WO2009101231A1 - Composition of polymers and carbon nanotubes, method for producing same and the uses thereof - Google Patents

Composition of polymers and carbon nanotubes, method for producing same and the uses thereof Download PDF

Info

Publication number
WO2009101231A1
WO2009101231A1 PCT/ES2009/070021 ES2009070021W WO2009101231A1 WO 2009101231 A1 WO2009101231 A1 WO 2009101231A1 ES 2009070021 W ES2009070021 W ES 2009070021W WO 2009101231 A1 WO2009101231 A1 WO 2009101231A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
carbon nanotubes
dispersion
nanotubes
pani
Prior art date
Application number
PCT/ES2009/070021
Other languages
Spanish (es)
French (fr)
Inventor
Ana Benito Moraleja
Pablo Jimenez Manero
Maria Teresa Martinez Fernandez De Landa
Wolfgang Maser
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2009101231A1 publication Critical patent/WO2009101231A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes

Definitions

  • the present invention relates to a process of in situ polymerization of monomers, more preferably aniline, in the presence of carbon nanotubes.
  • it refers to the composition obtained by said process, which comprises a polymer, preferably fibrillary polyaniline, and carbon nanotubes, and its different uses.
  • This composition is soluble and stable in water.
  • polyaniline PANI
  • PCs polyaniline
  • PANI polyaniline
  • ways of solubilizing it in conventional solvents have been described, which offers the possibility of being used using usual techniques to form coatings, films, fibers, printed patterns, etc.
  • the new nanostructured nanocomposite has high stability against detonation compared to the polymer only, due to the interaction of nanotubes with the polymer itself.
  • This synthesis process is allowed to transfer to other polyaniline derivatives and other types of conductive polymers, such as polythiophene, polypyrrole, poly (phenylene sulfide) or their possible mixtures.
  • the polymer is polyaniline, and consequently its monomer is aniline, or its derivatives.
  • Carbon nanotubes can be single layer carbon nanotubes
  • SWNTs single-layer
  • CVD chemical vapor deposition
  • the amount of carbon nanotubes is between 0.001% and 60% by weight with respect to the initial monomer, preferably to the initial aniline.
  • the oxidants are peroxod ammonium sulfate, iron trichloride, copper sulfate or ammonium periodate, and more preferably ammonium peroxodisulfate.
  • the concentration of initiators can be between 0.001 g / ml and 0.2g / ml with respect to the total dispersion.
  • the number of equivalents redox oxidant, per mole of monomer can be between 0.05 and 4 redox equivalents per mole.
  • a second aspect of the present invention refers to a composition obtainable by the process of the invention (from now on the composition of the invention).
  • composition of the invention is much more dispersible than the nanotubes themselves, preferably MWNTs, so that the polymer, and more particularly PANI, acts here as an efficient vector for the dispersion of MWNTs.
  • compositions of a conductive polymer and CNT, preferably PANI / CNT, soluble in water, homogeneous and stable are:
  • FIG. 2. They show the images by transmission electron microscopy (TEM) of the powdered composites of: FIG.2A: PANI; FIG. 2B: PANI / 5M; FIG. 2C: PANI / 10M; FIG. 2D: PANI / 30M.
  • TEM transmission electron microscopy
  • Multi-layer carbon nanotubes were prepared by the electric arc discharge method. Pure graphite rods were sublimed at a voltage of 25V maintaining a current intensity of 6OA under a Helium atmosphere of 66kPa. The internal part of the cathodic deposit was collected and used without any further purification, this material was formed almost exclusively by MWNTs with lengths of several microns and diameters between 20 and 50nm.
  • the material obtained can be easily dispersed in varying amounts of water by a short period (around 3 minutes) of sonication.
  • the stability of these dispersions depends on the proportion of MWNTs in the composite material.
  • MWNTs multilayer carbon nanotubes
  • EXAMPLE 1 90mg of multilayer carbon nanotubes (MWNTs) produced according to the method detailed in EXAMPLE 1 were dispersed in 10ml of 0.5M HCI aqueous solution together with 0.3ml of aniline for 20 minutes at room temperature. The temperature of this dispersion was adjusted to 15 0 C by means of a thermostated ultrasonic bath. 10ml of a 0.5g solution of FeCU hexahydrate in 0.5M HCI was added once. The reaction was maintained at a constant temperature within the range 15 to 25 0 C and under sonication 6OW power for 1 hour.
  • MWNTs multilayer carbon nanotubes
  • the material obtained was easily dispersed in varying amounts of water by a short period (around 3 minutes) of sonication.
  • the stability of these dispersions depends on the proportion of MWNTs in the composite material.
  • EXAMPLE 3 Elemental analyzes of the products were performed on a Thermo Flash EA 1112 analyzer and thermogravimetric analyzes were performed on a Setaram TG-DTA 92 thermobalance, burning 10mg samples under an air flow of 5OmI per minute with a heating ramp of 3 0 C per minute.
  • Table 1 shows the results of the elementary analyzes of C, H, N and O, the weight loss corresponding to nanotubes obtained by TGA and the polymerization performance with respect to the aniline.
  • the nomenclature of the samples refers to the proportion by weight of MWNTs with respect to the amount of aniline initially used in the polymerization, so PANI does not contain nanotubes, PANI / 5M contains 5% of nanotubes, PANI / 10M 10%, PANI / 30M 30% and PANI / 50M 50%.
  • thermogravimetries carried out with these materials showed the typical decomposition pattern associated with polycycline doped with HCI, with a loss of water up to 100 0 C and a decomposition of the polyaniline chains between 280 and 620 0 C.
  • the composite materials presented oxidation of the MWNTs that happened at lower temperatures than in the case of the samples of pure MWNTs, as shown in Table 1. This phenomenon indicates the interaction between the PANI and the MWNTs, showing the good dispersion of the latter in the polymer matrix.
  • Powder samples of the products were observed by scanning electron microscopy (SEM) using a Hitachi S3400N microscope and by transmission electron microscopy (TEM) with a JEOL JSM-6400.
  • SEM scanning electron microscopy
  • TEM transmission electron microscopy
  • Raman spectrometry was performed on a Horiba Jovin-Yvon brand equipment.
  • Infrared spectrometry was performed by incorporating the powder material into KBr pads.
  • the SEM images (FIG. 1) clearly illustrate the nanometric morphology of these compositions.
  • the MWNTs were presented in a wide range of diameters and lengths, although in all cases they kept the structure straight and without defects of the nanotubes produced by electric arc discharge.
  • small elongated particles of about 100 nm in diameter were observed, as can be seen in FIG. 1A and 1 B and in FIG. 2A that corresponds to a TEM image.
  • This morphology is that corresponding to the nanofibrillar PANI, which has been synthesized and characterized repeatedly, although the nanofibers shown here show a much less elongated appearance and greater homogeneity in terms of particle sizes.
  • the nanometric size certainly favors the dispersibility of these materials.
  • the composites present a new type of nanostructure that coexists with PANI nanofibers, in which the MWNTs are partially covered by PANI forming cylindrical structures of about 300nm in diameter (FIG. 1C).
  • these cylinders usually house more than a single nanotube, oriented in parallel.
  • These images allow to appreciate the homogeneity of the composite materials, which are capable of forming stable dispersions for contents of up to 50% in CNT.
  • the presence of these nanostructures explains the vector role for the dispersion of CNTs exerted by the polyaniline in the composites, since the nanotubes are difficult to disperse coated by a layer of hydrophilic polyaniline.
  • the infrared spectrum obtained from solid samples of nanostructured PANI composites corresponds well with the PANI own spectrum in the state of emeraldine salt, as seen in Figures 3A-3D.
  • the nanotubes do not produce any change in the intensities or frequencies of the infrared absorptions, since the MWNTs themselves do not have any characteristic absorption in that area.
  • the spectra have the characteristic 'Fano' effect of doped polyanilines.
  • Aqueous dispersions of the materials were achieved by simple sonication of the products obtained in powder in water or aqueous solutions of 1mM HCI for 5 min. These dispersions were analyzed by UV-Vis absorption spectrometry. The stability of these dispersions was evaluated by leaving them at rest, taking aliquots of the upper part of the dispersions from time to time and analyzing them by UV-Vis absorption spectrometry and elemental analysis.
  • the effect of detonation of PANI and its composites depends on the concentration of the sample, thus the low concentration dispersions are quickly transformed into base emeraldine.
  • the spectra obtained from these dispersions of emeraldine base do not differ much from those of the solutions of pure emeraldine base, with absorption maxima located at 351 and 696nm.
  • the wider aspect of the absorption bands in the spectra of the composites is indicative of the lower homogeneity of these dispersions.
  • the stability of the aqueous dispersions in the base emeraldine form is markedly lower than the dispersions in the form of the emeraldine salt.
  • the MWNTs present in the composites affect the kinetics of the detonation reaction, this being slower for higher proportions of nanotubes in the dispersed material.
  • the deprotonated materials that is, in the form of emeraldine base, are soluble in NMP as are the composite materials with MWNTs synthesized by other methods.

