WO2009101826A1 - Control system and control method for automatic transmission - Google Patents

Control system and control method for automatic transmission Download PDF

Info

Publication number
WO2009101826A1
WO2009101826A1 PCT/JP2009/050283 JP2009050283W WO2009101826A1 WO 2009101826 A1 WO2009101826 A1 WO 2009101826A1 JP 2009050283 W JP2009050283 W JP 2009050283W WO 2009101826 A1 WO2009101826 A1 WO 2009101826A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
friction engagement
hydraulic pressure
engagement elements
calculated
Prior art date
Application number
PCT/JP2009/050283
Other languages
French (fr)
Japanese (ja)
Inventor
Takaaki Tokura
Hideaki Otsubo
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2009101826A1 publication Critical patent/WO2009101826A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0015Transmission control for optimising fuel consumptions

Definitions

  • the present invention relates to control of an automatic transmission for a vehicle, and more particularly to control of an automatic transmission that maintains a frictional engagement element for shifting with a linear solenoid valve.
  • a shift control device for an automatic transmission that forms a predetermined shift stage by supplying output hydraulic pressure of a linear solenoid valve controlled by a drive signal (drive current) from an electronic control device to a hydraulic friction engagement element.
  • a drive signal drive current
  • Patent Document 1 an example of hydraulic control in the case where the friction engagement element is maintained in the engaged state is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-42280 (Patent Document 1).
  • Japanese Patent Application Laid-Open No. 2003-42280 discloses an electronic control device for shifting which is a normally open type (a type in which the output hydraulic pressure is maximized when no power is supplied and the output hydraulic pressure decreases as the amount of current supplied increases).
  • a normally open type a type in which the output hydraulic pressure is maximized when no power is supplied and the output hydraulic pressure decreases as the amount of current supplied increases.
  • the linear solenoid valve is driven to maximize the output hydraulic pressure of the linear solenoid valve when the clutch is maintained in an engaged state.
  • the current is set to 0 (the duty ratio of the drive signal is 0%).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a hydraulic shift friction engagement element and a friction engagement element by increasing an output hydraulic pressure with an increase in driving current.
  • a control device and a control method capable of reducing power consumption of a pressure regulating valve when maintaining a friction engagement element in an engaged state in an automatic transmission having a pressure regulating valve for outputting to a combined element. It is.
  • the control device includes an automatic transmission including a hydraulic shift friction engagement portion and a pressure adjusting portion that increases an output hydraulic pressure as the drive current increases and outputs the output hydraulic pressure to the friction engagement portion.
  • this control device is a hydraulic pressure that can be maintained in a state in which the friction engagement portion is engaged, and from the maximum value of the target command pressure of the output hydraulic pressure.
  • a calculation unit that calculates a small hydraulic pressure, and a pressure regulation control unit that outputs a drive current corresponding to the hydraulic pressure calculated by the calculation unit to the pressure regulation unit to control the pressure regulation unit.
  • the friction engagement portion includes a plurality of friction engagement elements.
  • the pressure regulating unit includes a plurality of pressure regulating valves respectively corresponding to the plurality of friction engagement elements.
  • the hydraulic pressure is calculated for each factor.
  • the pressure adjustment control unit outputs a drive current corresponding to the maximum pressure of the calculated hydraulic pressure to a pressure adjustment valve corresponding to two or more friction engagement elements that need to be maintained in an engaged state.
  • the friction engagement portion includes a plurality of friction engagement elements.
  • the pressure regulating unit includes a plurality of pressure regulating valves respectively corresponding to the plurality of friction engagement elements.
  • the hydraulic pressure is calculated for each factor.
  • the pressure regulation control unit outputs each drive current corresponding to the calculated hydraulic pressure to each pressure regulating valve corresponding to the calculated hydraulic pressure.
  • the automatic transmission is provided with a source pressure regulating valve that regulates the source pressure input to the pressure regulating unit.
  • a drive current corresponding to the calculated hydraulic pressure is output to the pressure adjustment unit by the pressure adjustment control unit, the control device causes the original pressure to be larger than the calculated hydraulic pressure by a predetermined value. It further includes an original pressure control unit that controls the pressure regulating valve.
  • the friction engagement element (friction engagement portion) is maintained in the engaged state by the normally closed type (type in which the output hydraulic pressure increases as the drive current increases).
  • a drive current corresponding to the hydraulic pressure that can be maintained in the engaged state and is smaller than the maximum value of the target command pressure of the output hydraulic pressure is output to the pressure regulating valve. Therefore, the drive current supplied to the pressure regulating valve is smaller than the maximum current value corresponding to the maximum value of the target command pressure. Thereby, the power consumption of a pressure regulation valve can be reduced, maintaining the state which engaged the friction engagement element.
  • FIG. (1) which shows the control structure of the program which ECU performs. It is a timing chart (the 1) of target command pressure computed by ECU. It is FIG. (2) which shows the control structure of the program which ECU performs. It is a timing chart (the 2) of the target command pressure computed by ECU.
  • This vehicle is a FR (Front engine Rear drive) vehicle.
  • FR Front engine Rear drive
  • a vehicle other than FR may be used.
  • the vehicle includes an engine 1000, an automatic transmission 2000, a torque converter 2100, a planetary gear unit 3000 that forms part of the automatic transmission 2000, a hydraulic circuit 4000 that forms part of the automatic transmission 2000, a propeller shaft 5000, A differential gear 6000, a rear wheel 7000, and an ECU (Electronic Control Unit) 8000 are included.
  • the control device according to the present embodiment is realized, for example, by executing a program recorded in a ROM (Read Only Memory) of ECU 8000.
  • Engine 1000 is an internal combustion engine that burns a mixture of fuel and air injected from an injector (not shown) in a combustion chamber of a cylinder. The piston in the cylinder is pushed down by the combustion, and the crankshaft is rotated. An auxiliary machine 1004 such as an alternator and an air conditioner is driven by the driving force of the engine 1000. A motor may be used as a power source instead of or in addition to engine 1000.
  • Automatic transmission 2000 is connected to engine 1000 via torque converter 2100. Automatic transmission 2000 shifts the rotational speed of the crankshaft to a desired rotational speed by forming a desired gear stage.
  • the driving force output from the automatic transmission 2000 is transmitted to the left and right rear wheels 7000 via the propeller shaft 5000 and the differential gear 6000.
  • the ECU 8000 includes a vehicle speed sensor 8002, a position switch 8006 of a shift lever 8004, an accelerator opening sensor 8010 of an accelerator pedal 8008, a pedaling force sensor 8014 of a brake pedal 8012, a throttle opening sensor 8018 of an electronic throttle valve 8016, An engine speed sensor 8020, an input shaft speed sensor 8022, and an output shaft speed sensor 8024 are connected via a harness or the like.
  • the vehicle speed sensor 8002 detects the vehicle speed V from the rotational speed of the drive shaft 6100.
  • the position switch 8006 detects the position (shift position) SP of the shift lever 8004.
  • the accelerator opening sensor 8010 detects the opening (accelerator opening) ACC of the accelerator pedal 8008.
  • the pedaling force sensor 8014 detects the pedaling force of the brake pedal 8012 (force that the driver steps on the brake pedal 8012).
  • the throttle opening sensor 8018 detects the opening (throttle opening) TH of the electronic throttle valve 8016.
  • the engine speed sensor 8020 detects a crankshaft speed (engine speed) NE of the engine 1000.
  • Input shaft rotational speed sensor 8022 detects input shaft rotational speed (turbine rotational speed of torque converter 2100) NT of automatic transmission 2000.
  • Output shaft rotational speed sensor 8024 detects the rotational speed (output shaft rotational speed) NOUT of the output shaft of automatic transmission 2000.
  • Each of these sensors transmits a signal representing the detection result to ECU 8000
  • ECU 8000 is sent from vehicle speed sensor 8002, position switch 8006, accelerator opening sensor 8010, pedal effort sensor 8014, throttle opening sensor 8018, engine speed sensor 8020, input shaft speed sensor 8022, output shaft speed sensor 8024, and the like. Based on the received signal, the map stored in the ROM, and the program, the devices are controlled so that the vehicle is in a desired running state.
  • the ECU 8000 when the shift lever 8004 is in the D (drive) position and the D (drive) range is selected as the shift range of the automatic transmission 2000, out of the first to eighth forward gears.
  • the automatic transmission 2000 is controlled so that any one of the gear positions is formed.
  • the automatic transmission 2000 can transmit the driving force to the rear wheels 7000 by forming any one of the first to eighth forward gears. In the D range, it may be possible to form a higher gear than the eighth gear.
  • the gear stage to be formed is determined based on a shift diagram created in advance by experiments or the like using the vehicle speed and the accelerator opening as parameters.
  • the ECU 8000 is described as one unit, but the ECU 8000 may be divided into two or more units.
  • the ECU 8000 includes an engine ECU that controls the engine 1000 and an ECT (Electronic Controlled Transmission) _ECU that controls the automatic transmission 2000 so that the engine ECU and the ECT_ECU can transmit and receive signals to and from each other. It may be.
  • ECT Electronic Controlled Transmission
  • Planetary gear unit 3000 will be described with reference to FIG. Planetary gear unit 3000 is connected to a torque converter 2100 having an input shaft 2102 coupled to the crankshaft.
  • the planetary gear unit 3000 includes a front planetary 3100, a rear planetary 3200, a C1 clutch 3301, a C2 clutch 3302, a C3 clutch 3303, a C4 clutch 3304, a B1 brake 3311, a B2 brake 3312, and a one-way clutch (F). 3320.
  • the front planetary 3100 is a double pinion type planetary gear mechanism.
  • Front planetary 3100 includes a first sun gear (S1) 3102, a pair of first pinion gears (P1) 3104, a carrier (CA) 3106, and a ring gear (R) 3108.
  • the first pinion gear (P1) 3104 meshes with the first sun gear (S1) 3102 and the first ring gear (R) 3108.
  • the first carrier (CA) 3106 supports the first pinion gear (P1) 3104 so that it can revolve and rotate.
  • the first sun gear (S1) 3102 is fixed to the gear case 3400 so as not to rotate.
  • First carrier (CA) 3106 is coupled to input shaft 3002 of planetary gear unit 3000.
  • the rear planetary 3200 is a Ravigneaux type planetary gear mechanism.
  • the rear planetary 3200 includes a second sun gear (S2) 3202, a second pinion gear (P2) 3204, a rear carrier (RCA) 3206, a rear ring gear (RR) 3208, a third sun gear (S3) 3210, a third Pinion gear (P3) 3212.
  • the second pinion gear (P2) 3204 meshes with the second sun gear (S2) 3202, the rear ring gear (RR) 3208, and the third pinion gear (P3) 3212.
  • Third pinion gear (P3) 3212 meshes with third sun gear (S3) 3210 in addition to second pinion gear (P2) 3204.
  • the rear carrier (RCA) 3206 supports the second pinion gear (P2) 3204 and the third pinion gear (P3) 3212 so that they can revolve and rotate.
  • Rear carrier (RCA) 3206 is coupled to one-way clutch (F) 3320.
  • the rear carrier (RCA) 3206 becomes non-rotatable when driving the first gear (when traveling using the driving force output from the engine 1000).
  • Rear ring gear (RR) 3208 is coupled to output shaft 3004 of planetary gear unit 3000.
  • the one-way clutch (F) 3320 is provided in parallel with the B2 brake 3312. That is, the outer race of the one-way clutch (F) 3320 is fixed to the gear case 3400, and the inner race is connected to the rear carrier (RCA) 3206.
  • FIG. 3 shows an operation table showing the relationship between each gear position and the operation state of each clutch and each brake. By operating the brakes and the clutches in the combinations shown in this operation table, forward 1st to 8th gears and reverse 1st and 2nd gears are formed.
  • the forward third speed gear stage is formed by engaging the C1 clutch 3301 and the C3 clutch 3303 and releasing the other clutches and brakes.
  • the main part of the hydraulic circuit 4000 will be described with reference to FIG.
  • the hydraulic circuit 4000 is not limited to the one described below.
  • the hydraulic circuit 4000 includes an oil pump 4004, a primary regulator valve 4006, a manual valve 4100, a solenoid modulator valve 4200, an SL1 linear solenoid (hereinafter referred to as SL (1)) 4210, and an SL2 linear solenoid (hereinafter referred to as “the solenoid valve”).
  • SL2 (described as SL (4)) 4220, SL3 linear solenoid (hereinafter referred to as SL (3)) 4230, SL4 linear solenoid (hereinafter referred to as SL (4)) 4240, and SL5 linear solenoid (hereinafter referred to as SL (3)).
  • SL (5)) 4250 SLT linear solenoid (hereinafter referred to as SLT) 4300, and B2 control valve 4500.
  • Oil pump 4004 is connected to the crankshaft of engine 1000. As the crankshaft rotates, the oil pump 4004 is driven to generate hydraulic pressure.
  • the hydraulic pressure generated by the oil pump 4004 is regulated by the primary regulator valve 4006 to generate a line pressure.
  • Primary regulator valve 4006 operates using the throttle pressure regulated by SLT 4300 as a pilot pressure.
  • the line pressure is supplied to the manual valve 4100 via the line pressure oil passage 4010.
  • Manual valve 4100 includes a drain port 4105. From the drain port 4105, the oil pressure in the D range pressure oil passage 4102 and the R range pressure oil passage 4104 is discharged.
  • both the D range pressure oil passage 4102 and the R range pressure oil passage 4104 are connected to the drain port 4105, and the D range pressure and R of the D range pressure oil passage 4102 are communicated.
  • the R range pressure of the range pressure oil passage 4104 is discharged from the drain port 4105.
  • the B2 control valve 4500 selectively supplies hydraulic pressure from one of the D range pressure oil passage 4102 and the R range pressure oil passage 4104 to the B2 brake 3312.
  • a D range pressure oil passage 4102 and an R range pressure oil passage 4104 are connected to the B2 control valve 4500.
  • the B2 control valve 4500 is controlled by the hydraulic pressure supplied from the SLU solenoid valve (not shown) and the urging force of the spring.
  • the B2 control valve 4500 When the SLU solenoid valve is on, the B2 control valve 4500 is in the state on the left side in FIG.
  • the B2 brake 3312 is supplied with the hydraulic pressure adjusted from the D range pressure using the hydraulic pressure supplied from the SLU solenoid valve as a pilot pressure.
  • the hydraulic pressure supplied to the D range pressure oil passage 4102 is finally supplied to the C1 clutch 3301, the C2 clutch 3302, and the C3 clutch 3303.
  • the B2 control valve 4500 When the SLU solenoid valve is off, the B2 control valve 4500 is in the state on the right side in FIG. In this case, the R range pressure of the R range pressure oil passage 4104 is supplied to the B2 brake 3312.
  • SL (1) 4210, SL (2) 4220, SL (3) 4230, SL (4) 4240, and SL (5) 4250 are normally closed linear solenoid valves.
  • the output hydraulic pressure POUT of these linear solenoid valves is controlled by a drive current I output from the ECU 8000 to each linear solenoid valve as a drive signal.
  • the output hydraulic pressure of these linear solenoid valves becomes minimum (“0”) when not energized, and the output hydraulic pressure increases as each drive current I from ECU 8000 increases.
  • the output hydraulic pressure POUT (C1) of SL (1) 4210 is supplied to the C1 clutch 3301, the output hydraulic pressure POUT (C2) of SL (2) 4220 is supplied to the C2 clutch 3302, and the output hydraulic pressure of SL (3) 4230.
  • POUT (C3) is supplied to the C3 clutch 3303, the output hydraulic pressure POUT (C4) of the SL (4) 4240 is supplied to the C4 clutch 3304, and the output hydraulic pressure POUT (B1) of the SL (5) 4250 is supplied to the B1 brake. 3311.
