WO2009099046A1 - Heating and hot water supply device - Google Patents

Heating and hot water supply device Download PDF

Info

Publication number
WO2009099046A1
WO2009099046A1 PCT/JP2009/051754 JP2009051754W WO2009099046A1 WO 2009099046 A1 WO2009099046 A1 WO 2009099046A1 JP 2009051754 W JP2009051754 W JP 2009051754W WO 2009099046 A1 WO2009099046 A1 WO 2009099046A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
heating
temperature
storage tank
supply apparatus
Prior art date
Application number
PCT/JP2009/051754
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Tsuchino
Hidehiko Kataoka
Takashi Furubayashi
Kyouji Araya
Hideo Chikami
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2009099046A1 publication Critical patent/WO2009099046A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/082Hot water storage tanks specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/31Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/315Control of valves of mixing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • F24H15/34Control of the speed of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/06Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • F24D2220/2009Radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/20Placed at top position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/22Placed at bottom position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/305Control of valves
    • F24H15/32Control of valves of switching valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a heating and hot water supply apparatus used for heating and hot water supply.
  • the heating hot water supply apparatus includes a heat pump, a hot water storage tank for storing hot water heated by the heat pump, a heat exchanger disposed only in an upper region in the hot water storage tank, and a heater connected to the heat exchanger. It has.
  • the hot water storage tank is connected to a faucet through a hot water outlet pipe. By opening this faucet, the hot water stored in the hot water storage tank can be taken out from the faucet.
  • the above heater performs heating operation using the hot water stored in the hot water storage tank. More specifically, when the heating operation is started, the heat medium in the heat exchanger is heated by the hot water in the hot water storage tank. The heated heat medium is sent to the heater and releases heat from the heater into the room.
  • the conventional heating and hot water supply apparatus performs the heating operation as an additional function of the water heater using midnight power, the heat to be released indoors during the heating operation from the hot water in the hot water storage tank through the heat exchanger.
  • the efficiency of taking out the heat is getting worse. That is, the heat of the hot water in the hot water storage tank cannot be efficiently supplied to the heater.
  • the above-mentioned conventional heating and hot water supply apparatus cannot perform sufficient heating in an area with a high heating load such as Northern Europe where the heating load: the hot water supply load is 10: 1, for example, in the winter 24 hours. There is a problem.
  • an object of the present invention is to provide a heating and hot water supply apparatus that can perform sufficient heating even in an area with a high heating load such as Northern Europe.
  • the heating and hot water supply apparatus of the present invention includes: A heat pump unit; A hot water storage tank for storing hot water heated by the heat pump unit; A heat exchanger disposed in the hot water storage tank, in which hot water flows inside, A circulating circuit for circulating the hot water stored in the hot water storage tank through the heating terminal outside the hot water storage tank and then circulating it back into the hot water storage tank; A temperature sensor for detecting the temperature of the hot water flowing through the circulation circuit; By adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal, at least one of the temperature of the return hot water coming out of the heating terminal and the temperature of the incoming hot water entering the heating terminal is adjusted to a predetermined temperature. A temperature control unit, And a control unit that controls the temperature adjusting unit based on the output of the temperature sensor.
  • the heating and hot water supply apparatus having the above configuration, when the heating operation is started, the hot water stored in the hot water storage tank flows to the heating terminal through the circulation path and returns to the hot water storage tank again. Thereby, the heat of the warm water is released into the room through the heating terminal. That is, the heating terminal directly takes out the heat of the hot water in the hot water storage tank and releases it into the room.
  • the heat of the hot water in the hot water storage tank can be efficiently supplied to the heating terminal, sufficient heating can be performed even in an area with a high heating load such as Northern Europe.
  • the temperature adjustment unit adjusts the temperature of the return hot water from the heating terminal or the temperature of the incoming hot water entering the heating terminal to a predetermined temperature by adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal. To do.
  • the said control part controls a temperature control part based on the output of the temperature sensor which detects the temperature of the warm water which flows through a circulation circuit.
  • the temperature adjustment accuracy of the incoming hot water entering the heating terminal is high, and the heating terminal can exhibit the desired heating performance.
  • the temperature adjusting unit adjusts at least one of the temperature and the flow rate of the hot water supplied to the heating terminal to adjust the temperature of the hot water from the heating terminal so as not to be excessively high, Returning to the hot water tank, the temperature of the hot water in the hot water tank drops.
  • the COP coefficient of performance
  • the temperature adjusting unit adjusts the temperature of the hot water supplied from the heating terminal to a desired high temperature required for heating by adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal,
  • the hot water in the hot water tank returns to the hot water storage tank, so the hot water in the hot water storage tank becomes hot.
  • the heating capacity can be increased.
  • the temperature adjusting unit adjusts the temperature of the return hot water coming out of the heating terminal and the temperature of the outgoing hot water entering the heating terminal by adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal.
  • the temperature adjusting unit adjusts the temperature of the return hot water coming out of the heating terminal and the temperature of the outgoing hot water entering the heating terminal, so that the operation according to the heating load is ensured. It can be carried out.
  • the temperature sensor includes a return hot water sensor that detects the temperature of the return hot water coming out of the heating terminal.
  • the temperature sensor includes a return hot water sensor that detects the temperature of the return warm water coming out of the heating terminal, so that the controllability of the temperature of the return warm water by the temperature adjustment unit can be increased. it can.
  • the temperature sensor includes an outgoing hot water sensor that detects the temperature of outgoing hot water entering the heating terminal.
  • the temperature sensor includes the forward hot water sensor that detects the temperature of the incoming hot water entering the heating terminal, so that the controllability of the temperature of the outgoing hot water by the temperature adjustment unit can be increased. it can.
  • An outside temperature sensor that detects the outside temperature and outputs a signal indicating the outside temperature to the control unit;
  • the temperature sensor includes a return hot water sensor that detects the temperature of the return warm water that exits from the heating terminal, and a forward hot water sensor that detects the temperature of the forward warm water entering the heating terminal,
  • the control unit When the outside air temperature detected by the outside air temperature sensor is higher than a predetermined reference value, the temperature of the outgoing hot water entering the heating terminal is predetermined based on the outside air temperature based on the output of the outgoing hot water sensor.
  • the temperature control unit While controlling the temperature control unit so as to reach the warm water temperature, When the outside air temperature detected by the outside air temperature sensor is equal to or less than a predetermined reference value, the temperature of the return hot water coming out of the heating terminal is determined based on the outside air temperature based on the output of the return hot water sensor. The said temperature control part is controlled so that it may become warm water temperature.
  • the control unit enters the heating terminal based on the output of the going hot water sensor.
