WO2009101688A1 - Electric discharge machining device - Google Patents

Electric discharge machining device Download PDF

Info

Publication number
WO2009101688A1
WO2009101688A1 PCT/JP2008/052406 JP2008052406W WO2009101688A1 WO 2009101688 A1 WO2009101688 A1 WO 2009101688A1 JP 2008052406 W JP2008052406 W JP 2008052406W WO 2009101688 A1 WO2009101688 A1 WO 2009101688A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
electrode
shape data
processing
area
Prior art date
Application number
PCT/JP2008/052406
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoko Sendai
Kohtaroh Watanabe
Kazushi Nakamura
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to PCT/JP2008/052406 priority Critical patent/WO2009101688A1/en
Priority to JP2009553307A priority patent/JPWO2009101688A1/en
Publication of WO2009101688A1 publication Critical patent/WO2009101688A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45221Edm, electrical discharge machining, electroerosion, ecm, chemical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • This invention relates to generation of machining conditions and determination of a machining order of an electric discharge machining apparatus.
  • Patent Document 1 discloses a technique for extracting workpiece data from design information and creating a machining program and a movement program based on the information.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an electric discharge machining apparatus that performs machining as requested by a user without requiring user know-how and special labor.
  • An electric discharge machining apparatus comprises: input means for inputting simulation shape data which is a simulation result of cutting based on designed shape data; electrode shape data input means for inputting electrode shape data; and the simulation shape A calculation means for calculating interference between the data and the electrode shape data, and calculating a processing area according to a change in processing depth; a processing condition setting means for setting a processing condition according to the processing area obtained by the calculation means; The machining conditions set by the machining condition setting means are used to control the discharge between the electrode and the workpiece to perform the machining.
  • the data after cutting that is, the data before electric discharge machining
  • an accurate machining area can be calculated by adjusting the size of the internal model in accordance with the actual model, and appropriate machining conditions can be calculated. There is an effect that can be obtained.
  • FIG. 3 is an operation flowchart of a machining condition generation unit in the first embodiment. It is a figure which shows the electrode shape after reduction, and the electrode shape before reduction. 10 is an operation flowchart of a machining condition generation unit in the second embodiment. It is a conceptual diagram at the time of processing using a some electrode. 14 is an operation flowchart of a machining condition generation unit in the third embodiment. 10 is an operation flowchart of a machining condition generation unit in the fourth embodiment. It is a figure which shows an analysis condition setting screen. 10 is an operation flowchart of a machining condition generation unit in the fifth embodiment. It is a figure explaining the machining allowance in a workpiece.
  • 20 is a flowchart for determining processing conditions according to the processing area in the sixth embodiment.
  • 20 is an operation flowchart of a machining condition generation unit in the eighth embodiment.
  • 20 is a flowchart for obtaining an area change rate in the eighth embodiment.
  • 20 is an operation flowchart of the machining condition generation unit in the ninth embodiment.
  • 38 is a flowchart for obtaining an area change in the ninth embodiment. It is a figure explaining the leftover part at the time of cutting.
  • FIG. 1 is a diagram showing a schematic configuration in the present embodiment showing a flow of control inside an electric discharge machining apparatus based on data from CAD (Computer Aided Design) and a cutting simulation apparatus.
  • CAD Computer Aided Design
  • FIG. 1 is a diagram showing a schematic configuration in the present embodiment showing a flow of control inside an electric discharge machining apparatus based on data from CAD (Computer Aided Design) and a cutting simulation apparatus.
  • CAD Computer Aided Design
  • FIG. 1 is a diagram showing a schematic configuration in the present embodiment showing a flow of control inside an electric discharge machining apparatus based on data from CAD (Computer Aided Design) and a cutting simulation apparatus.
  • CAD Computer Aided Design
  • the cutting simulation apparatus 2 in FIG. 1 inputs a cutting NC program for cutting, virtually moves the cutting tool according to the tool path based on the cutting program, and selects a portion through which the tool has passed.
  • the post-cutting shape data 4 is created by calculating the difference from the original shape. Note that the cutting simulation device 2 holds the data of the dimensional shape of the cutting tool, calculates the shape of the part left behind by the selected cutting tool, and creates post-cutting shape data.
  • the CAD 1 also designs an electrode for electric discharge machining and similarly creates electrode shape data.
  • the electrode shape data will be described as data before reduction by electric discharge machining.
  • the reduction of the electrode shape data is generally performed when machining is performed with an electrode for electric discharge machining having the same dimensions as the shape of the workpiece designed by CAD.
  • the electrode is processed using a ⁇ 9.2mm electrode considering the swing and gap. Done.
  • the electric discharge machining apparatus 3 generates electric discharge between the electrode 4 and the workpiece 5 to perform machining, and controls the relative movement between the electrode 4 and the workpiece 5 and the supplied energy. To process the workpiece 5.
  • the electric discharge machining apparatus 3 inputs solid shape data input unit 11 that inputs electrode shape data before reduction from CAD 1 and shape data after cutting from cutting simulation device 2 as a shape expressed by a triangular patch.
  • Each function includes a triangular patch data input unit 12, a required specification input unit 13 for inputting required specifications, a machining condition generation unit 14, and a machining control unit 15 for controlling electric discharge machining.
  • the triangular patch is a data format normally held by a three-dimensional CAD that represents a three-dimensional object with a small triangular surface.
  • FIG. 2 is a flowchart showing the operation of the machining condition generation unit 14.
  • the machining condition generation unit 14 includes, for example, required specifications such as electrode material, workpiece material, and finish surface roughness input by the user via the required specification input unit, electrode shape input via the solid data input unit 11, and cutting Data on the post-cutting shape including the actual unprocessed portion simulated by the simulation apparatus 1 is input. Then, the electrode shape and the post-cutting simulation shape data are converted into a triangular patch data format to convert the data into an area extraction model, and the interference between the electrode 4 and the workpiece 5 according to the processing depth (processing progress). A part (part to be subjected to electric discharge machining) is calculated, and a DB indicating the machining depth and the machining area is created.
  • a machining condition corresponding to the machining area corresponding to the required specification and machining depth is determined, and electric discharge machining is performed via the machining control unit 15.
  • the machining area is calculated based on the actual shape of the workpiece 5 in which there are uncut parts and the like that are actually machined and simulated by the cutting simulation device 2, the machining area should be actually machined. There is an effect that an appropriate processing condition according to the processing area is generated.
  • the post-cutting shape to be input is obtained by moving the cutting tool along the tool path and calculating the difference from the original shape by passing the tool, but the three-dimensional shape represented by the triangular patch is a CAD user. It is possible and practical to perform complex calculations that are difficult with calculations between the solid models created by H.
  • the shape after cutting is assumed to be a shape expressed by a triangular patch. Instead of a triangular patch, a polygon mesh other than a triangular patch or a three-dimensional shape is expressed by XY coordinates and a Z height. Even if the map is used, the same effect as in the first embodiment is obtained.
  • Embodiment 2 the electrode shape data before the reduction is used, but the electrode shape data after the reduction may be used.
  • the electrode shape data before reduction is actually performed by adding the thickness corresponding to the reduction amount to the electrode shape data after reduction, and actually performing electric discharge machining.
  • the electrode data is fattened by the reduced amount and converted into an area extraction model.
  • the interference part (the part to be subjected to electric discharge machining) between the electrode 4 and the workpiece 5 corresponding to the machining depth (progress of machining) is calculated, and a DB indicating the machining depth and the machining area is created.
  • Embodiment 3 a case where a workpiece is processed using a plurality of electrodes will be described.
  • the processing amount at each electrode varies greatly depending on the processing order. For example, when a final machining shape as shown in FIG. 5 is machined, a portion to be subjected to electric discharge machining after cutting is a hatched area.
  • the processing order and the electrode shape are input by the user (specifically, the electrode shape data sent from CAD1 is displayed and the order is selected), This is the one that optimally sets the processing conditions for each electrode.
  • the processing order of each electrode used for processing is input and the shape of each electrode is input.
  • the interference part with a to-be-processed object is calculated for every electrode to be used, and the electrode 4 according to processing depth (progress of processing)
  • the interference part (the part to be subjected to electric discharge machining) of the workpiece 5 is calculated and a DB indicating the machining depth and the machining area is created.
  • an interference portion (electric discharge machining portion) by the electrode is removed from a portion to be removed by electric discharge machining, and preparation for calculation of an interference portion at the next electrode is performed.
  • the processing conditions corresponding to the processing area corresponding to the required specifications and the processing depth are determined, and the processing conditions are determined repeatedly until the processing conditions of all the electrodes used for processing are determined.
  • the processing area for processing with each electrode can be accurately calculated by specifying the processing order and electrode shape for each electrode. Therefore, the optimum machining conditions are selected, and high-speed and high-precision machining can be performed.
  • Embodiment 4 has a function of estimating the machining time with respect to the third embodiment, and calculates the total machining time corresponding to the case where the order is changed, and determines the order so that the machining time is shortened. is there.
  • a processing order possibility table that assumes the processing order of each electrode according to the number of all input electrodes. Is created. This processing order possibility table exists for the number of floor combinations when all the electrodes are different in shape.
  • the shortest machining time is initialized, and the machining conditions in the inputted machining order are determined in the same manner as in the third embodiment. Then, for example, the machining time is obtained by using the technique disclosed in WO2004 / 103625, and “minimum machining time> machining time” is determined. If the determination result is positive, the machining time is input to the minimum machining time.
  • the processing order is the shortest processing order.
  • the shortest processing order in the combination can be obtained by repeatedly executing the above operations for all the processing orders (for example, six kinds of processing orders for the three types of electrodes as described above). As a change.
  • the processing condition generation unit 14 estimates the processing time in each processing order according to the electrode shape input by the user and the type of electrode used (specifically, an example of processing order input). Since the order is determined so as to be shorter, there is an effect that high-speed machining can be performed without being aware of the machining order. In particular, the combination of a low input energy such as rib processing and normal bottom processing is highly effective.
  • Embodiment 5 in the fifth embodiment, whether or not the workpiece model that is the final shape of the workpiece includes discharge allowance and whether or not the electrode model includes a reduction amount are input. .
  • the screen shown in FIG. 8 is displayed, and the analysis conditions in the machining condition generation unit 14 are set by the user. Specifically, if the work model includes the discharge allowance as in the cutting simulation result, check “immediately after cutting”, and if not, check “final product”. In the case of “final product”, a screen for inputting a machining allowance to be subjected to electric discharge machining is displayed.
  • the final product is a finished product that has been subjected to cutting processing ⁇ electric discharge processing ⁇ polishing processing. For example, in the case of mold processing, it refers to the mold itself.
  • the electrode model contains a reduction amount
  • check “No reduction”, if not, check “Reduced” and if it contains, a screen for entering the reduction amount. indicate.
  • FIG. 9 is an operation flowchart of the machining condition generation unit 14.
  • the electrode is an electrode to which reduction amounts such as swing and gap are added. Therefore, the process shifts to shape input after the cutting simulation. However, in the case of the model before reduction, the electrode data is thickened by the amount of reduction such as swinging and gap.
  • the workpiece model is immediately after cutting, the process proceeds to a process for converting to a model for area extraction. If the workpiece model is a final product, processing is performed to thicken the post-cutting model of the machining allowance. . To thicken the model after cutting by the machining allowance refers to fleshing the machining area as shown in FIG. That is, as shown in FIG.
  • the interference part between the electrode and the workpiece is calculated, a DB indicating the relationship between the machining depth and the machining area is created, the machining conditions according to the machining area are determined, and electric discharge machining is performed. I do.
  • the actual electrode model data possessed by the user may be after reduction or before reduction in consideration of the discharge gap and fluctuation, but the user has to bother the shape on the CAD. Even if it is not created, there is an effect that the processing conditions can be obtained using the shape on hand.
  • the shape type is input from the screen. However, any form that can be imported from the outside, such as a file, may be used.
  • Embodiment 6 an example of a flow part for calculating an interference part between an electrode and a workpiece in the first embodiment and creating a DB indicating a processing depth and a processing area and a flow part for determining a processing condition from the area will be described.
  • the area corresponds to the processing conditions
  • a table in which the processing conditions E0 to E4 are set in advance according to the corresponding area to be processed as shown in FIG. 11 is provided.
  • the processing conditions suitable for the corresponding area to be selected are selected.
  • the processing conditions and the area are generally related by current density.
  • the processing conditions are switched based on the corresponding area to be processed based on the table shown in FIG.
  • FIG. 12 is a flowchart showing an operation for determining the processing conditions according to the processing area.
  • the machining areas A0 and A1 at the machining start position D0 and the machining end position (final depth) D1 are first determined based on the actual shape in which there are uncut portions that are actually cut, and the corresponding machining conditions E0 and E1 are obtained. It is obtained from the table of FIG. If the machining strips E0 and E1 are the same, the machining area range to be machined is the same at the machining start position D0 and the machining end position D1, and thus the machining condition A0 is output and the process ends.
  • the timing for switching the machining condition from E0 to E1 exists between the center depth D2 and the machining end position D1.
  • the machining condition corresponding to the area A2 at the center depth D2 is the machining condition E1
  • the timing for switching the machining condition from E0 to E1 exists between the center depth D2 and the machining start position D0. . That is, in order to determine the position for switching the machining conditions, in the former case, the area A3 of D3 between the center depth D2 and the machining end position D1, and in the latter case, the center depth D2 and the machining start position D0.
  • Dn is set to a depth for switching to E1.
  • the machining conditions are two stages, but the same processing is performed when the machining conditions are switched to a plurality of stages instead of two stages.
  • the end condition is set until the step width becomes 5 ⁇ m or less, other values may be used instead of 5 ⁇ m.
  • the shape after cutting is generally complicated, it is necessary to reduce the number of calculations of the interference portion between the electrode and the workpiece as much as possible.
  • the conventional method since the area corresponding to the depth position is obtained, if the step of the depth position for obtaining the area is roughened, an error in the depth direction occurs, and the step of the depth position for obtaining the area is made fine. It becomes a huge amount of calculation.
  • the data of the machining condition DB normally held by the die-sinking electric discharge machine is not continuous but discrete, it is only necessary to know the machining depth at the timing in the area where the machining conditions need to be switched.
  • the present embodiment since the number of calculations of the interference portion between the electrode and the workpiece is reduced, there is an effect that the calculation time is short.
  • Embodiment 7 FIG.
  • the machining area is obtained from the shape after the cutting simulation, and the machining conditions according to the corresponding area to be machined are associated in advance with the table shown in FIG. 11, but the machining area is separately input by the user, It may be set by input from a file.
  • the machining condition is changed at a location where the area changes in accordance with the input, and the number of times of calculating the interference portion between the electrode and the workpiece is reduced, so that the calculation time is short.
  • Embodiment 8 FIG. In the eighth embodiment, as shown in FIG. 13, the machining area is obtained from the shape after the cutting simulation, and the depth when the change rate of the machining area is a times or more (a> 1.0) is obtained. The machining conditions are changed at the depth position. Processing corresponding to the change in the processing area will be described with reference to the flowchart of FIG.
  • the machining areas A0 and A1 at the machining start position D0 and the machining end position (final depth) D1 are first determined based on the actual shape in which there are uncut portions that are actually cut. Then, it is determined whether or not the rate of change between the machining areas A0 and A1 is a times. If the rate of change in machining is a times or less, there is little change in the machining area and there is no need to change the machining conditions. A machining condition corresponding to the area A0 of the machining start position D0 is obtained, and electric discharge machining is performed.
  • the rate of change between A0 and A1 is a times or more, it can be determined that there is a large change in the area to be machined between the machining start position D0 and the machining end position D1, and the machining conditions are set for the area A0 on the way. Must be changed for A1. Therefore, as in the sixth embodiment, since there is a change in the machining area between the machining start position D0 and the machining end position D1, the center depth D2 between the machining start position D0 and the machining end position D1 is obtained.
  • the area A2 at the center depth D2 is compared with the area A0 at the machining start position D0. If the rate of change between the area A0 and the area A2 is a or less, the machining depth having a large area change is the center depth D2. And the processing end position D1. On the other hand, if the change rate of the area A2 and the area A2 at the center depth D2 is a or more, the machining depth having a large area change exists between the center depth D2 and the machining start position D0.
  • the machining conditions are two stages, but the same processing is performed when the machining conditions are switched to a plurality of stages instead of two stages.
  • the end condition is set until the step width becomes 5 ⁇ m or less, other values may be used instead of 5 ⁇ m.
  • the processing condition DB corresponding to the area for calculating the depth needs to be determined in advance. However, when this method is used, the relationship between the area and the depth can be obtained even if it is not determined in advance. it can.
  • Embodiment 9 FIG. In the eighth embodiment, the machining depth at which the machining conditions change is obtained based on the change rate of the machining area. However, in the present embodiment, as shown in FIG. When it becomes, the depth is obtained, and the machining conditions are changed at the depth position. Processing corresponding to the change in the processing area will be described with reference to the flowchart of FIG.
  • the machining areas A0 and A1 at the machining start position D0 and the machining end position (final depth) D1 are first determined based on the actual shape in which there are uncut portions that are actually cut. Then, it is determined whether or not the difference between the machining areas A0 and A1 is equal to or greater than b (mm 2 ). If the change in area is equal to or less than b (mm 2 ), it is not necessary to change the machining conditions, so machining is started. A machining condition corresponding to the area A0 of the position D0 is obtained, and electric discharge machining is performed.
  • the area A2 at the center depth D2 is compared with the area A0 at the machining start position D0, and if the area change between the area A0 and the area A2 is equal to or less than b (mm 2 ), the machining depth having a large area change is It exists between the center depth D2 and the processing end position D1. On the other hand, if the area change between the area A2 and the area A2 at the center depth D2 is equal to or greater than b (mm 2 ), the machining depth having a large area change exists between the center depth D2 and the machining start position D0.
  • the machining conditions are two stages, but the same processing is performed when the machining conditions are switched to a plurality of stages instead of two stages.
  • the end condition is set until the step width becomes 5 ⁇ m or less, other values may be used instead of 5 ⁇ m.
  • the area change b (mm 2 ) in the present embodiment needs to be set to an appropriate value as compared with the area increment in the general processing condition DB. For example, in the case of a copper electrode or an St workpiece, Use 10 etc.
  • the processing condition DB corresponding to the area for calculating the depth needs to be determined in advance. However, when this method is used, the relationship between the area and the depth can be obtained even if it is not determined in advance. it can.
  • the present invention can be applied to a program creation device for performing electric discharge machining.

