WO2009104577A1 - Power supply unit for moving vehicle - Google Patents

Power supply unit for moving vehicle Download PDF

Info

Publication number
WO2009104577A1
WO2009104577A1 PCT/JP2009/052637 JP2009052637W WO2009104577A1 WO 2009104577 A1 WO2009104577 A1 WO 2009104577A1 JP 2009052637 W JP2009052637 W JP 2009052637W WO 2009104577 A1 WO2009104577 A1 WO 2009104577A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
battery
current
chopper
electric double
Prior art date
Application number
PCT/JP2009/052637
Other languages
French (fr)
Japanese (ja)
Inventor
恭昌 宮本
昌克 野村
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2009104577A1 publication Critical patent/WO2009104577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a mobile vehicle power supply device, and more particularly to a mobile vehicle power supply device that uses a battery such as a forklift as a power source.
  • a rechargeable battery such as a lead battery is mounted on a mobile vehicle powered by a battery such as a battery forklift, and regenerative energy from the traveling motor is stored in the secondary battery.
  • a battery such as a battery forklift
  • existing batteries have poor charging efficiency with a rapidly increasing current during regeneration, and have an adverse effect on battery life.
  • Patent Documents 1 to 3 are known as means for extending the battery life.
  • a capacitor and a battery are connected in parallel, the regenerative power is charged in the capacitor to extend the battery life, and the regenerative power is effectively used.
  • a regenerative current blocking die auto is connected between the battery and the DC circuit of the power converter (inverter or chopper), and the regenerative energy is stored in the capacitor, as shown in FIG.
  • a chopper Ch is connected to a DC circuit, and a battery current is controlled by the chopper to store regenerative energy in the electric double layer capacitor C.
  • the regenerative current that flows through the battery is blocked by a diode, because the current flows through the diode when the moving body is powering, and a loss due to the diode occurs. Therefore, when the resistance of the capacitor is large, the peak value of the battery current does not decrease. The smaller the battery current peak value, the longer the battery life, which is contrary to the extension of the battery life.
  • the allowable voltage of the inverter has no margin with respect to the battery voltage, and thus it is necessary to increase the capacity of the capacitor.
  • Energy to be stored 0.5 * capacity * (capacitor maximum voltage 2 -capacitor minimum voltage 2 )
  • the capacitance of the capacitor can be reduced by using the capacitor at a high voltage, but the resistance is increased and the loss is increased by reducing the number of parallel capacitors.
  • Patent Document 1 when the configurations of FIGS. 2 and 3 are adopted, when regenerative power from the motor is charged to the capacitor, if the regenerative energy is large or regenerative braking continues for a long time, the capacitor voltage increases greatly. Therefore, there is a risk that the upper limit of the rated value of the inverter or capacitor will be damaged and the AC motor may be damaged.
  • Patent Document 2 since the capacitor and the battery are connected in parallel, the voltage fluctuation of the battery is basically small, and the capacitor does not exceed the rated upper limit voltage. However, since the capacitor and the battery are connected in parallel, the rate of regenerative energy stored in the capacitor is inversely proportional to the capacitor and battery resistance, and the stored energy decreases when the capacitor resistance is large. . In addition, it is necessary to set the time constants T1 and T2 of the capacitor and the battery including the wiring inductance based on the maximum overcurrent. In-vehicle power supplies are difficult to use due to restrictions on circuit layout.
  • Patent Document 3 as in Patent Document 1, when a capacitor is charged with regenerative power, the increase in the capacitor voltage increases and exceeds the rated upper limit of the inverter and the capacitor, resulting in damage to the AC motor. I have a fear.
  • Japanese Laid-Open Patent Publication No. 6-270695 which is a public patent gazette in Japan Japanese Patent Laid-Open No. 2002-315109, which is a public patent gazette in Japan Japanese Patent Laid-Open No. 2003-219656, which is a public patent gazette in Japan
  • An object of the present invention is to provide a power supply device for a mobile vehicle that can reduce the capacity of an expensive electric double layer capacitor and can be miniaturized.
  • an inverter connected to a battery and capable of regenerative operation, a motor connected via the inverter, a chopper having a reactor and a switching element connected to a DC circuit of the battery,
  • a mobile vehicle power supply device comprising an electric double layer capacitor connected to the chopper, A differentiating unit for detecting the battery voltage and differentiating the detected voltage; a current component calculating unit for executing a multiplication of a differential signal by the differentiating unit and a coefficient for realizing a desired capacitor current for the electric double layer capacitor; A difference signal between the current command output from the current component calculation unit and the detected current flowing through the chopper is obtained, and a gate signal corresponding to the difference signal is generated to control the chopper.
  • a plurality of switching elements of the chopper are used for charging / discharging, and the sign of the current command I L * output from the current component calculation unit is determined, and when I L * ⁇ 0 Only the switching element for charging the electric double layer capacitor is controlled to be switched, and when I L * ⁇ 0, only the switching element for discharging the electric double layer capacitor is controlled to be switched.
