WO2009101133A1 - Beschichtungen für polyurethanoberflächen - Google Patents

Beschichtungen für polyurethanoberflächen Download PDF

Info

Publication number
WO2009101133A1
WO2009101133A1 PCT/EP2009/051637 EP2009051637W WO2009101133A1 WO 2009101133 A1 WO2009101133 A1 WO 2009101133A1 EP 2009051637 W EP2009051637 W EP 2009051637W WO 2009101133 A1 WO2009101133 A1 WO 2009101133A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
composite body
surface coating
body according
thermoplastic polyurethane
Prior art date
Application number
PCT/EP2009/051637
Other languages
English (en)
French (fr)
Inventor
Georg Partusch
Frank Uhlhorn
Günter Scholz
Udo Hadick
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to DE112009000237T priority Critical patent/DE112009000237A5/de
Publication of WO2009101133A1 publication Critical patent/WO2009101133A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article
    • B29C37/0032In-mould coating, e.g. by introducing the coating material into the mould after forming the article the coating being applied upon the mould surface before introducing the moulding compound, e.g. applying a gelcoat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4841Polyethers containing oxyethylene units and other oxyalkylene units containing oxyethylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article
    • B29C2037/0042In-mould coating, e.g. by introducing the coating material into the mould after forming the article the coating being applied in solid sheet form, e.g. as meltable sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes

Definitions

  • the present invention relates to composite bodies containing a polyurethane base body and a surface coating thereon, wherein the surface coating consists of thermoplastic polyurethane having a thickness of 5 to 1000 microns. Furthermore, the present invention relates to a method for producing composite bodies according to the invention and the use of composite bodies according to the invention as interior parts in automobiles or as shoe soles.
  • polyurethanes are often used to produce objects whose visible properties make the polyurethane surface visible to the user and partially touched directly by the user.
  • Such items are, for example, interior parts of motor vehicles, such as steering wheels, instrument panels, door panels or shoe soles.
  • polyurethane base bodies are often painted.
  • the coating of polyurethane base bodies can be carried out, for example, after the preparation of these parts by spraying the paint or immersing the polyurethane base in the paint. It is also possible to apply the lacquer layer by means of what is known as in-mold coating, in which a lacquer is introduced into a mold, which is then filled with the polyurethane reaction mixture After the polyurethane reaction mixture has hardened, the finished lacquered polyurethane molded part is removed from the mold.
  • a disadvantage of these techniques for applying a lacquer layer to a polyurethane base is that they are in each case quite complicated processes. Thus, when immersing polyurethane base bodies in a coating bath, a desired uniform lacquer coating is obtained only if the polyurethane base resin body is a small, simply shaped object and this is removed from the paint bath at a precisely controlled speed.
  • IT 1,334,840 proposes placing a carrier film coated with a lacquer in the mold and then adding the polyurethane reaction mixture to the mold.
  • lacquered polyurethanes are manifold. Thus, these often had porous paint surfaces, which are easily polluted.
  • the mechanical stability, for example the adhesion or the elasticity of the paints is inadequate, especially for automotive applications.
  • the resistance of the paints to solvents is often poor and the UV stability of the paint systems is inadequate, especially in automotive applications.
  • Lacquered polyurethanes are described, for example, in "Kunststoffhandbuch, Volume 7, Polyurethanes", Carl Hanser Verlag, 2nd edition 1983, Chapter 7.3.3.5.
  • the object of the present invention is therefore to provide a polyurethane which is stable to mechanical stress, UV radiation, hydrolysis and the action of solvents and has a non-porous surface.
  • a composite body comprising a polyurethane base body and a surface coating, wherein the surface coating consists of thermoplastic polyurethane with a thickness of 5 .mu.m to 1000 .mu.m.
  • a polyurethane basic body is understood to be an article made of polyurethane.
  • Polyurethane in the context of the invention comprises all known polyisocyanate polyaddition products. Further, among polyurethanes in the context of the invention are polymer blends containing polyurethanes and other polymers.
  • Polyurethanes according to the invention include all types in which polyurethanes can be present, in particular solid polyurethanes or integral foams.
  • a solid polyurethane is to be understood as a solid which is essentially free of gas inclusions.
  • Such polyurethanes are known. Further details on solid polyurethanes can be found in "Kunststoffhandbuch, Volume 7, Polyurethanes", Carl Hanser Verlag, 3rd edition 1993, Chapter 8.
  • Polyurethane integral foams are polyurethane foams according to DIN 7726 with a marginal zone which, due to the shaping process, has a higher density than the core. The total raw density averaged over the core and the edge zone is preferably above 100 g / l.
  • Polyurethane integral foams are also known. Further details on integral polyurethane foams according to the invention can be found in "Kunststoffhandbuch, Volume 7, Polyurethanes", Carl Hanser Verlag, 3rd edition 1993, Chapter 7.
  • polyurethane base For example, it is possible to use conventional polyurethanes used in automobile construction as the polyurethane base.
  • the surface coating consists of transparent or colored thermoplastic polyurethane with a layer thickness of 5 to 1000 .mu.m, preferably 10 to 500 .mu.m and in particular 10 to 100 microns.
  • Thermoplastic polyurethanes hereinafter referred to as TPU, are understood as meaning massive polyurethanes which exhibit thermoplastic properties. It is understood by thermoplastic properties that the thermoplastic polyurethane is repeatedly melted when heated and thereby shows plastic flow.
  • the TPUs according to the invention preferably have an at least partially crystalline soft phase. Amongst others, TPUs are characterized by good strength, abrasion, tear resistance and chemical resistance, and can be produced in virtually any hardness by suitable raw material composition.
  • Composites of the invention are made by placing a thermoplastic polyurethane film in a mold, applying a polyurethane reaction mixture to the film, and curing the polyurethane reaction mixture, preferably by curing in the mold.
  • Any polyurethane reaction mixture can be used.
  • a polyurethane reaction mixture is understood as meaning a mixture of isocyanates and isocyanate-reactive compounds customarily used for the preparation of polyurethanes, which has a reaction conversion of less than 90%.
  • Reaction mixtures are preferably used which are suitable for the production of shoe soles, as described, for example, in EP 897402, steering wheels, as described, for example, in EP 99121812, or instrument panels, as described, for example, in EP application No. 061 17749.9.
  • Such reaction mixtures may also contain additives such as antioxidants or UV stabilizers.
  • the preparation of TPU is usually carried out by the reaction of (a) diisocyanates, in the present case preferably aliphatic diisocyanates, with (b) isocyanate-reactive compounds having a molecular weight of 500 g / mol to preferably 8000 g / mol, optionally in the presence of (c) chain extension mittein with a molecular weight of 60 g / mol to 499 g / mol, (d) catalysts and / or (e) customary excipients.
  • the process is usually carried out continuously by the belt or reaction extruder technology or discontinuously in the casting process.
  • the structural components (b) and (c) can be varied in relatively wide molar ratios.
  • Molar ratios of component (b) to total chain extenders (c) to be used have proven to be from 1: 0.5 to 1: 8, in particular from 1: 1 to 1: 4, the hardness of the TPUs increasing with increasing content of (c) increases.
  • the reaction for the preparation of the TPU can be carried out at a ratio of 0.8 to 1, 2: 1, preferably at a ratio of 0.9 to 1: 1.
  • the index is defined by the ratio of the total isocyanate groups used in the reaction of component (a) to the isocyanate-reactive groups, i. the active hydrogens, the components (b) and optionally (c) and optionally monofunctional isocyanate-reactive components as chain terminators such as e.g. Monoalcohols.
  • thermoplastic polyurethanes The preparation of the thermoplastic polyurethanes is usually carried out in the one-shot or prepolymer process on the belt system or on the reaction extruder.
  • the components (a), (b) and (c) reacting and, if appropriate, chain terminating agents and (d) and / or (e) are combined together or in a specific sequence and reacted.
  • the formative components (a) to (c) and optionally chain terminator (d) are run at Mattersextruderver- and / or (e) are introduced individually or as a mixture into the extruder, for example at temperatures of 100 to 250 0 C, preferably 140 to 220 0 C reacted, the resulting TPU is extruded, cooled and granulated.
  • isocyanates usually diisocyanates, it is possible to use aliphatic, cycloaliphatic, araliphatic and / or aromatic diisocyanates.
  • aromatic isocyanates may be mentioned by way of example: 2,4-toluene diisocyanate, mixtures of 2,4- and 2,6-toluene diisocyanate, 4,4'-, 2,4'- and / or 2,2 'Diphenylmethane diisocyanate, mixtures of 2,4'- and 4,4'-diphenylmethane diisocyanate, urethane-modified liquid 4,4'- and / or 2,4-diphenylmethane diisocyanates, 4,4'-diisocyanato-diphenylethane (1, 2) and
  • the aliphatic diisocyanates (a) used are customary aliphatic and / or cycloaliphatic diisocyanates, for example Tri-, tetra-, penta-, hexa-, hepta- and / or octamethylene diisocyanate, 2-methyl-pentamethylene-diisocyanate-1, 5, 2-ethyl-butylene-diisocyanate-1, 4, 1-isocyanato-3,3 , 5-trimethyl-5-isocyanatomethylcyclohexane (isophorone diisocyanate, IPDI), 1, 4- and / or 1, 3-bis (isocyanatomethyl) cyclohexane (HXDI), 1, 4-cyclohexanediisocyanate, 1-methyl- 2,4- and / or -2,6-cyclohexane diisocyanate, 4,4'-, 2,4'-
