WO2009102184A1 - Système supraconducteur d'électricité - Google Patents

Système supraconducteur d'électricité Download PDF

Info

Publication number
WO2009102184A1
WO2009102184A1 PCT/MA2008/000008 MA2008000008W WO2009102184A1 WO 2009102184 A1 WO2009102184 A1 WO 2009102184A1 MA 2008000008 W MA2008000008 W MA 2008000008W WO 2009102184 A1 WO2009102184 A1 WO 2009102184A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
fluid
conductive material
porous
conductor wire
Prior art date
Application number
PCT/MA2008/000008
Other languages
English (en)
Inventor
Abdelmalek Fares
Original Assignee
Abdelmalek Fares
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abdelmalek Fares filed Critical Abdelmalek Fares
Publication of WO2009102184A1 publication Critical patent/WO2009102184A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/99Alleged superconductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the object of the invention is to design and produce a system that allows the conduct of electricity without resistance and without external cooling system.
  • the system comprises an enclosure in the form of a resonant cavity.
  • This enclosure consists of a fairly thin outer shell and can be metallic.
  • the cavity formed by the envelope is filled with a porous and electrically conductive material such as very small particle size graphite dust or high porosity activated carbon impregnated with a cryogenic liquid at low temperature. Electromagnetic waves are produced by piezoelectric effect thanks to the great pressure exerted by the cryogenic fluid on the porous material.
  • the electromagnetic waves generated reflect itself between the central part of the chamber and its peripheral part, until the appearance of standing waves. This is achieved by the magnetic pressure inside the enclosure, which itself depends on the thickness of the porous material and the temperature of the cryogenic liquid. Under the action of the magnetic pressure, the electrons are grouped in pairs, because in this configuration their magnetic moments cancel each other out and the magnetic resonance can take place.
  • the pairs of electrons enveloped by stationary wave spindles behave, because of their magnetic moment null, and because they are in magnetic resonance as if they had no mass. Since electromagnetic waves can not pass through them, they carry them at the same speed as their own propagation speed in the conducting medium. This training is only possible if the size of a pair of electrons is of the same order as the stationary wavelength, which is obtained thanks to the action of the enormous electromagnetic pressure.
  • the system consists of a device comprising, according to a preferred embodiment of the invention, an envelope which may be metallic and a good thermal conductor.
  • the system contains inside the envelope a chemically neutral fluid under more or less strong pressure.
  • the fluid is preferably of the cryogenic type, and a sufficient charge of a material, preferably having piezoelectric properties and more or less electrically conductive and in the form of a fine powder or in porous form, so as to have a high degree of specific surface.
  • the system captures the heat of the external environment to convert it into a magnetic field pulsed towards the central part of the enclosure, by piezoelectric effect, which can also be coupled to a thermoelectric effect in the porous material.
  • the heat flux from the ambient environment enters the system due to the temperature difference between the outside and the system fluid. Since the heat transfer is concentric and convergent towards the inside, the result is a gradual increase in fluid pressure. The transfer takes place very regularly because the system is in the form of a stack of tiny grains of solid material and around a very thin layer of fluid, it is therefore very little influenced by convection phenomena.
  • the electromagnetic waves generated are reflected on the central part to then form a stable network of standing wave spindles whose geometric characteristics are decreasing when approaching the central part of the system.
  • the isobaric surfaces are concentric surfaces and increasingly tight towards the central part of the system or the axial part when it is a tubular enclosure.
  • the system maintains the cold temperature at the periphery while preventing further absorption of external heat.
  • What characterizes the system therefore is the maintenance in equilibrium, of a cold temperature and a normal pressure in the peripheral part, and a more critical state which is localized to the central or axial part of the porous matter where a huge pressure reigns.
  • the system behaves as a very large set of tiny junctions between insulating material here constituted by the pressurized fluid and conductive material here constituted by the porous material or grains. This set of junctions generates electromagnetic radiation directed towards the inside of the enclosure, responsible for the enormous pressure that prevails there.
  • the fluids that can be used in the system are refrigerants, cryogenic fluids, liquid nitrogen, liquefied carbon dioxide, or any other chemically neutral fluid whose boiling point is quite low.
  • the conductive material may be chosen between graphite dust, powdery or porous activated carbon, carbon nanotubes, piezoelectric metal oxides or nitrides, conductive ceramics, or any other material having a large surface area and having good piezoelectric properties.
  • This device is also a resonant speaker.
  • Two conductive wires are attached to the ends for the connections.
  • This device is also a resonant speaker.
  • a conductive wire that may be metallic, such as an electric copper or aluminum cable, that we place in the axis of the hollow cylinder.
  • the ends of the hollow cylinders are equipped with end pieces fixed by welding or threading or any other assembly system.
  • Figure 1 illustrates a superconducting system comprising a tube filled with porous material impregnated with cryogenic fluid and a conductive wire at each end of the tube.
  • Figure 2 illustrates a system equivalent to that of Figure 1 except that the conductive wire occupies the entire axial portion of the tube.
  • Figure 1 illustrates a schematic section of a system for producing a superconductor of electricity consisting of an enclosure which may be of cylindrical tubular shape.
  • the enclosure comprises a casing (1) metal, the hollow space is filled with a porous or powdery material and electrically conductive (2), impregnated with a cryogenic liquid (3).
  • Two preferably metallic leads (4) are attached to the ends of the superconductor. These ends are each equipped with a tip (5), which preferably has a conical cylinder shape and assembled to the cylindrical portion of the superconductor by welding or threading.
  • the filling of porous material (2) and cryogenic fluid (3) is done by one of the ends before assembly.
  • FIG. 2 illustrates a schematic section of a system equivalent to that of FIG. 1, but instead of two conductor wires at the ends, a single conductive wire is laid in the axial portion and protrudes through both ends of the system.
  • the system although it contains a fluid at low temperature, it can transport electrical current under conditions of superconductivity without the need to maintain cooling by an external system. It can have many applications given here as indicative and not limiting:
  • the system can transport electric current with virtually no Joule losses even over long distances.
  • the system can also be used as a traction cable with great resistance.