Abstract

An electric discharge machining device includes an input means (12) to input the simulation profile data being a simulation result of a cutting work according to the designed profile data, an electrode profile data input means (11) to input the electrode profile data generated by a CAD (1), a computational means (14) to compute an interference of the simulation profile with the electrode profile data and to calculate a machining area in relation to change in the machining depth, a machining condition setting means (14) to set up a machining condition according to the machining area calculated by the computational means, and a machining control section which controls discharging between electrodes and a workpiece using the machining condition set up by the machining condition setting means to proceed the machining. Such an arrangement reflects any uncut portion left in a cutting simulation result, thereby reducing the burden on a worker.

Description

放電加工装置EDM machine
 この発明は、放電加工装置の加工条件生成と加工順序決定に関するものである。 This invention relates to generation of machining conditions and determination of a machining order of an electric discharge machining apparatus.
 製品の設計情報を基にCAD装置で設計された被加工物(金型)と電極の設計情報を入力し、数値制御プログラム(以下、NCプログラムと称す)を作成するのに必要な電極と被加工物のデータを設計情報から取り出して、その情報を基に加工プログラムと移動プログラムを作成する技術が、例えば特許文献1に開示されている。
そして、該特許文献1には、被加工物の放電加工前の情報から、下取り加工部分があれば下取り形状寸法、加工孔位置、加工個数、仕上げ面あらさ、加工精度、被加工物の材質、また、最終金型の放電加工部分の形状データから加工深さなどの加工プログラム作成に必要となるデータを加工物設計情報から解析して収集し、下取り形状と電極が所定深さに達したときに得られる加工形状を比較してZ軸方向に複数の位置で断面積を求め、最適な加工電流値を求めている。
Input the workpiece (mold) and electrode design information designed by the CAD device based on the product design information and create the numerical control program (hereinafter referred to as NC program) and the electrode and workpiece For example, Patent Document 1 discloses a technique for extracting workpiece data from design information and creating a machining program and a movement program based on the information.
And in this patent document 1, from the information before the electric discharge machining of the workpiece, if there is a trade-in processing portion, the trade-in shape dimension, the machining hole position, the machining number, the finished surface roughness, the machining accuracy, the material of the workpiece, In addition, when data required for creating machining programs such as machining depth is analyzed and collected from the shape data of the electric discharge machining part of the final mold from the workpiece design information, when the trade-in shape and electrode reach a predetermined depth The cross-sectional areas are obtained at a plurality of positions in the Z-axis direction by comparing the obtained machining shapes, and the optimum machining current value is obtained.
特開2003-291033号公報Japanese Patent Laid-Open No. 2003-291033
 一般に、所定の形状を彫り込む放電加工においては、放電加工前に切削加工が可能な領域は、切削加工等により下取り加工を行っているため、下取り加工後の放電加工工程においては、加工面積が加工深さに応じて一定ではなく、複雑に変化することとなる。
そして、放電加工においては、加工面積を考慮して加工条件を生成している。
 さて、特許文献1に記載された技術は、CADで作成された設計上の放電加工前形状、すなわち切削加工後の下取り形状寸法をワークモデルとして用いて加工条件を求めているが、実際に放電加工を行う対象となる切削加工後形状と、CAD上で作成された下取り形状寸法とは、切削工具の関係から取り残し部分の差が生じてしまうことから、生成される加工条件は最適なものとはならない。
すなわち、CAD上で切削加工後の下取り形状寸法を作成し、切削加工したとしても、切削工具の影響等により取り残し部分が発生してしまい、この取り残し部分の存在が、生成された加工条件に大きな影響を与えてしまう。(図17参照)
換言すれば、通常のCAD設計工程においては、実際の切削加工後形状を作成することができない。
また、これらCAD上での切削加工後の下取り形状のワークモデルは、通常のCAD設計工程において、最終ワーク形状から切削工具が入らない領域を埋めるなどの擬似的に切削加工領域を考慮し作成しなければならないため、その作成に多くの手間を有していた。
Generally, in electric discharge machining that engraves a predetermined shape, the area that can be cut before electric discharge machining is trade-in processed by cutting or the like. Depending on the processing depth, it is not constant and changes in a complicated manner.
In electric discharge machining, machining conditions are generated in consideration of the machining area.
The technique described in Patent Document 1 calculates machining conditions using a pre-designed shape of electric discharge machining created by CAD, that is, a trade-in shape dimension after cutting, as a work model. Since the shape after cutting that is the object to be processed and the trade-in shape dimensions created on the CAD result in a difference in the remaining part due to the relationship between the cutting tools, the generated machining conditions are optimal. Must not.
In other words, even if a trade-in shape dimension after cutting is created on a CAD and cut, a leftover portion is generated due to the influence of the cutting tool, etc., and the presence of this leftover portion is greatly influenced by the generated machining conditions. It will have an effect. (See Figure 17)
In other words, the actual post-cut shape cannot be created in the normal CAD design process.
Also, these trade-in workpiece models after cutting on CAD are created in consideration of the cutting area, such as filling the area where the cutting tool does not enter from the final workpiece shape in the normal CAD design process. It had to be a lot of work to create it.
 この発明は、上記のような問題点を解決するためになされたものであり、ユーザのノウハウや特別な手間を必要とせずユーザ要求通りの加工を行う放電加工装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an electric discharge machining apparatus that performs machining as requested by a user without requiring user know-how and special labor.
 この発明に係る放電加工装置は、設計された形状データを基に切削加工のシミュレーション結果であるシミュレーション形状データを入力する入力手段と、電極形状データを入力する電極形状データ入力手段と、該シミュレーション形状データと上記電極形状データとの干渉を計算し、加工深さ変化に伴う加工面積を計算する計算手段と、この計算手段で求めた加工面積に応じて、加工条件を設定する加工条件設定手段と、この加工条件設定手段で設定された加工条件を用いて、電極、被加工物間の放電を制御し、加工を行うものである。 An electric discharge machining apparatus according to the present invention comprises: input means for inputting simulation shape data which is a simulation result of cutting based on designed shape data; electrode shape data input means for inputting electrode shape data; and the simulation shape A calculation means for calculating interference between the data and the electrode shape data, and calculating a processing area according to a change in processing depth; a processing condition setting means for setting a processing condition according to the processing area obtained by the calculation means; The machining conditions set by the machining condition setting means are used to control the discharge between the electrode and the workpiece to perform the machining.
 この発明によれば、切削加工後データすなわち放電加工前データを厳密に表しているので、従来にない正確な加工面積を計算することができ、適切な加工条件を求めることができるという効果がある。
 この発明によれば、ワークモデルと電極モデルの種類を入力するようにしたので、内部モデルの大きさを実際に合わせて調整することで正確な加工面積を計算することができ、適切な加工条件を求めることができるという効果がある。
According to the present invention, since the data after cutting, that is, the data before electric discharge machining, is accurately expressed, it is possible to calculate an accurate machining area that is not conventionally available and to obtain appropriate machining conditions. .
According to the present invention, since the type of the work model and the electrode model is input, an accurate machining area can be calculated by adjusting the size of the internal model in accordance with the actual model, and appropriate machining conditions can be calculated. There is an effect that can be obtained.
放電加工装置の概略構成を示す概略図である。It is the schematic which shows schematic structure of an electric discharge machining apparatus. 実施の形態1における加工条件生成部の動作フローチャートである。3 is an operation flowchart of a machining condition generation unit in the first embodiment. 減寸後電極形状、減寸前電極形状を示す図である。It is a figure which shows the electrode shape after reduction, and the electrode shape before reduction. 実施の形態2における加工条件生成部の動作フローチャートである。10 is an operation flowchart of a machining condition generation unit in the second embodiment. 複数の電極を用いて加工する際の概念図である。It is a conceptual diagram at the time of processing using a some electrode. 実施の形態3における加工条件生成部の動作フローチャートである。14 is an operation flowchart of a machining condition generation unit in the third embodiment. 実施の形態4における加工条件生成部の動作フローチャートである。10 is an operation flowchart of a machining condition generation unit in the fourth embodiment. 解析条件設定画面を示す図である。It is a figure which shows an analysis condition setting screen. 実施の形態5における加工条件生成部の動作フローチャートである。10 is an operation flowchart of a machining condition generation unit in the fifth embodiment. 被加工物における取り代を説明する図である。It is a figure explaining the machining allowance in a workpiece. 実施の形態6における加工面積に応じた加工条件が設定されたテーブルである。It is the table in which the process conditions according to the process area in Embodiment 6 were set. 実施の形態6における加工面積に応じて加工条件を決定するフローチャートである。20 is a flowchart for determining processing conditions according to the processing area in the sixth embodiment. 実施の形態8における加工条件生成部の動作フローチャートである。20 is an operation flowchart of a machining condition generation unit in the eighth embodiment. 実施の形態8における面積変化率を求めるフローチャートである。20 is a flowchart for obtaining an area change rate in the eighth embodiment. 実施の形態9における加工条件生成部の動作フローチャートである。20 is an operation flowchart of the machining condition generation unit in the ninth embodiment. 実施の形態9における面積変化を求めるフローチャートである。38 is a flowchart for obtaining an area change in the ninth embodiment. 切削加工時の取り残し部分を説明する図である。It is a figure explaining the leftover part at the time of cutting.
実施の形態1.
 図1は、CAD(Computer Aided Design)、切削シミュレーション装置からのデータに基づき、放電加工装置内部の制御の流れを示した本実施の形態における概略構成を示す図である。