  • ECU 8000 Based on input torque (turbine torque) and the like, ECU 8000 has target command pressure P (C1) of output hydraulic pressure POUT (C1), target command pressure P (C2) of output hydraulic pressure POUT (C2), and output hydraulic pressure POUT (C3).
  • the method for calculating the target command pressure will be described in detail later.
  • the ECU 8000 includes a drive current I (C1) corresponding to the target command pressure P (C1), a drive current I (C2) corresponding to the target command pressure P (C2), and a drive current I corresponding to the target command pressure P (C3).
  • (C3), drive current I (C4) corresponding to the target command pressure P (C4), and drive current I (B1) corresponding to the target command pressure P (B1) are SL (1) 4210 and SL (2), respectively. 4220, SL (3) 4230, SL (4) 4240, and SL (5) 4250.
  • Solenoid modulator valve 4200 adjusts the hydraulic pressure (solenoid modulator pressure) supplied to SLT 4300 to a constant pressure using the line pressure as the original pressure.
  • the SLT 4300 adjusts the solenoid modulator pressure in accordance with the drive current I (T) from the ECU 8000 based on the accelerator opening degree ACC detected by the accelerator opening degree sensor 8010, and generates a throttle pressure.
  • the throttle pressure is supplied to the primary regulator valve 4006 via the SLT oil passage 4302.
  • the throttle pressure is used as a pilot pressure for the primary regulator valve 4006.
  • SL (1) 4210 the structure and characteristics of SL (1) 4210 will be described. Note that SL (2) 4220, SL (3) 4230, SL (4) 4240, SL (5) 4250, and SLT 4300 have the same structure and characteristics as SL (1) 4210. The description of will not be repeated.
  • FIG. 5 shows the internal state of SL (1) 4210 when drive current I (C1) from ECU 8000 is maximum value I (MAX).
  • SL (1) 4210 utilizes the phenomenon that the force by which the spool 4212 pushes the valve 4213 increases in proportion to the drive current I (C1) flowing through the coil 4211, and the stroke of the spool 4212 is driven by the drive current I (C1).
  • the flow rate cross section of the input port 4217 is changed by adjusting the amount.
  • the output hydraulic pressure POUT (C1) in which the line pressure PL is regulated is output from the output port 4218.
  • the stroke amount of the spool 4212 increases substantially in proportion to the drive current I (C1).
  • the drive current I (C1) reaches the maximum current value I (MAX)
  • the force by which the spool 4212 pushes the valve 4213 becomes maximum, and the spring 4214 side of the valve 4213 is against the biasing force of the spring 4214 as shown in FIG. Is brought into contact with the stopper 4215 (full stroke state).
  • FIG. 6 shows the relationship between the target command pressure P (C1) and the drive current I (C1).
  • the drive current I (C1) becomes 0 (minimum current value) when the target command pressure P (C1) is 0 (minimum pressure), and increases substantially in proportion to the target command pressure P (C1).
  • the drive current I (C1) when the target command pressure P (C1) is the line pressure PL is I (PL).
  • the drive current I (C1) becomes the maximum current value I (MAX).
  • the relationship between the target command pressure P (C1) and the drive current I (C1) is not limited to that shown in FIG.
  • the drive current I (C1) may be set to the maximum current value I (MAX).
  • FIG. 7 shows the relationship between the drive current I (C1) and the output hydraulic pressure POUT (C1). As shown in FIG. 7, in the range where the drive current I (C1) is smaller than I (PL), the output hydraulic pressure POUT (C1) increases substantially in proportion to the drive current I (C1). At this time, SL (1) 4210 is in a pressure regulation state in which the line pressure PL can be regulated according to the drive current I (C1).
  • the target command pressure P (C1) is set to the maximum pressure P (MAX), and the drive current I (C1) is set to the maximum current value I (MAX). (See FIG. 6).
  • the target command pressure P of the output hydraulic pressure of the linear solenoid valve corresponding to the friction engagement element (clutch or brake) to be maintained in the engaged state can be maintained in the engaged state and is maximum.
  • FIG. 8 shows a functional block diagram of the ECU 8000 which is a vehicle control apparatus according to this embodiment.
  • ECU 8000 includes an input interface (hereinafter referred to as input I / F) 8100, a calculation processing unit 8200, a storage unit 8300, and an output interface (hereinafter referred to as output I / F) 8400.
  • input I / F input interface
  • calculation processing unit 8200 calculation processing unit
  • storage unit 8300 a storage unit 8300
  • output I / F output interface
  • the input I / F 8100 includes a vehicle speed V from the vehicle speed sensor 8002, an accelerator opening ACC from the accelerator opening sensor 8010, a shift position SP from the position switch 8006, an engine speed NE from the engine speed sensor 8020, and an input shaft rotation.
  • the input shaft rotational speed NT from the number sensor 8022, the output shaft rotational speed NOUT from the output shaft rotational speed sensor 8024, and the throttle opening TH from the throttle opening sensor 8018 are received and transmitted to the arithmetic processing unit 8200.
  • the storage unit 8300 stores various types of information, programs, threshold values, maps, and the like, and data is read from or stored in the arithmetic processing unit 8200 as necessary.
  • the arithmetic processing unit 8200 includes a shift control determination unit 8210, a necessary hydraulic pressure calculation unit 8220, an engagement hydraulic pressure control unit 8230, and a line pressure control unit 8240.
  • the shift control determination unit 8210 determines whether or not a non-shift is in progress.
  • non-shifting means a state in which shift control is not performed.
  • the shift control determination unit 8210 determines that a non-shift is in progress when the shift determination based on the vehicle speed V, the accelerator opening degree ACC, and the shift diagram has not been performed and there is no ongoing shift.
  • the required hydraulic pressure calculation unit 8220 determines friction engagement elements that should be maintained in the engaged state during non-shifting based on the operation table of FIG. 3 described above, and maintains these friction engagement elements in the engaged state.
  • Required hydraulic pressure PR (required hydraulic pressure PR (C1) of the C1 clutch 3301, required hydraulic pressure PR (C2) of the C2 clutch 3302, required hydraulic pressure PR (C3) of the C3 clutch 3303, required hydraulic pressure PR (C4) of the C4 clutch 3304, B1
  • the required hydraulic pressure PR (B1) of the brake 3311) is calculated.
  • the required oil pressure calculation unit 8220 calculates the minimum pressure required to maintain each friction engagement element in the engaged state as (input torque) ⁇ (torque sharing ratio), and adds a safety factor (for example, 1.2). A value obtained by multiplying is calculated as the required hydraulic pressure PR. In this way, the required hydraulic pressure PR is calculated to a value slightly higher (larger by the safety factor) than the minimum pressure required to maintain each friction engagement element in the engaged state. The value is smaller than the maximum pressure P (MAX). The required hydraulic pressure PR is calculated for each friction engagement element to be maintained in the engaged state.
  • a safety factor for example, 1.2
  • the input torque is a torque (turbine torque) input from the engine 1000 to the input shaft 3002 of the planetary gear unit 3000 via the torque converter 2100.
  • the input torque is calculated based on, for example, the engine speed NE, the accelerator opening ACC, or the throttle opening TH.
  • the torque sharing ratio is a ratio that the input torque is shared by each friction engagement element maintained in the engaged state, and is set in advance according to the combination of the friction engagement elements maintained in the engaged state. Is done.
  • the engagement hydraulic pressure control unit 8230 has target command pressures P (P (C1), P (C2), P (C3), P (C4), P according to each required hydraulic pressure PR calculated by the required hydraulic pressure calculation unit 8220. (At least one of (B1)) is calculated, and the drive current I (I (C1), I (C2), I (C3), I (C4), I (B1) is determined according to the calculated target command pressure P. And outputs the calculated drive current I to each linear solenoid valve via the output I / F 8400. The drive current I is not output to each linear solenoid valve corresponding to the released frictional engagement element.
  • the line pressure control unit 8240 generates a drive current that generates a throttle pressure (a pilot pressure of the primary regulator valve 4006) at which the line pressure PL is higher than the required hydraulic pressure PR calculated by the required hydraulic pressure calculation unit 8220 by a predetermined value ⁇ .
  • I (T) is output to the SLT 4300 via the output I / F 8400.
  • the shift control determination unit 8210, the required hydraulic pressure calculation unit 8220, the engagement hydraulic pressure control unit 8230, and the line pressure control unit 8240 are all calculated by the CPU that is the arithmetic processing unit 8200 by the storage unit 8300.
  • the program functions as software that is realized by executing the program stored in the program, it may be realized by hardware. Such a program is recorded on a storage medium and mounted on the vehicle.
  • step (hereinafter, step is abbreviated as S) 100 ECU 8000 determines whether or not a non-shifting operation is being performed. If not (YES at S100), the process proceeds to S102. Otherwise (NO in S100), this process ends.
  • step S102 the ECU 8000 calculates a required hydraulic pressure PR for each friction engagement element to be maintained in the engaged state. As described above, the ECU 8000 calculates the value calculated by the input torque ⁇ the torque sharing ratio ⁇ the safety factor as the required hydraulic pressure PR for each friction engagement element.
  • the ECU 8000 uses the required hydraulic pressure PR (C1) of the C1 clutch 3301 as an input torque.
  • X torque sharing ratio of C1 clutch 3301)
  • necessary hydraulic pressure PR (C3) of C3 clutch 3303 is calculated as input torque x (torque sharing ratio of C3 clutch 3303) x safety coefficient.
  • ECU 8000 outputs to SLT 4300 drive current I (T) in which line pressure PL is higher by a predetermined value ⁇ than the maximum pressure of required hydraulic pressure PR calculated in S102.
  • T drive current
  • the required hydraulic pressure PR (C1) of the C1 clutch 3301 is the maximum pressure (that is, higher than the required hydraulic pressure PR (C3))
  • the line pressure PL is required.
  • the hydraulic pressure is controlled to PR (C1) + ⁇ .
  • ECU 8000 calculates the maximum pressure of necessary hydraulic pressure PR calculated in the process of S102 as target command pressure P for each friction engagement element to be maintained in the engaged state. For example, when the required hydraulic pressure PR (C1) is the maximum pressure during traveling at the third forward gear, ECU 8000 uses the required hydraulic pressure PR (C1) as the target command pressure P (C1) and the target command pressure P (C3). ).
  • ECU 8000 calculates drive current I based on calculated target command pressure P. For example, ECU 8000 calculates drive current I (C1) and drive current I (C3) corresponding to target command pressure P (C1) based on the above-described relationship of FIG. 6 when traveling at the third forward gear. calculate.
  • ECU 8000 outputs each calculated drive current I to each linear solenoid valve. For example, ECU 8000 outputs drive current I (C1) to SL (1) 4210 and drive current I (C3) to SL (3) 4230 when traveling at the third forward gear.
  • the target command pressure P controlled by the ECU 8000 which is the control device according to the present embodiment based on the structure and flowchart as described above, will be described with reference to FIG.
  • both the required oil pressure PR (C1) and the required oil pressure PR (C3) are smaller than the maximum pressure P (MAX) of the target command pressure P.
  • the target command pressure P (C1) and the target command pressure P (C3) are both the required hydraulic pressure PR (C1) (S106). That is, as shown in FIG. 10, both the target command pressure P (C1) and the target command pressure P (C3) are set to values smaller than the maximum pressure P (MAX).
  • a drive current I (C1) smaller than the maximum current value I (MAX) is output to SL (1) 4210, and a drive current I (C3) smaller than the maximum current value I (MAX) is SL (3). ) 4230 (S108, S110).
  • the line pressure PL is controlled to be higher than the required hydraulic pressure PR (C1) by a predetermined value ⁇ (S104). Therefore, even if the line pressure PL pulsates or varies slightly with respect to the command, the target command pressure P (1) and the target command pressure P (3) are unlikely to exceed the line pressure PL, and the drive current I Is suppressed to the maximum current value I (MAX) (see FIGS. 6 and 7).
  • the C1 clutch 3301 and the C3 clutch 3303 can be maintained in the pressure regulation state instead of the non-pressure regulation state. As a result, the control responsiveness of the C1 clutch 3301 and the C3 clutch 3303 during the subsequent shift can be improved.
  • the spools of the SL (1) 4210 and the SL (3) 4230 are controlled to the pressure adjustable positions.
  • the time required to move the spool to the pressure adjustable position is not required, and the shift time can be shortened accordingly.
  • SL (1) 4210 and SL (3) 4230 output drive currents I (C1) and I (C3) smaller than the maximum current value I (MAX). Therefore, at the time of the subsequent shift, there is no need for time to decrease the drive current I from the maximum current value I (MAX) to the current value that can be regulated (that is, I (PL)). Time can be shortened.
  • each friction engagement element when the friction engagement elements are maintained in the engaged state by the normally closed solenoid valve, each friction engagement element can be maintained in the engaged state.
  • the drive current I corresponding to the hydraulic pressure smaller than the maximum value P (MAX) of the target command pressure is output to each linear solenoid valve. Therefore, the drive current I supplied to each linear solenoid valve is smaller than the maximum current value I (MAX). Thereby, the electric power consumed by the linear solenoid valve for maintaining the engaged state can be reduced while maintaining the engaged state of the friction engagement element.
  • the line pressure PL is set to a value higher than the maximum pressure of the required hydraulic pressure PR by a predetermined value ⁇ in the process of S104 in FIG. 9, but the line pressure PL is set to the required hydraulic pressure PR.
  • the maximum pressure itself may be set to a value. Even in this case, the power consumed by the linear solenoid valve can be reduced.
  • the control of the linear solenoid valve corresponding to the friction engagement element that should be maintained in the engaged state during non-shifting has been described, but the present invention is not limited to being non-shifting.
  • the present invention is used to control a solenoid valve that supplies hydraulic pressure to a friction engagement element (for example, a C1 clutch 3301 in a shift performed between the first speed to the fifth speed) to be kept engaged even during a shift. May be applied.
  • FIG. 11 a control structure of a program executed by ECU 8000 which is a control device according to this modification will be described.
  • ECU 8000 which is a control device according to this modification.
  • the same steps as those in the flowchart shown in FIG. 9 are given the same step numbers. The processing for them is the same. Therefore, detailed description thereof will not be repeated here.
  • ECU 8000 calculates each target command pressure P of the linear solenoid valve corresponding to the frictional engagement element to be maintained in the engaged state in correspondence with the required hydraulic pressure PR calculated in the process of S102. For example, when the required hydraulic pressure PR (C1) and the required hydraulic pressure PR (C3) are calculated in the process of S102 during traveling at the third forward gear, ECU 8000 uses the required hydraulic pressure PR (C1) as the target command pressure P. (C1), and the required oil pressure PR (C3) is set as the target command pressure P (C3).
  • ECU 8000 calculates drive current I for each linear solenoid for each calculated target command pressure P. For example, ECU 8000 provides drive current I (C1) corresponding to target command pressure P (C1) and drive current I (C3) corresponding to target command pressure P (C3) during traveling at the third forward gear. , Based on the relationship of FIG. 6 described above.
  • the target command pressure P (C3) can be set to a required oil pressure PR (C3) lower than the required oil pressure PR (C1) (S200). That is, the drive current I (C3) is further reduced as compared with the case where the target command pressure P (C1) and the target command pressure P (C3) are both set to the required hydraulic pressure PR (C1) as in the above-described embodiment. Can do. Therefore, the power consumed by SL (3) 4230 can be further reduced.

