 第二个上行物理帧对应于下 行传输块中的第四个和第五个下行物理帧。 在步骤 S1608中,基站在上行传输块之后的下行传输块的相应下行物理 帧发送用于表示是否成功解调了数据子包的应答消息的操作具体为: 当终端 使用第一个上行物理帧发送数据子包时, 基站在第二个和第三个下行物理帧 中的任一个发送应答消息; 当终端使用第二个上行物理帧发送数据子包时, 基站在第四个和第五个下行物理帧中的任一个发送应答消息。 另夕卜, 上述方法进一步包括: 对于数据子包解调成功的上行物理帧, 终 端在下一上行传输块中相应的上行物理帧发送其他数据子包。 优选地, 上述方法进一步包括: 预先设置重传阈值, 并且在解调失败的 数据子包的重传次数达到重传阈值的情况下, 不再进行重传, 其中, 终端第 n次发送的重传数据子包是第 n级重传数据子包, 其中, η<=Ν , N为重传阈 值, n和 N均为正整数。 实例 7 在 superframe的传输单位里,一个下行传输块由 6个连续下行物理帧组 成。 这 6个下行物理帧中, 艮设第二和第三个物理帧设置为第一物理帧组, 第四和第五个物理帧设置为第二物理帧组。 为了阐述方便, 将这两个物理帧 组的位置分别定义为 L0、 Ll。 终端通过 2个连续上行物理帧组成的上行传输 块向基站发送上行数据,从这 2个上行物理帧发送的数据子包分别定义为 P0、 Pl。 这 2个不同物理帧的数据子包可以是由一个终端发给基站, 也可以是由 不同的终端发给基站。 数据子包发送的起始位置可以在 superframe的第一个 上行传输块, 也可以在 superframe的第二个或者第三个上行传输块, 为了阐 述方便, 假定数据子包先从 superframe的第一个上行传输块上开始传输。 基站解调了这 2个不同位置的数据子包之后,将在接下来的 6个连续下 行物理帧组成的下行传输块上对应的物理帧组位置分别发送 ACK 或者 NACK消息。 ACK表示基站成功解调数据, NACK表示基站没有成功解调 数据。 这 2 个不同物理帧组位置的 ACK/NACK 消息依次分别对应 P0、 PI 这 2个不同位置的数据子包。 终端解调这 2个不同物理帧组位置的 ACK/NACK消息, 如果是 ACK 消息, 表示基站成功解调数据, 则终端在接下来的 2个连续上行物理帧组成 的上行传输块上对应的物理帧位置发送其他数据子包 (其它数据子包的 HARQ重传处理方法与原数据子包的相同)。 如果是 NACK消息, 表示基站 没有成功解调数据, 则终端在接下来的 2个连续上行物理帧组成的上行传输 块上对应的物理帧位置的相应信道资源上发送第一级重传数据子包。 基站如果正确解调了第一级重传数据子包后,则在接下来的 6个连续下 行物理帧组成的下行传输块上对应的物理帧组位置发送 ACK 消息; 基站如 果没有正确解调了第一级重传数据子包, 则在接下来的 6个连续下行物理帧 组成的下行传输块上对应的物理帧组位置发送 NACK消息。 终端解调这 2个不同物理帧组位置的 ACK/NACK消息, 如果是 ACK 消息, 表示基站成功解调数据, 则终端在接下来的 2个连续上行物理帧组成 的上行传输块上对应的物理帧位置发送其他数据子包。 如果是 NACK消息, 表示基站仍然没有成功解调数据, 则终端在接下来的 2个连续上行物理帧组 成的上行传输块上对应的物理帧位置的相应信道资源上发送第二级重传数据 子包。 同理, 基站如果正确解调上行数据子包, 则在对应的物理帧组位置发送 ACK消息, 终端接收到 ACK消息, 就在对应的物理帧位置发送其他数据子 包; 基站如果没有正确解调上行数据子包, 则在对应的物理帧组位置发送 NACK消息, 终端接收到 NACK消息, 就在对应的物理帧位置的相应信道资 源上发送第 N级重传数据子包, N的最大值一 ^:为 5 , 也可以取为其它的正 整数。 通过图 17 ( a ) 和图 17 ( b ) 给出的示意图可以更好地理解本实施例。 以发送数据子包 P0为例, P0在图 17 ( a ) 和图 17 ( b ) 所示的上行第 一个物理帧上发送, 也即在物理帧 R0上发送。 如图 17 ( a )所示, 基站如果正确解调了 P0, 则在接下来的下行传输块 的第一个物理帧组的位置发送 ACK消息, 也就是说, ACK消息可以在物理 帧 F7或者 F8上发送, 其中, F7为下行物理帧组的第二个下行物理帧, F8 为下行物理帧组的第三个下行物理帧, 即, 基站在下行物理帧组中的第二个 或者第三个下行物理帧发送应答消息。 