Abstract

Composition of carbon nanotubes and polymer that can be obtained by means of a method that comprises: sonication of a dispersion of carbon nanotubes in an acid solvent; the addition of monomers to the nanotube dispersion; and the rapid addition of a radical initiator to the previous dispersion of nanotubes and monomer, the resulting mixture being maintained at a temperature of between 0ºC and 40ºC. The method is implemented with continuous sonication. Not only said composition but also the dispersion thereof in water are useful as components in paints, dyes, printing processes, electronic devices or circuits or in bioapplications.

Description

COMPOSICIÓN DE POLÍMEROS Y NANOTUBOS DE CARBONO, COMPOSITION OF CARBON POLYMERS AND NANOTUBES,
PROCEDIMIENTO DE OBTENCIÓN Y SUS USOSPROCEDURE OF OBTAINING AND ITS USES
La presente invención se refiere a un procedimiento de polimerización in situ de monómeros, más preferiblemente anilina, en presencia de nanotubos de carbono. Además, se refiere a Ia composición obtenida por dicho procedimiento, que comprende un polímero, preferiblemente polianilina fibrilar, y nanotubos de carbono, y a sus diferentes usos. Esta composición es soluble y estable en agua.The present invention relates to a process of in situ polymerization of monomers, more preferably aniline, in the presence of carbon nanotubes. In addition, it refers to the composition obtained by said process, which comprises a polymer, preferably fibrillary polyaniline, and carbon nanotubes, and its different uses. This composition is soluble and stable in water.
ESTADO DE LA TÉCNICA ANTERIORSTATE OF THE PREVIOUS TECHNIQUE
Los polímeros conductores intrínsecos (PCs), también llamados polímeros electroactivos o metales sintéticos, se conocen desde hace tiempo. Ejemplos de estos PCs son poliacetileno, polipirrol, poli(parafenileno), politiofeno y sus derivados. Los PCs poseen propiedades eléctricas, magnéticas y ópticas de un metal mientras que tienen propiedades mecánicas usualmente asociadas a polímeros convencionales. Presentan un gran potencial de aplicaciones para el desarrollo de electrónica plástica (circuitos flexibles, transistores, sensores, diodos emisores de luz orgánicos, células fotovoltaicas, actuadores, etc.), así como en aplicaciones de protección frente a Ia corrosión y en materiales textiles funcionales. Sus propiedades conductoras son debidas a Ia forma dopada del polímero, y este dopaje puede realizarse de forma química o electroquímica. En su forma conductora, estos materiales tienen un uso limitado para aplicaciones tecnológicas, ya que son, a menudo, químicamente inestables, y virtualmente intratables, siendo difícilmente procesables en solución o en fundido.Intrinsic conductive polymers (PCs), also called electroactive polymers or synthetic metals, have long been known. Examples of these PCs are polyacetylene, polypyrrole, poly (paraphenylene), polythiophene and its derivatives. PCs have electrical, magnetic and optical properties of a metal while they have mechanical properties usually associated with conventional polymers. They have a great potential of applications for the development of plastic electronics (flexible circuits, transistors, sensors, organic light emitting diodes, photovoltaic cells, actuators, etc.), as well as in applications of protection against corrosion and in functional textile materials . Its conductive properties are due to the doped form of the polymer, and this doping can be performed chemically or electrochemically. In their conductive form, these materials have limited use for technological applications, since they are often chemically unstable, and virtually intractable, being hardly processable in solution or in melt.
Entre los PCs, Ia polianilina (PANI) tiene una especial relevancia. Es químicamente estable y conductora de electricidad en forma protonada. Además, en los últimos años se han descrito formas de solubilizarla en disolventes convencionales, Io que ofrece Ia posibilidad de ser empleada utilizando técnicas habituales para formar recubrimientos, películas, fibras, patrones impresos, etc.Among the PCs, polyaniline (PANI) has a special relevance. It is chemically stable and electrically conductive in protonated form. In addition, in recent years, ways of solubilizing it in conventional solvents have been described, which offers the possibility of being used using usual techniques to form coatings, films, fibers, printed patterns, etc.
El polímero de polianilina puede presentarse en diversas formas generales, incluyendo Ia denominada forma reducida (base de leuco-emeraldina), Ia parcialmente oxidada denominada forma de base emeraldina y Ia forma pernigranilina, completamente oxidada. Cada estado de oxidación puede presentarse en Ia forma de su base o en forma protonada (sal) por medio del tratamiento de Ia base con un ácido. Las propiedades eléctricas y ópticas de PANI varían con los diferentes estados de oxidación, y las diferentes formas.The polyaniline polymer can be presented in various general forms, including the so-called reduced form (leuco-emeraldine base), Ia partially oxidized called the base form emeraldine and the pernigraniline form, completely oxidized. Each oxidation state can be presented in the form of its base or in protonated form (salt) by means of treating the base with an acid. The electrical and optical properties of PANI vary with different oxidation states, and different forms.
La forma emeraldina de PANI es de gran interés para las aplicaciones mencionadas anteriormente, especialmente por sus propiedades de conversión de Ia forma aislante emeraldina base soluble a Ia sal de emeraldina, conductora y no soluble. Existen descritas varias rutas químicas de síntesis en Ia literatura, Ia mayoría basadas en dopado con ácidos. La forma no conductora de PANI, emeraldina base, es soluble en disolventes polares fuertes como N-metil pirrolidona (NMP), mientras que Ia forma conductora de PANI, sal emeraldina, es soluble únicamente en ácidos muy fuertes.The emeraldine form of PANI is of great interest for the aforementioned applications, especially because of its conversion properties of the insulating form emeraldine base soluble to the emeraldine salt, conductive and not soluble. There are several chemical synthesis routes described in the literature, the majority based on acid doped. The non-conductive form of PANI, emeraldine base, is soluble in strong polar solvents such as N-methyl pyrrolidone (NMP), while the conductive form of PANI, emeraldine salt, is soluble only in very strong acids.
Recientemente, se ha descrito un proceso para obtener PANI en forma fibrilar por adición rápida del agente oxidante polimerizante al monómero anilina en una única etapa (Huang J., et al., 2006, Chem. Commun. vol. 4 pp. 367-376). El carácter fibrilar mejora también Ia solubilidad de Ia emeraldina resultante en disoluciones acuosas.Recently, a process for obtaining PANI in fibrillar form by rapid addition of the polymerizing oxidizing agent to the aniline monomer in a single stage has been described (Huang J., et al., 2006, Chem. Commun. Vol. 4 pp. 367-376 ). The fibrillar character also improves the solubility of the emeraldine resulting in aqueous solutions.
Existe un notable interés en encontrar una manera de mejorar Ia conductividad de PANI conservando su estabilidad térmica y procesabilidad. Es conocido también en Ia literatura que es posible Ia combinación de PANI con determinados materiales carbonosos como por ejemplo nanotubos de carbono.There is a remarkable interest in finding a way to improve the conductivity of PANI while retaining its thermal stability and processability. It is also known in the literature that the combination of PANI with certain carbonaceous materials such as carbon nanotubes is possible.
Los nanotubos de carbono (CNTs) son objetos en Ia nanoescala relativamente nuevos, compuestos por una o varias hojas de grafeno enrolladas formando estructuras cilindricas para dar lugar a Io que se denomina nanotubos de pared simple (SWNT del inglés single-walled carbón nanotubes) y nanotubos de pared múltiple (MWNT del inglés multiwalled carbón nanotubes). CNTs poseen propiedades estructurales, mecánicas, térmicas, electrónicas, y ópticas únicas y son de gran interés en aplicaciones en varios campos de alto interés tecnológico como son Ia nanoelectrónica, emisión de campo, dispositivos nanoelectromecánicos, sensores, materiales compuestos o plásticos funcionales. Para muchas aplicaciones, especialmente para Ia fabricación de materiales compuestos de plásticos funcionales, es deseable poder ser capaces de dispersar los CNTs y mantener tales dispersiones para conseguir una buena homogeneidad del producto, minimizar los problemas de procesado y mejorar su calidad.Carbon nanotubes (CNTs) are relatively new nanoscale objects, composed of one or more sheets of graphene rolled forming cylindrical structures to give rise to what is called single-walled nanotubes (SWNT). multi-walled nanotubes (MWNT of English multiwalled carbon nanotubes). CNTs have unique structural, mechanical, thermal, electronic, and optical properties and are of great interest in applications in several fields of high technological interest such as nanoelectronics, field emission, nanoelectromechanical devices, sensors, composite materials or functional plastics. For many applications, especially for the manufacture of functional plastic composite materials, it is desirable to be able to disperse the CNTs and maintain such dispersions to achieve good product homogeneity, minimize processing problems and improve their quality.
Existen materiales compuestos con PANI y CNT que fueron obtenidos mediante métodos de dispersión de CNT/PANI aplicando el tratamiento apropiado a los CNTs y su uso en polímeros aislantes. El proceso está basado en una mezcla de los dos constituyentes CNTs y PANI mediante una aproximación ex-situ. Este tipo de material se podría usar en impresión de circuitos electrónicos.There are composite materials with PANI and CNT that were obtained by means of CNT / PANI dispersion methods applying the appropriate treatment to the CNTs and their use in insulating polymers. The process is based on a mixture of the two constituents CNTs and PANI through an ex situ approach. This type of material could be used in electronic circuit printing.