  • the temperature adjustment unit is controlled so that the temperature of the hot water becomes a predetermined forward water temperature based on the outside air temperature. Thereby, the temperature of the incoming hot water entering the heating terminal can be lowered, and the temperature of the return hot water coming out of the heating terminal can be lowered as much as possible.
  • the heating performance of the heating terminal can be kept low, wasteful consumption of energy can be prevented, and hot water having a temperature as low as possible can be supplied to the heat pump unit.
  • the COP of the heat pump unit can be improved.
  • the control unit determines that the temperature of the return warm water from the heating terminal is based on the outside air temperature based on the output of the return warm water sensor.
  • the temperature adjustment unit is controlled so that the return hot water temperature is set. Thereby, the temperature of the return warm water which comes out of the said heating terminal can be made high, and the temperature of the warm water which enters into a heating terminal can be raised.
  • the heating performance of the heating terminal can be increased and the room can be prevented from being cooled.
  • a first water intake port for taking out hot water stored in the hot water storage tank is provided at the upper part of the hot water storage tank, while hot water discharged from the heating terminal is returned to the hot water storage tank at the lower part of the hot water storage tank.
  • the circulation circuit is connected to the first intake port and the return port.
  • the heating and hot water supply apparatus of the above embodiment since the first intake port is provided in the upper part of the hot water storage tank, relatively hot hot water in the upper region in the hot water storage tank is taken out and sent to the heating terminal. Can do. Therefore, heating can be performed with the relatively hot water.
  • the return port is provided at the lower part of the hot water storage tank, the hot water having a relatively low temperature at the heating terminal can be returned to the lower area in the hot water storage tank. Therefore, it is possible to prevent the relatively hot water in the upper region in the hot water storage tank from being mixed with the warm water that has become relatively cold at the heating terminal.
  • a supply port for supplying hot water stored in the hot water storage tank to the heat pump unit is provided at a lower portion of the hot water storage tank.
  • the return port for returning the hot water discharged from the heating terminal to the hot water storage tank is located below the hot water storage tank of the hot water storage tank, and the hot water stored in the hot water storage tank is heat pumped Coupled with the fact that the supply port for supplying to the unit is at the lower part of the hot water storage tank, the heat pump unit is always supplied with relatively low temperature hot water, so the COP (coefficient of performance) of the heat pump unit is improved. .
  • the refrigerant of the heat pump unit is a CO 2 refrigerant
  • COP is improved.
  • a heater is disposed at a substantially central portion in the vertical direction in the hot water storage tank.
  • the temperature of the hot water in the hot water storage tank can be maintained or raised by the heater when the heat pump unit fails.
  • the heat pump unit when the amount of heat given to the hot water by the heat pump unit is insufficient, there is a heater in the hot water storage tank, so the heater can supply the shortage of heat to the hot water.
  • the heater is disposed at a substantially central portion in the vertical direction in the hot water storage tank, the hot water in the upper region in the hot water storage tank, which is above the heater, is mainly heated. At this time, since the hot water in the upper region in the hot water storage tank is originally higher in temperature than the hot water in the lower region in the hot water storage tank, it becomes higher in a short time by heating the heater.
  • the hot water having a higher temperature in the upper region in the hot water storage tank can be immediately sent to the heating terminal.
  • a second water intake for taking out hot water stored in the hot water storage tank is provided at a substantially central portion in the vertical direction of the hot water storage tank so as to be positioned near and above the heater,
  • the circulation circuit is connected to the second water intake.
  • the hot water in the hot water storage tank is heated to a high temperature by the heater, and this hot water is taken out from the second intake port of the circulation circuit. Send to heating terminal.
  • the second water intake port is provided at a substantially central portion in the vertical direction of the hot water storage tank and is positioned near and above the heater, so that the hot water immediately after being heated by the heater is taken out and sent to the heating terminal. Can do.
  • the heat exchanger is disposed from the lower region to the upper region in the hot water storage tank, and hot water enters the lower portion of the hot water storage tank and exits from the upper portion of the hot water storage tank.
  • the heat exchanger is arranged from the lower region to the upper region in the hot water storage tank, and hot water enters the lower part of the hot water storage tank and exits from the upper part of the hot water storage tank.
  • the hot water is sufficiently heated by the hot water in the hot water storage tank while flowing through the heat exchanger. Therefore, hot hot water can be discharged from the heat exchanger.
  • the temperature adjustment unit includes a circulation pump provided in the circulation circuit between the hot water storage tank and the heating terminal and capable of adjusting a rotation speed.
  • the circulation pump is provided in a circulation circuit between the hot water storage tank and the heating terminal, and the rotation speed can be adjusted. Can be adjusted reliably.
  • the temperature adjusting unit includes a mixing valve that mixes hot water that leaves the hot water storage tank and travels toward the heating terminal and hot water that has exited from the heating terminal and supplies the hot water to the heating terminal.
  • the mixing valve mixes hot water that goes out of the hot water storage tank and goes to the heating terminal and hot water that comes out of the heating terminal, and supplies the hot water to the heating terminal. It is possible to reliably supply hot water having a temperature different from that of the hot water to the heating terminal.
  • the heating hot water supply apparatus of one embodiment A boiling three-way valve capable of supplying hot water from the heat pump unit to the upper part of the hot water storage tank or the lower part of the hot water storage tank is provided.
  • the boiling three-way valve supplies the hot water from the heat pump unit to the lower part of the hot water storage tank, so that the hot water in the hot water storage tank is stopped while the hot water supply operation and the heating operation are stopped. Freezing can be effectively prevented.
  • the predetermined reference value of the outside air temperature is determined by the heat insulating performance and floor area of the house where the heating terminal is installed.
  • the predetermined reference value of the outside air temperature is determined by the heat insulation performance and floor area of the house where the heating terminal is installed. Heating can be performed indoors.
  • the circulation circuit has an outgoing pipe through which the outgoing hot water flows, and a return pipe through which the return hot water flows, One end is connected to the outgoing pipe, and the other end is provided with a bypass channel connected to the return pipe.
  • the hot water in the hot water storage tank can be prevented from being stirred.
  • the hot water in the lower part of the hot water storage tank can be kept at a relatively low temperature, so the hot water in the lower part of the hot water storage tank is sent to the heat pump unit, COP can be kept high.
  • a flow stop section for stopping the flow of the return hot water.
  • the circulation stop part is provided between the point where the other end of the bypass flow path is connected to the return pipe and the hot water storage tank, the return hot water flows between them.
  • the return hot water does not flow into the hot water storage tank and does not cause the hot water in the hot water storage tank to be stirred.