终端接收到 ACK 消息后, 则在接下 来的上行传输块的第一个物理帧位置 R2上发送其它数据子包 P,0。其它数据 子包 P,0的 HARQ重传处理方法与数据子包 P0的相同。 如图 17 ( b )所示, 基站如果没有正确解调 P0, 则在接下来的下行传输 块的第一个物理帧组的位置发送 NACK消息, 也就是说, NACK消息可以在 物理帧 F7或者 F8上发送。 终端接收到 NACK消息后, 则在接下来的上行传 输块的第一个物理帧位置 R2上的相应信道资源上发送第一级重传数据子包 R1P0。 基站如果正确解调了第一级重传数据子包,则在接下来的下行传输块的 第一个物理帧组位置发送 ACK消息; 终端接收到 ACK消息后, 则在接下来 的上行传输块的第一个物理帧的位置发送其它数据子包 P,0。 基站如果仍然没有正确解调了第一级重传数据子包,则在接下来的下行 传输块的第一个物理帧组的位置发送 NACK消息。 终端接收到 NACK消息 后, 则在接下来的上行传输块的第一个物理帧位置的相应信道资源上发送第 二级重传数据子包 R2P0。 同理, 基站如果正确解调了上行数据子包, 则在对应的物理帧组位置发 送 ACK消息, 终端接收到 ACK消息, 就在对应的物理帧位置发送其他数据 子包; 基站如果没有正确解调上行数据子包, 则在对应的物理帧组位置发送 NACK消息, 终端接收到 NACK消息, 就在对应的物理帧位置的相应信道资 源上需要发送第 N级重传数据子包, N的最大值一 ^:为 5 , 也可以取为其它 的正整数。 类似地, 对于 P1数据子包的 HARQ重传处理方法与数据子包 P0的大 致相同, 不同的是, P1在上行传输块的第二个物理帧位置发送, 应答符号在 下行传输块的第二个物理帧组位置发送。 需要说明的是,数据子包起始传输的上行传输块在 superframe的位置不 受限制,可以是第一个上行传输块,也可以是第二个或者第三个上行传输块。 Superframe的边界对数据子包的 HARQ重传处理没有限制。 如上所述, 在 TDD 6:2方式下, 在下行传输中, 通过在相应的上行物理 帧传输应答符号(应答消息),可以使得基站和终端有相对充足的时间来解析 来自对方的数据或消息并进行后续处理, 实现了数据的重传,在上行传输中, 通过在相应的下行物理帧传输应答符号, 同样实现了数据的重传, 从而弥补 了相关技术中缺少一种重传机制的缺陷。 借助于上述至少一个技术方案, 在 TDD方式的下行传输过程中, 通过 在相应的上行物理帧传输应答符号(应答消息), 可以使得基站和终端有相对 充足的时间来解析来自对方的数据或消息并进行后续处理, 实现了数据的重 传; 在 TDD 方式的上行传输过程中, 通过在相应的下行物理帧传输应答符 号, 实现了数据的重传。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种基于无线通信时分双工系统的下行重传方法, 所述无线通信时分双 工系统基于将包括连续的 5个下行物理帧的下行传输块用于下行传输, 式, 其特征在于, 所述方法包括: 预先设置上行物理帧与下行物理帧的映射关系,使得每个上行物理 帧对应于一个下行物理帧或两个连续的下行物理帧, 且每个上行物理帧 对应不同的下行物理帧;
基站使用下行传输块的下行物理帧向一个或多个终端发送一个或 多个数据子包;
所述终端解调接收到的下行物理帧的数据子包;
基于解调结果以及所述映射关系,所述终端发送用于表示是否成功 解调了所述数据子包的应答消息, 或者, 所述终端仅在解调成功的情况 下进行应答消息的发送;
其中, 对于所述终端解调失败的数据子包, 所述基站在下一下行传 输块中相应的下行物理帧发送解调失败的所述数据子包的重传数据子 包。
2. 根据权利要求 1所述的方法, 其特征在于, 所述终端发送用于表示是否 成功解调了所述数据子包的应答消息包括:
如果所述终端解调所述数据子包成功,则所述终端在所述下行传输 块之后的上行传输块的相应上行物理帧向所述基站发送用于表示解调所 述数据子包成功的应答消息;
