WO2009104259A1 - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
WO2009104259A1
WO2009104259A1 PCT/JP2008/052880 JP2008052880W WO2009104259A1 WO 2009104259 A1 WO2009104259 A1 WO 2009104259A1 JP 2008052880 W JP2008052880 W JP 2008052880W WO 2009104259 A1 WO2009104259 A1 WO 2009104259A1
Authority
WO
WIPO (PCT)
Prior art keywords
red
plasma display
cells
cell
green
Prior art date
Application number
PCT/JP2008/052880
Other languages
French (fr)
Japanese (ja)
Inventor
黄木 英明
岸 智勝
田島 正也
増田 健夫
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2008/052880 priority Critical patent/WO2009104259A1/en
Publication of WO2009104259A1 publication Critical patent/WO2009104259A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7795Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature

Definitions

  • the present invention relates to a plasma display device, and more particularly, to a plasma display panel having red cells, green cells, and blue cells in which phosphor layers that emit red, green, and blue light are sequentially formed on each surface of a plurality of discharge cells.
  • the present invention relates to a plasma display device provided.
  • a plasma display panel in which phosphor layers of blue, green and red are sequentially arranged in the partition wall, and a dischargeable gas medium is sealed in a space formed by the front cover plate, the back cover plate and the partition wall.
  • the partition wall spacing of the part where the blue phosphor layer is disposed is wider than the partition wall spacing of the part where the other color phosphor layer is disposed, and is widened in the order of green, red and blue.
  • the emission spectrum of the orange component is mixed with the emission spectrum of the red phosphor layer, and the red color purity is reduced, the emission spectrum of the orange component is reduced to improve the red color purity.
  • the red luminance decreases. I know it will happen.
  • the present invention is a state in which the brightness of red is reduced as a result of performing some processing to improve the color purity of red to increase the color gamut, increase the luminous efficiency, or increase the overall brightness. Even if it becomes, it aims at providing this and the plasma display apparatus which does not reduce red brightness
  • a plasma display device has a plurality of barrier ribs in a space between opposed front and back substrates, and a plurality of discharge cells partitioned between the barrier ribs.
  • a plasma display device comprising a plasma display panel having a red cell, a green cell and a blue cell in which phosphor layers emitting red, green and blue light are sequentially formed on each surface, The red cell partition spacing is greater than the green cell spacing, and the green cell spacing is greater than or equal to the blue cell spacing.
  • a second invention is the plasma display device according to the first invention, wherein:
  • the phosphor layer of the red cell is composed of a phosphor material having a longer emission wavelength than the emission spectrum of a red phosphor using (Y, Gd) BO 3 : Eu as the phosphor material. To do.
  • a plasma display device that improves the purity of red using a phosphor material having a higher purity than the phosphor material of a commonly used red phosphor, and does not decrease the luminance and the number of gradations of red. can do.
  • a third invention is the plasma display device according to the second invention, wherein
  • the phosphor layer of the red cell is made of a phosphor material using Y (P, V) O 4 : Eu.
  • a fourth invention is the plasma display device according to the second invention, wherein The green cell barrier rib spacing is equal to the blue cell barrier rib pitch.
  • a fifth invention is the plasma display device according to the second invention, wherein: The red cell, the green cell, and the blue cell are filled with a discharge gas containing Xe gas, and the mixing ratio of the Xe gas in the discharge gas is 10 to 30%.
  • the concentration of Xe gas can be increased to improve the overall luminance, and the balance between blue luminance and red luminance can be maintained.
  • 6th invention is the plasma display apparatus which concerns on 5th invention.
  • the green cell partition spacing may be greater than the blue cell partition spacing.
  • the 7th invention is the plasma display apparatus which concerns on 1st invention,
  • the difference between the red cell partition spacing and the blue cell partition spacing is characterized in that the ratio has a difference of 5% or more with respect to the red cell partition spacing.
  • a plasma display device has a plurality of barrier ribs in a space between the front substrate and the rear substrate facing each other, and each surface of a plurality of discharge cells defined between the barrier ribs has red,
  • a plasma display device comprising a plasma display panel having a red cell, a green cell and a blue cell in which phosphor layers emitting green and blue light are sequentially formed, The red cell partition spacing is larger than the green cell partition spacing, the green cell partition spacing is larger than the blue cell partition spacing, The red cell, the green cell, and the blue cell are filled with a discharge gas containing Xe gas, and the mixing ratio of the Xe gas in the discharge gas is 10 to 30%.
  • the concentration of Xe gas is increased to improve the luminous efficiency, and the property that the luminance is improved in the order of blue cell, green cell, and red cell is corrected by the partition spacing to achieve both high luminous efficiency and good white balance. Can be realized.
  • a plasma display device has a plurality of barrier ribs in the space between the front substrate and the rear substrate facing each other, red on each surface of the plurality of discharge cells partitioned between the barrier ribs,
  • a plasma display device comprising a plasma display panel having a red cell, a green cell and a blue cell in which phosphor layers emitting green and blue light are sequentially formed,
  • the partition spacing of the red cells is larger than the partition spacing of the green cells
  • the partition spacing of the green cells is formed equal to the partition spacing of the blue cells
  • the front substrate has an orange cut filter for attenuating a component of an orange emission spectrum.
  • a plasma display device has a plurality of barrier ribs in the space between the front substrate and the rear substrate facing each other, and each surface of the plurality of discharge cells partitioned between the barrier ribs has red,
  • a plasma display device comprising a plasma display panel having a red cell, a green cell and a blue cell in which phosphor layers emitting green and blue light are sequentially formed,
  • the partition spacing of the red cells is equal to the partition spacing of the green cells, the partition spacing of the green cells is formed larger than the partition spacing of the blue cells,
  • the number of discharges of the discharge cell is 1000 times or more and 1500 times or less per field.
  • the number of discharges is increased to improve the overall brightness of the plasma display panel, and the red cell brightness is increased and the number of gradations is increased by widening the partition spacing of the red cells, rather than the blue cells that are likely to improve the brightness. Image with high brightness and good white balance can be displayed.
  • the present invention it is possible to improve the red color purity, luminous efficiency or overall luminance of the plasma display panel without reducing the white balance.
  • FIG. 2 is a diagram illustrating a partial cross-sectional configuration of a plasma display panel 60 and a partial planar configuration of a discharge cell 40 of the plasma display device according to the first embodiment.
  • FIG. It is a comparison figure of the property of the red fluorescent substance applied to the plasma display apparatus which concerns on a present Example, and a general red fluorescent substance. It is the figure which showed the emission spectrum of fluorescent substance of normal purity, and high purity fluorescent substance.
  • FIG. 3A is a diagram showing an emission spectrum of a phosphor used conventionally.
  • FIG. 3B is a diagram showing an emission spectrum of a high-purity red phosphor. It is a figure for demonstrating the adjustment method at the time of applying a highly purified red fluorescent substance to the fluorescent substance layer 51.
  • FIG. 4A is a diagram showing an emission spectrum, luminance, and number of gradations (gain) of a normal red phosphor.
  • FIG. 4B is a diagram showing the emission spectrum, luminance, and number of gradations (gain) of the highly saturated red phosphor.
  • FIG. 4C is a diagram illustrating characteristics in a state where adjustment is performed using the signal gain.
  • FIG. 4D is a diagram showing characteristics in a state where adjustment is performed with the rib width (distance between the partition walls).
  • FIG. 4E is a diagram showing the color gamut and white balance. It is the figure which showed the partial cross-section structure and partial plane structure of the plasma display panel 60a of the plasma display apparatus which concerns on Example 2.
  • FIG. 4A is a diagram showing an emission spectrum, luminance, and number of gradations (gain) of a normal red phosphor.
  • FIG. 4B is a diagram showing the emission spectrum, luminance, and number of gradations (gain) of the highly saturated red phosphor.
  • FIG. 6A is a characteristic diagram of a normal red phosphor.
  • FIG. 6B is a characteristic diagram in a state where the mixing ratio of Xe gas is increased.
  • FIG. 6C is a diagram showing a state in which the luminance imbalance state is adjusted by the signal gain.
  • FIG. 6D is a diagram showing an example in which the state of luminance imbalance is adjusted by the partition wall spacing of the discharge cells 40a.
  • FIG. 6E shows the color gamut and white balance. It is the figure which showed the partial cross-section structure and partial plane structure of the plasma display panel 60b of the plasma display apparatus based on Example 3 to which this invention is applied.
  • FIG. 8A is a characteristic diagram in the case where a normal red phosphor is applied and the mixing ratio of Xe gas is also normal.
  • FIG. 8B is a characteristic diagram in a state where a highly saturated red phosphor is applied to the red phosphor layer 51 and the mixing ratio of Xe gas in the discharge gas is increased.
  • FIG. 8C is a characteristic diagram in a state where luminance imbalance and white balance collapse are adjusted by signal gain.
  • FIG. 8D is a diagram showing each characteristic when the luminance imbalance is adjusted by the partition wall interval of the discharge cell 40a.
  • FIG. 8E shows the color gamut and white balance.
  • FIG. 10A is a characteristic diagram of a red phosphor in a state where a normal red phosphor is used and an orange cut filter is not used.
  • FIG. 10B is a diagram illustrating each characteristic in a state where the orange cut filter 11 is provided.
  • FIG. 10C is a characteristic diagram showing a state in which the red luminance reduction state is adjusted by the signal gain.
  • FIG. 10D is a characteristic diagram in a state where the plasma display device according to the present embodiment is applied to the luminance imbalance state.
  • FIG. 10A is a characteristic diagram of a red phosphor in a state where a normal red phosphor is used and an orange cut filter is not used.
  • FIG. 10B is a diagram illustrating each characteristic in a state where the orange cut filter 11 is provided.
  • FIG. 10C is a characteristic diagram showing a state in which the red luminance reduction state is adjusted by the signal gain.
  • FIG. 10D is a characteristic diagram in a state where the plasma display device according to the present embodiment
  • FIG. 10E shows the color gamut and white balance. It is the figure which showed the partial cross-section structure and partial plane structure of the plasma display panel 10d of the plasma display apparatus concerning Example 5.
  • FIG. It is a characteristic view of the discharge cell 40d of the plasma display apparatus concerning a present Example.
  • FIG. 12A is a characteristic diagram when the sustain pulse is in a normal state.
  • FIG. 12B is a diagram showing characteristics when the number of sustain pulses is increased.
  • FIG. 12C is a characteristic diagram when correction of the luminance reduction state is performed using the signal gain.
  • FIG. 12D is a characteristic diagram in a state where the plasma display device according to the present embodiment is applied.
  • FIG. 12E shows the color gamut and white balance. It is an example of the whole block diagram of the plasma display apparatus of Example 1 thru
  • FIG. 1 is a diagram showing a partial cross-sectional configuration of a plasma display panel 60 and a partial planar configuration of a discharge cell 40 of a plasma display device according to a first embodiment to which the present invention is applied.
  • the plasma display device includes a front substrate 10, a rear substrate 20, barrier ribs 30, discharge cells 40, and a phosphor layer 50.
  • the front substrate 10 is a substrate constituting the display surface of the plasma display panel 60, and may be composed of, for example, a glass substrate.
  • the back substrate 20 constitutes a non-display surface on the back side of the plasma display panel 60. This may also be formed by a glass substrate, for example.
  • the front substrate 10 and the back substrate 20 are provided to face each other, and form a space in the facing surfaces.
  • a plurality of partition walls (ribs) 30 are provided between the front substrate 10 and the back substrate 20 facing each other, and a space where the front substrate 10 and the back substrate 20 face each other is partitioned to form a plurality of discharge cells 40.
  • the partition wall 30 may be provided on the back substrate 20 side, for example.
  • a plurality of barrier ribs 30 are provided in parallel, and the interval between the barrier ribs determines the horizontal width of the discharge cell 40. Therefore, the partition wall interval may be called a rib width.
  • the barrier ribs 30 serve as partitions so that the discharge generated in each discharge cell 40 does not affect the adjacent discharge cells 40.
  • the discharge cells 40 are partitioned by the partition walls 30 and are provided on the plasma display panel 60.
  • the discharge cell 40 has a phosphor layer 50 formed on the surface thereof.
  • the phosphor layer 50 includes a red phosphor layer 51, a green phosphor layer 52, and a blue phosphor layer 53.
  • the phosphor layer 50 is sequentially assigned to each discharge cell 40.
  • the discharge cell 40 in which the red phosphor layer 51 is formed constitutes a red cell 41.
  • the discharge cell 40 in which the green phosphor layer 52 is formed has a green cell 42 and a blue phosphor layer 53 formed therein.
  • the discharge cell 40 constitutes a blue cell 43.
  • the red cell 41, the green cell 42, and the blue cell 43 are filled with a discharge gas, and when a gas discharge is generated, ultraviolet rays are generated, and the phosphor layers 51, 52, 53 of each color are excited by the ultraviolet rays. Light is emitted and color display is performed.
  • the discharge gas is a mixed gas containing Xe (xenon), and the mixing ratio of Xe is normally set to 6 to 8%.
  • a set of the red cell 41, the green cell 42, and the blue cell 43 constitutes one pixel on the plasma display panel 60, and various gradations are expressed by combinations of light emission of red, green, and blue.
  • the partition wall spacing of the red cells 41 is wider than the partition wall spacing of the green cells 42 and the partition wall spacing of the blue cells 43.
  • the partition wall spacing of the green cells 42 and the partition wall spacing of the blue cells 43 are configured to be equal.
  • the discharge cells 40 are formed with equal barrier rib spacing, or even if the barrier rib spacing is different, It was the form which comprised more widely than two colors.
  • the partition spacing of the red cells 41 is wider than the partition spacing of the other two colors.
  • the red phosphor used in the red phosphor layer 51 uses a phosphor capable of emitting high-purity red, and the luminance and the number of gradations are used at that time.
  • the partition wall spacing of the red cell 41 is made larger than the partition wall spacing of the green cell 42 and the blue cell 43 so that ultraviolet rays generated from the plasma of the red cell 41 are efficiently generated. Is. Thereby, reduction of the brightness
  • the plasma display device according to the present embodiment uses this property to make the luminance of the red cell 41 higher than the discharge cells 42 and 43 of the other two colors. Has been improved greatly.
  • the difference between the partition wall spacing of the red cell 41 and the partition wall spacing between the green cell 42 and the blue cell 43 is preferably such that the partition wall spacing ratio with respect to the red cell 41 is 5% or more. If the difference in barrier rib spacing is too small, there is no difference in discharge efficiency. Therefore, the ratio of the barrier rib spacing of the blue cell 43 and the green cell 42 to the barrier rib interval of the red cell 41 is 95% or less, that is, the ratio of the barrier rib gap difference is less than 95%. It is preferable to configure so as to be 5% or more.
  • FIG. 2 is a diagram comparing the properties of a red phosphor that can be applied to the plasma display apparatus according to the present embodiment and a general red phosphor that has been conventionally used.
  • a borate red phosphor whose material composition is (Y, Gd) BO 3 : Eu 3+ is a phosphor that has been conventionally used, and has good emission efficiency (in FIG. 2, ) Indicates that the color purity is inferior (indicated by ⁇ in FIG. 2).
  • the phosphor of red Fossavana whose material composition is Y (P, V) O 4 : Eu is a red phosphor applied to the plasma display device according to the present embodiment, and compared with borate red, It can be seen that the color purity is very excellent (indicated by “ ⁇ ” in FIG. 2). However, it is shown that the phosphorescent red phosphor has a slightly lower luminous efficiency than the borate red phosphor (indicated by ⁇ in FIG. 2).
  • Fosbana red having a material composition of Y (P, V) O 4 : Eu which is a high-purity red phosphor, can greatly improve the red purity as compared with the prior art. Then, it turns out that it will fall if it replaces and uses as it is.
  • FIG. 3 is a diagram showing emission spectra of a normal purity borate red phosphor and a high purity fosvana red phosphor.
  • the horizontal axis indicates the wavelength
  • the vertical axis indicates the size of the emission spectrum.
  • FIG. 3 (a) is a diagram showing an emission spectrum of a conventionally used borate red phosphor.
  • three emission spectra are shown in the vicinity of a wavelength of 600 [nm], but the vicinity of the wavelength of 595 [nm] is an emission spectrum showing an orange component, which is indicated by a solid line. This corresponds to the peak of the emission spectrum.
  • a wavelength around 580 [nm] is an emission spectrum of Ne emission, and a large emission spectrum is not shown, but this also has an orange component.
  • FIG. 3B is a diagram showing an emission spectrum of phosbana red, which is a high-purity phosphor, that can be applied to the plasma display device according to the present embodiment.
  • phosbana red which is a high-purity phosphor
  • FIG. 3B although there is an emission spectrum in the vicinity of a wavelength of 595 [nm] and has an orange component, the magnitude thereof is smaller than that of borate red.
  • a large emission spectrum exists in the wavelength range of 600 to 650 [nm], and an emission spectrum exists in the vicinity of the wavelength of 700 [nm].
  • the red emission spectrum component is larger than the orange component. It has become. Therefore, the red color purity of the plasma display panel 10 can be improved by using, for example, a phosphor of red Fossana for the red phosphor layer 51 of the red cell 41.
  • the high-purity red phosphor phosbana red has a problem that the emission luminance is lowered. Even if it is used as it is instead of borate red, it causes various problems due to a decrease in luminance. obtain. Therefore, in the plasma display apparatus according to the present embodiment, as shown in FIG. 1, the partition wall spacing of the red cell 41 is made larger than that of the green cell 42 and the blue cell 43 to solve this problem. The specific contents will be described below.
  • FIG. 4 is a diagram showing emission spectrum characteristics and color gamuts in various states in order to explain an adjustment method when a high-purity red phosphor is applied to the red phosphor layer 51 of the red cell 41.
  • 4A to 4D show emission spectra, luminance, and the number of gradations (gain) in various states.
  • FIG. 4E shows the states in FIGS. 4A to 4D. It is the figure which showed the corresponding color gamut and white balance.
  • FIG. 4 (a) is a diagram showing an emission spectrum, luminance, and number of gradations (gain) of a normal red phosphor such as borate.
  • FIG. 4 (a) shows the characteristics of a pure water phosphor.
  • the emission spectrum includes an orange component in the vicinity of 595 [nm].
  • the color gamut corresponding to the emission spectrum of FIG. 4 (a) is an inner triangle indicated by ⁇ and the red color gamut is narrowed.
  • the white balance is good as shown in FIG.
  • the luminance and the number of gradations are in a good state as shown in FIG.
  • FIG. 4B is a diagram showing an emission spectrum, luminance, and number of gradations (gain) of a high purity, highly saturated red phosphor.
  • the orange component of 595 nm is greatly attenuated, and the emission spectrum of 625 to 740 nm, which is the region of the red emission spectrum, is increased.
  • the emission spectrum of 700 [nm] indicating the primary color is greatly increased as compared with the emission spectrum of FIG.
  • FIG. 4E is viewed, the red region is expanded (indicated by x), and the color gamut is expanded compared to the case of FIG. 4A. I understand. However, with regard to the white balance (position W, indicated by x), it can be seen that the cyan color has increased and moved to the left, and has collapsed.
  • the brightness and the number of gradations (gain) are maintained, and the number of gradations (gain) is maintained at the same level as in FIG. 4A.
  • the luminance of red is reduced in luminance.
  • a high-purity phosphor having a material composition of Y (P, V) O 4 : Eu or the like is used, the color purity of red is improved, but only the luminance of red is lowered, and thereby white balance is also improved. If it is applied as it is as the phosphor layer 51 of the red cell 41, the problem of brightness and white balance will occur.
  • FIG. 4 (c) is a diagram showing the characteristics when adjustment is made with the signal gain in order to make the red, green and blue luminances equal and restore the white balance from the state of FIG. 4 (b). It is.
  • FIG. 4B when a highly saturated red phosphor is used, only the red brightness is reduced and the white balance is lost. Therefore, the green and blue gains are lowered to match the brightness of the three colors. Have been adjusted.
  • FIG. 4 (d) shows each of the cases where adjustment was made with the rib width (distance between the partition walls) in order to make the red, green and blue luminances equal and restore the white balance from the state of FIG. 4 (b). It is the figure which showed the characteristic. Therefore, FIG. 4D shows a state where the plasma display device according to the present embodiment shown in FIG. 1 is applied.
  • the spacing between the red cells 41 is larger than the spacing between the green cells 42 and the blue cells 43, the discharge space of the red cells 41 is increased and discharge is likely to occur.
  • the luminance of 41 is improved.
  • the space between the green cell 42 and the blue cell 43 is reduced, the luminance in the green cell 42 and the blue cell 43 can be suppressed. That is, if the partition spacing between the green cell 42 and the blue cell 43 is decreased by an amount corresponding to the increase in the partition spacing between the red cells 41, the luminance can be adjusted without changing the pixel size. Referring to the luminance graph of FIG.
  • the luminance of the red cell 41 increases and the luminance of the green cell 42 and the blue cell 43 decreases as compared with the state of FIG.
  • the luminance is uniform, and the entire three colors are kept at a high luminance as compared with FIG.
  • the number of gradations (gain) is also the same for all three colors and is kept high as in FIG. 4B.
  • FIG. 4D when the emission spectrum is seen, it can be seen that the emission spectrum of the red component is increased because the partition wall spacing of the red cell 41 is increased. Compared with FIG. 4 (c), it can be seen that since the luminance is increased, the entire emission spectrum is slightly increased. At this time, referring to FIG. 4 (e), the use of the high-purity red phosphor keeps the red color gamut expanded, and the brightness of the three colors is equal, so the white balance is also good. It turns out that it is in a state.
  • the brightness of red is reduced and the white balance is lost, but this is not a signal gain, but a red cell 41, a green color.
  • the overall brightness is greatly reduced by adjusting the brightness of the cell 42 and the blue cell 43 so that the brightness of the red cell 41 is larger than that of the green cell 42 and the blue cell 43.
  • the white balance can be restored to the original without causing it. As a result, it is possible to improve the luminance, the number of gradations (gain), and the white balance while improving the red color purity.
  • the highly saturated red phosphor which is a high-purity red phosphor, is not only a phosphor having a material composition of Y (P, V) O 4 : Eu, but also other highly saturated red fluorescent materials having similar properties.
  • the body can be appropriately applied depending on the application.
  • FIG. 5 is a diagram showing a partial cross-sectional configuration and a partial planar configuration of the plasma display panel 60a of the plasma display device according to the second embodiment to which the present invention is applied.
  • the plasma display panel 60a of the plasma display apparatus according to the second embodiment has a front substrate 10 and a rear substrate 20 facing each other, and a plurality of barrier ribs 30 are provided in a space therebetween, so that a plurality of discharge cells 40a are formed.
  • the red, green, and blue phosphor layers 51a, 52, and 53 are sequentially assigned and formed on the surface of the discharge cell 40a to form a red cell 41a, a green cell 42a, and a blue cell 43a. is doing.
  • the red cell 41a has the same partition wall spacing as that of the green cell 42a and the blue cell 43a, as in the plasma display panel 60 of the plasma display device according to the first embodiment.
  • the size of the partition wall spacing of the green cells 42a is configured to be larger than the partition wall spacing of the blue cells 43a.
  • the size of the partition space between the red cells 41a is maximized according to the type and characteristics of the plasma display panel, and further, the partition space between the green cells 42a and the blue cells 41a is also provided with a difference. Good.
  • the difference between the maximum partition wall spacing and the minimum partition wall spacing is preferably 5% or more, and therefore, the ratio difference of the partition wall spacing of the blue cell 43a to the red cell 41a is preferably 5% or more.
  • the red phosphor layer 51a of the red cell 41a is not made of a high-purity red phosphor but has a material composition of (Y, Gd) BO 3 : Eu.
  • a normal red phosphor such as borate red is used.
  • the green phosphor layer 52 and the blue phosphor layer 53 the same phosphor as that of the first embodiment may be applied, and therefore, the same reference numerals as those of the first embodiment are given.
  • the discharge gas sealed in the red cell 41a, the green cell 42a, and the blue cell 43a is configured to be 10 to 30% with a high mixing ratio of Xe gas.
  • Increasing the Xe gas concentration improves the luminous efficiency of the discharge cell 40a.
  • the luminous efficiency of each cell does not necessarily improve equally, and the blue cell 43a and the green cell 42a.
  • the improvement rate of the order of the red cell 41a is adjusted by changing the partition wall intervals of the red cell 41a, the green cell 42a, and the blue cell 43a.
  • the plasma display device according to the present embodiment is optimally applied to the use in the case where the mixing ratio of the Xe gas in the discharge gas is increased.
  • such an application example will be described.
  • FIG. 6 is a diagram showing various states of the plasma display panel 60a using a normal red phosphor and increasing the mixing ratio of the Xe gas in the discharge gas. Similar to FIG. 4, FIGS. 6A to 6D show the emission spectrum, luminance, and number of gradations (gain) in each state, and FIG. 6E shows FIGS. 6A to 6D. The color gamut and white balance corresponding to are shown.
  • FIG. 6A is a diagram showing characteristics of a normal red phosphor. It is assumed that the specifications required for the plasma display device according to the present embodiment are improvement of luminous efficiency, and color gamut is in a state where satisfactory characteristics are obtained with the conventional phosphor. In other words, the description will be made on the assumption that the expansion of the color gamut is not a problem and the main purpose is to improve the luminous efficiency.
  • FIG. 6A a normal red phosphor is used, but since the color gamut is not a problem, the emission spectrum is in a state where satisfactory characteristics are obtained. On the other hand, the luminance remains at a low level, indicating a state in which improvement in luminance is desired. Further, the number of gradations (gain) is sufficiently high, and satisfactory characteristics are obtained.
  • FIG. 6 (b) is a diagram showing each characteristic in a state where the concentration of the Xe gas of the discharge gas sealed in the discharge cell 40a is increased to increase the mixing ratio.
  • the red emission spectrum at the wavelength of 625 to 740 [nm] does not increase so much, but the blue emission spectrum near the wavelength of 450 [nm] greatly increases.
  • the green emission spectrum near 525 [nm] is smaller than the blue emission spectrum and increases at an intermediate level larger than the red emission spectrum. Focusing on the luminance, the blue luminance increase is the largest, then the green is the largest, and the red luminance increase is the smallest, indicating that there is an imbalance in the luminance of the three colors. . Further, focusing on the number of gradations (gain), it can be seen that there is no change from FIG. 6A and that a sufficient number of gradations is obtained.
  • FIG. 6C is a diagram illustrating a state in which the luminance imbalance state illustrated in FIG. 6B is adjusted by a signal gain.
  • the gain is adjusted so that the brightness of the three colors is equal by correcting blue to green ⁇ red by largely lowering blue, then lowering green, and leaving red as it is. is doing.
  • the luminance is in a state where the three colors are combined with a low level red. Therefore, when the emission spectrum is viewed, the increase of the blue component near the wavelength 450 [nm] and the increase of the green component near the wavelength 525 [nm] seen in FIG. 6B are suppressed, and both increases are decreased. Characteristics are shown.
  • FIG. 6D applies the plasma display panel 60a of the plasma display apparatus according to the second embodiment shown in FIG. 5, and adjusts the luminance imbalance state of FIG. 6B by the partition spacing of the discharge cells 40a. It is the figure which showed the example to do.
  • the red cell 41a has the largest barrier rib spacing
  • the green cell 42a has the largest barrier rib spacing
  • the blue cell 43a The interval between the partition walls is the smallest. This is just the opposite of the luminance state shown in FIG. 6B, and the luminance of the red cell 41a is obtained by applying the plasma display device according to the present embodiment to the state of FIG. 6B.
  • the luminance of the blue cell 43a can be suppressed, and the luminance of the three colors can be adjusted to be equal as shown in FIG. 6 (d).
  • the luminance adjustment is performed based on the luminance of the green cell 42a having the intermediate luminance as a reference, and a higher luminance is used as a reference than the reference of the luminance of the red cell 41a.
  • the brightness of the three colors can be adjusted equally.
  • the number of gradations (gain) is maintained in a high state as it is. Looking at the emission spectrum graph of FIG.
  • the emission spectrum near 525 [nm] of the green component and the emission spectrum near 450 [nm] of the blue component are increased by the increase in the concentration of Xe gas. It can be seen that it is in a state of enjoying the benefit of improving the light emission luminance without being suppressed so much.
  • the Xe gas concentration is increased to improve the light emission efficiency, and the luminance imbalance adjustment is performed not by the signal gain but by the partition wall spacing of the discharge cells 40a. Therefore, it is possible to realize a good white balance and the number of gradations (gain) without reducing the overall luminance.
  • FIG. 7 is a diagram showing a partial cross-sectional configuration and a partial planar configuration of the plasma display panel 60b of the plasma display device according to the third embodiment to which the present invention is applied.
  • the relationship between the shape of the discharge cell 40a and the partition spacing of each color is the same as that of the plasma display panel 10a according to FIG. 5 described in the second embodiment.
  • the same referential mark is attached
  • the high saturation red phosphor is applied to the red phosphor layer 51b of the red cell 41a instead of the normal red phosphor.
  • the plasma display device according to Example 3 is a combination of Example 1 and Example 2.
  • the mixing ratio of Xe gas in the discharge gas is set to a high concentration and 10 to 30%. Yes. With such a configuration, it is possible to improve the red color purity of the plasma display panel 10a and improve the light emission luminance of all three colors.
  • FIG. 8 is a diagram showing the characteristics of the emission spectrum, luminance, and number of gradations (gain) in various states in order to explain an application example of the plasma display device according to the third embodiment.
  • 8A to 8D show the emission spectrum, luminance, and number of gradations (gain) in each state, respectively, and FIG. 8E corresponds to FIGS. 8A to 8D. Color gamut and white balance are shown.
  • FIG. 8 (a) shows a comparative example in which a conventional red phosphor such as borate red whose material composition is (Y, Gd) BO 3 : Eu, which has been conventionally used, is applied, and Xe gas is mixed.
  • FIG. 6 is a diagram showing characteristics when the ratio is also 6 to 8% of the normal value.
  • the emission spectrum is in a state in which an emission spectrum in the vicinity of a wavelength of 595 [nm], which is an orange component, remains.
  • the luminance is the same for all three colors, but at a low level.
  • the number of gradations is a state in which high gain is obtained and good characteristics are exhibited.
  • FIG. 8 (e) focusing on the color gamut corresponding to FIG. 8 (a), it is shown that the color gamut is in a narrow state.
  • the white balance is in a good state because the brightness of all three colors is equal.
  • FIG. 8B shows a case where a high-brightness, highly saturated red phosphor is applied to the red phosphor layer 51 in a state in which the partition walls of the discharge cells 40a of the plasma display panel 60a are uniform as in the prior art, and the discharge is performed.
  • FIG. 6 is a diagram showing each characteristic in a state where the mixing ratio of Xe gas in the gas is increased to a high concentration (for example, 10 to 30%).
  • the orange component near the wavelength 595 [nm] is attenuated by using the highly saturated red phosphor, and the emission spectrum of the red component near the picture book 700 [nm]. It can be seen that the color increases to a high-purity red color.
  • the luminance since the Xe gas has a high concentration, as described in the second embodiment, the luminance is improved in the order of blue, green, and red, and a luminance imbalance between the colors occurs. The number of gradations is maintained as it is, and shows a good characteristic with a high number of gradations.
  • FIG. 8C is a diagram showing the characteristics of the state in which the luminance imbalance and white balance collapse in FIG. 8B are adjusted by the signal gain.
  • the luminance imbalance in FIG. 8 (b) is reduced by reducing the blue gain the most, lowering the green gain smaller than blue, and leaving the red gain unchanged.
  • the brightness is adjusted to be uniform.
  • the luminance of red having the lowest luminance in FIG. 8B is used as a reference, and the luminances of blue and green are lowered to the same level as the luminance of red. Focusing on the emission spectrum, the red emission spectrum is the same as the state of FIG. 4B, but the emission spectrum of the blue component near the wavelength 450 [nm] and the green component near the wavelength 525 [nm] are both attenuated. is doing.
  • FIG. 8D is a diagram showing each characteristic when the plasma display apparatus according to the present embodiment is applied and the luminance imbalance shown in FIG. 8B is adjusted by the partition wall spacing of the discharge cell 40a. is there.
  • the discharge cell 40a of the plasma display panel 60a is configured such that the red cell 41a has the largest barrier rib spacing, the green cell 42a has the second largest barrier rib spacing, and the blue cell 43a has the barrier rib spacing. Is the narrowest. Therefore, in the luminance characteristic of FIG. 8B, it is possible to add adjustment to increase the luminance of the red cell 41a and decrease the luminance of the blue cell 43a. Can be adjusted so that the brightness of the two becomes equal.
  • the number of gradations is kept high, and a good number of gradations is maintained.
  • the blue component near the wavelength of 450 [nm] is only slightly attenuated, the green component near the wavelength of 525 [nm] is maintained as it is, and the red component in the wavelength range of 625 to 740 [nm].
  • the red phosphor layer 51b is applied with phosbana red having a material composition of Y (P, V) O 4 : Eu, which is a high purity red phosphor. If the mixing ratio of Xe gas in the discharge gas is set to a high concentration and the luminance imbalance is corrected as blue cell 43a ⁇ green cell 42a ⁇ red cell 41a, the red color purity is improved and the luminous efficiency is improved. Can be increased.
  • FIG. 9 is a diagram showing a partial cross-sectional configuration and a partial planar configuration of the plasma display panel 60c of the plasma display device according to the fourth embodiment to which the present invention is applied.
  • the plasma display device according to the fourth embodiment has the configuration described in FIG. 1 of the first embodiment with respect to the shape of the discharge cell 40 and the size relationship between the partition walls of the red cell 41, the green cell 42, and the blue cell 43. Similar to the panel 10. That is, the red cell 41 has the largest partition wall spacing, and the green cell 42 and the blue cell 43 have the same partition wall spacing.
  • the red color purity of the plasma display panel 10c may be improved by using the orange cut filter 11 instead of applying the high-purity red phosphor as in the first embodiment. .
  • FIG. 10 is a diagram illustrating the emission spectrum, luminance, and number of gradations (gain) of the discharge cell 40 in various states in order to explain an application example of the plasma display device according to the fourth embodiment.
  • FIGS. 10A to 10D show the emission spectrum, luminance, and number of gradations (gain) in each state
  • FIG. 10E shows the color gamut and the color gamut corresponding to FIGS. Indicates white balance.
  • FIG. 10A is a diagram showing characteristics of a red phosphor in a state where a normal red phosphor is used and an orange cut filter is not used.
  • the luminance and the number of gradations are in a good state because all three colors show high luminance and a large number of gradations.
  • the emission spectrum shows a state in which an orange component near a wavelength of 595 [nm] remains, and a red component near a wavelength of 625 to 740 [nm] is not so large.
  • the color gamut and white balance corresponding to FIG. 10A can be seen to be in a narrow color gamut (indicated by ⁇ in the figure).
  • the white balance shows a good state.
  • FIG. 10B is a diagram showing each characteristic in a state where the orange cut filter 11 is provided on the front substrate 10 of the plasma display panel 60c.
  • the emission spectrum in FIG. 10 it can be seen that the emission spectrum of the orange component near the wavelength of 595 [nm] is attenuated. Thereby, the color purity of red improves.
  • the luminance is reduced only by the red luminance due to the influence of the orange cut filter 11. Also, the number of gradations is kept high with a high number of gradations.
  • FIG. 10 (c) is a characteristic diagram showing a state in which only the red luminance shown in FIG. 10 (b) has been reduced by adjusting the signal gain.
  • the gains of blue and green with high luminance are reduced, and the luminance is made equal to red. That is, the overall luminance has been reduced.
  • both the emission spectrum of the blue component in the vicinity of the wavelength 450 [nm] and the emission spectrum of the green component in the vicinity of the wavelength 525 [nm] are attenuated.
  • the color gamut corresponding to FIG. 10 (c) is kept in a high red color purity state (indicated by a circle in the figure). Further, since the luminance is the same among the three colors, the white balance is also kept good (indicated by W and ⁇ in the figure). However, as described above, although the color purity of red is improved, both the luminance and the number of gradations are in a reduced state, which is not a preferable state.
  • FIG. 10D is a characteristic diagram in a state where the plasma display device having the plasma display panel 60c shown in FIG. 9 according to the present embodiment is applied to the luminance imbalance state of FIG. 10B.
  • the red cell 41 has the largest partition wall spacing
  • the green cell 42 and the blue cell 43 both have the partition wall spacing smaller than the red cell 41 and the same size. Therefore, in the plasma display apparatus according to the present embodiment, the luminance of the red cell 41 increases, and the luminance of the green cell 42 and the blue cell 43 both decrease.
  • the luminance graph in FIG. 10D when attention is paid to the luminance graph in FIG. 10D, the luminance is balanced between the luminance of the red cell 41 and the luminance of the green cell 42 and the blue cell 43 shown in FIG. This value is much higher than the luminance shown in (c).
  • the luminance of the blue cell 43 and the green cell 42 is slightly reduced, and the luminance of the red cell 41 is increased and approaches.
  • the emission spectrum is an emission spectrum in which the orange component is attenuated and the blue component and the green component are less attenuated.
  • the plasma display device according to Example 4 by using the orange cut filter 11 without applying the high-luminance red phosphor, the luminance and the number of gradations are improved while improving red with high purity. Can be kept high and a good white balance can be realized.
  • the orange cut filter 11 is unnecessary, and considering the cost, the first or third embodiment.
  • the plasma display device according to the above is preferable. However, when it is difficult to obtain a high-purity red phosphor, or when it is necessary to improve the red color purity by modifying only the front substrate 10, the plasma display device according to Example 4 is used. Thus, the same effects as those of the first or third embodiment can be obtained.
  • FIG. 11 is a diagram showing a partial cross-sectional configuration and a partial planar configuration of the plasma display panel 10d of the plasma display apparatus according to the fifth embodiment to which the present invention is applied.
  • the plasma display panel 60d of the plasma display apparatus according to the fifth embodiment is the same as that described so far, except for the basic components other than the discharge cell 40d. Is omitted.
  • the discharge cell 40d has a configuration in which the red cell 41d and the green cell 42d have the same barrier rib spacing, and only the blue cell 43d has a smaller barrier rib spacing. This is different from the plasma display device according to Examples 1 to 4. When only the luminance of the blue cell 43d is higher than that of the other two colors, this configuration can correct the luminance balance.
  • the red phosphor layer 51d may be a red phosphor having a normal purity, and the mixing ratio of the Xe gas in the discharge gas may be 6-8. %.
  • the luminance is improved by increasing the sustain pulse during the sustain discharge. Then, the luminance imbalance between the colors generated at that time is adjusted by the partition wall spacing of the discharge cell 40d. Hereinafter, this content is demonstrated concretely.
  • FIG. 12 is a diagram showing characteristics of the discharge cell 40d in various states in order to explain an application example to the plasma display device according to the present embodiment.
  • 12A to 12D show the emission spectrum, luminance, and number of gradations (gain) in each state
  • FIG. 12E corresponds to FIGS. 12A to 12D. Color gamut and white balance are shown.
  • FIG. 12 (a) is a diagram showing the characteristics of the sustain pulse in the normal state.
  • the sustain pulse is a pulse that is applied at the time of the sustain discharge in the subfield, and expresses a gradation by the number of sustain discharges.
  • the number of sustain pulses is expressed by, for example, the number of sustain pulses for each field, and may be 1000 times / field in a normal state, for example. In FIG. 12A, the case where the number of sustain pulses is 1000 times / field will be described as an example.
  • FIG. 12A when the number of sustain pulses is about 1000 times per field, the luminance and the number of gradations are arranged in three colors, but the luminance is slightly low.
  • the emission spectrum shows a normal state.
  • the color gamut and white balance corresponding to FIG. 12 (a) are in a normal state and the white balance is well maintained.
  • FIG. 12 (b) is a diagram showing characteristics when the number of sustain pulses is increased.
  • the number of sustain pulses is set to 1000 to 1500 times / field, for example, and is considered to be 1200 times / field, for example.
  • FIG. 12B when the number of sustain pulses is increased, the brightness of each color increases, but the brightness of the red cell 41d and the green cell 42d is approximately the same, and the brightness of the blue cell 43d is significantly increased. At this time, since the number of gradations is not changed at all, the number of gradations is kept high.
  • the emission spectrum increases as a whole because the luminance is increased as a whole, but has a characteristic that the blue component is greatly increased.
  • FIG. 12 (c) is a diagram showing each characteristic when the correction of the state in which the luminance of the red cell 41d and the green cell 42d in FIG. 12 (b) is reduced is performed using the signal gain.
  • FIG. 12B since only the luminance of the blue cell 43d is high, the blue gain is reduced and the overall luminance is unified to the level of the red cell 41d and the green cell 42d. This corrects the luminance imbalance, but the improved luminance of the blue cell 43d is lowered to the red cell 41d and the green cell 42d.
  • the emission spectrum shows a characteristic in which the emission spectrum of the blue component is significantly reduced as compared with FIG.
  • FIG. 12D is a diagram showing characteristics in a state where the plasma display device according to the present embodiment is applied.
  • the plasma display panel 10d shown in FIG. 11 is configured such that the red cell 41d and the green cell 42d have the same partition wall spacing and larger than the blue cell 43d, so that the red cell 41d and the green cell 42d are discharged. This promotes the discharge of the blue cell 43d.
  • the luminance of the red cell 41d and the green cell 42d is slightly increased and the luminance of the blue cell 43d is slightly decreased. Therefore, the luminance between the red and green luminances shown in FIG. Will be balanced. Therefore, the luminance is not lowered to the red and green levels, but the luminance is increased to a level between red and green and blue, so that the reduction in luminance seen in FIG. 12C can be prevented.
  • the emission spectrum shows a spectrum higher than that in FIG. 12C because the attenuation of the emission spectrum of each color is suppressed as compared with the state shown in FIG.
  • the plasma display device of Example 5 even when only the luminance of the blue cell 43d is increased as compared with the red cell 41d and the green cell 42d, the luminance, the number of gradations, and the white balance are increased. High brightness can be achieved while maintaining good.
  • the plasma display for the purpose of improving the color purity of red, improving the emission luminance, or improving the overall luminance, the plasma display is subjected to a process for attenuating the orange component, improving the luminous efficiency, or improving the luminance.
  • the plasma display device having the plasma displays 60, 60a to 60d described in the first to fifth embodiments, the partition wall spacing of the red cells 41, 41a, 41d is greater than the partition wall spacing of the blue cells 43, 43a, 43d.
  • the partition wall spacing of the green cells 42, 42a and 42d is set between the partition walls of the red cells 41, 41a and 41d and the blue cells 43, 43a and 43d in accordance with the application to adjust the brightness.
  • the brightness can be adjusted uniformly with high brightness without affecting the number of gradations, the white balance can be improved, and various conditions can be satisfied.
  • FIG. 13 is a diagram showing an example of an overall configuration diagram of the plasma display device according to the first to fifth embodiments to which the present invention is applied.
  • the plasma display apparatus according to the present embodiment includes plasma display panels 60, 60a to 60d, an address driver 70, an X sustain driver 80, a Y sustain driver 90, a Y scan driver 100, and a control unit 110. And a signal processing unit 120 and a high-voltage power supply 130.
  • the plasma display panels 60, 60a to 60d are displays for displaying images, and those described in the first to fifth embodiments may be applied.
  • the address driver 70 applies a voltage to the address electrodes existing in the plasma display panels 60, 60a to 60d, generates an address discharge in the discharge cells 40, 40a, 40d together with the Y scan electrodes, and selects a discharge cell to emit light. It is a drive means for generating an address discharge.
  • the Y scan driver 100 is a driving means for applying a voltage to the Y scan electrodes existing in the plasma display panels 60, 60a to 60d and generating an address discharge together with the address electrodes.
  • the X sustaining driver 80 is a driving means for applying a voltage to the X sustaining electrodes existing on the plasma display panels 60, 60a to 60d.
  • the Y maintenance driver 90 is a driving means for applying a voltage to the Y scan electrode.
  • a sustain pulse is alternately applied from the X sustain driver 80 and the Y sustain driver, and the sustain discharge is generated in the discharge cells in which the address discharge is generated, and light is emitted to display an image.
  • the sustain pulse is supplied from the X sustain driver 80 and the Y sustain driver 90, and a sustain discharge is generated in the discharge cells 40, 40a, and 40d.
  • the control unit 110 is a means for controlling the address driver 70, the X maintenance driver 80, the Y maintenance driver 90, and the Y scanning driver 100. In the address discharge, a data signal is sent from the control unit to the address driver, and a scanning signal is sent to the Y scanning driver 100 via the Y maintaining driver 90 to control the selection of the light emitting cells.
  • the control unit 110 may also control the sustain pulse, and the control for increasing the sustain pulse described in the fifth embodiment may be executed by the control unit 110. Further, the control unit 110 may include subfield conversion means for driving the plasma display panels 60, 60a to 60d by the subfield method.
  • the signal processing unit 120 is a means for performing signal processing necessary for the received video signal and the like, and performs necessary processing before sending the video signal to the control unit 110 such as ⁇ correction and white balance adjustment.
  • the signal processing unit 120 may be provided as necessary according to the type and application of the plasma display panels 60, 60a to 60d.
  • the high voltage power supply 130 is a power supply for supplying a high voltage to the X sustain driver 80, the Y sustain driver 90, and the Y scan driver 100.
  • the plasma display devices described in the first to fifth embodiments may include the components described in FIG. 13 as needed, and may be driven by these components.
  • the present invention is applicable to a plasma display device that displays an image on a plasma display panel.