  • a value obtained by multiplying the differential value of the battery voltage V B by the capacity Cs is set as the calculation setting I L * .
  • the chopper current I L is caused to perform an operation equivalent to a capacitor current when an electric double layer capacitor having a capacity Cs and an internal resistance 0 is directly connected in parallel to the battery.
  • FIG. 1 is a block diagram of a chopper control circuit showing a first embodiment of the present invention.
  • an inverter INV capable of regenerative operation is connected to the battery B as in FIG. 4, and the motor M is controlled via this inverter.
  • Ch is a chopper, which has a reactor L and switching elements S1 and S2, and an electric double layer capacitor C is connected to the chopper Ch to constitute a regenerative current storage unit RA.
  • 1 is a voltage detector for detecting battery voltage
  • 2 is a low-pass filter
  • the battery voltage V B detected by the detector 1 is subjected to noise removal processing by the low-pass filter 2 and then differentiated by the differentiating means 3.
  • the Reference numeral 4 denotes a current command calculation unit, and in order to realize an ideal large-capacity capacitor current inflow to the electric double layer capacitor C, the current command calculation unit 4 performs multiplication of the differential value and the capacitance Cs.
  • the capacity Cs is a capacitor capacity for realizing inflow of a large capacity capacitor current ideal for the electric double layer capacitor C, and is arbitrarily set.
  • Reference numeral 5 denotes a subtraction unit that performs a difference calculation between the output of the current command calculation unit 4 and the current flowing into the regenerative current accumulation unit RA detected by the current detector 6.
  • the difference signal is input to the current control unit 7 as a current command value that flows into the regenerative current value accumulation unit RA, and the current control unit 7 executes a PI calculation according to the current command value, generates a gate signal by PWM, and generates a chopper Ch. Perform on / off control.
  • the chopper current I L detected by the current detector 6 is used as a detection value applied to the current control.
  • the electric double layer capacitor C has zero internal resistance and an ideal large-capacity capacitor Cs value (> C), and the electric double-layer capacitor having the large-capacitance capacitor Cs directly It is assumed that the battery B is connected in parallel.
  • the current I S to the electric double layer capacitor at that time is calculated, and this is used as the current command I L * of the chopper Ch.
  • the electric double layer capacitor C having the capacity Cs is obtained, and the one having this capacity Cs is obtained. An operation equivalent to that connected directly in parallel to the battery B is realized.
  • the current I S flowing through the ideal electric double layer capacitor having the capacity Cs may be obtained by multiplying the differential component of the battery voltage V B by the capacity Cs as shown in the equation (1). Execute.
  • FIG. 2 shows a simulation result when power running and regeneration are performed alternately. It can be seen that the peak value of the battery current during power running is effectively suppressed and the current is flat.
  • the electric double layer capacitor C since the electric double layer capacitor C has a small capacitance and an equivalent large capacitance is connected, it is possible to reduce the size of the expensive electric double layer capacitor, which is cost effective. It is also advantageous.
  • the relationship between current and voltage can be set as an ideal capacitor as shown in equation (1), the internal resistance of the capacitor can be equivalently set to 0. Current does not become difficult to flow.
  • FIG. 3 shows the second embodiment.
  • the difference from the first embodiment shown in FIG. 1 is that a gate signal generator 8 is provided on the output side of the current controller 7, It is the same.
  • the gate signal creation unit 8 includes a determination unit 81, a first gate circuit 82, and a second gate circuit 83.
  • the switching elements S1 and S2 are not alternately switched. Only the switching element on one side according to the charging / discharging state of the electric double layer capacitor C is used. On-off control is performed.
  • the calculated current command I L * for the chopper calculated by the current command calculation unit 4 is input to the determination unit 81 to determine whether or not it is greater than zero.
  • the switching control of only one side of the two switching elements is performed based on the calculated current command value.
  • the switching loss can be further suppressed as compared with the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

When an electric double layer capacitor is connected, as a means for absorbing regenerative power of a power supply unit for a moving vehicle, in parallel with a power converting section, peak value of battery current increases because the resistance of the capacitor is high as compared with the resistance of a battery and the lifetime of the battery is influenced adversely. The battery voltage is detected and differentiated. A differential signal is multiplied by a factor for realizing a desired capacitor current of the electric double layer capacitor to create a current command. A difference signal between the current command and a detection current flowing through a chopper is determined and the chopper is controlled by a gate signal according to the difference signal, thereby reducing the capacity of the electric double layer capacitor and realizing a control equivalent to a case where a capacitor of large capacity is connected.