如果所述终端解调所述数据子包失败,则所述终端在所述下行传输 块之后的上行传输块的相应上行物理帧向所述基站发送用于表示解调所 述数据子包失败的应答消息。
3. 才艮据权利要求 1所述的方法, 其特征在于, 所述映射关系为: 所述下行 传输块中的连续的 5个下行物理帧按照位置先后顺序分成 3个下行物理 帧组, 其中的一个下行物理帧组包括一个下行物理帧, 另外两个下行物 理帧组分别包括两个相邻的下行物理帧, 各个下行物理帧组与所述上行 传输块中的连续的 3个上行物理帧在位置上按照先后顺序——对应。
4. 根据权利要求 3所述的方法, 其特征在于, 对于包括两个下行物理帧的 下行物理帧组, 所述基站在所述下行物理帧组中的任一个或两个下行物 理帧发送所述一个或多个数据子包。
5. 根据权利要求 3所述的方法, 其特征在于, 所述下行传输块中的第一和 第二个下行物理帧构成一个下行物理帧组, 第三和第四个下行物理帧构 成一个下行物理帧组, 第五个下行物理帧构成一个下行物理帧组; 或者, 所述下行传输块中的第一个下行物理帧构成一个下行物理帧组, 第二和 第三个下行物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构 成一个下行物理帧组; 或者, 所述下行传输块中的第一和第二个下行物 理帧构成一个下行物理帧组,第三个下行物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理帧组。
6. 根据权利要求 3所述的方法, 其特征在于, 每个上行物理帧都对应于与 其存在对应关系的下行物理帧组中的一个或两个下行物理帧。
7. 才艮据权利要求 1所述的方法, 其特征在于, 所述方法进一步包括:
对于解调成功的数据子包,所述基站在下一下行传输块中相应的下 行物理帧发送其他数据子包。
8. 才艮据权利要求 1所述的方法, 其特征在于, 所述方法进一步包括:
预先设置重传阈值,并且在解调失败的所述数据子包的重传次数达 到所述重传阈值的情况下, 不再进行重传, 其中, 所述基站第 n次发送 的所述重传数据子包是第 n级重传数据子包, 其中, n<=N, N为所述重 传阈值, n和 N均为正整数。
9. 根据权利要求 1所述的方法, 其特征在于, 所述基站在下一下行传输块 中相应的下行物理帧发送解调失败的所述数据子包的重传数据子包的操 作具体为: 所述基站根据所述映射关系确定所述应答消息对应的下行物理帧 的位置;
才艮据确定的所述位置,所述基站确定所述下一下行传输块中的所述 相应的下行物理帧, 其中, 所述相应的下行物理帧在所述下一下行传输 块中的位置与确定的所述位置一致;
所述基站在所述相应的下行物理帧发送所述重传数据包。
10. 根据权利要求 1所述的方法, 其特征在于, 所述多个数据子包发送给同 一个终端, 或者发送给多个终端。
11. 一种基于无线通信时分双工系统的下行重传方法, 所述无线通信时分双 工系统基于将包括连续的 3个下行物理帧的下行传输块用于下行传输, 式, 其特征在于, 所述方法包括: 预先设置上行物理帧与下行物理帧的映射关系,使得下行传输块中 的 3个下行物理帧与上行传输块中的其中 3个物理帧——对应;
基站使用所述下行传输块的下行物理帧向一个或多个终端发送一 个或多个数据子包;
所述终端解调接收到的所述数据子包;
基于解调结果,所述终端发送用于表示是否成功解调了所述数据子 包的应答消息, 或者, 所述终端仅在解调成功的情况下进行应答消息的 发送;
其中, 对于解调失败的数据子包, 所述基站在下一下行传输块中相 应的下行物理帧发送重传数据子包。
12. 根据权利要求 11所述的方法, 其特征在于, 所述终端发送用于表示是否 成功解调了所述数据子包的应答消息包括:
如果所述终端解调所述数据子包成功,则所述终端在所述下行传输 块之后的上行传输块的其中 3个上行物理帧中的相应上行物理帧向所述 基站发送用于表示解调所述数据子包成功的应答消息; 如果所述终端解调所述数据子包失败,则所述终端在所述下行传输 块之后的上行传输块的其中 3个上行物理帧中的相应上行物理帧向所述 基站发送用于表示解调所述数据子包失败的应答消息。
13. 才艮据权利要求 11所述的方法, 其特征在于, 所述 3个上行物理帧为所述 上行传输块的中间 3个上行物理帧, 所述映射关系为: 所述上行传输块 的中间 3个上行物理帧与所述下行传输块的 3个下行物理帧按照位置先 后顺序 对应。