Por otra parte, en 2001 se describió un proceso de polimerización in-situ, de anilina en nanotubos, para Ia obtención del primer material compuesto PANI/CNTs, y el proceso de transferencia de carga entre nanotubos y polianilina a través de interacciones selectivas. Estos procedimientos se llevaron a cabo a temperaturas de unos -30C (Cochet, M. et al., 2001 , Chem. Commun., vol. 16, pp. 1450-1451 ).On the other hand, in 2001 a process of in-situ polymerization of aniline in nanotubes was described, in order to obtain the first PANI / CNTs composite material, and the process of load transfer between nanotubes and polyaniline through selective interactions. These procedures were carried out at temperatures of about -3 0 C (Cochet, M. et al., 2001, Chem. Commun., Vol. 16, pp. 1450-1451).
Posteriormente, se describió Ia fabricación de un material compuesto soluble CNT/PANI altamente funcional a temperaturas por debajo de O0C (In het Panhuis M., et al., 2005, J. Phvs. Chem. B, vol. 109, pp. 22725-22729). Este composite, constituido por polianilina en su forma base y nanotubos de carbono, era soluble en NMP (N-metil-2-pirrolidinona). El material compuesto, PANI/CNTs, en polvo presentaba conductividad tanto en su forma base como sal, dando valores de conductividad a temperatura ambiente de aproximadamente 1 S/cm, conductividad que estaba determinada por Ia red de percolación de los nanotubos en el material compuesto. EXPLICACIÓN DE LA INVENCIÓNSubsequently, the manufacture of a highly functional CNT / PANI soluble composite material at temperatures below 0 ° C was described (In het Panhuis M., et al., 2005, J. Phvs. Chem. B, vol. 109, pp. 22725-22729). This composite, consisting of polyaniline in its base form and carbon nanotubes, was soluble in NMP (N-methyl-2-pyrrolidinone). The composite material, PANI / CNTs, in powder had conductivity in both its base and salt form, giving conductivity values at room temperature of approximately 1 S / cm, conductivity that was determined by the percolation network of the nanotubes in the composite material . EXPLANATION OF THE INVENTION
La presente invención describe un proceso de polimerización in-situ de monómeros, preferiblemente anilina, sobre nanotubos de carbono obteniéndose un material compuesto (sal de polianilina fibrilar en su forma conductora (emeraldina) y nanotubos de carbono) con contenidos de nanotubos de hasta incluso más del 50 % en peso (hasta un 70% en peso), que es altamente dispersable y estable en soluciones acuosas. Además, Ia invención versa sobre dispersiones acuosas de esta composición. Asimismo, el material obtenido es conductor eléctrico, tiene mejor estabilidad térmica que Ia sal de polianilina sin nanotubos y es fluorescente.The present invention describes an in-situ polymerization process of monomers, preferably aniline, on carbon nanotubes, obtaining a composite material (fibrillar polyaniline salt in its conductive form (emeraldine) and carbon nanotubes) with nanotube contents of up to even more. 50% by weight (up to 70% by weight), which is highly dispersible and stable in aqueous solutions. In addition, Ia The invention relates to aqueous dispersions of this composition. Likewise, the material obtained is an electrical conductor, has better thermal stability than the polyaniline salt without nanotubes and is fluorescent.
En Ia producción de estos materiales está implicada una combinación de condiciones de reacción, como Ia irradiación por ultrasonidos de las dispersiones, Ia temperatura controlada en una polimerización in situ de anilina en presencia de nanotubos, Ia adicción rápida del oxidante, además, el tamaño nanométrico de estas estructuras de nanotubos también permite que las composiciones de Ia presente invención sean altamente dispersables y estables en agua, aún con alto contenido de nanotubos.In the production of these materials a combination of reaction conditions is involved, such as the irradiation by ultrasound of the dispersions, the temperature controlled in an in situ polymerization of aniline in the presence of nanotubes, the rapid addition of the oxidant, in addition, the nanometric size of these nanotube structures also allows the compositions of the present invention to be highly dispersible and stable in water, even with a high content of nanotubes.
Además, el nuevo nanocomposite nanoestructurado tiene elevada estabilidad contra Ia deprotonación en comparación con el polímero sólo, debido a Ia propia interacción de nanotubos con el polímero.In addition, the new nanostructured nanocomposite has high stability against detonation compared to the polymer only, due to the interaction of nanotubes with the polymer itself.
Este proceso de síntesis se deja transferir a otros derivados de polianilina y otros tipos de polímeros conductores, como por ejemplo politiofeno, polipirrol, poli(sulfuro de fenileno) o sus posibles mezclas.This synthesis process is allowed to transfer to other polyaniline derivatives and other types of conductive polymers, such as polythiophene, polypyrrole, poly (phenylene sulfide) or their possible mixtures.
Por Io tanto, un aspecto de Ia presente invención se refiere a un procedimiento (a partir de ahora procedimiento de Ia invención) de obtención de una composición de nanotubos de carbono y polímero, que comprende: a. sonicación de una dispersión de nanotubos de carbono en un disolvente ácido; b. adición de monómeros en Ia dispersión del paso (a); c. adición rápida de un iniciador de radicales a Ia dispersión del paso (b), manteniendo Ia mezcla obtenida a una temperatura de entre O0C y 4O0C, preferiblemente entre 15 y 250C, durante un tiempo, que puede ser de entre 30min y 24horas.Therefore, one aspect of the present invention relates to a process (from now on the process of the invention) for obtaining a composition of carbon and polymer nanotubes, comprising: a. sonication of a dispersion of carbon nanotubes in an acid solvent; b. addition of monomers in the dispersion of step (a); C. rapid addition of a radical initiator to the dispersion of step (b) maintaining the mixture obtained at a temperature of between O 0 C and 4O 0 C, preferably between 15 and 25 0 C, for a time which can be between 30min and 24 hours.
La agitación mediante irradiación de ultrasonidos (sonicación) continúa en los pasos (b) y (c).Stirring by ultrasound irradiation (sonication) continues in steps (b) and (c).
Por "adición rápida" se entiende Ia adición de una vez, no gota a gota, del iniciador de radicales. La sonicación se puede llevar a cabo a una potencia de irradiación de entre 5- 3000W siendo el intervalo preferido el de 10-100W.By "quick addition" is meant the addition of once, not drop by drop, the radical initiator. The sonication can be carried out at an irradiation power of between 5-3,000W, the preferred range being 10-100W.
El polímero de Ia presente invención es un material conductor de electricidad seleccionado del grupo que comprende polianilina o sus derivados, politiofeno o sus derivados, polipirrol o sus derivados, poli(sulfuro de fenilo) o sus derivados, o cualquiera de sus mezclas. Entendiendo por "mezclas", en este caso concreto, a más de un polímero y/o un derivado de cualquier polímero.The polymer of the present invention is an electrically conductive material selected from the group comprising polyaniline or its derivatives, polythiophene or its derivatives, polypyrrole or its derivatives, poly (phenyl sulfide) or its derivatives, or any of their mixtures. By "mixtures", in this specific case, it is meant more than one polymer and / or a derivative of any polymer.
Preferiblemente el polímero es polianilina, y consecuentemente su monómero es anilina, o sus derivados.Preferably the polymer is polyaniline, and consequently its monomer is aniline, or its derivatives.
En el estado de Ia técnica anterior se suelen usar surfactantes o bien para dispersar los nanotubos de carbono en agua o bien para producir nanofibras de PANI. Sin embargo, el procedimiento de Ia invención se lleva a cabo en ausencia de surfactante, consiguiendo mediante dicho procedimiento que las nanoestructuras de polianilina y los nanotubos de carbono se encuentren bien dispersos en Ia matriz sin surfactante.In the prior art, surfactants are usually used either to disperse carbon nanotubes in water or to produce PANI nanofibers. However, the process of the invention is carried out in the absence of surfactant, by means of said process achieving that the polyaniline nanostructures and carbon nanotubes are well dispersed in the matrix without surfactant.
Una realización preferida del procedimiento de Ia invención, además comprende: d. filtrar, lavar y secar el compuesto de nanotubos de carbono y polímero, preferiblemente polianilina, obtenido en el paso (c).A preferred embodiment of the process of the invention also comprises: d. filter, wash and dry the carbon and polymer nanotube compound, preferably polyaniline, obtained in step (c).
El disolvente ácido es un ácido inorgánico prótico soluble en agua que se selecciona del grupo que comprende: ácido clorhídrico (HCI), ácido sulfúrico (H2SO4), ácido nítrico (HNO3), ácido fosfórico (H3PO4), ácido bórico (HBO3), ácido fluorhídrico (HF), ácido bromhídrico (HBr), ácido iodhídrico (Hl), ácido perclórico (HCIO4), ácido periódico (HIO4), ácido tetrafluorobórico (HBF4) o cualquiera de sus combinaciones. Preferiblemente, el ácido es HCI.The acid solvent is a water soluble protic inorganic acid that is selected from the group comprising: hydrochloric acid (HCI), sulfuric acid (H 2 SO 4 ), nitric acid (HNO3), phosphoric acid (H 3 PO 4 ), acid boric (HBO3), hydrofluoric acid (HF), hydrobromic acid (HBr), iodhydric acid (Hl), perchloric acid (HCIO 4 ), periodic acid (HIO 4 ), tetrafluoroboric acid (HBF 4 ) or any combination thereof. Preferably, the acid is HCI.
Preferiblemente Ia concentración de disolvente ácido es de entre 0.001 M a 5M.Preferably the concentration of acid solvent is between 0.001 M to 5M.
Los nanotubos de carbono pueden ser nanotubos de carbono de capa únicaCarbon nanotubes can be single layer carbon nanotubes
(SWNTs) o de capa múltiple (MWNTs), producidos por los métodos de descarga por arco eléctrico, de deposición de vapor químico (CVD)-(incluyendo(SWNTs) or multi-layer (MWNTs), produced by electric arc discharge, chemical vapor deposition (CVD) - (including
HiPCO), de ablación láser o por cualquier combinación de ellos. Preferiblemente los nanotubos que se utilizan en el procedimiento de Ia invención son de capa múltiple.HiPCO), laser ablation or any combination of them. Preferably the nanotubes that are used in the process of the invention are multilayer.