Abstract

A plasma display device is provided with a plasma display panel (10) comprised of a plurality of separation walls (30) in a space between a front substrate (10) and a rear substrate (20) that are provided opposite to each other; and a red color cell (41), a green color cell (42) and a blue color cell (43) made of a phosphor layer (50) for emitting red color, green color and blue color lights formed in order on respective surfaces of a plurality of discharge cells (40) arranged in divisions defined between the separation walls, wherein the plasma display device is characterized in that the distance between the red color cell separation walls is larger than the distance between the green color cell separation walls and that the distance between the green color cell separation walls is equal to or larger than the distance between the blue color cell separation walls.

Description

プラズマディスプレイ装置Plasma display device
 本発明は、プラズマディスプレイ装置に関し、特に、複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置に関する。 The present invention relates to a plasma display device, and more particularly, to a plasma display panel having red cells, green cells, and blue cells in which phosphor layers that emit red, green, and blue light are sequentially formed on each surface of a plurality of discharge cells. The present invention relates to a plasma display device provided.
 従来から、フロントカバープレートと、バックカバープレートとを有し、フロントカバープレートとバックカバープレートを所定の距離を離して対向するように配置し、フロントカバーとバックカバーとの間に隔壁を設置し、隔壁部分に青、緑、赤の色の蛍光体層を順次配置し、フロントカバープレート、バックカバープレート及び隔壁により形成された空間に、放電可能なガス媒体を封入して成るプラズマディスプレイパネルであって、青色の蛍光体層を配置する部分の隔壁間隔を、他色の蛍光体層を配置する部分の隔壁間隔より広くし、緑、赤、青の順で広くなるようにしたプラズマディスプレイパネルが知られている(例えば、特許文献1参照)。 Conventionally, it has a front cover plate and a back cover plate, and the front cover plate and the back cover plate are arranged to face each other at a predetermined distance, and a partition wall is installed between the front cover and the back cover. A plasma display panel in which phosphor layers of blue, green and red are sequentially arranged in the partition wall, and a dischargeable gas medium is sealed in a space formed by the front cover plate, the back cover plate and the partition wall. In this plasma display panel, the partition wall spacing of the part where the blue phosphor layer is disposed is wider than the partition wall spacing of the part where the other color phosphor layer is disposed, and is widened in the order of green, red and blue. Is known (see, for example, Patent Document 1).
 一般に、隔壁間隔を等間隔として発光させたときに、緑色の発光輝度が最も高く、青色の輝度が低くなり、白色表示の色温度が低下する場合が多いが、かかる場合においても、特許文献1に記載のプラズマディスプレイパネルによれば、緑色の発光輝度を落とすことなく、隔壁間距離を調整して白バランスを調整し、輝度を落とすことなく白バランスを改良することができる。
特開平11-54047号公報
In general, when light is emitted at equal intervals, the green light emission luminance is the highest, the blue luminance is low, and the color temperature of white display is often lowered. According to the plasma display panel described in 1), it is possible to adjust the white balance by adjusting the distance between the partition walls without decreasing the green light emission luminance, and to improve the white balance without decreasing the luminance.
Japanese Patent Laid-Open No. 11-54047
 しかしながら、上述の特許文献1に記載の構成では、赤色の蛍光体層の発光スペクトルに、オレンジ色の成分の発光スペクトルが混合しており、赤色の色純度が低下しているときには、何ら対応することができない。 However, in the configuration described in Patent Document 1 described above, when the emission spectrum of the red phosphor layer is mixed with the emission spectrum of the orange component and the color purity of the red color is reduced, no response is made. I can't.
 一方、赤色の蛍光体層の発光スペクトルにオレンジ色成分の発光スペクトルが混合しており、赤色の色純度が低下しているときには、オレンジ色成分の発光スペクトルを低減させて赤色の色純度を向上させるべく、オレンジカットフィルタやNeカットフィルタを設けたり、蛍光体層に赤色純度の高い蛍光体材料を用いたりする対応策が考えられる。 On the other hand, when the emission spectrum of the orange component is mixed with the emission spectrum of the red phosphor layer, and the red color purity is reduced, the emission spectrum of the orange component is reduced to improve the red color purity. In order to achieve this, it is conceivable to provide an orange cut filter or a Ne cut filter, or to use a phosphor material with high red purity for the phosphor layer.
 しかしながら、このようなオレンジ成分を低減させる対応を行うだけでは、赤色の色純度を向上させ、色温度を向上させることは可能であるが、そのときに輝度や階調数が低下してしまうという問題を生ずる。 However, it is possible to improve the color purity of red and improve the color temperature only by taking measures to reduce the orange component, but the brightness and the number of gradations are reduced at that time. Cause problems.
 また、発光効率を向上させるために放電ガスのXe濃度を高めたり、全体の輝度を高めるために1フィールド毎のサステインパルス数を増加させたりした場合にも、赤色の輝度が低下するという問題を生ずることが分かっている。 In addition, when the Xe concentration of the discharge gas is increased in order to improve the light emission efficiency, or when the number of sustain pulses per field is increased in order to increase the overall luminance, the red luminance decreases. I know it will happen.
 そこで、本発明は、赤色の色純度を向上させて色域を拡大させたり、発光効率を高めたり、全体輝度を高めたりするために何らかの処理を行った結果、赤色の輝度が低下する状態となっても、これを調整し、赤色の輝度や階調数を低下させないプラズマディスプレイ装置を提供すことを目的とする。 Therefore, the present invention is a state in which the brightness of red is reduced as a result of performing some processing to improve the color purity of red to increase the color gamut, increase the luminous efficiency, or increase the overall brightness. Even if it becomes, it aims at providing this and the plasma display apparatus which does not reduce red brightness | luminance and the number of gradations.
 上記目的を達成するため、第1の発明に係るプラズマディスプレイ装置は、対向する前面基板と背面基板との間の空間に複数の隔壁を有し、該隔壁間に区画形成された複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、
 前記赤色セルの隔壁間隔は、前記緑色セルの隔壁間隔よりも大きく、該緑色セルの隔壁間隔は、前記青色セルの隔壁間隔以上であることを特徴とする。
In order to achieve the above object, a plasma display device according to a first invention has a plurality of barrier ribs in a space between opposed front and back substrates, and a plurality of discharge cells partitioned between the barrier ribs. A plasma display device comprising a plasma display panel having a red cell, a green cell and a blue cell in which phosphor layers emitting red, green and blue light are sequentially formed on each surface,
The red cell partition spacing is greater than the green cell spacing, and the green cell spacing is greater than or equal to the blue cell spacing.
 これにより、赤色の輝度や階調数を低下させないプラズマディスプレイ装置とすることができる。 As a result, a plasma display device that does not reduce the red luminance or the number of gradations can be obtained.
 第2の発明は、第1の発明に係るプラズマディスプレイ装置において、
 前記赤色セルの前記蛍光体層は、蛍光体材料として(Y,Gd)BO:Euを用いた赤色蛍光体の発光スペクトルよりも、発光波長が長い蛍光体材料から構成されたことを特徴とする。
A second invention is the plasma display device according to the first invention, wherein:
The phosphor layer of the red cell is composed of a phosphor material having a longer emission wavelength than the emission spectrum of a red phosphor using (Y, Gd) BO 3 : Eu as the phosphor material. To do.
 これにより、一般的に用いられている赤色蛍光体の蛍光体材料よりも高純度の蛍光体材料を用いて赤色の純度を向上させるとともに、赤色の輝度や階調数を低下させないプラズマディスプレイ装置とすることができる。 As a result, a plasma display device that improves the purity of red using a phosphor material having a higher purity than the phosphor material of a commonly used red phosphor, and does not decrease the luminance and the number of gradations of red. can do.
 第3の発明は、第2の発明に係るプラズマディスプレイ装置において、
 前記赤色セルの前記蛍光体層は、Y(P,V)O:Euを用いた蛍光体材料から構成されたことを特徴とする。
A third invention is the plasma display device according to the second invention, wherein
The phosphor layer of the red cell is made of a phosphor material using Y (P, V) O 4 : Eu.
 これにより、高純度の赤色蛍光体を使用し、赤色の色純度を確実に向上させることができるとともに、赤色の輝度や階調数を保つことができる。 This makes it possible to use a high-purity red phosphor, reliably improve the red color purity, and maintain the red luminance and the number of gradations.
 第4の発明は、第2の発明に係るプラズマディスプレイ装置において、
 前記緑色セルの隔壁間隔と、前記青色セルの隔壁間隔は、等しいことを特徴とする。
A fourth invention is the plasma display device according to the second invention, wherein
The green cell barrier rib spacing is equal to the blue cell barrier rib pitch.
 これにより、赤色セルの隔壁間隔のみ他の色の放電セルよりも大きくし、輝度及び階調数を低減させずに維持することができる。 This makes it possible to maintain only the red cell barrier rib spacing larger than the discharge cells of other colors without reducing the brightness and the number of gradations.
 第5の発明は、第2の発明に係るプラズマディスプレイ装置において、
 前記赤色セル、前記緑色セル及び前記青色セルには、Xeガスを含む放電ガスが封入され、該放電ガス中の前記Xeガスの混合比が、10~30%であることを特徴とする。
A fifth invention is the plasma display device according to the second invention, wherein:
The red cell, the green cell, and the blue cell are filled with a discharge gas containing Xe gas, and the mixing ratio of the Xe gas in the discharge gas is 10 to 30%.
 これにより、Xeガスの濃度を増加させて全体の輝度を向上させるとともに、青色の輝度と赤色の輝度のバランスを保つことができる。 Thereby, the concentration of Xe gas can be increased to improve the overall luminance, and the balance between blue luminance and red luminance can be maintained.
 第6の発明は、第5の発明に係るプラズマディスプレイ装置において、
 前記緑色セルの隔壁間隔は、前記青色セルの隔壁間隔よりも大きいことを特徴とする。
6th invention is the plasma display apparatus which concerns on 5th invention,
The green cell partition spacing may be greater than the blue cell partition spacing.
 これにより、Xeガスの濃度増加により青色の輝度向上の割合が緑色よりも高くても、輝度バランスを保つことができる。 Thereby, even if the ratio of the luminance improvement of blue is higher than that of green due to the increase in the concentration of Xe gas, the luminance balance can be maintained.
 第7の発明は、第1の発明に係るプラズマディスプレイ装置において、
 前記赤色セルの隔壁間隔と前記青色セルの隔壁間隔との差は、その比率が前記赤色セルの隔壁間隔に対して5%以上の差を有することを特徴とする。
7th invention is the plasma display apparatus which concerns on 1st invention,
The difference between the red cell partition spacing and the blue cell partition spacing is characterized in that the ratio has a difference of 5% or more with respect to the red cell partition spacing.
 これにより、赤色の色純度を向上させつつ、隔壁間隔の差による補正効果を確実にし、赤色の輝度及び階調数の低下を確実に防止することができる。 Thereby, while improving the color purity of red, it is possible to ensure the correction effect due to the difference in the partition spacing, and to surely prevent the red luminance and the number of gradations from being lowered.
 第8の発明に係るプラズマディスプレイ装置は、対向する前面基板と背面基板との間の空間に複数の隔壁を有し、該隔壁間に区画形成された複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、
 前記赤色セルの隔壁間隔は、前記緑色セルの隔壁間隔よりも大きく、該緑色セルの隔壁間隔は、前記青色セルの隔壁間隔より大きく形成され、
 前記赤色セル、前記緑色セル及び前記青色セルには、Xeガスを含む放電ガスが封入され、該放電ガス中の前記Xeガスの混合比が、10~30%であることを特徴とする。
A plasma display device according to an eighth aspect of the present invention has a plurality of barrier ribs in a space between the front substrate and the rear substrate facing each other, and each surface of a plurality of discharge cells defined between the barrier ribs has red, A plasma display device comprising a plasma display panel having a red cell, a green cell and a blue cell in which phosphor layers emitting green and blue light are sequentially formed,
The red cell partition spacing is larger than the green cell partition spacing, the green cell partition spacing is larger than the blue cell partition spacing,
The red cell, the green cell, and the blue cell are filled with a discharge gas containing Xe gas, and the mixing ratio of the Xe gas in the discharge gas is 10 to 30%.
 これにより、Xeガスの濃度を高めて発光効率を向上させるとともに、青色セル、緑色セル、赤色セルの順に輝度が向上する性質を、隔壁間隔で補正し、高発光効率及び良好な白バランス両立して実現することができる。 As a result, the concentration of Xe gas is increased to improve the luminous efficiency, and the property that the luminance is improved in the order of blue cell, green cell, and red cell is corrected by the partition spacing to achieve both high luminous efficiency and good white balance. Can be realized.
 第9の発明に係るプラズマディスプレイ装置は、対向する前面基板と背面基板との間の空間に複数の隔壁を有し、該隔壁間に区画形成された複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、
 前記赤色セルの隔壁間隔は、前記緑色セルの隔壁間隔よりも大きく、該緑色セルの隔壁間隔は、前記青色セルの隔壁間隔と等しく形成され、
 前記前面基板に、オレンジ色の発光スペクトルの成分を減衰させるオレンジカットフィルタを有することを特徴とする。
A plasma display device according to a ninth aspect of the present invention has a plurality of barrier ribs in the space between the front substrate and the rear substrate facing each other, red on each surface of the plurality of discharge cells partitioned between the barrier ribs, A plasma display device comprising a plasma display panel having a red cell, a green cell and a blue cell in which phosphor layers emitting green and blue light are sequentially formed,
The partition spacing of the red cells is larger than the partition spacing of the green cells, the partition spacing of the green cells is formed equal to the partition spacing of the blue cells,
The front substrate has an orange cut filter for attenuating a component of an orange emission spectrum.
 これにより、赤色の色純度を低下させるオレンジ色の成分を減衰させ、赤色の色純度を向上させるとともに、隔壁間隔の調整により赤色の輝度及び階調数の低下を防ぐことができる。 This attenuates the orange component that lowers the red color purity, improves the red color purity, and prevents the red luminance and the number of gradations from decreasing by adjusting the partition spacing.
 第10の発明に係るプラズマディスプレイ装置は、対向する前面基板と背面基板との間の空間に複数の隔壁を有し、該隔壁間に区画形成された複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、
 前記赤色セルの隔壁間隔は、前記緑色セルの隔壁間隔と等しく、該緑色セルの隔壁間隔は、前記青色セルの隔壁間隔より大きく形成され、
 前記放電セルの放電回数を、1フィールド毎に1000回以上1500回以下としたことを特徴とする。
A plasma display device according to a tenth aspect of the present invention has a plurality of barrier ribs in the space between the front substrate and the rear substrate facing each other, and each surface of the plurality of discharge cells partitioned between the barrier ribs has red, A plasma display device comprising a plasma display panel having a red cell, a green cell and a blue cell in which phosphor layers emitting green and blue light are sequentially formed,
The partition spacing of the red cells is equal to the partition spacing of the green cells, the partition spacing of the green cells is formed larger than the partition spacing of the blue cells,
The number of discharges of the discharge cell is 1000 times or more and 1500 times or less per field.
 これにより、放電回数を増加させてプラズマディスプレイパネル全体の輝度を向上させるとともに、輝度向上の効果が出やすい青色セルよりも、赤色セルの隔壁間隔を広くして赤色の輝度及び階調数を増加させ、高輝度かつ白バランスの良好な画像を表示することができる。 As a result, the number of discharges is increased to improve the overall brightness of the plasma display panel, and the red cell brightness is increased and the number of gradations is increased by widening the partition spacing of the red cells, rather than the blue cells that are likely to improve the brightness. Image with high brightness and good white balance can be displayed.
 本発明によれば、白バランスを低下させることなく、プラズマディスプレイパネルの赤色の色純度、発光効率又は全体輝度を向上させることができる。 According to the present invention, it is possible to improve the red color purity, luminous efficiency or overall luminance of the plasma display panel without reducing the white balance.
実施例1に係るプラズマディスプレイ装置のプラズマデシィスプレイパネル60の部分断面構成及び放電セル40の部分平面構成を示した図である。2 is a diagram illustrating a partial cross-sectional configuration of a plasma display panel 60 and a partial planar configuration of a discharge cell 40 of the plasma display device according to the first embodiment. FIG. 本実施例に係るプラズマディスプレイ装置に適用される赤色蛍光体と、一般的な赤色蛍光体の性質の比較図である。It is a comparison figure of the property of the red fluorescent substance applied to the plasma display apparatus which concerns on a present Example, and a general red fluorescent substance. 通常純度の蛍光体と、高純度の蛍光体の発光スペクトルを示した図である。図3(a)は、従来から用いられている蛍光体の発光スペクトルを示した図である。図3(b)は、高純度の赤色蛍光体の発光スペクトルを示した図である。It is the figure which showed the emission spectrum of fluorescent substance of normal purity, and high purity fluorescent substance. FIG. 3A is a diagram showing an emission spectrum of a phosphor used conventionally. FIG. 3B is a diagram showing an emission spectrum of a high-purity red phosphor. 高純度の赤色蛍光体を蛍光体層51に適用した場合の調整方法を説明するための図である。図4(a)は、通常の赤色蛍光体の発光スペクトル、輝度及び階調数(利得)を示した図である。図4(b)は、高飽和赤蛍光体の発光スペクトル、輝度及び階調数(利得)を示した図である。図4(c)は、信号利得で調整を行った状態の特性を示した図である。図4(d)は、リブ幅(隔壁間隔)で調整を行った状態の特性を示した図である。図4(e)は、色域及び白バランスを示した図である。It is a figure for demonstrating the adjustment method at the time of applying a highly purified red fluorescent substance to the fluorescent substance layer 51. FIG. FIG. 4A is a diagram showing an emission spectrum, luminance, and number of gradations (gain) of a normal red phosphor. FIG. 4B is a diagram showing the emission spectrum, luminance, and number of gradations (gain) of the highly saturated red phosphor. FIG. 4C is a diagram illustrating characteristics in a state where adjustment is performed using the signal gain. FIG. 4D is a diagram showing characteristics in a state where adjustment is performed with the rib width (distance between the partition walls). FIG. 4E is a diagram showing the color gamut and white balance. 実施例2に係るプラズマディスプレイ装置のプラズマディスプレイパネル60aの部分断面構成及び部分平面構成を示した図である。It is the figure which showed the partial cross-section structure and partial plane structure of the plasma display panel 60a of the plasma display apparatus which concerns on Example 2. FIG. 通常の赤色蛍光体を用い、放電ガス中のXeガスの混合比を増加させたプラズマディスプレイパネル60aの種々の状態図である。図6(a)は、通常の赤色蛍光体の特性図である。図6(b)は、Xeガスの混合比を高めた状態の各特性図である。図6(c)は、輝度の不均衡状態を、信号利得で調整した状態を示した図である。図6(d)は、輝度不均衡の状態を、放電セル40aの隔壁間隔で調整する例を示した図である。図6(e)は、色域及び白バランスを示した図である。It is various state diagrams of the plasma display panel 60a using a normal red phosphor and increasing the mixing ratio of Xe gas in the discharge gas. FIG. 6A is a characteristic diagram of a normal red phosphor. FIG. 6B is a characteristic diagram in a state where the mixing ratio of Xe gas is increased. FIG. 6C is a diagram showing a state in which the luminance imbalance state is adjusted by the signal gain. FIG. 6D is a diagram showing an example in which the state of luminance imbalance is adjusted by the partition wall spacing of the discharge cells 40a. FIG. 6E shows the color gamut and white balance. 本発明を適用した実施例3に係るプラズマディスプレイ装置のプラズマディスプレイパネル60bの部分断面構成と部分平面構成を示した図である。It is the figure which showed the partial cross-section structure and partial plane structure of the plasma display panel 60b of the plasma display apparatus based on Example 3 to which this invention is applied. 実施例3に係るプラズマディスプレイ装置の種々の状態における特性図である。図8(a)は、通常の赤色蛍光体が適用され、かつXeガスの混合比も通常である場合の特性図である。図8(b)は、高飽和赤蛍光体を赤色蛍光体層51に適用し、放電ガス中のXeガスの混合比を増加させた状態の各特性図である。図8(c)は、輝度の不均衡及び白バランスの崩れを、信号利得により調整した状態の各特性図である。図8(d)は、輝度不均衡を放電セル40aの隔壁間隔で調整した場合の各特性を示した図である。図8(e)は、色域と白バランスを示した図である。It is a characteristic view in the various states of the plasma display apparatus which concerns on Example 3. FIG. FIG. 8A is a characteristic diagram in the case where a normal red phosphor is applied and the mixing ratio of Xe gas is also normal. FIG. 8B is a characteristic diagram in a state where a highly saturated red phosphor is applied to the red phosphor layer 51 and the mixing ratio of Xe gas in the discharge gas is increased. FIG. 8C is a characteristic diagram in a state where luminance imbalance and white balance collapse are adjusted by signal gain. FIG. 8D is a diagram showing each characteristic when the luminance imbalance is adjusted by the partition wall interval of the discharge cell 40a. FIG. 8E shows the color gamut and white balance. 実施例4に係るプラズマディスプレイ装置のプラズマディスプレイパネル10bの部分断面構成及び部分平面構成を示した図である。It is the figure which showed the partial cross-section structure and partial plane structure of the plasma display panel 10b of the plasma display apparatus which concerns on Example 4. FIG. 実施例4に係るプラズマディスプレイ装置の種々の状態における特性を示した図である。図10(a)は、通常の赤色蛍光体を用い、オレンジカットフィルタを用いていない状態の赤色蛍光体の特性図である。図10(b)は、オレンジカットフィルタ11を設けた状態の各特性を示した図である。図10(c)は、赤色の輝度低下状態を信号利得により調整した状態を示した特性図である。図10(d)は、輝度不均衡状態に、本実施例に係るプラズマディスプレイ装置を適用した状態の特性図である。図10(e)は、色域及び白バランスを示した図である。It is the figure which showed the characteristic in the various states of the plasma display apparatus which concerns on Example 4. FIG. FIG. 10A is a characteristic diagram of a red phosphor in a state where a normal red phosphor is used and an orange cut filter is not used. FIG. 10B is a diagram illustrating each characteristic in a state where the orange cut filter 11 is provided. FIG. 10C is a characteristic diagram showing a state in which the red luminance reduction state is adjusted by the signal gain. FIG. 10D is a characteristic diagram in a state where the plasma display device according to the present embodiment is applied to the luminance imbalance state. FIG. 10E shows the color gamut and white balance. 実施例5に係るプラズマディスプレイ装置のプラズマディスプレイパネル10dの部分断面構成及び部分平面構成を示した図である。It is the figure which showed the partial cross-section structure and partial plane structure of the plasma display panel 10d of the plasma display apparatus concerning Example 5. FIG. 本実施例に係るプラズマディスプレイ装置の放電セル40dの特性図である。図12(a)は、サステインパルスが通常の状態の特性図である。図12(b)は、サステインパルス数を増加させた場合の特性を示した図である。図12(c)は、輝度低下状態の是正を、信号利得を用いて行ったときの特性図である。図12(d)は、本実施例に係るプラズマディスプレイ装置を適用した状態の特性図である。図12(e)は、色域及び白バランスを示した図である。It is a characteristic view of the discharge cell 40d of the plasma display apparatus concerning a present Example. FIG. 12A is a characteristic diagram when the sustain pulse is in a normal state. FIG. 12B is a diagram showing characteristics when the number of sustain pulses is increased. FIG. 12C is a characteristic diagram when correction of the luminance reduction state is performed using the signal gain. FIG. 12D is a characteristic diagram in a state where the plasma display device according to the present embodiment is applied. FIG. 12E shows the color gamut and white balance. 実施例1乃至実施例5のプラズマディスプレイ装置の全体構成図の一例である。It is an example of the whole block diagram of the plasma display apparatus of Example 1 thru | or Example 5. FIG.