Abstract

In case shifting frictional engagement elements are kept in engaging states by the output oil pressure of a normal close type linear solenoid valve, an ECU calculates (at S102) a necessary oil pressure (PR) for each frictional engagement element kept in the engaging state. The ECU calculates (at S106) the maximum pressure of the necessary oil pressures (PR) as a target command pressure (P) for each frictional engagement element, calculates (at S108) a drive current (I) on the basis of the target command pressure (P) calculated, and outputs (at S110) the calculated drive current (I) to each linear solenoid valve. The ECU calculates the necessary oil pressure (PR) as a value larger than the minimum pressure necessary for keeping each frictional engagement element in the engaging state and smaller than the maximum pressure (P(MAX)) of the target command pressure (P).

Description

自動変速機の制御装置および制御方法Control device and control method for automatic transmission
 本発明は、車両用の自動変速機の制御に関し、特に、リニアソレノイド弁で変速用の摩擦係合要素を係合状態に維持する自動変速機の制御に関する。 The present invention relates to control of an automatic transmission for a vehicle, and more particularly to control of an automatic transmission that maintains a frictional engagement element for shifting with a linear solenoid valve.
 電子制御装置からの駆動信号(駆動電流)によって制御されるリニアソレノイド弁の出力油圧を油圧式の摩擦係合要素に供給することによって、所定の変速段を形成する自動変速機の変速制御装置がある。このような制御装置において、摩擦係合要素を係合状態に維持する場合の油圧制御の一例が、たとえば特開2003-42280号公報(特許文献1)に開示されている。 A shift control device for an automatic transmission that forms a predetermined shift stage by supplying output hydraulic pressure of a linear solenoid valve controlled by a drive signal (drive current) from an electronic control device to a hydraulic friction engagement element. is there. In such a control device, an example of hydraulic control in the case where the friction engagement element is maintained in the engaged state is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-42280 (Patent Document 1).
 特開2003-42280号公報に開示された変速用電子制御装置は、ノーマルオープン型(非通電時に出力油圧が最大になり、通電量の増大に伴なって出力油圧が減少する型)のリニアソレノイド弁と、リニアソレノイド弁の出力油圧が供給されるクラッチとを備えた自動変速機において、クラッチを係合状態に維持する際、リニアソレノイド弁の出力油圧を最大にするためにリニアソレノイド弁の駆動電流を0(駆動信号のデューティ比を0%)に設定している。
特開2003-42280号公報
Japanese Patent Application Laid-Open No. 2003-42280 discloses an electronic control device for shifting which is a normally open type (a type in which the output hydraulic pressure is maximized when no power is supplied and the output hydraulic pressure decreases as the amount of current supplied increases). In an automatic transmission having a valve and a clutch to which the output hydraulic pressure of the linear solenoid valve is supplied, the linear solenoid valve is driven to maximize the output hydraulic pressure of the linear solenoid valve when the clutch is maintained in an engaged state. The current is set to 0 (the duty ratio of the drive signal is 0%).
Japanese Patent Laid-Open No. 2003-42280
 ところで、ノーマルクローズ型(非通電時に出力油圧が最小になり、通電量の増大に伴ない出力油圧が増大する型)のリニアソレノイド弁の出力油圧で摩擦係合要素を係合状態に維持する際、リニアソレノイド弁の出力油圧を最大にするためにリニアソレノイド弁の駆動電流を最大値に設定すると、駆動電流の最大値に応じた多量の電力が、摩擦係合要素を係合状態に維持する間継続してリニアソレノイド弁で消費されてしまい、最終的には燃料消費率が悪化してしまうという問題がある。 By the way, when the friction engagement element is maintained in the engaged state by the output hydraulic pressure of the linear solenoid valve of the normally closed type (the output hydraulic pressure is minimized when the power is not supplied and the output hydraulic pressure increases as the amount of current is increased). When the drive current of the linear solenoid valve is set to the maximum value in order to maximize the output hydraulic pressure of the linear solenoid valve, a large amount of electric power corresponding to the maximum value of the drive current maintains the friction engagement element in the engaged state. There is a problem that the linear solenoid valve is continuously consumed for a long time, and the fuel consumption rate eventually deteriorates.
 本発明は、上述の課題を解決するためになされたものであって、その目的は、油圧式の変速用摩擦係合要素と、駆動電流の増大に伴なって出力油圧を増大させて摩擦係合要素に出力する調圧弁とを備えた自動変速機において、摩擦係合要素を係合した状態に維持する場合の調圧弁の消費電力を低減することができる制御装置および制御方法を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a hydraulic shift friction engagement element and a friction engagement element by increasing an output hydraulic pressure with an increase in driving current. Provided is a control device and a control method capable of reducing power consumption of a pressure regulating valve when maintaining a friction engagement element in an engaged state in an automatic transmission having a pressure regulating valve for outputting to a combined element. It is.
 この発明に係る制御装置は、油圧式の変速用摩擦係合部と、駆動電流の増大に伴なって出力油圧を増大させて摩擦係合部に出力する調圧部とを備えた自動変速機を制御する。この制御装置は、摩擦係合部を係合した状態に維持する必要がある場合、摩擦係合部を係合した状態に維持可能な油圧であってかつ出力油圧の目標指令圧の最大値よりも小さい油圧を算出する算出部と、算出部によって算出された油圧に応じた駆動電流を調圧部に出力して、調圧部を制御する調圧制御部とを含む。 The control device according to the present invention includes an automatic transmission including a hydraulic shift friction engagement portion and a pressure adjusting portion that increases an output hydraulic pressure as the drive current increases and outputs the output hydraulic pressure to the friction engagement portion. To control. When it is necessary to maintain the friction engagement portion in an engaged state, this control device is a hydraulic pressure that can be maintained in a state in which the friction engagement portion is engaged, and from the maximum value of the target command pressure of the output hydraulic pressure. A calculation unit that calculates a small hydraulic pressure, and a pressure regulation control unit that outputs a drive current corresponding to the hydraulic pressure calculated by the calculation unit to the pressure regulation unit to control the pressure regulation unit.
 好ましくは、摩擦係合部は、複数の摩擦係合要素を含む。調圧部は、複数の摩擦係合要素にそれぞれ対応する複数の調圧弁を含む。算出部は、複数の摩擦係合要素のうち少なくとも2つ以上の摩擦係合要素を係合した状態に維持する必要がある場合、係合した状態に維持する必要がある2つ以上の摩擦係合要素ごとに油圧を算出する。調圧制御部は、算出された油圧のうちの最大圧に応じた駆動電流を、係合した状態に維持する必要がある2つ以上の摩擦係合要素に対応する調圧弁に出力する。 Preferably, the friction engagement portion includes a plurality of friction engagement elements. The pressure regulating unit includes a plurality of pressure regulating valves respectively corresponding to the plurality of friction engagement elements. When the calculation unit needs to maintain at least two friction engagement elements among the plurality of friction engagement elements in an engaged state, the calculation unit needs to maintain two or more friction engagement elements that need to be maintained in the engagement state. The hydraulic pressure is calculated for each factor. The pressure adjustment control unit outputs a drive current corresponding to the maximum pressure of the calculated hydraulic pressure to a pressure adjustment valve corresponding to two or more friction engagement elements that need to be maintained in an engaged state.
 さらに好ましくは、摩擦係合部は、複数の摩擦係合要素を含む。調圧部は、複数の摩擦係合要素にそれぞれ対応する複数の調圧弁を含む。算出部は、複数の摩擦係合要素のうち少なくとも2つ以上の摩擦係合要素を係合した状態に維持する必要がある場合、係合した状態に維持する必要がある2つ以上の摩擦係合要素ごとに油圧を算出する。調圧制御部は、算出された油圧に対応するそれぞれの駆動電流を、算出された油圧に対応するそれぞれの調圧弁に出力する。 More preferably, the friction engagement portion includes a plurality of friction engagement elements. The pressure regulating unit includes a plurality of pressure regulating valves respectively corresponding to the plurality of friction engagement elements. When the calculation unit needs to maintain at least two friction engagement elements among the plurality of friction engagement elements in an engaged state, the calculation unit needs to maintain two or more friction engagement elements that need to be maintained in the engagement state. The hydraulic pressure is calculated for each factor. The pressure regulation control unit outputs each drive current corresponding to the calculated hydraulic pressure to each pressure regulating valve corresponding to the calculated hydraulic pressure.
 さらに好ましくは、自動変速機には、調圧部に入力される元圧を調圧する元圧調圧弁が備えられる。制御装置は、算出された油圧に応じた駆動電流が調圧部に調圧制御部によって出力された場合、元圧が算出された油圧よりも予め定められた値だけ大きくなるように、元圧調圧弁を制御する元圧制御部をさらに含む。 More preferably, the automatic transmission is provided with a source pressure regulating valve that regulates the source pressure input to the pressure regulating unit. When a drive current corresponding to the calculated hydraulic pressure is output to the pressure adjustment unit by the pressure adjustment control unit, the control device causes the original pressure to be larger than the calculated hydraulic pressure by a predetermined value. It further includes an original pressure control unit that controls the pressure regulating valve.
 本発明によれば、ノーマルクローズ型(駆動電流の増大に伴なって出力油圧が増大する型)の調圧弁(調圧部)で摩擦係合要素(摩擦係合部)を係合状態に維持する場合、係合状態に維持可能な油圧であってかつ出力油圧の目標指令圧の最大値よりも小さい油圧に応じた駆動電流が調圧弁に出力される。そのため、調圧弁に供給される駆動電流は、目標指令圧の最大値に応じた最大電流値よりも小さくなる。これにより、摩擦係合要素を係合した状態に維持しつつ、調圧弁の消費電力を低減することができる。 According to the present invention, the friction engagement element (friction engagement portion) is maintained in the engaged state by the normally closed type (type in which the output hydraulic pressure increases as the drive current increases). In this case, a drive current corresponding to the hydraulic pressure that can be maintained in the engaged state and is smaller than the maximum value of the target command pressure of the output hydraulic pressure is output to the pressure regulating valve. Therefore, the drive current supplied to the pressure regulating valve is smaller than the maximum current value corresponding to the maximum value of the target command pressure. Thereby, the power consumption of a pressure regulation valve can be reduced, maintaining the state which engaged the friction engagement element.
車両のパワートレーンを示す概略構成図である。It is a schematic block diagram which shows the power train of a vehicle. オートマチックトランスミッションのプラネタリギヤユニットを示すスケルトン図である。It is a skeleton figure which shows the planetary gear unit of an automatic transmission. オートマチックトランスミッションの作動表を示す図である。It is a figure which shows the operation | movement table | surface of an automatic transmission. オートマチックトランスミッションの油圧回路を示す図である。It is a figure which shows the hydraulic circuit of an automatic transmission. リニアソレノイドバルブの構造を示す図である。It is a figure which shows the structure of a linear solenoid valve. リニアソレノイドバルブの目標指令圧と駆動電流との関係を示す図である。It is a figure which shows the relationship between the target command pressure and drive current of a linear solenoid valve. リニアソレノイドバルブの駆動電流と出力油圧との関係を示す図である。It is a figure which shows the relationship between the drive current of a linear solenoid valve, and output hydraulic pressure. ECUの機能ブロック図である。It is a functional block diagram of ECU. ECUが実行するプログラムの制御構造を示す図(その1)である。It is FIG. (1) which shows the control structure of the program which ECU performs. ECUによって算出された目標指令圧のタイミングチャート(その1)である。It is a timing chart (the 1) of target command pressure computed by ECU. ECUが実行するプログラムの制御構造を示す図(その2)である。It is FIG. (2) which shows the control structure of the program which ECU performs. ECUによって算出された目標指令圧のタイミングチャート(その2)である。It is a timing chart (the 2) of the target command pressure computed by ECU.
符号の説明Explanation of symbols
 1000 エンジン、1004 補機、2000 オートマチックトランスミッション、2100 トルクコンバータ、2102 入力軸、3000 プラネタリギヤユニット、3002 入力軸、3004 出力軸、3100 フロントプラネタリ、3200 リアプラネタリ、3301 C1クラッチ、3302 C2クラッチ、3303 C3クラッチ、3304 C4クラッチ、3311 B1ブレーキ、3312 B2ブレーキ、3400 ギヤケース、4000 油圧回路、5000 プロペラシャフト、6000 デファレンシャルギヤ、6100 ドライブシャフト、7000 後輪、8000 ECU、8002 車速センサ、8004 シフトレバー、8006 ポジションスイッチ、8008 アクセルペダル、8010 アクセル開度センサ、8012 ブレーキペダル、8014 踏力センサ、8016 電子スロットルバルブ、8018 スロットル開度センサ、8020 エンジン回転数センサ、8022 入力軸回転数センサ、8024 出力軸回転数センサ、8100 入力I/F、8200 演算処理部、8210 変速制御判断部、8220 必要油圧算出部、8230 係合油圧制御部、8240 ライン圧制御部、8300 記憶部、8400 出力I/F。 1000 engine, 1004 auxiliary machine, 2000 automatic transmission, 2100 torque converter, 2102 input shaft, 3000 planetary gear unit, 3002 input shaft, 3004 output shaft, 3100 front planetary, 3200 rear planetary, 3301 C1 clutch, 3302 C2 clutch, 3303 C3 clutch 3304 C4 clutch, 3311 B1 brake, 3312 B2 brake, 3400 gear case, 4000 hydraulic circuit, 5000 propeller shaft, 6000 differential gear, 6100 drive shaft, 7000 rear wheel, 8000 ECU, 8002, vehicle speed sensor, 8004 shift lever, 8006 position switch , 8008 Accelerator pedal, 8 10 accelerator opening sensor, 8012 brake pedal, 8014 pedal force sensor, 8016 electronic throttle valve, 8018 throttle opening sensor, 8020 engine speed sensor, 8022 input shaft speed sensor, 8024 output shaft speed sensor, 8100 input I / F , 8200 arithmetic processing unit, 8210 shift control determination unit, 8220 required hydraulic pressure calculation unit, 8230 engagement hydraulic pressure control unit, 8240 line pressure control unit, 8300 storage unit, 8400 output I / F.
 以下、図面を参照しつつ、本発明の実施例について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1を参照して、本発明の実施例に係る制御装置を搭載した車両について説明する。この車両は、FR(Front engine Rear drive)車両である。なお、FR以外の車両であってもよい。 A vehicle equipped with a control device according to an embodiment of the present invention will be described with reference to FIG. This vehicle is a FR (Front engine Rear drive) vehicle. A vehicle other than FR may be used.
 車両は、エンジン1000と、オートマチックトランスミッション2000と、トルクコンバータ2100と、オートマチックトランスミッション2000の一部を構成するプラネタリギヤユニット3000と、オートマチックトランスミッション2000の一部を構成する油圧回路4000と、プロペラシャフト5000と、デファレンシャルギヤ6000と、後輪7000と、ECU(Electronic Control Unit)8000とを含む。本実施の形態に係る制御装置は、たとえばECU8000のROM(Read Only Memory)に記録されたプログラムを実行することによって実現される。 The vehicle includes an engine 1000, an automatic transmission 2000, a torque converter 2100, a planetary gear unit 3000 that forms part of the automatic transmission 2000, a hydraulic circuit 4000 that forms part of the automatic transmission 2000, a propeller shaft 5000, A differential gear 6000, a rear wheel 7000, and an ECU (Electronic Control Unit) 8000 are included. The control device according to the present embodiment is realized, for example, by executing a program recorded in a ROM (Read Only Memory) of ECU 8000.
 エンジン1000は、インジェクタ(図示せず)から噴射された燃料と空気との混合気を、シリンダの燃焼室内で燃焼させる内燃機関である。燃焼によってシリンダ内のピストンが押し下げられて、クランクシャフトが回転させられる。エンジン1000の駆動力によって、オルタネータおよびエアコンディショナーなどの補機1004が駆動される。なお、エンジン1000の代わりにもしくは加えて、動力源にモータを用いるようにしてもよい。 Engine 1000 is an internal combustion engine that burns a mixture of fuel and air injected from an injector (not shown) in a combustion chamber of a cylinder. The piston in the cylinder is pushed down by the combustion, and the crankshaft is rotated. An auxiliary machine 1004 such as an alternator and an air conditioner is driven by the driving force of the engine 1000. A motor may be used as a power source instead of or in addition to engine 1000.
 オートマチックトランスミッション2000は、トルクコンバータ2100を経由してエンジン1000に連結される。オートマチックトランスミッション2000は、所望のギヤ段を形成することによって、クランクシャフトの回転数を所望の回転数に変速する。 Automatic transmission 2000 is connected to engine 1000 via torque converter 2100. Automatic transmission 2000 shifts the rotational speed of the crankshaft to a desired rotational speed by forming a desired gear stage.
 オートマチックトランスミッション2000から出力された駆動力は、プロペラシャフト5000およびデファレンシャルギヤ6000を経由して、左右の後輪7000に伝達される。 The driving force output from the automatic transmission 2000 is transmitted to the left and right rear wheels 7000 via the propeller shaft 5000 and the differential gear 6000.