  • hexamethylene 1,6-diisocyanate hexamethylene diisocyanate, HDI
  • MDI 2,2'-diphenylmethane diisocyanate
  • As isocyanate-reactive compounds (b) can be known polyhydroxyl compounds having molecular weights of 500 g / mol to 8000 g / mol, preferably 800 g / mol to 6000 g / mol, in particular 2000 g / mol to 4000 g / mol, and preferably an average functionality of from 1.8 to 2.6, preferably from 1.9 to 2.2, in particular 2, for example generally known polyesterols, polyetherols and / or polycarbonate diols.
  • polymer diols are used in many cases of polyethers, in special cases of polyalkylene or polyolefins. In general, such polymer diols are known and commercially available.
  • Polymer diols are polymer polyols in which the carrier polyol is a diol. Polymer diols are prepared by free-radical polymerization of the monomers, preferably
  • the polyether diol or polyester diol which is the continuous phase is referred to as a carrier polyol.
  • Exemplary of the preparation of polymer polyols are the patents US 4568705, US 5830944, EP 163188, EP 365986, EP 439755, EP 664306, EP 622384, EP 894812 and WO 00/59971.
  • the production of polymer diols is carried out analogously, with a diol being used instead of the polyol as the carrier polyol.
  • polyether diol is used if a polymer diol is used.
  • chain extenders (c) it is possible to use generally known compounds, for example diamines and / or alkanediols having 2 to 10 C atoms in the alkylene radical, in particular ethylene glycol and / or butanediol
  • 1, 4, and / or hexanediol and / or di- and / or tri-oxyalkylenglykole having 3 to 8 carbon atoms in the oxyalkylene radical, preferably corresponding oligo- Polyoxypropylene glycols, although mixtures of chain extenders can be used.
  • chain extenders it is also possible to use 1,4-bis (hydroxymethyl) benzene (1,4-BHMB), 1,4-bis (hydroxyethyl) benzene (1,4-BHEB) or 1,4-bis (hydroxyethyl) benzene (1,4-BHMB). (2-hydroxyethoxy) benzene (1, 4-HQEE) are used.
  • the chain extenders used are preferably ethylene glycol, butanediol and / or hexanediol.
  • Suitable catalysts which in particular accelerate the reaction between the NCO groups of the diisocyanates (a) and the hydroxyl groups of the constituent components (b) and (c) are the tertiary amines known and customary in the prior art, e.g. Triethylamine, dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) ethanol, diazabicyclo- (2,2,2) octane and the like, and in particular organic metal compounds such as titanic acid esters, iron compounds such as e.g. Iron (III) acetylacetonate, tin compounds, e.g.
  • Triethylamine dimethylcyclohexylamine, N-methylmorpholine, N, N'-dimethylpiperazine, 2- (dimethylaminoethoxy) ethanol, diazabicyclo- (2,2,2) octane and the like
  • the catalysts are usually used in amounts of from 0.0001 to 0.1 parts by weight per 100 parts by weight of polyhydroxyl compound (b).
  • the structural components (a) to (d) can also be added to conventional auxiliaries (e). Mention may be made, for example, of surface-active substances, flameproofing agents, nucleating agents, lubricants and mold release agents, dyes and pigments, inhibitors, antioxidants, stabilizers against hydrolysis, light or UV light, heat, oxidation or discoloration,
  • antioxidants against microbial degradation, inorganic and / or organic fillers, reinforcing agents and plasticizers.
  • antioxidants, stabilizers against heat, light or UV radiation are stabilizers from the group of sterically hindered phenols, phosphites, HALS stabilizers (dered amine light stabilizer), triazines, benzophenones and benzotriazoles.
  • the auxiliaries or additives mentioned can be added directly to the TPU during the synthesis or only during the thermoplastic processing in bulk or incorporated in a carrier, e.g. TPU, are added as so-called masterbatches.
  • chain terminators with a molecular weight of 46 to 499 can also be used.
  • chain-stopper agents are compounds which have only one isocyanate-reactive functional group, e.g. Monoalcohols. By such chain stopper, the flow behavior can be adjusted specifically.
  • thermoplastic polyurethane film is usually made in a thermoplastic processing.
  • the production of films from the thermoplastic polyurethane for example by extrusion, e.g. using conventional blowing heads or slot dies is well known to those skilled in the art.
  • the calendering process or else the casting process can be used to produce the thermoplastic polyurethane film.
  • Composites of the invention are stable to mechanical stress, UV radiation, hydrolysis and the action of solvents.
  • composites of the invention have a compact, that is non-porous surface, whereby they pollute less quickly than polyurethane molded bodies, which are protected by a conventional paint.
  • the surface coating of composite materials according to the invention is more stable and breaks down less quickly or breaks less rapidly than the lacquer layer of conventional polyurethane molded articles.
  • a composite body according to the invention is easier to produce than a polyurethane molded body, which is protected with a paint, as always a uniform layer thickness of the coating is ensured from TPU and no surface inhomogeneities, such as stripes form, which caused in conventional paint systems, for example, by different spray directions of the paint become.
  • the composite body according to the invention when exposed to UV light, yellows significantly less than corresponding unprotected polyurethane base body.
  • the yellowing of a composite body according to the invention is comparable to that of a polyurethane base protected by a conventional paint.
  • An aliphatic TPU is to be understood as meaning a TPU in which the starting components (a) to (e) are less than 10% by weight, particularly preferably less than 5% by weight, based on the total weight of components (a) to (e), compounds which contain aromatic groups.
  • an aliphatic TPU is understood as meaning such a TPU which does not have any aromatic groups in the constituent components (a) to (c).
  • Comparative test A polyol component consisting of 70 parts by weight of polyol 1, 15 parts by weight of polyol 2, 10 parts by weight of chain extender 1, 1, 5 parts by weight of chain extender 2, 0.05 parts by weight of catalyst, 0.5 parts by weight of defoamer, 1.8 parts by weight of water adsorption additive, 0.65 Parts by weight of additive for thixotroping and 0.5 parts by weight of additives for UV stabilization, was mixed with 100 parts by weight of isocyanate and placed in a tempered at 80 0 C mold. After solidification, the obtained composite body was removed from the mold.
  • Polyol 1 is a polyether polyol having a number average molecular weight of about 4400 g / mol, prepared starting from glycerol as starter and propylene oxide and having a terminal ethylene oxide content of about 13% by weight, based on the total weight of the polyol, polyol 2 to a polyether polyol having a number average molecular weight of about 3400 g / mol, prepared from propylene glycol as a starter and propylene oxide and a terminal ethylene oxide content of about 19 wt .-%, based on the total weight of the polyol, chain extender 1, 4-butanediol, chain extender 2 to ethylene glycol diamine having an amine number of 757 mg / g, catalyst to alkyltin mercaptide,
  • the procedure was analogous to the comparative example, wherein the mold was lined with a film of thermoplastic Elastollan brand LP 9273 with a thickness of 0.20 mm prior to introducing the polyurethane reaction mixture.
  • Example 2 The procedure was analogous to that of the comparative example, wherein the mold was lined with a 0.60 mm thick Elastollan LP 9273 thermoplastic polyurethane film prior to introduction of the polyurethane reaction mixture.
  • the procedure was analogous to that of the comparative example, the mold being filled with a film of thermoplastic polyurethane before introduction of the polyurethane reaction mixture.
  • Elastollan SP 9264 was lined with a thickness of 0.10 mm.
  • Example 4 The procedure was analogous to that of the comparative example, wherein the mold was lined with a 0.22 mm thick film of Elastollan Elastollan SP 9264 brand thermoplastic polyurethane before the introduction of the polyurethane reaction mixture.
  • the polyurethane molding according to Comparative Example and the polyurethane composite according to Examples 1 to 4 were irradiated according to DIN EN ISO 4892-2 with UV light.
  • the color of a material is described using the CIELAB color factors L * , a * and b * according to DIN 6174: 2007-10.
  • the color of a material can be uniquely described by three measures in a three-dimensional coordinate system.
  • discoloration z. B. as a result of UV irradiation, the so-called.
  • Color difference .DELTA.E * is determined. The result is ⁇ E * from the square root of the sum of the change of L * , a * and b * according to DIN 6174.