符号の説明Explanation of symbols
10  前面基板
11  オレンジカットフィルタ
20  背面基板
30  隔壁
40、40a、40d  放電セル
41、41a、41d  赤色セル
42、42a、42d  緑色セル
43、43a、43d  青色セル
50、50a、50b、50c、50d  蛍光体層
51、51a、51b、51c、51d  赤色蛍光体層
52  緑色蛍光体層
53  青色蛍光体層
60、60a、60b、60c、60d  プラズマディスプレイパネル
70  アドレスドライバ
80  X維持ドライバ
90  Y維持ドライバ
100  Y走査ドライバ
110  制御部
120  信号処理部
130  高圧電源
10 Front substrate 11 Orange cut filter 20 Rear substrate 30 Bulkheads 40, 40a, 40d Discharge cells 41, 41a, 41d Red cells 42, 42a, 42d Green cells 43, 43a, 43d Blue cells 50, 50a, 50b, 50c, 50d Fluorescence Body layers 51, 51a, 51b, 51c, 51d Red phosphor layer 52 Green phosphor layer 53 Blue phosphor layers 60, 60a, 60b, 60c, 60d Plasma display panel 70 Address driver 80 X sustain driver 90 Y sustain driver 100 Y Scan Driver 110 Control Unit 120 Signal Processing Unit 130 High Voltage Power Supply
 本発明をより詳細に説明するために、以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。 In order to describe the present invention in more detail, the best mode for carrying out the present invention will be described below with reference to the drawings.
 図1は、本発明を適用した実施例1に係るプラズマディスプレイ装置のプラズマディスプレイパネル60の部分断面構成及び放電セル40の部分平面構成を示した図である。 FIG. 1 is a diagram showing a partial cross-sectional configuration of a plasma display panel 60 and a partial planar configuration of a discharge cell 40 of a plasma display device according to a first embodiment to which the present invention is applied.
 図1において、実施例1に係るプラズマディスプレイ装置は、前面基板10と、背面基板20と、隔壁30と、放電セル40と、蛍光体層50とを有する。 In FIG. 1, the plasma display device according to the first embodiment includes a front substrate 10, a rear substrate 20, barrier ribs 30, discharge cells 40, and a phosphor layer 50.
 前面基板10は、プラズマディスプレイパネル60の表示面を構成する基板であり、例えば、ガラス基板により構成されてもよい。背面基板20は、プラズマディスプレイパネル60の背面側の非表示面を構成している。これも、例えばガラス基板により形成されてもよい。前面基板10と、背面基板20は、対向して設けられ、対向する面内に空間を形成する。 The front substrate 10 is a substrate constituting the display surface of the plasma display panel 60, and may be composed of, for example, a glass substrate. The back substrate 20 constitutes a non-display surface on the back side of the plasma display panel 60. This may also be formed by a glass substrate, for example. The front substrate 10 and the back substrate 20 are provided to face each other, and form a space in the facing surfaces.
 隔壁(リブ)30は、対向する前面基板10と背面基板20の間に複数設けられ、前面基板10と背面基板20とが対向する空間を区画し、複数の放電セル40を形成する。隔壁30は、例えば、背面基板20側に設けられてよい。隔壁30は、平行して複数設けられ、その隔壁間隔が、放電セル40の横幅を定める。よって、隔壁間隔を、リブ幅と呼んでもよい。隔壁30は、各放電セル40内で発生した放電が、隣接する放電セル40に影響を与えないように、仕切りの役割を果たしている。 A plurality of partition walls (ribs) 30 are provided between the front substrate 10 and the back substrate 20 facing each other, and a space where the front substrate 10 and the back substrate 20 face each other is partitioned to form a plurality of discharge cells 40. The partition wall 30 may be provided on the back substrate 20 side, for example. A plurality of barrier ribs 30 are provided in parallel, and the interval between the barrier ribs determines the horizontal width of the discharge cell 40. Therefore, the partition wall interval may be called a rib width. The barrier ribs 30 serve as partitions so that the discharge generated in each discharge cell 40 does not affect the adjacent discharge cells 40.
 放電セル40は、隔壁30で区画され、プラズマディスプレイパネル60上に複数備えられている。放電セル40は、その表面に蛍光体層50が形成されている。蛍光体層50は、赤色の蛍光体層51と、緑色の蛍光体層52と、青色の蛍光体層53とを有し、放電セル40毎に、順次割り当てられて形成されている。赤色の蛍光体層51が形成された放電セル40は赤色セル41を構成し、同様に緑色の蛍光体層52が形成された放電セル40は緑色セル42、青色の蛍光体層53が形成された放電セル40は青色セル43を構成する。 The discharge cells 40 are partitioned by the partition walls 30 and are provided on the plasma display panel 60. The discharge cell 40 has a phosphor layer 50 formed on the surface thereof. The phosphor layer 50 includes a red phosphor layer 51, a green phosphor layer 52, and a blue phosphor layer 53. The phosphor layer 50 is sequentially assigned to each discharge cell 40. The discharge cell 40 in which the red phosphor layer 51 is formed constitutes a red cell 41. Similarly, the discharge cell 40 in which the green phosphor layer 52 is formed has a green cell 42 and a blue phosphor layer 53 formed therein. The discharge cell 40 constitutes a blue cell 43.
 赤色セル41、緑色セル42及び青色セル43の内部には、放電ガスが封入され、ガス放電が発生することにより、紫外線が発生し、紫外線により各色の蛍光体層51、52、53が励起されて発光し、カラー表示が行われる。放電ガスは、Xe(キセノン)を含む混合ガスであり、Xeの混合比は、通常では6~8%に設定されている。 The red cell 41, the green cell 42, and the blue cell 43 are filled with a discharge gas, and when a gas discharge is generated, ultraviolet rays are generated, and the phosphor layers 51, 52, 53 of each color are excited by the ultraviolet rays. Light is emitted and color display is performed. The discharge gas is a mixed gas containing Xe (xenon), and the mixing ratio of Xe is normally set to 6 to 8%.
 赤色セル41、緑色セル42及び青色セル43の組でプラズマディスプレイパネル60上の1つの画素を構成し、赤色、緑色及び青色による発光の組み合わせで、種々の階調を表現する。 A set of the red cell 41, the green cell 42, and the blue cell 43 constitutes one pixel on the plasma display panel 60, and various gradations are expressed by combinations of light emission of red, green, and blue.
 実施例1に係るプラズマディスプレイ装置のプラズマディスプレイパネル60においては、赤色セル41の隔壁間隔が、緑色セル42の隔壁間隔及び青色セル43の隔壁間隔よりも広く構成されている。また、緑色セル42の隔壁間隔と青色セル43の隔壁間隔は、等しく構成されている。従来、赤色セル41、緑色セル42及び青色セル43の総てにおいて、放電セル40は等しい隔壁間隔で形成されているか、又は隔壁間隔が異なっていたとしても、青色セル43の隔壁間隔を他の2色よりも広く構成している形態であった。しかしながら、本実施例に係るプラズマディスプレイ装置においては、赤色セル41の隔壁間隔を、他の2色の隔壁間隔よりも広く構成している。これは、本実施例に係るプラズマディスプレイ装置においては、赤色蛍光体層51に用いられている赤色蛍光体に高純度の赤色を発光できる蛍光体を用いており、その際に輝度及び階調数が減少する点を解消すべく、赤色セル41の隔壁間隔を緑色セル42及び青色セル43の隔壁間隔よりも大きくして、赤色セル41のプラズマ中から発生する紫外線を効率良く発生させるようにしたものである。これにより、赤色セル41の輝度及び階調数の低減を防ぐことができる。なお、紫外線は、放電空間が大きくなるほど効率良く発生するので、本実施例に係るプラズマディスプレイ装置においては、この性質を利用し、赤色セル41の輝度を他の2色の放電セル42、43よりも大きく改善するようにしている。 In the plasma display panel 60 of the plasma display apparatus according to the first embodiment, the partition wall spacing of the red cells 41 is wider than the partition wall spacing of the green cells 42 and the partition wall spacing of the blue cells 43. The partition wall spacing of the green cells 42 and the partition wall spacing of the blue cells 43 are configured to be equal. Conventionally, in all of the red cell 41, the green cell 42, and the blue cell 43, the discharge cells 40 are formed with equal barrier rib spacing, or even if the barrier rib spacing is different, It was the form which comprised more widely than two colors. However, in the plasma display apparatus according to the present embodiment, the partition spacing of the red cells 41 is wider than the partition spacing of the other two colors. This is because, in the plasma display device according to the present embodiment, the red phosphor used in the red phosphor layer 51 uses a phosphor capable of emitting high-purity red, and the luminance and the number of gradations are used at that time. In order to eliminate the decrease in the red cell 41, the partition wall spacing of the red cell 41 is made larger than the partition wall spacing of the green cell 42 and the blue cell 43 so that ultraviolet rays generated from the plasma of the red cell 41 are efficiently generated. Is. Thereby, reduction of the brightness | luminance and the number of gradations of the red cell 41 can be prevented. In addition, since ultraviolet rays are generated more efficiently as the discharge space becomes larger, the plasma display device according to the present embodiment uses this property to make the luminance of the red cell 41 higher than the discharge cells 42 and 43 of the other two colors. Has been improved greatly.
 赤色セル41の隔壁間隔と、緑色セル42及び青色セル43の隔壁間隔の差は、赤色セル41に対する、隔壁間隔差の比率が、5%以上となるような差を設けることが好ましい。あまりに隔壁間隔の差が小さいと、放電効率に差が生じないので、赤色セル41の隔壁間隔に対する青色セル43及び緑色セル42の隔壁間隔の比率が、95%以下、つまり隔壁間隔差の比率が5%以上となるように構成することが好ましい。例えば、各セルの隔壁間隔(リブ幅)の比率は、赤色セル41:緑色セル42:青色セル43=1.5:1:1であってもよい。 The difference between the partition wall spacing of the red cell 41 and the partition wall spacing between the green cell 42 and the blue cell 43 is preferably such that the partition wall spacing ratio with respect to the red cell 41 is 5% or more. If the difference in barrier rib spacing is too small, there is no difference in discharge efficiency. Therefore, the ratio of the barrier rib spacing of the blue cell 43 and the green cell 42 to the barrier rib interval of the red cell 41 is 95% or less, that is, the ratio of the barrier rib gap difference is less than 95%. It is preferable to configure so as to be 5% or more. For example, the ratio of the partition wall spacing (rib width) of each cell may be red cell 41: green cell 42: blue cell 43 = 1.5: 1: 1.
 図2は、本実施例に係るプラズマディスプレイ装置に適用され得る赤色蛍光体と、従来から用いられている、一般的な赤色蛍光体の性質を比較して示した図である。図2において、材料組成が(Y,Gd)BO:Eu3+であるボレート赤の蛍光体は、従来から一般的に用いられている蛍光体であり、発光効率は良い(図2中、○で表示)が、色純度が劣る(図2中、△で表示)性質を示している。これに対し、材料組成がY(P,V)O:Euのフォスバナ赤の蛍光体は、本実施例に係るプラズマディスプレイ装置に適用される赤色蛍光体であり、ボレート赤に比較して、色純度が非常に優れている(図2中、◎で表示)性質であることが分かる。しかしながら、フォスバナ赤の蛍光体の発光効率はボレート赤の蛍光体よりもやや劣っていることが示されている(図2中、△で表示)。 FIG. 2 is a diagram comparing the properties of a red phosphor that can be applied to the plasma display apparatus according to the present embodiment and a general red phosphor that has been conventionally used. In FIG. 2, a borate red phosphor whose material composition is (Y, Gd) BO 3 : Eu 3+ is a phosphor that has been conventionally used, and has good emission efficiency (in FIG. 2, ) Indicates that the color purity is inferior (indicated by Δ in FIG. 2). On the other hand, the phosphor of red Fossavana whose material composition is Y (P, V) O 4 : Eu is a red phosphor applied to the plasma display device according to the present embodiment, and compared with borate red, It can be seen that the color purity is very excellent (indicated by “◎” in FIG. 2). However, it is shown that the phosphorescent red phosphor has a slightly lower luminous efficiency than the borate red phosphor (indicated by Δ in FIG. 2).
 よって、高純度の赤色蛍光体であるY(P,V)O:Euの材料組成を有するフォスバナ赤を用いれば、赤色の純度を従来よりも大きく改善することができるが、発光効率の点では、そのまま交換して用いれば、低下してしまうことが分かる。 Therefore, the use of Fosbana red having a material composition of Y (P, V) O 4 : Eu, which is a high-purity red phosphor, can greatly improve the red purity as compared with the prior art. Then, it turns out that it will fall if it replaces and uses as it is.
 図3は、通常純度のボレート赤の蛍光体と、高純度のフォスバナ赤の蛍光体の発光スペクトルを示した図である。図3において、横軸は波長、縦軸は発光スペクトルの大きさを示している。 FIG. 3 is a diagram showing emission spectra of a normal purity borate red phosphor and a high purity fosvana red phosphor. In FIG. 3, the horizontal axis indicates the wavelength, and the vertical axis indicates the size of the emission spectrum.
 図3(a)は、従来から用いられているボレート赤の蛍光体の発光スペクトルを示した図である。図3(a)において、波長600〔nm〕付近に、3本の発光スペクトルが示されているが、波長595〔nm〕付近が、オレンジ色の成分を示す発光スペクトルであり、実線で示されている発光スペクトルの山がそれに該当する。また、波長580〔nm〕付近は、Ne発光の発光スペクトルであり、大きな発光スペクトルは示されていないが、これもオレンジ色の成分を有する。 FIG. 3 (a) is a diagram showing an emission spectrum of a conventionally used borate red phosphor. In FIG. 3 (a), three emission spectra are shown in the vicinity of a wavelength of 600 [nm], but the vicinity of the wavelength of 595 [nm] is an emission spectrum showing an orange component, which is indicated by a solid line. This corresponds to the peak of the emission spectrum. Further, a wavelength around 580 [nm] is an emission spectrum of Ne emission, and a large emission spectrum is not shown, but this also has an orange component.
 一方、図3(b)は、本実施例に係るプラズマディスプレイ装置に適用され得る、高純度の蛍光体であるフォスバナ赤の発光スペクトルを示した図である。図3(b)において、波長595〔nm〕付近に発光スペクトルがあり、オレンジ色の成分を有するものの、その大きさは、ボレート赤よりも小さくなっている。また、波長600~650〔nm〕の間に大きな発光スペクトルが存在するとともに、波長700〔nm〕付近にも発光スペクトルが存在し、赤色の発光スペクトル成分が、オレンジ色の成分に比して大きくなっている。よって、例えばフォスバナ赤の蛍光体を赤色セル41の赤色蛍光体層51に用いることにより、プラズマディスプレイパネル10の赤色の色純度を向上させることができる。 On the other hand, FIG. 3B is a diagram showing an emission spectrum of phosbana red, which is a high-purity phosphor, that can be applied to the plasma display device according to the present embodiment. In FIG. 3B, although there is an emission spectrum in the vicinity of a wavelength of 595 [nm] and has an orange component, the magnitude thereof is smaller than that of borate red. In addition, a large emission spectrum exists in the wavelength range of 600 to 650 [nm], and an emission spectrum exists in the vicinity of the wavelength of 700 [nm]. The red emission spectrum component is larger than the orange component. It has become. Therefore, the red color purity of the plasma display panel 10 can be improved by using, for example, a phosphor of red Fossana for the red phosphor layer 51 of the red cell 41.
 しかしながら、図2で示したように、高純度の赤色蛍光体のフォスバナ赤は、発光輝度が低くなるという問題があり、そのままボレート赤の代わりとして用いても、輝度の低下から種々の問題を生じ得る。そこで、本実施例に係るプラズマディスプレイ装置においては、図1で示したように、赤色セル41の隔壁間隔を緑色セル42及び青色セル43よりも大きくして、この問題を解決している。以下、この具体的な内容について説明する。 However, as shown in FIG. 2, the high-purity red phosphor phosbana red has a problem that the emission luminance is lowered. Even if it is used as it is instead of borate red, it causes various problems due to a decrease in luminance. obtain. Therefore, in the plasma display apparatus according to the present embodiment, as shown in FIG. 1, the partition wall spacing of the red cell 41 is made larger than that of the green cell 42 and the blue cell 43 to solve this problem. The specific contents will be described below.
 図4は、高純度の赤色蛍光体を赤色セル41の赤色蛍光体層51に適用した場合の調整方法を説明するため、種々の状態における発光スペクトルの特性及び色域を示した図である。図4(a)~(d)は、種々の状態における発光スペクトル、輝度及び階調数(利得)を示しており、図4(e)は、図4(a)~(d)に状態に対応する色域及び白バランスを示した図である。 FIG. 4 is a diagram showing emission spectrum characteristics and color gamuts in various states in order to explain an adjustment method when a high-purity red phosphor is applied to the red phosphor layer 51 of the red cell 41. 4A to 4D show emission spectra, luminance, and the number of gradations (gain) in various states. FIG. 4E shows the states in FIGS. 4A to 4D. It is the figure which showed the corresponding color gamut and white balance.
 図4(a)は、ボレート等の通常の赤色蛍光体の発光スペクトル、輝度及び階調数(利得)を示した図である。図4(a)は、純水な蛍光体の特性を示しており、プラズマディスプレイ装置に適用する場合は、従来から用いられている、隔壁間隔が3色で等しいものが適用された場合と考えてもよい。 FIG. 4 (a) is a diagram showing an emission spectrum, luminance, and number of gradations (gain) of a normal red phosphor such as borate. FIG. 4 (a) shows the characteristics of a pure water phosphor. When applied to a plasma display device, it is considered that a conventionally used one in which the partition wall spacing is equal in three colors is applied. May be.
 図4(a)において、発光スペクトルは、595〔nm〕付近のオレンジ色の成分を含んでいる。図4(e)において、図4(a)の発光スペクトルに対応する色域は、●で示す内側の三角形となり、赤色の色域が、狭まっていることが分かる。一方、白バランスは図4(e)に示されるように良好である。また、輝度及び階調数も、図4(a)に示すように、良好な状態を示している。 4A, the emission spectrum includes an orange component in the vicinity of 595 [nm]. In FIG. 4 (e), the color gamut corresponding to the emission spectrum of FIG. 4 (a) is an inner triangle indicated by ● and the red color gamut is narrowed. On the other hand, the white balance is good as shown in FIG. Also, the luminance and the number of gradations are in a good state as shown in FIG.
 図4(b)は、高純度の、高飽和赤蛍光体の発光スペクトル、輝度及び階調数(利得)を示した図である。図4(b)において、発光スペクトルは、オレンジ成分の595〔nm〕の成分が大きく減衰するとともに、赤色の発光スペクトルの領域である625~740〔nm〕の発光スペクトルが増加し、特に赤色の原色を示す700〔nm〕の発光スペクトルが、図4(a)の発光スペクトルと比較して大きく増加している。これにより、赤色の純度が向上し、図4(e)を見ると、赤色の領域が拡大し(×で表示)、図4(a)の場合よりも、色域が拡大していることが分かる。しかしながら、白バランスについては(Wの位置、×で表示)、シアン色が増加して左側に移動してしまい、崩れてしまっていることが分かる。 FIG. 4B is a diagram showing an emission spectrum, luminance, and number of gradations (gain) of a high purity, highly saturated red phosphor. In FIG. 4B, in the emission spectrum, the orange component of 595 nm is greatly attenuated, and the emission spectrum of 625 to 740 nm, which is the region of the red emission spectrum, is increased. The emission spectrum of 700 [nm] indicating the primary color is greatly increased as compared with the emission spectrum of FIG. As a result, the purity of red is improved. When FIG. 4E is viewed, the red region is expanded (indicated by x), and the color gamut is expanded compared to the case of FIG. 4A. I understand. However, with regard to the white balance (position W, indicated by x), it can be seen that the cyan color has increased and moved to the left, and has collapsed.
 次に、図4(b)を再び参照し、輝度及び階調数(利得)を見ると、階調数(利得)については、図4(a)の場合と同様の水準に保たれているが、輝度においては、赤色の輝度が減少していることが分かる。このように、材料組成がY(P,V)O:Eu等の高純度の蛍光体を用いると、赤色の色純度は向上するが、赤色の輝度のみが低下し、これにより白バランスも崩れるので、そのまま赤色セル41の蛍光体層51として適用すると、輝度と白バランスの問題を生じてしまう。 Next, referring again to FIG. 4B, the brightness and the number of gradations (gain) are maintained, and the number of gradations (gain) is maintained at the same level as in FIG. 4A. However, it can be seen that the luminance of red is reduced in luminance. Thus, when a high-purity phosphor having a material composition of Y (P, V) O 4 : Eu or the like is used, the color purity of red is improved, but only the luminance of red is lowered, and thereby white balance is also improved. If it is applied as it is as the phosphor layer 51 of the red cell 41, the problem of brightness and white balance will occur.