  • the hot water in the lower part of the hot water storage tank can be reliably kept at a relatively low temperature, the hot water in the lower part of the hot water storage tank can be sent to the heat pump unit, and the COP of the heat pump unit can be reliably kept high.
  • the heat pump unit uses a CO 2 refrigerant.
  • the heat pump unit uses CO 2 refrigerant, so that the heat pump unit can discharge hot water at a high temperature.
  • the heating hot water supply apparatus of the present invention by sending the hot water stored in the hot water storage tank to the heating terminal via the circulation path, the heat of the hot water can be efficiently supplied to the heating terminal without passing through the heat exchanger. For example, sufficient heating can be performed in an area with a high heating load such as a 24-hour heating operation in winter such as Northern Europe.
  • the said temperature control part adjusts the temperature of the warm water which comes out of a heating terminal low, the temperature of the warm water in a hot water storage tank can be made low temperature and it can supply to a heat pump unit, Therefore COP of a heat pump unit can be made high. .
  • the temperature adjusting unit adjusts the temperature of the hot water coming out of the heating terminal to be high, the temperature of the hot water in the hot water storage tank can be increased and supplied to the heating terminal, so that the heating capacity can be increased.
  • FIG. 1 is a schematic diagram of a heating and hot water supply apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a graph for explaining the control of the heating and hot water supply apparatus of the first embodiment.
  • FIG. 3 is a schematic diagram of a heating and hot water supply apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a flowchart of the heating operation control of the heating and hot water supply apparatus according to the second embodiment.
  • FIG. 5 is a schematic diagram of a heating and hot water supply apparatus according to a third embodiment of the present invention.
  • FIG. 6 is a flowchart of the heating operation control of the heating and hot water supply apparatus according to the third embodiment.
  • FIG. 7 is a schematic diagram of a heating and hot water supply apparatus according to a fourth embodiment of the present invention.
  • FIG. 8 is a flowchart of the heating operation control of the heating and hot water supply apparatus of the fourth embodiment.
  • FIG. 9 is a flowchart of the heating operation control of the heating and hot water supply apparatus according to the fourth embodiment.
  • FIG. 10 is a flowchart of another heating operation control of the heating hot water supply apparatus of the first embodiment, the second embodiment, and the fourth embodiment.
  • Drawing 1 is a mimetic diagram showing composition of a heating hot-water supply device of a 1st embodiment of the present invention.
  • the heating and hot water supply apparatus includes a heat pump unit 1, a hot water storage tank 2, a hot water supply heat exchanger 3, and a heating circulation circuit 4.
  • the hot water supply heat exchanger 3 is an example of a heat exchanger
  • the heating circulation circuit 4 is an example of a circulation circuit.
  • the heat pump unit 1 includes a refrigerant circuit 16 and an electric blower 17 and boiles water in the hot water storage tank 2 to make warm water.
  • the refrigerant circuit 16 includes an evaporator 11, a compressor 12, a condenser 13, a supercooling heat exchanger 14, and an expansion valve 15.
  • CO 2 refrigerant circulates.
  • the CO 2 refrigerant absorbs heat in the air sent from the electric blower 17 and becomes high temperature. Then, the CO 2 refrigerant, after further a high temperature is compressed by the compressor 12, and reaches the condenser 13 emits heat. As a result, the CO 2 refrigerant becomes lower in temperature than before entering the condenser 13 and flows toward the supercooling heat exchanger 14. The CO 2 refrigerant is further cooled by the supercooling heat exchanger 14 and then returns to the evaporator 11 via the expansion valve 15.
  • the heat pump unit 1 is connected to a hot water storage tank 2 through a boiling circulation circuit 5.
  • the boiling circulation circuit 5 is provided with a boiling circulation pump 51 and a boiling three-way valve 52.
  • the boiling circulation circuit 5 is connected to the second heating forward connection port 42, the heating supply port 53, and the antifreezing water return connection port 54.
  • the said 2nd heating outgoing connection port 42 is an example of a 1st water intake port.
  • the supply port 53 is provided in the lower part of the hot water storage tank 2. Thereby, the relatively low temperature hot water in the lower region in the hot water storage tank 2 can be supplied to the boiling circulation pump 51 through the supply port 53.
  • the boiling circulation pump 51 sucks the relatively low temperature hot water in the lower region in the hot water storage tank 2 and discharges the sucked relatively low temperature hot water toward the condenser 13.
  • the CO 2 refrigerant and hot water are heat-exchanged, and the hot water becomes high temperature.
  • the hot hot water exiting the condenser 13 goes to the boiling three-way valve 52.
  • the boiling three-way valve 52 allows hot hot water from the condenser 13 to flow to the upper region in the hot water storage tank 2 through the second heating forward connection port 42 during hot water supply operation and heating operation.
  • the heat pump unit 1 when the heat pump unit 1 is activated, for example, when the hot water coming out of the condenser of the heat pump unit is not sufficiently hot, the hot water is returned not to the upper part of the hot water tank 2 but to the lower part of the hot water tank 2.
  • the boiling three-way valve 52 is controlled so that By switching the return port according to the temperature of the hot water in this way, it is possible to prevent the hot water that is not sufficiently hot from returning to the upper part of the hot water storage tank 2 and disturbing the temperature distribution in the hot water storage tank 2.
  • the hot water storage tank 2 stores hot water heated by the heat pump unit 1.
  • a heater 6 is disposed at a substantially central portion in the vertical direction in the hot water storage tank 2, and the heater 6 directly heats the hot water in the hot water storage tank 2.
  • a plurality of temperature sensors are provided in the hot water storage tank 2 in order to detect the temperature of hot water in each part in the hot water storage tank 2.
  • the plurality of temperature sensors detect the temperature of hot water in each part in the hot water storage tank 2 and send a signal indicating the temperature to the control unit 7.
  • the control unit 7 is an example of a control unit.
  • the signal indicating the temperature of the hot water in the lower region in the hot water storage tank 2 is used for ON / OFF control of the compressor 12 and the boiling circulation pump 51. That is, the control unit 7 controls ON / OFF of the compressor 12 and the boiling circulation pump 51 based on the temperature of the hot water in the lower region in the hot water storage tank 2.
  • the heat exchanger 3 for hot water supply is composed of a coiled pipe and is arranged from the lower region to the upper region in the hot water storage tank 2.
  • the hot water is heated by flowing through the hot water heat exchanger 3. More specifically, the hot water enters the hot water storage tank 2 from the lower part of the hot water storage tank 2 and flows upward through the hot water supply heat exchanger 3 arranged in the lower region of the hot water storage tank 2.
  • the hot water flows through the hot water heat exchanger 3 disposed in the upper region of the hot water tank 2 upward, and then flows out of the hot water tank 2 from the upper part of the hot water tank 2.