 放電加工により金型を製造する際には、一般に、放電加工前に切削加工が可能な領域は、加工時間を短縮すべく切削加工等により下取り加工を行っている。
すなわち、設計に際して、ユーザは、3次元のCAD1等を用いて製品(被加工物)の設計を行い、形状データとして定義情報または製品図面を作成し、この形状データを基にCAM(Computer Aided Manufacturing)が、切削工具経路等の金型を切削加工するための切削加工用NCプログラムを出力する。
そして、CAMから出力されたNCプログラムに基づいて、切削工具等が切削を行い、放電加工前の下取り加工済み金型が製造される。
その後、下取り加工済み金型を放電加工するための放電加工用NCプログラムに基づいて放電加工が行われ、最終製品として加工が施される。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration in the present embodiment showing a flow of control inside an electric discharge machining apparatus based on data from CAD (Computer Aided Design) and a cutting simulation apparatus.
When a die is manufactured by electric discharge machining, in general, in a region where cutting can be performed before electric discharge machining, trade-in processing is performed by cutting or the like in order to shorten the machining time.
That is, when designing, a user designs a product (workpiece) using a three-dimensional CAD 1 or the like, creates definition information or product drawings as shape data, and uses CAM (Computer Aided Manufacturing) based on the shape data. ) Outputs a cutting NC program for cutting a die such as a cutting tool path.
Then, based on the NC program output from the CAM, a cutting tool or the like performs cutting, and a trade-in die that has undergone trade-in before electric discharge machining is manufactured.
Thereafter, electric discharge machining is performed based on an NC program for electric discharge machining for electric discharge machining of a trade-in-processed mold, and machining is performed as a final product.
 図1における切削加工シミュレーション装置2は、切削加工するための切削加工用NCプログラムを入力し、該切削加工用プログラムに基づいて、仮想的に切削工具を工具経路に従い動かし、工具が通過した部分を元の形状から差演算することによって切削加工後形状データ4を作成する。
なお、切削加工シミュレーション装置2は、切削工具の寸法形状のデータを保有しており、選択された切削工具による取り残し部分の形状を演算し、切削加工後形状データを作成する。
The cutting simulation apparatus 2 in FIG. 1 inputs a cutting NC program for cutting, virtually moves the cutting tool according to the tool path based on the cutting program, and selects a portion through which the tool has passed. The post-cutting shape data 4 is created by calculating the difference from the original shape.
Note that the cutting simulation device 2 holds the data of the dimensional shape of the cutting tool, calculates the shape of the part left behind by the selected cutting tool, and creates post-cutting shape data.
 また、CAD1は、放電加工を行う電極の設計も行い、電極形状データを同様に作成する。
なお、電極形状データは、放電加工による減寸前のデータとして説明する。
ここで、電極形状データの減寸とは、CADにより設計された被加工物の形状と同じ寸法の放電加工用電極で加工すると、放電ギャップ分よけいに加工されることとなることから、一般的に、揺動、ギャップ等を考慮した減寸が行われ、例えば、φ10mmの被加工物の加工形状に対して、電極は揺動、ギャップを考慮し、φ9.2mmの電極を用いて加工が行われる。
The CAD 1 also designs an electrode for electric discharge machining and similarly creates electrode shape data.
The electrode shape data will be described as data before reduction by electric discharge machining.
Here, the reduction of the electrode shape data is generally performed when machining is performed with an electrode for electric discharge machining having the same dimensions as the shape of the workpiece designed by CAD. In addition, for example, with respect to the processed shape of a workpiece of φ10mm, the electrode is processed using a φ9.2mm electrode considering the swing and gap. Done.
 放電加工装置3は、電極4と被加工物5との極間に放電を発生させ、加工を行うものであり、電極4と被加工物5との相対移動の制御、供給するエネルギーの制御を行い、被加工物5を加工する。
本実施の形態における放電加工装置3は、CAD1から減寸前の電極形状データを入力するソリッドデータ入力部11、切削シミュレーション装置2から切削加工後の形状データを三角パッチで表現された形状として入力する三角パッチデータ入力部12、要求仕様を入力する要求仕様入力部13、加工条件生成部14、放電加工を制御する加工制御部15の各機能を有している。
なお、三角パッチとは、3次元物体を小さな三角の面で表現した3次元CAD等が通常保有しているデータ形式である。
The electric discharge machining apparatus 3 generates electric discharge between the electrode 4 and the workpiece 5 to perform machining, and controls the relative movement between the electrode 4 and the workpiece 5 and the supplied energy. To process the workpiece 5.
The electric discharge machining apparatus 3 according to the present embodiment inputs solid shape data input unit 11 that inputs electrode shape data before reduction from CAD 1 and shape data after cutting from cutting simulation device 2 as a shape expressed by a triangular patch. Each function includes a triangular patch data input unit 12, a required specification input unit 13 for inputting required specifications, a machining condition generation unit 14, and a machining control unit 15 for controlling electric discharge machining.
The triangular patch is a data format normally held by a three-dimensional CAD that represents a three-dimensional object with a small triangular surface.
 図2は、加工条件生成部14の動作を示すフローチャートである。
加工条件生成部14は、要求仕様入力部を介してユーザより入力された例えば電極材質、ワーク材質、仕上げ面粗さ等の要求仕様、ソリッドデータ入力部11を介して入力された電極形状、切削シミュレーション装置1でシミュレーションされた実際の加工取り残し部分等を含む切削シミュレーション後形状のデータを入力する。
そして、電極形状と切削シミュレーション後形状のデータを三角パッチのデータ形式とすることで面積抽出用のモデルに変換し、加工深さ(加工の進行)に応じた電極4と被加工物5の干渉部分(放電加工する部分)を計算し、加工深さと加工面積を示すDBを作成する。なお、DB作成方法としては、例えば、WO2004/103625に示される技術等が存在する。
そして、要求仕様と加工深さに応じた加工面積に応じた加工条件を決定し、加工制御部15を介して放電加工を行う。
FIG. 2 is a flowchart showing the operation of the machining condition generation unit 14.
The machining condition generation unit 14 includes, for example, required specifications such as electrode material, workpiece material, and finish surface roughness input by the user via the required specification input unit, electrode shape input via the solid data input unit 11, and cutting Data on the post-cutting shape including the actual unprocessed portion simulated by the simulation apparatus 1 is input.
Then, the electrode shape and the post-cutting simulation shape data are converted into a triangular patch data format to convert the data into an area extraction model, and the interference between the electrode 4 and the workpiece 5 according to the processing depth (processing progress). A part (part to be subjected to electric discharge machining) is calculated, and a DB indicating the machining depth and the machining area is created. As a DB creation method, for example, there is a technique shown in WO2004 / 103625.
Then, a machining condition corresponding to the machining area corresponding to the required specification and machining depth is determined, and electric discharge machining is performed via the machining control unit 15.
 本実施の形態によれば、切削シミュレーション装置2でシミュレーションした実際に切削加工された取り残し部分等が存在する被加工物5の実形状に基づいて、加工面積計算を行うため、実際に加工すべき加工面積に応じた適切な加工条件が生成されるという効果がある。
また、入力する切削加工後形状は切削工具を工具経路に従って動かし工具が通過した部分を元の形状から差演算することによって求めるものであるが、三角パッチで表される3次元形状はCADでユーザが作成するソリッドモデル同士の演算では困難な複雑な演算を高速に行うことが可能であり実用的である。
 実施の形態1では切削加工後形状を三角パッチで表現された形状であるものとしたが、三角パッチではなく、三角パッチ以外のポリゴンメッシュや3次元形状をXY座標とZ高さで表現するZマップを用いても実施の形態1と同じ効果がある。
According to the present embodiment, since the machining area is calculated based on the actual shape of the workpiece 5 in which there are uncut parts and the like that are actually machined and simulated by the cutting simulation device 2, the machining area should be actually machined. There is an effect that an appropriate processing condition according to the processing area is generated.
In addition, the post-cutting shape to be input is obtained by moving the cutting tool along the tool path and calculating the difference from the original shape by passing the tool, but the three-dimensional shape represented by the triangular patch is a CAD user. It is possible and practical to perform complex calculations that are difficult with calculations between the solid models created by H.
In Embodiment 1, the shape after cutting is assumed to be a shape expressed by a triangular patch. Instead of a triangular patch, a polygon mesh other than a triangular patch or a three-dimensional shape is expressed by XY coordinates and a Z height. Even if the map is used, the same effect as in the first embodiment is obtained.
実施の形態2.
 実施の形態1では、減寸前の電極形状データを用いるようにしたが、減寸後の電極形状データでもよい。
その場合は、図3に示されるように、斜線部分の加工を行うことから、減寸後電極形状データに対し減寸量分の厚みを付加し、実際に放電加工を行う減寸前電極形状データに変換する。
具体的には、図4の加工条件生成部14の動作を示すフローチャートに示される如く、電極形状を入力した後、減寸量分、電極データを太らせて、面積抽出用のモデルに変換し、加工深さ(加工の進行)に応じた電極4と被加工物5の干渉部分(放電加工する部分)を計算し、加工深さと加工面積を示すDBを作成することとなる。
Embodiment 2. FIG.
In the first embodiment, the electrode shape data before the reduction is used, but the electrode shape data after the reduction may be used.
In that case, as shown in FIG. 3, since the hatched portion is processed, the electrode shape data before reduction is actually performed by adding the thickness corresponding to the reduction amount to the electrode shape data after reduction, and actually performing electric discharge machining. Convert to
Specifically, as shown in the flowchart showing the operation of the processing condition generation unit 14 in FIG. 4, after inputting the electrode shape, the electrode data is fattened by the reduced amount and converted into an area extraction model. Then, the interference part (the part to be subjected to electric discharge machining) between the electrode 4 and the workpiece 5 corresponding to the machining depth (progress of machining) is calculated, and a DB indicating the machining depth and the machining area is created.
実施の形態3.
 本実施の形態では、複数の電極を用いて被加工物を加工する場合について説明する。
複数の電極を用いて加工をする場合には、加工順序によって各電極での加工量が大きく異なる。
例えば、図5に示される如き最終加工形状を加工するとき、切削加工後の放電加工すべき部分は斜線でハッチングされた領域となる。
ここで、電極1と電極2を用いて放電加工をする際に、「電極1→電極2」で加工する場合と、「電極2→電極1」で加工する場合では、各電極での加工部分は、塗り潰された部分となり、その加工量は大きく異なってしまい、加工面積に応じた適切な加工条件を設定することができない。
