WO2009100560A1 - 变截面不等边直角三角形棱镜圆盘形反光板和用它制成的灯具 - Google Patents

变截面不等边直角三角形棱镜圆盘形反光板和用它制成的灯具 Download PDF

Info

Publication number
WO2009100560A1
WO2009100560A1 PCT/CN2008/000031 CN2008000031W WO2009100560A1 WO 2009100560 A1 WO2009100560 A1 WO 2009100560A1 CN 2008000031 W CN2008000031 W CN 2008000031W WO 2009100560 A1 WO2009100560 A1 WO 2009100560A1
Authority
WO
WIPO (PCT)
Prior art keywords
disc
shaped reflector
lamp
angle
reflector
Prior art date
Application number
PCT/CN2008/000031
Other languages
English (en)
French (fr)
Inventor
Dingguo Pan
Original Assignee
Dingguo Pan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dingguo Pan filed Critical Dingguo Pan
Priority to PCT/CN2008/000031 priority Critical patent/WO2009100560A1/zh
Publication of WO2009100560A1 publication Critical patent/WO2009100560A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide

Definitions

  • This invention relates to a microprism reflector, and more particularly to an annular variable cross section elliptical right angle prism disc reflector and a lamp, a luminaire and a lighting well for use in various applications. Background technique
  • microprism reflectors have been used to achieve the reflection and refraction of sunlight. These reflectors are mostly composed of a plurality of long prismatic sections of isosceles right triangles, which are already in the window and building. Reflective devices are widely used. With the rapid development of LED technology, its direction should enable LEDs to enter the field of lighting as soon as possible. Only when the application of LEDs expands, LEDs can achieve greater development. In the conventional illumination, a convex lens, a concave mirror or a Fresnel prism is often used to make the point light source into a surface light source. In order for the LED to move from decoration to illumination, a point source to surface source transformation must be addressed.
  • One object of the present invention is to provide a micro-unequal-sided right-angle prism disc-shaped reflector having a varying cross section.
  • Another object of the present invention is to further develop a lamp made of a disc-shaped reflector by using the principle of a micro-anisetic right-angle prism plate having a cross-section change, so that the LED light-emitting diode can be used by means of this.
  • These basic illuminant forms will better step into the lighting world.
  • a disc-shaped reflector having a variable-section right-angled triangular microprism, wherein the disc-shaped reflector has a plurality of rings on a surface thereof in a radial direction from the central axis.
  • each annular microcolumn prism body has an unequal angled triangle with an apex angle of 90 degrees, and an annular microcolumn prism closest to the central axis
  • the cross-sectional area of the unequal-angled triangle of the body is the largest, and the cross-sectional area of the body is decreasing in a zigzag direction toward the peripheral direction, and the angle between the adjacent two annular micro-column prism bodies is also a right angle.
  • a disc-shaped reflector as described above, wherein the radial connection of the right-angled vertex of the annular micro-pillar prism body at the apex angle of the central axis is a straight line and the other surface of the disc-shaped reflector Parallel, the right-angled vertex of the angle between the adjacent two annular micro-pillar prisms is perpendicular to the other surface of the disc-shaped reflector, and the height of the vertical line segments is a series of successively decreasing steps or In the equal series, the orthogonal apex of the angle between the adjacent two annular microcolumn prisms intersects the two oblique lines of the central axis, which are opposite to the other surface of the disc-shaped reflector. An angle ⁇ is formed, and ⁇ is less than 45 degrees.
  • One surface intersects and forms a slanted round end face having a large microcolumn right angle prismatic end face which forms an angle with the other surface of the disc-shaped reflector at an angle of 45 degrees.
  • a disc-shaped reflector as described above, wherein the reflector has a disc at the right-angled edge of the annular micro-column prism farthest from the center line, and the disc is suspended at the outer edge of the lower surface.
  • the cylindrical surface of the reflector is a disc-shaped reflector as described above, wherein the reflector has a disc at the right-angled edge of the annular micro-column prism farthest from the center line, and the disc is suspended at the outer edge of the lower surface.
  • the disc-shaped reflector as described above further comprising a plurality of lamp bodies, the inclined round end faces of the disk-shaped reflectors, the cylindrical faces or the blind upper holes on the upper and lower surfaces of the edges are provided with a plurality of uniformly distributed blind holes or The ring grooves, and the lamp bodies are each mounted in a blind hole or a ring groove.
  • the chip diode is composed of a circuit board and a light emitting diode mounted on the circuit board, and is disposed in the ring groove.
  • the frame is annular, and a step is provided on the inner surface.
  • the disc-shaped reflector has a ring groove at an edge near the upper surface thereof, and is mounted on the step of the lamp frame, and the circuit board is bent into a ring shape.
  • the light-emitting diodes are evenly connected to the circuit board to form a light ring.
  • the light ring is installed in the ring groove of the reflector, and the cover plate is a convex arc-shaped arch, and is fixedly mounted by locking the pin.
  • the disc frame is pressed on the lamp frame and the edge thereof is pressed against the disc-shaped reflector.
  • the circular arc-shaped surface of the cover plate is further provided with a mounting hole and an expansion bolt for fixing the lamp.
  • variable cross-sectional anisotropic right-angle triangular prism disc-shaped reflector of the present invention has characteristics close to that of ordinary optical glass, and a plurality of annular micro-column prism bodies are disposed in a radial direction from the central axis.
  • the apex angle of the columnar prism is 90°
  • the cross section of each of the annular microcolumn prism bodies is an equilateral right triangle.
  • the reflector has a cross section from the symmetrical center line to the left and right free ends.
  • the product is zigzag in descending order, and the inclined end faces of the two free ends form an angle of 45 degrees with the other surface of the reflector, on the other hand, the reflection and refraction surface of the reflector for sunlight is increased, on the other hand, The reflection of the prism body of each microcolumn of the reflector on the inclined end surface of the free end is also increased, that is, the amount of light passing through the inclined end face is greatly improved.
  • the lamp body is disposed on the reflector, the center axis of the emission of the lamp body is parallel to the plane of the disk-shaped reflector, or the apex of the angle of each of the annular prism bodies passing through the plane of the disk-shaped reflector.
  • the light emitted from the lamp body is reflected from the respective microcolumn prism bodies on the left and right sides of the center line, resulting in an unexpected lighting effect.
  • the invention also uses various luminaires made of LEDs with a cross-sectional area decreasing micro prism type disc-shaped reflector, including a disc lamp, a ceiling lamp, a chandelier, a table lamp, a screw disc lamp, a lighting well, and the like, among which
  • the lamp is mainly composed of a disc-shaped reflector, a plurality of light-emitting diodes, a frame, a circuit board and a cover plate, which can be applied to indoor lighting, so that the lamp can be made thin in structure, and the shape is simple and smooth.