  • the hot water mixing valve 31 is opened, and the hot water supplied from the hot water storage tank 2 and the hot water before flowing into the hot water storage tank 2 are separated. Mix together. Thereby, the temperature of the hot water supplied from the hot water storage tank 2 can be lowered.
  • the heating circulation circuit 4 is for circulating the hot water stored in the hot water storage tank 2 through the plurality of radiators 8 outside the hot water storage tank 2 and then returning it to the hot water storage tank 2 again.
  • the heating circulation circuit 4 is connected to the first and second heating forward connection ports 41 and 42 and the heating return connection port 43.
  • the said 1st heating outgoing connection port 41 is an example of a 2nd water intake port.
  • the radiator 8 is an example of a heating terminal.
  • a heating terminal a floor heating panel, a fan coil, or the like may be used instead of or in combination with this.
  • the first heating outgoing connection port 41 is for taking out hot water in the hot water storage tank 2.
  • the first heating / outgoing connection port 41 is provided at a substantially central portion in the vertical direction of the hot water storage tank 2, and is positioned near and above the heater 6. Thereby, the hot water immediately after being heated by the heater 6 can be taken out from the first heating forward connection port 41 and sent to the plurality of radiators 8.
  • the second heating forward connection port 42 is also for taking out hot water in the hot water storage tank 2 in the same manner as the first heating forward connection port 41.
  • the second heating / outgoing connection port 42 is provided in the upper part of the hot water storage tank 2. Thereby, the hot water of the upper area
  • FIG. The second heating / outgoing connection port 42 is also used as a heating return connection port.
  • Each radiator 8 directly takes out the heat of the hot water flowing from the hot water storage tank 2 and discharges it into the room. And the said warm water becomes low temperature, leaves each radiator 8, and flows toward the heating return connection port 43.
  • the heating return connection port 43 is provided in the lower part of the hot water storage tank 2. Thereby, the hot water which came out of the said heating return connection port 43 can be mixed with the hot water of the lower area
  • the heating circulation circuit 4 is provided with a bypass pipe 44, a heating mixing valve 45, first and second temperature sensors 46 and 47, a heating circulation pump 48, and a heating three-way valve 49.
  • the bypass pipe 44 is an example of a bypass flow path
  • the heating mixing valve 45 is an example of a mixing valve
  • the heating circulation pump 48 is an example of a circulation pump
  • the first temperature sensor 46 is an example of an outgoing hot water sensor
  • the second temperature is an example of a return hot water sensor.
  • the bypass pipe 44 guides a part of the hot water flowing from the radiator 8 to the heating return connection port 43 to the heating mixing valve 45.
  • the heating mixing valve 45 has an inlet through which hot water from the hot water storage tank 2 flows and an inlet through which hot water from the bypass pipe 44 flows. Although described in detail later, the opening degree of each inlet of the heating mixing valve 45 is adjusted by the control unit 7.
  • the first temperature sensor 46 detects the temperature of the hot water from the hot water storage tank 2 toward the radiator 8 and sends a signal indicating this temperature to the control unit 7.
  • the second temperature sensor 47 detects the temperature of the hot water from the radiator 8 toward the hot water storage tank 2 and sends a signal indicating this temperature to the control unit 7.
  • the control unit 7 receives a signal indicating the outside temperature from the outside temperature sensor 18 and also receives a signal indicating the room temperature from an indoor temperature sensor (not shown).
  • the heating circulation pump 48 sucks hot water in the hot water storage tank 2 through the second heating outgoing connection port 42 or the first heating outgoing connection port 41 and discharges the hot water toward the radiators 8.
  • the heating three-way valve 49 extracts hot water from the first heating forward connection port 41 when a high temperature region of the hot water in the hot water storage tank 2 is present in the vicinity of the first heating forward connection port 41. Further, the heating three-way valve 49 extracts hot water from the second heating forward connection port 42 when the high temperature region of the hot water in the hot water storage tank 2 does not exist in the vicinity of the first heating forward connection port 41.
  • the control unit 7 switches the heating three-way valve 49. That is, the control unit 7 switches the heating three-way valve 49 based on signals from a plurality of temperature sensors for detecting the temperature of hot water in each part in the hot water storage tank 2.
  • the heating circulation pump 48 is operated. Thereby, the hot water stored in the hot water storage tank 2 is sent to the plurality of radiators 8 and returned to the hot water storage tank 2 again. At this time, the heat of the warm water is released into the room through the radiator 8. That is, each radiator 8 directly takes out the heat of the hot water in the hot water storage tank 2 and discharges it into the room.
  • the heat of the hot water in the hot water storage tank 2 can be efficiently supplied to the radiator 8, for example, sufficient heating can be performed even in an area with a high heating load such as Northern Europe.
  • the hot water supply heat exchanger 3 is arranged from the lower region to the upper region in the hot water storage tank 2 and hot water enters the lower portion of the hot water storage tank 2 and exits from the upper portion of the hot water storage tank 2. Is sufficiently heated by the hot water in the hot water storage tank 2 while flowing in the hot water heat exchanger 3. Therefore, hot water can be discharged from the hot water supply heat exchanger 3.
  • the relatively low temperature hot water can be returned to the lower region in the hot water storage tank 2. Therefore, it is possible to prevent the hot water having a relatively high temperature in the upper region in the hot water storage tank 2 from being mixed with the hot water having a relatively low temperature by the radiator 8 to become a low temperature.
  • the supply port 53 is provided in the lower part of the hot water storage tank 2, relatively low temperature hot water in the lower area in the hot water storage tank 2 is supplied to the condenser 13 of the heat pump unit 1. Therefore, the COP of the heat pump unit 1 is improved.
  • the temperature of the hot water in the hot water storage tank 2 can be maintained or raised by directly heating the hot water in the hot water storage tank 2 with the heater 6.
  • the heater 6 can compensate for the shortage of heat.
  • the heater 6 is disposed at a substantially central portion in the vertical direction in the hot water storage tank 2, Mainly, the hot water above the heater 6 is heated. At this time, since the hot water in the upper region in the hot water storage tank 2 is originally higher in temperature than the hot water in the lower region in the hot water storage tank 2, the hot water is further heated in a short time by the heating of the heater 6.
  • the hot water having a higher temperature in the upper region in the hot water storage tank 2 can be immediately sent to the radiator 8.
  • the hot water in the hot water storage tank 2 is heated to a high temperature by the heater 6, and this high temperature hot water is taken out from the first heating forward connection port 41 of the heating circulation circuit 4.
  • the first heating / outgoing connection port 41 is provided at a substantially central portion in the vertical direction of the hot water storage tank 2 and is located near and above the heater 6, so that the hot water immediately after being heated by the heater 6 is taken out. Can be sent to the radiator 8.