 そこで、本実施の形態では、複数の電極を用いる場合、加工順序と電極形状をユーザにより入力させ(具体的には、CAD1から送られてくる電極形状データを表示させ、順序を選択させる)、各電極での加工条件を最適に設定する物である。
Embodiment 3 FIG.
In this embodiment, a case where a workpiece is processed using a plurality of electrodes will be described.
When processing using a plurality of electrodes, the processing amount at each electrode varies greatly depending on the processing order.
For example, when a final machining shape as shown in FIG. 5 is machined, a portion to be subjected to electric discharge machining after cutting is a hatched area.
Here, when electric discharge machining is performed using the electrode 1 and the electrode 2, in the case of machining by “electrode 1 → electrode 2” and the case of machining by “electrode 2 → electrode 1”, the machining portion in each electrode Is a filled portion, and the amount of processing differs greatly, and it is not possible to set an appropriate processing condition according to the processing area.
Therefore, in this embodiment, when a plurality of electrodes are used, the processing order and the electrode shape are input by the user (specifically, the electrode shape data sent from CAD1 is displayed and the order is selected), This is the one that optimally sets the processing conditions for each electrode.
 具体的には、図6の加工条件生成部14の動作を示すフローチャートに示される如く、加工に使用する各電極の加工順序を入力すると共に、該各電極の形状を入力する。
そして、実施の形態1と同様に、面積抽出用のモデル変換を行った後、使用する電極毎に被加工物との干渉部分を計算し、加工深さ(加工の進行)に応じた電極4と被加工物5の干渉部分(放電加工する部分)を計算し、加工深さと加工面積を示すDBを作成する。
そして、放電加工により除去すべき部分から該電極による干渉部分(放電加工部分)を除去し、次の電極での干渉部分計算の準備を行う。
その後、要求仕様と加工深さに応じた加工面積に応じた加工条件を決定し、加工に使用する全ての電極の加工条件が決定されるまで繰り返し、加工条件を決定する。
Specifically, as shown in the flowchart showing the operation of the processing condition generation unit 14 in FIG. 6, the processing order of each electrode used for processing is input and the shape of each electrode is input.
And after performing model conversion for area extraction similarly to Embodiment 1, the interference part with a to-be-processed object is calculated for every electrode to be used, and the electrode 4 according to processing depth (progress of processing) Then, the interference part (the part to be subjected to electric discharge machining) of the workpiece 5 is calculated and a DB indicating the machining depth and the machining area is created.
Then, an interference portion (electric discharge machining portion) by the electrode is removed from a portion to be removed by electric discharge machining, and preparation for calculation of an interference portion at the next electrode is performed.
Thereafter, the processing conditions corresponding to the processing area corresponding to the required specifications and the processing depth are determined, and the processing conditions are determined repeatedly until the processing conditions of all the electrodes used for processing are determined.
 本実施の形態によれば、複数の電極を用いて加工を行う場合も、各電極での加工順序、電極形状を指定することにより、各電極で加工を行う加工面積が正確に計算されることから、加工条件が最適な物が選択され、高速高精度な加工が行える。 According to the present embodiment, even when processing is performed using a plurality of electrodes, the processing area for processing with each electrode can be accurately calculated by specifying the processing order and electrode shape for each electrode. Therefore, the optimum machining conditions are selected, and high-speed and high-precision machining can be performed.
実施の形態4.
 本実施の形態は、実施の形態3に対し加工時間を見積もる機能を持ち、順序を変更した場合に対応してトータルの加工時間を求めるようにし、加工時間が短くなるよう順序を決定するものである。
 具体的には図7の加工条件生成部14の動作フローチャートに示される如く、加工順序を入力すると、入力された全ての電極本数に応じて、各電極の加工順序を想定した加工順序可能性テーブルが作成される。
この加工順序可能性テーブルは、全部の電極が違う形状の場合は本数の階状の組み合わせ分存在し、例えば、電極A,B,Cで加工を行う場合、「A→B→C」、「A→C→B」、「B→A→C」、「B→C→A」、「C→A→B」、「C→B→A」の6通りとなる。
そして、上述の実施の形態と同様に動作し、面積抽出のモデル変換を行う。
Embodiment 4 FIG.
This embodiment has a function of estimating the machining time with respect to the third embodiment, and calculates the total machining time corresponding to the case where the order is changed, and determines the order so that the machining time is shortened. is there.
Specifically, as shown in the operation flowchart of the processing condition generation unit 14 in FIG. 7, when a processing order is input, a processing order possibility table that assumes the processing order of each electrode according to the number of all input electrodes. Is created.
This processing order possibility table exists for the number of floor combinations when all the electrodes are different in shape. For example, when processing with electrodes A, B, and C, “A → B → C”, “ A → C → B ”,“ B → A → C ”,“ B → C → A ”,“ C → A → B ”, and“ C → B → A ”.
And it operates similarly to the above-mentioned embodiment, and performs model conversion of area extraction.
 また、最短加工時間を初期化し、入力された加工順序での加工条件を実施の形態3と同様に決定する。
その後、例えばWO2004/103625に示される技術を用いて加工時間を求め、「最小加工時間>加工時間」の判断を行い、判断結果が正の場合は、該加工時間を最小加工時間に入力すると共に、該加工順序を最短加工順序とする。
 以上の操作を全ての加工順序(例えば、上述の如く3種類の電極では6通りの加工順序)に対し繰り返し実行することで該組合せの中の最短加工順序が求まるので、最短加工順序を加工順序として変更を施す。
Further, the shortest machining time is initialized, and the machining conditions in the inputted machining order are determined in the same manner as in the third embodiment.
Then, for example, the machining time is obtained by using the technique disclosed in WO2004 / 103625, and “minimum machining time> machining time” is determined. If the determination result is positive, the machining time is input to the minimum machining time. The processing order is the shortest processing order.
The shortest processing order in the combination can be obtained by repeatedly executing the above operations for all the processing orders (for example, six kinds of processing orders for the three types of electrodes as described above). As a change.
 本実施の形態によれば、ユーザが入力した電極形状、使用電極種類(具体的には一例の加工順序入力)により、加工条件生成部14が各加工順序での加工時間を見積もり、加工時間が短くなるように順序を決定するので、加工順序を意識しなくても高速な加工ができるという効果がある。
特に、リブ加工のように投入エネルギーが小さいものと通常の底付き加工との組み合わせでは効果が高い。
According to the present embodiment, the processing condition generation unit 14 estimates the processing time in each processing order according to the electrode shape input by the user and the type of electrode used (specifically, an example of processing order input). Since the order is determined so as to be shorter, there is an effect that high-speed machining can be performed without being aware of the machining order.
In particular, the combination of a low input energy such as rib processing and normal bottom processing is highly effective.
実施の形態5
 実施の形態5は、被加工物の最終形状であるワークモデルが放電取代を含んだものか否か、電極モデルが減寸量を含んだものか否か、を入力させるようにするものである。
例えば図8で示される画面表示を行い、加工条件生成部14での解析条件をユーザに設定させる。
具体的には、ワークモデルが切削シミュレーション結果のように放電取代を含んだものであったら「切削直後」をチェックし、含んでいなければ「最終製品」にチェックするようになっており、「最終製品」の場合は放電加工を施すべき取代も入力する画面を表示する。
 最終製品とは切削加工→放電加工→磨き加工が終了した完成品であり、例えば金型加工の場合は金型そのものを指す。
また、電極モデルが減寸量を含んでいれば「減寸なし」をチェックし、含んでいなければ「減寸済み」にチェックをし、含んでいる場合は減寸量も入力する画面を表示する。
Embodiment 5
In the fifth embodiment, whether or not the workpiece model that is the final shape of the workpiece includes discharge allowance and whether or not the electrode model includes a reduction amount are input. .
For example, the screen shown in FIG. 8 is displayed, and the analysis conditions in the machining condition generation unit 14 are set by the user.
Specifically, if the work model includes the discharge allowance as in the cutting simulation result, check “immediately after cutting”, and if not, check “final product”. In the case of “final product”, a screen for inputting a machining allowance to be subjected to electric discharge machining is displayed.
The final product is a finished product that has been subjected to cutting processing → electric discharge processing → polishing processing. For example, in the case of mold processing, it refers to the mold itself.
Also, if the electrode model contains a reduction amount, check “No reduction”, if not, check “Reduced”, and if it contains, a screen for entering the reduction amount. indicate.
 図9は、加工条件生成部14の動作フローチャートであり、解析条件設定画面において、ユーザが滅寸後モデルを選択した場合は、電極は、揺動、ギャップ等の減寸量が加味された電極であることから切削シミュレーション後の形状入力に移行するが、減寸前モデルの場合には、揺動、ギャップ等の減寸量分、電極データを太らせる処理を行う。
また、ワークモデルが、切削直後であるならば、面積抽出用のモデルに変換する工程に移行するが、最終製品であるならば、取り代分被加工物の切削後モデルを太らせる処理を行う。切削後モデルを取り代分太らせるとは、図10で示すように加工箇所に取代分肉付けすることを指す。
すなわち、図10に示されるように、実際の切削加工後モデルとは誤差があるが、手持ちのデータをそのまま用いて、取代分の肉付けを行い、ある程度適切な加工条件を求めることができる。
 その後、上述の実施の形態と同様に、電極と被加工物の干渉部分を計算し、加工深さと加工面積の関係を示すDBを作成し、加工面積に応じた加工条件を決定し、放電加工を行う。
FIG. 9 is an operation flowchart of the machining condition generation unit 14. When the user selects a post-reduction model on the analysis condition setting screen, the electrode is an electrode to which reduction amounts such as swing and gap are added. Therefore, the process shifts to shape input after the cutting simulation. However, in the case of the model before reduction, the electrode data is thickened by the amount of reduction such as swinging and gap.
If the workpiece model is immediately after cutting, the process proceeds to a process for converting to a model for area extraction. If the workpiece model is a final product, processing is performed to thicken the post-cutting model of the machining allowance. . To thicken the model after cutting by the machining allowance refers to fleshing the machining area as shown in FIG.