14. 根据权利要求 11所述的方法, 其特征在于, 进一步包括:
预先设置重传阈值,并且在解调失败的所述数据子包的发送次数达 到所述重传阈值的情况下, 所述基站不再进行重传, 其中, 第 n次发送 的所述重传数据子包是第 n级重传数据子包, 其中, n<=N, N为所述重 传阈值, n和 N均为正整数。
15. 根据权利要求 11所述的方法, 其特征在于, 进一步包括:
对于解调成功的数据子包,所述基站在下一下行传输块中相应的下 行物理帧发送其他数据子包。
16. 根据权利要求 11至 15中任一项所述的方法, 其特征在于, 所述相应的 下行物理帧在所述下一下行传输块中的位置与发送所述数据子包的所述 下行物理帧在所述下行传输块中的位置一致。
17. 一种基于无线通信时分双工系统的下行重传方法, 所述无线通信时分双 工系统基于将包括连续的 6个下行物理帧的下行传输块用于下行传输, 式, 其特征在于, 所述方法包括: 预先设置上行物理帧与下行物理帧的映射关系,使得下行传输块中 的前三个下行物理帧与上行传输块中的第一个物理帧对应, 下行传输块 中的后三个下行物理帧与上行传输块中的第二个物理帧对应;
基站使用所述下行传输块的下行物理帧向一个或多个终端发送一 个或多个数据子包;
所述终端解调接收到的所述数据子包; 基于解调结果以及所述映射关系,所述终端发送用于表示是否成功 解调了所述数据子包的应答消息, 或者, 所述终端仅在解调成功的情况 下进行应答消息的发送;
其中, 对于解调失败的数据子包, 所述基站在后续下行传输块中相 应的下行物理帧发送重传数据子包。
18. 根据权利要求 17所述的方法, 其特征在于, 所述终端发送用于表示是否 成功解调了所述数据子包的应答消息包括:
如果所述终端解调所述数据子包成功,则所述终端在所述下行传输 块之后的上行传输块的相应上行物理帧向所述基站发送用于表示解调所 述数据子包成功的应答消息;
如果所述终端解调所述数据子包失败,则所述终端在所述下行传输 块之后的上行传输块的相应上行物理帧向所述基站发送用于表示解调所 述数据子包失败的应答消息。
19. 才艮据权利要求 17所述的方法, 其特征在于,
对于使用所述下行传输块的前三个下行物理帧中的一个或多个物 理帧发送的数据子包, 所述终端在所述下行传输块之后的第一个上行传 输块的第一个上行物理帧发送所述应答消息;
对于使用所述下行传输块的后三个下行物理帧中的一个或多个物 理帧发送的数据子包, 所述终端在所述下行传输块之后的第二个上行传 输块的第二个上行物理帧发送所述应答消息; 并且,
所述基站在所述下行传输块之后的第二个下行传输块发送所述重 传数据子包。
20. 才艮据权利要求 17所述的方法, 其特征在于,
对于使用所述下行传输块的前三个下行物理帧中的一个或多个物 理帧发送的数据子包, 所述终端在所述下行传输块之后的第一个上行传 输块的第一个上行物理帧发送所述应答消息;
对于使用所述下行传输块的后三个下行物理帧中的一个或多个物 理帧发送的数据子包, 所述终端在所述下行传输块之后的第一个上行传 输块的所述第二个上行物理帧发送所述应答消息; 并且 所述基站在所述下行传输块之后的第一个下行传输块发送所述重 传数据子包。
21. 根据权利要求 17至 20中任一项所述的方法, 其特征在于, 进一步包括: 预先设置重传阈值,并且在解调失败的所述数据子包的发送次数达 到所述重传阈值的情况下, 所述基站不再进行重传, 其中, 第 n次发送 的所述重传数据子包是第 n级重传数据子包, 其中, n<=N, N为所述重 传阈值, n和 N均为正整数。
22. 根据权利要求 17至 20中任一项所述的方法, 其特征在于, 进一步包括: 对于解调成功的数据子包,所述基站在下一下行传输块中相应的下 行物理帧发送其他数据子包。
23. 根据权利要求 17至 20中任一项所述的方法, 其特征在于, 所述相应的 下行物理帧在其所属的下行传输块中的位置与发送所述数据子包的所述 下行物理帧在下行传输块中的位置一致。
24. 一种基于无线通信时分双工系统的上行重传方法, 所述无线通信时分双 工系统基于将包括连续的 5个下行物理帧的下行传输块用于下行传输, 式, 其特征在于, 所述方法包括: 预先设置上行物理帧与下行物理帧的映射关系,使得每个上行物理 帧对应于一个下行物理帧或两个连续的下行物理帧, 且每个上行物理帧 对应不同的下行物理帧;