 図4(c)は、図4(b)の状態から、赤色、緑色及び青色の輝度を等しくし、白バランスを元に戻すために、信号利得で調整を行った場合の特性を示した図である。図4(b)において、高飽和赤蛍光体を用いたときに、赤色の輝度のみが低下して白バランスが崩れてしまったので、3色の輝度を揃えるべく、緑色と青色の利得を下げて調整している。 FIG. 4 (c) is a diagram showing the characteristics when adjustment is made with the signal gain in order to make the red, green and blue luminances equal and restore the white balance from the state of FIG. 4 (b). It is. In FIG. 4B, when a highly saturated red phosphor is used, only the red brightness is reduced and the white balance is lost. Therefore, the green and blue gains are lowered to match the brightness of the three colors. Have been adjusted.
 この場合において、発光スペクトルは、図4(b)と同様に高飽和赤蛍光体が用いられているので、同じ特性を示し、高純度の赤色を表現できる。図4(e)において、色域は図4(b)と同様に広く保たれ(図中、○で表示)、また、輝度が揃っているので、白バランスも改善されて図4(a)と同様の状態に戻っていることが分かる。 In this case, since a highly saturated red phosphor is used in the emission spectrum as in FIG. 4 (b), the same characteristics are exhibited and a high purity red color can be expressed. In FIG. 4 (e), the color gamut is kept wide similarly to FIG. 4 (b) (indicated by ◯ in the figure), and since the luminance is uniform, the white balance is also improved and FIG. 4 (a). It turns out that it has returned to the same state.
 しかしながら、図4(c)に戻り、輝度及び階調数(利得)を再び参照すると、3色全体の輝度が低下し、かつ緑色と青色の階調数も減少しているので、輝度及び階調数の面で、好ましいとは言えない状態となっている。 However, referring back to FIG. 4C, referring to the luminance and the number of gradations (gain) again, the luminance of all three colors is reduced and the number of gradations of green and blue is also reduced. In terms of the logarithm, it is not preferable.
 図4(d)は、図4(b)の状態から、赤色、緑色及び青色の輝度を等しくし、白バランスを元に戻すために、リブ幅(隔壁間隔)で調整を行った場合の各特性を示した図である。従って、図4(d)は、図1に示した本実施例に係るプラズマディスプレイ装置が適用されている状態である。 FIG. 4 (d) shows each of the cases where adjustment was made with the rib width (distance between the partition walls) in order to make the red, green and blue luminances equal and restore the white balance from the state of FIG. 4 (b). It is the figure which showed the characteristic. Therefore, FIG. 4D shows a state where the plasma display device according to the present embodiment shown in FIG. 1 is applied.
 図1において説明したように、赤色セル41の隔壁間隔を緑色セル42及び青色セル43の隔壁間隔よりも大きくすると、赤色セル41の放電空間が大きくなり、放電が発生し易くなるので、赤色セル41の輝度が向上する。一方、緑色セル42及び青色セル43の隔壁間隔を小さくしてやれば、緑色セル42及び青色セル43における輝度を抑制することができる。つまり、赤色セル41の隔壁間隔を増加させた分、緑色セル42及び青色セル43の隔壁間隔を減少させるようにすれば、画素のサイズは変化させることなく、輝度調整を行うことができる。図4(d)の輝度のグラフを参照すると、図4(b)の状態と比較して、赤色セル41の輝度が増加するとともに、緑色セル42及び青色セル43の輝度が減少し、全体の輝度が揃っているとともに、図4(c)と比較して、3色全体が高い輝度に保たれている。また、信号利得による調整は行っていないので、階調数(利得)も、図4(b)と同様に、3色とも等しく、かつ高い状態に保たれている。 As described with reference to FIG. 1, if the spacing between the red cells 41 is larger than the spacing between the green cells 42 and the blue cells 43, the discharge space of the red cells 41 is increased and discharge is likely to occur. The luminance of 41 is improved. On the other hand, if the space between the green cell 42 and the blue cell 43 is reduced, the luminance in the green cell 42 and the blue cell 43 can be suppressed. That is, if the partition spacing between the green cell 42 and the blue cell 43 is decreased by an amount corresponding to the increase in the partition spacing between the red cells 41, the luminance can be adjusted without changing the pixel size. Referring to the luminance graph of FIG. 4D, the luminance of the red cell 41 increases and the luminance of the green cell 42 and the blue cell 43 decreases as compared with the state of FIG. The luminance is uniform, and the entire three colors are kept at a high luminance as compared with FIG. In addition, since the adjustment based on the signal gain is not performed, the number of gradations (gain) is also the same for all three colors and is kept high as in FIG. 4B.
 また、図4(d)において、発光スペクトルを見ると、赤色セル41の隔壁間隔を増加させたので、赤色成分の発光スペクトルが増加していることが分かる。図4(c)と比較すると、輝度が上昇しているので、発光スペクトル全体がやや増加していることが分かる。このとき、図4(e)を参照すると、高純度の赤色蛍光体の使用により、赤色の色域は拡大した状態のままであり、かつ、3色の輝度が等しいので、白バランスも良好な状態となっていることが分かる。 Further, in FIG. 4D, when the emission spectrum is seen, it can be seen that the emission spectrum of the red component is increased because the partition wall spacing of the red cell 41 is increased. Compared with FIG. 4 (c), it can be seen that since the luminance is increased, the entire emission spectrum is slightly increased. At this time, referring to FIG. 4 (e), the use of the high-purity red phosphor keeps the red color gamut expanded, and the brightness of the three colors is equal, so the white balance is also good. It turns out that it is in a state.
 このように、高飽和赤蛍光体を用いると、図4(b)に示すように、赤色の輝度が減少して白バランスが崩れてしまうが、これを信号利得ではなく、赤色セル41、緑色セル42及び青色セル43の隔壁間隔を調整し、赤色セル41の隔壁間隔が、緑色セル42及び青色セル43の隔壁間隔よりも大きくなるようにして輝度調整を行うことにより、輝度全体を大きく低下させることなく、白バランスを元に戻すことができる。これにより、赤色の色純度を向上させつつ、輝度、階調数(利得)及び白バランスを良好に保つことができる。 As described above, when a highly saturated red phosphor is used, as shown in FIG. 4B, the brightness of red is reduced and the white balance is lost, but this is not a signal gain, but a red cell 41, a green color. The overall brightness is greatly reduced by adjusting the brightness of the cell 42 and the blue cell 43 so that the brightness of the red cell 41 is larger than that of the green cell 42 and the blue cell 43. The white balance can be restored to the original without causing it. As a result, it is possible to improve the luminance, the number of gradations (gain), and the white balance while improving the red color purity.
 なお、高純度の赤色蛍光体である高飽和赤蛍光体は、材料組成がY(P,V)O:Euのフォスバナ赤の蛍光体の他、同様な性質を示す他の高飽和赤蛍光体を、用途に応じて適宜適用することができる。 The highly saturated red phosphor, which is a high-purity red phosphor, is not only a phosphor having a material composition of Y (P, V) O 4 : Eu, but also other highly saturated red fluorescent materials having similar properties. The body can be appropriately applied depending on the application.
 図5は、本発明を適用した実施例2に係るプラズマディスプレイ装置のプラズマディスプレイパネル60aの部分断面構成及び部分平面構成を示した図である。図5において、実施例2に係るプラズマディスプレイ装置のプラズマディスプレイパネル60aは、前面基板10と背面基板20が対向して配置され、その間の空間に隔壁30が複数設けられて複数の放電セル40aが区画形成されており、放電セル40aの表面には、順次赤色、緑色及び青色の蛍光体層51a、52、53が順次割り当てられて形成され、赤色セル41a、緑色セル42a及び青色セル43aを構成している。そして、赤色セル41aの隔壁間隔は、緑色セル42a及び青色セル43aの隔壁間隔よりも、大きく構成されている点は、実施例1に係るプラズマディスプレイ装置のプラズマディスプレイパネル60と同様である。 FIG. 5 is a diagram showing a partial cross-sectional configuration and a partial planar configuration of the plasma display panel 60a of the plasma display device according to the second embodiment to which the present invention is applied. In FIG. 5, the plasma display panel 60a of the plasma display apparatus according to the second embodiment has a front substrate 10 and a rear substrate 20 facing each other, and a plurality of barrier ribs 30 are provided in a space therebetween, so that a plurality of discharge cells 40a are formed. The red, green, and blue phosphor layers 51a, 52, and 53 are sequentially assigned and formed on the surface of the discharge cell 40a to form a red cell 41a, a green cell 42a, and a blue cell 43a. is doing. The red cell 41a has the same partition wall spacing as that of the green cell 42a and the blue cell 43a, as in the plasma display panel 60 of the plasma display device according to the first embodiment.
 実施例2に係るプラズマディスプレイ装置のプラズマディスプレイパネル60aにおいては、緑色セル42aの隔壁間隔の大きさが、青色セル43aの隔壁間隔よりも大きく構成されており、隔壁間隔の広さが、青色セル43a<緑色セル42a<赤色セル41aとなっている点で、青色セル43=緑色セル42<赤色セル41であった実施例1と異なっている。 In the plasma display panel 60a of the plasma display apparatus according to the second embodiment, the size of the partition wall spacing of the green cells 42a is configured to be larger than the partition wall spacing of the blue cells 43a. 43a <green cell 42a <red cell 41a is different from the first embodiment in which blue cell 43 = green cell 42 <red cell 41.
 このように、プラズマディスプレイパネルの種類と特性に応じて、赤色セル41aの隔壁間隔の大きさを最大にするとともに、更に緑色セル42aと青色セル41aの隔壁間隔にも差を設けるようにしてもよい。この場合においても、最大隔壁間隔と最小隔壁間隔の差は、5%以上あることが好ましいので、赤色セル41aに対する青色セル43aの隔壁間隔の比率差は、5%以上あることが好ましい。例えば、各色の放電セル40aの隔壁間隔の比率は、赤色セル41a:緑色セル42a:青色セル43a=1.5:1.3:1であってもよい。これらの比率は、プラズマディスプレイパネル60aの種類と特性により、適宜適切な比率とすることができる。 As described above, the size of the partition space between the red cells 41a is maximized according to the type and characteristics of the plasma display panel, and further, the partition space between the green cells 42a and the blue cells 41a is also provided with a difference. Good. Also in this case, the difference between the maximum partition wall spacing and the minimum partition wall spacing is preferably 5% or more, and therefore, the ratio difference of the partition wall spacing of the blue cell 43a to the red cell 41a is preferably 5% or more. For example, the ratio between the partition walls of the discharge cells 40a of each color may be red cell 41a: green cell 42a: blue cell 43a = 1.5: 1.3: 1. These ratios can be appropriately set appropriately depending on the type and characteristics of the plasma display panel 60a.
 また、実施例2に係るプラズマディスプレイ装置のプラズマディスプレイパネル60aにおいては、赤色セル41aの赤色蛍光体層51aに、高純度の赤色蛍光体ではなく、材料組成が(Y,Gd)BO:Euであるボレート赤等の通常の赤色蛍光体が用いられている点で、実施例1に係るプラズマディスプレイ装置と異なっている。なお、緑色蛍光体層52及び青色蛍光体層53については、実施例1と同様の蛍光体が適用されてよく、それ故実施例1と同様の参照符号を付している。 In the plasma display panel 60a of the plasma display device according to the second embodiment, the red phosphor layer 51a of the red cell 41a is not made of a high-purity red phosphor but has a material composition of (Y, Gd) BO 3 : Eu. This is different from the plasma display device according to the first embodiment in that a normal red phosphor such as borate red is used. For the green phosphor layer 52 and the blue phosphor layer 53, the same phosphor as that of the first embodiment may be applied, and therefore, the same reference numerals as those of the first embodiment are given.
 また、赤色セル41a、緑色セル42a及び青色セル43aに封入される放電ガスは、Xeガスの混合比を高濃度として、10~30%となるように構成される。Xeガスを高濃度とすることにより、放電セル40aの発光効率が向上するが、かかるXeガスを高濃度として場合に、各セルの発光効率が必ずしも等しく向上せず、青色セル43a、緑色セル42a及び赤色セル41aの順の向上割合を有する。よって、本実施例に係るプラズマディスプレイパネル60aにおいては、かかる発光効率向上の不均衡を、赤色セル41a、緑色セル42a及び青色セル43aの隔壁間隔を異ならせ、向上割合を調整することとしている。本実施例に係るプラズマディスプレイ装置は、このような放電ガス中のXeガスの混合比を増加させた場合の用途に適用するのが最適であり、以下、このような適用例を挙げて説明する。 Further, the discharge gas sealed in the red cell 41a, the green cell 42a, and the blue cell 43a is configured to be 10 to 30% with a high mixing ratio of Xe gas. Increasing the Xe gas concentration improves the luminous efficiency of the discharge cell 40a. However, when the Xe gas is increased in concentration, the luminous efficiency of each cell does not necessarily improve equally, and the blue cell 43a and the green cell 42a. And the improvement rate of the order of the red cell 41a. Therefore, in the plasma display panel 60a according to the present embodiment, the imbalance in improving the light emission efficiency is adjusted by changing the partition wall intervals of the red cell 41a, the green cell 42a, and the blue cell 43a. The plasma display device according to the present embodiment is optimally applied to the use in the case where the mixing ratio of the Xe gas in the discharge gas is increased. Hereinafter, such an application example will be described. .
 図6は、通常の赤色蛍光体を用い、放電ガスにおけるXeガスの混合比を増加させたプラズマディスプレイパネル60aの種々の状態を示した図である。図4と同様に、図6(a)~(d)は、各状態における発光スペクトル、輝度及び階調数(利得)を示し、図6(e)は、図6(a)~(d)に対応する色域及び白バランスを示している。 FIG. 6 is a diagram showing various states of the plasma display panel 60a using a normal red phosphor and increasing the mixing ratio of the Xe gas in the discharge gas. Similar to FIG. 4, FIGS. 6A to 6D show the emission spectrum, luminance, and number of gradations (gain) in each state, and FIG. 6E shows FIGS. 6A to 6D. The color gamut and white balance corresponding to are shown.
 図6(a)は、通常の赤色蛍光体の特性を示した図である。本実施例に係るプラズマディスプレイ装置に要求されるスペックは、発光効率の向上であり、色域に関しては、従来の蛍光体で満足な特性が得られている状態であると仮定する。つまり、色域の拡大は課題とせず、発光効率の向上を主眼としている状況を前提として説明する。 FIG. 6A is a diagram showing characteristics of a normal red phosphor. It is assumed that the specifications required for the plasma display device according to the present embodiment are improvement of luminous efficiency, and color gamut is in a state where satisfactory characteristics are obtained with the conventional phosphor. In other words, the description will be made on the assumption that the expansion of the color gamut is not a problem and the main purpose is to improve the luminous efficiency.
 図6(a)において、通常の赤色蛍光体が用いられているが、色域は問題としていないので、発光スペクトルは、満足な特性が得られている状態である。一方、輝度については、低水準に留まり、輝度の向上が望まれる状態を示している。また、階調数(利得)については、十分高く、満足な特性が得られている。 In FIG. 6A, a normal red phosphor is used, but since the color gamut is not a problem, the emission spectrum is in a state where satisfactory characteristics are obtained. On the other hand, the luminance remains at a low level, indicating a state in which improvement in luminance is desired. Further, the number of gradations (gain) is sufficiently high, and satisfactory characteristics are obtained.
 図6(a)に対応する色域を、図6(e)で確認すると、前提条件から、十分な色域が得られ、かつ輝度は3色とも等しいので、良好な白バランスが得られている状態であることが分かる。 When the color gamut corresponding to FIG. 6 (a) is confirmed in FIG. 6 (e), a sufficient white color gamut is obtained from the preconditions, and the luminance is equal for all three colors, so that a good white balance is obtained. It turns out that it is in a state.
 図6(b)は、放電セル40aに封入された放電ガスのXeガスの濃度を上げて混合比を高めた状態の各特性を示した図である。図6(b)において、発光スペクトルを見ると、波長625~740〔nm〕の赤色の発光スペクトルはあまり増加していないが、波長450〔nm〕付近の青色の発光スペクトルは大きく増加し、波長525〔nm〕付近の緑色の発光スペクトルは、青色の発光スペクトルよりは小さく、赤色の発光スペクトルよりは大きい中間レベルで発光スペクトルが増加していることが分かる。輝度に着目すると、青色の輝度増加量が最も大きく、次いで緑色が大きく、赤色の輝度増加量が最も小さくなっており、3色の輝度に不均衡が生じた状態であることが示されている。また、階調数(利得)に着目すると、これは図6(a)と変化が無く、十分な階調数が得られていることが分かる。 FIG. 6 (b) is a diagram showing each characteristic in a state where the concentration of the Xe gas of the discharge gas sealed in the discharge cell 40a is increased to increase the mixing ratio. In FIG. 6 (b), when the emission spectrum is viewed, the red emission spectrum at the wavelength of 625 to 740 [nm] does not increase so much, but the blue emission spectrum near the wavelength of 450 [nm] greatly increases. It can be seen that the green emission spectrum near 525 [nm] is smaller than the blue emission spectrum and increases at an intermediate level larger than the red emission spectrum. Focusing on the luminance, the blue luminance increase is the largest, then the green is the largest, and the red luminance increase is the smallest, indicating that there is an imbalance in the luminance of the three colors. . Further, focusing on the number of gradations (gain), it can be seen that there is no change from FIG. 6A and that a sufficient number of gradations is obtained.
 図6(b)に対応する色域を、図6(e)で参照すると、色域には変化が無いが、青色の輝度が赤色よりも大きく増加したため、白バランスが崩れた状態となっていることが示されている。 When the color gamut corresponding to FIG. 6B is referred to in FIG. 6E, there is no change in the color gamut, but since the luminance of blue has increased more than that of red, the white balance is lost. It has been shown that
 図6(c)は、図6(b)に示した輝度の不均衡状態を、信号利得で調整した状態を示した図である。図6(c)において、利得を、青色を大きく下げ、緑色を次に下げ、赤色をそのままとすることにより、青色<緑色<赤色の状態に是正し、3色の輝度が等しくなるように調整している。このとき、輝度は、低い水準の赤色に3色が合わされた状態となる。よって、発光スペクトルを見ると、図6(b)で見られた波長450〔nm〕付近の青色成分の増加及び波長525〔nm〕付近の緑色成分の増加が抑制され、双方の増加分が減少した特性を示している。 FIG. 6C is a diagram illustrating a state in which the luminance imbalance state illustrated in FIG. 6B is adjusted by a signal gain. In Fig. 6 (c), the gain is adjusted so that the brightness of the three colors is equal by correcting blue to green <red by largely lowering blue, then lowering green, and leaving red as it is. is doing. At this time, the luminance is in a state where the three colors are combined with a low level red. Therefore, when the emission spectrum is viewed, the increase of the blue component near the wavelength 450 [nm] and the increase of the green component near the wavelength 525 [nm] seen in FIG. 6B are suppressed, and both increases are decreased. Characteristics are shown.
 図6(c)に対応する色域を、図6(e)で参照すると、色域は良好な状態が保たれているとともに、輝度が3色とも等しくなったので、白バランスも良好な状態となっている。 When the color gamut corresponding to FIG. 6C is referred to in FIG. 6E, the color gamut is maintained in a good state and the luminance is equal for all three colors, so that the white balance is also good. It has become.
 このように、Xeガス濃度を増加させたことによる輝度増加量の不均衡を、信号利得で調整すると、輝度向上量の低い赤色に輝度を合わさざるを得ない結果となってしまう。 As described above, when the imbalance of the luminance increase amount due to the increase of the Xe gas concentration is adjusted by the signal gain, the luminance is inevitably adjusted to red having a low luminance improvement amount.
 図6(d)は、図5に示した実施例2に係るプラズマディスプレイ装置のプラズマディスプレイパネル60aを適用し、図6(b)の輝度不均衡の状態を、放電セル40aの隔壁間隔により調整する例を示した図である。図5において説明したように、実施例2に係るプラズマディスプレイ装置のプラズマディスプレイパネル10aの放電セル40aは、赤色セル41aの隔壁間隔が最も大きく、次いで緑色セル42aの隔壁間隔が大きく、青色セル43aの隔壁間隔が最も小さく構成されている。これは、図6(b)に示した輝度の状態と丁度逆の状態であり、図6(b)の状態に、本実施例に係るプラズマディスプレイ装置を適用することにより、赤色セル41aの輝度を増加させるとともに、青色セル43aの輝度を抑制し、図6(d)に示すように、3色の輝度が等しくなるように調整することができる。このような調整を行うことにより、中間輝度を有する緑色セル42aの輝度が略基準となって輝度調整が行われることになり、赤色セル41aの輝度を基準とするよりも、高い輝度を基準として3色の輝度を等しく調整することができる。このとき、信号利得には図6(b)の状態から何も手を加えないので、そのまま階調数(利得)は高い状態で維持される。図6(d)の発光スペクトルのグラフを見ると、緑色成分の525〔nm〕付近の発光スペクトル及び青色成分の450〔nm〕付近の発光スペクトルは、Xeガスの濃度増加により増加した分が、あまり抑制されずに、発光輝度向上の利益を享受した状態となっていることが分かる。 FIG. 6D applies the plasma display panel 60a of the plasma display apparatus according to the second embodiment shown in FIG. 5, and adjusts the luminance imbalance state of FIG. 6B by the partition spacing of the discharge cells 40a. It is the figure which showed the example to do. As described with reference to FIG. 5, in the discharge cell 40a of the plasma display panel 10a of the plasma display device according to the second embodiment, the red cell 41a has the largest barrier rib spacing, then the green cell 42a has the largest barrier rib spacing, and the blue cell 43a. The interval between the partition walls is the smallest. This is just the opposite of the luminance state shown in FIG. 6B, and the luminance of the red cell 41a is obtained by applying the plasma display device according to the present embodiment to the state of FIG. 6B. And the luminance of the blue cell 43a can be suppressed, and the luminance of the three colors can be adjusted to be equal as shown in FIG. 6 (d). By performing such adjustment, the luminance adjustment is performed based on the luminance of the green cell 42a having the intermediate luminance as a reference, and a higher luminance is used as a reference than the reference of the luminance of the red cell 41a. The brightness of the three colors can be adjusted equally. At this time, since nothing is changed from the state of FIG. 6B to the signal gain, the number of gradations (gain) is maintained in a high state as it is. Looking at the emission spectrum graph of FIG. 6 (d), the emission spectrum near 525 [nm] of the green component and the emission spectrum near 450 [nm] of the blue component are increased by the increase in the concentration of Xe gas. It can be seen that it is in a state of enjoying the benefit of improving the light emission luminance without being suppressed so much.