  • the hall is charged by solar cells during the daytime under sunlight, and illuminated by the reflector of the present invention with light-emitting diodes at night to achieve high energy efficiency.
  • Figures la and lb are perspective views of the variable cross-sectional anisotropic right-angled triangular prism disk-shaped reflector having a circumference of 45° and a circumference of 90° from the horizontal plane.
  • Figure 2a is a cross-sectional view of the disc-shaped reflector of the present invention having a circumference of 45°.
  • Fig. 2b is a cross-sectional view showing the cylindrical periphery of the disc-shaped reflector of the present invention at a 90° cylindrical surface with respect to a horizontal plane.
  • Fig. 3 is a schematic diagram of prism reflection as a disc-shaped reflector.
  • Fig. 4a is a light path diagram of a disk-shaped variable-section prism plate as a reflection.
  • Figure 4b is a light path diagram of a disc-shaped variable-section prism plate as an LED illuminating panel
  • Figure 4c is a partial enlargement of Figures 4a and 4b.
  • Fig. 5a and Fig. 5b are front elevational views and a cross-sectional view through the central axis of the patch LED embedded in the annular groove of the variable-section unequal-sided straight prism disk-shaped reflector.
  • Figure 6a, Figure 6b are a front elevational view of the LED light-emitting diode packaged into a blind hole in the disc-shaped reflector and a cross-sectional view through the central axis.
  • Figure 7 is an optical path design of the planar unit of the plastic microcolumn prism of Figure 4a.
  • Fig. 8 is a central sectional view of an isosceles right triangle prism reflecting plate equipped with an LED as a comparative example.
  • Fig. 9a and Fig. 9b are partial cross-sectional front and top plan views, respectively, showing one of the disc lamps of the variable-section unequal-triangular prism-shaped disc-shaped reflector having LEDs.
  • Fig. 10 is a front cross-sectional view showing the second of the disk lamps of the variable-section anisotropic right-angled triangular prism disk-shaped reflector equipped with LEDs.
  • Figure 11 a and lib are front and top views of a variable-section unequal-angled right-angled triangle.
  • Fig. 12a and Fig. 12b are respectively a front view and a top view of an LED with a variable cross section of an equilateral triangular prism disk ceiling lamp and a chandelier.
  • Figure 13 is a front elevational view of an arc-shaped right-angled triangular prism screw disk lamp with a variable cross-section of the LED.
  • Figures 14a and 14b are perspective and side views of an LED cross-section of an isometric right-angled triangular prism disk writing desk lamp. detailed description
  • FIG. 1 and 2 there are shown perspective views of the microcolumn prismatic disc-shaped reflector 1 of the present invention and a cross-sectional view through a vertical section of the centerline ww of the reflector.
  • the reflector 1 has an upper surface 11 and a lower surface 12, and a plurality of annular microcolumn prisms 2 of different radii are disposed on both sides thereof. This is on a transparent organic flat glass with a radius of R and a thickness of ⁇ , on one side of the disc shape, starting at 0 o'clock in the center of the circle. Engraving a series of unequal-sided annular right-angled triangular prisms with a 90-degree apex angle.
  • annular unequal-sided right-angle prisms are a series of concentric circles.
  • the center of the circular prism is a right-angled cone with a disc-shaped centerline. To make a plane perpendicular to the disc shape for the center of symmetry, then this plane cuts the cylindrical table into two semi-circular tables, and we can get a section plane, which is inconsistent with the previously published patent.
  • the cross-section of the right-angled triangular prism plate is completely similar, so the variable-section unequal-sided right-angled triangular prism disk has some optical characteristics and a variable-section unequal-sided right-angle prism.
  • the tablet is the same.
  • the cross section of each microcolumn prism body 2 is an unequal right triangle, and its apex angle is 90 degrees.
  • the left and right unequal orthogonal triangles adjacent to the symmetrical center line have the largest cross-sectional area, and the lower surface 12 faces the left and right.
  • the cross-sectional area of the free end is sequentially zigzag decreasing.
  • These annular microcolumn prisms 2 also have concentric circles extending from small to large, and the angle between adjacent two microcolumn prism bodies is also a right angle.
  • the right-angled edge of the annular micro-column prism farthest from the center line is upwardly extended to intersect the other surface of the disc-shaped reflector and form a slope with a large micro-column prismatic end edge.
  • the round end surface 14 forms an angle with the other surface of the disc-shaped reflector at an angle of 45 degrees.
  • the right-angled edge of the annular microcolumn prism, which is the farthest from the centerline of the reflector is suspended from the lower surface 12, leaving its outer periphery with a cylindrical surface 16 of the disc-shaped reflector.
  • ring grooves 13, 15 are respectively provided on the edges of the upper surface 11 close to the inclined circular end surface 14 and the cylindrical surface 16.
  • T, G, I, K, ⁇ , ⁇ , Q represent the connection point between the triangles of the cross section on the right side of the ww 'symmetric center line
  • T, G, I, K, ⁇ , ⁇ , Q are also the right-angle apex region of the micro-column prism and the light from one side such as LED
  • the total reflection critical point region will be described in detail below.
  • the reflector 1 is connected in a straight line from the apex angle of the unequal angle triangles of the left and right sides of the symmetrical center line w-w' or the connection points of the triangles of the right-angle prisms.
  • the oblique line TQ, the intersection of the oblique line TQ and the intersection of the two largest triangles of the cross-sectional area between the vertical line TS on both sides of the center line w-w' or the line FC of the vertex of the apex angle of each of the equilateral right-angled triangles The angle is ⁇ and ⁇ is less than 45°. Usually the angle ⁇ is less than 10°, as shown in Figure 3c.
  • FIG. 4a shows that the disc-shaped reflector having the micro-prism body of the present invention can receive sunlight reflection and refraction during the day, and the storage device of the silicon solar cell is mounted thereon.
  • Fig. 4b shows a reflector 1 on which a lamp body can be placed, which can be used as a disc-shaped illuminating panel to become a luminaire.
  • the disc-shaped reflector 1 further includes a plurality of lamp bodies 3.
  • the disc-shaped reflector is scribed at a distance L of its centerline w-w', i.e., the ring groove 13, 15 on the edge of the surface 11, or a suitably wide groove 13 is formed at the inclined circular end face 14 of the reflector.
  • the cylinder facing the center line is transparent, and the chip type light emitting diode 3' having the PBT circular circuit board is mounted on the circular circuit board having the radius L, and then embedded in the ring Inside the groove or groove.
  • the plurality of lamp bodies 3 can be pre-formed into a lamp assembly, such as the LED assembly y, and directly packaged on the inclined circular end surface 14 or the cylindrical surface 16 of the reflector 1 by injection molding, as shown in FIG. 5b and FIG. Show.
  • FIG. 7 is the optical path design of the planar unit of the plastic microcolumn prism of FIG. 4b or FIG.