一个或多个终端使用上行传输块的上行物理帧向基站发送一个或 多个数据子包;
所述基站解调接收到的上行物理帧的数据子包;
基于解调结果以及所述映射关系,所述基站发送用于表示是否成功 解调了所述数据子包的应答消息, 或者, 所述基站仅在解调成功的情况 下进行应答消息的发送;
其中, 对于数据子包解调失败的上行物理帧, 所述终端在下一上行 传输块中相应的上行物理帧发送解调失败的所述数据子包的重传数据子 包。
25. 根据权利要求 24所述的方法, 其特征在于, 所述基站发送用于表示是否 成功解调了所述数据子包的应答消息包括:
如果所述基站解调所述数据子包成功,则所述基站在所述上行传输 块之后的下行传输块的相应下行物理帧组向所述终端发送用于表示解调 所述数据子包成功的应答消息;
如果所述基站解调所述数据子包失败,则所述基站在所述上行传输 块之后的下行传输块的相应下行物理帧组向所述终端发送用于表示解调 所述数据子包失败的应答消息。
26. 根据权利要求 24所述的方法, 其特征在于, 所述映射关系为: 所述下行 传输块中的连续的 5个下行物理帧按照位置先后顺序分成 3个下行物理 帧组, 其中的一个下行物理帧组包括一个下行物理帧, 另外两个下行物 理帧组分别包括两个相邻的下行物理帧, 各个下行物理帧组与所述上行 传输块中的连续的 3个上行物理帧在位置上按照先后顺序——对应。
27. 根据权利要求 26所述的方法, 其特征在于, 对于包括两个下行物理帧的 下行物理帧组, 所述基站在所述下行物理帧组中的第一个或者第二个下 行物理帧发送所述应答消息。
28. 才艮据权利要求 26所述的方法, 其特征在于, 所述下行传输块中的第一和 第二个下行物理帧构成一个下行物理帧组, 第三和第四个下行物理帧构 成一个下行物理帧组, 第五个下行物理帧构成一个下行物理帧组; 或者, 所述下行传输块中的第一个下行物理帧构成一个下行物理帧组, 第二和 第三个下行物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构 成一个下行物理帧组; 或者, 所述下行传输块中的第一和第二个下行物 理帧构成一个下行物理帧组,第三个下行物理帧构成一个下行物理帧组, 第四和第五个下行物理帧构成一个下行物理帧组。
29. 根据权利要求 26所述的方法, 其特征在于, 每个上行物理帧都对应于与 其存在对应关系的下行物理帧组中的一个或两个下行物理帧。
30. 才艮据权利要求 24所述的方法, 其特征在于, 所述方法进一步包括: 对于数据子包解调成功的上行物理帧,所述终端在下一上行传输块 中相应的上行物理帧发送其他数据子包。
31. 才艮据权利要求 24所述的方法, 其特征在于, 所述方法进一步包括: 预先设置重传阈值,并且在解调失败的所述数据子包的重传次数达 到所述重传阈值的情况下, 不再进行重传, 其中, 所述终端第 n次发送 的所述重传数据子包是第 n级重传数据子包, 其中, n<=N, N为所述重 传阈值, n和 N均为正整数。
32. 4艮据权利要求 24所述的方法, 其特征在于, 所述终端在下一上行传输块 中相应的上行物理帧发送解调失败的所述数据子包的重传数据子包的操 作具体为: 所述终端才艮据所述映射关系确定所述应答消息对应的上行物理帧 的位置;
才艮据确定的所述位置,所述终端确定所述下一上行传输块中的所述 相应的上行物理帧, 其中, 所述相应的上行物理帧在所述下一上行传输 中的位置与确定的所述位置一致;
所述终端在所述相应的上行物理帧发送所述重传数据包。
33. 一种基于无线通信时分双工系统的上行重传方法, 所述无线通信时分双 工系统基于将包括连续的 3个下行物理帧的下行传输块用于下行传输, 式, 其特征在于, 所述方法包括: 预先设置上行物理帧与下行物理帧的映射关系,使得每个下行物理 帧对应于一个上行物理帧或两个连续的上行物理帧, 且每个下行物理帧 对应不同的上行物理帧;
一个或多个终端使用上行传输块的上行物理帧向基站发送一个或 多个数据子包;
所述基站解调接收到的上行物理帧的数据子包;
基于解调结果以及所述映射关系,所述基站发送用于表示是否成功 解调了所述数据子包的应答消息, 或者, 所述基站仅在解调成功的情况 下进行应答消息的发送;