  • the heat pump unit 1 because it uses CO 2 refrigerant as refrigerant, can be high temperature hot water.
  • the control unit 7 adjusts the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, or for heating.
  • the rotational speed of the circulation pump 48 is adjusted.
  • heating temperature the temperature of warm water entering each radiator 8
  • heating return temperature the temperature of warm water exiting from each radiator 8
  • control unit 7 reduces the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side relative to the opening degree of the inlet of the heating mixing valve 45 on the hot water storage tank 2 side, Compared with the high temperature hot water amount from the low temperature, the low temperature hot water amount from the bypass piping 44 side decreases. As a result, the heating temperature can be increased.
  • the controller 7 increases the opening degree of the heating mixing valve 45 on the bypass piping 44 side relative to the opening degree of the heating mixing valve 45 on the hot water storage tank 2 side, Compared to the high-temperature hot water amount from the side, the low-temperature hot water amount from the bypass pipe 44 side increases. As a result, the heating temperature can be lowered.
  • control unit 7 increases the rotational speed of the heating circulation pump 48, the amount of hot water entering each radiator 8 increases. As a result, it is difficult for hot water to drop in each of the radiators 8, and the heating return temperature can be increased.
  • control unit 7 decreases the rotational speed of the heating circulation pump 48, the amount of hot water entering each radiator 8 decreases. As a result, the warm water can be easily lowered by the radiators 8 and the heating return temperature can be lowered.
  • control unit 7 determines that the outside air temperature detected by the outside air temperature sensor 18 is equal to or less than a predetermined reference value and the heating load is relatively large, based on the signal from the outside air temperature sensor 18, the heating capacity is increased. Priority is given to higher control.
  • control unit 7 determines that the outside air temperature detected by the outside air temperature sensor 18 is higher than a predetermined reference value and the heating load is relatively small, based on the signal from the outside air temperature sensor 18, the heat pump unit 1.
  • the control for improving the COP is preferentially performed.
  • the above reference value is determined by the heat insulation performance and floor area of the house where the radiator 8 is installed. As a result, it is accurately determined whether or not the control for increasing the heating capacity is preferentially performed or the control for improving the COP of the heat pump unit 1 is preferentially performed. That is, appropriate heating can be performed for the room.
  • the control unit 7 changes the heating return temperature according to the heating load and sets the heating forward temperature to 80 ° C., for example. keep. At this time, the heating return temperature increases as the heating load increases, and for example, 50 ° C. is set as the maximum value.
  • each of the radiators 8 contains hot water of 80 ° C., the heating capacity can be increased.
  • the control unit 7 determines the two inlets of the heating mixing valve 45 based on signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47. Or the rotation speed of the heating circulation pump 48 is adjusted. Further, at that time, the control unit 7 determines the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, and for heating. Of course, the rotational speed of the circulation pump 48 may be adjusted.
  • control unit 7 may control at least one of the heating mixing valve 45 and the heating circulation pump 48 to keep the heating forward temperature at 80 ° C.
  • the control unit 7 changes the heating forward temperature according to the heating load and sets the heating return temperature, for example, Keep at 30 ° C. At this time, the heating-out temperature is lowered as the heating load decreases.
  • the COP (coefficient of performance) of the heat pump unit 1 can be increased.
  • the control unit 7 determines the two inlets of the heating mixing valve 45 based on signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, respectively. Or the rotation speed of the heating circulation pump 48 is adjusted. Further, at that time, the control unit 7 determines the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, and for heating. Of course, the rotational speed of the circulation pump 48 may be adjusted.
  • controller 7 may control at least one of the heating mixing valve 45 and the heating circulation pump 48 to keep the heating return temperature at 30 ° C.
  • the heating mixing valve 45 and the heating circulation pump 48 constitute an example of the temperature adjustment unit, but only one of the heating mixing valve 45 and the heating circulation pump 48 adjusts the temperature.
  • An example of the unit may be configured, or one of the heating mixing valve 45 and the heating circulation pump 48 and the other device may configure an example of the temperature adjusting unit.
  • the first temperature sensor 46 and the second temperature sensor 47 constitute an example of a temperature sensor, but only one of the first temperature sensor 46 and the second temperature sensor 47 is a temperature sensor.
  • An example may be constituted, and the first temperature sensor 46, the second temperature sensor 47, another temperature sensor (for example, the outside air temperature sensor 18), etc. may constitute an example of the temperature sensor.
  • the heating mixing valve 45 is provided in the heating circulation circuit 4 between the heating three-way valve 49 and the heating circulation pump 48, but between the heating circulation pump 48 and the radiator 8.
  • a heating mixing valve 45 may be provided in the heating circulation circuit 4. That is, the heating mixing valve 45 may be provided on the suction side of the heating circulation pump 48 or may be provided on the discharge side of the heating circulation pump 48.
  • the boiling three-way valve 52 flows hot hot water from the condenser 13 to the lower region in the hot water storage tank 2 during the freeze prevention operation, but in the upper region in the hot water storage tank 2. It may flow or may flow to the upper region and the lower region in the hot water storage tank 2.
  • the heat pump unit 1 uses a CO 2 refrigerant, but an NH 3 refrigerant, an R22 refrigerant, or the like may be used.
  • the heat pump unit 1 having the supercooling heat exchanger 14 is used, but a heat pump unit not having the supercooling heat exchanger 14 may be used.
  • Drawing 3 is a mimetic diagram showing the composition of the heating hot-water supply device of a 2nd embodiment of the present invention.
  • FIG. 3 the same components as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals as those of the components in FIG. explain.
  • the heating / hot water supply apparatus includes a heating circulation circuit 4.
  • the heating circulation circuit 4 includes a forward pipe 101 through which the forward hot water flows and a return pipe 102 through which the return hot water flows.
  • the outgoing hot water is hot water that enters the radiator 8, and the return hot water is hot water that exits from the radiator 5.
  • the forward pipe 101 and the return pipe 102 can communicate with each other via a bypass pipe 44. That is, the bypass pipe 44 has one end connected to the forward pipe 101 and the other end connected to the return pipe 102.
  • the return pipe 102 is provided with a second temperature sensor 147 that detects the temperature of the return hot water.
  • the second temperature sensor 147 differs from the second temperature sensor 47 of the first embodiment only in the installation location.
  • the second temperature sensor 147 is provided between the point where the other end of the bypass pipe 44 is connected to the return pipe 102 and the radiator 8.
  • the second temperature sensor 147 detects the temperature of the return hot water upstream from the connection point between the other end of the bypass pipe 44 and the return pipe 102, and sends a signal indicating this temperature to the control unit 7.