Description

移動車用電源装置Power supply for mobile vehicles
 本発明は移動車用電源装置に係り、特にフォークリフトなどバッテリーを電源とする移動車用電源装置に関するものである。 The present invention relates to a mobile vehicle power supply device, and more particularly to a mobile vehicle power supply device that uses a battery such as a forklift as a power source.
 バッテリーフォークリフトなどのようなバッテリーを電源とする移動車両には鉛バッテリーなどの二次電池が搭載されており、走行モータからの回生エネルギーを二次電池に蓄えるようなっている。しかし、現存するバッテリーでは回生時の急激に増大する電流での充電効率が悪く、また、電池寿命に悪影響を与えている。 A rechargeable battery such as a lead battery is mounted on a mobile vehicle powered by a battery such as a battery forklift, and regenerative energy from the traveling motor is stored in the secondary battery. However, existing batteries have poor charging efficiency with a rapidly increasing current during regeneration, and have an adverse effect on battery life.
このため、電池寿命を延ばす手段として特許文献1乃至3が公知となっている。
これらは、キャパシタとバッテリーとを並列に接続し、回生電力をキャパシタに充電させてバッテリー寿命を延ばすと共に、回生電力の有効利用を図ったものである。
For this reason, Patent Documents 1 to 3 are known as means for extending the battery life.
In these, a capacitor and a battery are connected in parallel, the regenerative power is charged in the capacitor to extend the battery life, and the regenerative power is effectively used.
 一般に、バッテリー寿命を延ばすための手法としては、バッテリーと電力変換部(インバータやチョッパー)の直流回路間に、回生電流阻止用のダイオートを接続し、回生エネルギーをキャパシタに蓄える手法と、図4で示すように直流回路にチョッパーChを接続し、このチョッパーによってバッテリー電流を制御して電気二重層キャパシタCに回生エネルギーを蓄える手法が採られている。 In general, as a method for extending the battery life, a regenerative current blocking die auto is connected between the battery and the DC circuit of the power converter (inverter or chopper), and the regenerative energy is stored in the capacitor, as shown in FIG. As shown, a chopper Ch is connected to a DC circuit, and a battery current is controlled by the chopper to store regenerative energy in the electric double layer capacitor C.
 前者のバッテリーに流れる回生電流をダイオードで阻止する手法は、移動体の力行時にダイオードを通して電流が流れるためにダイオードによる損失が発生し、また、回生から力行に変化したとき、バッテリーとキャパシタの電流分担がそれぞれの抵抗によって決まるので、キャパシタの抵抗が大きいと、バッテリー電流のピーク値が小さくならない。このバッテリー電流のピーク値は小さい方がバッテリー寿命が延びることから、バッテリー寿命を延ばすことと反することになる。
通常、電力変換部としてインバータを使用した場合、インバータの許容電圧はバッテリー電圧に対して余裕がないため、キャパシタの容量を大きくする必要がある。
蓄えるエネルギー=0.5*容量*(キャパシタ最高電圧2-キャパシタ最低電圧2
となり、電圧差が大きい方がエネルギーをより多く蓄えられる。
In the former method, the regenerative current that flows through the battery is blocked by a diode, because the current flows through the diode when the moving body is powering, and a loss due to the diode occurs. Therefore, when the resistance of the capacitor is large, the peak value of the battery current does not decrease. The smaller the battery current peak value, the longer the battery life, which is contrary to the extension of the battery life.
Normally, when an inverter is used as the power conversion unit, the allowable voltage of the inverter has no margin with respect to the battery voltage, and thus it is necessary to increase the capacity of the capacitor.
Energy to be stored = 0.5 * capacity * (capacitor maximum voltage 2 -capacitor minimum voltage 2 )
Thus, the larger the voltage difference, the more energy can be stored.
 一方、後者の図4で示すチョッパー方式の場合、キャパシタを高い電圧で使用することで、キャパシタの容量を減らせるが、キャパシタの並列数が減ることで抵抗が大きくなり、損失が増える。 On the other hand, in the case of the latter chopper method shown in FIG. 4, the capacitance of the capacitor can be reduced by using the capacitor at a high voltage, but the resistance is increased and the loss is increased by reducing the number of parallel capacitors.
 なお、特許文献1では、その図2、図3の構成を採用した場合、モータからの回生電力をキャパシタに充電する際、回生エネルギーが大きい、または回生制動が長く継続するとキャパシタ電圧の上昇が大きくなり、インバータやキャパシタの定格上限を超えてそれらが破損し、交流モータの破損にまで至る虞を有している。 In Patent Document 1, when the configurations of FIGS. 2 and 3 are adopted, when regenerative power from the motor is charged to the capacitor, if the regenerative energy is large or regenerative braking continues for a long time, the capacitor voltage increases greatly. Therefore, there is a risk that the upper limit of the rated value of the inverter or capacitor will be damaged and the AC motor may be damaged.