Abstract

Le système objet de la présente invention est de concevoir et de réaliser un système supraconducteur d'électricité permettant de transporter des intensités de courant très importantes sur de grandes distances sans perte sensible par effet joule. Pour atteindre ce but, nous avons conçu un système pouvant avoir la forme d'une enceinte, mais le plus souvent sous forme de tube cylindrique, rempli à l'intérieur par une matière conductrice d'électricité, de texture poreuse ou sous forme de grains minuscules à très grande surface spécifique, imbibée par un fluide cryogénique. Dans l'axe du tube, est logé un fil conducteur classique. Le système, aspire la chaleur ambiante, la convertit en pression qui s'exerce alors perpendiculairement à l'axe du fil conducteur, ce qui permet un confinement des électrons traversant le fil conducteur. Ce confinement est poussé jusqu'à la limite d'apparition d'une résonance magnétique où les ondes électromagnétiques, produites dans la matière poreuse sous l'action de la pression, s'organisent en ondes stationnaires pouvant contenir chacune une, et seulement une paire d'électrons. Le mouvement des électrons qui traversent le fil conducteur se fait alors comme s'il s'agissait d'un solide et aucune paire d'électrons ne risque de rentrer en collision avec une autre. Le système est supraconducteur et le courant électrique est assuré alors sans perte par effet joule. Le système peut transporter des intensités de courant très élevées avec des diamètres de tube, et de fils conducteurs très réduits.