Abstract

Die vorliegende Erfindung betrifft Verbundkörper, die einen Polyurethangrundkörper und einer Oberflächenbeschichtung darauf enthalten, wobei die Oberflächenbeschichtung aus thermoplastischem Polyurethan besteht.

Description

Beschichtungen für Polyurethanoberflächen
Beschreibung
Die vorliegende Erfindung betrifft Verbundkörper, die einen Polyurethangrundkörper und einer Oberflächenbeschichtung darauf enthalten, wobei die Oberflächenbeschich- tung aus thermoplastischem Polyurethan mit einer Dicke von 5 bis 1000 μm besteht. Weiter betrifft die gegenwärtige Erfindung ein Verfahren zur Herstellung erfindungsgemäßer Verbundkörper und die Verwendung erfindungsgemäßer Verbundkörper als Interieurteile in Automobilen oder als Schuhsohlen.
Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Beschreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemä- ßen Gegenstandes nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erfindung zu verlassen.
Neben dem meist für den Anwender unsichtbaren Einsatz von Polyurethanen als Isola- tions- oder Polstermaterial werden Polyurethane aufgrund ihrer vielfältigen positiven Eigenschaften häufig zur Herstellung von Gegenständen eingesetzt, bei denen die Polyurethanoberfläche für den Nutzer offen sichtbar und von diesem teilweise direkt berührt wird. Bei solchen Gegenständen handelt es sich beispielsweise um Interieurteile von Kraftfahrzeugen, wie Lenkräder, Instrumententafeln, Türverkleidungen oder um Schuhsohlen.
Um die Oberfläche des Polyurethans zu verbessern und um dessen Beständigkeit beispielsweise bei mechanischer Belastung, UV-Strahlung, Hydrolyse und der Einwirkung von Lösemitteln zu verbessern, werden Polyurethangrundkörper häufig lackiert.
Das Lackieren von Polyurethangrundkörpern kann beispielsweise nach dem Herstellen dieser Teile durch Aufsprühen des Lacks oder Eintauchen der Polyurethangrundkörper in den Lack erfolgen. Ebenso ist das Aufbringen der Lackschicht durch das sogenannte „In Mould Coaten" möglich. Dabei wird ein Lack in eine Form eingebracht, die An- schließend mit der Polyurethanreaktionsmischung gefüllt wird. Nach dem Aushärten der Polyurethanreaktionsmischung wird das fertig lackierte Polyurethanformteil entformt.
Ein Nachteil dieser Techniken zum Aufbringen einer Lackschicht auf einen Polyu- rethangrundkörper ist, dass es sich jeweils um recht komplizierte Verfahren handelt. So wird beim Eintauchen von Polyurethangrundkörpern in ein Lackbad nur dann eine gewünschte einheitliche Lackschicht erhalten, wenn es sich bei dem Polyurethangrund- körper um einen kleinen, einfach geformten Gegenstand handelt und dieser mit einer genau kontrollierten Geschwindigkeit aus dem Lackbad entnommen wird .
Beim Aufsprühen des Lacks auf den Polyurethangrundkörper bzw. in die Form entste- hen Lackstäube, die nicht in die Umwelt gelangen dürfen. Aus diesem Grund ist es erforderlich, solche Lackierarbeiten in speziellen Lackierkabinen durchzuführen, die mit Filtern für die Abluft versehen sind.
Um diese Nachteile zu umgehen schlägt IT 1.334.840 vor, eine mit einem Lack be- schichtete Trägerfolie in die Form einzulegen und anschließend die Polyurethanreaktionsmischung in die Form zu geben.
Nachteile bekannter, lackierter Polyurethane sind vielfältig. So wiesen diese häufig poröse Lackoberflächen auf, welche leicht verschmutzen. Die mechanische Stabilität, beispielsweise die Haftung oder die Elastizität der Lacke ist insbesondere für Automobilanwendungen unzureichend. Weiter ist die Beständigkeit der Lacke gegenüber Lösemitteln ist häufig schlecht und die UV-Stabilität der Lacksysteme ist, insbesondere bei Anwendungen im Automobilbereich unzureichend. Lackierte Polyurethane sind beispielsweise beschrieben in "Kunststoffhandbuch, Band 7, Polyurethane", Carl Han- ser Verlag, 2. Auflage 1983, Kapitel 7.3.3.5.
Aufgabe der vorliegenden Erfindung ist es daher, ein Polyurethan zu liefern, das gegenüber mechanischer Belastung, UV-Strahlung, Hydrolyse und der Einwirkung von Lösemitteln stabil ist und eine nicht poröse Oberfläche aufweist.
Diese Aufgabe wird gelöst durch einen Verbundkörper enthaltend einen Polyurethangrundkörper und einer Oberflächenbeschichtung wobei die Oberflächenbeschichtung aus thermoplastischem Polyurethan mit einer Dicke von 5 μm bis 1000 μm besteht.
Dabei wird im Rahmen der vorliegenden Erfindung unter einem Polyurethangrundkörper ein Gegenstand aus Polyurethan verstanden. Polyurethan im Sinn der Erfindung umfasst alle bekannten Polyisocyanat-Polyadditionsprodukte. Weiter sind unter Polyurethanen im Sinn der Erfindung Polymerblends, enthaltend Polyurethane und weitere Polymere. Erfindungsgemäße Polyurethane umfassen alle Arten, in denen Polyuretha- nen vorliegen können, insbesondere massive Polyurethane oder Integralschaumstoffe.
Im Rahmen der Erfindung soll unter einem massiven Polyurethan ein im wesentlichen von Gaseinschlüssen freier Festkörper verstanden werden. Solche Polyurethane sind bekannt. Weitere Details zu massiven Polyurethanen finden sich im "Kunststoffhand- buch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 8. Bei Polyurethan-Integralschaumstoffen handelt es sich um Polyurethan-Schaumstoffe nach DIN 7726 mit einer Randzone, die bedingt durch den Formgebungsprozess eine höhere Dichte als der Kern aufweisen. Die über den Kern und die Randzone gemittelte Gesamtrohdichte liegt dabei vorzugsweise über 100 g/L. Auch Polyurethanintegral- Schaumstoffe sind bekannt. Weitere Details zu erfindungsgemäßen Polyurethan- Integralschaumstoffen finden sich im "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 7.
Beispielsweise können als Polyurethangrundkörper übliche, im Automobilbau einge- setzte Polyurethane, eingesetzt werden.
Die Oberflächenbeschichtung besteht aus transparentem oder eingefärbtem thermoplastischem Polyurethan mit einer Schichtdicke von 5 bis 1000 μm, vorzugsweise 10 bis 500 μm und insbesondere 10 bis 100 μm. Unter thermoplastischen Polyurethanen, im Folgenden als TPU bezeichnet, werden massive Polyurethane verstanden, die thermoplastische Eigenschaften zeigen. Dabei versteht man unter thermoplastischen Eigenschaften, dass das thermoplastische Polyurethan bei Erwärmen wiederholt aufschmelzbar ist und dabei plastisches Fließen zeigt. Bevorzugt weisen die erfindungsgemäßen TPU eine zumindest teilkristalline Weichphase auf. TPU zeichnen sich unter anderem durch gute Festigkeiten, Abriebe, Weiterreißfestigkeiten und Chemikalienbeständigkeit aus, und kann in nahezu beliebiger Härte durch geeignete Rohstoffzusammensetzung hergestellt werden.
Die Herstellung erfindungsgemäßer Verbundstoffe erfolgt, indem man einen Film aus thermoplastischem Polyurethan in eine Form einlegt, auf den Film eine Polyurethanreaktionsmischung aufgibt und die Polyurethanreaktionsmischung aushärtet, wobei diese vorzugsweise in der Form ausgehärtet wird. Dabei kann jede beliebige Polyurethanreaktionsmischung eingesetzt werden. Unter einer Polyurethanreaktionsmischung wird dabei im Folgenden eine Mischung aus üblicherweise zur Herstellung von Polyurethanen eingesetzten Isocyanaten und isocyanatreaktiven Verbindungen verstanden, die einen Reaktionsumsatz von kleiner 90% aufweist. Vorzugsweise werden Reaktionsmischungen eingesetzt, die sich zur Herstellung von Schuhsohlen, wie beispielsweise in EP 897402 beschrieben, Lenkrädern, wie beispielsweise in EP 99121812 beschrieben, oder Instrumententafeln, wie beispielsweise in EP- Anmeldenummer 061 17749.9 beschrieben, eignen. Solche Reaktionsmischungen können auch Zusatzmittel, wie beispielsweise Antioxidationsmittel oder UV-Stabilisatoren, enthalten.