 特許文献2では、キャパシタとバッテリーとが並列接続されているので、基本的にはバッテリーの電圧変動が少なく、キャパシタが定格上限電圧を超えることはない。しかし、キャパシタとバッテリーが並列接続されていることから、キャパシタに蓄積される回生エネルギーの割合はキャパシタとバッテリー抵抗の逆比例となり、キャパシタの抵抗が大きい場合には蓄積エネルギーが少なくなるという問題がある。加えて、最大過電流に基づいて、配線インダクタンスを含めたキャパシタとバッテリー各々の時定数T1,T2を設定する必要がある。車載用電源では回路配置に制約があるため、使いづらいものとなっている。 In Patent Document 2, since the capacitor and the battery are connected in parallel, the voltage fluctuation of the battery is basically small, and the capacitor does not exceed the rated upper limit voltage. However, since the capacitor and the battery are connected in parallel, the rate of regenerative energy stored in the capacitor is inversely proportional to the capacitor and battery resistance, and the stored energy decreases when the capacitor resistance is large. . In addition, it is necessary to set the time constants T1 and T2 of the capacitor and the battery including the wiring inductance based on the maximum overcurrent. In-vehicle power supplies are difficult to use due to restrictions on circuit layout.
 特許文献3は、特許文献1と同様に、回生電力によりキャパシタを充電する際、キャパシタ電圧の上昇が大きくなり、インバータやキャパシタの定格上限を超えてそれらが破損し、交流モータの破損にまで至る虞を有している。 In Patent Document 3, as in Patent Document 1, when a capacitor is charged with regenerative power, the increase in the capacitor voltage increases and exceeds the rated upper limit of the inverter and the capacitor, resulting in damage to the AC motor. I have a fear.
日本国の公開特許公報である特開平6-270695号公報Japanese Laid-Open Patent Publication No. 6-270695, which is a public patent gazette in Japan 日本国の公開特許公報である特開2002-315109号公報Japanese Patent Laid-Open No. 2002-315109, which is a public patent gazette in Japan 日本国の公開特許公報である特開平2003-219566号公報Japanese Patent Laid-Open No. 2003-219656, which is a public patent gazette in Japan
 本発明の目的は、高価な電気二重層キャパシタの容量を減らし、小型化できる移動車両用電源装置を提供することにある。 An object of the present invention is to provide a power supply device for a mobile vehicle that can reduce the capacity of an expensive electric double layer capacitor and can be miniaturized.
 本発明の一つの観点によれば、バッテリーに接続され回生動作可能なインバータと、このインバータを介して接続されたモータと、バッテリーの直流回路に接続されて、リアクトルとスイッチング素子を有するチョッパーと、このチョッパーに接続された電気二重層キャパシタを備えた移動車両電源装置であって、
前記バッテリー電圧を検出し、検出電圧を微分する微分手段と、この微分手段による微分信号と前記電気二重層キャパシタに対する所望キャパシタ電流実現のための係数との乗算を実行する電流成分演算部と、この電流成分演算部が出力する電流指令と前記チョッパーを流れる検出電流との差信号を求め、この差信号に応じたゲート信号を生成してチョッパーを制御するよう構成したことを特徴としたものである。
According to one aspect of the present invention, an inverter connected to a battery and capable of regenerative operation, a motor connected via the inverter, a chopper having a reactor and a switching element connected to a DC circuit of the battery, A mobile vehicle power supply device comprising an electric double layer capacitor connected to the chopper,
A differentiating unit for detecting the battery voltage and differentiating the detected voltage; a current component calculating unit for executing a multiplication of a differential signal by the differentiating unit and a coefficient for realizing a desired capacitor current for the electric double layer capacitor; A difference signal between the current command output from the current component calculation unit and the detected current flowing through the chopper is obtained, and a gate signal corresponding to the difference signal is generated to control the chopper. .
 また、本発明の別の観点によれば、前記チョッパーのスイッチング素子を充放電用の複数とし、前記電流成分演算部が出力する電流指令IL *の正負を判断し、IL *≧0時には前記電気二重層キャパシタへの充電用スイッチング素子のみをスイッチング制御し、IL *<0時には電気二重層キャパシタの放電用スイッチング素子のみをスイッチング制御するよう構成したことを特徴としたものである。 According to another aspect of the present invention, a plurality of switching elements of the chopper are used for charging / discharging, and the sign of the current command I L * output from the current component calculation unit is determined, and when I L * ≧ 0 Only the switching element for charging the electric double layer capacitor is controlled to be switched, and when I L * <0, only the switching element for discharging the electric double layer capacitor is controlled to be switched.
本発明の実施例を示す構成図である。It is a block diagram which shows the Example of this invention. シミュレーション結果図である。It is a simulation result figure. 本発明の他の実施例を示す構成図である。It is a block diagram which shows the other Example of this invention. 移動車両用電源装置の主回路構成図である。It is a main circuit block diagram of the power supply device for mobile vehicles.
 本発明の実施形態では、バッテリー電圧VBの微分値に容量Csを乗算した値を演算設定IL *とする。これによってチョッパー電流ILを、容量Cs、内部抵抗0の電気二重層キャパシタをバッテリーに直接並列接続したときのキャパシタ電流と等価な動作を実行させるようにしたものである。以下、実施例に基づいて詳述する。 In the embodiment of the present invention, a value obtained by multiplying the differential value of the battery voltage V B by the capacity Cs is set as the calculation setting I L * . As a result, the chopper current I L is caused to perform an operation equivalent to a capacitor current when an electric double layer capacitor having a capacity Cs and an internal resistance 0 is directly connected in parallel to the battery. Hereinafter, it explains in full detail based on an Example.