Description

Système supraconducteur d'électricité.
Le but de l'invention est de concevoir et de réaliser un système qui permet de conduire l'électricité sans résistance et sans système de refroidissement extérieur.
Afin d'atteindre ce but et d'autres buts encore, nous concevons et nous réalisons un système pouvant produire un champ magnétique puisé sous forme d'onde électromagnétique à très haute fréquence dans une cavité résonante.
Le système comprend une enceinte sous forme d'une cavité résonante. Cette enceinte est constituée d'une enveloppe extérieure assez mince et pouvant être métallique. La cavité formée par l'enveloppe est remplie par un matériau poreux et conducteur d'électricité tel que la poussière de graphite à très faible granulométrie ou le charbon actif à grande porosité, imbibé par un liquide cryogénique à basse température. Les ondes électromagnétiques sont produites par effet piézoélectrique grâce à la grande pression qu'exerce le fluide cryogénique sur le matériau poreux.
Les ondes électromagnétiques générées se réfléchissement entre la partie centrale de l'enceinte et sa partie périphérique, jusqu'à apparition d'ondes stationnaires. Ceci est obtenu grâce à la pression magnétique à l'intérieur de l'enceinte, qui elle-même dépend de l'épaisseur du matériau poreux et de la température du liquide cryogénique. Sous l'action de la pression magnétique, les électrons sont regroupés deux par deux, car dans cette configuration leur moments magnétiques s'annulent mutuellement et la résonance magnétique peut avoir lieu. Les couples d'électrons enveloppés par des fuseaux d'ondes stationnaires, se comportent, du fait de leur moment magnétique nul, et du fait qu'ils sont en résonance magnétique comme s'ils n'avaient pas de masse. Les ondes électromagnétiques ne pouvant les traverser, elles les entraînent à la même vitesse que leur propre vitesse de propagation dans le milieu conducteur. Cet entraînement n'est possible que si la taille d'un couple d'électrons est du même ordre que la longueur d'onde stationnaire, ce qui est obtenu grâce à l'action de l'énorme pression électromagnétique.
Du fait de cette vitesse élevée et de la nature du déplacement des couples d'électrons enveloppés et escortés par des fuseaux d'ondes stationnaires, les chocs entre électrons sont inexistants et l'intensité du courant est énorme. Le système est donc supraconducteur.
Le système consiste en un dispositif comprenant selon un mode préféré de réalisation de l'invention, une enveloppe qui peut être métallique et bonne conductrice thermique. Le système contient à l'intérieur de l'enveloppe un fluide chimiquement neutre sous pression plus ou moins forte. Le fluide est de préférence du type cryogénique, et une charge suffisante en une matière, ayant de préférence des propriétés piézoélectriques et plus ou moins conductrice d'électricité et se présentant sous forme de poudre fine ou sous forme poreuse, de façon à présenter une grande surface spécifique. Les grains, formant une masse compacte, se touchant entre eux et assurent donc une continuité électrique.
Le système capte la chaleur du milieu extérieur pour la convertir en un champ magnétique puisé vers la partie centrale de l'enceinte, par effet piézoélectrique, qui peut aussi être couplé à un effet thermoélectrique dans la matière poreuse. Le flux de chaleur provenant du milieu ambiant pénètre dans le système à cause de l'écart de température entre l'extérieur et le fluide du système. Le transfert thermique s'effectuant de manière concentrique et convergente vers l'intérieur, il en résulte une augmentation progressive de la pression du fluide. Le transfert s'effectue de manière très régulière car le système se présente sous forme d'un empilement de minuscules grains de matière solide et tout autour une couche très mince de fluide, il est donc très peu influencé par les phénomènes de convection. Les ondes électromagnétiques générées, se réfléchissent sur la partie centrale pour former ensuite un réseau stable de fuseaux d'ondes stationnaires dont les caractéristiques géométriques vont en décroissance quand on s'approche de la partie centrale du système.
Quand le système atteint un état de résonance, il n'absorbe plus de chaleur et il reste dans un état d'équilibre, fl s'établit alors une différence de pression dans le fluide entre la partie périphérique et la partie centrale de la matière poreuse. On peut aussi observer que dans ce système, les surfaces isobares, sont des surfaces concentriques et de plus en plus serrées en allant vers la partie centrale du système ou la partie axiale quand il s'agit d'une enceinte tubulaire.