  • the control unit 7 adjusts the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 147, and the heating circulation pump. 48 rotation speed is adjusted.
  • step S1 it is determined whether or not the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the output of the second temperature sensor 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step 1 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large. Therefore, after performing step S2, the process proceeds to step S4. On the other hand, if it is determined in step S1 that the temperature of the return hot water is not equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively small. Therefore, after performing step S3, the process proceeds to step S4.
  • step S2 control for increasing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is increased by a preset rotational speed. Thereby, since the quantity of the going hot water which enters each said radiator 8 increases, each radiator 8 can fully heat.
  • step S2 the opening degree of the heating mixing valve 45 on the bypass pipe 44 side and the heating mixing valve 45 side of the heating three-way valve 49 side so that the temperature of the return hot water becomes a set value.
  • the temperature of the incoming hot water is controlled by adjusting the opening of the.
  • the set value can be arbitrarily set by a user interface.
  • step S3 control for reducing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is decreased by a preset rotational speed. Thereby, since the amount of the outgoing hot water entering each radiator 8 is reduced, it is possible to prevent the outgoing hot water from being supplied to each radiator 8 in vain.
  • step S3 as well as in step S2, the opening degree of the inlet on the bypass pipe 44 side of the heating mixing valve 45 and the three directions for heating of the heating mixing valve 45 are set so that the temperature of the return hot water becomes the set value.
  • the temperature of the incoming hot water is controlled by adjusting the opening of the inlet on the valve 49 side.
  • the set value can be arbitrarily set by a user interface.
  • step S4 it is determined whether or not a heating operation stop operation has been performed. If it determines with the stop operation of heating operation having been performed by this step S4, heating operation will be complete
  • the low-temperature return hot water can be returned into the lower part of the hot water storage tank 2 regardless of the heating load.
  • the temperature of the hot water in the lower part of the hot water storage tank 2 is kept low, so that the low temperature hot water can be continuously fed from the supply port 53 to the condenser 13 and the COP of the heat pump unit 1 can be kept high.
  • FIG. 5 is a schematic diagram showing a configuration of a heating and hot water supply apparatus according to a third embodiment of the present invention.
  • the same components as those of the second embodiment shown in FIG. 3 are denoted by the same reference numerals as those of the components in FIG. explain.
  • the heating / hot water supply apparatus includes a shut-off valve 103.
  • the shutoff valve 103 is provided between the connection point between the bypass pipe 44 and the return pipe 102 and the hot water storage tank 2.
  • the shut-off valve 103 is an example of a distribution stop unit.
  • the heating circulation pump 48 that is a variable flow rate pump is provided in the circulation circuit 4, but in the third embodiment, the heating circulation pump 148 that is a fixed flow rate circulation pump. Is provided in the circulation circuit 4.
  • step S11 it is determined whether or not the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the output of the second temperature sensor 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step S11 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large. Therefore, after performing step S12, the process proceeds to step S14. On the other hand, if it is determined in step S11 that the temperature of the return hot water is not lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively small. Therefore, after performing step S13, the process proceeds to step S14.
  • step S12 the shutoff valve 103 is opened.
  • the hot water in the upper part of the hot water storage tank 2 is actively supplied to the forward piping 101, or the warm water in the middle of the hot water storage tank 2 is actively supplied to the outgoing piping 101.
  • each radiator 8 can perform sufficient heating.
  • step S12 the opening degree of the heating mixing valve 45 on the bypass pipe 44 side and the heating mixing valve 45 side of the heating three-way valve 49 side so that the temperature of the return hot water becomes a set value.
  • the temperature of the incoming hot water is controlled by adjusting the opening of the.
  • the set value can be arbitrarily set by a user interface.
  • step S13 the shutoff valve 103 is closed.
  • the return hot water does not flow into the hot water storage tank 2 and does not cause the hot water in the hot water storage tank 2 to be stirred. Therefore, since the hot water in the lower part of the hot water storage tank 2 can be reliably kept at a relatively low temperature, the hot water in the lower part of the hot water storage tank 2 can be sent to the heat pump unit to ensure that the COP of the heat pump unit is kept high. it can.
  • step S13 the inlet on the bypass pipe 44 side of the heating mixing valve 45 is fixed in a fully open state, and the inlet on the heating three-way valve 49 side of the heating mixing valve 45 is fixed in a closed state.
  • the amount of return hot water flowing into the hot water storage tank 2 is reduced, so that stirring of the hot water in the hot water storage tank 2 is reduced. Therefore, by preventing the hot water in the hot water storage tank 2 from being stirred, the hot water in the lower part of the hot water storage tank 2 can be kept at a relatively low temperature, so the hot water in the lower part of the hot water storage tank 2 is sent to the heat pump unit, The COP of the heat pump unit can be kept high.
  • step S14 it is determined whether or not a heating operation stop operation has been performed. If it determines with the stop operation of heating operation having been performed by this step S14, heating operation will be complete
  • the low-temperature return hot water can be returned to the lower part of the hot water storage tank 2 by setting the set value in step S12 low.
  • the temperature of the hot water in the lower part of the hot water storage tank 2 is kept low, so that the low temperature hot water can be continuously fed from the supply port 53 to the condenser 13 and the COP of the heat pump unit 1 can be kept high.
  • the COP of the heat pump unit can be reliably kept high by closing the shutoff valve 103.
  • the heating and hot water supply apparatus can keep the COP of the heat pump unit high regardless of the heating load.
  • FIG. 7 is a schematic diagram showing the configuration of the heating and hot water supply apparatus according to the fourth embodiment of the present invention. Further, in FIG. 7, the same components as those in the second and third embodiments shown in FIGS. 3 and 5 have the same reference numerals as those in FIGS. A description will be omitted or will be briefly described.
  • the heating water heater includes a heating circulation pump 48 instead of the heating circulation pump 148.
  • step S21 it is determined whether or not the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the output of the second temperature sensor 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step S21 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large, and the process proceeds to step S22. On the other hand, if it is determined in step S21 that the temperature of the return hot water is not lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively small, and the process proceeds to step S23.
  • step S22 control for increasing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is increased by a preset rotational speed. Thereby, since the quantity of the going hot water which enters each said radiator 8 increases, each radiator 8 can fully heat.
  • step S22 the opening of the inlet of the heating mixing valve 45 on the bypass piping 44 side and the inlet of the heating three-way valve 49 side of the heating mixing valve 45 so that the temperature of the return hot water becomes a set value.
  • the temperature of the incoming hot water is controlled by adjusting the opening of the.
  • the set value can be arbitrarily set by a user interface.