  • a light-emitting diode LED is arranged on the micro-unequal right-angled triangular disc-shaped prism reflector, which becomes a light-emitting plate, whether the LED is embedded in the cylindrical ring groove of the disc-shaped reflector or directly encapsulated as a preform.
  • the groove of the disc-shaped reflector the essence is that the LED illuminator and the light conductor, the light divergence coexist and the same transparent light-transmitting material.
  • the light divergence system is a variable-section unequal-sided right-angled triangular prism disk-shaped reflector body, and is reflective.
  • the surface of the plurality of annular microcolumn prism bodies of the plate may also be plated with an aluminum film (not shown) to improve the divergence efficiency, which makes the entire optical system accurate and efficient.
  • the prism body of the disc-shaped reflector is accurate and efficient, and it has a very important technical feature.
  • the isosceles right triangle prism reflector is a patented technology that has appeared in the 1980s. It can be used as a building sun visor, but even if the disc-shaped reflector is made of a triangular prism body having an isosceles angle, it has the following disadvantages:
  • the light from the LED 103 can be seen from the central cross-sectional view of the isosceles right triangle prism disc-shaped reflector 10 shown in FIG. ⁇ , the position of the disc shape closest to the LED 103 is completely reflected, the light passes through the disc shape into the space, and the light beam L 2 passes over the apex of the bottom of the prism body ⁇ without contacting any prism body 102. There is no change in the direction of light propagation.
  • the light here is used as the representative light emitted by the LED. Since the LED light emission angle is small, most of the light is concentrated at the I like the light. The high brightness can be seen through the plane, or the LED light is congested at I.
  • a high-intensity aperture appears on the outermost prism surface of the disc-shaped reflector, and a dark circle appears at II, III, IV, V, and VI, and the contrast is sharp.
  • an isosceles right-angled triangular disc-shaped reflector is used as a prismatic light sheet with LED light diverging, its effect is not good.
  • the isosceles right-angled triangular disc-shaped reflector is the same as the isosceles right-angled triangular prism flat plate, it has the function of totally reflecting light, but it is required to have an isosceles right-angled triangular prism rectangular planar reflector and a disc-shaped reflector as LED divergent lights.
  • the luminaires have shortcomings or deficiencies and cannot be used.
  • variable-section non-equal right-angled triangular prism disc-shaped reflector which is:
  • the unequal-angled triangular prism disc-shaped reflector is As a reflection of sunlight, due to the apex of the prism in the disc-shaped reflector, from the middle to the edge, from high to low height into an order of difference, the sun is no longer all back into the air, and part of the accumulation in the disc shape
  • the cylindrical surface around the reflector or the 45° oblique plane around the circle This will increase the utilization of the entire reflective system.
  • the invention is directed to the reversible principle of the application of light throughout the illumination path of the prismatic light-emitting diode of Fig. 7, and fully confirms the above important optical structural features of the variable-section unequal-angled right-angle triangular prism disk-shaped reflector.
  • the inconsistent right-angled triangular prism disc-shaped reflector When the inconsistent right-angled triangular prism disc-shaped reflector is used as the LED illuminating board, its working state is to connect the apex of the prism body close to the disc-shaped reflector in the cross-sectional view of Fig. 7 , the connection and the upper line
  • the plane 11 has an angle.
  • the central axis of the light of the LED light-emitting diode is parallel to the above connecting line. According to the law of total light reflection, the light projected on the apex of the prism is totally reflected and transmitted to the outer space through the plane of the flat plate.
  • a luminaire 100 made up of a variable-section, non-equal right-angled triangular prism disk-shaped reflector.
  • the lamp is a disc lamp comprising a disc-shaped reflector 110, a plurality of LEDs 120, a lamp frame 130, a PBT circuit board 140 and a cover plate 150.
  • the lamp frame 130 is annular, The inner surface is provided with a step.
  • the disc-shaped reflector 110 is provided with a ring groove 111 at an edge near the upper surface thereof, and is mounted on the step 131 of the lamp frame.
  • the circuit board 140 is bent into a ring shape, and the light emitting diode is 120 is evenly welded to the circuit board to form a light ring, the light ring is installed in the ring groove 111 of the reflector, and the cover plate 150 is a convex arc-shaped arch, which is fixed by the locking pin 160
  • the lamp frame is mounted on the lamp frame and the edge thereof is pressed against the disc-shaped reflector.
  • the circular arc-shaped surface of the cover plate 150 is further provided with a mounting hole and an expansion bolt for fixing the lamp.
  • the luminaire further includes a switching power supply 180 mounted on the cover 150 above the disc-shaped reflector and electrically coupled to the circuit board 140 containing the LED 120 by wires.
  • the disc-shaped reflector 110 is a transparent plastic disc made of plexiglass or polycarbonate.
  • the disc lamp of FIG. 10 is provided with a center hole in the center of the reflector 110 with light emitting diodes (LED, 120) and is directly fixed to the ceiling 108 by bolt fasteners and zen sling 105.
  • the disc ceiling lamp can be fixed to the matching fastener or ceiling of the ceiling by the expansion bolt of the connection cover; the chandelier of Fig. 12 is connected to the hook 109 of the ceiling by using the wire hang 107.
  • a luminaire 300 made of a variable-section, non-equal, right-angled triangular prismatic disc-shaped reflector, which is a disc-lighting well.
  • the outer protective and inner protective glass discs 320, 330 are attached to the upper and lower sides of the reflector 310 of the light-emitting diode 370, and they are fixed together with the reflector through the sealant 340 to be placed on the annular civil structure 350.
  • FIG. 13 shows a luminaire 200 made of a variable-section unequal-angle right-angle triangular prism disc-shaped reflector.
  • the luminaire 200 is a screw-type lamp, including a disc-shaped reflector 210, and more a light emitting diode 220, a PBT circuit board 230, a cover 240 and a screw member 250.
  • the disc-shaped reflector 210 is provided with a ring groove 211 and a plurality of mounting holes 212 at the edge of the upper surface thereof.
  • the circuit board is bent into a ring shape, and the light emitting diodes are uniformly soldered to the circuit board to form a lamp ring.
  • the lamp ring is mounted in the ring groove 211 of the reflector, and the cover 240 has a constricted portion 241 at the upper portion.
  • the cap member is fixedly mounted on the disc-shaped reflector 210 by bolting into the mounting hole 212, and the screw member 250 is enclosed on the constricted portion 241 of the screw member of the cover.
  • the luminaire further includes a switching power supply and a switching power supply 260 installed in a space between the disc-shaped reflector 210 and the cover 240, and the output end thereof is connected to the terminal 270.
  • the circuit board 230 having the light emitting diodes is electrically connected. Referring to Figures 14a and 14b, there is shown a writing desk lamp made from a disc-shaped reflector having a variable cross-section anisotropic right-angled triangular prism of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