Üblicherweise erfolgt die Herstellung von TPU durch die Umsetzung von (a) Diisocya- naten, im vorliegenden Fall bevorzugt aliphatischen Diisocyanaten, mit (b) gegenüber Isocyanaten reaktiven Verbindungen mit einem Molekulargewicht von 500 g/mol bis vorzugsweise 8000 g/mol gegebenenfalls in Gegenwart von (c) Kettenverlängerungs- mittein mit einem Molekulargewicht von 60 g/mol bis 499 g/mol, (d) Katalysatoren und/oder (e) üblichen Hilfsstoffen. Das Verfahren erfolgt üblicherweise kontinuierlich nach der Band- oder Reaktionsextrudertechnologie oder diskontinuierlich im Gießprozess. Diese Verfahren sind dem Fachmann bekannt und beispielsweise im "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 8.2 beschrieben.
Zur Einstellung von Härte der TPUs können die Aufbaukomponenten (b) und (c) in relativ breiten molaren Verhältnissen variiert werden. Bewährt haben sich molare Verhältnisse von Komponente (b) zu insgesamt einzusetzenden Kettenverlängerungsmitteln (c) von 1 : 0,5 bis 1 : 8, insbesondere von 1 : 1 bis 1 : 4, wobei die Härte der TPUs mit zunehmendem Gehalt an (c) ansteigt. Die Umsetzung zur Herstellung der TPU kann bei einer Kennzahl von 0,8 bis 1 ,2 : 1 , bevorzugt bei einer Kennzahl von 0,9 bis 1 : 1 erfolgen. Die Kennzahl ist definiert durch das Verhältnis der insgesamt bei der Umsetzung eingesetzten Isocyanatgruppen der Komponente (a) zu den gegenüber Isocyanaten reaktiven Gruppen, d.h. den aktiven Wasserstoffen, der Komponenten (b) und gegebenenfalls (c) und gegebenenfalls monofunktionellen gegenüber Isocyanaten reaktiven Komponenten als Kettenabbruchsmitteln wie z.B. Monoalkoholen.
Die Herstellung der thermoplastischen Polyurethane erfolgt üblicherweise im One-shot- oder Prepolymerverfahren auf der Bandanlage oder auf dem Reaktionsextruder. Hierbei werden die zur Reaktion kommenden Komponenten (a), (b) und (c) und gegebenenfalls Kettenabbruchsmitteln sowie (d) und/oder (e) gemeinsam oder in bestimmter Reihenfolge vereinigt und zur Reaktion gebracht. Beim Reaktionsextruderver- fahren werden die Aufbaukomponenten (a) bis (c) sowie gegebenenfalls Kettenabbruchmittel, (d) und/oder (e) einzeln oder als Gemisch in den Extruder eingeführt, z.B. bei Temperaturen von 100 bis 250 0C, vorzugsweise 140 bis 220 0C zur Reaktion gebracht, das erhaltene TPU wird extrudiert, abgekühlt und granuliert.
Die bei der Herstellung der TPUs üblicherweise verwendeten Komponenten (a), (b), (c) sowie gegebenenfalls (e) und/oder (f) sollen im Folgenden beispielhaft beschrieben werden:
a) Als Isocyanate, üblicherweise Diisocyanate, können aliphatische, cycloali- phatische, araliphatische und/oder aromatische Diisocyanate eingesetzt werden.
Im einzelnen seien beispielhaft die folgenden aromatische Isocyanate genannt: 2,4-Toluylen-diisocyanat, Gemische aus 2,4- und 2,6-Toluylen-diisocyanat, 4,4'-, 2,4'- und/oder 2,2'-Diphenylmethan-diisocyanat, Gemische aus 2,4'- und 4,4'-Diphenylmethan-diisocyanat, urethanmodifizierte flüssige 4,4'- und/oder 2,4-Diphenylmethan-diisocyanate, 4,4'-Diisocyanato-diphenylethan- (1 ,2) und
1 ,5-Naphthylen-diisocyanat. Als aliphatische Diisocyanate (a) werden übliche aliphatische und/oder cycloaliphatische Diisocyanate eingesetzt, beispielsweise Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiisocyanat, 2-Methyl- pentamethylen-diisocyanat-1 ,5, 2-Ethyl-butylen-diisocyanat-1 ,4, 1-lsocyanato- 3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophoron-diisocyanat, IPDI), 1 ,4- und/oder 1 ,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1 ,4-Cyclohexan- diisocyanat, 1-Methyl-2,4- und/oder -2, 6-cyclohexan-diisocyanat, 4,4'-, 2,4'- und/oder 2,2'-Dicyclohexylmethan-diisocyanat. Bevorzugt wird Hexamethylen- 1 ,6-diisocyanat (Hexamethylendiisocyanat, HDI) und/oder 4,4'-, 2,4'- und/oder 2,2'-Diphenylmethan-diisocyanat (MDI) als Isocyanat (a) eingesetzt.
b) Als gegenüber Isocyanaten reaktive Verbindungen (b) können allgemein bekannte Polyhydroxylverbindungen mit Molekulargewichten von 500 g/mol bis 8000 g/mol, bevorzugt 800 g/mol bis 6000 g/mol, insbesondere 2000 g/mol bis 4000 g/mol, und bevorzugt einer mittleren Funktionalität von 1 ,8 bis 2,6, bevorzugt 1 ,9 bis 2,2, insbesondere 2 eingesetzt werden, beispielsweise allgemein bekannte Polyesterole, Polyetherole und/oder Polycarbonatdiole.
Bevorzugt werden als (b) ε-Caprolacton und/oder Polyesterdiol auf der Basis von Adipinsäure und Ethan-1 ,2-diol, Butan-1 ,4-diol und/oder Hexan-1 ,6-diol als Diolkomponente eingesetzt, wobei das Verhältnis der Diole je nach gewünschten Eigenschaften des thermoplastischen Polyurethans frei gewählt werden kann.
Ebenso werden in vielen Fällen Polymerdiole aus Polyethern, in speziellen Fällen aus Polyalkylen oder Polyolefinen eingesetzt. Im allgemeinen sind solche Polymerdiole bekannt und kommerziell erhältlich. Dabei handelt es sich bei PoIy- merdiolen um Polymerpolyole, bei denen das Trägerpolyol ein Diol ist. Polymer- diole werden durch radikalische Polymerisation der Monomere, vorzugsweise
Acrylniltril, Styrol sowie gegebenenfalls weiterer Monomerer, eines Makromers und gegebenenfalls eines Moderators unter Einsatz eines Radikal-Initiators, meist Azo-oder Peroxidverbindungen, in einem Polyetherdiol oder Polyesterdiol als kontinuierliche Phase hergestellt. Das Polyetherdiol oder das Polyesterdiol, das die kontinuierliche Phase darstellt, wird als Trägerpolyol bezeichnet. Beispielhaft für die Herstellung von Polymerpolyolen sind hier die Patentschriften US 4568705, US 5830944, EP 163188, EP 365986, EP 439755, EP 664306, EP 622384, EP 894812 und WO 00/59971 zu nennen. Die Herstellung von Po- lymerdiolen erfolgt analog, wobei anstelle des Polyols als Trägerpolyol ein Diol eingesetzt wird. Vorzugsweise wird, falls ein Polymerdiol eingesetzt wird, Polyetherdiol eingesetzt.
c) Als Kettenverlängerungsmittel (c) können allgemein bekannte Verbindungen eingesetzt werden, beispielsweise Diamine und/oder Alkandiole mit 2 bis 10 C-Atomen im Alkylenrest, insbesondere Ethylenglykol und/oder Butandiol-
1 ,4, und/oder Hexandiol und/oder Di- und/oder Tri-oxyalkylenglykole mit 3 bis 8 Kohlenstoffatomen im Oxyalkylenrest, bevorzugt entsprechende Oligo- Polyoxypropylenglykole, wobei auch Mischungen der Kettenverlängerer eingesetzt werden können. Als Kettenverlängerer können auch 1 ,4-Bis-(hydroxy- methyl)-benzol (1 ,4-BHMB), 1 ,4-Bis-(hydroxyethyl)-benzol (1 ,4-BHEB) oder 1 ,4-Bis-(2-hydroxyethoxy)-benzol (1 ,4-HQEE) zum Einsatz kommen. Bevorzugt werden als Kettenverlängerungsmittel Ethylenglykol, Butandiol und/oder Hexan- diol eingesetzt.
d) Geeignete Katalysatoren, welche insbesondere die Reaktion zwischen den NCO-Gruppen der Diisocyanate (a) und den Hydroxylgruppen der Aufbau- komponenten (b) und (c) beschleunigen, sind die nach dem Stand der Technik bekannten und üblichen tertiären Amine, wie z.B. Triethylamin, Dimethylcyclo- hexylamin, N-Methylmorpholin, N,N'-Dimethylpiperazin, 2-(Dimethylamino- ethoxy)-ethanol, Diazabicyclo-(2,2,2)-octan und ähnliche sowie insbesondere organische Metallverbindungen wie Titansäureester, Eisenverbindungen wie z.B. Eisen-(lll)-acetylacetonat, Zinnverbindungen, z.B. Zinndiacetat, Zinn- dioctoat, Zinndilaurat oder die Zinndialkylsalze aliphatischer Carbonsäuren wie Dibutylzinndiacetat, Dibutylzinndilaurat oder ähnliche. Die Katalysatoren werden üblicherweise in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile Po- lyhydroxylverbindung (b) eingesetzt.
e) Neben Katalysatoren können den Aufbaukomponenten (a) bis (d) auch übliche Hilfsstoffe (e) hinzugefügt werden. Genannt seien beispielsweise oberflächenaktive Substanzen, Flammschutzmittel, Keimbildungsmittel, Gleit- und Entfor- mungshilfen, Farbstoffe und Pigmente, Inhibitoren, Antioxidantien, Stabilisatoren gegen Hydrolyse, Licht oder UV-Licht, Hitze, Oxidation oder Verfärbung,
Schutzmittel gegen mikrobiellen Abbau, anorganische und/oder organische Füllstoffe, Verstärkungsmittel und Weichmacher . Beispiele für Antioxidantien, Stabilisatoren gegen Wärme, Licht oder UV-Strahlung sind Stabilisatoren aus der Gruppe der sterisch gehinderten Phenole, Phosphite, HALS-Stabilisatoren (hin- dered amine light stabilizer), Triazine, Benzophenone und der Benzotriazole. Die genannten Hilfsstoffe bzw. Additive können dem TPU direkt bei der Synthese oder erst bei der thermoplastischen Verarbeitung in Substanz oder eingearbeitet in einem Träger, z.B. TPU, als sogenannte Masterbatches zugesetzt werden.