 [実施例1]
 図1は、本発明の第1の実施例を示すチョッパー制御回路のブロック図である。電源装置の主回路は、図4と同様バッテリーBに回生動作可能なインバータINVを接続し、このインバータを介してモータMが制御される。Chはチョッパーで、リアクトルLとスイッチング素子S1,S2を有し、このチョッパーChに電気二重層キャパシタCが接続されて回生電流蓄積部RAが構成される。1はバッテリー電圧を検出する電圧検出部、2はローパスフィルタで、検出器1により検出されたバッテリー電圧VBは、このローパスフィルタ2でノイズの除去処理が施された後に微分手段3により微分される。4は電流指令演算部で、電気二重層キャパシタCに対する理想的な大容量キャパシタ電流流入を実現するために、この電流指令演算部4において微分値と容量Csとの乗算を実行する。
[Example 1]
FIG. 1 is a block diagram of a chopper control circuit showing a first embodiment of the present invention. In the main circuit of the power supply device, an inverter INV capable of regenerative operation is connected to the battery B as in FIG. 4, and the motor M is controlled via this inverter. Ch is a chopper, which has a reactor L and switching elements S1 and S2, and an electric double layer capacitor C is connected to the chopper Ch to constitute a regenerative current storage unit RA. 1 is a voltage detector for detecting battery voltage, 2 is a low-pass filter, and the battery voltage V B detected by the detector 1 is subjected to noise removal processing by the low-pass filter 2 and then differentiated by the differentiating means 3. The Reference numeral 4 denotes a current command calculation unit, and in order to realize an ideal large-capacity capacitor current inflow to the electric double layer capacitor C, the current command calculation unit 4 performs multiplication of the differential value and the capacitance Cs.
 容量Csは、電気二重層キャパシタCが理想とする大容量キャパシタ電流の流入を実現するためのキャパシタ容量で、任意に設定される。5は減算部で、電流指令演算部4の出力と、電流検出器6により検出された回生電流蓄積部RAに流入する電流との差演算を実行する。差信号は回生電流値蓄積部RAへ流れ込む電流指令値として電流制御部7に入力され、電流制御部7では電流指令値に応じたPI演算を実行し、PWMによるゲート信号を生成してチョッパーChのオンオフ制御を行う。 The capacity Cs is a capacitor capacity for realizing inflow of a large capacity capacitor current ideal for the electric double layer capacitor C, and is arbitrarily set. Reference numeral 5 denotes a subtraction unit that performs a difference calculation between the output of the current command calculation unit 4 and the current flowing into the regenerative current accumulation unit RA detected by the current detector 6. The difference signal is input to the current control unit 7 as a current command value that flows into the regenerative current value accumulation unit RA, and the current control unit 7 executes a PI calculation according to the current command value, generates a gate signal by PWM, and generates a chopper Ch. Perform on / off control.
 本発明では、電流制御に適用する検出値として、電流検出器6により検出したチョッパー電流ILを用いる。ここで、電気二重層キャパシタCは、内部抵抗が零で、且つ理想とする大容量キャパシタCs値(>C)を有するものと仮定し、この大容量キャパシタCsを有する電気二重層キャパシタが、直接バッテリーBに並列接続されているとする。その時の電気二重層キャパシタへの電流ISを計算し、これをチョッパーChの電流指令IL *とすることにより、容量Csを有した電気二重層キャパシタCとし、この容量Csを有したものがバッテリーBに直接並列接続されたと等価な動作を実現する。 In the present invention, the chopper current I L detected by the current detector 6 is used as a detection value applied to the current control. Here, it is assumed that the electric double layer capacitor C has zero internal resistance and an ideal large-capacity capacitor Cs value (> C), and the electric double-layer capacitor having the large-capacitance capacitor Cs directly It is assumed that the battery B is connected in parallel. The current I S to the electric double layer capacitor at that time is calculated, and this is used as the current command I L * of the chopper Ch. Thus, the electric double layer capacitor C having the capacity Cs is obtained, and the one having this capacity Cs is obtained. An operation equivalent to that connected directly in parallel to the battery B is realized.
 容量Csを有する理想的な電気二重層キャパシタに流れる電流ISは、(1)式のように、バッテリー電圧VBの微分成分に容量Csを乗算すればよく、電流指令演算部4はその演算を実行する。 The current I S flowing through the ideal electric double layer capacitor having the capacity Cs may be obtained by multiplying the differential component of the battery voltage V B by the capacity Cs as shown in the equation (1). Execute.
       IL *=IS=Cs・d/dt(VB)……    (1)
 図2は力行と回生を交互に実施したときのシミュレーション結果を示したもので、力行時のバッテリー電流のピーク値が効果的に抑えられ、フラットな電流となっていることが分かる。
I L * = I S = Cs · d / dt (V B ) (1)
FIG. 2 shows a simulation result when power running and regeneration are performed alternately. It can be seen that the peak value of the battery current during power running is effectively suppressed and the current is flat.