变截面不等边直角三角形棱镜圆盘形反光板和用它制成的灯具 技术领域
本发明涉及一种微型棱镜反光板, 更具体地说, 涉及一种环形变截面 不等边直角棱镜圆盘形反光板以及用它制成各种用途的灯、 灯具和采光 井。 背景技术
众所周知, 人们已利用微型棱镜反光板的光学作用来达到太阳光的反 光和折射, 这些反光板大都由多条长的截面为等腰直角三角形的微型棱镜 体组成, 已在窗门和建筑物的反光装置上得到广泛应用。 随着 LED技术的 迅速发展, 它的方向应该使 LED尽快进入照明领域, 只有 LED的应用面扩 大, LED才可以获得更大的发展。 在以往传统的照明中, 往往采用凸透镜、 凹面镜或菲涅耳棱镜以使点光源变为一个面光源。 为使 LED从装饰走向照 明, 必须解决一个点光源到面光源的变换。 这个变换的角色不再是完全靠 凹面镜、 凸透镜,而应该由光学微型棱镜来担当主角, 并且从灯的结构来 分析, 未来的灯具, 尤其是室内照明的灯具将趋于薄型、 简约、 流畅、 高 效节能。
为此, 本申请人正对目前反光板的不足以及 LED技术的应用, 而提出 一种几何形体简单的变截面不等边直角三角形棱镜板制成的圆盘形平板 式反光板、 及其灯具。 发明内容
本发明的一个目的是为了提供一种截面变化的微型不等边直角棱镜 圆盘形反光板。
本发明的另一个目的是运用截面变化微型不等边直角棱镜板原理, 进 一步使其演变为圆盘形反光板制成的灯具,以便 LED发光二极管借助于这 些基本的发光体形式会更好地步入照明世界。
实现上述的技术方案是,一种具有变截面直角三角形微型棱镜的圆盘 形反光板, 其中, 所述圆盘形反光板的一个表面上从中心轴线起的径向方 向设有多个环状微柱棱镜体, 通过中心轴线所作的垂直截面, 每一个环状 微柱棱镜体的横截面为不等边直角三角形, 其顶角为 90 度, 在距中心轴 线最近的一个环状微柱棱镜体的不等边直角三角形截面积最大, 向着周边 方向其截面积依次呈锯齿形递减, 相邻两个环状微柱棱镜体之间的夹角也 为直角。
如以上所述的圆盘形反光板, 其中, 所述环状微柱棱镜体以中心轴线 起顶角的的直角顶点的径向连线是一条直线并与圆盘形反光板的另一个 表面平行, 相邻两个环状微柱棱镜体之间截面夹角的直角顶点向圆盘形反 光板另一个表面作垂线, 这些垂线线段的高度是一系列依次降低的等差级 数或等比级数, 相邻两个环状微柱棱镜体之间的截面夹角的直角顶点径向 连线相交于中心轴线的两条斜线, 它们与圆盘形反光板的另一个表面均形 成夹角 α, α小于 45度。
如以上所述的圆盘形反光板, 其中, 所述夹角 α小于 10度。
如以上所述的圆盘形反光板, 其中, 所述圆盘形反光板在距中心轴线 最近的一个环状微柱棱镜体直角三角形底边最长, 从该环状微柱棱镜体向 着径向方向展开, 依次排列的诸环状微柱棱镜体直角三角形的底边逐一减 小, 而距中心线最远的环状微柱棱镜的一直角边是向上延伸与圆盘形反光 板的另一个表面相交并形成一个具有大微柱直角棱镜式端边的倾斜圆端 面, 该倾斜圆端面和圆盘形反光板的另一个表面形成一个夹角, 夹角为 45 度。
如以上所述的圆盘形反光板, 其中, 所述反光板在距中心线最远的环 状微柱棱镜的一直角边是中止于下表面邻近边缘, 而使其外周缘保留有圆 盘形反光板的圆柱面。
如以上所述的圆盘形反光板, 其中, 所述反光板的多个环状微柱棱镜 体的表面上镀有铝膜。
如以上所述的圆盘形反光板, 其中, 还包括多个灯体, 所述圆盘形反 光板的倾斜圆端面、 圆柱面或靠近边缘上下表面上设有若干均布的盲孔或 一环槽, 而所述灯体各自安装在盲孔或环槽中。
如以上所述的圆盘形反光板, 其中,, 所述灯体为 LED二极管, 灯泡 或电极管, 它们的发射中心轴线与圆盘形反光板平面平行, 或者穿过圆盘 形反光板平面的各个环状棱镜体夹角的顶点。
如以上所述的圆盘形反光板, 其中, 所述灯体为预制成发光二极管灯 组件或贴片二极管, 其中, 所述预制成发光二极管通过注塑成型的方式封 装于盲孔中, 所述贴片二极管是由电路板和安装在线路板上的发光二极管 组成, 它安置在环槽中。
如以上所述的圆盘形反光板, 其中, 所述圆盘形反光板是由有机玻璃 或聚碳酸脂制成的透明塑料圆平板。
一种如以上所述的圆盘形反光板制成的灯具, 其中, 所述灯具包括一 圆盘形反光板、 多个发光二极管、 一灯框、 PBT电路板和一盖板, 所述灯 框为环形的, 在内表面设有阶梯, 所述圆盘形反光板在其上表面的靠近边 缘处设有环槽, 并安装在灯框的台阶上, 所述电路板被弯成环形, 发光二 极管均布地悍接于该电路板上以形成一灯环, 所述灯环安装于反光板的环 槽内, 所述盖板是突起状圆弧拱形的, 通过锁紧卡销固定安装在灯框上并 使其边沿压紧圆盘形反光板, 所述盖板的圆弧拱形面上还设有安装孔并设 有用于灯具固定的膨胀螺栓。
综上所述,本发明的变截面不等边直角三角形棱镜圆盘形反光板的特 性接近于普通光学玻璃, 从中心轴线起的径向方向设有多个环状微柱棱镜 体, 该微型柱状棱镜顶角为 90°, 每一个环状微柱棱镜体的横截面为不等 边直角三角形。 当平行于反射棱型斜面法面的阳光入射和出射棱镜的斜 面, 而在每一个直角面上的反射, 光线偏转 180°, 从而达到把平行入射的 光线反射出来的目的。 该反光板从对称中心线起向着左右两自由端其截面 积依次呈锯齿形递减, 而又在两自由端的倾斜端面和反光板的另一个表面 形成一个 45度的夹角, 一方面, 增加了反光板对太阳光的反射和折射面, 另一方面, 还增加了反光板各微柱棱镜体向自由端的倾斜端面的反射, 即 倾斜端面上通光量有大幅度提高。 这样, 在反光板上设置灯体, 灯体的发 射中心轴线与圆盘形反光板平面平行, 或者穿过圆盘形反光板平面的各个 环状棱镜体夹角的顶点。 这样, 在灯体中发出光线将从中心线左右的各个 微柱棱镜体反射出来, 而产生意想不到的照明效果。
本发明还用装有 LED 的截面积递减微型棱镜式圆盘形反光板制成的 各种灯具, 包括圆盘灯、 吸顶灯、 吊灯、 台灯、 螺口圆盘灯和采光井等等, 其中, 该灯具主要由圆盘形反光板、 多个发光二极管、 一 ϋ框、 ΡΒΤ电路 板和盖板组成, 它可应用于室内照明, 可使灯具在结构上达到很薄, 外形 简洁而流畅, 并使厅室内白天在阳光照射下通过太阳能电池充电, 而在晚 上利用带有发光二极管的本发明的反光板进行照明, 以达到高效节能。 附图说明
图 la和图 lb是本发明的变截面不等边直角三角形棱镜圆盘形反光板 的圆周边为 45° 以及圆周边与水平面成 90° 的的立体示意图。
图 2a是本发明的圆盘形反光板圆周为 45° 的剖视图。
图 2b是本发明的圆盘形反光板圆周边与水平面成 90° 柱面的剖视图。 图 3是作为圆盘形反光板的棱镜反光原理图。