Neben den genannten Rohstoffen (a)-(e) können auch Kettenabbruchsmittel mit einem Molekulargewicht von 46 bis 499 eingesetzt werden. Solche Kettenabbruchsmittel sind Verbindungen, die lediglich eine gegenüber Isocyanaten reaktive funktionelle Gruppe aufweisen, wie z.B. Monoalkohole. Durch solche Kettenabbruchsmittel kann das Fließverhalten gezielt eingestellt werden.
Nähere Angaben über die oben genannten Hilfsmittel- und Zusatzstoffe sind der Fachliteratur zu entnehmen. Alle in dieser Schrift genannten Molekulargewichte weisen die Einheit [g/mol] auf und stellen das Zahlenmittel des Molekulargewichtes dar, es sei denn, es ist explizit anders angegeben.
Die Herstellung des Films aus TPU kann nach bekannten Verfahren erfolgen. Der Film aus thermoplastischem Polyurethan wird üblicherweise in einer Thermoplastverarbeitung hergestellt. Die Herstellung von Folien aus dem thermoplastischem Polyurethan beispielsweise mittels Extrusion, z.B. unter Verwendung üblicher Blasköpfe oder Breitschlitzdüsen ist dem Fachmann allgemein bekannt. Ebenso kann zur Herstellung des Films aus thermoplastischem Polyurethan das Kalandrierverfahren oder auch das Gießverfahren eingesetzt werden. Diese Verfahren sind dem Fachmann bekannt und beispielsweise im "Kunststoffhandbuch, Band 7, Polyurethane", Carl Hanser Verlag, 3. Auflage 1993, Kapitel 8.2 beschrieben.
Erfindungsgemäße Verbundstoffe sind stabil gegenüber mechanischer Belastung, UV- Strahlung, Hydrolyse und der Einwirkung von Lösemitteln. Weiter weisen erfindungsgemäße Verbundstoffe eine kompakte, das heißt nicht poröse Oberfläche auf, wodurch diese weniger schnell verschmutzen als Polyurethanformkörper, die durch einen herkömmlichen Lack geschützt sind. Auch ist die Oberflächenbeschichtung erfindungsgemäßer Verbundstoffe stabiler und reißt weniger schnell ein bzw. bricht weniger schnell als die Lackschicht herkömmlicher Polyurethanformkörper. Weiter ist ein erfindungsgemäßer Verbundkörper einfacher herzustellen als ein Polyurethanformkörper, der mit einem Lack geschützt ist, da immer eine gleichmäßige Schichtdicke der Beschichtung aus TPU gewährleistet ist und sich keine Oberflächeninhomogenitäten, wie Streifen, ausbilden, die bei herkömmlichen Lacksystemen beispielsweise durch unterschiedliche Sprührichtungen des Lacks hervorgerufen werden. Insbesondere wenn der erfindungsgemäße Verbundkörper aus einer aliphatischen Oberflächenschicht und einem aromatischen Polyurethangrundkörper besteht, vergilbt der erfindungsgemäße Verbundkörper, wenn dieser UV-Licht ausgesetzt wird, deutlich weniger als entsprechender ungeschützter Polyurethangrundkörper. Die Vergilbung eines erfindungsgemäßen Verbundkörpers ist vergleichbar mit der eines durch einen herkömmlichen Lack geschützten Polyurethangrundkörpers. Dabei ist unter einem aliphatischen TPU ein TPU zu verstehen, bei dem die Einsatzkomponenten (a) bis (e) weniger als 10 Gew.-%, besonders bevorzugt weniger als 5 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten (a) bis (e), Verbindungen aufweisen, die aromatische Gruppen enthal- ten. Insbesondere wird unter einem aliphatischen TPU ein solches TPU verstanden das in den Aufbaukomponenten (a) bis (c) keine aromatischen Gruppen aufweist.
Im Folgenden soll die Erfindung anhand von Beispielen verdeutlicht werden.
Beispiele
Vergleichsversuch Eine Polyolkomponente, bestehend aus 70 Gewichtsteilen Polyol 1 , 15 Gewichtsteilen Polyol 2, 10 Gewichtsteilen Kettenverlängerer 1 , 1 ,5 Gewichtsteilen Kettenverlängerer 2, 0,05 Gewichtsteilen Katalysator, 0,5 Gewichtsteilen Entschäumer, 1 ,8 Gewichtsteilen Additiv zur Wasseradsorption, 0,65 Gewichtsteilen Additiv zur Thixotropierung und 0,5 Gewichtsteilen Additive zur UV-Stabilisierung, wurde mit 100 Gewichtsteilen Isocy- anat vermischt und in eine auf 800C temperierte Form gegeben. Nach Verfestigung wurde der erhaltene Verbundkörper entformt.
Dabei handelt es sich bei den Einsatzstoffen: Polyol 1 um ein Polyetherpolyol mit einem zahlenmittleren Molekulargewicht von ca. 4400 g/mol, hergestellt ausgehend von Glycerin als Starter und Propylenoxid sowie einem endständigen Ethylenoxidgehalt von ca.13 Gew.-%, bezogen auf das Gesamtgewicht des Polyols, Polyol 2 um ein Polyetherpolyol mit einem zahlenmittleren Molekulargewicht von ca. 3400 g/mol, hergestellt ausgehend von Propylenglykol als Starter und Propylenoxid sowie einem endständigen Ethylenoxidgehalt von ca.19 Gew.-%, bezogen auf das Gesamtgewicht des Polyols, Kettenverlängerer 1 um 1 ,4-Butandiol, Kettenverlängerer 2 um Ethylenglykoldiamin mit einer Aminzahl von 757 mg/g, Katalysator um Alkylzinnmercaptid,
Additiv zur Wasseradsorption um eine Mischungen von Natrium-, Kalium- und Calciu- maluminasilikaten,
Additiv zur Thixotropierung um Siliziumdioxidpulver,
Additive zur UV-Stabilisierung um handelsübliche UV-Absorber und Isocyanat um ein Prepolymer, hergestellt durch die Umsetzung von 4,4'- Diphenyl- methandiisocyanat und Polyetherpolyolen mit einem NCO-Gehalt von 22,9 %.
Beispiel 1
Es wurde analog zu dem Vergleichsbeispiel verfahren, wobei die Form vor dem Ein- bringen der Polyurethanreaktionsmischung mit einer Folie aus thermoplastischem Polyurethan der Marke Elastollan LP 9273 mit einer Dicke von 0,20 mm ausgekleidet wurde.
Beispiel 2 Es wurde analog zu dem Vergleichsbeispiel verfahren, wobei die Form vor dem Einbringen der Polyurethanreaktionsmischung mit einer Folie aus thermoplastischem Polyurethan der Marke Elastollan LP 9273 mit einer Dicke von 0,60 mm ausgekleidet wurde.
Beispiel 3
Es wurde analog zu dem Vergleichsbeispiel verfahren, wobei die Form vor dem Einbringen der Polyurethanreaktionsmischung mit einer Folie aus thermoplastischem Po- lyurethan der Marke Elastollan SP 9264 mit einer Dicke von 0,10 mm ausgekleidet wurde.
Beispiel 4 Es wurde analog zu dem Vergleichsbeispiel verfahren, wobei die Form vor dem Einbringen der Polyurethanreaktionsmischung mit einer Folie aus thermoplastischem Polyurethan der Marke Elastollan Elastollan SP 9264 mit einer Dicke von 0,22 mm ausgekleidet wurde.
Der Polyurethanformkörper gemäß Vergleichsbeispiel sowie die Polyurethanverbundkörper gemäß den Beispielen 1 bis 4 wurden gemäß DIN EN ISO 4892-2 mit UV-Licht bestrahlt. Die Farbe eines Materials wird mit Hilfe der CIELAB Farbmaßzahlen L*, a* und b* nach DIN 6174:2007-10 beschrieben. Dadurch kann die Farbe eines Materials durch drei Maßzahlen eindeutig in einem dreidimensionalen Koordinatensystem be- schrieben werden. Zur Beurteilung von Verfärbungen z. B. infolge von UV-Bestrahlung wird der sog. Farbabstand ΔE* ermittelt. Dabei ergibt sich ΔE* aus der Quadratwurzel der Summe aus der Änderung von L*, a* und b* gemäß DIN 6174.
Die Werte für L*, a*, b*, ΔE* und den Yellowness Index (Yl), bestimmt nach ATSM E313, für die Beispiele 1 bis 4 und Vergleichsbeispiel 1 sind in der Tabelle für Bestrahlungen von 192 und 300 Stunden angegeben. Dabei ist zu erkennen, dass das besonders für Bestrahlungsdauern von 192 Stunden gegenüber nicht beschichtetem Polyurethan deutlich verbesserte Werte erhalten werden.
Bestrahlungsdauer [h]
Vergleichsbeispiel 1 0 70,8 0,7 2,4 6,4
192 64,0 1 ,0 31 ,2 29,6 67,3
300 1 1 ,
51 ,8 3 39,9 43,4 103,1
Beispiel 1 0,20mm 0 67,8 1 ,0 5,0 13,3
192 64,9 0,4 19,8 15,1 45,9
300 54,9 7,8 38,5 36,5 93,4
Beispiel 2 0,60mm 0 68,0 1 ,0 4,8 12,7
192 65,0 1 ,5 26,1 21 ,6 58,7
300 54,4 9,1 40,4 39,0 98,2
Beispiel 3 0,10mm 0 67,4 1 ,0 4,0 1 1 ,0
192 64,0 0,4 24,4 20,6 55,0
300 51 ,3 9,8 43,5 43,5 106,1
Beispiel 4 0,22mm 0 67,2 0,9 4,3 1 1 ,6
192 65,1 0,2 16,6 12,6 39,2 300 54,6 6,8 35,1 33,9 87,4