 図6(e)を参照し、図6(d)に対応する色域を見ると、色域は良好に保たれており、かつ、3色の輝度が等しいので、良好な白バランスが得られていることが分かる。 Referring to FIG. 6 (e), when the color gamut corresponding to FIG. 6 (d) is seen, the color gamut is kept good and the brightness of the three colors is equal, so that a good white balance is obtained. I understand that
 このように、実施例2に係るプラズマディスプレイ装置によれば、Xeガスの濃度を大きくして発光効率を向上させるとともに、輝度不均衡調整を信号利得ではなく放電セル40aの隔壁間隔で行うことにより、全体の輝度を低下させず、良好な白バランスと階調数(利得)を実現することができる。 As described above, according to the plasma display device of Example 2, the Xe gas concentration is increased to improve the light emission efficiency, and the luminance imbalance adjustment is performed not by the signal gain but by the partition wall spacing of the discharge cells 40a. Therefore, it is possible to realize a good white balance and the number of gradations (gain) without reducing the overall luminance.
 図7は、本発明を適用した実施例3に係るプラズマディスプレイ装置のプラズマディスプレイパネル60bの部分断面構成と部分平面構成を示した図である。実施例3に係るプラズマディスプレイ装置は、放電セル40aの形状と各色の隔壁間隔の関係は、実施例2において説明した図5に係るプラズマディスプレイパネル10aと同様である。なお、図5と同様の構成要素については、総て同一の参照符号を付し、その説明を省略する。 FIG. 7 is a diagram showing a partial cross-sectional configuration and a partial planar configuration of the plasma display panel 60b of the plasma display device according to the third embodiment to which the present invention is applied. In the plasma display device according to the third embodiment, the relationship between the shape of the discharge cell 40a and the partition spacing of each color is the same as that of the plasma display panel 10a according to FIG. 5 described in the second embodiment. In addition, about the component similar to FIG. 5, the same referential mark is attached | subjected and the description is abbreviate | omitted.
 実施例3に係るプラズマディスプレイ装置においては、赤色セル41aの赤色蛍光体層51bに、通常の赤色蛍光体ではなく、高飽和赤蛍光体を適用している点が、実施例2に係るプラズマディスプレイ装置と異なっている。実施例3に係るプラズマディスプレイ装置は、実施例1と実施例2を組み合わせたものであり、実施例2と同様に、放電ガス中のXeガスの混合比を高濃度とし、10~30%としている。このような構成とすることにより、プラズマディスプレイパネル10aの赤色の色純度を向上させるとともに、3色全体の発光輝度を向上させることができる。 In the plasma display device according to the third embodiment, the high saturation red phosphor is applied to the red phosphor layer 51b of the red cell 41a instead of the normal red phosphor. Different from the device. The plasma display device according to Example 3 is a combination of Example 1 and Example 2. As in Example 2, the mixing ratio of Xe gas in the discharge gas is set to a high concentration and 10 to 30%. Yes. With such a configuration, it is possible to improve the red color purity of the plasma display panel 10a and improve the light emission luminance of all three colors.
 図8は、実施例3に係るプラズマディスプレイ装置の適用例を説明するために、種々の状態における発光スペクトル、輝度及び階調数(利得)の特性を示した図である。図8(a)~(d)においては、各状態の発光スペクトル、輝度及び階調数(利得)が各々示され、図8(e)においては、図8(a)~(d)に対応する色域と白バランスが示されている。 FIG. 8 is a diagram showing the characteristics of the emission spectrum, luminance, and number of gradations (gain) in various states in order to explain an application example of the plasma display device according to the third embodiment. 8A to 8D show the emission spectrum, luminance, and number of gradations (gain) in each state, respectively, and FIG. 8E corresponds to FIGS. 8A to 8D. Color gamut and white balance are shown.
 図8(a)は、比較対象として、従来から用いられている、材料組成が(Y,Gd)BO:Euであるボレート赤等の通常の赤色蛍光体が適用され、かつXeガスの混合比も通常の6~8%である場合の特性を示した図である。 FIG. 8 (a) shows a comparative example in which a conventional red phosphor such as borate red whose material composition is (Y, Gd) BO 3 : Eu, which has been conventionally used, is applied, and Xe gas is mixed. FIG. 6 is a diagram showing characteristics when the ratio is also 6 to 8% of the normal value.
 図8(a)において、発光スペクトルは、オレンジ成分である波長595〔nm〕付近の発光スペクトルが残った状態となっている。また、輝度は、3色とも等しいが、低い水準となっている。一方、階調数は、高い利得が得られ、良好な特性を示した状態である。 In FIG. 8A, the emission spectrum is in a state in which an emission spectrum in the vicinity of a wavelength of 595 [nm], which is an orange component, remains. The luminance is the same for all three colors, but at a low level. On the other hand, the number of gradations is a state in which high gain is obtained and good characteristics are exhibited.
 図8(e)において、図8(a)に対応する色域に着目すると、色域が狭い状態であることが示されている。一方、白バランスについては、3色の輝度が総て等しいので、良好な状態となっている。 In FIG. 8 (e), focusing on the color gamut corresponding to FIG. 8 (a), it is shown that the color gamut is in a narrow state. On the other hand, the white balance is in a good state because the brightness of all three colors is equal.
 図8(b)は、プラズマディスプレイパネル60aの放電セル40aの隔壁間隔を従来のように各色均一とした状態で、高輝度の高飽和赤蛍光体を赤色蛍光体層51に適用し、かつ放電ガス中のXeガスの混合比を増加させて高濃度(例えば、10~30%)とした状態の各特性を示した図である。 FIG. 8B shows a case where a high-brightness, highly saturated red phosphor is applied to the red phosphor layer 51 in a state in which the partition walls of the discharge cells 40a of the plasma display panel 60a are uniform as in the prior art, and the discharge is performed. FIG. 6 is a diagram showing each characteristic in a state where the mixing ratio of Xe gas in the gas is increased to a high concentration (for example, 10 to 30%).
 図8(b)において、まず発光スペクトルに着目すると、高飽和赤蛍光体を用いたことにより、波長595〔nm〕付近のオレンジ成分が減衰し、画帳700〔nm〕付近の赤色成分の発光スペクトルが増加し、高純度の赤色となっていることが分かる。また、輝度については、Xeガスを高濃度としたので、実施例2において説明したように、青色、緑色、赤色の順で輝度が向上しており、各色間の輝度不均衡が生じている。階調数については、そのまま維持され、高階調数の良好な特性を示している。 In FIG. 8B, focusing attention on the emission spectrum, the orange component near the wavelength 595 [nm] is attenuated by using the highly saturated red phosphor, and the emission spectrum of the red component near the picture book 700 [nm]. It can be seen that the color increases to a high-purity red color. As for the luminance, since the Xe gas has a high concentration, as described in the second embodiment, the luminance is improved in the order of blue, green, and red, and a luminance imbalance between the colors occurs. The number of gradations is maintained as it is, and shows a good characteristic with a high number of gradations.
 図8(b)に対応する色域及び白バランスを、図8(e)において参照すると、高飽和赤蛍光体を適用したので、赤色の色純度は向上し、色域が拡大していることが分かる(図中、×で表示)。一方、3色間の輝度バランスが崩れたので、白バランスは崩れてしまっている(図中、W、×で表示)。 Referring to the color gamut and white balance corresponding to FIG. 8 (b) in FIG. 8 (e), since the highly saturated red phosphor is applied, the color purity of red is improved and the color gamut is expanded. Can be seen (indicated by x in the figure). On the other hand, since the luminance balance between the three colors is lost, the white balance is lost (indicated by W and x in the figure).
 図8(c)は、図8(b)の輝度の不均衡及び白バランスの崩れを生じた状態を、信号利得により調整した状態の各特性を示した図である。図8(c)において、図8(b)の輝度の不均衡を、青色の利得を一番大きく下げ、緑色の利得を青色よりは小さく下げ、赤色の利得を下げずにそのままとすることにより、輝度が均一となるように調整している。この場合、図8(b)において最も輝度の低かった赤色の輝度が基準となり、赤色の輝度と同じ水準まで、青色及び緑色の輝度が引き下げられた状態となっている。発光スペクトルに着目すると、赤色の発光スペクトルは図4(b)の状態と同じであるが、波長450〔nm〕付近の青色成分及び波長525〔nm〕付近の緑色成分の発光スペクトルは、ともに減衰している。 FIG. 8C is a diagram showing the characteristics of the state in which the luminance imbalance and white balance collapse in FIG. 8B are adjusted by the signal gain. In FIG. 8 (c), the luminance imbalance in FIG. 8 (b) is reduced by reducing the blue gain the most, lowering the green gain smaller than blue, and leaving the red gain unchanged. The brightness is adjusted to be uniform. In this case, the luminance of red having the lowest luminance in FIG. 8B is used as a reference, and the luminances of blue and green are lowered to the same level as the luminance of red. Focusing on the emission spectrum, the red emission spectrum is the same as the state of FIG. 4B, but the emission spectrum of the blue component near the wavelength 450 [nm] and the green component near the wavelength 525 [nm] are both attenuated. is doing.
 図8(c)に対応する色域及び白バランスを、図8(e)において参照すると、赤色の色純度は高純度が保たれ、白バランスは良好であるので、この点については、問題は無い。 Referring to the color gamut and white balance corresponding to FIG. 8 (c) in FIG. 8 (e), the red color purity is kept high and the white balance is good. No.
 しかしながら、図8(c)のように信号利得により調整すると、階調数が減少するのと、輝度が低いレベルに合わされるので、Xeガスの濃度を高めて発光効率を向上させた利点が、輝度の低下と階調数の減少で相殺されるような状態となっている。 However, when the signal gain is adjusted as shown in FIG. 8C, the number of gradations is reduced and the brightness is adjusted to a low level. Therefore, there is an advantage that the luminous efficiency is improved by increasing the concentration of Xe gas. The state is offset by the decrease in luminance and the decrease in the number of gradations.
 図8(d)は、本実施例に係るプラズマディスプレイ装置を適用し、図8(b)で示した輝度不均衡を、放電セル40aの隔壁間隔で調整した場合の各特性を示した図である。実施例3に係るプラズマィスプレイ装置において、プラズマディスプレイパネル60aの放電セル40aの構成は、赤色セル41aの隔壁間隔が最も広く、緑色セル42aの隔壁間隔が2番目に広く、青色セル43aの隔壁間隔が最も狭く構成されている。よって、図8(b)の輝度特性において、赤色セル41aの輝度を増加させるとともに、青色セル43aの輝度を減少させる調整を加えることができ、中間の緑色セル42aの輝度を略基準として、各色の輝度が等しくなるような調整を行うことができる。このとき、信号利得については手を加えていないので、階調数は高く維持され、良好な階調数を保っている。また、発光スペクトルは、波長450〔nm〕付近の青色成分がやや減衰するだけで、波長525〔nm〕付近の緑色成分は略そのまま維持され、波長625~740〔nm〕の範囲にある赤色成分は発光スペクトルが増加しており、発光スペクトルの大きな減衰は回避できている。 FIG. 8D is a diagram showing each characteristic when the plasma display apparatus according to the present embodiment is applied and the luminance imbalance shown in FIG. 8B is adjusted by the partition wall spacing of the discharge cell 40a. is there. In the plasma display device according to the third embodiment, the discharge cell 40a of the plasma display panel 60a is configured such that the red cell 41a has the largest barrier rib spacing, the green cell 42a has the second largest barrier rib spacing, and the blue cell 43a has the barrier rib spacing. Is the narrowest. Therefore, in the luminance characteristic of FIG. 8B, it is possible to add adjustment to increase the luminance of the red cell 41a and decrease the luminance of the blue cell 43a. Can be adjusted so that the brightness of the two becomes equal. At this time, since the signal gain is not changed, the number of gradations is kept high, and a good number of gradations is maintained. In the emission spectrum, the blue component near the wavelength of 450 [nm] is only slightly attenuated, the green component near the wavelength of 525 [nm] is maintained as it is, and the red component in the wavelength range of 625 to 740 [nm]. Has an increased emission spectrum, and a large attenuation of the emission spectrum can be avoided.
 図8(d)の状態に対応する色域及び白バランスを、図7(e)を参照して確認すると、赤色の色純度は高純度に維持され、かつ白バランスも良好な状態となっていることが分かる(図中、○で表示)。 When the color gamut and white balance corresponding to the state of FIG. 8D are confirmed with reference to FIG. 7E, the color purity of red is maintained at a high purity and the white balance is also good. (It is indicated by a circle in the figure).
 このように、実施例3に係るプラズマディスプレイ装置によれば、赤色蛍光体層51bに高純度の赤色蛍光体であるY(P,V)O:Euの材料組成を有するフォスバナ赤を適用し、放電ガス中のXeガスの混合比を高濃度とし、輝度の不均衡を青色セル43a<緑色セル42a<赤色セル41aとして是正するようにすれば、赤色の色純度を向上させ、かつ発光効率の高めることができる。 As described above, according to the plasma display device of Example 3, the red phosphor layer 51b is applied with phosbana red having a material composition of Y (P, V) O 4 : Eu, which is a high purity red phosphor. If the mixing ratio of Xe gas in the discharge gas is set to a high concentration and the luminance imbalance is corrected as blue cell 43a <green cell 42a <red cell 41a, the red color purity is improved and the luminous efficiency is improved. Can be increased.
 なお、高純度の赤色蛍光体は、フォスバナ赤の他、同様の性質を有する種々の蛍光体材料を適用することができる。 Note that various phosphor materials having similar properties can be applied to the high-purity red phosphor in addition to the fosbana red.
 図9は、本発明を適用した実施例4に係るプラズマディスプレイ装置のプラズマディスプレイパネル60cの部分断面構成及び部分平面構成を示した図である。実施例4に係るプラズマディスプレイ装置は、放電セル40の形状及び赤色セル41、緑色セル42及び青色セル43の隔壁間隔の大小関係については、実施例1の図1において説明した構成を有するプラズマディスプレイパネル10と同様である。つまり、赤色セル41の隔壁間隔が最も大きく、緑色セル42と青色セル43の隔壁間隔は等しく構成されている。実施例4に係るプラズマディスプレイ装置のプラズマディスプレイパネル10cにおいては、赤色蛍光体層51cに、高純度の赤色蛍光体ではなく通常の赤色蛍光体が適用され、かつ、前面基板10にオレンジカットフィルタ11が設けられている点で、実施例1のプラズマディスプレイパネル10と異なっている。蛍光体層50cの赤色蛍光体層51c及びオレンジカットフィルタ11以外の他の構成要素については、実施例1の図1に係るプラズマディスプレイパネル10と同様であるので、図1と同一の参照符号を付して、その説明を省略する。このように、実施例1のように、高純度の赤色蛍光体を適用するのではなく、オレンジカットフィルタ11を用いることにより、プラズマディスプレイパネル10cの赤色の色純度を向上させるようにしてもよい。 FIG. 9 is a diagram showing a partial cross-sectional configuration and a partial planar configuration of the plasma display panel 60c of the plasma display device according to the fourth embodiment to which the present invention is applied. The plasma display device according to the fourth embodiment has the configuration described in FIG. 1 of the first embodiment with respect to the shape of the discharge cell 40 and the size relationship between the partition walls of the red cell 41, the green cell 42, and the blue cell 43. Similar to the panel 10. That is, the red cell 41 has the largest partition wall spacing, and the green cell 42 and the blue cell 43 have the same partition wall spacing. In the plasma display panel 10c of the plasma display device according to the fourth embodiment, not the high-purity red phosphor but a normal red phosphor is applied to the red phosphor layer 51c, and the orange cut filter 11 is applied to the front substrate 10. Is different from the plasma display panel 10 of the first embodiment. Components other than the red phosphor layer 51c and the orange cut filter 11 of the phosphor layer 50c are the same as those in the plasma display panel 10 according to FIG. A description thereof will be omitted. As described above, the red color purity of the plasma display panel 10c may be improved by using the orange cut filter 11 instead of applying the high-purity red phosphor as in the first embodiment. .
 次に、図10を用いて、実施例4に係るプラズマディスプレイ装置の適用例について説明する。図10は、実施例4に係るプラズマディスプレイ装置の適用例を説明するために、種々の状態における放電セル40の発光スペクトル、輝度及び階調数(利得)を示した図である。図10(a)~(d)は、各状態における発光スペクトル、輝度及び階調数(利得)を示し、図10(e)は、図10(a)~(d)に対応する色域及び白バランスを示している。 Next, an application example of the plasma display device according to the fourth embodiment will be described with reference to FIG. FIG. 10 is a diagram illustrating the emission spectrum, luminance, and number of gradations (gain) of the discharge cell 40 in various states in order to explain an application example of the plasma display device according to the fourth embodiment. FIGS. 10A to 10D show the emission spectrum, luminance, and number of gradations (gain) in each state, and FIG. 10E shows the color gamut and the color gamut corresponding to FIGS. Indicates white balance.
 図10(a)は、通常の赤色蛍光体を用い、オレンジカットフィルタを用いていない状態の赤色蛍光体の各特性を示した図である。図10(a)において、輝度及び階調数は、3色とも高輝度かつ高階調数を示しており、良好な状態である。発光スペクトルは、波長595〔nm〕付近のオレンジ色の成分が残り、これに比して波長625~740〔nm〕付近の赤色成分があまり大きくない状態を示している。 FIG. 10A is a diagram showing characteristics of a red phosphor in a state where a normal red phosphor is used and an orange cut filter is not used. In FIG. 10A, the luminance and the number of gradations are in a good state because all three colors show high luminance and a large number of gradations. The emission spectrum shows a state in which an orange component near a wavelength of 595 [nm] remains, and a red component near a wavelength of 625 to 740 [nm] is not so large.
 図10(a)に対応する色域及び白バランスは、図10(e)を参照すると、色域が狭い状態であることが分かる(図中、●で表示)。一方、輝度が3色揃っているので、白バランスについては、良好な状態を示している。 Referring to FIG. 10E, the color gamut and white balance corresponding to FIG. 10A can be seen to be in a narrow color gamut (indicated by ● in the figure). On the other hand, since the brightness is uniform in three colors, the white balance shows a good state.
 図10(b)は、プラズマディスプレイパネル60cの前面基板10に、オレンジカットフィルタ11を設けた状態の各特性を示した図である。図10において、発光スペクトルを参照すると、波長595〔nm〕付近のオレンジ色成分の発光スペクトルが減衰していることが分かる。これにより、赤色の色純度が向上する。一方、輝度は、オレンジカットフィルタ11の影響で、赤色の輝度のみが低下してしまっている。また、階調数は、高階調数で良好に保たれている。 FIG. 10B is a diagram showing each characteristic in a state where the orange cut filter 11 is provided on the front substrate 10 of the plasma display panel 60c. Referring to the emission spectrum in FIG. 10, it can be seen that the emission spectrum of the orange component near the wavelength of 595 [nm] is attenuated. Thereby, the color purity of red improves. On the other hand, the luminance is reduced only by the red luminance due to the influence of the orange cut filter 11. Also, the number of gradations is kept high with a high number of gradations.
 図10(b)の状態に対応する色域は、図10(e)で示されるように、オレンジ色成分が減衰されたので、赤色の色純度は向上した状態が保たれ、色域が拡大している。しかしながら、3色間の輝度のバランスが崩れたため、白バランスは崩れた状態となっていることが分かる。 In the color gamut corresponding to the state of FIG. 10B, as shown in FIG. 10E, the orange color component is attenuated, so that the red color purity is maintained and the color gamut is expanded. is doing. However, it can be seen that the balance of luminance among the three colors is lost, and thus the white balance is lost.
 図10(c)は、図10(b)に示した赤色の輝度のみが低下した状態を、信号利得により調整した状態を示した特性図である。図10(c)において、輝度が高い青色と緑色の利得を減少させ、輝度を赤色に合わせて等しくしている。つまり、全体の輝度が低下してしまっている。このとき、発光スペクトルは、波長450〔nm〕付近の青色成分の発光スペクトル及び波長525〔nm〕付近の緑色成分の発光スペクトルの双方が減衰してしまっている。 FIG. 10 (c) is a characteristic diagram showing a state in which only the red luminance shown in FIG. 10 (b) has been reduced by adjusting the signal gain. In FIG. 10C, the gains of blue and green with high luminance are reduced, and the luminance is made equal to red. That is, the overall luminance has been reduced. At this time, in the emission spectrum, both the emission spectrum of the blue component in the vicinity of the wavelength 450 [nm] and the emission spectrum of the green component in the vicinity of the wavelength 525 [nm] are attenuated.
 図10(c)に対応する色域は、図10(e)を参照すると、赤色の色純度が高い状態に保たれている(図中、○で表示)。また、輝度が3色間で等しいので、白バランスも良好に保たれている(図中、W、○で表示)。しかしながら、上述のように、赤色の色純度は向上するものの、輝度及び階調数の双方が低下した状態となっており、好ましい状態とは言えない。 Referring to FIG. 10 (e), the color gamut corresponding to FIG. 10 (c) is kept in a high red color purity state (indicated by a circle in the figure). Further, since the luminance is the same among the three colors, the white balance is also kept good (indicated by W and ◯ in the figure). However, as described above, although the color purity of red is improved, both the luminance and the number of gradations are in a reduced state, which is not a preferable state.
 図10(d)は、図10(b)の輝度不均衡状態に、本実施例に係る、図9に示したプラズマディスプレイパネル60cを有するプラズマディスプレイ装置を適用した状態の特性図である。実施例4に係るプラズマディスプレイパネル60cは、赤色セル41の隔壁間隔が最も大きく、緑色セル42と青色セル43の隔壁間隔は、ともに赤色セル41より小さく、互いに等しい大きさを有している。よって、本実施例に係るプラズマディスプレイ装置においては、赤色セル41の輝度が増加し、緑色セル42及び青色セル43の輝度は、ともに低下することになる。 FIG. 10D is a characteristic diagram in a state where the plasma display device having the plasma display panel 60c shown in FIG. 9 according to the present embodiment is applied to the luminance imbalance state of FIG. 10B. In the plasma display panel 60c according to the fourth embodiment, the red cell 41 has the largest partition wall spacing, and the green cell 42 and the blue cell 43 both have the partition wall spacing smaller than the red cell 41 and the same size. Therefore, in the plasma display apparatus according to the present embodiment, the luminance of the red cell 41 increases, and the luminance of the green cell 42 and the blue cell 43 both decrease.