La cantidad de nanotubos de carbono en Ia dispersión puede ser de hasta un 60-70% en peso con respecto al polímero, preferiblemente a Ia polianilina. A pesar de su alta concentración de nanotubos, el conjunto continúa dispersándose sin producirse aglomerados.The amount of carbon nanotubes in the dispersion can be up to 60-70% by weight with respect to the polymer, preferably polyaniline. Despite its high concentration of nanotubes, the assembly continues to disperse without agglomerates.
Normalmente, en el estado de Ia técnica se describen composiciones de este tipo con porcentajes de nanotubos por debajo del 5% con respecto al polímero, porque a partir de concentraciones superiores enseguida se aglomeran y no se dispersa bien en Ia matriz.Normally, in the state of the art such compositions are described with percentages of nanotubes below 5% with respect to the polymer, because from higher concentrations they immediately agglomerate and do not disperse well in the matrix.
Preferiblemente Ia cantidad de nanotubos de carbono es de entre 0,001 % y 60% en peso con respecto al monómero inicial, preferiblemente a Ia anilina inicial.Preferably the amount of carbon nanotubes is between 0.001% and 60% by weight with respect to the initial monomer, preferably to the initial aniline.
La anilina utilizada en el procedimiento de Ia invención puede ser anilina substituida o no sustituida, con un intervalo de concentración que puede ser de entre 0.001 g/ml y 0.2g/ml con respecto a Ia dispersión del paso (a).The aniline used in the process of the invention can be substituted or unsubstituted aniline, with a concentration range that can be between 0.001 g / ml and 0.2g / ml with respect to the dispersion of step (a).
Los iniciadores de radicales son sales inorgánicas oxidantes solubles en agua, donde el oxidante se selecciona del grupo que comprende peroxod ¡sulfato amónico ((NH4J2S2Os, 2eq.redox (número de equivalentes redox por mol de oxidante)), peroxod ¡sulfato potásico (K2S2O8, 2eq. redox), tricloruro de hierro (FeCU, 1eq. redox), tricloruro de cobalto (C0CI3, 1eq. redox), agua oxigenada (H2O2, 2eq. redox), sulfato de cobre (CuSO4, 2eq. redox), cloruro de cobre (CuCI2, 2eq. redox), permanganato potásico (KMnO4, 3eq. redox), clorato potásico (KCIO3, 6eq. redox), clorato sódico (NaCIO3, 6eq. redox), dicromato potásico (K2Cr2O7, 6eq. redox), dicromato amónico ((NhU)2Cr2O7, 6eq. redox), peryodato sódico (NH4IO4, 8eq. redox), peryodato amónico (NaIO4, 8eq. redox) o cualquiera de sus combinaciones. Preferiblemente los oxidantes son peroxod ¡sulfato amónico, tricloruro de hierro, sulfato de cobre o peryodato amónico, y más preferiblemente peroxodisulfato amónico.The radical initiators are water soluble oxidizing inorganic salts, where the oxidant is selected from the group comprising peroxod ammonium sulfate ((NH 4 J 2 S 2 Os, 2eq.redox (number of redox equivalents per mole of oxidant)), peroxod potassium sulfate (K 2 S 2 O 8 , 2eq. redox), iron trichloride (FeCU, 1eq. redox), cobalt trichloride (C0CI 3 , 1eq. redox), hydrogen peroxide (H 2 O 2 , 2eq. redox), copper sulfate (CuSO 4 , 2eq. redox), copper chloride (CuCI 2 , 2eq. redox), potassium permanganate (KMnO 4 , 3eq. redox), potassium chlorate (KCIO 3 , 6eq. redox), chlorate sodium (NaCIO 3 , 6eq. redox), potassium dichromate (K 2 Cr 2 O 7 , 6eq. redox), ammonium dichromate ((NhU) 2 Cr 2 O 7 , 6eq. redox), sodium periodate (NH 4 IO 4 , 8eq. Redox), ammonium periodate (NaIO 4 , 8eq. Redox) or any combination thereof. Preferably the oxidants are peroxod ammonium sulfate, iron trichloride, copper sulfate or ammonium periodate, and more preferably ammonium peroxodisulfate.
La concentración de iniciadores puede ser de entre 0.001 g/ml y 0.2g/ml con respecto al total de Ia dispersión. En esta dispersión el número de equivalentes redox de oxidante, por mol de monómero, puede ser de entre 0.05 y 4 equivalentes redox por mol.The concentration of initiators can be between 0.001 g / ml and 0.2g / ml with respect to the total dispersion. In this dispersion the number of equivalents redox oxidant, per mole of monomer, can be between 0.05 and 4 redox equivalents per mole.
Un segundo aspecto de Ia presente invención se refiere a una composición obtenible por el procedimiento de Ia invención (a partir de ahora composición de Ia invención).A second aspect of the present invention refers to a composition obtainable by the process of the invention (from now on the composition of the invention).
La composición de Ia invención resulta mucho más dispersable que los propios nanotubos, preferiblemente MWNTs, con Io que el polímero, y más particularmente PANI, actúa aquí como un eficiente vector para Ia dispersión de MWNTs. Esto convierte a Ia composición de Ia invención en un buen material para Ia mejora del procesado de los nanotubos de carbono, con Ia ventaja de preservar las propiedades y funcionalidad de los polímeros conductores.The composition of the invention is much more dispersible than the nanotubes themselves, preferably MWNTs, so that the polymer, and more particularly PANI, acts here as an efficient vector for the dispersion of MWNTs. This makes the composition of the invention a good material for improving the processing of carbon nanotubes, with the advantage of preserving the properties and functionality of conductive polymers.
En estas nanocomposiciones de polianilina-nanotubos de carbono obtenidas mediante el procedimiento de Ia invención, Ia polianilina está en forma de sal emeraldina (su forma conductora) y tiene a su vez morfología nanoestructurada.In these polyaniline-carbon nanotubes nanocompositions obtained by the process of the invention, the polyaniline is in the form of emeraldine salt (its conductive form) and in turn has nanostructured morphology.
Un tercer aspecto de Ia presente invención se refiere a una dispersión acuosa que comprende Ia composición de Ia invención.A third aspect of the present invention refers to an aqueous dispersion comprising the composition of the invention.
En esta invención se presenta por primera vez Ia síntesis de un composite de PANI con CNTs, en el cual Ia polianilina preserva una morfología a escala nanométrica, y que además resulta dispersable en disoluciones acuosas. Esto permite mejoras en el procesado de dicho composite que puede ser aprovechado en diversas aplicaciones en campos tales como textiles, tintas y aditivos funcionales, electrónica con plásticos, biomateriales, etc.In this invention, the synthesis of a PANI composite with CNTs is presented for the first time, in which the polyaniline preserves a nanometric scale morphology, and which is also dispersible in aqueous solutions. This allows improvements in the processing of said composite that can be used in various applications in fields such as textiles, inks and functional additives, electronics with plastics, biomaterials, etc.
De un modo más genérico, se demuestra que el procedimiento de Ia invención resulta una manera eficiente de obtener dispersiones en agua estables de los propios nanotubos de carbono, Io que ya de por sí constituye un gran avance en el procesado y purificación de dicho material.In a more generic way, it is demonstrated that the process of the invention is an efficient way to obtain stable water dispersions of the carbon nanotubes themselves, which already constitutes a great advance in the processing and purification of said material.
Para muchas aplicaciones, es altamente deseable tener composiciones de un polímero conductor y CNT, preferiblemente PANI/CNT, solubles en agua, homogéneas y estables. Y como consecuencia de esta dispersabilidad en agua, existen:For many applications, it is highly desirable to have compositions of a conductive polymer and CNT, preferably PANI / CNT, soluble in water, homogeneous and stable. And as a consequence of this dispersibility in water, there are:
-Nuevas oportunidades para procesar nanocomposite polímero-nanotubos en películas, fibras, o como aditivo en diversas matrices como polímeros, pinturas, tintas, y procesos de impresión para circuitos/dispositivos electrónicos, procesos de impregnación de textiles, bioaplicaciones, entre otras.-New opportunities to process nanocomposite polymer-nanotubes in films, fibers, or as an additive in various matrices such as polymers, paints, inks, and printing processes for electronic circuits / devices, textile impregnation processes, bioapplications, among others.
-Nuevas oportunidades para el uso de nanotubos de carbono en sistemas acuosos como por ejemplo pinturas, tintas, procesos de impresión, circuitos/dispositivos electrónicos y bioaplicaciones.-New opportunities for the use of carbon nanotubes in aqueous systems such as paints, inks, printing processes, electronic circuits / devices and bioapplications.
Así, un cuarto aspecto de Ia presente invención se refiere al uso de Ia composición de Ia invención o de Ia dispersión de Ia invención, en pinturas, tintas y colorantes, procesos de impresión, circuitos o dispositivos electrónicos o en bioaplicaciones.Thus, a fourth aspect of the present invention refers to the use of the composition of the invention or of the dispersion of the invention, in paints, inks and dyes, printing processes, electronic circuits or devices or in bioapplications.
De esta forma, Ia composición de Ia invención puede ser utilizada fácilmente para preparar aditivos funcionales para pinturas, tintas y colorantes, para preparar películas y fibras de uso especial en dispositivos de electrónica plástica y optoelectrónica, para preparar recubrimientos anticorrosivos.Thus, the composition of the invention can be easily used to prepare functional additives for paints, inks and dyes, to prepare films and fibers for special use in plastic electronics and optoelectronic devices, to prepare anticorrosive coatings.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
FIG. 1.- Muestran las imágenes por microscopía electrónica de barrido (SEM) de los composites en polvo de: FIG.1A y FIG.1 B: PANI; FIG.1C y FIG.1 D: PANI/5M; FIG.1 E y FIG.1 F: PANI/10M; FIG.1 G y FIG.1 H: PANI/30M; FIG.11 y FIG. U: PANI/50M.FIG. 1.- They show the images by scanning electron microscopy (SEM) of the powder composites of: FIG.1A and FIG.1 B: PANI; FIG.1C and FIG.1 D: PANI / 5M; FIG. 1 E and FIG. 1 F: PANI / 10M; FIG. 1 G and FIG. 1 H: PANI / 30M; FIG. 11 and FIG. U: PANI / 50M.
FIG. 2.- Muestran las imágenes por microscopía electrónica de transmisión (TEM) de los composites en polvo de: FIG.2A: PANI; FIG.2B: PANI/5M; FIG.2C: PANI/10M; FIG.2D: PANI/30M.FIG. 2.- They show the images by transmission electron microscopy (TEM) of the powdered composites of: FIG.2A: PANI; FIG. 2B: PANI / 5M; FIG. 2C: PANI / 10M; FIG. 2D: PANI / 30M.