其中, 对于数据子包解调失败的上行物理帧, 所述终端在下一上行 传输块中相应的上行物理帧发送解调失败的所述数据子包的重传数据子 包。 才艮据权利要求 33所述的方法, 其特征在于, 所述基站发送用于表示是否 成功解调了所述数据子包的应答消息包括:
如果所述基站解调所述数据子包成功,则所述基站在所述上行传输
Figure imgf000054_0001
述数据子包成功的应答消息;
如果所述基站解调所述数据子包失败,则所述基站在所述上行传输
Figure imgf000054_0002
述数据子包失败的应答消息。
35. 根据权利要求 33所述的方法, 其特征在于, 所述映射关系为: 所述上行 传输块中的连续的 5个上行物理帧按照位置先后顺序分成 3个上行物理 帧组, 其中的一个上行物理帧组包括一个上行物理帧, 另外两个上行物 理帧组分别包括两个相邻的上行物理帧, 各个上行物理帧组与所述下行 传输块中的连续的 3个下行物理帧在位置上按照先后顺序——对应。
36. 根据权利要求 35所述的方法, 其特征在于, 对于对应于同一下行物理帧 的两个连续上行物理帧, 所述终端在所述两个连续上行物理帧中的任一 个或两个上行物理帧发送所述数据子包。
37. 才艮据权利要求 35所述的方法, 其特征在于, 所述上行传输块中的第一和 第二个上行物理帧构成一个上行物理帧组, 第三和第四个上行物理帧构 成一个上行物理帧组, 第五个上行物理帧构成一个上行物理帧组; 或者, 所述上行传输块中的第一个上行物理帧构成一个上行物理帧组, 第二和 第三个上行物理帧构成一个上行物理帧组, 第四和第五个上行物理帧构 成一个上行物理帧组; 或者, 所述上行传输块中的第一和第二个上行物 理帧构成一个上行物理帧组,第三个上行物理帧构成一个上行物理帧组, 第四和第五个上行物理帧构成一个上行物理帧组。
38. 才艮据权利要求 33所述的方法, 其特征在于, 所述方法进一步包括: 对于数据子包解调成功的上行物理帧,所述终端在下一上行传输块 中相应的上行物理帧发送其他数据子包。
39. 才艮据权利要求 33所述的方法, 其特征在于, 所述方法进一步包括: 预先设置重传阈值,并且在解调失败的所述数据子包的重传次数达 到所述重传阈值的情况下, 不再进行重传, 其中, 所述终端第 n次发送 的所述重传数据子包是第 n级重传数据子包, 其中, n<=N, N为所述重 传阈值, n和 N均为正整数。
40. 4艮据权利要求 33所述的方法, 其特征在于, 所述终端在下一上行传输块 中相应的上行物理帧发送解调失败的所述数据子包的重传数据子包的操 作具体为: 所述终端才艮据所述映射关系确定所述应答消息对应的上行物理帧 的位置;
才艮据确定的所述位置,所述终端确定所述下一上行传输块中的所述 相应的上行物理帧, 其中, 所述相应的上行物理帧在所述下一上行传输 块中的位置与确定的所述位置一致;
所述终端在所述相应的上行物理帧发送所述重传数据包。
41. 一种基于无线通信时分双工系统的上行重传方法, 所述无线通信时分双 工系统基于将包括连续的 6个下行物理帧的下行传输块用于下行传输, 式, 其特征在于, 所述方法包括: 预先设置上行物理帧与下行物理帧的映射关系,使得每个上行物理 帧均对应于两个连续的下行物理帧;
一个或多个终端使用上行传输块的上行物理帧向基站发送一个或 多个数据子包;
所述基站解调接收到的上行物理帧的数据子包;
基于解调结果以及所述映射关系,所述基站发送用于表示是否成功 解调了所述数据子包的应答消息, 或者, 所述基站仅在解调成功的情况 下进行应答消息的发送;
其中, 对于数据子包解调失败的上行物理帧, 所述终端在下一上行 传输块中相应的上行物理帧发送解调失败的所述数据子包的重传数据子 包。 根据权利要求 41所述的方法, 其特征在于, 所述基站发送用于表示是否 成功解调了所述数据子包的应答消息包括:
如果所述基站解调所述数据子包成功,则所述基站在所述上行传输
Figure imgf000056_0001
述数据子包成功的应答消息;
如果所述基站解调所述数据子包失败,则所述基站在所述上行传输
Figure imgf000056_0002
述数据子包失败的应答消息。