Si le système ne contenait que le fluide, on pourrait toujours constater une absorption de chaleur, et l'établissement d'un gradient de pression entre la périphérie et la partie centrale du système. Mais la présence d'une matière solide, conductrice d'électricité et présentant une grande surface spécifique permet au système une grande accumulation d'énergie sur les surfaces se trouvant aux jonctions solide-fluide. Ceci permet une augmentation exponentielle de la pression du fluide en partant de la périphérie et en allant vers la partie centrale ou vers l'axe de l'enceinte. A la saturation, si le fluide était seul présent, le système aurait eu tendance à se dilater et donc à bomber l'enveloppe extérieure. Par contre, la présence de la matière poreuse ou poudreuse, en raison de ses caractéristiques géométriques, maintient, par accumulation de l'énergie, un énorme gradient de pression. Ainsi, à la saturation, le système maintient la température froide à la périphérie tout en empêchant une absorption supplémentaire de chaleur extérieure. Ce qui caractérise donc le système est le maintien en équilibre, d'une température froide et une pression normale dans la partie périphérique, et un état plus critique qui se localise à la partie centrale ou axiale de la matière poreuse où régnent une énorme pression.
Le système se comporte comme un très grand ensemble de minuscules jonctions entre matière isolante constituée ici par le fluide sous pression et matière conductrice constituée ici par la matière poreuse ou par les grains. Cet ensemble de jonctions génère un rayonnement électromagnétique orienté vers l'intérieur de l'enceinte, responsable de l'énorme pression qui y règne.
Selon le même mode préféré de l'invention les fluides utilisables dans le système sont les fluides frigorigènes, les fluides cryogéniques, l'azote liquide, le gaz carbonique liquéfié, ou tout autre fluide chimiquement neutre et dont la température d'ébullition est assez basse. Selon ce même mode de réalisation de l'invention, la matière conductrice peut être choisie entre la poussière de graphite, le charbon actif poudreux ou poreux, les nano tubes de carbone, les oxydes ou nitrures métalliques piézoélectriques, les céramiques conductrices, ou toute autre matière offrant une grande surface spécifique et ayant de bonnes propriétés piézoélectriques.
Selon un autre mode de réalisation de l'invention, nous réalisons l'enceinte sous forme d'un cylindre métallique creux, comme un tube, rempli de matière poreuse et de fluide cryogénique. Ce dispositif constitue aussi une enceinte résonante. On fixe deux fils conducteurs aux extrémités pour les connexions. Selon un autre mode de réalisation de l'invention, nous réalisons l'enceinte sous forme d'un cylindre métallique creux, comme un tube, rempli de matière poreuse et de fluide cryogénique. Ce dispositif constitue aussi une enceinte résonante. Avant de remplir le cylindre creux, nous introduisons un fil conducteur qui peut être métallique, tel un câble électrique en cuivre ou en aluminium, que nous plaçons dans l'axe du cylindre creux.
Selon les deux modes de réalisations cités précédemment , les extrémités des cylindres creux sont équipées d'embouts fixés par soudage ou filetage ou tout autre système d'assemblage.
Dans ce qui suit, une description des dessins annexés à la présente invention, dans lesquels :
Figure 1 : la figure 1 illustre un système supraconducteur comprenant un tube rempli de matière poreuse, imbibé de fluide cryogénique et un fil conducteur à chaque extrémité du tube.
Figure 2 : la figure 2 illustre un système équivalent à celui de la figure 1 sauf que le fil conducteur occupe toute la partie axiale du tube.
Se référant aux figures en annexe : La figure 1 illustre une coupe schématique d'un système pour réaliser un supraconducteur d'électricité constitué d'une enceinte qui peut être de forme tubulaire cylindrique. L'enceinte comprend une enveloppe (1) métallique, l'espace creux est rempli par un matériau poreux ou poudreux et conducteur d'électricité (2), imbibé par un liquide cryogénique (3). Deux fils conducteurs de préférence métalliques (4) sont fixés aux extrémités du supraconducteur. Ces extrémités sont équipées chacune d'un embout (5), qui a de préférence une forme cylindre conique et assemblée à la partie cylindrique du supraconducteur par soudage ou filetage. Le remplissage en matériau poreux (2) et en fluide cryogénique (3) se fait par l'une des extrémités avant assemblage.
La figure 2 illustre une coupe schématique d'un système équivalent à celui de la figure 1 mais au lieu de deux fils conducteurs aux extrémités, un seul fil conducteur est posé dans la partie axiale et déborde par les deux extrémités du système. Pour toutes les formes envisageables le système, quoi qu'il renferme un fluide à basse température, il permet de transporter du courant électrique dans des conditions de supraconductivité sans avoir besoin d'entretenir un refroidissement par un système extérieur. Il peut avoir de nombreuses applications données ici à titre indicatif et non limitatif:
Le système peut assurer le transport du courant électrique sans pratiquement pas de pertes par effet joule même sur de grandes distances.
Le système peut aussi être utilisé éventuellement comme câble de traction avec une grande résistance.