That is, as shown in FIG. 10, although there is an error with the actual post-cutting model, it is possible to obtain the machining conditions to some extent by using the hand-held data as it is, and performing the meat for the machining allowance.
After that, as in the above-described embodiment, the interference part between the electrode and the workpiece is calculated, a DB indicating the relationship between the machining depth and the machining area is created, the machining conditions according to the machining area are determined, and electric discharge machining is performed. I do.
 本実施の形態によれば、実際のユーザが持つ電極モデルデータは、放電ギャップと揺動を考慮した減寸後である場合と減寸前である場合があるが、ユーザがわざわざCAD上で形状を作成しなくても手持ちの形状を利用して加工条件を求めることができるという効果がある。
また、放電加工前形状、すなわち、切削後形状は極力実際に近い形状であることが望ましいが、ユーザによっては切削加工と放電加工と終えた最終製品形状モデルしか持っていない場合もあり、この場合にも、解析条件設定により設定することができる。
 なお、本形態では画面から形状種類を入力するようにしたが、ファイルなど外部から取り込める形式であればよいものとする。
According to the present embodiment, the actual electrode model data possessed by the user may be after reduction or before reduction in consideration of the discharge gap and fluctuation, but the user has to bother the shape on the CAD. Even if it is not created, there is an effect that the processing conditions can be obtained using the shape on hand.
In addition, it is desirable that the shape before electric discharge machining, that is, the shape after cutting, is as close as possible to the actual shape, but some users may only have a final product shape model that has been cut and electric discharge processed. Also, it can be set by setting analysis conditions.
In this embodiment, the shape type is input from the screen. However, any form that can be imported from the outside, such as a file, may be used.
実施の形態6. 
 本実施の形態では、実施の形態1における電極と被加工物の干渉部分を計算し、加工深さと加工面積を示すDB作成するフロー部分、面積から加工条件を決定するフロー部分の一例を説明する。
なお、面積は加工条件に対応するものであることから、図11に示すような加工すべき対応面積に応じて加工条件E0~E4が予め設定されたテーブルを有しており、実際の加工すべき対応面積に適した加工条件が選択される。なお、加工条件と面積は一般に電流密度によって関係付けられる。
そして、本実施の形態では、図11に示すテーブルに基づき、加工すべき対応面積に応じて加工条件が切り替えられる。
Embodiment 6 FIG.
In the present embodiment, an example of a flow part for calculating an interference part between an electrode and a workpiece in the first embodiment and creating a DB indicating a processing depth and a processing area and a flow part for determining a processing condition from the area will be described. .
Since the area corresponds to the processing conditions, a table in which the processing conditions E0 to E4 are set in advance according to the corresponding area to be processed as shown in FIG. 11 is provided. The processing conditions suitable for the corresponding area to be selected are selected. The processing conditions and the area are generally related by current density.
In the present embodiment, the processing conditions are switched based on the corresponding area to be processed based on the table shown in FIG.
 図12は、加工面積に応じて加工条件を決定する動作を示すフローチャートである。
まず、はじめに加工開始位置D0と加工終了位置(最終深さ)D1における加工面積A0、A1を、実際に切削加工された取り残し部分が存在する実形状に基づき求め、対応する加工条件E0、E1を図11のテーブルより求める。
そして、加工条E0、E1が同じであるなら、加工すべき加工面積の範囲が加工開始位置D0と加工終了位置D1とで同じであることから、A0の加工条件を出力して終了する。
 一方、E0とE1が異なる場合は、加工開始位置D0と加工終了位置D1との間で加工面積の変化が存在するため、加工開始位置D0と加工終了位置D1の中心深さD2の面積A2を求める。
FIG. 12 is a flowchart showing an operation for determining the processing conditions according to the processing area.
First, the machining areas A0 and A1 at the machining start position D0 and the machining end position (final depth) D1 are first determined based on the actual shape in which there are uncut portions that are actually cut, and the corresponding machining conditions E0 and E1 are obtained. It is obtained from the table of FIG.
If the machining strips E0 and E1 are the same, the machining area range to be machined is the same at the machining start position D0 and the machining end position D1, and thus the machining condition A0 is output and the process ends.
On the other hand, when E0 and E1 are different, there is a change in the machining area between the machining start position D0 and the machining end position D1, and therefore the area A2 of the center depth D2 between the machining start position D0 and the machining end position D1 is set. Ask.
 そして、中心深さD2における面積A2に対応する加工条件が加工条件E0と同じ場合は、加工条件をE0からE1へ切り替えるタイミングは、中心深さD2と加工終了位置D1の間に存在する。
一方、中心深さD2における面積A2に対応する加工条件が加工条件E1の場合は、加工条件をE0からE1へ加工条件を切り替えるタイミングは、中心深さD2と加工開始位置D0の間に存在する。
すなわち、加工条件を切り替える位置を確定するために、前者である場合は、中心深さD2と加工終了位置D1の間D3の面積A3を、後者である場合は中心深さD2と加工開始位置D0の間D3の面積A3を求めるといった作業をDの間隔が5μmになるまで繰り返し、最終的に、DnをE1に切り替える深さとする。
本実施の形態では、簡単のために加工条件を2段の場合としたが加工条件が2段ではなく複数段に切り替わる場合も同様の処理を行う。
また、終了条件を刻み幅が5μm以下になるまでとしたが5μmではなく他の値でもよい。
When the machining condition corresponding to the area A2 at the center depth D2 is the same as the machining condition E0, the timing for switching the machining condition from E0 to E1 exists between the center depth D2 and the machining end position D1.
On the other hand, when the machining condition corresponding to the area A2 at the center depth D2 is the machining condition E1, the timing for switching the machining condition from E0 to E1 exists between the center depth D2 and the machining start position D0. .
That is, in order to determine the position for switching the machining conditions, in the former case, the area A3 of D3 between the center depth D2 and the machining end position D1, and in the latter case, the center depth D2 and the machining start position D0. The operation of obtaining the area A3 of D3 is repeated until the interval of D reaches 5 μm, and finally Dn is set to a depth for switching to E1.
In this embodiment, for the sake of simplicity, the case where the machining conditions are two stages is used, but the same processing is performed when the machining conditions are switched to a plurality of stages instead of two stages.
Further, although the end condition is set until the step width becomes 5 μm or less, other values may be used instead of 5 μm.
 切削後形状は一般に複雑な形状になるため電極とワークの干渉部分の計算回数は極力減らす必要がある。
従来方法では深さ位置に対応する面積を求めているため面積を求めるための深さ位置の刻みを荒くすると深さ方向の誤差が発生じ、面積を求めるための深さ位置の刻みを細かくすると莫大な計算量になる。
ところで形彫放電加工機が通常保持している加工条件DBのデータは連続的ではなく離散的なものであるため、加工条件を切り替える必要がある面積でのタイミングで加工深さがわかればよい。
 本実施の形態によれば、電極とワークの干渉部分の計算回数が減るので、計算時間が短いという効果がある。
Since the shape after cutting is generally complicated, it is necessary to reduce the number of calculations of the interference portion between the electrode and the workpiece as much as possible.
In the conventional method, since the area corresponding to the depth position is obtained, if the step of the depth position for obtaining the area is roughened, an error in the depth direction occurs, and the step of the depth position for obtaining the area is made fine. It becomes a huge amount of calculation.
By the way, since the data of the machining condition DB normally held by the die-sinking electric discharge machine is not continuous but discrete, it is only necessary to know the machining depth at the timing in the area where the machining conditions need to be switched.
According to the present embodiment, since the number of calculations of the interference portion between the electrode and the workpiece is reduced, there is an effect that the calculation time is short.
実施の形態7.
 実施の形態6は、切削シミュレーション後の形状から加工面積を求め、図11に示されるテーブルにより加工すべき対応面積に応じた加工条件を予め対応付けるようにしたが、加工面積は別途ユーザによる入力、ファイルからの入力で設定されるものとしてよい。
つまり、入力に合わせて面積が変化する箇所で加工条件が変更となり、電極とワークの干渉部分を計算する回数が減るので、計算時間が短いという効果がある。
Embodiment 7 FIG.
In the sixth embodiment, the machining area is obtained from the shape after the cutting simulation, and the machining conditions according to the corresponding area to be machined are associated in advance with the table shown in FIG. 11, but the machining area is separately input by the user, It may be set by input from a file.
In other words, the machining condition is changed at a location where the area changes in accordance with the input, and the number of times of calculating the interference portion between the electrode and the workpiece is reduced, so that the calculation time is short.
実施の形態8.
 本実施の形態8は、図13に示される如く、切削シミュレーション後の形状から加工面積を求め、加工面積の変化率がa倍以上(a>1.0)になったときの深さを求め、その深さ位置で加工条件を変更するものである。
加工面積の変化に対応する処理は、図15のフローチャートを用いて説明する。
Embodiment 8 FIG.
In the eighth embodiment, as shown in FIG. 13, the machining area is obtained from the shape after the cutting simulation, and the depth when the change rate of the machining area is a times or more (a> 1.0) is obtained. The machining conditions are changed at the depth position.
Processing corresponding to the change in the processing area will be described with reference to the flowchart of FIG.
 まず、はじめに加工開始位置D0と加工終了位置(最終深さ)D1における加工面積A0、A1を、実際に切削加工された取り残し部分が存在する実形状に基づき求める。
そして、加工面積A0とA1との変化率がa倍であるか否かを判断し、加工変化率がa倍以下であるなら、加工面積の変化が少なく加工条件を変更する必要がないため、加工開始位置D0の面積A0に対応する加工条件を求め、放電加工を行う。
 一方、A0とA1との変化率がa倍以上である場合は、加工開始位置D0と加工終了位置D1との間で加工すべき面積変化が大きいと判断でき、途中で加工条件を面積A0用からA1用に変えなければならない。
そこで、実施の形態6と同様に、加工開始位置D0と加工終了位置D1との間で加工面積の変化が存在するため、加工開始位置D0と加工終了位置D1の中心深さD2を求める。
First, the machining areas A0 and A1 at the machining start position D0 and the machining end position (final depth) D1 are first determined based on the actual shape in which there are uncut portions that are actually cut.