43. 根据权利要求 41所述的方法, 其特征在于, 所述映射关系为: 所述上行 传输块中的第一个上行物理帧对应于所述下行传输块中的第二个和第三 个下行物理帧, 第二个上行物理帧对应于所述下行传输块中的第四个和 第五个下行物理帧。
44. 才艮据权利要求 43所述的方法, 其特征在于, 所述基站在所述上行传输块 数据子包的应答消息的操作具体为:
当所述终端使用所述第一个上行物理帧发送所述数据子包时,所述 基站在所述第二个或者第三个下行物理帧中发送所述应答消息;
当所述终端使用所述第二个上行物理帧发送所述数据子包时,所述 基站在所述第四个或者第五个下行物理帧中发送所述应答消息。
45. 才艮据权利要求 41所述的方法, 其特征在于, 所述方法进一步包括: 对于数据子包解调成功的上行物理帧,所述终端在下一上行传输块 中相应的上行物理帧发送其他数据子包。
46. 才艮据权利要求 41所述的方法, 其特征在于, 所述方法进一步包括: 预先设置重传阈值,并且在解调失败的所述数据子包的重传次数达 到所述重传阈值的情况下, 不再进行重传, 其中, 所述终端第 n次发送 的所述重传数据子包是第 n级重传数据子包, 其中, n<=N, N为所述重 传阈值, n和 N均为正整数。
PCT/CN2009/070520 2008-02-25 2009-02-24 基于无线通信时分双工系统的下行重传和上行重传方法 WO2009105992A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200810081602.9 2008-02-25
CN 200810081602 CN101521564B (zh) 2008-02-25 2008-02-25 基于无线通信时分双工系统的上行/下行重传方法及系统
CN200810085415.8 2008-03-14
CN 200810085415 CN101534178B (zh) 2008-03-14 2008-03-14 基于无线通信时分双工系统的上行/下行重传方法及系统
CN 200810084796 CN101547039B (zh) 2008-03-28 2008-03-28 基于无线通信时分双工系统的上行/下行重传方法
CN200810084796.8 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009105992A1 true WO2009105992A1 (zh) 2009-09-03

Family

ID=41015533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070520 WO2009105992A1 (zh) 2008-02-25 2009-02-24 基于无线通信时分双工系统的下行重传和上行重传方法

Country Status (1)

Country Link
WO (1) WO2009105992A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930816A (zh) * 2004-03-12 2007-03-14 三星电子株式会社 用于宽带无线接入通信系统中的混合自动重复请求的操作的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930816A (zh) * 2004-03-12 2007-03-14 三星电子株式会社 用于宽带无线接入通信系统中的混合自动重复请求的操作的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEL, CMCC, NOKIA ET AL.: "Way forward for TDD HARQ process", TSG-RAN WG1 #52 RL-081124, 11 February 2008 (2008-02-11), pages 1 - 3 *
SIEMENS AG: "HSDPA simulation assumption update for fixed reference channel for 1.28 Mcps TDD option", TSG-RAN WG4 #24, R4-021329, pages 1 - 9 *