Claims

Revendications
1- Supraconducteur d'électricité comprenant une enceinte ayant une enveloppe extérieure (1), et renfermant à l'intérieur une matière poreuse ou poudreuse et conductrice d'électricité (2), imbibée par un liquide cryogénique (3). L'enceinte comprend deux fils conducteurs (4) à ses deux extrémités. Après remplissage de la cavité du supraconducteur, chaque extrémité est équipée d'un embout (5), par lequel sortira le fils conducteur (4).
2- Système selon la revendication 1 et caractérisé en ce que l'enceinte comprend un seul fil conducteur métallique (4) reliant ses deux extrémités et traversant l'enceinte.
3-Système selon la revendication 1 et 2 et caractérisé en ce que la forme de l'enceinte est tubulaire.
4-Système selon la revendication 1 et 3 et caractérisé en ce que l'enveloppe extérieure (1) est métallique.
5-Système selon la revendication 1 à 4 et caractérisé en ce que le fluide (3) est un gaz liquéfié sous pression. 6-Système selon les revendications 1 à 5 et caractérisé en ce que la matière conductrice (2) possède des propriétés piézoélectrique
7-Système selon les revendications 1 à 6 et caractérisé en ce que la matière conductrice (2) est poreuse à grande surface spécifique.
8-Système selon les revendications 1 à 7 et caractérisé en ce que la matière conductrice (2) est composée de charbon actif poreux ou en poudre de grande porosité, ou la poussière très fine de graphite. 9-Système selon les revendications 1 à 8 et caractérisé en ce que la matière conductrice (2) est composée d'oxydes métalliques en poudre, ou de nitrures métalliques en poudre, ou d'autres composés métalliques en poudre.
10- Système selon les revendications 1 à 9 et caractérisé en ce que la matière conductrice (2) est composée de céramiques en poudre.
11- Système selon les revendications 1 à 10 et caractérisé en ce que la matière conductrice (2) est un nanomatériau. 12- Système selon les revendications 1 à 11 caractérisé en ce que le fluide (3) est un fluide frigorifique ou cryogénique 13- Système selon les revendications 1 à 12 caractérisé en ce que le fluide (3) est l'azote liquide
14- Système selon les revendications 1 à 13 caractérisé en ce que le fluide (3) est l'hélium liquide.
15- Système selon les revendications 1 à 14 et caractérisé en ce que l'enceinte est en aluminium. 16- Système selon les revendications 1 à 15 et caractérisé en ce que l'enceinte est en cuivre.
17- Système selon les revendications 1 à 16 et caractérisé en ce que l'enceinte est en matière plastique.
18- Système selon les revendications 1 à 17 et caractérisé en ce que l'enceinte est en PVC.
PCT/MA2008/000008 2008-02-12 2008-11-28 Système supraconducteur d'électricité WO2009102184A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA30651A MA30679B1 (fr) 2008-02-12 2008-02-12 Systeme supraconducteur d'electricite
MA30651 2008-02-12