Then, it is determined whether or not the rate of change between the machining areas A0 and A1 is a times. If the rate of change in machining is a times or less, there is little change in the machining area and there is no need to change the machining conditions. A machining condition corresponding to the area A0 of the machining start position D0 is obtained, and electric discharge machining is performed.
On the other hand, when the rate of change between A0 and A1 is a times or more, it can be determined that there is a large change in the area to be machined between the machining start position D0 and the machining end position D1, and the machining conditions are set for the area A0 on the way. Must be changed for A1.
Therefore, as in the sixth embodiment, since there is a change in the machining area between the machining start position D0 and the machining end position D1, the center depth D2 between the machining start position D0 and the machining end position D1 is obtained.
 そして、中心深さD2における面積A2と加工開始位置D0における面積A0とを比較し、面積A0と面積A2の変化率がa以下であるならば、面積変化が大きい加工深さは中心深さD2と加工終了位置D1の間に存在する。
一方、中心深さD2における面積A2と面積A2の変化率がa以上であるならば、面積変化が大きい加工深さは中心深さD2と加工開始位置D0の間に存在する。
すなわち、加工条件を切り替える位置を確定するために、前者である場合は、中心深さD2と加工終了位置D1の間D3の面積A3を、後者である場合は中心深さD2と加工開始位置D0の間D3の面積A3を求めるといった作業をDの間隔が5μmになるまで繰り返し、最終的に、Dnの位置で面積A1に対応した加工条件E1に切り替える深さとする。
Then, the area A2 at the center depth D2 is compared with the area A0 at the machining start position D0. If the rate of change between the area A0 and the area A2 is a or less, the machining depth having a large area change is the center depth D2. And the processing end position D1.
On the other hand, if the change rate of the area A2 and the area A2 at the center depth D2 is a or more, the machining depth having a large area change exists between the center depth D2 and the machining start position D0.
That is, in order to determine the position for switching the machining conditions, in the former case, the area A3 of D3 between the center depth D2 and the machining end position D1, and in the latter case, the center depth D2 and the machining start position D0. The operation of obtaining the area A3 of D3 is repeated until the interval of D reaches 5 μm, and finally the depth is switched to the processing condition E1 corresponding to the area A1 at the position of Dn.
 なお、本実施の形態では、簡単のために加工条件を2段の場合としたが加工条件が2段ではなく複数段に切り替わる場合も同様の処理を行う。
また、終了条件を刻み幅が5μm以下になるまでとしたが5μmではなく他の値でもよい。
 また、本実施の形態における変化率aは、一般的な加工条件DBにおける面積の刻みに比較し妥当な値を設定する必要があり、例えば銅電極、Stワークの場合は、1.2等を用いる。
In this embodiment, for the sake of simplicity, the case where the machining conditions are two stages is used, but the same processing is performed when the machining conditions are switched to a plurality of stages instead of two stages.
Further, although the end condition is set until the step width becomes 5 μm or less, other values may be used instead of 5 μm.
In addition, it is necessary to set an appropriate value for the rate of change a in the present embodiment as compared with the increment of the area in the general processing condition DB. For example, 1.2 or the like is used in the case of a copper electrode or a St workpiece.
 本実施の形態によれば、電極とワークの干渉部分を計算する回数が減るので、計算時間が短いという効果がある。
実施の形態6では深さを計算するための面積と対応する加工条件DBが予め決まっている必要があるが、本方法を用いると予め決まっていない場合も面積と深さの関係を求めることができる。
According to the present embodiment, since the number of times of calculating the interference portion between the electrode and the work is reduced, there is an effect that the calculation time is short.
In the sixth embodiment, the processing condition DB corresponding to the area for calculating the depth needs to be determined in advance. However, when this method is used, the relationship between the area and the depth can be obtained even if it is not determined in advance. it can.
実施の形態9.
 実施の形態8では加工面積の変化率をもとに、加工条件が変化する加工深さを求めたが、本実施の形態では、図16に示される如く、加工面積の差が所定値以上となった際に深さを求め、その深さ位置で加工条件を変更するものである。
加工面積の変化に対応する処理は、図17のフローチャートを用いて説明する。
Embodiment 9 FIG.
In the eighth embodiment, the machining depth at which the machining conditions change is obtained based on the change rate of the machining area. However, in the present embodiment, as shown in FIG. When it becomes, the depth is obtained, and the machining conditions are changed at the depth position.
Processing corresponding to the change in the processing area will be described with reference to the flowchart of FIG.
 まず、はじめに加工開始位置D0と加工終了位置(最終深さ)D1における加工面積A0、A1を、実際に切削加工された取り残し部分が存在する実形状に基づき求める。
そして、加工面積A0とA1との差がb(mm)以上あるか否かを判断し、面積変化がb(mm)以下であるなら、加工条件を変更する必要がないため、加工開始位置D0の面積A0に対応する加工条件を求め、放電加工を行う。
 一方、A0とA1と差がb(mm)以上である場合は、加工開始位置D0と加工終了位置D1との間で加工すべき面積変化が大きいと判断でき、途中で加工条件を面積A0用からA1用に変えなければならない。
そこで、実施の形態6と同様に、加工開始位置D0と加工終了位置D1との間で加工面積の変化が存在するため、加工開始位置D0と加工終了位置D1の中心深さD2を求める。
First, the machining areas A0 and A1 at the machining start position D0 and the machining end position (final depth) D1 are first determined based on the actual shape in which there are uncut portions that are actually cut.
Then, it is determined whether or not the difference between the machining areas A0 and A1 is equal to or greater than b (mm 2 ). If the change in area is equal to or less than b (mm 2 ), it is not necessary to change the machining conditions, so machining is started. A machining condition corresponding to the area A0 of the position D0 is obtained, and electric discharge machining is performed.
On the other hand, if the difference between A0 and A1 is equal to or greater than b (mm 2 ), it can be determined that there is a large change in the area to be machined between the machining start position D0 and the machining end position D1, and the machining condition is set to the area A0 on the way. You have to change from A to A1.
Therefore, as in the sixth embodiment, since there is a change in the machining area between the machining start position D0 and the machining end position D1, the center depth D2 between the machining start position D0 and the machining end position D1 is obtained.
 そして、中心深さD2における面積A2と加工開始位置D0における面積A0とを比較し、面積A0と面積A2の面積変化がb(mm)以下であるならば、面積変化が大きい加工深さは中心深さD2と加工終了位置D1の間に存在する。
一方、中心深さD2における面積A2と面積A2の面積変化がb(mm)以上であるならば、面積変化が大きい加工深さは中心深さD2と加工開始位置D0の間に存在する。
すなわち、加工条件を切り替える位置を確定するために、前者である場合は、中心深さD2と加工終了位置D1の間D3の面積A3を、後者である場合は中心深さD2と加工開始位置D0の間D3の面積A3を求めるといった作業をDの間隔が5μmになるまで繰り返し、最終的に、Dnの位置で面積A1に対応した加工条件E1に切り替える深さとする。
Then, the area A2 at the center depth D2 is compared with the area A0 at the machining start position D0, and if the area change between the area A0 and the area A2 is equal to or less than b (mm 2 ), the machining depth having a large area change is It exists between the center depth D2 and the processing end position D1.
On the other hand, if the area change between the area A2 and the area A2 at the center depth D2 is equal to or greater than b (mm 2 ), the machining depth having a large area change exists between the center depth D2 and the machining start position D0.
That is, in order to determine the position for switching the machining conditions, in the former case, the area A3 of D3 between the center depth D2 and the machining end position D1, and in the latter case, the center depth D2 and the machining start position D0. The operation of obtaining the area A3 of D3 is repeated until the interval of D reaches 5 μm, and finally the depth is switched to the processing condition E1 corresponding to the area A1 at the position of Dn.
 なお、本実施の形態では、簡単のために加工条件を2段の場合としたが加工条件が2段ではなく複数段に切り替わる場合も同様の処理を行う。
また、終了条件を刻み幅が5μm以下になるまでとしたが5μmではなく他の値でもよい。
 また、本実施の形態における面積変化b(mm)は、一般的な加工条件DBにおける面積の刻みに比較し妥当な値を設定する必要があり、例えば、銅電極、Stワークの場合は、10等を用いる。
In this embodiment, for the sake of simplicity, the case where the machining conditions are two stages is used, but the same processing is performed when the machining conditions are switched to a plurality of stages instead of two stages.
Further, although the end condition is set until the step width becomes 5 μm or less, other values may be used instead of 5 μm.
In addition, the area change b (mm 2 ) in the present embodiment needs to be set to an appropriate value as compared with the area increment in the general processing condition DB. For example, in the case of a copper electrode or an St workpiece, Use 10 etc.
 本実施の形態によれば、電極とワークの干渉部分を計算する回数が減るので、計算時間が短いという効果がある。本実施の形態によれば、電極とワークの干渉部分を計算する回数が減るので、計算時間が短いという効果がある。
実施の形態6では深さを計算するための面積と対応する加工条件DBが予め決まっている必要があるが、本方法を用いると予め決まっていない場合も面積と深さの関係を求めることができる。
According to the present embodiment, since the number of times of calculating the interference portion between the electrode and the work is reduced, there is an effect that the calculation time is short. According to the present embodiment, since the number of times of calculating the interference portion between the electrode and the work is reduced, there is an effect that the calculation time is short.
In the sixth embodiment, the processing condition DB corresponding to the area for calculating the depth needs to be determined in advance. However, when this method is used, the relationship between the area and the depth can be obtained even if it is not determined in advance. it can.
 本発明は、放電加工を行うためのプログラム作成装置に適用することができる。 The present invention can be applied to a program creation device for performing electric discharge machining.