图 4a是圆盘形变截面棱镜板作为反光的光路图。
图 4b是圆盘形变截面棱镜板作为 LED发光板的光路图
图 4c是图 4a和图 4b的局部放大。
图 5a、 图 5b是贴片式 LED嵌装在变截面不等边直棱镜圆盘形反光板 的环槽内的正视图和通过中心轴线的剖面视图。
' 图 6a、 图 6b是 LED发光二极管封装好制作成预制件装在圆盘形反光 板盲孔中的正视图和通过中心轴线的剖面视图。 图 7是图 4a塑料微柱棱镜体平面单元的光路设计。
图 8是作为比较例的装有 LED的等腰直角三角形棱镜反光板的中心剖 视图。
图 9a和图 9b是装有 LED的变截面不等边直角三角形棱镜圆盘形反光 板的圆盘灯之一的局部剖视主视图、 俯视图。
图 10是装有 LED的变截面不等边直角三角形棱镜圆盘形反光板的圆 盘灯之二的主视剖视图。
图 11 a和 lib是变截面不等边直角三角形.棱镜圆盘采光井的主视图和 俯视图。
图 12a、 图 12b分别是 LED变截面不等边直角三角形棱镜圆盘吸顶灯 和吊灯的主视图和俯视图。
图 13是 LED变截面不等边直角三角形棱镜螺口圆盘灯的主视图。 图 14a和 14b是 LED变截面不等边直角三角形棱镜圆盘书写台灯的 立体视图和侧视图。 具体实施方式
请参阅图 1和图 2, 图中分别示出了本发明微柱棱镜圆盘形反光板 1 的立体示意图和通过反光板中心线 w-w、的垂直截面所作的剖视图。在所述 立体示意图中, 反光板 1具有一上表面 11和一下表面 12, 它的两边设有 多个不同半径的环状微柱棱镜 2。 这是在一个半径为 R, 厚度为 δ的透明 有机平板玻璃上, 在圆盘形的一个侧面, 从圆中心 0点开始。 刻制一系列 顶角为 90度的不等边环状直角三角形棱镜, 这些环状的不等边直角棱镜 是一系列的同心圆, 圆棱镜平面中间是一个直角圆锥, 以圆盘形中心线为 对称中心作一个垂直于圆盘形的平面, 那么这个平面把这个圆柱台剖切为 两个半圆台, 我们可以得到一个剖切面, 这个剖切面和本人以前所发表专 利即变截面不等边直角三角形棱镜板剖切面是完全相似的, 因此变截面不 等边直角三角形棱镜圆盘形有一些光学特性是和变截面不等边直角棱镜 平板是相同。 每一个微柱棱镜体 2 的横截面为不等边直角三角形, 其顶 角为 90度, 与对称中心线相邻的左右两个不等边直角三角形截面积最大, 在下表面 12 上向着左右两自由端其截面积依次呈锯齿形递减。 这些环状 微柱棱镜 2也是同心圆由小到大向四周扩展, 相邻两个微柱棱镜体之间的 夹角也为直角。
此外,在图 2a中,距中心线最远的环状微柱棱镜的一直角边是向上延 伸与圆盘形反光板的另一个表面相交并形成一个具有大微柱直角棱镜式 端边的倾斜圆端面 14,该倾斜圆端面和圆盘形反光板的另一个表面形成一 个夹角, 夹角为 45度。 在图 2b中, 反光板距中心线最远的环状微柱棱镜 的一直角边是中止于下表面 12,而使其外周缘保留有圆盘形反光板的圆柱 面 16。 另一方面, 在图 2a和图 2b的反光板上表面 11上, 在靠近倾斜圆 端面 14和圆柱面 16的上表面 11的边缘上各自设有环槽 13、 15。 在图 3 中, 图中示出了当有一光源发出许多彼此平行的光线与本发明变截面不等 边直角三角形棱镜圆盘形反光板的微柱棱镜体 2法面平行时 (图中直角边 为 22、 23, 它们长度不等, 斜边为 21 ), 若设射入透视率 nl=l, 为空气折 射率,射入折射率为 n2=1.497的塑料微柱棱镜体 2的表面,其中 n2〉nl=l。 根据斯涅耳定律, 推算光线在塑料一空气中的折射的临界角:
Sin β =(nl X Sin入射角 )/n2=(l X SinO ° )/n2=0
所以与微柱棱镜体 2的斜面法面平行的光线没有偏斜进入棱镜。我们 取微柱棱镜体 1所用的透明塑料折射率的值 112=1.497,那么塑料一空气的 临界角为 Sin 4> = (n空气) I (n塑料) =1/1.497 Sin Φ =0. 668 Φ =42。 这一角度小于 45°。
请参阅图 4a和图 4b, 在具有倾斜圆端面 14的反光板的微柱棱镜中 ABCD是本发明反光板对称中心线一侧从左到右截面的界限, T、 G、 I、 K、 Μ、 Ο、 Q表示在 w-w ' 对称中心线右面的各截面三角形之间的连接点, 同时 T、 G、 I、 K、 Μ、 Ο、 Q 也是微柱棱镜直角顶点区域和来自一侧如 LED 光线全反射临界点区域, 将在下文中加以详细描述。 左右端面的 Z BAD=ZCDA =45度 , 而 TFG= FGH- GHI= ZHIJ= ZI JK= JKL= Z KLM= ZMNO- NOP= OPQ= ZPQC^ QCD=90 度。 经过数学推导 tg a =(a-b)/(a+b), b=a((l-tg a )/(l+tg a ))因为 a是已知的, α角也是已知的,所 以截面积渐变的棱镜几何尺寸由 b=a((l-tg a )/(l+tg α ))来表示。
在一较佳实施例中,反光板 1从对称中心线 w-w'的左右两边的各个不 等边直角三角形的顶角所对的边或各直角棱镜截面三角形的连接点是连 成一直线的斜线 TQ,所述斜线 TQ与截面积最大两个三角形的交点在中心 线 w-w'两边所作的垂直线 TS或与各个不等边直角三角形的顶角顶点的连 线 FC之间的夹角为 α, α小于 45°。 通常夹角 α小于 10°, 如图 3c所示。
请再参阅图 4以及参阅图 5和图 6, 其中, 图 4a表示本发明具有微型 棱镜体的圆盘形反光板可以在白天接受太阳光反射和折射, 其上安装硅太 阳能电池的储存器 6, 图 4b表示一种可在其上设置灯体的反光板 1, 它可 以作为圆盘形发光平板而成为照明灯具。 如此, 圆盘形反光板 1还包括若 干灯体 3。 圆盘形反光板在其中心线 w-w'的距离 L处, 即表面 11的边缘 上的环槽 13、 15, 或者在反光板的倾斜圆端面 14刻划出一个适宽的沟槽 13 , 无论环槽或沟槽, 其朝向中心线的柱面是透明的, 具有 PBT圆环形线 路板的贴片式发光二极管 3 ' 安装在半径为 L的圆环形线路板上, 然后嵌 入环槽或沟槽内。
以上所述多个灯体 3可先预制成灯组件如发光二极管组件 y ,并通过 注塑成型方式直接封装于反光板 1的倾斜圆端面 14或圆柱面 16上, 如图 5b、 图 6所示。