Similar Documents

Publication Publication Date Title
US11363628B2 (en) Method and apparatus for performing uplink transmission with pre-allocated beams in wireless communication system
JP7186763B2 (ja) 無線通信システムにおいて複数の搬送波上でサイドリンク送信を行うための方法及び装置
US9923707B2 (en) Dynamic allocation of subframe scheduling for time division duplex operation in a packet-based wireless communication system
US8085738B2 (en) Preamble retransmission method in mobile communications system
JP7233582B2 (ja) 通信装置、処理装置及びデータユニットを送信する方法
US8605674B2 (en) Method and apparatus for transmitting and receiving duplicate data in a multicarrier wireless communication system
US8160014B2 (en) Configuration of multi-periodicity semi-persistent scheduling for time division duplex operation in a packet-based wireless communication system
WO2016131344A1 (zh) 一种设备到设备发送、接收、调度方法和相应装置
CN111480359A (zh) 用于发送数据单元的通信设备、处理设备及方法
KR101611300B1 (ko) 전송 지시자를 이용한 중계기 통신 기법
CN104936189A (zh) 一种ue、基站中在非授权频带上的通信方法和设备
TW200814601A (en) Method of supporting data retransmission in a mobile communication system
US20110075620A1 (en) Method for controlling data and signal in a mobile communication system
KR20080065880A (ko) 무선 통신 시스템에서의 arq/harq 지원 방법
JP2020528708A (ja) 無線通信システムにおいてアンカー搬送波に基づいて資源を割り当てるための方法及び装置
KR20080112649A (ko) 이동통신 시스템에서의 랜덤 엑세스 절차 수행 방법
WO2007091810A1 (en) Preamble retransmission method in mobile communications system
KR101232567B1 (ko) Harq를 이용한 데이터 전송방법
WO2009105992A1 (zh) 基于无线通信时分双工系统的下行重传和上行重传方法
CN101515847A (zh) 基于无线通信时分双工系统的上行传输/反馈方法及系统
CN101521564B (zh) 基于无线通信时分双工系统的上行/下行重传方法及系统
CN101499883B (zh) 基于无线通信时分双工系统的上行/下行重传方法及系统
WO2009105990A1 (zh) 基于无线通信时分双工系统的上行传输/反馈方法
CN101547072B (zh) 基于无线通信时分双工系统的上行传输/反馈方法
CN101547073B (zh) 基于无线通信时分双工系统的上行传输/反馈方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715051

Country of ref document: EP

Kind code of ref document: A1