 この実施例によれば、電気二重層キャパシタCの容量を小さなキャパシタ容量で、等価的に大容量のキャパシタを接続したことになるため、高価な電気二重層キャパシタの小型化が可能となり、コスト的にも有利なものとなる。また、(1)式のように電流と電圧の関係を理想的なキャパシタとして設定できるため、等価的にキャパシタの内部抵抗を0とすることが可能となり、従来のように、電気二重層キャパシタに電流が流れ難くなることもない。 According to this embodiment, since the electric double layer capacitor C has a small capacitance and an equivalent large capacitance is connected, it is possible to reduce the size of the expensive electric double layer capacitor, which is cost effective. It is also advantageous. In addition, since the relationship between current and voltage can be set as an ideal capacitor as shown in equation (1), the internal resistance of the capacitor can be equivalently set to 0. Current does not become difficult to flow.
 [実施例2]
 図3は第2の実施例を示したもので、図1で示す第1の実施例との相違点は、電流制御部7の出力側にゲート信号作成部8を設けたことで、他は同様である。
ゲート信号作成部8は、判定部81と第1のゲート回路82、及び第2のゲート回路83を備えている。この実施例は、チョッパーChのスイッチング損失の低減を図るために、スイッチング素子S1、S2を交互にスイッチングさせるものではなく、電気二重層キャパシタCの充放電の状況に応じて片側のスイッチング素子のみをオンオフ制御するものである。そのために、電流指令演算部4で演算されたチョッパーに対する算出電流指令IL *を判定部81に入力し、0より大きいか否かを判定する。その結果、電流指令IL *≧0のときには第1のゲート回路82に信号を出力し、スイッチング素子S2のみをオン制御とし、素子S1はオフ状態を維持する。また、判定部81で、電流指令IL *≦0のときには第2のゲート回路83に信号を出力し、スイッチング素子S1のみをオン制御とし、素子S2はオフ状態を維持する。
[Example 2]
FIG. 3 shows the second embodiment. The difference from the first embodiment shown in FIG. 1 is that a gate signal generator 8 is provided on the output side of the current controller 7, It is the same.
The gate signal creation unit 8 includes a determination unit 81, a first gate circuit 82, and a second gate circuit 83. In this embodiment, in order to reduce the switching loss of the chopper Ch, the switching elements S1 and S2 are not alternately switched. Only the switching element on one side according to the charging / discharging state of the electric double layer capacitor C is used. On-off control is performed. For this purpose, the calculated current command I L * for the chopper calculated by the current command calculation unit 4 is input to the determination unit 81 to determine whether or not it is greater than zero. As a result, when the current command I L * ≧ 0, a signal is output to the first gate circuit 82, only the switching element S2 is turned on, and the element S1 maintains the off state. Further, when the current command I L * ≦ 0, the determination unit 81 outputs a signal to the second gate circuit 83, turns on only the switching element S1, and keeps the element S2 in the off state.
 チョッバーChは、電気二重層キャパシタCの充電時には昇圧チョッパーとして動作し、放電時には電位差(=VEDLC-VB)を利用した放電となるため、この制御の動作条件は、(バッテリー電圧VB)<(電気二重層キャパシタ電圧VEDLC)となる。 The chopper Ch operates as a step-up chopper when the electric double layer capacitor C is charged, and discharges using a potential difference (= V EDLC -V B ) when discharging. Therefore, the operating condition of this control is (battery voltage V B ) <(Electric double layer capacitor voltage V EDLC ).
 この実施例によれば、チョッパー制御回路において、2つのスイッチング素子によるスイッチング損失の低減を図るために、演算された電流指令値の正負により、2つのスイッチング素子のうち、一方側のみのスイッチング制御を行うようにしたものであるから、第1の実施例と比較してさらにスイッチング損失の抑制が可能となるものである。 According to this embodiment, in the chopper control circuit, in order to reduce the switching loss by the two switching elements, the switching control of only one side of the two switching elements is performed based on the calculated current command value. As a result, the switching loss can be further suppressed as compared with the first embodiment.
 以上のとおり、本実施形態によれば、小容量の電気二重層キャパシタCで、等価的に大容量のキャパシタを接続したことになるため、高価な電気二重層キャパシタの小型化が可能となり、コスト的にも有利なものとなる。また、電流と電圧の関係を理想的なキャパシタとして設定ができるため、等価的にキャパシタの内部抵抗を0とすることが可能となり、従来のように、電気二重層キャパシタへ電流が流れ難くなることもなくなる。また、演算されたチョッパーの電流指令値の正負により、2つのスイッチング素子のうち、一方側のみのスイッチング制御を行うようことにより、さらにスイッチング損失の抑制が可能となるものである。 As described above, according to the present embodiment, since a large-capacity capacitor is equivalently connected by a small-capacity electric double layer capacitor C, an expensive electric double-layer capacitor can be reduced in size and cost. This is also advantageous. In addition, since the relationship between current and voltage can be set as an ideal capacitor, the internal resistance of the capacitor can be equivalently reduced to 0, and current does not easily flow to the electric double layer capacitor as in the past. Also disappear. Further, switching loss can be further suppressed by performing switching control on only one side of the two switching elements based on whether the calculated current command value of the chopper is positive or negative.
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