Publications (1)

Publication Number Publication Date
WO2009102184A1 true WO2009102184A1 (fr) 2009-08-20

Family

ID=40545952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2008/000008 WO2009102184A1 (fr) 2008-02-12 2008-11-28 Système supraconducteur d'électricité

Country Status (2)

Country Link
MA (1) MA30679B1 (fr)
WO (1) WO2009102184A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393862A (zh) * 2011-05-09 2012-03-28 中国科学院上海微系统与信息技术研究所 一种超导体-石墨烯异质结中负微分电导现象的优化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432297A (en) * 1992-08-21 1995-07-11 Westinghouse Electric Corporation Power lead for penetrating a cryostat

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432297A (en) * 1992-08-21 1995-07-11 Westinghouse Electric Corporation Power lead for penetrating a cryostat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393862A (zh) * 2011-05-09 2012-03-28 中国科学院上海微系统与信息技术研究所 一种超导体-石墨烯异质结中负微分电导现象的优化方法

Also Published As

Publication number Publication date
MA30679B1 (fr) 2009-09-01

Similar Documents

Publication Publication Date Title
FR2560421A1 (fr) Dispositif de refroidissement de bobinages supraconducteurs
CA1317643C (fr) Procede et applicateur pour secher un isolant dielectrique contenu dans des dispositifs electrotechniques a haute tension
EP2953203B1 (fr) Dispositif de transmission d'energie d'un milieu a un autre
WO2009102184A1 (fr) Système supraconducteur d'électricité
EP3824214B1 (fr) Procede et systeme de chauffage electrique direct d'une conduite a double enveloppe pour le transport de fluides
FR3040242A1 (fr) Systeme diviseur/combineur pour onde hyperfrequence
FR3052245B1 (fr) Dispositif cryogenique a echangeur compact
EP3370317B1 (fr) Extrémité de câble supraconducteur
FR2583228A1 (fr) Tube laser a vapeurs metalliques
EP2038978B1 (fr) Structure de traversee electrique pour element supraconducteur
EP0521374B1 (fr) Procédé de liaison entre une céramique supraconductrice à haute température critique et un conducteur supraconducteur à base de niobium-titane
FR2489588A1 (fr) Tube a ondes progressives du type a helice, presentant une variation de gain reduite
EP3392887A1 (fr) Systeme de generation d'un champ magnetique vectoriel
FR2669470A1 (fr) Procede de refroidissement d'une amenee de courant pour appareillage electrique a tres basse temperature et dispositif pour sa mise en óoeuvre.
EP3196947A1 (fr) Dispositif refroidisseur comportant un doigt froid ameliore
EP2469656A1 (fr) Antenne de forte puissance large bande
WO2010012803A1 (fr) Conducteur electrique a refroidissement ameliore et dispositif de commutation sous enveloppe etanche comportant au moins un tel conducteur
EP0117778B1 (fr) Charge hyperfréquence à liquide conducteur, pour générateur de grande puissance
EP0520374B1 (fr) Structure pour amenée de courant destinée à une installation fonctionnant à très basse température
Czekalla et al. Optical characterization of zinc oxide microlasers and microwire core-shell heterostructures
FR2737042A1 (fr) Collecteur d'electrons multietage supportant des tensions elevees et tube electronique muni d'un tel collecteur
FR2719856A1 (fr) Dispositif de déclenchement d'avalanche.
WO2022171765A1 (fr) Système de détection de rayonnement électromagnétique et procédé de refroidissement
EP2617550B1 (fr) Isolateur en materiau composite destiné à contenir une chambre de coupure
WO2009075555A1 (fr) Systeme pour transformation de la chaleur du milieu ambiant en durant electrique et son transfert

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872392

Country of ref document: EP

Kind code of ref document: A1