 ECU8000には、車速センサ8002と、シフトレバー8004のポジションスイッチ8006と、アクセルペダル8008のアクセル開度センサ8010と、ブレーキペダル8012の踏力センサ8014と、電子スロットルバルブ8016のスロットル開度センサ8018と、エンジン回転数センサ8020と、入力軸回転数センサ8022と、出力軸回転数センサ8024とがハーネスなどを経由して接続されている。 The ECU 8000 includes a vehicle speed sensor 8002, a position switch 8006 of a shift lever 8004, an accelerator opening sensor 8010 of an accelerator pedal 8008, a pedaling force sensor 8014 of a brake pedal 8012, a throttle opening sensor 8018 of an electronic throttle valve 8016, An engine speed sensor 8020, an input shaft speed sensor 8022, and an output shaft speed sensor 8024 are connected via a harness or the like.
 車速センサ8002は、ドライブシャフト6100の回転数から車速Vを検出する。ポジションスイッチ8006は、シフトレバー8004の位置(シフトポジション)SPを検出する。アクセル開度センサ8010は、アクセルペダル8008の開度(アクセル開度)ACCを検出する。踏力センサ8014は、ブレーキペダル8012の踏力(運転者がブレーキペダル8012を踏む力)を検出する。スロットル開度センサ8018は、電子スロットルバルブ8016の開度(スロットル開度)THを検出する。エンジン回転数センサ8020は、エンジン1000のクランクシャフトの回転数(エンジン回転数)NEを検出する。入力軸回転数センサ8022は、オートマチックトランスミッション2000の入力軸回転数(トルクコンバータ2100のタービン回転数)NTを検出する。出力軸回転数センサ8024は、オートマチックトランスミッション2000の出力軸の回転数(出力軸回転数)NOUTを検出する。これらの各センサは、検出結果を表わす信号をECU8000に送信する。 The vehicle speed sensor 8002 detects the vehicle speed V from the rotational speed of the drive shaft 6100. The position switch 8006 detects the position (shift position) SP of the shift lever 8004. The accelerator opening sensor 8010 detects the opening (accelerator opening) ACC of the accelerator pedal 8008. The pedaling force sensor 8014 detects the pedaling force of the brake pedal 8012 (force that the driver steps on the brake pedal 8012). The throttle opening sensor 8018 detects the opening (throttle opening) TH of the electronic throttle valve 8016. The engine speed sensor 8020 detects a crankshaft speed (engine speed) NE of the engine 1000. Input shaft rotational speed sensor 8022 detects input shaft rotational speed (turbine rotational speed of torque converter 2100) NT of automatic transmission 2000. Output shaft rotational speed sensor 8024 detects the rotational speed (output shaft rotational speed) NOUT of the output shaft of automatic transmission 2000. Each of these sensors transmits a signal representing the detection result to ECU 8000.
 ECU8000は、車速センサ8002、ポジションスイッチ8006、アクセル開度センサ8010、踏力センサ8014、スロットル開度センサ8018、エンジン回転数センサ8020、入力軸回転数センサ8022、出力軸回転数センサ8024などから送られてきた信号、ROMに記憶されたマップおよびプログラムに基づいて、車両が所望の走行状態となるように、機器類を制御する。 ECU 8000 is sent from vehicle speed sensor 8002, position switch 8006, accelerator opening sensor 8010, pedal effort sensor 8014, throttle opening sensor 8018, engine speed sensor 8020, input shaft speed sensor 8022, output shaft speed sensor 8024, and the like. Based on the received signal, the map stored in the ROM, and the program, the devices are controlled so that the vehicle is in a desired running state.
 本実施例において、ECU8000は、シフトレバー8004がD(ドライブ)ポジションであることによって、オートマチックトランスミッション2000のシフトレンジにD(ドライブ)レンジが選択された場合、前進1速~8速ギヤ段のうちのいずれかのギヤ段が形成されるように、オートマチックトランスミッション2000を制御する。前進1速~8速ギヤ段のうちのいずれかのギヤ段が形成されることによって、オートマチックトランスミッション2000は後輪7000に駆動力を伝達し得る。なお、Dレンジにおいて、8速ギヤ段よりも高速のギヤ段を形成可能であるようにしてもよい。形成するギヤ段は、車速とアクセル開度とをパラメータとして実験等によって予め作成された変速線図に基づいて決定される。 In the present embodiment, the ECU 8000, when the shift lever 8004 is in the D (drive) position and the D (drive) range is selected as the shift range of the automatic transmission 2000, out of the first to eighth forward gears. The automatic transmission 2000 is controlled so that any one of the gear positions is formed. The automatic transmission 2000 can transmit the driving force to the rear wheels 7000 by forming any one of the first to eighth forward gears. In the D range, it may be possible to form a higher gear than the eighth gear. The gear stage to be formed is determined based on a shift diagram created in advance by experiments or the like using the vehicle speed and the accelerator opening as parameters.
 なお、本実施例においては、ECU8000が1つのユニットとして説明するが、ECU8000を2つ以上のユニットに分割するようにしてもよい。たとえば、ECU8000がエンジン1000を制御するエンジンECUと、オートマチックトランスミッション2000を制御するECT(Electronic Controlled Transmission)_ECUとを含むようにし、エンジンECUとECT_ECUとが互いに信号を送受信可能であるように構成するようにしてもよい。 In this embodiment, the ECU 8000 is described as one unit, but the ECU 8000 may be divided into two or more units. For example, the ECU 8000 includes an engine ECU that controls the engine 1000 and an ECT (Electronic Controlled Transmission) _ECU that controls the automatic transmission 2000 so that the engine ECU and the ECT_ECU can transmit and receive signals to and from each other. It may be.
 図2を参照して、プラネタリギヤユニット3000について説明する。プラネタリギヤユニット3000は、クランクシャフトに連結された入力軸2102を有するトルクコンバータ2100に接続されている。 The planetary gear unit 3000 will be described with reference to FIG. Planetary gear unit 3000 is connected to a torque converter 2100 having an input shaft 2102 coupled to the crankshaft.
 プラネタリギヤユニット3000は、フロントプラネタリ3100と、リアプラネタリ3200と、C1クラッチ3301と、C2クラッチ3302と、C3クラッチ3303と、C4クラッチ3304と、B1ブレーキ3311と、B2ブレーキ3312と、ワンウェイクラッチ(F)3320とを含む。 The planetary gear unit 3000 includes a front planetary 3100, a rear planetary 3200, a C1 clutch 3301, a C2 clutch 3302, a C3 clutch 3303, a C4 clutch 3304, a B1 brake 3311, a B2 brake 3312, and a one-way clutch (F). 3320.
 フロントプラネタリ3100は、ダブルピニオン型の遊星歯車機構である。フロントプラネタリ3100は、第1サンギヤ(S1)3102と、1対の第1ピニオンギヤ(P1)3104と、キャリア(CA)3106と、リングギヤ(R)3108とを含む。 The front planetary 3100 is a double pinion type planetary gear mechanism. Front planetary 3100 includes a first sun gear (S1) 3102, a pair of first pinion gears (P1) 3104, a carrier (CA) 3106, and a ring gear (R) 3108.
 第1ピニオンギヤ(P1)3104は、第1サンギヤ(S1)3102および第1リングギヤ(R)3108と噛合っている。第1キャリア(CA)3106は、第1ピニオンギヤ(P1)3104が公転および自転可能であるように支持している。 The first pinion gear (P1) 3104 meshes with the first sun gear (S1) 3102 and the first ring gear (R) 3108. The first carrier (CA) 3106 supports the first pinion gear (P1) 3104 so that it can revolve and rotate.
 第1サンギヤ(S1)3102は、回転不能であるようにギヤケース3400に固定される。第1キャリア(CA)3106は、プラネタリギヤユニット3000の入力軸3002に連結される。 The first sun gear (S1) 3102 is fixed to the gear case 3400 so as not to rotate. First carrier (CA) 3106 is coupled to input shaft 3002 of planetary gear unit 3000.
 リアプラネタリ3200は、ラビニヨ型の遊星歯車機構である。リアプラネタリ3200は、第2サンギヤ(S2)3202と、第2ピニオンギヤ(P2)3204と、リアキャリア(RCA)3206と、リアリングギヤ(RR)3208と、第3サンギヤ(S3)3210と、第3ピニオンギヤ(P3)3212とを含む。 The rear planetary 3200 is a Ravigneaux type planetary gear mechanism. The rear planetary 3200 includes a second sun gear (S2) 3202, a second pinion gear (P2) 3204, a rear carrier (RCA) 3206, a rear ring gear (RR) 3208, a third sun gear (S3) 3210, a third Pinion gear (P3) 3212.
 第2ピニオンギヤ(P2)3204は、第2サンギヤ(S2)3202、リアリングギヤ(RR)3208および第3ピニオンギヤ(P3)3212と噛合っている。第3ピニオンギヤ(P3)3212は、第2ピニオンギヤ(P2)3204に加えて、第3サンギヤ(S3)3210と噛合っている。 The second pinion gear (P2) 3204 meshes with the second sun gear (S2) 3202, the rear ring gear (RR) 3208, and the third pinion gear (P3) 3212. Third pinion gear (P3) 3212 meshes with third sun gear (S3) 3210 in addition to second pinion gear (P2) 3204.
 リアキャリア(RCA)3206は、第2ピニオンギヤ(P2)3204および第3ピニオンギヤ(P3)3212が公転および自転可能であるように支持している。リアキャリア(RCA)3206は、ワンウェイクラッチ(F)3320に連結される。リアキャリア(RCA)3206は、1速ギヤ段の駆動時(エンジン1000から出力された駆動力を用いた走行時)に回転不能となる。リアリングギヤ(RR)3208は、プラネタリギヤユニット3000の出力軸3004に連結される。 The rear carrier (RCA) 3206 supports the second pinion gear (P2) 3204 and the third pinion gear (P3) 3212 so that they can revolve and rotate. Rear carrier (RCA) 3206 is coupled to one-way clutch (F) 3320. The rear carrier (RCA) 3206 becomes non-rotatable when driving the first gear (when traveling using the driving force output from the engine 1000). Rear ring gear (RR) 3208 is coupled to output shaft 3004 of planetary gear unit 3000.
 ワンウェイクラッチ(F)3320は、B2ブレーキ3312と並列に設けられる。すなわち、ワンウェイクラッチ(F)3320のアウターレースはギヤケース3400に固定され、インナーレースはリアキャリア(RCA)3206に連結される。 The one-way clutch (F) 3320 is provided in parallel with the B2 brake 3312. That is, the outer race of the one-way clutch (F) 3320 is fixed to the gear case 3400, and the inner race is connected to the rear carrier (RCA) 3206.
 図3に、各変速ギヤ段と、各クラッチおよび各ブレーキの作動状態との関係を表した作動表を示す。この作動表に示された組み合わせで各ブレーキおよび各クラッチを作動させることによって、前進1速~8速のギヤ段と、後進1速および2速のギヤ段が形成される。 FIG. 3 shows an operation table showing the relationship between each gear position and the operation state of each clutch and each brake. By operating the brakes and the clutches in the combinations shown in this operation table, forward 1st to 8th gears and reverse 1st and 2nd gears are formed.
 たとえば、C1クラッチ3301およびC3クラッチ3303を係合させ、他のクラッチおよびブレーキを解放させることによって、前進3速のギヤ段が形成される。 For example, the forward third speed gear stage is formed by engaging the C1 clutch 3301 and the C3 clutch 3303 and releasing the other clutches and brakes.
 図4を参照して、油圧回路4000の要部について説明する。なお、油圧回路4000は、以下に説明するものに限られない。 The main part of the hydraulic circuit 4000 will be described with reference to FIG. The hydraulic circuit 4000 is not limited to the one described below.
 油圧回路4000は、オイルポンプ4004と、プライマリレギュレータバルブ4006と、マニュアルバルブ4100と、ソレノイドモジュレータバルブ4200と、SL1リニアソレノイド(以下、SL(1)と記載する)4210と、SL2リニアソレノイド(以下、SL(2)と記載する)4220と、SL3リニアソレノイド(以下、SL(3)と記載する)4230と、SL4リニアソレノイド(以下、SL(4)と記載する)4240と、SL5リニアソレノイド(以下、SL(5)と記載する)4250と、SLTリニアソレノイド(以下、SLTと記載する)4300と、B2コントロールバルブ4500とを含む。 The hydraulic circuit 4000 includes an oil pump 4004, a primary regulator valve 4006, a manual valve 4100, a solenoid modulator valve 4200, an SL1 linear solenoid (hereinafter referred to as SL (1)) 4210, and an SL2 linear solenoid (hereinafter referred to as “the solenoid valve”). SL2 (described as SL (4)) 4220, SL3 linear solenoid (hereinafter referred to as SL (3)) 4230, SL4 linear solenoid (hereinafter referred to as SL (4)) 4240, and SL5 linear solenoid (hereinafter referred to as SL (3)). , SL (5)) 4250, SLT linear solenoid (hereinafter referred to as SLT) 4300, and B2 control valve 4500.
 オイルポンプ4004は、エンジン1000のクランクシャフトに連結されている。クランクシャフトが回転することによって、オイルポンプ4004が駆動し、油圧を発生する。 Oil pump 4004 is connected to the crankshaft of engine 1000. As the crankshaft rotates, the oil pump 4004 is driven to generate hydraulic pressure.
 オイルポンプ4004で発生した油圧は、プライマリレギュレータバルブ4006によって調圧され、ライン圧が生成される。プライマリレギュレータバルブ4006は、SLT4300によって調圧されたスロットル圧をパイロット圧として作動する。ライン圧は、ライン圧油路4010を経由してマニュアルバルブ4100に供給される。 The hydraulic pressure generated by the oil pump 4004 is regulated by the primary regulator valve 4006 to generate a line pressure. Primary regulator valve 4006 operates using the throttle pressure regulated by SLT 4300 as a pilot pressure. The line pressure is supplied to the manual valve 4100 via the line pressure oil passage 4010.
 マニュアルバルブ4100は、ドレンポート4105を含む。ドレンポート4105から、Dレンジ圧油路4102およびRレンジ圧油路4104の油圧が排出される。 Manual valve 4100 includes a drain port 4105. From the drain port 4105, the oil pressure in the D range pressure oil passage 4102 and the R range pressure oil passage 4104 is discharged.
 マニュアルバルブ4100のスプールがDポジションにある場合、ライン圧油路4010とDレンジ圧油路4102とが連通させられ、Dレンジ圧油路4102に油圧が供給される。このとき、Rレンジ圧油路4104とドレンポート4105とが連通させられ、Rレンジ圧油路4104のRレンジ圧がドレンポート4105から排出される。 When the spool of the manual valve 4100 is in the D position, the line pressure oil passage 4010 and the D range pressure oil passage 4102 are communicated, and the oil pressure is supplied to the D range pressure oil passage 4102. At this time, the R range pressure oil passage 4104 and the drain port 4105 are communicated, and the R range pressure of the R range pressure oil passage 4104 is discharged from the drain port 4105.
 マニュアルバルブ4100のスプールがRポジションにある場合、ライン圧油路4010とRレンジ圧油路4104とが連通させられ、Rレンジ圧油路4104に油圧が供給される。このとき、Dレンジ圧油路4102とドレンポート4105とが連通させられ、Dレンジ圧油路4102のDレンジ圧がドレンポート4105から排出される。 When the spool of the manual valve 4100 is in the R position, the line pressure oil passage 4010 and the R range pressure oil passage 4104 are communicated, and the oil pressure is supplied to the R range pressure oil passage 4104. At this time, the D range pressure oil passage 4102 and the drain port 4105 are communicated, and the D range pressure in the D range pressure oil passage 4102 is discharged from the drain port 4105.
 マニュアルバルブ4100のスプールがNポジションにある場合、Dレンジ圧油路4102およびRレンジ圧油路4104の両方と、ドレンポート4105とが連通させられ、Dレンジ圧油路4102のDレンジ圧およびRレンジ圧油路4104のRレンジ圧がドレンポート4105から排出される。 When the spool of the manual valve 4100 is in the N position, both the D range pressure oil passage 4102 and the R range pressure oil passage 4104 are connected to the drain port 4105, and the D range pressure and R of the D range pressure oil passage 4102 are communicated. The R range pressure of the range pressure oil passage 4104 is discharged from the drain port 4105.
 B2コントロールバルブ4500は、Dレンジ圧油路4102およびRレンジ圧油路4104のいずれか一方からの油圧を選択的に、B2ブレーキ3312に供給する。B2コントロールバルブ4500に、Dレンジ圧油路4102およびRレンジ圧油路4104が接続されている。B2コントロールバルブ4500は、SLUソレノイドバルブ(図示せず)から供給された油圧とスプリングの付勢力とによって制御される。 The B2 control valve 4500 selectively supplies hydraulic pressure from one of the D range pressure oil passage 4102 and the R range pressure oil passage 4104 to the B2 brake 3312. A D range pressure oil passage 4102 and an R range pressure oil passage 4104 are connected to the B2 control valve 4500. The B2 control valve 4500 is controlled by the hydraulic pressure supplied from the SLU solenoid valve (not shown) and the urging force of the spring.
 SLUソレノイドバルブがオンの場合、B2コントロールバルブ4500は、図4において左側の状態となる。この場合、B2ブレーキ3312には、SLUソレノイドバルブから供給された油圧をパイロット圧として、Dレンジ圧を調圧した油圧が供給される。なお、Dレンジ圧油路4102に供給された油圧は、最終的には、C1クラッチ3301、C2クラッチ3302およびC3クラッチ3303に供給される。 When the SLU solenoid valve is on, the B2 control valve 4500 is in the state on the left side in FIG. In this case, the B2 brake 3312 is supplied with the hydraulic pressure adjusted from the D range pressure using the hydraulic pressure supplied from the SLU solenoid valve as a pilot pressure. The hydraulic pressure supplied to the D range pressure oil passage 4102 is finally supplied to the C1 clutch 3301, the C2 clutch 3302, and the C3 clutch 3303.
 SLUソレノイドバルブがオフの場合、B2コントロールバルブ4500は、図4において右側の状態となる。この場合、B2ブレーキ3312には、Rレンジ圧油路4104のRレンジ圧が供給される。 When the SLU solenoid valve is off, the B2 control valve 4500 is in the state on the right side in FIG. In this case, the R range pressure of the R range pressure oil passage 4104 is supplied to the B2 brake 3312.
 SL(1)4210、SL(2)4220、SL(3)4230、SL(4)4240、SL(5)4250は、ノーマルクローズ型のリニアソレノイドバルブである。これらのリニアソレノイドバルブの出力油圧POUTは、駆動信号としてECU8000からそれぞれのリニアソレノイドバルブに出力される駆動電流Iによって制御される。すなわち、これらのリニアソレノイドバルブは、非通電時に出力油圧が最小(「0」)になり、ECU8000からの各駆動電流Iの増大に伴ない出力油圧が増大する。 SL (1) 4210, SL (2) 4220, SL (3) 4230, SL (4) 4240, and SL (5) 4250 are normally closed linear solenoid valves. The output hydraulic pressure POUT of these linear solenoid valves is controlled by a drive current I output from the ECU 8000 to each linear solenoid valve as a drive signal. In other words, the output hydraulic pressure of these linear solenoid valves becomes minimum (“0”) when not energized, and the output hydraulic pressure increases as each drive current I from ECU 8000 increases.
 SL(1)4210の出力油圧POUT(C1)は、C1クラッチ3301に供給され、SL(2)4220の出力油圧POUT(C2)は、C2クラッチ3302に供給され、SL(3)4230の出力油圧POUT(C3)は、C3クラッチ3303に供給され、SL(4)4240の出力油圧POUT(C4)は、C4クラッチ3304に供給され、SL(5)4250の出力油圧POUT(B1)は、B1ブレーキ3311に供給される。 The output hydraulic pressure POUT (C1) of SL (1) 4210 is supplied to the C1 clutch 3301, the output hydraulic pressure POUT (C2) of SL (2) 4220 is supplied to the C2 clutch 3302, and the output hydraulic pressure of SL (3) 4230. POUT (C3) is supplied to the C3 clutch 3303, the output hydraulic pressure POUT (C4) of the SL (4) 4240 is supplied to the C4 clutch 3304, and the output hydraulic pressure POUT (B1) of the SL (5) 4250 is supplied to the B1 brake. 3311.