Claims (2)

  1.  バッテリーに接続され回生動作可能なインバータと、このインバータを介して接続されたモータと、バッテリーと並列に接続され、リアクトルとスイッチング素子を有するチョッパーと、このチョッパーに接続された電気二重層キャパシタを備えた移動車両電源装置であって、
    前記バッテリー電圧を検出し、検出電圧を微分する微分手段と、この微分手段による微分信号と前記電気二重層キャパシタに対する所望キャパシタ電流実現のための係数との乗算を実行する電流指令演算部と、この電流指令演算部が出力する電流指令と前記チョッパーを流れる検出電流との差信号を求め、この差信号に応じたゲート信号を生成してチョッパーを制御するよう構成したことを特徴とした移動車両用電源装置。
    An inverter connected to the battery and capable of regenerative operation, a motor connected via the inverter, a chopper connected in parallel with the battery and having a reactor and a switching element, and an electric double layer capacitor connected to the chopper A mobile vehicle power supply,
    A differentiating means for detecting the battery voltage and differentiating the detected voltage; a current command calculation unit for executing a multiplication of a differential signal by the differentiating means and a coefficient for realizing a desired capacitor current for the electric double layer capacitor; A mobile vehicle characterized in that a difference signal between a current command output by a current command calculation unit and a detected current flowing through the chopper is obtained, and a gate signal corresponding to the difference signal is generated to control the chopper. Power supply.
  2.  前記チョッパーのスイッチング素子を充放電用の複数とし、前記電流指令演算部が出力する電流指令IL *の正負を判断し、IL *≧0時には前記電気二重層キャパシタへの充電用スイッチング素子のみをスイッチング制御し、 IL *<0時には電気二重層キャパシタの放電用スイッチング素子のみをスイッチング制御するよう構成したことを特徴とした請求項1記載の移動車両用電源装置。 A plurality of switching elements of the chopper are used for charging / discharging, and whether the current command I L * output from the current command calculation unit is determined. When I L * ≧ 0, only the switching element for charging the electric double layer capacitor The power supply device for a mobile vehicle according to claim 1, wherein switching control is performed for only the discharge switching element of the electric double layer capacitor when I L * <0.
PCT/JP2009/052637 2008-02-20 2009-02-17 Power supply unit for moving vehicle WO2009104577A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-038306 2008-02-20
JP2008038306A JP5012555B2 (en) 2008-02-20 2008-02-20 Power supply for mobile vehicles