请参阅图 7, 它是图 4b或图 5塑料微柱棱镜体平面单元的光路设计。 在微型不等边直角三角形圆盘形棱镜反光板设置了发光二极管 LED, 它变 成一块发光平板,无论是 LED嵌装在圆盘形反光板的圆柱面环槽内,还是 作为预制件直接封装于圆盘形反光板的沟槽内,其本质就是 LED发光体和 光的传导体、 光的发散体共存与同一个透明的传递光的物质内。 这里光的 发散系统就是变截面不等边直角三角形棱镜圆盘形反光板本体, 而且反光 板的多个环状微柱棱镜体的表面上还可镀有铝膜 (图中未画出) 来提高发 散效率, 这样可以使整个光学系统精确高效。 该圆盘形反光板的棱镜体之 所以精确高效, 它还有一个十分重要的技术特点。
首先, 我们先回顾一下它的发展。 等腰直角三角形棱镜反光板是上个 世纪八十年代就已经出现的专利技术。 应用它可以作为建筑遮阳板, 但是 即使将圆盘形反光板制成具有截面为等腰直角三角形棱镜体的, 也有以下 不足之处:
1. 它把阳光全部反射出去无法对阳光加以利用。
2. 当它被应用作为灯具时由于等腰直角三角形棱镜圆盘形反光板上 的直角等腰棱镜体是等高的, 靠近圆周最近的一个直角棱镜把圆柱面上 LED所发出的直线传播的光线给挡住了, 即光线无法从圆周边缘发射到圆 的中心部位, 因为在达到中心部位前每一轮的直角棱镜顶点位置发生全反 射, 如图 8所示。
从图 8所示的等腰直角三角形棱镜圆盘形反光板 10 的中心剖视图可 见, LED 103发出的光线!^, 圆盘形位置最靠近 LED103处的地方发生完 全反射, 光线穿过圆盘形进入空间, 光线 L2则越过棱镜体 α谷底顶点, 没 有接触任何棱镜体 102。 光线的传播方向没有发生任何改变。 这里的 光 线作为 LED发出的代表光线, 由于 LED光线发射角度小所以绝大多数的 光线像 光线一样在 I处结集, 透过平面可以看到 I处高亮度, 或者讲 LED光线在 I处出现拥堵,在圆盘形反光板的最外圆棱镜面出现高亮度光 圈, 而在 II、 III、 IV、 V、 VI处出现暗圈, 反差鲜明。 这样如果用等腰直 角三角形圆盘形反光板, 作为 LED光线发散的棱镜灯片, 它的效果不好。 尽管与等腰直角三角形棱镜平面板一样等腰直角三角形圆盘形反光板, 都 具有全反射光线的功能, 但是要求具有等腰直角三角形棱镜矩形平面反光 板和圆盘形反光板作为 LED发散灯光的灯具,存在着缺点或不足,不能选 用。
为了新的技术需要以及克服等边或等腰直角三角形棱镜板在反射阳光 和使用 LED二极管所遇到的问题。以下我们来叙述变截面不等边直角三角 形棱镜圆盘形反光板的重要的技术特点, 在于:
一、 如果在不等边直角三角形棱镜圆盘形反光板的圆周边设置太阳能 硅片, 那么与等边直角三角形圆盘形反光板不同的是, 不等边直角三角形 棱镜圆盘形反光板在作为反射太阳光时, 因圆盘形反光板中的棱镜顶点, 从中间到边缘, 由高到低高度成等差级数, 太阳光不再是全部回到空中, 而部分积聚在圆盘形反光板周边的圆柱面上或圆周边 45° 斜平面上。这样 可以提高整个反射系统的利用率。 本发明针对图 7棱镜体发光二极管照射 光路的全程应用光的可逆原理, 充分证实了变截面不等边直角三角形棱镜 圆盘形反光板的以上重要的光学结构特点。
二、不等边直角三角形棱镜圆盘形反光板作为 LED发光板时,它的工 作状态是把图 7剖视图中接近圆盘形反光板的棱镜体顶点一一连结线, 这 根连线和上平面 11有一个夹角。 而 LED发光二极管的光线中轴线则平行 于以上连线, 那么根据光线全反射规律, 投射在这些棱镜顶点区的光线一 一全反射, 并透过平板平面射向外空间。 这样我们把发光二极管发射点的 高能量区按照棱镜体的个数分为 n等分,分别折射出来,实现了把 LED的 点光源发散以后成为一个面光源, 更方便地利于照明。 从而避免了等边直 角三角形棱镜圆盘形反光板那样的缺点。
请参阅图 9, 图中示出了一种变截面不等边直角三角形棱镜圆盘形反 光板制成的灯具 100。 该灯具为一种圆盘灯, 它包括一圆盘形反光板 110、 多个发光二极管 120、 一灯框 130、 PBT电路板 140和一盖板 150, 所述灯 框 130为环形的, 在内表面设有阶梯, 所述圆盘形反光板 110在其上表面 的靠近边缘处设有环槽 111,并安装在灯框的台阶 131上,所述电路板 140 被弯成环形, 发光二极管 120均布地焊接于该电路板上以形成一灯环, 所 述灯环安装于反光板的环槽 111内, 所述盖板 150是突起状圆弧拱形的, 通过锁紧卡销 160固定安装在灯框上并使其边沿压紧圆盘形反光板, 所述 盖板 150 的圆弧拱形面上还设有安装孔并设有用于灯具固定的膨胀螺栓 在另一实施例中, 灯具还包括一开关电源 180, 它安装在圆盘形反光 板上方的盖板 150上, 并通过导线与装有发光二极管 120的电路板 140电 连接。 所述圆盘形反光板 110是由有机玻璃或聚碳酸脂制成的透明塑料圆 平板。
以上灯具经过添加或减少外部附件, 制成圆盘灯或圆盘吸顶灯和吊 灯, 如图 10和图 12所示。 举例来说, 图 10的圆盘灯是可在带有发光二 极管(LED, 120 )的反光板 110中心开设有中心孔而用螺栓紧固件和天顶 扁担 105直接固定于吊平顶 108上; 圆盘吸顶灯可通过连接盖的膨胀螺栓 而固定于天花板的相配紧固件或吊平顶; 图 12 的吊灯则使用钢丝挂 107 到吊平顶的吊钩 109上。
请参阅图 11a和图 lib, 图中示出了一种变截面不等边直角三角形棱 镜圆盘形反光板制成的灯具 300, 是一种圆盘采光井。 在圆盘采光井中, 在装有发光二极管的 370的反光板 310的上下贴有外保护和内保护玻璃圆 片 320、 330, 它们与反光板一起通过密封胶 340固定搁置在环状土建结构 350上端的框架 360上。
请参阅图 13,图中示出了一种变截面不等边直角三角形棱镜圆盘形反 光板制成的灯具 200,灯具 200是一种螺口灯, 包括一圆盘形反光板 210、 多个发光二极管 220、 PBT电路板 230、 一罩盖 240和一螺口件 250, 所述 圆盘形反光板 210 在其上表面的靠近边缘处设有环槽 211 和若千安装孔 212, 所述电路板被弯成环形, 发光二极管均布地焊接于该电路板上以形 成一灯环, 所述灯环安装于反光板的环槽 211内, 所述罩盖 240是上部具 有缩颈部 241的帽形件, 通过螺栓拧入安装孔 212而固定安装在圆盘形反 光板 210上, 所述螺口件 250封装于罩盖的螺口件的缩颈部 241上。
在另一实施例中, 灯具还包括一开关电源还包括一开关电源 260, 它 安装在圆盘形反光板 210和罩盖 240之间的空间内, 并其输出端通过接插 端子 270与装有发光二极管的电路板 230电连接。 请参阅图 14a和图 14b,图中示出了应用本发明的具有 LED的变截面 不等边直角三角形棱镜的圆盘形反光板制成的书写台灯。