 ECU8000は、入力トルク(タービントルク)などに基づいて、出力油圧POUT(C1)の目標指令圧P(C1)、出力油圧POUT(C2)の目標指令圧P(C2)、出力油圧POUT(C3)の目標指令圧P(C3)、出力油圧POUT(C4)の目標指令圧P(C4)、出力油圧POUT(B1)の目標指令圧P(B1)をそれぞれ算出する。なお、目標指令圧の算出方法は後に詳述する。 Based on input torque (turbine torque) and the like, ECU 8000 has target command pressure P (C1) of output hydraulic pressure POUT (C1), target command pressure P (C2) of output hydraulic pressure POUT (C2), and output hydraulic pressure POUT (C3). Target command pressure P (C3), target command pressure P (C4) of output hydraulic pressure POUT (C4), and target command pressure P (B1) of output hydraulic pressure POUT (B1). The method for calculating the target command pressure will be described in detail later.
 ECU8000は、目標指令圧P(C1)に応じた駆動電流I(C1)、目標指令圧P(C2)に応じた駆動電流I(C2)、目標指令圧P(C3)に応じた駆動電流I(C3)、目標指令圧P(C4)に応じた駆動電流I(C4)、目標指令圧P(B1)に応じた駆動電流I(B1)を、それぞれSL(1)4210、SL(2)4220、SL(3)4230、SL(4)4240、SL(5)4250に出力する。 The ECU 8000 includes a drive current I (C1) corresponding to the target command pressure P (C1), a drive current I (C2) corresponding to the target command pressure P (C2), and a drive current I corresponding to the target command pressure P (C3). (C3), drive current I (C4) corresponding to the target command pressure P (C4), and drive current I (B1) corresponding to the target command pressure P (B1) are SL (1) 4210 and SL (2), respectively. 4220, SL (3) 4230, SL (4) 4240, and SL (5) 4250.
 ソレノイドモジュレータバルブ4200は、ライン圧を元圧とし、SLT4300に供給する油圧(ソレノイドモジュレータ圧)を一定の圧力に調圧する。 Solenoid modulator valve 4200 adjusts the hydraulic pressure (solenoid modulator pressure) supplied to SLT 4300 to a constant pressure using the line pressure as the original pressure.
 SLT4300は、アクセル開度センサ8010によって検出されたアクセル開度ACCなどに基づいたECU8000からの駆動電流I(T)に応じて、ソレノイドモジュレータ圧を調圧し、スロットル圧を生成する。スロットル圧は、SLT油路4302を経由して、プライマリレギュレータバルブ4006に供給される。スロットル圧は、プライマリレギュレータバルブ4006のパイロット圧として利用される。 The SLT 4300 adjusts the solenoid modulator pressure in accordance with the drive current I (T) from the ECU 8000 based on the accelerator opening degree ACC detected by the accelerator opening degree sensor 8010, and generates a throttle pressure. The throttle pressure is supplied to the primary regulator valve 4006 via the SLT oil passage 4302. The throttle pressure is used as a pilot pressure for the primary regulator valve 4006.
 図5-7を参照して、SL(1)4210の構造および特性について説明する。なお、SL(2)4220、SL(3)4230、SL(4)4240、SL(5)4250およびSLT4300は、SL(1)4210と同様の構造および特性を有するため、それらの構造および特性についての説明は繰返さない。 Referring to FIG. 5-7, the structure and characteristics of SL (1) 4210 will be described. Note that SL (2) 4220, SL (3) 4230, SL (4) 4240, SL (5) 4250, and SLT 4300 have the same structure and characteristics as SL (1) 4210. The description of will not be repeated.
 図5は、ECU8000からの駆動電流I(C1)が最大値I(MAX)である場合のSL(1)4210の内部の状態を示している。SL(1)4210は、スプール4212がバルブ4213を押す力がコイル4211に流れる駆動電流I(C1)にほぼ比例して大きくなる現象を利用して、駆動電流I(C1)によってスプール4212のストローク量を調整して、入力ポート4217の流路断面を変化させる。これにより、ライン圧PLが調圧された出力油圧POUT(C1)が出力ポート4218から出力される。 FIG. 5 shows the internal state of SL (1) 4210 when drive current I (C1) from ECU 8000 is maximum value I (MAX). SL (1) 4210 utilizes the phenomenon that the force by which the spool 4212 pushes the valve 4213 increases in proportion to the drive current I (C1) flowing through the coil 4211, and the stroke of the spool 4212 is driven by the drive current I (C1). The flow rate cross section of the input port 4217 is changed by adjusting the amount. As a result, the output hydraulic pressure POUT (C1) in which the line pressure PL is regulated is output from the output port 4218.
 スプール4212のストローク量は、駆動電流I(C1)にほぼ比例して大きくなる。駆動電流I(C1)が最大電流値I(MAX)になると、スプール4212がバルブ4213を押す力が最大となり、図5に示すように、スプリング4214の付勢力に反してバルブ4213のスプリング4214側の先端がストッパ4215に当接する状態(フルストローク状態)となる。 The stroke amount of the spool 4212 increases substantially in proportion to the drive current I (C1). When the drive current I (C1) reaches the maximum current value I (MAX), the force by which the spool 4212 pushes the valve 4213 becomes maximum, and the spring 4214 side of the valve 4213 is against the biasing force of the spring 4214 as shown in FIG. Is brought into contact with the stopper 4215 (full stroke state).
 図6は、目標指令圧P(C1)と駆動電流I(C1)との関係を示している。駆動電流I(C1)は、目標指令圧P(C1)が0(最小圧)であると0(最小電流値)となり、目標指令圧P(C1)にほぼ比例して大きくなる。目標指令圧P(C1)がライン圧PLのときの駆動電流I(C1)は、I(PL)となる。目標指令圧P(C1)が目標指令値の最大圧P(MAX)になると、駆動電流I(C1)は最大電流値I(MAX)となる。 FIG. 6 shows the relationship between the target command pressure P (C1) and the drive current I (C1). The drive current I (C1) becomes 0 (minimum current value) when the target command pressure P (C1) is 0 (minimum pressure), and increases substantially in proportion to the target command pressure P (C1). The drive current I (C1) when the target command pressure P (C1) is the line pressure PL is I (PL). When the target command pressure P (C1) becomes the maximum pressure P (MAX) of the target command value, the drive current I (C1) becomes the maximum current value I (MAX).
 なお、目標指令圧P(C1)と駆動電流I(C1)との関係は、図6に示したものに限定されない。たとえば、目標指令圧P(C1)がライン圧PLより大きくなった場合に、駆動電流I(C1)を最大電流値I(MAX)とするようにしてもよい。 It should be noted that the relationship between the target command pressure P (C1) and the drive current I (C1) is not limited to that shown in FIG. For example, when the target command pressure P (C1) becomes larger than the line pressure PL, the drive current I (C1) may be set to the maximum current value I (MAX).
 図7は、駆動電流I(C1)と出力油圧POUT(C1)との関係を示している。図7に示すように、駆動電流I(C1)がI(PL)より小さい範囲では、出力油圧POUT(C1)が駆動電流I(C1)にほぼ比例して大きくなる。このとき、SL(1)4210は、ライン圧PLを駆動電流I(C1)に応じて調圧することが可能な調圧状態となる。 FIG. 7 shows the relationship between the drive current I (C1) and the output hydraulic pressure POUT (C1). As shown in FIG. 7, in the range where the drive current I (C1) is smaller than I (PL), the output hydraulic pressure POUT (C1) increases substantially in proportion to the drive current I (C1). At this time, SL (1) 4210 is in a pressure regulation state in which the line pressure PL can be regulated according to the drive current I (C1).
 一方、駆動電流IがI(PL)を超えた場合、出力油圧POUT(C1)は、駆動電流I(C1)を変化させても最大値(すなわちライン圧PLそのままの値)となる。このとき、SL(1)4210は、ライン圧PLを調圧できない状態(非調圧状態)となる。非調圧状態になる要因は、駆動電流IがI(PL)を超えた場合には、調圧面4216が間隔Aに示した範囲に位置する状態となる(図5参照)ため、駆動電流I(C1)を変化させても入力ポート4217の流路断面が変化しないためである。 On the other hand, when the drive current I exceeds I (PL), the output hydraulic pressure POUT (C1) becomes the maximum value (that is, the value of the line pressure PL as it is) even if the drive current I (C1) is changed. At this time, SL (1) 4210 enters a state where the line pressure PL cannot be regulated (non-regulated state). When the drive current I exceeds I (PL), the factor causing the non-pressure regulation state is that the pressure regulation surface 4216 is located in the range indicated by the interval A (see FIG. 5). This is because the flow path cross section of the input port 4217 does not change even if (C1) is changed.
 従来においては、たとえばC1クラッチ3301を係合状態に維持する際、目標指令圧P(C1)を最大圧P(MAX)に設定して、駆動電流I(C1)を最大電流値I(MAX)にしていた(図6参照)。 Conventionally, for example, when the C1 clutch 3301 is maintained in the engaged state, the target command pressure P (C1) is set to the maximum pressure P (MAX), and the drive current I (C1) is set to the maximum current value I (MAX). (See FIG. 6).
 しかしながら、図7に示したように、駆動電流I(C1)がI(PL)からI(MAX)の範囲である場合、SL(1)4210は非調圧状態となり、ライン圧PLがそのまま出力される。すなわち、駆動電流I(C1)のうち、I(PL)を超えた部分は出力油圧POUT(C1)に反映されず、無駄に消費されることになる。 However, as shown in FIG. 7, when the drive current I (C1) is in the range from I (PL) to I (MAX), SL (1) 4210 is in a non-regulated state, and the line pressure PL is output as it is. Is done. That is, the portion of the drive current I (C1) that exceeds I (PL) is not reflected in the output hydraulic pressure POUT (C1) and is wasted.
 そこで、本発明においては、係合状態に維持すべき摩擦係合要素(クラッチあるいはブレーキ)に対応するリニアソレノイドバルブの出力油圧の目標指令圧Pを、係合状態に維持可能であってかつ最大圧P(MAX)よりも小さい油圧とすることによって、リニアソレノイドバルブに供給される駆動電流を低減する。 Therefore, in the present invention, the target command pressure P of the output hydraulic pressure of the linear solenoid valve corresponding to the friction engagement element (clutch or brake) to be maintained in the engaged state can be maintained in the engaged state and is maximum. By making the hydraulic pressure smaller than the pressure P (MAX), the drive current supplied to the linear solenoid valve is reduced.
 図8に、本実施例に係る車両の制御装置であるECU8000の機能ブロック図を示す。ECU8000は、入力インターフェイス(以下、入力I/Fと記載する)8100と、演算処理部8200と、記憶部8300と、出力インターフェイス(以下、出力I/Fと記載する)8400とを含む。 FIG. 8 shows a functional block diagram of the ECU 8000 which is a vehicle control apparatus according to this embodiment. ECU 8000 includes an input interface (hereinafter referred to as input I / F) 8100, a calculation processing unit 8200, a storage unit 8300, and an output interface (hereinafter referred to as output I / F) 8400.
 入力I/F8100は、車速センサ8002からの車速V、アクセル開度センサ8010からのアクセル開度ACC、ポジションスイッチ8006からのシフトポジションSP、エンジン回転数センサ8020からのエンジン回転数NE、入力軸回転数センサ8022からの入力軸回転数NT、出力軸回転数センサ8024からの出力軸回転数NOUT、スロットル開度センサ8018からのスロットル開度THを受信して、演算処理部8200に送信する。 The input I / F 8100 includes a vehicle speed V from the vehicle speed sensor 8002, an accelerator opening ACC from the accelerator opening sensor 8010, a shift position SP from the position switch 8006, an engine speed NE from the engine speed sensor 8020, and an input shaft rotation. The input shaft rotational speed NT from the number sensor 8022, the output shaft rotational speed NOUT from the output shaft rotational speed sensor 8024, and the throttle opening TH from the throttle opening sensor 8018 are received and transmitted to the arithmetic processing unit 8200.
 記憶部8300には、各種情報、プログラム、しきい値、マップ等が記憶され、必要に応じて演算処理部8200からデータが読み出されたり、格納されたりする。 The storage unit 8300 stores various types of information, programs, threshold values, maps, and the like, and data is read from or stored in the arithmetic processing unit 8200 as necessary.
 演算処理部8200は、変速制御判断部8210と、必要油圧算出部8220と、係合油圧制御部8230と、ライン圧制御部8240とを含む。 The arithmetic processing unit 8200 includes a shift control determination unit 8210, a necessary hydraulic pressure calculation unit 8220, an engagement hydraulic pressure control unit 8230, and a line pressure control unit 8240.
 変速制御判断部8210は、非変速中であるか否かを判断する。なお、非変速中とは、変速制御が行なわれていない状態を意味する。たとえば、変速制御判断部8210は、車速V、アクセル開度ACCおよび変速線図に基づく変速判断が行われておらず、かつ進行中の変速がない場合に、非変速中であると判断する。 The shift control determination unit 8210 determines whether or not a non-shift is in progress. Note that non-shifting means a state in which shift control is not performed. For example, the shift control determination unit 8210 determines that a non-shift is in progress when the shift determination based on the vehicle speed V, the accelerator opening degree ACC, and the shift diagram has not been performed and there is no ongoing shift.
 必要油圧算出部8220は、前述した図3の作動表に基づいて非変速中において係合状態に維持すべき摩擦係合要素を判断し、これらの摩擦係合要素を係合状態に維持するための必要油圧PR(C1クラッチ3301の必要油圧PR(C1)、C2クラッチ3302の必要油圧PR(C2)、C3クラッチ3303の必要油圧PR(C3)、C4クラッチ3304の必要油圧PR(C4)、B1ブレーキ3311の必要油圧PR(B1)の少なくともいずれか)を算出する。 The required hydraulic pressure calculation unit 8220 determines friction engagement elements that should be maintained in the engaged state during non-shifting based on the operation table of FIG. 3 described above, and maintains these friction engagement elements in the engaged state. Required hydraulic pressure PR (required hydraulic pressure PR (C1) of the C1 clutch 3301, required hydraulic pressure PR (C2) of the C2 clutch 3302, required hydraulic pressure PR (C3) of the C3 clutch 3303, required hydraulic pressure PR (C4) of the C4 clutch 3304, B1 The required hydraulic pressure PR (B1) of the brake 3311) is calculated.
 必要油圧算出部8220は、各摩擦係合要素を係合状態に維持するために必要な最小圧力を(入力トルク)×(トルク分担率)として算出し、これに安全係数(たとえば1.2)を乗じた値を、必要油圧PRとして算出する。このように、必要油圧PRは、各摩擦係合要素を係合状態に維持するために必要な最小圧力よりもやや高い(安全係数分だけ大きい)値に算出されるため、目標指令圧Pの最大圧P(MAX)よりも小さい値となる。必要油圧PRは、係合状態に維持すべき摩擦係合要素ごとに算出される。 The required oil pressure calculation unit 8220 calculates the minimum pressure required to maintain each friction engagement element in the engaged state as (input torque) × (torque sharing ratio), and adds a safety factor (for example, 1.2). A value obtained by multiplying is calculated as the required hydraulic pressure PR. In this way, the required hydraulic pressure PR is calculated to a value slightly higher (larger by the safety factor) than the minimum pressure required to maintain each friction engagement element in the engaged state. The value is smaller than the maximum pressure P (MAX). The required hydraulic pressure PR is calculated for each friction engagement element to be maintained in the engaged state.
 ここで、入力トルクとは、エンジン1000からトルクコンバータ2100を経由してプラネタリギヤユニット3000の入力軸3002に入力されたトルク(タービントルク)である。入力トルクは、たとえば、エンジン回転数NE、アクセル開度ACCあるいはスロットル開度THに基づいて算出される。 Here, the input torque is a torque (turbine torque) input from the engine 1000 to the input shaft 3002 of the planetary gear unit 3000 via the torque converter 2100. The input torque is calculated based on, for example, the engine speed NE, the accelerator opening ACC, or the throttle opening TH.
 また、トルク分担率とは、係合状態に維持される各摩擦係合要素に入力トルクが分担される割合であって、係合状態に維持される摩擦係合要素の組み合わせに応じて予め設定される。 Further, the torque sharing ratio is a ratio that the input torque is shared by each friction engagement element maintained in the engaged state, and is set in advance according to the combination of the friction engagement elements maintained in the engaged state. Is done.
 係合油圧制御部8230は、必要油圧算出部8220で算出された各必要油圧PRに応じて目標指令圧P(P(C1)、P(C2)、P(C3)、P(C4)、P(B1)の少なくともいずれか)を算出し、算出された目標指令圧Pに応じて駆動電流I(I(C1)、I(C2)、I(C3)、I(C4)、I(B1)の少なくともいずれか)を算出し、算出された各駆動電流Iを出力I/F8400を経由して各リニアソレノイドバルブに出力する。なお、解放される摩擦係合要素に対応する各リニアソレノイドバルブには、駆動電流Iは出力されない。 The engagement hydraulic pressure control unit 8230 has target command pressures P (P (C1), P (C2), P (C3), P (C4), P according to each required hydraulic pressure PR calculated by the required hydraulic pressure calculation unit 8220. (At least one of (B1)) is calculated, and the drive current I (I (C1), I (C2), I (C3), I (C4), I (B1) is determined according to the calculated target command pressure P. And outputs the calculated drive current I to each linear solenoid valve via the output I / F 8400. The drive current I is not output to each linear solenoid valve corresponding to the released frictional engagement element.
 ライン圧制御部8240は、必要油圧算出部8220で算出された必要油圧PRよりもライン圧PLが予め定められた値αだけ高くなるスロットル圧(プライマリレギュレータバルブ4006のパイロット圧)を生成する駆動電流I(T)を、出力I/F8400を経由してSLT4300に出力する。 The line pressure control unit 8240 generates a drive current that generates a throttle pressure (a pilot pressure of the primary regulator valve 4006) at which the line pressure PL is higher than the required hydraulic pressure PR calculated by the required hydraulic pressure calculation unit 8220 by a predetermined value α. I (T) is output to the SLT 4300 via the output I / F 8400.