FIG. 3.- Muestran los datos obtenidos mediante espectrometría de Infrarrojo de los composites en polvo de: FIG.3A: PANI; FIG.3B: PANI/10M; FIG.3C: PANI/30M; FIG.3D: PANI/50M.FIG. 3.- They show the data obtained by infrared spectrometry of the powder composites of: FIG.3A: PANI; FIG. 3B: PANI / 10M; FIG. 3C: PANI / 30M; FIG. 3D: PANI / 50M.
FIG. 4.- Muestran los datos obtenidos mediante espectrometría Raman de los composites en polvo de: FIG.4A: PANI; FIG.4B: MWNT; FIG.4C: PANI/50M; FIG. 4D: Los tres anteriores.FIG. 4.- They show the data obtained by Raman spectrometry of the powder composites of: FIG. 4A: PANI; FIG. 4B: MWNT; FIG. 4C: PANI / 50M; FIG. 4D: The previous three.
FIG. 5.- Muestran los datos obtenidos mediante espectrometría de absorción ultravioleta visible de los composites dispersos en agua y HCI 0.001 M de: FIG.5A: PANI; FIG.5B: PANI/5M; FIG.5C: PANI/30M.FIG. 5.- They show the data obtained by visible ultraviolet absorption spectrometry of composites dispersed in water and 0.001 M HCI of: FIG. 5A: PANI; FIG. 5B: PANI / 5M; FIG. 5C: PANI / 30M.
EJEMPLOSEXAMPLES
A continuación se ilustrará Ia invención mediante unos ensayos realizados por los inventores, que pone de manifiesto Ia especificidad y efectividad del procedimiento de Ia invención y Ia composición que se obtiene mediante dicho procedimiento.Next, the invention will be illustrated by tests carried out by the inventors, which shows the specificity and effectiveness of the process of the invention and the composition obtained by said process.
EJEMPLO 1EXAMPLE 1
Los nanotubos de carbono de capa múltiple (MWNTs) fueron preparados por el método de descarga en arco eléctrico. Se sublimaron barras de grafito puro a un voltaje de 25V manteniendo una intensidad de corriente de 6OA bajo una atmósfera de Helio de 66kPa. La parte interna del depósito catódico fue recogida y empleada sin realizar ninguna purificación posterior, este material estaba formado casi exclusivamente por MWNTs con longitudes de varias mieras y diámetros entre 20 y 50nm.Multi-layer carbon nanotubes (MWNTs) were prepared by the electric arc discharge method. Pure graphite rods were sublimed at a voltage of 25V maintaining a current intensity of 6OA under a Helium atmosphere of 66kPa. The internal part of the cathodic deposit was collected and used without any further purification, this material was formed almost exclusively by MWNTs with lengths of several microns and diameters between 20 and 50nm.
15mg de MWNTs fueron dispersados por sonicación en 2OmI de disolución acuosa de HCI 1 M durante 10 minutos. Se añadieron 0.3ml de anilina destilada15mg of MWNTs were dispersed by sonication in 2OmI of 1M aqueous HCI solution for 10 minutes. 0.3ml distilled aniline was added
(99.5%, Scharlau Chemie, España) y fueron dispersados mediante sonicación durante otros 10 minutos a 150C. Se añadieron rápidamente 2OmI de una disolución de 0.32g de peroxodisulfato amónico (APS, 98%, Sigma-Aldrich) en HCI 1 M. La mezcla de reacción a partir de entonces fue mantenida bajo sonicación de ultrasonidos de 5OW de potencia, a una temperatura dentro del intervalo de 15 a 2O0C durante 2 horas.(99.5%, Scharlau Chemie, Spain) and were dispersed by sonication for another 10 minutes at 15 0 C. 2OmI of a rapidly added 0.32g solution of ammonium peroxodisulfate (APS, 98%, Sigma-Aldrich) in 1 M HCI. The reaction mixture thereafter was maintained under sonication of 5OW power ultrasound, at a temperature within the range of 15 to 2O 0 C for 2 hours.
Pasado ese tiempo se filtró Ia mezcla y el precipitado de color verde oscuro fue lavado repetidas veces con HCI 1 M y acetona. Finalmente el producto fue secado en vacío a temperatura ambiente durante 24 horas.After that time the mixture was filtered and the dark green precipitate was washed repeatedly with 1 M HCI and acetone. Finally the product was dried under vacuum at room temperature for 24 hours.
El material obtenido puede ser fácilmente dispersado en cantidades variables de agua mediante un corto periodo (en torno a los 3 minutos) de sonicación. La estabilidad de estas dispersiones depende de Ia proporción de MWNTs en el material compuesto.The material obtained can be easily dispersed in varying amounts of water by a short period (around 3 minutes) of sonication. The stability of these dispersions depends on the proportion of MWNTs in the composite material.
EJEMPLO 2EXAMPLE 2
90mg de nanotubos de carbono de capa múltiple (MWNTs) producidos según el método detallado en el EJEMPLO 1 fueron dispersados en 10ml de disolución acuosa de HCI 0.5M junto con 0.3ml de anilina durante 20 minutos a temperatura ambiente. La temperatura de esta dispersión fue ajustada a 150C mediante un baño de ultrasonidos termostatizado. Se añadió en una vez 10ml de una disolución de 0.5g de FeCU hexahidrato en HCI 0.5M. La reacción fue mantenida a temperatura constante dentro del intervalo 15 a 25 0C y bajo sonicación de 6OW de potencia durante 1 hora.90mg of multilayer carbon nanotubes (MWNTs) produced according to the method detailed in EXAMPLE 1 were dispersed in 10ml of 0.5M HCI aqueous solution together with 0.3ml of aniline for 20 minutes at room temperature. The temperature of this dispersion was adjusted to 15 0 C by means of a thermostated ultrasonic bath. 10ml of a 0.5g solution of FeCU hexahydrate in 0.5M HCI was added once. The reaction was maintained at a constant temperature within the range 15 to 25 0 C and under sonication 6OW power for 1 hour.
Pasado ese tiempo se filtró Ia mezcla y el precipitado de color verde oscuro fue lavado repetidas veces con HCI 0.5M hasta eliminar completamente los restos de oxidante y posteriormente con acetona. Finalmente el producto fue secado en vacío a temperatura ambiente durante 24 horas.After that time the mixture was filtered and the dark green precipitate was washed repeatedly with 0.5M HCI until completely removing the remains of oxidant and then with acetone. Finally the product was dried under vacuum at room temperature for 24 hours.
El material obtenido fue fácilmente dispersado en cantidades variables de agua mediante un corto periodo (en torno a los 3 minutos) de sonicación. La estabilidad de estas dispersiones depende de Ia proporción de MWNTs en el material compuesto.The material obtained was easily dispersed in varying amounts of water by a short period (around 3 minutes) of sonication. The stability of these dispersions depends on the proportion of MWNTs in the composite material.
EJEMPLO 3 Los análisis elementales de los productos fueron realizados en un analizador Termo Flash EA 1112 y los análisis termogravimétricos se realizaron en una termobalanza Setaram TG-DTA 92, quemando muestras de 10mg bajo un flujo de aire de 5OmI por minuto con una rampa de calentamiento de 30C por minuto. La tabla 1 muestra los resultados de los análisis elementales de C, H, N y O, Ia pérdida de peso correspondiente a nanotubos obtenida por TGA y el rendimiento de Ia polimerización con respecto a Ia anilina.EXAMPLE 3 Elemental analyzes of the products were performed on a Thermo Flash EA 1112 analyzer and thermogravimetric analyzes were performed on a Setaram TG-DTA 92 thermobalance, burning 10mg samples under an air flow of 5OmI per minute with a heating ramp of 3 0 C per minute. Table 1 shows the results of the elementary analyzes of C, H, N and O, the weight loss corresponding to nanotubes obtained by TGA and the polymerization performance with respect to the aniline.
La nomenclatura de las muestras hace referencia a Ia proporción en peso de MWNTs respecto a Ia cantidad de anilina empleada inicialmente en Ia polimerización, así PANI no contiene nanotubos, PANI/5M contiene un 5% de nanotubos, PANI/10M un 10%, PANI/30M un 30% y PANI/50M un 50%.The nomenclature of the samples refers to the proportion by weight of MWNTs with respect to the amount of aniline initially used in the polymerization, so PANI does not contain nanotubes, PANI / 5M contains 5% of nanotubes, PANI / 10M 10%, PANI / 30M 30% and PANI / 50M 50%.
Tabla 1Table 1
Figure imgf000013_0001
Figure imgf000013_0001
La presencia de nanotubos en Ia polimerización parece afectar al rendimiento de Ia misma, como puede ser observado en Ia Tabla 1. El incremento de Ia cantidad de MWNTs induce un ligero aumento en Ia cantidad de PANI obtenida. Es destacable que el mismo método que conduce a Ia formación de nanofibras de PANI produce composites homogéneos con un alto contenido en MWNTs (hasta 62%).The presence of nanotubes in the polymerization seems to affect its performance, as can be observed in Table 1. The increase in the amount of MWNTs induces a slight increase in the amount of PANI obtained. It is noteworthy that the same method that leads to the formation of PANI nanofibers produces homogeneous composites with a high content in MWNTs (up to 62%).
Las termogravimetrías efectuadas con estos materiales mostraron el patrón típico de descomposición asociado a polianilina dopada con HCI, con una pérdida de agua hasta los 1000C y una descomposición de las cadenas de polianilina entre 280 y 620 0C. Los materiales compuestos presentaron una oxidación de los MWNTs que sucedió a menores temperaturas que en el caso de las muestras de MWNTs puras, como se muestra en Ia Tabla 1. Este fenómeno indica Ia interacción existente entre Ia PANI y los MWNTs, mostrando Ia buena dispersión de éstos últimos en Ia matriz polimérica.The thermogravimetries carried out with these materials showed the typical decomposition pattern associated with polycycline doped with HCI, with a loss of water up to 100 0 C and a decomposition of the polyaniline chains between 280 and 620 0 C. The composite materials presented oxidation of the MWNTs that happened at lower temperatures than in the case of the samples of pure MWNTs, as shown in Table 1. This phenomenon indicates the interaction between the PANI and the MWNTs, showing the good dispersion of the latter in the polymer matrix.
Muestras en polvo de los productos fueron observadas por microscopía electrónica de barrido (SEM) empleando un microscopio Hitachi S3400N y por microscopía electrónica de transmisión (TEM) con un JEOL JSM-6400. La espectrometría Raman fue realizada en un equipo de Ia marca Horiba Jovin- Yvon. La espectrometría de Infrarrojo se efectuó incorporando el material en polvo en pastillas de KBr.Powder samples of the products were observed by scanning electron microscopy (SEM) using a Hitachi S3400N microscope and by transmission electron microscopy (TEM) with a JEOL JSM-6400. Raman spectrometry was performed on a Horiba Jovin-Yvon brand equipment. Infrared spectrometry was performed by incorporating the powder material into KBr pads.