Claims (9)

  1. 設計された形状データを基に切削加工のシミュレーション結果であるシミュレーション形状データを入力する入力手段と、
     電極形状データを入力する電極形状データ入力手段と、
     該シミュレーション形状データと上記電極形状データとの干渉を計算し、加工深さ変化に伴う加工面積を計算する計算手段と、
     この計算手段で求めた加工面積に応じて、加工条件を設定する加工条件設定手段と、
     この加工条件設定手段で設定された加工条件を用いて、電極、被加工物間の放電を制御し、加工を行うことを特徴とする放電加工装置。
    An input means for inputting simulation shape data which is a simulation result of cutting processing based on the designed shape data;
    Electrode shape data input means for inputting electrode shape data;
    A calculation means for calculating interference between the simulation shape data and the electrode shape data, and calculating a processing area accompanying a processing depth change;
    Processing condition setting means for setting the processing conditions according to the processing area obtained by the calculation means,
    An electric discharge machining apparatus that performs machining by controlling electric discharge between an electrode and a workpiece using machining conditions set by the machining condition setting means.
  2. 切削加工のシミュレーション結果であるシミュレーション形状データは、切削加工に発生する加工取り残し部分を有する形状データであることを特徴とする請求項1に記載の放電加工装置。 2. The electric discharge machining apparatus according to claim 1, wherein the simulation shape data, which is a simulation result of cutting, is shape data having an unprocessed portion generated in the cutting.
  3. 入力する切削シミュレーション形状データは、三角パッチまたはZマップ形式で3次元表示されていることを特徴とする請求項1または2に記載の放電加工装置 3. The electric discharge machining apparatus according to claim 1, wherein the cutting simulation shape data to be input is three-dimensionally displayed in a triangular patch or Z map format.
  4. 入力する電極形状データは、放電ギャップと揺動を考慮した減寸量を適用したデータであることを特徴とする請求項1乃至3何れかに記載の放電加工装置。 4. The electric discharge machining apparatus according to claim 1, wherein the input electrode shape data is data to which a reduction amount in consideration of an electric discharge gap and fluctuation is applied.
  5. 複数の電極形状データと加工順序を入力する手段を持ち、計算手段によるシミュレーション形状データと電極形状データとの干渉を計算する際、N本目の電極以降(N>1)のワーク形状としてワーク形状からN-1本目の電極形状部分を除去した形状を利用することを特徴とする請求項1乃至4何れかに記載の放電加工装置。 There is a means for inputting a plurality of electrode shape data and processing order, and when calculating the interference between the simulation shape data and the electrode shape data by the calculation means, the work shape as the work shape after the Nth electrode (N> 1) is determined from the work shape. 5. The electric discharge machining apparatus according to claim 1, wherein a shape obtained by removing the N-1th electrode shape portion is used.
  6. 複数の電極形状データと加工順序を入力する手段を持ち、入力された複数の電極形状データと加工順序に基づき、想定される全ての加工順序を求め、各加工順序における加工時間を演算し、加工時間の短い加工を選択して実行することを特徴とする請求項1乃至5何れかに記載の放電加工装置。 Has a means to input multiple electrode shape data and machining order, calculates all possible machining orders based on the input multiple electrode shape data and machining order, calculates the machining time in each machining order, and processes 6. The electric discharge machining apparatus according to claim 1, wherein machining with a short time is selected and executed.
  7. ワークモデルが放電取り代を含んだものか、電極モデルが減寸量を含んだものかを入力させる手段を持ち、入力された情報に基づきワークモデルまたは電極モデルを変形することを特徴とする請求項1乃至6何れかに記載の放電加工装置。 A means for inputting whether the work model includes a discharge allowance or an electrode model includes a reduction amount, and deforms the work model or the electrode model based on the input information. Item 7. The electric discharge machining apparatus according to any one of Items 1 to 6.
  8. 計算手段は、加工開始位置及び加工終了位置の面積変化率、又は面積変化量に基づき、面積変化が発生する加工深さを計算しすることを特徴とする請求項1乃至7何れかに記載の放電加工装置。 The calculation means calculates a machining depth at which an area change occurs based on an area change rate or an area change amount at a machining start position and a machining end position. Electric discharge machine.
  9. 電極の電極形状データ及び被加工物の形状データを設計するCAD装置と、
     このCAD装置から被加工物の形状データを入力し、切削加工後の実際の加工形状を示すシミュレーション形状データをシミュレーションし、出力する切削シミュレーション装置と、
     電極形状データ、シミュレーション形状データを入力する入力手段、該シミュレーション形状データと上記電極形状データとの干渉を計算し、加工深さ変化に伴う加工面積を計算する計算手段、この計算手段で求めた加工面積に応じて、加工条件を設定する加工条件設定手段、この加工条件設定手段で設定された加工条件を用いて、電極、被加工物間の放電を制御し、加工を行う加工制御手段を有した放電加工装置と、
    を備えたことを特徴とする放電加工システム。
    A CAD device for designing electrode shape data of an electrode and shape data of a workpiece;
    A cutting simulation device for inputting shape data of a workpiece from the CAD device, simulating simulation shape data indicating an actual machining shape after cutting, and outputting the simulation shape data,
    Electrode shape data, input means for inputting simulation shape data, calculation means for calculating interference between the simulation shape data and the electrode shape data, and calculating a processing area associated with a change in processing depth, processing obtained by this calculation means Machining condition setting means for setting the machining conditions according to the area, and machining control means for controlling the discharge between the electrode and the workpiece by using the machining conditions set by the machining condition setting means. An electrical discharge machining device,
    An electrical discharge machining system comprising:
PCT/JP2008/052406 2008-02-14 2008-02-14 Electric discharge machining device WO2009101688A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/052406 WO2009101688A1 (en) 2008-02-14 2008-02-14 Electric discharge machining device
JP2009553307A JPWO2009101688A1 (en) 2008-02-14 2008-02-14 EDM machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052406 WO2009101688A1 (en) 2008-02-14 2008-02-14 Electric discharge machining device