 なお、本実施例において、変速制御判断部8210と、必要油圧算出部8220と、係合油圧制御部8230と、ライン圧制御部8240とは、いずれも演算処理部8200であるCPUが記憶部8300に記憶されたプログラムを実行することによって実現される、ソフトウェアとして機能するものとして説明するが、ハードウェアによって実現されるようにしてもよい。なお、このようなプログラムは記憶媒体に記録されて車両に搭載される。 In this embodiment, the shift control determination unit 8210, the required hydraulic pressure calculation unit 8220, the engagement hydraulic pressure control unit 8230, and the line pressure control unit 8240 are all calculated by the CPU that is the arithmetic processing unit 8200 by the storage unit 8300. Although it is assumed that the program functions as software that is realized by executing the program stored in the program, it may be realized by hardware. Such a program is recorded on a storage medium and mounted on the vehicle.
 図9を参照して、本実施例に係る制御装置であるECU8000で実行されるプログラムの制御構造について説明する。なお、このプログラムは、予め定められたサイクルタイムで繰り返し実行される。 Referring to FIG. 9, a control structure of a program executed by ECU 8000 which is the control device according to the present embodiment will be described. Note that this program is repeatedly executed at a predetermined cycle time.
 ステップ(以下、ステップをSと略す)100にて、ECU8000は、非変速中であるか否かを判断する。非変速中であると(S100にてYES)、処理はS102に移される。そうでないと(S100にてNO)、この処理は終了する。 In step (hereinafter, step is abbreviated as S) 100, ECU 8000 determines whether or not a non-shifting operation is being performed. If not (YES at S100), the process proceeds to S102. Otherwise (NO in S100), this process ends.
 S102にて、ECU8000は、係合状態に維持すべき摩擦係合要素ごとに、必要油圧PRを算出する。ECU8000は、上述したように、入力トルク×トルク分担率×安全係数で算出された値を、各摩擦係合要素ごとの必要油圧PRとして算出する。 In step S102, the ECU 8000 calculates a required hydraulic pressure PR for each friction engagement element to be maintained in the engaged state. As described above, the ECU 8000 calculates the value calculated by the input torque × the torque sharing ratio × the safety factor as the required hydraulic pressure PR for each friction engagement element.
 たとえば前進3速ギヤ段での走行時においては、C1クラッチ3301とC3クラッチ3303とをそれぞれ係合状態に維持する必要があるため、ECU8000は、C1クラッチ3301の必要油圧PR(C1)を入力トルク×(C1クラッチ3301のトルク分担率)×安全係数として算出し、C3クラッチ3303の必要油圧PR(C3)を入力トルク×(C3クラッチ3303のトルク分担率)×安全係数として算出する。 For example, when traveling in the forward third gear, the C1 clutch 3301 and the C3 clutch 3303 need to be maintained in an engaged state, so the ECU 8000 uses the required hydraulic pressure PR (C1) of the C1 clutch 3301 as an input torque. X (torque sharing ratio of C1 clutch 3301) x safety factor, and necessary hydraulic pressure PR (C3) of C3 clutch 3303 is calculated as input torque x (torque sharing ratio of C3 clutch 3303) x safety coefficient.
 S104にて、ECU8000は、ライン圧PLが、S102の処理で算出された必要油圧PRのうちの最大圧よりも予め定められた値αだけ高くなる駆動電流I(T)をSLT4300に出力する。これにより、たとえば前進3速ギヤ段での走行時において、C1クラッチ3301の必要油圧PR(C1)が最大圧である(すなわち必要油圧PR(C3)よりも高い)場合、ライン圧PLは、必要油圧PR(C1)+αに制御される。 In S104, ECU 8000 outputs to SLT 4300 drive current I (T) in which line pressure PL is higher by a predetermined value α than the maximum pressure of required hydraulic pressure PR calculated in S102. As a result, for example, when traveling at the third forward gear, if the required hydraulic pressure PR (C1) of the C1 clutch 3301 is the maximum pressure (that is, higher than the required hydraulic pressure PR (C3)), the line pressure PL is required. The hydraulic pressure is controlled to PR (C1) + α.
 S106にて、ECU8000は、S102の処理で算出された必要油圧PRのうちの最大圧を、係合状態に維持すべき各摩擦係合要素に対する目標指令圧Pとして算出する。たとえば、ECU8000は、前進3速ギヤ段での走行時において必要油圧PR(C1)が最大圧である場合、必要油圧PR(C1)を、目標指令圧P(C1)および目標指令圧P(C3)として算出する。 In S106, ECU 8000 calculates the maximum pressure of necessary hydraulic pressure PR calculated in the process of S102 as target command pressure P for each friction engagement element to be maintained in the engaged state. For example, when the required hydraulic pressure PR (C1) is the maximum pressure during traveling at the third forward gear, ECU 8000 uses the required hydraulic pressure PR (C1) as the target command pressure P (C1) and the target command pressure P (C3). ).
 S108にて、ECU8000は、算出された目標指令圧Pに基づいて、駆動電流Iを算出する。たとえば、ECU8000は、前進3速ギヤ段での走行時において、目標指令圧P(C1)に対応する駆動電流I(C1)および駆動電流I(C3)を、上述した図6の関係に基づいて算出する。 In S108, ECU 8000 calculates drive current I based on calculated target command pressure P. For example, ECU 8000 calculates drive current I (C1) and drive current I (C3) corresponding to target command pressure P (C1) based on the above-described relationship of FIG. 6 when traveling at the third forward gear. calculate.
 S110にて、ECU8000は、算出された各駆動電流Iを、各リニアソレノイドバルブに出力する。たとえば、ECU8000は、前進3速ギヤ段での走行時において、駆動電流I(C1)をSL(1)4210に出力し、駆動電流I(C3)をSL(3)4230に出力する。 In S110, ECU 8000 outputs each calculated drive current I to each linear solenoid valve. For example, ECU 8000 outputs drive current I (C1) to SL (1) 4210 and drive current I (C3) to SL (3) 4230 when traveling at the third forward gear.
 以上のような構造およびフローチャートに基づく本実施例に係る制御装置であるECU8000で制御される目標指令圧Pについて、図10を参照しつつ説明する。 The target command pressure P controlled by the ECU 8000, which is the control device according to the present embodiment based on the structure and flowchart as described above, will be described with reference to FIG.
 前進3速ギヤ段で変速を行わずに走行している場合(S100にてYES)を想定する。この場合、C1クラッチ3301およびC3クラッチ3303をそれぞれ係合状態に維持する必要があるため、C1クラッチ3301の必要油圧PR(C1)とC3クラッチ3303の必要油圧PR(C3)とが算出される(S102)。 Suppose that the vehicle is traveling without shifting at the forward third gear (YES in S100). In this case, since it is necessary to maintain the C1 clutch 3301 and the C3 clutch 3303 in the engaged state, the required hydraulic pressure PR (C1) of the C1 clutch 3301 and the required hydraulic pressure PR (C3) of the C3 clutch 3303 are calculated ( S102).
 このとき、上述したように、必要油圧PRは、各クラッチを係合状態に維持するために必要な最小圧力よりもやや高い値に算出されている。そのため、図10に示すように、必要油圧PR(C1)および必要油圧PR(C3)は、ともに目標指令圧Pの最大圧P(MAX)よりも小さい値となる。 At this time, as described above, the necessary hydraulic pressure PR is calculated to be a value slightly higher than the minimum pressure required to maintain each clutch in the engaged state. Therefore, as shown in FIG. 10, both the required oil pressure PR (C1) and the required oil pressure PR (C3) are smaller than the maximum pressure P (MAX) of the target command pressure P.
 必要油圧PR(C1)が必要油圧PR(C3)よりも高い場合、目標指令圧P(C1)および目標指令圧P(C3)は、ともに必要油圧PR(C1)となる(S106)。すなわち、図10に示すように、目標指令圧P(C1)および目標指令圧P(C3)は、ともに最大圧P(MAX)よりも小さな値に設定される。 When the required hydraulic pressure PR (C1) is higher than the required hydraulic pressure PR (C3), the target command pressure P (C1) and the target command pressure P (C3) are both the required hydraulic pressure PR (C1) (S106). That is, as shown in FIG. 10, both the target command pressure P (C1) and the target command pressure P (C3) are set to values smaller than the maximum pressure P (MAX).
 そのため、最大電流値I(MAX)よりも小さい駆動電流I(C1)がSL(1)4210に出力されるとともに、最大電流値I(MAX)よりも小さい駆動電流I(C3)がSL(3)4230に出力される(S108、S110)。 Therefore, a drive current I (C1) smaller than the maximum current value I (MAX) is output to SL (1) 4210, and a drive current I (C3) smaller than the maximum current value I (MAX) is SL (3). ) 4230 (S108, S110).
 これにより、目標指令圧P(C1)および目標指令圧P(C3)をそれぞれ最大圧P(MAX)に設定する場合に比べて、SL(1)4210およびSL(3)4230で消費される電力を低減することができる。このとき、C1クラッチ3301には、必要油圧PR(C1)が供給され、C3クラッチ3303には、必要油圧PR(C3)よりも高い油圧が供給される。そのため、C1クラッチ3301およびC3クラッチ3303がそれぞれ係合状態に維持される。 Thereby, compared with the case where target command pressure P (C1) and target command pressure P (C3) are each set to maximum pressure P (MAX), electric power consumed by SL (1) 4210 and SL (3) 4230 Can be reduced. At this time, the required hydraulic pressure PR (C1) is supplied to the C1 clutch 3301, and the higher hydraulic pressure than the required hydraulic pressure PR (C3) is supplied to the C3 clutch 3303. Therefore, C1 clutch 3301 and C3 clutch 3303 are each maintained in an engaged state.
 さらに、図10に示すように、ライン圧PLが必要油圧PR(C1)よりも予め定められた値αだけ高く制御される(S104)。そのため、ライン圧PLが脈動したり指令に対してばらついたりして多少低下しても、目標指令圧P(1)および目標指令圧P(3)はライン圧PLを超えにくくなり、駆動電流Iが最大電流値I(MAX)になることが抑制される(図6および図7参照)。 Further, as shown in FIG. 10, the line pressure PL is controlled to be higher than the required hydraulic pressure PR (C1) by a predetermined value α (S104). Therefore, even if the line pressure PL pulsates or varies slightly with respect to the command, the target command pressure P (1) and the target command pressure P (3) are unlikely to exceed the line pressure PL, and the drive current I Is suppressed to the maximum current value I (MAX) (see FIGS. 6 and 7).
 そのため、C1クラッチ3301およびC3クラッチ3303を、非調圧状態ではなく調圧状態に維持することができる。これにより、その後の変速時のC1クラッチ3301およびC3クラッチ3303の制御応答性を向上させることができる。 Therefore, the C1 clutch 3301 and the C3 clutch 3303 can be maintained in the pressure regulation state instead of the non-pressure regulation state. As a result, the control responsiveness of the C1 clutch 3301 and the C3 clutch 3303 during the subsequent shift can be improved.
 すなわち、C1クラッチ3301およびC3クラッチ3303を係合状態に維持する場合においても、SL(1)4210およびSL(3)4230の各スプールが調圧可能位置に制御されるため、その後の変速時において、スプールを調圧可能位置まで移動させるための時間(フルストローク状態においては、調圧面4216を図5の間隔Aだけ移動させる時間)が不要となり、その分だけ変速時間を短縮することができる。 That is, even when the C1 clutch 3301 and the C3 clutch 3303 are maintained in the engaged state, the spools of the SL (1) 4210 and the SL (3) 4230 are controlled to the pressure adjustable positions. The time required to move the spool to the pressure adjustable position (in the full stroke state, the time required to move the pressure adjusting surface 4216 by the interval A in FIG. 5) is not required, and the shift time can be shortened accordingly.
 また、係合状態が維持されている場合においてもSL(1)4210およびSL(3)4230には、最大電流値I(MAX)よりも小さい駆動電流I(C1)、I(C3)が出力されているため、その後の変速時において、駆動電流Iを最大電流値I(MAX)から調圧可能な電流値(すなわちI(PL))まで低下させるための時間が不要となり、その分だけ変速時間を短縮することができる。 Even when the engaged state is maintained, SL (1) 4210 and SL (3) 4230 output drive currents I (C1) and I (C3) smaller than the maximum current value I (MAX). Therefore, at the time of the subsequent shift, there is no need for time to decrease the drive current I from the maximum current value I (MAX) to the current value that can be regulated (that is, I (PL)). Time can be shortened.
 以上のように、本実施例に係る制御装置によれば、ノーマルクローズ型のソレノイドバルブで摩擦係合要素を係合状態に維持する場合、各摩擦係合要素を係合状態に維持可能であってかつ目標指令圧の最大値P(MAX)よりも小さい油圧に応じた駆動電流Iが各リニアソレノイドバルブに出力される。そのため、各リニアソレノイドバルブに供給される駆動電流Iは、最大電流値I(MAX)よりも小さくなる。これにより、摩擦係合要素の係合状態を維持しつつ、係合状態を維持するためにリニアソレノイドバルブで消費される電力を低減することができる。 As described above, according to the control device of the present embodiment, when the friction engagement elements are maintained in the engaged state by the normally closed solenoid valve, each friction engagement element can be maintained in the engaged state. In addition, the drive current I corresponding to the hydraulic pressure smaller than the maximum value P (MAX) of the target command pressure is output to each linear solenoid valve. Therefore, the drive current I supplied to each linear solenoid valve is smaller than the maximum current value I (MAX). Thereby, the electric power consumed by the linear solenoid valve for maintaining the engaged state can be reduced while maintaining the engaged state of the friction engagement element.
 なお、本実施例においては、図9のS104の処理にて、ライン圧PLを必要油圧PRの最大圧よりも予め定められた値αだけ高い値に設定したが、ライン圧PLを必要油圧PRの最大圧そのものの値に設定するようにしてもよい。このようにしても、リニアソレノイドバルブで消費される電力を低減することができる。 In the present embodiment, the line pressure PL is set to a value higher than the maximum pressure of the required hydraulic pressure PR by a predetermined value α in the process of S104 in FIG. 9, but the line pressure PL is set to the required hydraulic pressure PR. The maximum pressure itself may be set to a value. Even in this case, the power consumed by the linear solenoid valve can be reduced.
 また、本実施例においては、非変速中において係合状態に維持すべき摩擦係合要素に対応するリニアソレノイドバルブの制御について説明したが、本発明は、非変速中であることに限定されず、たとえば、変速中においても係合状態に維持すべき摩擦係合要素(たとえば1速から5速までの間で行われる変速におけるC1クラッチ3301)に油圧を供給するソレノイドバルブの制御に、本発明を適用するようにしてもよい。 Further, in the present embodiment, the control of the linear solenoid valve corresponding to the friction engagement element that should be maintained in the engaged state during non-shifting has been described, but the present invention is not limited to being non-shifting. For example, the present invention is used to control a solenoid valve that supplies hydraulic pressure to a friction engagement element (for example, a C1 clutch 3301 in a shift performed between the first speed to the fifth speed) to be kept engaged even during a shift. May be applied.
 <変形例>
 上述の実施例に係るECU8000が実行するプログラムの制御構造を、図9のフローチャートに示す構造に代えて、図11のフローチャートに示す構造に変更してもよい。
<Modification>
The control structure of the program executed by the ECU 8000 according to the above-described embodiment may be changed to the structure shown in the flowchart of FIG. 11 instead of the structure shown in the flowchart of FIG.
 図11を参照して、本変形例に係る制御装置であるECU8000が実行するプログラムの制御構造について説明する。なお、図11に示したフローチャートの中で、前述の図9に示したフローチャートと同じ処理については同じステップ番号を付してある。それらについての処理も同じである。したがって、それらについての詳細な説明はここでは繰返さない。 Referring to FIG. 11, a control structure of a program executed by ECU 8000 which is a control device according to this modification will be described. In the flowchart shown in FIG. 11, the same steps as those in the flowchart shown in FIG. 9 are given the same step numbers. The processing for them is the same. Therefore, detailed description thereof will not be repeated here.
 S200にて、ECU8000は、係合状態に維持すべき摩擦係合要素に対応するリニアソレノイドバルブの各目標指令圧Pを、S102の処理で算出された必要油圧PRに対応させてそれぞれ算出する。たとえば、ECU8000は、前進3速ギヤ段での走行時において、S102の処理で必要油圧PR(C1)および必要油圧PR(C3)が算出された場合、必要油圧PR(C1)を目標指令圧P(C1)とし、必要油圧PR(C3)を目標指令圧P(C3)とする。 In S200, ECU 8000 calculates each target command pressure P of the linear solenoid valve corresponding to the frictional engagement element to be maintained in the engaged state in correspondence with the required hydraulic pressure PR calculated in the process of S102. For example, when the required hydraulic pressure PR (C1) and the required hydraulic pressure PR (C3) are calculated in the process of S102 during traveling at the third forward gear, ECU 8000 uses the required hydraulic pressure PR (C1) as the target command pressure P. (C1), and the required oil pressure PR (C3) is set as the target command pressure P (C3).
 S202にて、ECU8000は、算出された目標指令圧Pごとに、各リニアソレノイドに対する駆動電流Iを算出する。たとえば、ECU8000は、前進3速ギヤ段での走行時において、目標指令圧P(C1)に対応する駆動電流I(C1)、目標指令圧P(C3)に対応する駆動電流I(C3)を、上述した図6の関係に基づいて算出する。 In S202, ECU 8000 calculates drive current I for each linear solenoid for each calculated target command pressure P. For example, ECU 8000 provides drive current I (C1) corresponding to target command pressure P (C1) and drive current I (C3) corresponding to target command pressure P (C3) during traveling at the third forward gear. , Based on the relationship of FIG. 6 described above.
 このようにすると、上述した実施例と同様に前進3速ギヤ段での走行時であって必要油圧PR(C1)が必要油圧PR(C3)よりも高い場合において、図12に示すように、目標指令圧P(C3)を、必要油圧PR(C1)より低い必要油圧PR(C3)に設定することができる(S200)。すなわち、上述した実施例のように目標指令圧P(C1)および目標指令圧P(C3)をともに必要油圧PR(C1)にする場合に比べて、駆動電流I(C3)をさらに低下することができる。そのため、SL(3)4230で消費される電力をさらに低減することができる。 In this way, as in the above-described embodiment, when traveling at the third forward gear stage and the required hydraulic pressure PR (C1) is higher than the required hydraulic pressure PR (C3), as shown in FIG. The target command pressure P (C3) can be set to a required oil pressure PR (C3) lower than the required oil pressure PR (C1) (S200). That is, the drive current I (C3) is further reduced as compared with the case where the target command pressure P (C1) and the target command pressure P (C3) are both set to the required hydraulic pressure PR (C1) as in the above-described embodiment. Can do. Therefore, the power consumed by SL (3) 4230 can be further reduced.
 今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (8)