  • step S25 After performing step S22, it is determined in step S25 whether or not a heating operation stop operation has been performed. If it determines with the stop operation of heating operation having been performed by this step S25, heating operation will be complete
  • step S23 it is determined whether or not the determination is continued for a predetermined number of times or more if the temperature of the return hot water is not lower than the heating circuit return target temperature. If it is determined in step S23 that the temperature of the return hot water is not lower than the heating circuit return target temperature, it is determined that the determination has not continued for a predetermined number of times or more. On the other hand, if it is determined in step S23 that the return hot water temperature is not equal to or lower than the heating circuit return target temperature and the determination continues for a predetermined number of times, the process proceeds to step S30 in FIG.
  • step S24 control is performed to reduce the heating circuit flow rate. Specifically, the rotational speed of the heating circulation pump 48 is decreased by a preset rotational speed. Thereby, since the amount of the outgoing hot water entering each radiator 8 is reduced, it is possible to prevent the outgoing hot water from being supplied to each radiator 8 in vain.
  • step S24 the opening degree of the inlet on the bypass pipe 44 side of the heating mixing valve 45 and the three directions for heating of the heating mixing valve 45 are set so that the temperature of the return hot water becomes the set value.
  • the temperature of the incoming hot water is controlled by adjusting the opening of the inlet on the valve 49 side.
  • the set value can be arbitrarily set by a user interface.
  • step S24 After performing step S24, it is determined in step S25 whether or not the heating operation has been stopped. If it determines with the stop operation of heating operation having been performed by this step S25, heating operation will be complete
  • step S30 in FIG. 8 this corresponds to a case where the heating load is relatively small for a long time, so the shutoff valve 103 is closed. Thereby, the return hot water does not flow into the hot water storage tank 2 and does not cause the hot water in the hot water storage tank 2 to be stirred. Therefore, since the hot water in the lower part of the hot water storage tank 2 can be reliably kept at a relatively low temperature, the hot water in the lower part of the hot water storage tank 2 can be sent to the heat pump unit to ensure that the COP of the heat pump unit is kept high. it can.
  • step S31 the inlet on the bypass pipe 44 side of the heating mixing valve 45 is fixed in a fully open state, and the inlet on the heating three-way valve 49 side of the heating mixing valve 45 is fixed in a closed state.
  • the amount of return hot water flowing into the hot water storage tank 2 is reduced, so that stirring of the hot water in the hot water storage tank 2 is reduced. Therefore, by preventing the hot water in the hot water storage tank 2 from being stirred, the hot water in the lower part of the hot water storage tank 2 can be kept at a relatively low temperature, so the hot water in the lower part of the hot water storage tank 2 is sent to the heat pump unit, The COP of the heat pump unit can be kept high.
  • step S32 After performing step S31, it is determined in step S32 whether the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the output of the second temperature sensor 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step S32 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large, and the process proceeds to step S33. On the other hand, if it is determined in step S32 that the temperature of the return hot water is not lower than the heating circuit return target temperature, this corresponds to the case where the heating load is still relatively small, and the process returns to step S31.
  • step S33 the heating load is relatively large. Therefore, after opening the shut-off valve 103, the process proceeds to step S22 in FIG.
  • the control as described above can return the low-temperature return hot water into the lower part of the hot water storage tank 2 regardless of the heating load by setting the set values in the steps S22 and S24 low.
  • the temperature of the hot water in the lower part of the hot water storage tank 2 is kept low, so that the low temperature hot water can be continuously fed from the supply port 53 to the condenser 13 and the COP of the heat pump unit 1 can be kept high.
  • the COP of the heat pump unit can be reliably kept high by closing the shutoff valve 103.
  • the heating hot water supply apparatus of the first embodiment, the second embodiment, and the fourth embodiment can also control the heating operation as shown in the flowchart of FIG.
  • step S41 it is determined whether or not the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the outputs of the second temperature sensors 47 and 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step 41 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large. Therefore, after performing step S42, the process proceeds to step S44. On the other hand, when it is determined in step S41 that the temperature of the return hot water is not lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively small. Therefore, after performing step S43, the process proceeds to step S44.
  • step S42 control for increasing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is increased by a preset rotational speed. As a result, the amount of outgoing hot water entering each radiator 8 can be increased, and the heating capacity of each radiator 8 can be increased.
  • step S43 control for reducing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is decreased by a preset rotational speed. As a result, the amount of hot water going into each radiator 8 can be reduced, and the heating capacity of each radiator 8 can be lowered.
  • step S44 it is determined whether or not the heating circuit going temperature is equal to or lower than a predetermined heating circuit going target temperature. That is, based on the output of the first temperature sensor 46, it is determined whether or not the temperature of the outgoing hot water is equal to or lower than the heating circuit outgoing target temperature. If it is determined in step 44 that the temperature of the outgoing hot water is equal to or lower than the heating circuit outgoing target temperature, this corresponds to a case where the heating load is relatively large. Therefore, after performing step S45, the process proceeds to step S47. On the other hand, if it is determined in step S44 that the temperature of the outgoing hot water is not equal to or lower than the heating circuit outgoing target temperature, this corresponds to a case where the heating load is relatively small. Therefore, after performing step S46, the process proceeds to step S47.
  • step S45 the heating mixing valve opening is adjusted in order to increase the temperature going to the heating circuit. That is, the opening degree of the inlet on the bypass pipe 44 side of the heating mixing valve 45 is lowered by a preset amount, and the opening degree of the inlet of the heating mixing valve 45 side on the heating three-way valve 49 side is preset. Raise it.
  • step S46 the heating mixing valve opening is adjusted to lower the heating circuit going temperature. That is, the opening degree of the heating mixing valve 45 on the bypass pipe 44 side is increased by a predetermined amount, and the opening degree of the heating mixing valve 45 on the heating three-way valve 49 side is set in advance. Lower it.
  • step S47 it is determined whether or not a heating operation stop operation has been performed. If it is determined in step S47 that the heating operation has been stopped, the heating operation is terminated. On the other hand, if it determines with the stop operation of heating operation not being performed by said step S47, it will return to step S41.
  • step S42 the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side is reduced by a preset amount, and the inlet of the heating three-way valve 49 side of the heating mixing valve 45 is opened.
  • the degree may be increased by a preset amount.
  • the rotational speed of the heating circulation pump 48 is increased by a predetermined rotational speed, and the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side is decreased by a predetermined amount, and You may make it perform the step which raises the opening degree of the entrance by the side of the three-way valve 49 for heating of the mixing valve 45 for heating by the preset amount.
  • step S43 the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side is increased by a preset amount, and the inlet of the heating three-way valve 49 side of the heating mixing valve 45 is opened.
  • the degree may be lowered by a preset amount.