Claims

Patentansprüche
1. Verbundkörper, enthaltend einen Polyurethangrundkörper und eine Oberflächen- beschichtung darauf, dadurch gekennzeichnet, dass die Oberflächenbeschichtung aus thermoplastischem Polyurethan mit einer Dicke von 5μm bis 1000μm besteht.
2. Verbundkörper nach Anspruch 1 , dadurch gekennzeichnet, dass die Oberflächenbeschichtung aus thermoplastischem Polyurethan besteht, bei dem die Einsatzkomponenten (a) Diisocyanate, (b) gegenüber Isocyanaten reaktiven Ver- bindungen, gegebenenfalls (c) Kettenverlängerungsmitteln, (d) Katalysatoren und/oder (e) üblichen Hilfsstoffen weniger als 10 Gew.-%, bezogen auf das Gesamtgewicht der Komponenten (a) bis (e), Verbindungen aufweisen, die aromatische Gruppen enthalten.
3. Verbundkörper nach Anspruch 1 , dadurch gekennzeichnet, dass die Oberflächenbeschichtung aus thermoplastischem Polyurethan Stabilisatoren gegen Oxi- dation, UV-Licht und Hydrolyse aufweist.
4. Verbundkörper nach Anspruch 1 , dadurch gekennzeichnet, dass die Oberflä- chenbeschichtung aus thermoplastischem Polyurethan Farbstoffe enthält.
5. Verwendung eines Verbundkörpers nach Anspruch 1 oder 2 als Interieurteil eines Kraftfahrzeugs.
6. Verwendung eines Verbundkörpers nach Anspruch 1 oder 2 als Schuhsohle
7. Verfahren zur Herstellung eines Verbundkörpers gemäß Anspruch 1 bis 3 bei dem man einen Film aus thermoplastischem Polyurethan in eine Form einlegt, auf den Film eine Polyurethanreaktionsmischung aufgibt und die Polyurethanreakti- onsmischung aushärtet.
PCT/EP2009/051637 2008-02-15 2009-02-12 Beschichtungen für polyurethanoberflächen WO2009101133A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112009000237T DE112009000237A5 (de) 2008-02-15 2009-02-12 Beschichtungen für Polyurethanoberflächen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08151477 2008-02-15
EP08151477.0 2008-02-15