  1.  油圧式の変速用摩擦係合部と、駆動電流の増大に伴なって出力油圧を増大させて前記摩擦係合部に出力する調圧部とを備えた自動変速機(2000)の制御装置であって、
     前記摩擦係合部を係合した状態に維持する必要がある場合、前記摩擦係合部を係合した状態に維持可能な油圧であってかつ前記出力油圧の目標指令圧の最大値よりも小さい油圧を算出する算出部(8220)と、
     前記算出部(8220)によって算出された油圧に応じた駆動電流を前記調圧部に出力して、前記調圧部を制御する調圧制御部(8230)とを含む、制御装置。
    A control device for an automatic transmission (2000) comprising a hydraulic friction engaging portion for speed change and a pressure adjusting portion for increasing an output hydraulic pressure with an increase in driving current and outputting it to the friction engaging portion. There,
    When it is necessary to maintain the friction engagement portion in the engaged state, the hydraulic pressure can be maintained in the state in which the friction engagement portion is engaged, and is smaller than the maximum value of the target command pressure of the output hydraulic pressure. A calculation unit (8220) for calculating the hydraulic pressure;
    A control apparatus comprising: a pressure adjustment control unit (8230) that outputs a drive current corresponding to the hydraulic pressure calculated by the calculation unit (8220) to the pressure adjustment unit to control the pressure adjustment unit.
  2.  前記摩擦係合部は、複数の摩擦係合要素(3301~3304、3311)を含み、前記調圧部は、前記複数の摩擦係合要素(3301~3304、3311)にそれぞれ対応する複数の調圧弁(4210、4220、4230、4240、4250)を含み、
     前記算出部(8220)は、前記複数の摩擦係合要素(3301~3304、3311)のうち少なくとも2つ以上の摩擦係合要素を係合した状態に維持する必要がある場合、係合した状態に維持する必要がある前記2つ以上の摩擦係合要素ごとに前記油圧を算出し、
     前記調圧制御部(8230)は、前記算出された油圧のうちの最大圧に応じた駆動電流を、係合した状態に維持する必要がある前記2つ以上の摩擦係合要素に対応する調圧弁に出力する、請求の範囲第1項に記載の制御装置。
    The friction engagement portion includes a plurality of friction engagement elements (3301 to 3304, 3311), and the pressure adjustment portion includes a plurality of adjustments respectively corresponding to the plurality of friction engagement elements (3301 to 3304, 3311). Pressure valves (4210, 4220, 4230, 4240, 4250),
    The calculation unit (8220) is in an engaged state when it is necessary to maintain at least two friction engagement elements among the plurality of friction engagement elements (3301 to 3304, 3311) in an engaged state. Calculating the hydraulic pressure for each of the two or more friction engagement elements that need to be maintained at
    The pressure adjustment control unit (8230) adjusts the drive current corresponding to the maximum pressure of the calculated hydraulic pressures corresponding to the two or more friction engagement elements that need to be maintained in an engaged state. The control device according to claim 1, which outputs to the pressure valve.
  3.  前記摩擦係合部は、複数の摩擦係合要素(3301~3304、3311)を含み、前記調圧部は、前記複数の摩擦係合要素(3301~3304、3311)にそれぞれ対応する複数の調圧弁(4210、4220、4230、4240、4250)を含み、
     前記算出部(8220)は、前記複数の摩擦係合要素(3301~3304、3311)のうち少なくとも2つ以上の摩擦係合要素を係合した状態に維持する必要がある場合、係合した状態に維持する必要がある前記2つ以上の摩擦係合要素ごとに前記油圧を算出し、
     前記調圧制御部(8230)は、前記算出された油圧に対応するそれぞれの駆動電流を、前記算出された油圧に対応するそれぞれの調圧弁に出力する、請求の範囲第1項に記載の制御装置。
    The friction engagement portion includes a plurality of friction engagement elements (3301 to 3304, 3311), and the pressure adjustment portion includes a plurality of adjustments respectively corresponding to the plurality of friction engagement elements (3301 to 3304, 3311). Pressure valves (4210, 4220, 4230, 4240, 4250),
    The calculation unit (8220) is in an engaged state when it is necessary to maintain at least two friction engagement elements among the plurality of friction engagement elements (3301 to 3304, 3311) in an engaged state. Calculating the hydraulic pressure for each of the two or more friction engagement elements that need to be maintained at
    2. The control according to claim 1, wherein the pressure regulation control unit (8230) outputs each drive current corresponding to the calculated hydraulic pressure to each pressure regulating valve corresponding to the calculated hydraulic pressure. 3. apparatus.
  4.  前記自動変速機(2000)には、前記調圧部に入力される元圧を調圧する元圧調圧弁(4300)が備えられ、
     前記制御装置は、前記算出された油圧に応じた駆動電流が前記調圧部に前記調圧制御部(8230)によって出力された場合、前記元圧が前記算出された油圧よりも予め定められた値だけ大きくなるように、前記元圧調圧弁(4300)を制御する元圧制御部(8240)をさらに含む、請求の範囲第1項に記載の制御装置。
    The automatic transmission (2000) includes a source pressure regulating valve (4300) that regulates the source pressure input to the pressure regulating unit,
    In the control device, when a drive current corresponding to the calculated hydraulic pressure is output to the pressure regulating unit by the pressure regulation control unit (8230), the original pressure is determined in advance from the calculated hydraulic pressure. 2. The control device according to claim 1, further comprising an original pressure control unit (8240) that controls the original pressure regulating valve (4300) so as to increase by a value.
  5.  油圧式の変速用摩擦係合部と、駆動電流の増大に伴なって出力油圧を増大させて前記摩擦係合部に出力する調圧部とを備えた自動変速機(2000)を制御する制御ユニットが行なう制御方法であって、
     前記摩擦係合部を係合した状態に維持する必要がある場合、前記摩擦係合部を係合した状態に維持可能な油圧であってかつ前記出力油圧の目標指令圧の最大値よりも小さい油圧を算出するステップと、
     前記油圧を算出するステップで算出された油圧に応じた駆動電流を前記調圧部に出力して、前記調圧部を制御するステップとを含む、制御方法。
    Control for controlling an automatic transmission (2000) including a hydraulic shift friction engagement portion and a pressure adjusting portion that increases an output hydraulic pressure as the drive current increases and outputs the pressure to the friction engagement portion. A control method performed by the unit,
    When it is necessary to maintain the friction engagement portion in the engaged state, the hydraulic pressure can be maintained in the state in which the friction engagement portion is engaged, and is smaller than the maximum value of the target command pressure of the output hydraulic pressure. Calculating the oil pressure;
    And a step of outputting a drive current corresponding to the hydraulic pressure calculated in the step of calculating the hydraulic pressure to the pressure regulating unit to control the pressure regulating unit.
  6.  前記摩擦係合部は、複数の摩擦係合要素(3301~3304、3311)を含み、前記調圧部は、前記複数の摩擦係合要素(3301~3304、3311)にそれぞれ対応する複数の調圧弁(4210、4220、4230、4240、4250)を含み、
     前記油圧を算出するステップは、前記複数の摩擦係合要素(3301~3304、3311)のうち少なくとも2つ以上の摩擦係合要素を係合した状態に維持する必要がある場合、係合した状態に維持する必要がある前記2つ以上の摩擦係合要素ごとに前記油圧を算出するステップを含み、
     前記調圧部を制御するステップは、前記算出された油圧のうちの最大圧に応じた駆動電流を、前記係合した状態に維持する必要がある前記2つ以上の摩擦係合要素に対応する調圧弁に出力するステップを含む、請求の範囲第5項に記載の制御方法。
    The friction engagement portion includes a plurality of friction engagement elements (3301 to 3304, 3311), and the pressure adjustment portion includes a plurality of adjustments respectively corresponding to the plurality of friction engagement elements (3301 to 3304, 3311). Pressure valves (4210, 4220, 4230, 4240, 4250),
    The step of calculating the hydraulic pressure is performed when at least two friction engagement elements among the plurality of friction engagement elements (3301 to 3304, 3311) need to be maintained in an engaged state. Calculating the hydraulic pressure for each of the two or more friction engagement elements that need to be maintained at
    The step of controlling the pressure adjusting unit corresponds to the two or more friction engagement elements that need to maintain a driving current corresponding to the maximum pressure of the calculated hydraulic pressure in the engaged state. The control method according to claim 5, comprising a step of outputting to the pressure regulating valve.
  7.  前記摩擦係合部は、複数の摩擦係合要素(3301~3304、3311)を含み、前記調圧部は、前記複数の摩擦係合要素(3301~3304、3311)にそれぞれ対応する複数の調圧弁(4210、4220、4230、4240、4250)を含み、
     前記油圧を算出するステップは、前記複数の摩擦係合要素(3301~3304、3311)のうち少なくとも2つ以上の摩擦係合要素を係合した状態に維持する必要がある場合、係合した状態に維持する必要がある前記2つ以上の摩擦係合要素ごとに前記油圧を算出するステップを含み、
     前記調圧部を制御するステップは、前記算出された油圧に対応するそれぞれの駆動電流を、前記算出された油圧に対応するそれぞれの調圧弁に出力するステップを含む、請求の範囲第5項に記載の制御方法。
    The friction engagement portion includes a plurality of friction engagement elements (3301 to 3304, 3311), and the pressure adjustment portion includes a plurality of adjustments respectively corresponding to the plurality of friction engagement elements (3301 to 3304, 3311). Pressure valves (4210, 4220, 4230, 4240, 4250),
    The step of calculating the hydraulic pressure is performed when at least two friction engagement elements among the plurality of friction engagement elements (3301 to 3304, 3311) need to be maintained in an engaged state. Calculating the hydraulic pressure for each of the two or more friction engagement elements that need to be maintained at
    The range of claim 5, wherein the step of controlling the pressure regulating unit includes a step of outputting each driving current corresponding to the calculated hydraulic pressure to each pressure regulating valve corresponding to the calculated hydraulic pressure. The control method described.
  8.  前記自動変速機(2000)には、前記調圧部に入力される元圧を調圧する元圧調圧弁(4300)が備えられ、
     前記制御方法は、前記油圧を算出するステップで算出された油圧に応じた駆動電流が前記調圧部を制御するステップにて前記調圧部に出力された場合、前記元圧が前記算出された油圧よりも予め定められた値だけ大きくなるように、前記元圧調圧弁(4300)を制御するステップをさらに含む、請求の範囲第5項に記載の制御方法。
    The automatic transmission (2000) includes a source pressure regulating valve (4300) that regulates the source pressure input to the pressure regulating unit,
    In the control method, when the drive current corresponding to the hydraulic pressure calculated in the step of calculating the hydraulic pressure is output to the pressure regulating unit in the step of controlling the pressure regulating unit, the original pressure is calculated. The control method according to claim 5, further comprising a step of controlling said original pressure regulating valve (4300) so as to be larger than a hydraulic pressure by a predetermined value.
PCT/JP2009/050283 2008-02-13 2009-01-13 Control system and control method for automatic transmission WO2009101826A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-031765 2008-02-13
JP2008031765A JP2009191906A (en) 2008-02-13 2008-02-13 Automatic transmission control device, control method, program for actualizing the same, and recording medium recording the same