 よって、図10(d)において輝度のグラフに着目すると、輝度は、図10(b)で示した赤色セル41の輝度と緑色セル42及び青色セル43の輝度との間でバランスし、図10(c)で示した輝度よりは、ずっと高い値となる。青色セル43と緑色セル42の輝度が少し低下し、赤色セル41の輝度が引き上げられて近付くような特性となる。また、階調数(利得)については、何ら手が加えられていないので、高階調数の良好な特性を示す。発光スペクトルについては、オレンジ色成分が減衰した状態で、かつ青色成分及び緑色成分の減衰が少ない発光スペクトルとなる。 Therefore, when attention is paid to the luminance graph in FIG. 10D, the luminance is balanced between the luminance of the red cell 41 and the luminance of the green cell 42 and the blue cell 43 shown in FIG. This value is much higher than the luminance shown in (c). The luminance of the blue cell 43 and the green cell 42 is slightly reduced, and the luminance of the red cell 41 is increased and approaches. In addition, since nothing has been done with respect to the number of gradations (gain), it shows good characteristics with a high number of gradations. The emission spectrum is an emission spectrum in which the orange component is attenuated and the blue component and the green component are less attenuated.
 図10(d)に対応する色域及び白バランスを、図10(e)を参照して確認すると、色域は赤色の色純度が高く保たれ、輝度も3色が等しくなったので、良好な白バランスを示している。 When the color gamut and white balance corresponding to FIG. 10 (d) are confirmed with reference to FIG. 10 (e), the color gamut is kept high in red color purity, and the luminance is also good because the three colors are equal. Shows a good white balance.
 このように、実施例4に係るプラズマディスプレイ装置によれば、高輝度の赤色蛍光体を適用せず、オレンジカットフィルタ11を用いることにより、赤色を高純度に向上させつつ、輝度及び階調数を高く保ち、かつ良好な白バランスを実現することができる。 As described above, according to the plasma display device according to Example 4, by using the orange cut filter 11 without applying the high-luminance red phosphor, the luminance and the number of gradations are improved while improving red with high purity. Can be kept high and a good white balance can be realized.
 なお、実施例4に係るプラズマディスプレイ装置と、実施例1又は実施例3に係るプラズマディスプレイ装置を比較すると、オレンジカットフィルタ11が不要な分、コスト面から考えると、実施例1又は実施例3に係るプラズマディスプレイ装置の方が好ましい。しかしながら、高純度の赤色蛍光体の入手が困難な場合や、前面基板10にのみ手を加えて赤色の色純度を向上させる必要がある場合には、実施例4に係るプラズマディスプレイ装置を用いることにより、実施例1又は実施例3と同様の効果を得ることができる。 When the plasma display device according to the fourth embodiment and the plasma display device according to the first or third embodiment are compared, the orange cut filter 11 is unnecessary, and considering the cost, the first or third embodiment. The plasma display device according to the above is preferable. However, when it is difficult to obtain a high-purity red phosphor, or when it is necessary to improve the red color purity by modifying only the front substrate 10, the plasma display device according to Example 4 is used. Thus, the same effects as those of the first or third embodiment can be obtained.
 図11は、本発明を適用した実施例5に係るプラズマディスプレイ装置のプラズマディスプレイパネル10dの部分断面構成及び部分平面構成を示した図である。図11において、実施例5に係るプラズマディスプレイ装置のプラズマディスプレイパネル60dは、放電セル40d以外の基本構成要素については、今までの説明と同様であるので、同一の参照符号を付し、その説明を省略する。 FIG. 11 is a diagram showing a partial cross-sectional configuration and a partial planar configuration of the plasma display panel 10d of the plasma display apparatus according to the fifth embodiment to which the present invention is applied. In FIG. 11, the plasma display panel 60d of the plasma display apparatus according to the fifth embodiment is the same as that described so far, except for the basic components other than the discharge cell 40d. Is omitted.
 実施例5に係るプラズマディスプレイ装置においては、放電セル40dの構成が、赤色セル41dと緑色セル42dの隔壁間隔が等しく、青色セル43dのみがそれより小さい隔壁間隔を有する構成である点で、実施例1乃至実施例4に係るプラズマディスプレイ装置と異なっている。青色セル43dの輝度のみが他の2色に比して高い場合には、このような構成とすることにより、輝度バランスを是正することができる。 In the plasma display apparatus according to the fifth embodiment, the discharge cell 40d has a configuration in which the red cell 41d and the green cell 42d have the same barrier rib spacing, and only the blue cell 43d has a smaller barrier rib spacing. This is different from the plasma display device according to Examples 1 to 4. When only the luminance of the blue cell 43d is higher than that of the other two colors, this configuration can correct the luminance balance.
 なお、実施例4に係るプラズマディスプレイパネル60dにおいては、赤色蛍光体層51dは、通常の純度の赤色蛍光体が適用されてよく、Xeガスの放電ガス中の混合比も、通常の6~8%であってよい。実施例4に係るプラズマディスプレイ装置においては、サステイン放電の際の、サステインパルスを増加させることにより、輝度を向上させる。そして、その際に発生した各色間の輝度の不均衡を、放電セル40dの隔壁間隔により調整する。以下、この内容を具体的に説明する。 In the plasma display panel 60d according to the fourth embodiment, the red phosphor layer 51d may be a red phosphor having a normal purity, and the mixing ratio of the Xe gas in the discharge gas may be 6-8. %. In the plasma display device according to the fourth embodiment, the luminance is improved by increasing the sustain pulse during the sustain discharge. Then, the luminance imbalance between the colors generated at that time is adjusted by the partition wall spacing of the discharge cell 40d. Hereinafter, this content is demonstrated concretely.
 図12は、本実施例に係るプラズマディスプレイ装置に適用例を説明するため、種々の状態における放電セル40dの特性を示した図である。図12(a)~(d)においては、各状態における発光スペクトル、輝度及び階調数(利得)が示され、図12(e)においては、図12(a)~(d)に対応する色域及び白バランスが示されている。 FIG. 12 is a diagram showing characteristics of the discharge cell 40d in various states in order to explain an application example to the plasma display device according to the present embodiment. 12A to 12D show the emission spectrum, luminance, and number of gradations (gain) in each state, and FIG. 12E corresponds to FIGS. 12A to 12D. Color gamut and white balance are shown.
 図12(a)は、サステインパルスが通常の状態の各特性を示した図である。サステインパルスは、サブフィールドのサステイン放電の際に印加されるパルスであり、サステイン放電の回数により、階調を表現する。サステインパルス数は、例えば1フィールド毎のサステインパルス数で表現され、通常の状態においては、例えば1000回/フィールドであってもよい。図12(a)においては、サステインパルス数が1000回/フィールドである場合を例に挙げて説明する。 FIG. 12 (a) is a diagram showing the characteristics of the sustain pulse in the normal state. The sustain pulse is a pulse that is applied at the time of the sustain discharge in the subfield, and expresses a gradation by the number of sustain discharges. The number of sustain pulses is expressed by, for example, the number of sustain pulses for each field, and may be 1000 times / field in a normal state, for example. In FIG. 12A, the case where the number of sustain pulses is 1000 times / field will be described as an example.
 図12(a)において、サステインパルス数が通常の1000回/フィールド程度である場合には、輝度及び階調数は、3色で揃っているが、輝度がやや低い状態となる。発光スペクトルは、通常の状態を示している。 In FIG. 12A, when the number of sustain pulses is about 1000 times per field, the luminance and the number of gradations are arranged in three colors, but the luminance is slightly low. The emission spectrum shows a normal state.
 図12(a)に対応する色域及び白バランスは、図12(e)を参照すると、色域については通常の状態であり、白バランスが良好に保たれている状態であることが分かる。 Referring to FIG. 12 (e), the color gamut and white balance corresponding to FIG. 12 (a) are in a normal state and the white balance is well maintained.
 図12(b)は、サステインパルス数を増加させた場合の特性を示した図である。サステインパルス数は、例えば1000~1500回/フィールドに設定し、例えば、1200回/フィールドにした場合を考える。図12(b)において、サステインパルス数を増加させると、各色とも輝度が増加するが、赤色セル41d及び緑色セル42dの輝度は同じ程度となり、青色セル43dの輝度が著しく増加する。このとき、階調数は、何ら手を加えていないので、高階調数に保たれている。一方、発光スペクトルは、全体に輝度が増加しているので、全体に増加するが、特に、青色成分が大きく増加した特性となる。 FIG. 12 (b) is a diagram showing characteristics when the number of sustain pulses is increased. The number of sustain pulses is set to 1000 to 1500 times / field, for example, and is considered to be 1200 times / field, for example. In FIG. 12B, when the number of sustain pulses is increased, the brightness of each color increases, but the brightness of the red cell 41d and the green cell 42d is approximately the same, and the brightness of the blue cell 43d is significantly increased. At this time, since the number of gradations is not changed at all, the number of gradations is kept high. On the other hand, the emission spectrum increases as a whole because the luminance is increased as a whole, but has a characteristic that the blue component is greatly increased.
 ここで、図12(b)の対応する色域及び白バランスは、図12(e)を参照すると、色域は変化していないが、輝度が不均衡となったので、白バランスが崩れた状態となっている。 Here, with respect to the corresponding color gamut and white balance in FIG. 12B, referring to FIG. 12E, the color gamut has not changed, but the luminance has become unbalanced, so the white balance has been lost. It is in a state.
 図12(c)は、図12(b)の赤色セル41d及び緑色セル42dの輝度が低下した状態の是正を、信号利得を用いて行ったときの各特性を示した図である。図12(b)において、青色セル43dの輝度のみが高くなっているので、青色の利得を減少させ、全体輝度を赤色セル41d及び緑色セル42dの水準に統一させている。これにより、輝度の不均衡は是正されるが、向上した青色セル43dの輝度は、赤色セル41d及び緑色セル42dにまで下げられてしまう。発光スペクトルは、図12(b)と比較して、青色成分の発光スペクトルが、大幅に低下した特性を示している。 FIG. 12 (c) is a diagram showing each characteristic when the correction of the state in which the luminance of the red cell 41d and the green cell 42d in FIG. 12 (b) is reduced is performed using the signal gain. In FIG. 12B, since only the luminance of the blue cell 43d is high, the blue gain is reduced and the overall luminance is unified to the level of the red cell 41d and the green cell 42d. This corrects the luminance imbalance, but the improved luminance of the blue cell 43d is lowered to the red cell 41d and the green cell 42d. The emission spectrum shows a characteristic in which the emission spectrum of the blue component is significantly reduced as compared with FIG.
 このとき、図12(c)に対応する色域及び白バランスについて、図12(e)を参照すると、色域はそのまま保たれており、輝度が3色揃ったことにより、白バランスも良好な特性を示している。 At this time, with respect to the color gamut and white balance corresponding to FIG. 12 (c), referring to FIG. 12 (e), the color gamut is kept as it is and the white balance is also good due to the three colors of brightness. The characteristics are shown.
 図12(d)は、本実施例に係るプラズマディスプレイ装置を適用した状態の特性を示した図である。図11に示すプラズマディスプレイパネル10dは、赤色セル41d及び緑色セル42dの隔壁間隔が互いに等しく、かつ青色セル43dの隔壁間隔よりも大きく構成されているので、赤色セル41d及び緑色セル42dの放電は促進され、青色セル43dの放電は抑制されることになる。すると、赤色セル41d及び緑色セル42dの輝度は若干上昇し、かつ青色セル43dの輝度が若干低下するので、図12(b)に示した赤色及び緑色の輝度と、青色の輝度の間に輝度がバランスすることになる。よって、赤色及び緑色のレベルまで輝度を下げるのではなく、赤色及び緑色と青色の間のレベルに輝度が上がるので、図12(c)で見られた輝度の低下を防ぐことができる。 FIG. 12D is a diagram showing characteristics in a state where the plasma display device according to the present embodiment is applied. The plasma display panel 10d shown in FIG. 11 is configured such that the red cell 41d and the green cell 42d have the same partition wall spacing and larger than the blue cell 43d, so that the red cell 41d and the green cell 42d are discharged. This promotes the discharge of the blue cell 43d. Then, the luminance of the red cell 41d and the green cell 42d is slightly increased and the luminance of the blue cell 43d is slightly decreased. Therefore, the luminance between the red and green luminances shown in FIG. Will be balanced. Therefore, the luminance is not lowered to the red and green levels, but the luminance is increased to a level between red and green and blue, so that the reduction in luminance seen in FIG. 12C can be prevented.
 ここで、階調数については、何ら手を加えていないので、高階調数に保たれている。また、発光スペクトルは、図12(c)に示した状態よりも、各色の発光スペクトルの減衰が抑制され、図12(c)よりも高いスペクトルを示している。 Here, since the number of gradations is not changed at all, it is kept at a high number of gradations. In addition, the emission spectrum shows a spectrum higher than that in FIG. 12C because the attenuation of the emission spectrum of each color is suppressed as compared with the state shown in FIG.
 更に、図12(d)の状態に対応する色域及び白バランスを、図12(e)を参照して確認すると、色域は維持され、かつ白バランスも良好な状態となっている。 Further, when the color gamut and white balance corresponding to the state of FIG. 12D are confirmed with reference to FIG. 12E, the color gamut is maintained and the white balance is also in a good state.
 このように、実施例5に係るプラズマディスプレイ装置によれば、青色セル43dの輝度のみが赤色セル41d及び緑色セル42dに比較して増加した場合であっても、輝度、階調数及び白バランスを良好に保ちつつ、高輝度を実現することができる。 As described above, according to the plasma display device of Example 5, even when only the luminance of the blue cell 43d is increased as compared with the red cell 41d and the green cell 42d, the luminance, the number of gradations, and the white balance are increased. High brightness can be achieved while maintaining good.
 このように、プラズマディスプレイ装置においては、赤色の色純度の向上、発光輝度の向上又は全体の輝度向上を目的として、オレンジ成分の減衰、発光効率の向上又は輝度を向上させるための処理をプラズマディスプレイパネルについて行ったときに、輝度の不均衡を生じ、特に、赤色の輝度が低減し、青色の輝度が増加するという結果を招きやすい。かかる場合に、実施例1乃至5で説明したプラズマディスプレイ60、60a~60dを有するプラズマディスプレイ装置によれば、赤色セル41、41a、41dの隔壁間隔を青色セル43、43a、43dの隔壁間隔よりも大きくするとともに、緑色セル42、42a、42dの隔壁間隔を赤色セル41、41a、41dと青色セル43、43a、43dとの隔壁間隔間で、用途に応じて設定して輝度調整を行うので、階調数に影響を与えず、輝度を高輝度かつ均一に調整して、白バランスを良好にすることができ、種々の条件を両立させることができる。 As described above, in the plasma display device, for the purpose of improving the color purity of red, improving the emission luminance, or improving the overall luminance, the plasma display is subjected to a process for attenuating the orange component, improving the luminous efficiency, or improving the luminance. When done on a panel, it tends to result in a luminance imbalance, in particular the result that the red luminance is reduced and the blue luminance is increased. In such a case, according to the plasma display device having the plasma displays 60, 60a to 60d described in the first to fifth embodiments, the partition wall spacing of the red cells 41, 41a, 41d is greater than the partition wall spacing of the blue cells 43, 43a, 43d. In addition, the partition wall spacing of the green cells 42, 42a and 42d is set between the partition walls of the red cells 41, 41a and 41d and the blue cells 43, 43a and 43d in accordance with the application to adjust the brightness. The brightness can be adjusted uniformly with high brightness without affecting the number of gradations, the white balance can be improved, and various conditions can be satisfied.
 次に、図13を用いて、実施例1乃至実施例5において説明した、プラズマディスプレイ装置の、プラズマディスプレイパネル60、60a~60d以外の部分について説明する。 Next, parts other than the plasma display panels 60 and 60a to 60d of the plasma display device described in the first to fifth embodiments will be described with reference to FIG.
 図13は、本発明を適用した実施例1乃至実施例5のプラズマディスプレイ装置の全体構成図の一例を示した図である。図13において、本実施例に係るプラズマディスプレイ装置は、プラズマディスプレイパネル60、60a~60dと、アドレスドライバ70と、X維持ドライバ80と、Y維持ドライバ90と、Y走査ドライバ100と、制御部110と、信号処理部120と、高圧電源130とを有する。 FIG. 13 is a diagram showing an example of an overall configuration diagram of the plasma display device according to the first to fifth embodiments to which the present invention is applied. In FIG. 13, the plasma display apparatus according to the present embodiment includes plasma display panels 60, 60a to 60d, an address driver 70, an X sustain driver 80, a Y sustain driver 90, a Y scan driver 100, and a control unit 110. And a signal processing unit 120 and a high-voltage power supply 130.
 プラズマディスプレイパネル60、60a~60dは、画像を表示するためのディスプレイであり、実施例1乃至実施例5において説明したものが適用されてよい。 The plasma display panels 60, 60a to 60d are displays for displaying images, and those described in the first to fifth embodiments may be applied.
 アドレスドライバ70は、プラズマディスプレイパネル60、60a~60dに存在するアドレス電極に電圧を印加し、Y走査電極とともにアドレス放電を放電セル40、40a、40d内に発生させ、発光させる放電セルを選択するアドレス放電を発生させるための駆動手段である。 The address driver 70 applies a voltage to the address electrodes existing in the plasma display panels 60, 60a to 60d, generates an address discharge in the discharge cells 40, 40a, 40d together with the Y scan electrodes, and selects a discharge cell to emit light. It is a drive means for generating an address discharge.
 Y走査ドライバ100は、プラズマディスプレイパネル60、60a~60dに存在するY走査電極に電圧を印加し、上述のアドレス電極とともに、アドレス放電を発生させるための駆動手段である。 The Y scan driver 100 is a driving means for applying a voltage to the Y scan electrodes existing in the plasma display panels 60, 60a to 60d and generating an address discharge together with the address electrodes.
 X維持ドライバ80は、プラズマディスプレイパネル60、60a~60d上に存在するX維持電極に電圧を印加するための駆動手段である。 The X sustaining driver 80 is a driving means for applying a voltage to the X sustaining electrodes existing on the plasma display panels 60, 60a to 60d.
 Y維持ドライバ90は、Y走査電極に電圧を印加するための駆動手段である。X維持ドライバ80と、Y維持ドライバから交互にサステインパルスが印加され、アドレス放電が発生した放電セルについては、サステイン放電が発生し、発光して画像を表示する。なお、実施例5で説明したサステインパルスについては、X維持ドライバ80及びY維持ドライバ90からサステインパルスが供給され、放電セル40、40a、40dでサステイン放電が発生することになる。 The Y maintenance driver 90 is a driving means for applying a voltage to the Y scan electrode. A sustain pulse is alternately applied from the X sustain driver 80 and the Y sustain driver, and the sustain discharge is generated in the discharge cells in which the address discharge is generated, and light is emitted to display an image. As for the sustain pulse described in the fifth embodiment, the sustain pulse is supplied from the X sustain driver 80 and the Y sustain driver 90, and a sustain discharge is generated in the discharge cells 40, 40a, and 40d.
 制御部110は、アドレスドライバ70、X維持ドライバ80、Y維持ドライバ90及びY走査ドライバ100を制御するための手段である。アドレス放電においては、制御部からアドレスドライバにデータ信号が送られ、Y走査ドライバ100にはY維持ドライバ90を介して走査信号が送られ、発光セルの選択が制御される。また、制御部110は、サステインパルスも制御して良く、実施例5で説明した、サステインパルスを増加させる制御は、制御部110で実行されてもよい。また、制御部110には、プラズマディスプレイパネル60、60a~60dをサブフィールド法により駆動するための、サブフィールド変換手段を備えていてもよい。 The control unit 110 is a means for controlling the address driver 70, the X maintenance driver 80, the Y maintenance driver 90, and the Y scanning driver 100. In the address discharge, a data signal is sent from the control unit to the address driver, and a scanning signal is sent to the Y scanning driver 100 via the Y maintaining driver 90 to control the selection of the light emitting cells. The control unit 110 may also control the sustain pulse, and the control for increasing the sustain pulse described in the fifth embodiment may be executed by the control unit 110. Further, the control unit 110 may include subfield conversion means for driving the plasma display panels 60, 60a to 60d by the subfield method.
 信号処理部120は、受信した映像信号等に必要な信号処理を行うための手段であり、γ補正、白バランス調整等の、制御部110に映像信号を送る前に必要な処理を行う。信号処理部120は、プラズマディスプレイパネル60、60a~60dの種類と用途に応じて、必要に応じて備えられてよい。 The signal processing unit 120 is a means for performing signal processing necessary for the received video signal and the like, and performs necessary processing before sending the video signal to the control unit 110 such as γ correction and white balance adjustment. The signal processing unit 120 may be provided as necessary according to the type and application of the plasma display panels 60, 60a to 60d.
 高圧電源130は、X維持ドライバ80、Y維持ドライバ90及びY走査ドライバ100に高電圧を供給するための電源である。 The high voltage power supply 130 is a power supply for supplying a high voltage to the X sustain driver 80, the Y sustain driver 90, and the Y scan driver 100.
 このように、実施例1乃至実施例5において説明したプラズマディスプレイ装置は、必要に応じて図13で説明した構成要素を備えてよく、これらにより、駆動されてよい。 As described above, the plasma display devices described in the first to fifth embodiments may include the components described in FIG. 13 as needed, and may be driven by these components.
 本発明は、プラズマディスプレイパネルに画像を表示するプラズマディスプレイ装置に適用可能である。 The present invention is applicable to a plasma display device that displays an image on a plasma display panel.