Publications (1)

Publication Number Publication Date
WO2009101688A1 true WO2009101688A1 (en) 2009-08-20

Family

ID=40956733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052406 WO2009101688A1 (en) 2008-02-14 2008-02-14 Electric discharge machining device

Country Status (2)

Country Link
JP (1) JPWO2009101688A1 (en)
WO (1) WO2009101688A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602845A (en) * 2012-09-07 2015-05-06 株式会社牧野铣床制作所 Electrical discharge machining method and electrode-guide position setting device
CN116438028A (en) * 2021-04-12 2023-07-14 三菱电机株式会社 Machining condition setting device, machining condition setting method, and electric discharge machining device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950311A (en) * 1995-08-04 1997-02-18 Mitsubishi Electric Corp Numerical controller
JP2002304204A (en) * 2001-04-05 2002-10-18 Denso Corp Nc data preparation system by cad/cam system
JP2003291033A (en) * 2002-04-02 2003-10-14 Sodick Co Ltd Method for creating numerical control program and numerical control electrical discharge machining device
WO2004103625A1 (en) * 2003-05-20 2004-12-02 Mitsubishi Denki Kabushiki Kaisha Electric discharge machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950311A (en) * 1995-08-04 1997-02-18 Mitsubishi Electric Corp Numerical controller
JP2002304204A (en) * 2001-04-05 2002-10-18 Denso Corp Nc data preparation system by cad/cam system
JP2003291033A (en) * 2002-04-02 2003-10-14 Sodick Co Ltd Method for creating numerical control program and numerical control electrical discharge machining device
WO2004103625A1 (en) * 2003-05-20 2004-12-02 Mitsubishi Denki Kabushiki Kaisha Electric discharge machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602845A (en) * 2012-09-07 2015-05-06 株式会社牧野铣床制作所 Electrical discharge machining method and electrode-guide position setting device
CN104602845B (en) * 2012-09-07 2016-10-19 株式会社牧野铣床制作所 Discharge-treating method and electrode guider position setting device
CN116438028A (en) * 2021-04-12 2023-07-14 三菱电机株式会社 Machining condition setting device, machining condition setting method, and electric discharge machining device
CN116438028B (en) * 2021-04-12 2024-02-20 三菱电机株式会社 Machining condition setting device, machining condition setting method, and electric discharge machining device

Also Published As

Publication number Publication date
JPWO2009101688A1 (en) 2011-06-02

Similar Documents

Publication Publication Date Title
EP3356896B1 (en) System and method for machining blades, blisks and aerofoils
Antoniadis et al. Prediction of surface topomorphy and roughness in ball-end milling
US10884392B2 (en) Assessing deflections experienced by a workpiece during computer controlled machining with a toolpath to determine stock amount
US20220379380A1 (en) Hybrid additive and subtractive manufacturing
TWI641931B (en) Device and method for automatically generating machine tool control instructions and parameters
JP6043234B2 (en) Numerical controller
WO2007029006A1 (en) Machining template based computer-aided design and manufacture of an aerospace component
CN108145393A (en) A kind of aero-engine compressor blade and its processing method
CN103869755A (en) Method for guaranteeing smoothness of machine tool output power by adjusting machining code feeding speed
CN105069249A (en) Method for optimizing cutting path of spacer frame type integral structural member
EP1288753A1 (en) Data generating device, data generating method and data generating program
JP4346630B2 (en) Machining condition acquisition device and program thereof
Krimpenis et al. Assessment of sculptured surface milling strategies using design of experiments
WO2009101688A1 (en) Electric discharge machining device
KR20160019936A (en) Tool Path Generating Method and Tool Path Generating Device
CN111347109B (en) Method and processing unit for an electric discharge machine
CN104536383A (en) Integral forging and complete numerical control (CNC) processing method
CN105354398A (en) 2D (Two-dimensional) processing man hour evaluation method based on UG (Unigraphics NX) software mould
JP5311965B2 (en) Processing system
EP4005717A1 (en) Method and device for electrical discharge machining
JP4748049B2 (en) Method of determining the machining process
JPH11134014A (en) Nc data preparing device for cutting section left from cutting
JP2007058531A (en) Use order determination method and use order determination program for tool
Yoshioka et al. Direct NC Toolpath Generation from 3D Point Cloud Datasets
JP2010277261A (en) Machining simulation method and machining simulation support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553307

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711248

Country of ref document: EP

Kind code of ref document: A1