Las imágenes de SEM (FIG.1 ) ilustran claramente Ia morfología nanométrica de estas composiciones. Los MWNTs se presentaban en un gran intervalo de diámetros y longitudes, aunque en todos los casos mantenían Ia estructura recta y sin defectos propia de los nanotubos producidos por descarga en arco eléctrico. En el caso de Ia polianilina se observaron pequeñas partículas alargadas de unos 100nm de diámetro, como se puede observar en las FIG. 1A y 1 B y en Ia FIG. 2A que corresponde a una imagen de TEM. Esta morfología es Ia correspondiente a Ia PANI nanofibrilar, que ha sido sintetizada y caracterizada repetidas veces, aunque las nanofibras aquí mostradas muestran un aspecto mucho menos alargado y una mayor homogeneidad en cuanto a tamaños de partícula se refiere. El tamaño nanométrico sin duda favorece Ia dispersabilidad de estos materiales. Los composites presentan un nuevo tipo de nanoestructura que coexiste con las nanofibras de PANI, en Ia que los MWNTs se encuentran parcialmente recubiertos por PANI formando estructuras cilindricas de unos 300nm de diámetro (FIG. 1C). Como se puede observar en las imágenes de TEM (FIG. 2B, 2C y 2D), estos cilindros suelen albergar más de un único nanotubo, orientados paralelamente. Estas imágenes permiten apreciar Ia homogeneidad de los materiales compuestos, que son capaces de formar dispersiones estables para contenidos de hasta el 50% en CNT. La presencia de estas nanoestructuras explica el papel de vector para Ia dispersión de CNTs que ejerce Ia polianilina en los composites, al encontrarse los nanotubos difícilmente dispersables recubiertos por una capa de polianilina hidrofílica.The SEM images (FIG. 1) clearly illustrate the nanometric morphology of these compositions. The MWNTs were presented in a wide range of diameters and lengths, although in all cases they kept the structure straight and without defects of the nanotubes produced by electric arc discharge. In the case of polyaniline, small elongated particles of about 100 nm in diameter were observed, as can be seen in FIG. 1A and 1 B and in FIG. 2A that corresponds to a TEM image. This morphology is that corresponding to the nanofibrillar PANI, which has been synthesized and characterized repeatedly, although the nanofibers shown here show a much less elongated appearance and greater homogeneity in terms of particle sizes. The nanometric size certainly favors the dispersibility of these materials. The composites present a new type of nanostructure that coexists with PANI nanofibers, in which the MWNTs are partially covered by PANI forming cylindrical structures of about 300nm in diameter (FIG. 1C). As can be seen in the TEM images (FIG. 2B, 2C and 2D), these cylinders usually house more than a single nanotube, oriented in parallel. These images allow to appreciate the homogeneity of the composite materials, which are capable of forming stable dispersions for contents of up to 50% in CNT. The presence of these nanostructures explains the vector role for the dispersion of CNTs exerted by the polyaniline in the composites, since the nanotubes are difficult to disperse coated by a layer of hydrophilic polyaniline.
El espectro de infrarrojo obtenido a partir de muestras sólidas de composites de PANI nanoestructurada se corresponde bien con el espectro propio de PANI en el estado de emeraldina sal, como se ve en las Figuras 3A-3D. Aquí los nanotubos no producen ningún cambio en las intensidades o frecuencias de las absorciones de infrarrojo, ya que los MWNTs por sí mismos no presentan ninguna absorción característica en esa zona. Los espectros presentan el efecto 'Fano' característico de polianilinas dopadas.The infrared spectrum obtained from solid samples of nanostructured PANI composites corresponds well with the PANI own spectrum in the state of emeraldine salt, as seen in Figures 3A-3D. Here the nanotubes do not produce any change in the intensities or frequencies of the infrared absorptions, since the MWNTs themselves do not have any characteristic absorption in that area. The spectra have the characteristic 'Fano' effect of doped polyanilines.
Los espectros Raman para los MWNTs muestran las bandas típicas para MWNTs de arco bien grafitizados, como se aprecia en Ia FIG. 4B. La intensidad relativa de Ia banda G situada a 1582cm"1 en relación con Ia banda D situada a 1353cm"1 tiene un valor de 7.88, Io cual indica Ia alta grafitización de los nanotubos producidos. Para Ia PANI nanoestructurada el espectro Raman es el típico de Ia polianilina en estado emeraldina sal, con las absorciones más intensas a 1168, 1488 y 1583cm"1, esta última absorción coincide con Ia de mayor intensidad en el caso de los MWNTs. Esto hace que Ia presencia de MWNTs en los composites sólo pueda ser detectada en los materiales con mayor proporción de MWNTs, tal como se ve en Ia FIG. 4C, Ia presencia de nanotubos se hace patente por Ia aparición de Ia banda en torno a 2700cm"1 y un aumento de Ia intensidad relativa del pico en torno a 1580cm"1.Raman spectra for MWNTs show the typical bands for well-graffiti arc MWNTs, as shown in FIG. 4B. The relative intensity of the band G located at 1582cm "1 in relation to the band D located at 1353cm " 1 has a value of 7.88, which indicates the high graphitization of the nanotubes produced. For the nanostructured PANI, the Raman spectrum is typical of the polyaniline in the emeraldine salt state, with the most intense absorptions at 1168, 1488 and 1583cm "1 , this last absorption coincides with that of greater intensity in the case of the MWNTs. This makes that the presence of MWNTs in composites can only be detected in materials with a higher proportion of MWNTs, as seen in FIG. 4C, the presence of nanotubes is made evident by the appearance of the band around 2700cm "1 and an increase in the relative intensity of the peak around 1580cm "1 .
EJEMPLO 4EXAMPLE 4
Dispersiones acuosas de los materiales se consiguieron por simple sonicación de los productos obtenidos en polvo en agua o disoluciones acuosas de HCI 1mM durante 5 min. Estas dispersiones se analizaron por espectrometría de absorción UV-Vis. La estabilidad de estas dispersiones se evaluó dejándolas en reposo, tomando alícuotas de Ia parte superior de las dispersiones cada cierto tiempo y analizándolas por espectrometría de absorción UV-Vis y análisis elemental.Aqueous dispersions of the materials were achieved by simple sonication of the products obtained in powder in water or aqueous solutions of 1mM HCI for 5 min. These dispersions were analyzed by UV-Vis absorption spectrometry. The stability of these dispersions was evaluated by leaving them at rest, taking aliquots of the upper part of the dispersions from time to time and analyzing them by UV-Vis absorption spectrometry and elemental analysis.
La estabilidad de las dispersiones acuosas de PANI nanoestructurada y de sus composites con MWNTs es notablemente alta. Unos pocos minutos de sonicación fueron suficientes para conseguir dipersiones homogéneas con Ia estabilidad suficiente como para ser procesadas y caracterizadas por espectrometría de absorción UV-Vis. Los espectros de absorción tanto de PANI como de los composites concuerdan con los espectros encontrados en literatura de dispersiones de nanopartículas de PANI, como se puede observar en las Figuras 5A, 5B y 5C. En las dispersiones realizadas en agua destilada se observó un fenómeno de deprotonación de Ia polianilina, por Io que para obtener el espectro de PANI en su estado protonado, las dispersiones deben ser realizadas en medio ácido. En este caso una concentración de HCI 1 mM fue suficiente, siendo estas dispersiones estables durante días e incluso semanas.The stability of the aqueous dispersions of nanostructured PANI and its composites with MWNTs is remarkably high. A few minutes of sonication were sufficient to achieve homogeneous dipersions with sufficient stability to be processed and characterized by UV-Vis absorption spectrometry. The absorption spectra of both PANI and composites match the spectra found in PANI nanoparticle dispersion literature, as can be seen in Figures 5A, 5B and 5C. In dispersions made in distilled water a phenomenon of detonation of polyaniline was observed, so that to obtain the PANI spectrum in its protonated state, the dispersions must be carried out in an acid medium. In this case a concentration of 1 mM HCI was sufficient, these dispersions being stable for days and even weeks.
El efecto de deprotonación de PANI y sus composites depende de Ia concentración de Ia muestra, así las dispersiones de concentración baja son rápidamente transformadas en emeraldina base. Los espectros obtenidos de estas dispersiones de emeraldina base no difieren mucho de los de las disoluciones de emeraldina base pura, con máximos de absorción situados a 351 y 696nm. El aspecto más ancho de las bandas de absorción en los espectros de los composites es indicativo de Ia menor homogeneidad de estas dispersiones. De hecho Ia estabilidad de las dispersiones acuosas en forma emeraldina base es notablemente más baja que las dispersiones en Ia forma de emeraldina sal. Los MWNTs presentes en los composites afectan a Ia cinética de Ia reacción de deprotonación, siendo ésta más lenta para mayores proporciones de nanotubos en el material disperso. Los materiales deprotonados, es decir, en forma de emeraldina base, resultan solubles en NMP tal y como Io son los materiales compuestos con MWNTs sintetizados por otros métodos. The effect of detonation of PANI and its composites depends on the concentration of the sample, thus the low concentration dispersions are quickly transformed into base emeraldine. The spectra obtained from these dispersions of emeraldine base do not differ much from those of the solutions of pure emeraldine base, with absorption maxima located at 351 and 696nm. The wider aspect of the absorption bands in the spectra of the composites is indicative of the lower homogeneity of these dispersions. In fact, the stability of the aqueous dispersions in the base emeraldine form is markedly lower than the dispersions in the form of the emeraldine salt. The MWNTs present in the composites affect the kinetics of the detonation reaction, this being slower for higher proportions of nanotubes in the dispersed material. The deprotonated materials, that is, in the form of emeraldine base, are soluble in NMP as are the composite materials with MWNTs synthesized by other methods.

Claims

REIVINDICACIONES
1. Procedimiento de obtención de una composición de nanotubos de carbono y polímero, que comprende: a. sonicación de una dispersión de nanotubos de carbono en un disolvente ácido; b. adición de monómeros en Ia dispersión del paso (a); y c. adición rápida de un iniciador de radicales a Ia dispersión del paso (b), manteniendo Ia mezcla obtenida a una temperatura de entre O0C y 4O0C, continuando con Ia sonicación en los pasos (b) y (c).1. Process for obtaining a composition of carbon and polymer nanotubes, comprising: a. sonication of a dispersion of carbon nanotubes in an acid solvent; b. addition of monomers in the dispersion of step (a); and c. rapid addition of a radical initiator to the dispersion of step (b) maintaining the mixture obtained at a temperature of between 0 C and 4O O 0 C, continuing Ia sonication in steps (b) and (c).
2. Procedimiento según Ia reivindicación 1 , que además comprende: d. filtrar, lavar y secar Ia composición de nanotubos de carbono y el polímero obtenida en el paso (c).2. Method according to claim 1, further comprising: d. filter, wash and dry the carbon nanotube composition and the polymer obtained in step (c).
3. Procedimiento según cualquiera de las reivindicaciones 1 ó 2, donde el polímero es conductor de electricidad seleccionado del grupo que comprende polianilina o sus derivados, politiofeno o sus derivados, polipirrol o sus derivados, poli(sulfuro de fenilo) o sus derivados, o cualquiera de sus mezclas.3. A method according to any one of claims 1 or 2, wherein the polymer is an electrical conductor selected from the group comprising polyaniline or its derivatives, polythiophene or its derivatives, polypyrrole or its derivatives, poly (phenyl sulfide) or its derivatives, or Any of your mixtures.
4. Procedimiento según cualquiera de las reivindicaciones 1 a 3, donde el polímero es polianilina (y su monómero anilina) o sus derivados.4. Process according to any one of claims 1 to 3, wherein the polymer is polyaniline (and its aniline monomer) or its derivatives.
5. Procedimiento según cualquiera de las reivindicaciones 1 a 4, donde Ia temperatura de Ia reacción en el paso (c) es de entre 15 y 25' 0C.5. Method according to any of claims 1 to 4, wherein the temperature of the reaction in step (c) is between 15 and 25 ' 0 C.
6. Procedimiento según cualquiera de las reivindicaciones 1 a 5, donde el disolvente ácido se selecciona del grupo que comprende: ácido clorhídrico (HCI), ácido sulfúrico (H2SO4), ácido nítrico (HNO3), ácido fosfórico (H3PO4), ácido bórico (HBO3), ácido fluorhídrico (HF), ácido bromhídrico (HBr), ácido iodhídrico (Hl), ácido perclórico (HCIO4), ácido periódico (HIO4), ácido tetrafluorobórico (HBF4) o cualquiera de sus combinaciones.Method according to any one of claims 1 to 5, wherein the acid solvent is selected from the group comprising: hydrochloric acid (HCI), sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), boric acid (HBO 3 ), hydrofluoric acid (HF), hydrobromic acid (HBr), iodhydric acid (Hl), perchloric acid (HCIO 4 ), periodic acid (HIO 4 ), tetrafluoroboric acid (HBF 4 ) or Any of your combinations.
7. Procedimiento según cualquiera de las reivindicaciones 1 a 6, donde Ia concentración de disolvente ácido es de entre 0.001 M a 5M. 7. Method according to any of claims 1 to 6, wherein the concentration of acid solvent is between 0.001 M to 5M.
8. Procedimiento según cualquiera de las reivindicaciones 1 a 7, donde los nanotubos de carbono se seleccionan de entre nanotubos de carbono de capa única (SWNTs) o de capa múltiple (MWNTs).A method according to any one of claims 1 to 7, wherein the carbon nanotubes are selected from among single-layer carbon (SWNTs) or multi-layer (MWNTs) nanotubes.
9. Procedimiento según cualquiera de las reivindicaciones 1 a 8, donde los nanotubos de carbono son de capa múltiple.9. Method according to any one of claims 1 to 8, wherein the carbon nanotubes are multi-layered.
10. Procedimiento según cualquiera de las reivindicaciones 1 a 9, donde los nanotubos de carbono son producidos por los métodos de descarga por arco eléctrico, de deposición de vapor químico (CVD)-(incluyendo HiPCO), de ablación láser o por cualquier combinación de ellos.10. Method according to any of claims 1 to 9, wherein the carbon nanotubes are produced by the methods of electric arc discharge, chemical vapor deposition (CVD) - (including HiPCO), laser ablation or any combination of they.
11. Procedimiento según cualquiera de las reivindicaciones 1 a 10, donde Ia cantidad de nanotubos de carbono es de hasta un 70% en peso con respecto a Ia anilina inicial.11. Method according to any of claims 1 to 10, wherein the amount of carbon nanotubes is up to 70% by weight with respect to the initial aniline.
12. Procedimiento según cualquiera de las reivindicaciones 1 a 11 , donde Ia cantidad de nanotubos de carbono es de entre 0,001 % y 60% en peso con respecto a Ia anilina inicial.12. Method according to any of claims 1 to 11, wherein the amount of carbon nanotubes is between 0.001% and 60% by weight with respect to the initial aniline.
13. Procedimiento según Ia reivindicación 4, donde Ia polianilina está en forma de sal emeraldina y nanoestructurada.13. Method according to claim 4, wherein the polyaniline is in the form of emeraldine salt and nanostructured.
14. Procedimiento según cualquiera de las reivindicaciones 1 a 13, donde el iniciador de radicales es un oxidante seleccionado del grupo que comprende peroxod ¡sulfato amónico ((NH4J2S2Os), peroxodisulfato potásico (K2S2O8), tricloruro de hierro (FeCI3), tricloruro de cobalto (CoCI3), agua oxigenada (H2O2), sulfato de cobre (CuSO4), cloruro de cobre (CuCI2), permanganato potásico (KMnO4), clorato potásico (KCIO3), clorato sódico (NaCIO3), dicromato potásico (K2Cr2O7), dicromato amónico ((NH4J2Cr2O7), peryodato sódico (NH4IO4), peryodato amónico (NaIO4) o cualquiera de sus combinaciones.14. A method according to any one of claims 1 to 13, wherein the radical initiator is an oxidant selected from the group comprising ammonium peroxodulfate ((NH 4 J 2 S 2 Os), potassium peroxodisulfate (K 2 S 2 O 8 ) , iron trichloride (FeCI 3 ), cobalt trichloride (CoCI 3 ), hydrogen peroxide (H 2 O 2 ), copper sulfate (CuSO 4 ), copper chloride (CuCI 2 ), potassium permanganate (KMnO 4 ), chlorate potassium (KCIO 3 ), sodium chlorate (NaCIO 3 ), potassium dichromate (K 2 Cr 2 O 7 ), ammonium dichromate ((NH 4 J 2 Cr 2 O 7 ), sodium periodate (NH 4 IO 4 ), ammonium periodate ( NaIO 4 ) or any of its combinations.
15. Procedimiento según cualquiera de las reivindicaciones 1 a 14, donde Ia concentración de iniciadores es de entre 0.001 g/ml y 0.2g/ml con respecto al total de Ia dispersión. 15. Method according to any of claims 1 to 14, wherein the concentration of initiators is between 0.001 g / ml and 0.2g / ml with respect to the total dispersion.
16. Composición obtenible por el procedimiento según cualquiera de las reivindicaciones 1 a 15.16. Composition obtainable by the process according to any of claims 1 to 15.
17. Dispersión acuosa que comprende Ia composición según Ia reivindicación 16.17. Aqueous dispersion comprising the composition according to claim 16.
18. Uso de Ia composición según Ia reivindicación 16 o de Ia dispersión según Ia reivindicación 17, en pinturas, tintas, procesos de impresión, circuitos o dispositivos electrónicos o en bioaplicaciones. 18. Use of the composition according to claim 16 or of the dispersion according to claim 17, in paints, inks, printing processes, electronic circuits or devices or in bioapplications.
PCT/ES2009/070021 2008-02-13 2009-02-12 Composition of polymers and carbon nanotubes, method for producing same and the uses thereof WO2009101231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800385A ES2324810B1 (en) 2008-02-13 2008-02-13 COMPOSITION OF CARBON POLYMERS AND NANOTUBES, PROCEDURE OF OBTAINING AND ITS USES.
ESP200800385 2008-02-13

Publications (1)

Publication Number Publication Date
WO2009101231A1 true WO2009101231A1 (en) 2009-08-20

Family

ID=40922053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070021 WO2009101231A1 (en) 2008-02-13 2009-02-12 Composition of polymers and carbon nanotubes, method for producing same and the uses thereof

Country Status (2)

Country Link
ES (1) ES2324810B1 (en)
WO (1) WO2009101231A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281204A1 (en) * 2010-05-11 2011-11-17 Los Alamos National Security, Llc Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes
CN106432721A (en) * 2016-09-30 2017-02-22 同济大学 Method for preparing carbon nano-tubes/polypyrrole nano-particles with performance of metamaterials
CN106467609A (en) * 2016-09-30 2017-03-01 同济大学 A kind of preparation method of the oxide crystal/Nano particles of polyaniline with negative permittivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113219028B (en) * 2021-05-10 2024-02-20 自然资源部第二海洋研究所 Novel online seawater H 2 O 2 Detection instrument and preparation method and application thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
COCHET, M. ET AL.: ""Synthesis of a new polyaniline/nanotube composite: "in situ", polymerisation and charge tranfer through site- selective interaction".", CHEMICAL COMMUNICATIONS, vol. 16, 2001, pages 1450 - 1451 *
DONG, B. ET AL.: "Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor", MATERIALS SCIENCE AND ENGINEERING B, vol. 143, 2007, pages 7 - 13 *
FAN, J. ET AL.: "Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 74, 1999, pages 2605 - 2610 *
HUANG, J. ET AL.: "The intrinsic nanofibrillar morphology of polyaniline", CHEMICAL COMMUNICATIONS, vol. 4, 2006, pages 367 - 376 *
JIMÉNEZ, P. ET AL.: "Nanofibrilar polyaniline: Direct route to carbon nanotube water dispersions of high concentration", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 30, 2009, pages 418 - 422 *
YILMAZ, F. ET AL.: "Conducting polymer composites of multiwalled carbon nanotube filled doped polyaniline", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 11, 2009, pages 680 - 684 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110281204A1 (en) * 2010-05-11 2011-11-17 Los Alamos National Security, Llc Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes
US8518608B2 (en) * 2010-05-11 2013-08-27 Los Alamos National Security, Llc Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes
CN106432721A (en) * 2016-09-30 2017-02-22 同济大学 Method for preparing carbon nano-tubes/polypyrrole nano-particles with performance of metamaterials
CN106467609A (en) * 2016-09-30 2017-03-01 同济大学 A kind of preparation method of the oxide crystal/Nano particles of polyaniline with negative permittivity

Also Published As

Publication number Publication date
ES2324810B1 (en) 2010-05-31
ES2324810A1 (en) 2009-08-14

Similar Documents

Publication Publication Date Title
Kondawar et al. Transport properties of conductive polyaniline nanocomposites based on carbon nanotubes
Al-Hamadani et al. Stabilization and dispersion of carbon nanomaterials in aqueous solutions: A review
Meriga et al. Optical, electrical, and electrochemical properties of graphene based water soluble polyaniline composites
Zhao et al. Synthesis and properties of a water‐soluble single‐walled carbon nanotube–poly (m‐aminobenzene sulfonic acid) graft copolymer
Yoon et al. Role of poly (N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction
JP4384488B2 (en) Aligned single-walled carbon nanotube fibers and method for producing the same
US20150037239A1 (en) Dispersion and retrieval of de-bundled nanotubes
Mekki et al. Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts
Jeon et al. Grafting of polyaniline onto the surface of 4‐aminobenzoyl‐functionalized multiwalled carbon nanotube and its electrochemical properties
US20110186785A1 (en) Nanocarbon material dispersion, method for producing the same, and nanocarbon material structure
Agrawalla et al. A facile synthesis of a novel three‐phase nanocomposite: Single‐wall carbon nanotube/silver nanohybrid fibers embedded in sulfonated polyaniline
Nair et al. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube
Agrawalla et al. Solvothermal synthesis of a polyaniline nanocomposite-a prospective biosensor electrode material
Xie et al. Dispersing and doping carbon nanotubes by poly (p-styrene-sulfonic acid) for high-performance and stable transparent conductive films
JP3837557B2 (en) Carbon nanotube dispersion solution and method for producing the same
CA3166443A1 (en) Water-redispersible graphene powder
ES2324810B1 (en) COMPOSITION OF CARBON POLYMERS AND NANOTUBES, PROCEDURE OF OBTAINING AND ITS USES.
Ashraf et al. High-performance polymer/nanodiamond composites: synthesis and properties
Gao et al. Surface modification methods and mechanisms in carbon nanotubes dispersion
Dao et al. Direct covalent modification of thermally exfoliated graphene forming functionalized graphene stably dispersible in water and poly (vinyl alcohol)
Li et al. Cyclotriphosphazene-containing polymeric nanotubes: synthesis, properties, and formation mechanism
Agrawalla et al. A facile synthesis of a novel optoelectric material: a nanocomposite of SWCNT/ZnO nanostructures embedded in sulfonated polyaniline
García-Gallegos et al. Fast mechanochemical synthesis of carbon nanotube-polyaniline hybrid materials
KR101386398B1 (en) Nanocomposite membranes for forward osmosis and method for preparing the same
KR20190042245A (en) Ingradients of carbon nanotube dispersion in alcoholic liquid without dispersant molecules and their fabrication methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09710115

Country of ref document: EP

Kind code of ref document: A1