Claims (10)

  1.  対向する前面基板と背面基板との間の空間に複数の隔壁を有し、該隔壁間に区画形成された複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、
     前記赤色セルの隔壁間隔は、前記緑色セルの隔壁間隔よりも大きく、該緑色セルの隔壁間隔は、前記青色セルの隔壁間隔以上であることを特徴とするプラズマディスプレイ装置。
    A plurality of barrier ribs are provided in a space between the front substrate and the rear substrate facing each other, and phosphor layers emitting red, green, and blue light are sequentially formed on the respective surfaces of the plurality of discharge cells partitioned between the barrier ribs. A plasma display device comprising a plasma display panel having formed red cells, green cells and blue cells,
    The plasma display device is characterized in that the partition spacing of the red cells is larger than the partition spacing of the green cells, and the partition spacing of the green cells is greater than or equal to the partition spacing of the blue cells.
  2.  前記赤色セルの前記蛍光体層は、蛍光体材料として(Y,Gd)BO:Euを用いた赤色蛍光体の発光スペクトルよりも、発光波長が長い蛍光体材料から構成されたことを特徴とする請求項1に記載のプラズマディスプレイ装置。 The phosphor layer of the red cell is composed of a phosphor material having a longer emission wavelength than the emission spectrum of a red phosphor using (Y, Gd) BO 3 : Eu as the phosphor material. The plasma display device according to claim 1.
  3.  前記赤色セルの前記蛍光体層は、Y(P,V)O:Euを用いた蛍光体材料から構成されたことを特徴とする請求項2に記載のプラズマディスプレイ装置。 The plasma display device according to claim 2, wherein the phosphor layer of the red cell is made of a phosphor material using Y (P, V) O 4 : Eu.
  4.  前記緑色セルの隔壁間隔と、前記青色セルの隔壁間隔は、等しいことを特徴とする請求項2に記載のプラズマディスプレイ装置。 3. The plasma display apparatus according to claim 2, wherein the partition spacing of the green cells is equal to the partition spacing of the blue cells.
  5.  前記赤色セル、前記緑色セル及び前記青色セルには、Xeガスを含む放電ガスが封入され、該放電ガス中の前記Xeガスの混合比が、10~30%であることを特徴とする請求項2に記載のプラズマディスプレイ装置。 The red cell, the green cell, and the blue cell are filled with a discharge gas containing Xe gas, and a mixing ratio of the Xe gas in the discharge gas is 10 to 30%. 3. The plasma display device according to 2.
  6.  前記緑色セルの隔壁間隔は、前記青色セルの隔壁間隔よりも大きいことを特徴とする請求項5に記載のプラズマディスプレイ装置。 6. The plasma display apparatus according to claim 5, wherein the partition spacing of the green cells is larger than the partition spacing of the blue cells.
  7.  前記赤色セルの隔壁間隔と前記青色セルの隔壁間隔との差は、その比率が前記赤色セルの隔壁間隔に対して5%以上の差を有することを特徴とする請求項1に記載のプラズマディスプレイ装置。 2. The plasma display according to claim 1, wherein the difference between the red cell barrier rib spacing and the blue cell barrier rib spacing is 5% or more of the red cell barrier rib spacing. apparatus.
  8.  対向する前面基板と背面基板との間の空間に複数の隔壁を有し、該隔壁間に区画形成された複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、
     前記赤色セルの隔壁間隔は、前記緑色セルの隔壁間隔よりも大きく、該緑色セルの隔壁間隔は、前記青色セルの隔壁間隔より大きく形成され、
     前記赤色セル、前記緑色セル及び前記青色セルには、Xeガスを含む放電ガスが封入され、該放電ガス中の前記Xeガスの混合比が、10~30%であることを特徴とするプラズマディスプレイ装置。
    A plurality of barrier ribs are provided in a space between the front substrate and the rear substrate facing each other, and phosphor layers that emit red, green, and blue light are sequentially formed on the respective surfaces of the plurality of discharge cells partitioned between the barrier ribs. A plasma display device comprising a plasma display panel having formed red cells, green cells and blue cells,
    The partition spacing of the red cells is larger than the partition spacing of the green cells, and the partition spacing of the green cells is formed larger than the partition spacing of the blue cells,
    The red cell, the green cell, and the blue cell are filled with a discharge gas containing Xe gas, and the mixing ratio of the Xe gas in the discharge gas is 10 to 30%. apparatus.
  9.  対向する前面基板と背面基板との間の空間に複数の隔壁を有し、該隔壁間に区画形成された複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、
     前記赤色セルの隔壁間隔は、前記緑色セルの隔壁間隔よりも大きく、該緑色セルの隔壁間隔は、前記青色セルの隔壁間隔と等しく形成され、
     前記前面基板に、オレンジ色の発光スペクトルの成分を減衰させるオレンジカットフィルタを有することを特徴とするプラズマディスプレイ装置。
    A plurality of barrier ribs are provided in a space between the front substrate and the rear substrate facing each other, and phosphor layers emitting red, green, and blue light are sequentially formed on the respective surfaces of the plurality of discharge cells partitioned between the barrier ribs. A plasma display device comprising a plasma display panel having formed red cells, green cells and blue cells,
    The partition spacing of the red cells is larger than the partition spacing of the green cells, the partition spacing of the green cells is formed equal to the partition spacing of the blue cells,
    A plasma display device comprising an orange cut filter for attenuating a component of an orange emission spectrum on the front substrate.
  10.  対向する前面基板と背面基板との間の空間に複数の隔壁を有し、該隔壁間に区画形成された複数の放電セルの各表面に、赤色、緑色及び青色に発光する蛍光体層が順次形成された赤色セル、緑色セル及び青色セルを有するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、
     前記赤色セルの隔壁間隔は、前記緑色セルの隔壁間隔と等しく、該緑色セルの隔壁間隔は、前記青色セルの隔壁間隔より大きく形成され、
     前記放電セルの放電回数を、1フィールド毎に1000回以上1500回以下としたことを特徴とするプラズマディスプレイ装置。
    A plurality of barrier ribs are provided in a space between the front substrate and the rear substrate facing each other, and phosphor layers that emit red, green, and blue light are sequentially formed on the respective surfaces of the plurality of discharge cells partitioned between the barrier ribs. A plasma display device comprising a plasma display panel having formed red cells, green cells and blue cells,
    The partition spacing of the red cells is equal to the partition spacing of the green cells, the partition spacing of the green cells is formed larger than the spacing of the blue cells,
    The number of discharges of the discharge cell is 1000 times or more and 1500 times or less per field.
PCT/JP2008/052880 2008-02-20 2008-02-20 Plasma display device WO2009104259A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052880 WO2009104259A1 (en) 2008-02-20 2008-02-20 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052880 WO2009104259A1 (en) 2008-02-20 2008-02-20 Plasma display device