Publications (1)

Publication Number Publication Date
WO2009104577A1 true WO2009104577A1 (en) 2009-08-27

Family

ID=40985457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052637 WO2009104577A1 (en) 2008-02-20 2009-02-17 Power supply unit for moving vehicle

Country Status (2)

Country Link
JP (1) JP5012555B2 (en)
WO (1) WO2009104577A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169765B2 (en) * 2008-11-20 2013-03-27 株式会社明電舎 DC power supply control method and mobile vehicle using the DC power supply control method
JP5420080B2 (en) * 2010-08-05 2014-02-19 三菱電機株式会社 Power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271209A (en) * 1991-02-25 1992-09-28 Hino Motors Ltd Power supply regulation circuit for vehicle
JPH06292305A (en) * 1993-04-02 1994-10-18 Aqueous Res:Kk Power source for drive motor
JPH10271611A (en) * 1997-03-25 1998-10-09 Nissan Diesel Motor Co Ltd Power supply system for electric vehicle
JP2002320302A (en) * 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd Power unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271209A (en) * 1991-02-25 1992-09-28 Hino Motors Ltd Power supply regulation circuit for vehicle
JPH06292305A (en) * 1993-04-02 1994-10-18 Aqueous Res:Kk Power source for drive motor
JPH10271611A (en) * 1997-03-25 1998-10-09 Nissan Diesel Motor Co Ltd Power supply system for electric vehicle
JP2002320302A (en) * 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd Power unit

Also Published As

Publication number Publication date
JP5012555B2 (en) 2012-08-29
JP2009201208A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4886487B2 (en) Multi-input / output power converter and fuel cell vehicle
JP6227003B2 (en) Charge / discharge system
JP5464451B2 (en) Converter control device
JP5298152B2 (en) Power conversion device and power conversion device for railway vehicles
JP4934562B2 (en) Vehicle control device having power storage device
JP5446054B2 (en) Power system
JP2009254169A (en) Power supply system
JP5655951B2 (en) Power converter
JP5332214B2 (en) Motor drive device
WO2009104577A1 (en) Power supply unit for moving vehicle
JP2008079436A (en) Power supply control unit
JP2011211797A (en) Step-up dc-dc converter
JP2005224059A (en) Dc/dc converter and program
JP3983775B2 (en) Power converter using electric double layer capacitor
JP6240023B2 (en) Power converter and railway vehicle equipped with the same
KR102529389B1 (en) System and method for low voltage dc-dc converter control of environmentally friendly vehicles
JP5076918B2 (en) Power storage device
JP2010288414A (en) Power supply device for vehicle
JP2010124574A (en) Chopper control method of dc power supply and moving vehicle using the same
WO2017159042A1 (en) Electric power control device and vehicle
JP2011004466A (en) Device for detecting capacitance drop of capacitor in resonance type converter
JP5169765B2 (en) DC power supply control method and mobile vehicle using the DC power supply control method
KR20240009577A (en) Power net apparatus of the fuel cell and control method thereof
KR20230010415A (en) Energy storage system comprising battery and super capacitor cell
JP2005112598A (en) Control power supply device for controlling elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712023

Country of ref document: EP

Kind code of ref document: A1