Claims

权 利 要 求
1 . 一种具有变截面直角三角形微型棱镜的圆盘形反光板, 其特征在于, 所述圆盘形反光板的一个表面上从中心轴线起的径向方向设有多个环状 微柱棱镜体, 通过中心轴线所作的垂直截面, 每一个环状微柱棱镜体的横 截面为不等边直角三角形, 其顶角为 90 度, 在距中心轴线最近的一个环 状微柱棱镜体的不等边直角三角形截面积最大, 向着周边方向其截面积依 次呈锯齿形递减, 相邻两个环状微柱棱镜体之间的夹角也为直角。
2. 如权利要求 1 所述的圆盘形反光板, 其特征在于, 所述环状微柱棱镜 体以中心轴线起顶角的的直角顶点的径向连线是一条直线并与圆盘形反 光板的另一个表面平行, 相邻两个环状微柱棱镜体之间截面夹角的直角顶 点向圆盘形反光板另一个表面作垂线, 这些垂线线段的高度是一系列依次 降低的等差级数或等比级数, 相邻两个环状微柱棱镜体之间的截面夹角的 直角顶点径向连线相交于中心轴线的两条斜线, 它们与圆盘形反光板的另 一个表面均形成夹角 α, α小于 45度。
3. 如权利要求 2所述的圆盘形反光板, 其特征在于, 所述夹角 α小于 10 度。
4. 如权利要求 1 所述的圆盘形反光板, 其特征在于, 所述圆盘形反光板 在距中心轴线最近的一个环状微柱棱镜体直角三角形底边最长, 从该环状 微柱棱镜体向着径向方向展开, 依次排列的诸环状微柱棱镜体直角三角形 的底边逐一减小, 而距中心线最远的环状微柱棱镜的一直角边是向上延伸 与圆盘形反光板的另一个表面相交并形成一个具有大微柱直角棱镜式端 边的倾斜圆端面, 该倾斜圆端面和圆盘形反光板的另一个表面形成一个夹 角, 夹角为 45度。
5. 如权利要求 1 所述的圆盘形反光板, 其特征在于, 所述反光板在距中 心线最远的环状微柱棱镜的一直角边是中止于下表面邻近边缘, 而使其外 周缘保留有圆盘形反光板的圆柱面。
6. 如权利要求 4或 5所述的圆盘形反光板, 其特征在于, 所述反光板的 多个环状微柱棱镜体的表面上镀有铝膜。
7. 如权利要求 6 所述的圆盘形反光板, 其特征在于, 还包括多个灯体, 所述圆盘形反光板的倾斜圆端面、 圆柱面或靠近边缘上下表面上设有若干 均布的盲孔或一环槽, 而所述灯体各自安装在盲孔或环槽中。
8. 如权利要求 7所述的圆盘形反光板, 其特征在于, 所述灯体为 LED二 极管, 灯泡或电极管, 它们的发射中心轴线与圆盘形反光板平面平行, 或 者穿过圆盘形反光板平面的各个环状棱镜体夹角的顶点。
9. 如权利要求 Ί 所述的圆盘形反光板, 其特征在于, 所述灯体为预制成 发光二极管灯组件或贴片二极管, 其中, 所述预制成发光二极管通过注塑 成型的方式封装于盲孔中, 所述贴片二极管是由电路板和安装在线路板上 的发光二极管组成, 它安置在环槽中。
10. 如权利要求 1或 2所述的圆盘形反光板, 其特征在于, 所述圆盘形反 光板是由有机玻璃或聚碳酸脂制成的透明塑料圆平板。
11. 一种如权利要求 1所述的圆盘形反光板制成的灯具, 其特征在于, 所 述灯具包括一圆盘形反光板、 多个发光二极管、一灯框、 PBT电路板和一 盖板, 所述灯框为环形的, 在内表面设有阶梯, 所述圆盘形反光板在其上 表面的靠近边缘处设有环槽, 并安装在灯框的台阶上, 所述电路板被弯成 环形, 发光二极管均布地焊接于该电路板上以形成一灯环, 所述灯环安装 于反光板的环槽内, 所述盖板是突起状圆弧拱形的, 通过锁紧卡销固定安 装在灯框上并使其边沿压紧圆盘形反光板, 所述盖板的圆弧拱形面上还设 有安装孔并设有用于灯具固定的膨胀螺栓。
12. 如权利要求 11所述的灯具, 其特征在于, 还包括一开关电源, 它安装 在圆盘形反光板上方的盖板上, 并通过导线与装有发光二极管的电路板电 连接。
13. 如权利要求 11所述的灯具,其特征在于, 所述灯框和盖板是由 玻 璃、 金属或塑胶材料制成的。
14. 一种如权利要求 1所述的圆盘形反光板制成的灯具, 其特征在于, 所 述灯具包括一圆盘形反光板、 多个发光二极管、 PBT电路板、 一罩盖和一 螺口件, 所述圆盘形反光板在其上表面的靠近边缘处设有环槽和若干安装 孔, 所述电路板被弯成环形, 发光二极管均布地焊接于该电路板上以形成 一灯环, 所述灯环安装于反光板的环槽内, 所述罩盖是上部具有缩颈部的 帽形件, 通过螺栓拧入安装孔而固定安装在圆盘形反光板上, 所述螺口件 封装于罩盖的螺口件的缩颈部上。
15. 如权利要求 14 所述的灯具, 其特征在于, 还包括一开关电源, 它安 装在圆盘形反光板和罩盖之间的空间内, 并其输出端通过接插端子与装有 发光二极管的电路板电连接。
PCT/CN2008/000031 2008-01-31 2008-01-31 变截面不等边直角三角形棱镜圆盘形反光板和用它制成的灯具 WO2009100560A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/000031 WO2009100560A1 (zh) 2008-01-31 2008-01-31 变截面不等边直角三角形棱镜圆盘形反光板和用它制成的灯具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/000031 WO2009100560A1 (zh) 2008-01-31 2008-01-31 变截面不等边直角三角形棱镜圆盘形反光板和用它制成的灯具