Publications (1)

Publication Number Publication Date
WO2009104259A1 true WO2009104259A1 (en) 2009-08-27

Family

ID=40985154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052880 WO2009104259A1 (en) 2008-02-20 2008-02-20 Plasma display device

Country Status (1)

Country Link
WO (1) WO2009104259A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070692A1 (en) * 2009-12-10 2011-06-16 パナソニック株式会社 Plasma display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115466A (en) * 1995-10-13 1997-05-02 Oki Electric Ind Co Ltd Color display and area determining method of sub-pixel of color display
JPH1145662A (en) * 1997-05-29 1999-02-16 Toray Ind Inc Substrate for plasma display, plasma display and manufacture therefor
JP2002352723A (en) * 2001-05-28 2002-12-06 Sony Corp Plasma display device
JP2005122189A (en) * 2003-10-16 2005-05-12 Samsung Sdi Co Ltd Driving apparatus for plasma display panel and gray level expression method thereof
JP2005140950A (en) * 2003-11-06 2005-06-02 Pioneer Plasma Display Corp Color temperature change compensation method, image display method, and plasma display
JP2006312662A (en) * 2005-05-06 2006-11-16 Konica Minolta Medical & Graphic Inc Europium-activated yttrium borate phosphor and plasma display panel
JP2006351239A (en) * 2005-06-13 2006-12-28 Pioneer Electronic Corp Plasma display panel
JP2007231097A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Phosphor and plasma display panel using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115466A (en) * 1995-10-13 1997-05-02 Oki Electric Ind Co Ltd Color display and area determining method of sub-pixel of color display
JPH1145662A (en) * 1997-05-29 1999-02-16 Toray Ind Inc Substrate for plasma display, plasma display and manufacture therefor
JP2002352723A (en) * 2001-05-28 2002-12-06 Sony Corp Plasma display device
JP2005122189A (en) * 2003-10-16 2005-05-12 Samsung Sdi Co Ltd Driving apparatus for plasma display panel and gray level expression method thereof
JP2005140950A (en) * 2003-11-06 2005-06-02 Pioneer Plasma Display Corp Color temperature change compensation method, image display method, and plasma display
JP2006312662A (en) * 2005-05-06 2006-11-16 Konica Minolta Medical & Graphic Inc Europium-activated yttrium borate phosphor and plasma display panel
JP2006351239A (en) * 2005-06-13 2006-12-28 Pioneer Electronic Corp Plasma display panel
JP2007231097A (en) * 2006-02-28 2007-09-13 Matsushita Electric Ind Co Ltd Phosphor and plasma display panel using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070692A1 (en) * 2009-12-10 2011-06-16 パナソニック株式会社 Plasma display device
US8324794B2 (en) 2009-12-10 2012-12-04 Panasonic Corporation Plasma display device

Similar Documents

Publication Publication Date Title
US6424095B1 (en) AC plasma display panel
KR100919959B1 (en) Color display device
EP1065648B1 (en) Plasma display panel
JPH11297212A (en) Plasma display
JP2004152737A (en) Plasma display panel and plasma display panel display device
JP2005165327A (en) Apparatus and method for driving plasma display panel
JP4160575B2 (en) Plasma display device and driving method thereof
WO2009104259A1 (en) Plasma display device
JPH11327498A (en) Color picture display device
WO2010047091A1 (en) Image displaying device, color signal correcting device, and color signal correcting method
JP2008066161A (en) Image display apparatus
JPH07245062A (en) Plasma display panel
KR100482345B1 (en) Method for driving plasma display panel using liquid crystal
JP4393157B2 (en) Color temperature change compensation method, image display method, and plasma display device
JP3019025B2 (en) Color plasma display panel and driving method thereof
US20090128036A1 (en) Plasma display panel
US7084567B2 (en) Plasma display panel performing high luminance and luminous efficiency
US20090230836A1 (en) Display device and plasma display panel
JP2005302461A (en) Plasma display panel and its driving method
JP2001229835A (en) Plasma display panel
JP5401019B2 (en) Flat panel display
JP2010097861A (en) Display device and plasma display panel
JP2005032721A (en) Spontaneous light emission type color display device, and driving method of the same
JP2006310016A (en) Gas discharge light emitting panel
JP2007019043A (en) Ac plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP