WO2009101197A1 - Nichtdispersiver infrarot-gasanalysator - Google Patents

Nichtdispersiver infrarot-gasanalysator Download PDF

Info

Publication number
WO2009101197A1
WO2009101197A1 PCT/EP2009/051743 EP2009051743W WO2009101197A1 WO 2009101197 A1 WO2009101197 A1 WO 2009101197A1 EP 2009051743 W EP2009051743 W EP 2009051743W WO 2009101197 A1 WO2009101197 A1 WO 2009101197A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
gas
measuring
infrared radiation
radiation source
Prior art date
Application number
PCT/EP2009/051743
Other languages
English (en)
French (fr)
Inventor
Ralf Bitter
Camiel Heffels
Thomas Hörner
Ludwig Kimmig
Martin Kionke
Michael Ludwig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP09711106.6A priority Critical patent/EP2240760B1/de
Priority to US12/867,859 priority patent/US8044353B2/en
Publication of WO2009101197A1 publication Critical patent/WO2009101197A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers

Definitions

  • the invention relates to a non-dispersive infrared
  • NDIR- NDIR- gas analyzer for detecting a sample gas component in a gas mixture, with an infrared radiation source for generating infrared radiation, with a modulation device for modulating the infrared radiation, with a gas mixture containing and irradiated by the modulated infrared radiation measuring cuvette and with a detector device arranged in the radiation direction behind the measuring cuvette, which supplies a measurement signal corresponding to the concentration of the sample gas component in the gas mixture.
  • NDIR gas analyzers are known in single and double jet design.
  • the infrared radiation generated by the infrared emitter after modulation, z. B. by a rotating aperture wheel, through which the gas mixture with the sample gas component containing cuvette directed to the detector device while in two-beam devices, the infrared radiation into a modulated measuring radiation through the cuvette and an antiphase modulated comparison radiation by a filled with a reference gas Comparative cuvette is divided.
  • optopneumatic detectors filled with the gas component to be detected are usually used with one or more adjacent or successive receiver chambers.
  • NDIR gas analyzers must be able to diagnose certain faults, depending on the level of safety requirements, in order to rule out incorrect measurements.
  • the quantitative analysis of the components of an NDIR gas analyzer shows that the infrared radiation source has the highest error rate. This component is subject to slow but steady aging.
  • Al two-beam NDIR gas analyzer is to check the full functionality of zero calibrated gas analyzer and to eliminate occurring by lamp aging or window pollution long-term drift of the zero point in one of the receiver chambers in the measurement and comparison beam path connecting
  • a further flow or pressure-sensitive sensor is arranged line, which generates a further detector signal proportional to the total intensity of the detected infrared radiation.
  • the further signal can be used as input to control the infrared radiation source, whereby the radiation power is controlled so that this signal always remains constant, ie, at zero compensation, the system always has a constant sensitivity, since the regulation of the Influence of the beam aging and dirt deposits in the optical beam path is compensated. This makes it possible to avoid the otherwise necessary calibration with calibration gas at certain time intervals.
  • the invention is based on the object by simple means, and in particular without modification of the existing detector device, the influence of the aging of the radiation source and possibly the influence of dirt deposits in the optical beam path to detect without interrupting the measurement.
  • the object is achieved in that in the beam path of the infrared radiation source at least one optopneumatic detector is arranged, which is filled in arrangement between the infrared radiation source and the cuvette with any gas, wherein in the case of filling tion with the sample gas component, the concentration of the sample gas component in the optopneumatic detector is lower than that in the cuvette, and which is filled in arrangement between the cuvette and the detector device with a gas whose absorption spectrum is outside the spectra of the sample gas component and other transverse gases in the gas mixture , and that a correction device for correcting the measurement signal of the detector device with the detector signal generated by the detector is present.
  • the gas consists of several gas components are in the latter
  • the optopneumatic detector is arranged between the infrared radiation source and the measuring cuvette, then the detector signal generated by it is only influenced by the radiation intensity of the radiation source. Thus, a permanent monitoring of the infrared radiation source for contamination and aging and a corresponding correction of the measurement result provided by the gas analyzer is possible.
  • the optopneumatic detector can be filled with any gas, including the sample gas component, in which case the concentration of the sample gas component must be lower than that in the sample cell in order to minimize the pre-absorption for the actual measurement.
  • the optopneumatic detector is arranged between the measuring cuvette and the detector device and filled with a gas whose absorption spectrum lies outside the spectra of the sample gas component and possibly further transverse gases of the gas mixture in the cuvette, the detector signal generated by it is of the radiation intensity of the radiation source and contamination of the cuvette. This is a permanent monitoring of the overall
  • An arrangement in each case of an optopneumatic detector between the infrared radiation source and the measuring cuvette and, further, between the measuring cuvette and the detector device makes it possible to diagnose aging or contamination of the radiation source and contamination of the measuring cuvette separately.
  • FIGS. 1 to 5 of the drawings show different embodiments of the NDIR gas analyzer according to the invention.
  • FIG. 1 shows an NDIR gas analyzer in single-beam design with an infrared radiation source 1 which generates an infrared radiation 2.
  • the infrared radiation 2 radiates through a measuring cuvette 3 which contains a gas mixture 4 with a measuring gas component 5 whose concentration is to be determined.
  • the infrared radiation 2 previously by means of a arranged between the infrared radiation source 1 and the measuring cuvette 3 modulation device 6, here z. B. in the form of a rotating aperture wheel modulated.
  • the infrared radiation 2 falls onto a detector device 7, which in the exemplary embodiment shown here is designed as a two-layer receiver with two receiver chambers 8, 9 which are located one behind the other and filled with the sample gas component 5 or a replacement gas and which are connected via a connecting line 10 with a pressure or flow-sensitive sensor 11 arranged therein are connected to one another.
  • the sensor 11 generates a measurement signal 12, from which the concentration of the measurement gas component 5 in the gas mixture 4 is determined in an evaluation device 13 as the measurement result 14.
  • an opto-pneumatic detector 15 in the form of a detector is provided between the infrared radiation source 1 (behind the modulation device 6) and the measuring cuvette 3 Single-layer receiver inserted.
  • the optopneumatic detector 15 consists of a with any gas 16 (for example, the sample gas component 5 in a lower concentration than in the measuring cell 3) filled receiver chamber 17, via a connecting line 18 with a pressure or flow-sensitive sensor 19 disposed therein with a compensation chamber 20th is connected outside the beam path of the infrared radiation 2.
  • the sensor 19 generates a detector signal 21 which represents the intensity of the infrared radiation 2 reaching the measuring cuvette 3 and with which the measuring signal 12 of the detector device 7 is corrected within the evaluation device 13 in a correction device 22, then the measurement result 14 of intensity changes of Infrared radiation 2, for example due to aging or contamination of the radiation source 1, is independent.
  • the NDIR gas analyzer shown in FIG. 2 differs from that according to FIG. 1 in that the optopneumatic detector 15 'is arranged between the measuring cuvette 3 and the detector device 23 and is filled with a gas 16' whose absorption spectrum is outside the spectra of FIG Sample gas component 5 and other transverse gases in the gas mixture 4 to be analyzed.
  • intensity changes of the infrared radiation 2 are detected and compensated, which are caused not only by the aging or contamination of the radiation source 1 but also by contamination of the measuring cuvette 3.
  • FIG. 1 the example according to FIG.
  • the detector device 23 may be a two-layer receiver or a single-layer receiver in which a receiver chamber 24 filled with the sample gas component 5 or a substitute gas is connected via a connecting line 25 to a pressure-sensitive or flow-sensitive one Sensor 26 is connected to a compensation chamber 27 outside the radiation path of the infrared radiation 2.
  • the local detector device 7 may be formed as a single-layer receiver.
  • the exemplary embodiment according to FIG. 3 differs from that according to FIG. 2 in that in addition to the opto-pneumatic detector 15 'between the measuring cuvette 3 and the detector device 23, the optopneumatic detector 15 shown in FIG. 1 also exists between the infrared radiation source 1 and the measuring cuvette 3 is provided.
  • the detector signals 21, 21 'of both opto-pneumatic detectors 15, 15' are fed to an evaluation device 29 which, from both detector signals 21, 21 ', diagnoses aging or contamination of the radiation source 1 and the measuring cuvette 3 separately (diagnostic information 30).
  • the NDIR gas analyzer shown in Figure 4 differs from that of Figure 2 by a two-jet structure.
  • a beam splitter 31 By means of a beam splitter 31, the infrared radiation 2 generated by the infrared radiator 1 is split into a measuring beam path through the measuring cuvette 3 containing the gas mixture 4 with the measuring gas component 5 and a comparison beam path through a comparison cuvette 33 filled with a reference gas 32.
  • the measuring beam path and the comparison beam path are brought together again by means of a radiation collector 34 and subsequently reach the arrangement of the optopneumatic detector 15 'and the detector device 23 already described with reference to FIG.
  • detector systems may be used instead of the two-layer receiver 7 or the single-layer receiver 23.
  • the detector device 31 may comprise, in addition to a first single-layer receiver 32 containing the measurement gas component, at least one further single-layer receiver 33 located behind it in the beam path and containing a transverse gas.
  • the evaluation device 34 contains a n-dimensional calibration matrix 35 corresponding to the number n of the single-layer receivers, in which at different known concentrations of the measurement gas component 5 in the presence of different known interference gas concentrations obtained measurement signal values are stored as n-tuple.
  • the concentration of the sample gas component 5 in the gas mixture 4 is determined by comparing the thus obtained n-tuples of measured signal values 36, 37 with the n-tuples of measured signal values stored in the calibration matrix 35.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Um bei einem NDIR-Gasanalysator mit einer Infrarot-Strahlungsquelle (1), einer ein Gasgemisch (4) mit einer darin nachzuweisenden Messgaskomponente (5) enthaltenden Messküvette (3) und einer dahinter liegender Detektoreinrichtung (7) den Einfluss von Alterung der Strahlungsquelle (1) und ggf. Schmutzablagerungen im optischen Strahlengang ohne Unterbrechung der Messung erfassen zu können, ist im Strahlengang der Strahlungsquelle (1) mindestens ein optopneumatischer Detektor (15) angeordnet, der bei Anordnung zwischen der Strahlungsquelle (1) und der Messküvette (3) mit einem beliebigen Gas (16) gefüllt ist, wobei im Falle der Füllung mit der Messgaskomponente die Konzentration der Messgaskomponente in dem Detektor (15) geringer als die in der Messküvette (3) ist, und der bei Anordnung zwischen der Messküvette (3) und der Detektoreinrichtung (7) mit einem Gas gefüllt ist, dessen Absorptionsspektrum außerhalb der Spektren der Messgaskomponente (5) und weiterer Quergase in dem Gasgemisch (4) liegt. Das Messsignal (12) der Detektoreinrichtung (7) wird mit dem von dem Detektor (15) erzeugten Detektorsignal (21) korrigiert.

Description

Beschreibung
Nichtdispersiver Infrarot-Gasanalysator
Die Erfindung betrifft einen nichtdispersiven Infrarot-
(NDIR-) Gasanalysator zum Nachweis einer Messgaskomponente in einem Gasgemisch, mit einer Infrarot-Strahlungsquelle zur Erzeugung einer Infrarot-Strahlung, mit einer Modulationseinrichtung zur Modulation der Infrarot-Strahlung, mit einer das Gasgemisch enthaltenden und von der modulierten Infrarot- Strahlung durchstrahlten Messküvette und mit einer in Strahlungsrichtung hinter der Messküvette angeordneten Detektoreinrichtung, die ein der Konzentration der Messgaskomponente in dem Gasgemisch entsprechendes Messsignal liefert.
NDIR-Gasanalysatoren sind in Einstrahl- und Zweistrahl-Ausführung bekannt. Bei den Einstrahl-Geräten wird die von dem Infrarot-Strahler erzeugte Infrarot-Strahlung nach Modulation, z. B. durch ein rotierendes Blendenrad, durch die das Gasgemisch mit der Messgaskomponente enthaltende Messküvette zu der Detektoreinrichtung geleitet, während bei Zweistrahl- Geräten die Infrarot-Strahlung in eine modulierte Messstrahlung durch die Messküvette und eine gegenphasig modulierte Vergleichsstrahlung durch eine mit einem Vergleichsgas ge- füllte Vergleichsküvette aufgeteilt wird. Für die Detektoreinrichtung werden üblicherweise mit der nachzuweisenden Gaskomponente gefüllte optopneumatische Detektoren mit einer oder mehreren neben- oder hintereinander liegenden Empfängerkammern verwendet.
Zur Gewährleistung der funktionalen Sicherheit müssen NDIR- Gasanalysatoren in der Lage sein, je nach Sicherheitsanfor- derungsstufe bestimmte Fehler zu diagnostizieren, um Fehlmessungen auszuschließen. Die quantitative Analyse der Kom- ponenten eines NDIR-Gasanalysators zeigt, dass die Infrarot- Strahlungsquelle die höchste Fehlerrate aufweist. Diese Komponente unterliegt einer langsamen aber stetigen Alterung. Bei einem aus der DE 35 29 482 Al bekannten Zweistrahl-NDIR- Gasanalysator ist zur Überprüfung der vollen Funktionsfähigkeit des auf Null abgeglichenen Gasanalysators sowie zur Ausschaltung von durch Strahleralterung oder Fensterverschmut- zung auftretenden Langzeitdriften des Nullpunkts in einer die Empfängerkammern im Mess- und Vergleichsstrahlengang verbindenden Leitung ein weiterer strömungs- oder druckempfindlicher Sensor angeordnet, der ein der Gesamtintensität der de- tektierten Infrarot-Strahlung proportionales weiteres Detek- torsignal erzeugt. Mit diesem weiteren Signal lässt sich auch bei Null-Kompensation des Gasanalysators, wenn also das Messsignal Null ist, die Funktionsfähigkeit des Gasanalysators überprüfen. Das weitere Signal kann als Eingangsgröße zur Regelung der Infrarot-Strahlungsquelle eingesetzt werden, wo- bei die Strahlungsleistung so geregelt wird, dass dieses Signal stets konstant bleibt, d. h., bei Null-Kompensation hat das System immer eine konstante Empfindlichkeit, da über die Regelung der Einfluss der Strahleralterung und Schmutzablagerungen im optischen Strahlengang kompensiert wird. Damit lässt sich die sonst notwendige Kalibrierung mit Kalibriergas in bestimmten Zeitabständen vermeiden.
Bei Einstrahl-Geräten ist dagegen eine regelmäßige Kalibrierung mit Kalibriergas erforderlich, wodurch die Verfügbarkeit des Gasanalysators für Messzwecke herabgesetzt wird.
Der Erfindung liegt die Aufgabe zugrunde, mit einfachen Mitteln, und dabei insbesondere ohne Modifikation der vorhandenen Detektoreinrichtung, den Einfluss der Alterung der Strah- lungsquelle und ggf. den Einfluss von Schmutzablagerungen im optischen Strahlengang ohne Unterbrechung der Messung zu erfassen .
Gemäß der Erfindung wird die Aufgabe dadurch gelöst, dass im Strahlengang der Infrarot-Strahlungsquelle mindestens ein optopneumatischer Detektor angeordnet ist, der bei Anordnung zwischen der Infrarot-Strahlungsquelle und der Messküvette mit einem beliebigen Gas gefüllt ist, wobei im Falle der Fül- lung mit der Messgaskomponente die Konzentration der Messgaskomponente in dem optopneumatischen Detektor geringer als die in der Messküvette ist, und der bei Anordnung zwischen der Messküvette und der Detektoreinrichtung mit einem Gas gefüllt ist, dessen Absorptionsspektrum außerhalb der Spektren der Messgaskomponente und weiterer Quergase in dem Gasgemisch liegt, und dass eine Korrektureinrichtung zur Korrektur des Messsignals der Detektoreinrichtung mit dem von dem Detektor erzeugten Detektorsignal vorhanden ist. Soweit das Gas aus mehreren Gaskomponenten besteht, liegen im letztgenannten
Fall die Absorptionsspektren aller Gaskomponenten außerhalb der Spektren der Messgaskomponente und weiterer Quergase.
Ist der optopneumatischen Detektor zwischen der Infrarot- Strahlungsquelle und der Messküvette angeordnet, so ist das von ihm erzeugte Detektorsignal nur von der Strahlungsintensität der Strahlungsquelle beeinflusst. Damit ist eine permanente Überwachung der Infrarot-Strahlungsquelle auf Verschmutzung und Alterung sowie eine entsprechende Korrektur des von dem Gasanalysator gelieferten Messergebnisses möglich. Der optopneumatische Detektor kann mit einem beliebigen Gas, darunter auch der Messgaskomponente, gefüllt sein, wobei im letzteren Fall die Konzentration der Messgaskomponente geringer als die in der Messküvette sein muss, um die Vorab- sorption für die eigentliche Messung möglichst gering zu halten .
Ist der optopneumatischen Detektor zwischen der Messküvette und der Detektoreinrichtung angeordnet und mit einem Gas gefüllt, dessen Absorptionsspektrum außerhalb der Spektren der Messgaskomponente und ggf. weiterer Quergase des sich in der Messküvette befindenden Gasgemischs liegt, so ist das von ihm erzeugte Detektorsignal von der Strahlungsintensität der Strahlungsquelle und Verschmutzungen der Messküvette beein- flusst. Damit ist eine permanente Überwachung des Gesamt-
Strahlengangs des Gasanalysators auf Verschmutzung und Alterung sowie eine entsprechende Korrektur des von dem Gasanalysator gelieferten Messergebnisses möglich. Eine Anordnung jeweils eines optopneumatischen Detektors zwischen der Infrarot-Strahlungsquelle und der Messküvette und im Weiteren zwischen der Messküvette und der Detektoreinrich- tung die Detektorsignale ermöglicht es in vorteilhafter Weise Alterungen oder Verschmutzungen der Strahlungsquelle und Verschmutzungen der Messküvette getrennt zu diagnostizieren.
Zur weiteren Erläuterung der Erfindung wird im Folgenden auf die Figuren 1 bis 5 der Zeichnung Bezug genommen, die unterschiedliche Ausführungsbeispiele des erfindungsgemäßen NDIR- Gasanalysators zeigen.
Figur 1 zeigt einen NDIR-Gasanalysator in Einstrahl-Ausfüh- rung mit einer Infrarot-Strahlungsquelle 1, die eine Infrarot-Strahlung 2 erzeugt. Die Infrarot-Strahlung 2 durchstrahlt eine Messküvette 3, die ein Gasgemisch 4 mit einer Messgaskomponente 5 enthält, deren Konzentration zu bestimmen ist. Dabei wird die Infrarot-Strahlung 2 zuvor mittels eines zwischen der Infrarot-Strahlungsquelle 1 und der Messküvette 3 angeordneten Modulationseinrichtung 6, hier z. B. in Form eines rotierenden Blendenrads, moduliert. Nach Durchstrahlen der Messküvette 3 fällt die Infrarot-Strahlung 2 auf eine Detektoreinrichtung 7, die bei dem hier gezeigten Ausführungs- beispiel als Zweischichtempfänger mit zwei hintereinander liegenden und mit der Messgaskomponente 5 oder einem Ersatzgas gefüllten Empfängerkammern 8, 9 ausgebildet ist, welche über eine Verbindungsleitung 10 mit einem darin angeordneten druck- oder strömungsempfindlichen Sensor 11 miteinander ver- bunden sind. Der Sensor 11 erzeugt ein Messsignal 12, aus dem in einer Auswerteeinrichtung 13 als Messergebnis 14 die Konzentration der Messgaskomponente 5 in dem Gasgemisch 4 ermittelt wird.
Zur Ermittlung der Intensität der in die Messküvette 3 eingeleiteten Infrarot-Strahlung ist zwischen der Infrarot-Strahlungsquelle 1 (hinter der Modulationseinrichtung 6) und der Messküvette 3 ein optopneumatischer Detektor 15 in Form eines Einschichtempfängers eingefügt. Der optopneumatische Detektor 15 besteht aus einer mit einem beliebigen Gas 16 (beispielsweise auch der Messgaskomponente 5 in geringerer Konzentration als in der Messküvette 3) gefüllten Empfängerkammer 17, die über eine Verbindungsleitung 18 mit einem darin angeordneten druck- oder strömungsempfindlichen Sensor 19 mit einer Ausgleichskammer 20 außerhalb des Strahlengangs der Infrarot- Strahlung 2 verbunden ist. Der Sensor 19 erzeugt ein Detektorsignal 21, das die Intensität der in die Messküvette 3 gelangenden Infrarot-Strahlung 2 repräsentiert und mit dem innerhalb der Auswerteeinrichtung 13 in einer Korrektureinrichtung 22 das Messsignal 12 der Detektoreinrichtung 7 korrigiert wird, so das das Messergebnis 14 von Intensitätsänderungen der Infrarot-Strahlung 2, beispielsweise aufgrund von Alterung oder Verschmutzung der Strahlungsquelle 1, unabhängig ist.
Der in Figur 2 gezeigte NDIR-Gasanalysator unterscheidet sich von dem nach Figur 1 dadurch, dass der optopneumatische De- tektor 15' zwischen der Messküvette 3 und der Detektoreinrichtung 23 angeordnet ist und mit einem Gas 16' gefüllt ist, dessen Absorptionsspektrum außerhalb der Spektren der Messgaskomponente 5 und weiterer Quergase in dem zu analysierenden Gasgemisch 4 liegt. Dadurch werden Intensitätsänderungen der Infrarot-Strahlung 2 erfasst und kompensiert, die nicht nur von der Alterung oder Verschmutzung der Strahlungsquelle 1 sondern auch von Verschmutzungen der Messküvette 3 verursacht sind. Die Detektoreinrichtung 23 kann wie im Beispiel nach Figur 1 als Zweischichtempfänger oder, wie hier gezeigt, als Einschichtempfänger ausgebildet sein, bei dem eine mit der Messgaskomponente 5 oder einem Ersatzgas gefüllte Empfängerkammer 24, die über eine Verbindungsleitung 25 mit einem darin angeordneten druck- oder strömungsempfindlichen Sensor 26 mit einer Ausgleichskammer 27 außerhalb des Strah- lengangs der Infrarot-Strahlung 2 verbunden ist. Umgekehrt kann auch bei dem Beispiel nach Figur 1 die dortige Detektoreinrichtung 7 als Einschichtempfänger ausgebildet sein. Das Ausführungsbeispiel nach Figur 3 unterscheidet sich von dem nach Figur 2 dadurch, dass zusätzlich zu dem optopneuma- tischen Detektor 15' zwischen der Messküvette 3 und der Detektoreinrichtung 23 auch der in Figur 1 gezeigte optopneuma- tische Detektor 15 zwischen der Infrarot-Strahlungsquelle 1 und der Messküvette 3 vorgesehen ist. Die Detektorsignale 21, 21' beider optopneumatischen Detektoren 15, 15' sind einer Auswerteeinrichtung 29 zugeführt, die aus beiden Detektorsignalen 21, 21' Alterungen oder Verschmutzungen der Strahlungs- quelle 1 und der Messküvette 3 voneinander getrennt diagnostiziert (Diagnoseinformation 30).
Der in Figur 4 gezeigte NDIR-Gasanalysator unterscheidet sich von dem nach Figur 2 durch einen Zweistrahl-Aufbau. Mittels eines Strahlteilers 31 wird die von dem Infrarot-Strahler 1 erzeugte Infrarot-Strahlung 2 auf einen Messstrahlengang durch die das Gasgemisch 4 mit der Messgaskomponente 5 enthaltende Messküvette 3 und einen Vergleichsstrahlengang durch eine mit einem Vergleichsgas 32 gefüllte Vergleichsküvette 33 aufgeteilt. Hinter der Messküvette 3 und der Vergleichsküvette 33 werden der Messstrahlengang und der Vergleichsstrahlengang mittels eines Strahlungssammlers 34 wieder zusammengeführt und gelangen anschließend in die unter Bezug auf Figur 2 bereits beschriebene Anordnung des optopneumatischen Detektors 15' und der Detektoreinrichtung 23.
Bei den gezeigten Ausführungsbeispielen kommen anstelle des Zweischichtempfängers 7 oder des Einschichtempfängers 23 auch andere Detektorsysteme in Frage.
So kann entsprechend Figur 5 die Detektoreinrichtung 31 neben einem ersten, die Messgaskomponente enthaltenden Einschichtempfänger 32 mindestens einen weiteren, im Strahlengang dahinter liegenden Einschichtempfänger 33 aufweisen, der ein Quergas enthält. Die Auswerteeinrichtung 34 enthält eine entsprechend der Anzahl n der Einschichtempfänger n-dimensionale Kalibrationsmatrix 35, in der bei unterschiedlichen bekannten Konzentrationen der Messgaskomponente 5 in Anwesenheit von unterschiedlichen bekannten Quergaskonzentrationen erhaltene Messsignalwerte als n-Tupel abgespeichert sind. Beim Messen von unbekannten Konzentrationen der Messgaskomponente 5 in Anwesenheit von unbekannten Quergaskonzentrationen wird durch Vergleich der dabei erhaltenen n-Tupel von Messsignalwerten 36, 37 mit den in der Kalibrationsmatrix 35 abgespeicherten n-Tupeln von Messsignalwerten die Konzentration der Messgaskomponente 5 in dem Gasgemisch 4 ermittelt.

Claims

Patentansprüche
1. Nichtdispersiver Infrarot-Gasanalysator zum Nachweis einer Messgaskomponente (5) in einem Gasgemisch (4), mit einer Infrarot-Strahlungsquelle (1) zur Erzeugung einer Infrarot- Strahlung (2), mit einer Modulationseinrichtung (6) zur Modulation der Infrarot-Strahlung (2), mit einer das Gasgemisch (4) enthaltenden und von der modulierten Infrarot-Strahlung (6) durchstrahlten Messküvette (3) und mit einer in Strah- lungsrichtung hinter der Messküvette (3) angeordneten Detektoreinrichtung (7, 23, 31), die ein der Konzentration der Messgaskomponente (5) in dem Gasgemisch (4) entsprechendes Messsignal (12, 28) liefert, dadurch gekennzeichnet, dass im Strahlengang der Infrarot-Strahlungsquelle (1) mindestens ein optopneumatischer Detektor (15, 15') angeordnet ist,
- der bei Anordnung zwischen der Infrarot-Strahlungsquelle
(1) und der Messküvette (3) mit einem beliebigen Gas (16) gefüllt ist, wobei im Falle der Füllung mit der Messgaskomponente die Konzentration der Messgaskomponente in dem optopneumatischen Detektor (15) geringer als die in der Messküvette (3) ist, und
- der bei Anordnung zwischen der Messküvette (3) und der De- tektoreinrichtung (7, 23, 31) mit einem Gas (16') gefüllt ist, dessen Absorptionsspektrum außerhalb der Spektren der Messgaskomponente (5) und weiterer Quergase in dem Gasgemisch (4) liegt, und dass eine Korrektureinrichtung (22) zur Korrektur des Mess- Signals (12, 28, 36) der Detektoreinrichtung (7, 23, 31) mit dem von dem Detektor (15, 15') erzeugten Detektorsignal (21,
21') vorhanden ist.
2. Nichtdispersiver Infrarot-Gasanalysator nach Anspruch 1, dadurch gekennzeichnet, dass bei Anordnung des mindestens einen optopneumatischen Detektors (15, 23) sowohl zwischen der Infrarot-Strahlungsquelle (1) und der Messküvette (3) als auch zwischen der Messküvette (3) und der Detektoreinrichtung (7) die Detektorsignale (21, 21') beider optopneumatischen Detektoren (15, 15') einer Auswerteeinrichtung (29) zugeführt sind, die aus beiden Detektorsignalen (21, 21') Alterungen oder Verschmutzungen der Strahlungsquelle (1) und der Mess- küvette (3) diagnostiziert.
PCT/EP2009/051743 2008-02-15 2009-02-15 Nichtdispersiver infrarot-gasanalysator WO2009101197A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09711106.6A EP2240760B1 (de) 2008-02-15 2009-02-15 Nichtdispersiver infrarot-gasanalysator
US12/867,859 US8044353B2 (en) 2008-02-15 2009-02-15 Non-dispersive infrared gas analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008009189.8 2008-02-15
DE102008009189.8A DE102008009189B4 (de) 2008-02-15 2008-02-15 Nichtdispersiver Infrarot-Gasanalysator

Publications (1)

Publication Number Publication Date
WO2009101197A1 true WO2009101197A1 (de) 2009-08-20

Family

ID=40636860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/051743 WO2009101197A1 (de) 2008-02-15 2009-02-15 Nichtdispersiver infrarot-gasanalysator

Country Status (4)

Country Link
US (1) US8044353B2 (de)
EP (1) EP2240760B1 (de)
DE (1) DE102008009189B4 (de)
WO (1) WO2009101197A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161137A1 (de) * 2010-06-25 2011-12-29 Siemens Aktiengesellschaft Nichtdispersiver gasanalysator
CN103776793A (zh) * 2013-10-11 2014-05-07 天源华威集团有限公司 单光束非色散红外气体感应器以及含有单光束非色散红外气体感应器的矿工头盔
US10491160B2 (en) * 2016-07-27 2019-11-26 Siemens Aktiengesellschaft Measuring device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980870B (zh) * 2012-12-10 2014-10-29 武汉四方光电科技有限公司 一种高精度微流红外气体传感器及其测量方法
EP2857812B1 (de) * 2013-10-02 2016-04-27 Siemens Aktiengesellschaft Verfahren zur messung der konzentration einer gaskomponente in einem messgas
US10883875B2 (en) 2015-03-05 2021-01-05 Honeywell International Inc. Use of selected glass types and glass thicknesses in the optical path to remove cross sensitivity to water absorption peaks
WO2017044435A1 (en) * 2015-09-10 2017-03-16 Honeywell International Inc. Gas detector with normalized response and improved sensitivity
US10393591B2 (en) 2015-10-09 2019-08-27 Honeywell International Inc. Electromagnetic radiation detector using a planar Golay cell
DE102016001415A1 (de) * 2016-02-03 2017-08-03 Fachhochschule Dortmund Verfahren und Vorrichtung zur Erfassung der Konzentration eines zu bestimmenden Bestandteils in Probengas
WO2021172082A1 (ja) * 2020-02-26 2021-09-02 株式会社堀場製作所 検出器及びガス分析計
DE102022101882A1 (de) * 2021-01-27 2022-07-28 bentekk GmbH Gasdetektionsvorrichtung mit zwei Messkammern und zwei Detektoren

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1109418B (de) * 1956-01-18 1961-06-22 Beckman Instruments Inc Nichtdispersiver Infrarot-Analysator mit positiver Filterung
DE1204430B (de) * 1962-10-04 1965-11-04 Beckman Instruments Inc Infrarot-Analysator mit einer Schaltung zur Kompensation von Wechselstromstoersignalen
DE3529482A1 (de) * 1985-08-16 1987-02-19 Siemens Ag Nichtdispersives infrarot-gasanalysegeraet nach dem zweistrahl-prinzip

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770974A (en) 1972-06-29 1973-11-06 Mine Safety Appliances Co Non-dispersive infrared fluid analyzer with compensation for absorptive and mechanical effects of ambient conditions
DE2400221C3 (de) * 1974-01-03 1978-06-01 Bergwerksverband Gmbh, 4300 Essen Nichtd'ispers'ives Infrarot-Gasanalysengerät
US3953734A (en) * 1974-11-22 1976-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nulling device for detection of trace gases by NDIR absorption
DE2638522C3 (de) * 1976-08-26 1979-12-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Nichtdispersiver Zweistrahl-Infrarot-Gasanalysator mit je einem Doppelschichtempfänger im Meß- und Vergleichsstrahlengang
US4355233A (en) * 1979-02-22 1982-10-19 Beckman Instruments, Inc. Method and apparatus for negating measurement effects of interferent gases in non-dispersive infrared analyzers
US4467435A (en) * 1981-10-05 1984-08-21 Beckman Instruments, Inc. Infrared gas analyzer having detector elements of differing types
DE9014162U1 (de) 1990-10-11 1990-12-20 Siemens AG, 8000 München Pneumatischer Zweischichtdetektor für NDIR-Gasanalysatoren
DE4403763A1 (de) * 1994-02-07 1995-08-10 Siemens Ag NDIR-Analysator
DE19540489C2 (de) * 1995-10-23 1999-02-25 Mannesmann Ag Nichtdispersives Infrarot-Absorptionsverfahren
DE102004007953A1 (de) * 2004-02-18 2005-09-01 M+R Meß- und Regelungstechnik GmbH -An-Institut an der FH Anhalt Signalverarbeitungsmodul für kontinuierlich arbeitenden Infrarot-Gasanalysator
DE102004031643A1 (de) * 2004-06-30 2006-02-02 Abb Patent Gmbh Nichtdispersiver Infrarot-Gasanalysator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1109418B (de) * 1956-01-18 1961-06-22 Beckman Instruments Inc Nichtdispersiver Infrarot-Analysator mit positiver Filterung
DE1204430B (de) * 1962-10-04 1965-11-04 Beckman Instruments Inc Infrarot-Analysator mit einer Schaltung zur Kompensation von Wechselstromstoersignalen
DE3529482A1 (de) * 1985-08-16 1987-02-19 Siemens Ag Nichtdispersives infrarot-gasanalysegeraet nach dem zweistrahl-prinzip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011161137A1 (de) * 2010-06-25 2011-12-29 Siemens Aktiengesellschaft Nichtdispersiver gasanalysator
US9030666B2 (en) 2010-06-25 2015-05-12 Siemens Aktiengeselschaft Non-dispersive gas analyzer
CN103776793A (zh) * 2013-10-11 2014-05-07 天源华威集团有限公司 单光束非色散红外气体感应器以及含有单光束非色散红外气体感应器的矿工头盔
US10491160B2 (en) * 2016-07-27 2019-11-26 Siemens Aktiengesellschaft Measuring device