Publications (1)

Publication Number Publication Date
WO2009101826A1 true WO2009101826A1 (en) 2009-08-20

Family

ID=40956856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050283 WO2009101826A1 (en) 2008-02-13 2009-01-13 Control system and control method for automatic transmission

Country Status (2)

Country Link
JP (1) JP2009191906A (en)
WO (1) WO2009101826A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179970A (en) * 2011-02-28 2012-09-20 Hitachi Automotive Systems Ltd Suspension control device
CN102537314B (en) * 2011-11-04 2014-10-15 浙江吉利汽车研究院有限公司 Main oil pressure control method for automatic transmission
JP2016148397A (en) * 2015-02-12 2016-08-18 株式会社デンソー Hydraulic control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330126A (en) * 2000-05-23 2001-11-30 Toyota Motor Corp Controller for belt type continuously variable transmission
JP3861328B2 (en) * 1996-06-19 2006-12-20 アイシン・エィ・ダブリュ株式会社 Control device for automatic transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861328B2 (en) * 1996-06-19 2006-12-20 アイシン・エィ・ダブリュ株式会社 Control device for automatic transmission
JP2001330126A (en) * 2000-05-23 2001-11-30 Toyota Motor Corp Controller for belt type continuously variable transmission

Also Published As

Publication number Publication date
JP2009191906A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US6908413B2 (en) Driving control apparatus for vehicle and driving control method for vehicle
JP4400617B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
US8244441B2 (en) Automatic transmission control device, transmission device, and power output device
JP5217294B2 (en) VEHICLE CONTROL DEVICE, CONTROL METHOD, PROGRAM FOR MAKING THE METHOD TO COMPUTER COMPUTER, AND RECORDING MEDIUM CONTAINING THE PROGRAM
JP4561889B2 (en) Output torque calculation device
JP2007296958A (en) Control apparatus for vehicle
US8478497B2 (en) Hydraulic control device and hydraulic control method for vehicle automatic transmission
US8226532B2 (en) Control apparatus for automatic transmission, and control method for automatic transmission
JP5257508B2 (en) Drive source control apparatus and control method
JP4623146B2 (en) Vehicle control apparatus and control method
JP2002168331A (en) Control device of automatic transmission
WO2009101826A1 (en) Control system and control method for automatic transmission
JP5447274B2 (en) Control device for continuously variable transmission for vehicle
JP4600540B2 (en) Drive source control device
JP2004116686A (en) Control device of automatic transmission
JP4929929B2 (en) Vehicle control device, control method, program for causing computer to execute the control method, and recording medium recording program
JP5126144B2 (en) Electromagnetic valve device and power transmission device having the same
JP4830718B2 (en) Control device for automatic transmission
JP4811195B2 (en) Vehicle control device
JP4872985B2 (en) Drive source control device
JP2010265918A (en) Device and method for controlling continuously variable transmission
JP5181565B2 (en) VEHICLE CONTROL DEVICE, CONTROL METHOD, PROGRAM USING THE METHOD ON COMPUTER AND RECORDING MEDIUM CONTAINING THE PROGRAM
JP4894778B2 (en) Engine control device
JP4770644B2 (en) Vehicle control device
JP4957566B2 (en) Powertrain control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710946

Country of ref document: EP

Kind code of ref document: A1