Publications (1)

Publication Number Publication Date
WO2009101133A1 true WO2009101133A1 (de) 2009-08-20

Family

ID=40627099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/051637 WO2009101133A1 (de) 2008-02-15 2009-02-12 Beschichtungen für polyurethanoberflächen

Country Status (2)

Country Link
DE (1) DE112009000237A5 (de)
WO (1) WO2009101133A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188655A1 (de) 2015-05-22 2016-12-01 Basf Coatings Gmbh Wässriger basislack zur herstellung einer beschichtung
WO2016188656A1 (de) 2015-05-22 2016-12-01 Basf Coatings Gmbh Verfahren zur herstellung einer mehrschichtbeschichtung
WO2018073034A1 (de) 2016-10-20 2018-04-26 Basf Coatings Gmbh Verfahren zur herstellung einer beschichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580501A (en) * 1994-11-07 1996-12-03 Gallagher; Michael J. Method of manufacturing an interior trim panel using polyurethane powder
US5662996A (en) * 1992-05-18 1997-09-02 Recticel Method for manufacturing self-supporting synthetic trim parts and thus manufactured trim parts
EP0904919A2 (de) * 1997-09-26 1999-03-31 Basf Aktiengesellschaft Verfahren zur Herstellung von Verbundformteilen aus thermoplastischen Kunststoffen
US20060008620A1 (en) * 2004-07-06 2006-01-12 Lear Corporation Vehicle part with integrated impact management feature and method of making same
WO2008012247A1 (de) * 2006-07-24 2008-01-31 Basf Se Emissionsarme trägerschicht aus polyurethan, sprühpolyurethansystem zur herstellung einer solchen trägerschicht und verwendung einer solchen trägerschicht

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662996A (en) * 1992-05-18 1997-09-02 Recticel Method for manufacturing self-supporting synthetic trim parts and thus manufactured trim parts
US5580501A (en) * 1994-11-07 1996-12-03 Gallagher; Michael J. Method of manufacturing an interior trim panel using polyurethane powder
EP0904919A2 (de) * 1997-09-26 1999-03-31 Basf Aktiengesellschaft Verfahren zur Herstellung von Verbundformteilen aus thermoplastischen Kunststoffen
US20060008620A1 (en) * 2004-07-06 2006-01-12 Lear Corporation Vehicle part with integrated impact management feature and method of making same
WO2008012247A1 (de) * 2006-07-24 2008-01-31 Basf Se Emissionsarme trägerschicht aus polyurethan, sprühpolyurethansystem zur herstellung einer solchen trägerschicht und verwendung einer solchen trägerschicht

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188655A1 (de) 2015-05-22 2016-12-01 Basf Coatings Gmbh Wässriger basislack zur herstellung einer beschichtung
WO2016188656A1 (de) 2015-05-22 2016-12-01 Basf Coatings Gmbh Verfahren zur herstellung einer mehrschichtbeschichtung
CN107646041A (zh) * 2015-05-22 2018-01-30 巴斯夫涂料有限公司 制备多层涂层的方法
US10329450B2 (en) 2015-05-22 2019-06-25 Basf Coatings Gmbh Method for producing a multicoat coating
CN107646041B (zh) * 2015-05-22 2020-05-12 巴斯夫涂料有限公司 制备多层涂层的方法
US10781336B2 (en) 2015-05-22 2020-09-22 Basf Coatings Gmbh Aqueous basecoat material for producing a coating
WO2018073034A1 (de) 2016-10-20 2018-04-26 Basf Coatings Gmbh Verfahren zur herstellung einer beschichtung
US10669447B2 (en) 2016-10-20 2020-06-02 Basf Coatings Gmbh Method for producing a coating

Also Published As

Publication number Publication date
DE112009000237A5 (de) 2011-03-17

Similar Documents

Publication Publication Date Title
EP2046856B1 (de) Emissionsarme trägerschicht aus polyurethan, sprühpolyurethansystem zur herstellung einer solchen trägerschicht und verwendung einer solchen trägerschicht
EP2435231B1 (de) Wasser als treibmittel für polyurethane
EP0399272B1 (de) Verfahren zur Herstellung von weichen, elastischen Polyurethan-Folien
EP1704177B1 (de) Verfahren zur herstellung von schuhen
EP3137539B1 (de) Polyurethan-partikelschaum mit polyurethanbeschichtung
WO2019122122A1 (de) Neue polyurethanweichschaumstoffe
DE10037157A1 (de) Mehrschichtige Beschichtungssysteme aus einer dickschichtigen, gelartigen Grundschicht und einer Deckschicht aus Polyurethan-Lack, deren Herstellung und Verwendung
EP0447817B1 (de) Verfahren zur Herstellung von zellhaltigen Polyurethan-Formkörpern durch Sinterung
EP0275009A2 (de) Kunststoff-Verbundkörper und ein Verfahren zu seiner Herstellung
WO2004108811A1 (de) Verfahren zur herstellung von expandierbaren thermoplastischen elastomeren
EP0347691B1 (de) Mit einer konturierten, mehrschichtigen Folie versehene Polyurethan-Formkörper, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1069143B1 (de) Weiche, elastische Polyurethanfolien, Verfahren zu ihrer Herstellung und ihre Verwendung
EP0503334A1 (de) Verbundelemente aus einer Deck- und Trägerschicht aus thermoplastischen Polyurethanen, ein Verfahren zu ihrer Herstellung und ihre Verwendung
EP3645597B1 (de) Thermoplastisches polyurethan
EP2552987A1 (de) Schmelzkleben mit thermoplastischem polyurethan
EP0747408A1 (de) Verfahren zur kontinuierlichen Herstellung von Polyurethanharnstoff-Elastomeren
WO2009101133A1 (de) Beschichtungen für polyurethanoberflächen
EP3013879A1 (de) Hydrolysebeständige polyurethanformkörper
DE102005019663A1 (de) Thermoplastische Polyurethane
EP0950674A1 (de) Verfahren zur Herstellung von thermoplastischen Polyurethanen
DE102007033374A1 (de) Verfahren zur Herstellung einer elastischen Kunststoff-Formhaut
EP2395038A1 (de) Polyurethanintegralschaumstoffe mit guter Dimensionsstabilität und hoher Härte
DE19520730A1 (de) Thermoplastische Polyurethanharnstoff-Elastomere
DE10037622A1 (de) Verfahren zur Herstellung von Folien auf der Basis von thermoplastischen Polyurethanen
EP0425928B1 (de) Verfahren zum Herstellen von Formkörpern durch Tiefziehen von vorgefertigten PUR-Teilen auf Basis von Polyisocyanat-Polyadditionsprodukten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709727

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 09709727

Country of ref document: EP

Kind code of ref document: A1

REF Corresponds to

Ref document number: 112009000237

Country of ref document: DE

Date of ref document: 20110317

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009000237

Country of ref document: DE

Effective date: 20110317