Also Published As

Publication number Publication date
EP2240760A1 (de) 2010-10-20
EP2240760B1 (de) 2017-08-02
DE102008009189A1 (de) 2009-09-24
DE102008009189B4 (de) 2016-05-25
US8044353B2 (en) 2011-10-25
US20110032514A1 (en) 2011-02-10

Similar Documents

Publication Publication Date Title
EP2240760B1 (de) Nichtdispersiver infrarot-gasanalysator
EP2661613B1 (de) Messgerät zur messung von partikelkonzentrationen mittels streulicht und verfahren zur überwachung des messgerätes
DE2727976C3 (de) Vorrichtung zur Messung der Konzentration mindestens einer Komponente eines Gasgemisches und Verfahren zum Eichen derselben
DE3932838C2 (de) Nichtdispersiver Infrarot-Gasanalysator
EP2307876B1 (de) Verfahren zur laserspektroskopischen detektion von gasen
EP3108220B1 (de) Verfahren und vorrichtung zum zuordnen einer blutplasmaprobe
EP2142909B1 (de) Detektoranordnung für einen nichtdispersiven infrarot-gasanalysator und verfahren zum nachweis einer messgaskomponente in einem gasgemisch mittels eines solchen gasanalysators
DE102009021829A1 (de) NDIR-Zweistrahl-Gasanalysator und Verfahren zur Bestimmung der Konzentration einer Messgaskomponente in einem Gasgemisch mittels eines solchen Gasanalysators
DE4443016A1 (de) Gasanalytisches Meßgerät
DE19547787C1 (de) Zweistrahl-Gasanalysator und Verfahren zu seiner Kalibrierung
EP3671184B1 (de) Alkoholdetektionsvorrichtung mit redundanten messkanälen und verfahren zum detektieren von alkohol
DE102009059962A1 (de) NDIR-Zweistrahl-Gasanalysator und Verfahren zur Bestimmung der Konzentration einer Messgaskomponente in einem Gasgemisch mittels eines solchen Gasanalysators
DE102007020596A1 (de) Detektoranordnung für einen nichtdispersiven Infrarot-Gasanalysator
DE102016108545B4 (de) NDIR-Gassensor und Verfahren zu dessen Kalibrierung
EP1847827A1 (de) Nichtdispersiver Infrarot-Gasanalysator
EP2551662B1 (de) Optische Gasanalysatoreinrichtung mit Mitteln zum Verbessern der Selektivität bei Gasgemischanalysen
DE19632847A1 (de) Gas-Analysegerät
DE3544015C2 (de)
DE102009058394B3 (de) Verfahren zur Messung der Konzentration mindestens einer Gaskomponente in einem Messgas
EP2580575B1 (de) Reduzierung der schwingungsempfindlichkeit bei ndir-zweistrahlfotometern
DE102015118208B4 (de) Analysevorrichtung zum Analysieren einer Gasprobe sowie Verfahren zum Analysieren einer Gasprobe
EP1659393B1 (de) Nichtdispersiver Infrarot-Gasanalysator nach dem Zweistrahl-Prinzip
DE102009010797B4 (de) Anordnung zur Überwachung eines gasführenden Systems auf Leckage
DE202016100234U1 (de) Vorrichtung zur optischen In-Situ Analyse eines Messgases
AT413888B (de) Konzentrationsmonitor für fluidproben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711106

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009711106

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009711106

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12867859

Country of ref document: US