Publications (1)

Publication Number Publication Date
WO2009100560A1 true WO2009100560A1 (zh) 2009-08-20

Family

ID=40956595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000031 WO2009100560A1 (zh) 2008-01-31 2008-01-31 变截面不等边直角三角形棱镜圆盘形反光板和用它制成的灯具

Country Status (1)

Country Link
WO (1) WO2009100560A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616736B2 (en) 2008-08-26 2013-12-31 Dingguo Pan Circular light-reflecting plate with triangular oriented prisms having identical cross section and circular plate lamp made therefrom
US8646961B2 (en) 2008-08-26 2014-02-11 Dingguo Pan Reflective plate, planar lamp and planar lamp fixture including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766037B1 (en) * 1995-09-27 2003-02-05 Automotive Lighting Italia Spa Lighting device that can be constructed with reduced thickness, especially a headlamp or other external vehicle lamp
JP2004109391A (ja) * 2002-09-17 2004-04-08 Nohira Seisakusho:Kk 反射体
CN2699330Y (zh) * 2004-02-27 2005-05-11 深圳市航盛电子股份有限公司 具有均匀背光的导光板
CN1220907C (zh) * 2001-09-21 2005-09-28 欧姆龙株式会社 面光源装置
CN1678866A (zh) * 2002-08-30 2005-10-05 日立化成工业株式会社 导光板及背光装置
CN2752810Y (zh) * 2004-11-30 2006-01-18 颖台科技股份有限公司 提高反射均匀亮度的直下式背光模块的反射片结构
CN2856716Y (zh) * 2005-10-28 2007-01-10 堤维西交通工业股份有限公司 车用导光结构
CN1924621A (zh) * 2005-09-02 2007-03-07 潘定国 微型棱镜式太阳光反光板及其调节控制装置
CN100350308C (zh) * 2000-07-11 2007-11-21 3M创新有限公司 光导

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766037B1 (en) * 1995-09-27 2003-02-05 Automotive Lighting Italia Spa Lighting device that can be constructed with reduced thickness, especially a headlamp or other external vehicle lamp
CN100350308C (zh) * 2000-07-11 2007-11-21 3M创新有限公司 光导
CN1220907C (zh) * 2001-09-21 2005-09-28 欧姆龙株式会社 面光源装置
CN1678866A (zh) * 2002-08-30 2005-10-05 日立化成工业株式会社 导光板及背光装置
JP2004109391A (ja) * 2002-09-17 2004-04-08 Nohira Seisakusho:Kk 反射体
CN2699330Y (zh) * 2004-02-27 2005-05-11 深圳市航盛电子股份有限公司 具有均匀背光的导光板
CN2752810Y (zh) * 2004-11-30 2006-01-18 颖台科技股份有限公司 提高反射均匀亮度的直下式背光模块的反射片结构
CN1924621A (zh) * 2005-09-02 2007-03-07 潘定国 微型棱镜式太阳光反光板及其调节控制装置
CN2856716Y (zh) * 2005-10-28 2007-01-10 堤维西交通工业股份有限公司 车用导光结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616736B2 (en) 2008-08-26 2013-12-31 Dingguo Pan Circular light-reflecting plate with triangular oriented prisms having identical cross section and circular plate lamp made therefrom
US8646961B2 (en) 2008-08-26 2014-02-11 Dingguo Pan Reflective plate, planar lamp and planar lamp fixture including the same

Similar Documents

Publication Publication Date Title
CN110325787B (zh) 具有光导的灯具
US6948832B2 (en) Luminaire device
US7431489B2 (en) Enhanced light fixture
US9689554B1 (en) Asymmetric area lighting lens
US9651740B2 (en) Extraction film for optical waveguide and method of producing same
US9442241B2 (en) Optics for illumination devices
EP2263036A1 (en) Optical system for batwing distribution
KR20110010055A (ko) 반사커버 및 조명장치
US20140029264A1 (en) Decorative light
US7690814B2 (en) Luminaire with a one-sided diffuser
CN102748707A (zh) 一种泛光全反射透镜及使用该透镜的led灯具
US9719662B1 (en) Thin-form lens for volume lighting applications
JP2011040196A (ja) Led照明装置、街路灯及びled照明用リフレクタ
CN209801374U (zh) 大偏角的偏光透镜以及灯具
CN201715450U (zh) Led面光源灯具
WO2011016320A1 (ja) Led照明装置、街路灯及びled照明装置用光学系
WO2020088292A1 (zh) 配光元件、光源组件及照明灯具
WO2009100560A1 (zh) 变截面不等边直角三角形棱镜圆盘形反光板和用它制成的灯具
WO2010146664A1 (ja) Led照明器及び薄型面出光装置
CN101493210A (zh) 一种基于发光二极管的光源结构
WO2021063146A1 (zh) 配光组件及照明灯具
CN108775553B (zh) 一种透镜及光源模组
CN108980779B (zh) 一种照明灯具及照明模组及透镜
CN217875677U (zh) 窄角平面透镜及照明灯具
CN105782902B (zh) 透镜、透镜模组及灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08700591

Country of ref document: EP

Kind code of ref document: A1