  • the rotation speed of the heating circulation pump 48 is decreased by a preset rotation speed, and the opening degree of the inlet on the bypass pipe 44 side of the heating mixing valve 45 is increased by a preset value, and You may make it perform the step which reduces the opening degree of the inlet_port
  • step S45 the rotation speed of the heating circulation pump 48 may be increased by a preset rotation speed.
  • the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side is decreased by a preset amount, and the opening degree of the heating mixing valve 45 on the heating three-way valve 49 side is set in advance.
  • the step of increasing the rotation speed of the heating circulation pump 48 by a preset rotation speed may be performed.
  • the rotational speed of the heating circulation pump 48 may be decreased by a preset rotational speed.
  • the opening degree of the heating mixing valve 45 on the bypass pipe 44 side is increased by a preset amount, and the opening degree of the heating mixing valve 45 on the heating three-way valve 49 side is set in advance.
  • the step of lowering the rotational speed of the heating circulation pump 48 by a preset rotational speed may be performed.
  • step S42 is the same step as step S45 and step S43 is the same step as step S45 can also be performed in the heating and hot water supply apparatus of the third embodiment. it can.
  • the heating and hot water supply apparatuses of the first to fourth embodiments and the modifications thereof include the heat pump unit 1 that uses the CO 2 refrigerant, but includes the heat pump unit that uses a supercritical refrigerant other than the CO 2 refrigerant. Also good.

Abstract

A first temperature sensor (46) detects the temperature of outgoing hot water entering a radiator (8) and outputs the detected temperature to a control section (7). A second temperature sensor (47) detects the temperature of return hot water exiting from the radiator (8) and outputs the detected temperature to the control section (7). Based on the outputs from the first and second temperature sensors (46, 47), the control section (7) adjusts, by using a mixing valve (45) for heating, the temperature of the hot water to be supplied to the radiator (8) or adjusts, by using a circulation pump (48) for heating, the flow rate of hot water to be supplied to the radiator (8). By this, the temperature of return hot water exiting from the radiator (8) or of outgoing hot water entering the radiator (8) is adjusted to a predetermined temperature.

Description

暖房給湯装置Heating and hot water supply equipment
 本発明は、暖房および給湯に使用される暖房給湯装置に関する。 The present invention relates to a heating and hot water supply apparatus used for heating and hot water supply.
 従来、暖房給湯装置としては、特開2004-232914号公報に開示されたものがある。この暖房給湯装置は、ヒートポンプと、このヒートポンプで加熱された温水を貯える貯湯タンクと、この貯湯タンク内の上部領域のみに配置された熱交換器と、この熱交換器に接続された暖房機とを備えている。 Conventionally, as a hot water supply apparatus, there is one disclosed in Japanese Patent Application Laid-Open No. 2004-232914. The heating hot water supply apparatus includes a heat pump, a hot water storage tank for storing hot water heated by the heat pump, a heat exchanger disposed only in an upper region in the hot water storage tank, and a heater connected to the heat exchanger. It has.
 上記貯湯タンクは出湯管を介して蛇口に接続されている。この蛇口を開くことにより、貯湯タンクに貯えた温水を蛇口から取り出すことができる。 The hot water storage tank is connected to a faucet through a hot water outlet pipe. By opening this faucet, the hot water stored in the hot water storage tank can be taken out from the faucet.
 上記暖房機は貯湯タンクに貯えた温水を利用して暖房運転を行う。より詳しくは、上記暖房運転が開始されると、熱交換器内の熱媒は貯湯タンク内の温水によって加熱される。この加熱された熱媒は、暖房機に送られて暖房機から室内に熱を放出する。 The above heater performs heating operation using the hot water stored in the hot water storage tank. More specifically, when the heating operation is started, the heat medium in the heat exchanger is heated by the hot water in the hot water storage tank. The heated heat medium is sent to the heater and releases heat from the heater into the room.
 ところが、上記従来の暖房給湯装置は、深夜電力を用いた給湯器の付加的機能として暖房運転を行うため、暖房運転時、室内に放出すべき熱を貯湯タンク内の温水から熱交換器を介して取り出しているので、その熱を取り出す効率は悪くなっている。すなわち、上記貯湯タンク内の温水の熱を効率良く暖房機に供給することができない。 However, since the conventional heating and hot water supply apparatus performs the heating operation as an additional function of the water heater using midnight power, the heat to be released indoors during the heating operation from the hot water in the hot water storage tank through the heat exchanger. The efficiency of taking out the heat is getting worse. That is, the heat of the hot water in the hot water storage tank cannot be efficiently supplied to the heater.
 したがって、上記従来の暖房給湯装置は、冬場24時間暖房運転して、例えば暖房負荷:給湯負荷が10:1となるような例えば北欧等の暖房負荷の高い地域では十分な暖房を行うことができないという問題がある。 Therefore, the above-mentioned conventional heating and hot water supply apparatus cannot perform sufficient heating in an area with a high heating load such as Northern Europe where the heating load: the hot water supply load is 10: 1, for example, in the winter 24 hours. There is a problem.
 そこで、本発明の課題は、例えば北欧等の暖房負荷の高い地域でも十分な暖房を行うことができる暖房給湯装置を提供することにある。 Therefore, an object of the present invention is to provide a heating and hot water supply apparatus that can perform sufficient heating even in an area with a high heating load such as Northern Europe.
 上記課題を解決するため、本発明の暖房給湯装置は、
 ヒートポンプユニットと、
 上記ヒートポンプユニットで加熱された温水を貯える貯湯タンクと、
 上記貯湯タンク内に配置され、給湯水が内部を流れる熱交換器と、
 上記貯湯タンク内に貯められた温水を上記貯湯タンク外の暖房端末を経由させた後、再び、上記貯湯タンク内に戻して循環させるための循環回路と、
 上記循環回路を流れる温水の温度を検出する温度センサと、
 上記暖房端末に供給する温水の温度および流量の少なくとも一方を調節することにより、上記暖房端末から出る戻り温水の温度と、上記暖房端末に入る往き温水の温度との少なくとも一方を所定の温度に調節する温度調節部と、
 上記温度センサの出力に基づいて、上記温度調節部を制御する制御部と
を備えたことを特徴としている。
In order to solve the above problems, the heating and hot water supply apparatus of the present invention includes:
A heat pump unit;
A hot water storage tank for storing hot water heated by the heat pump unit;
A heat exchanger disposed in the hot water storage tank, in which hot water flows inside,
A circulating circuit for circulating the hot water stored in the hot water storage tank through the heating terminal outside the hot water storage tank and then circulating it back into the hot water storage tank;
A temperature sensor for detecting the temperature of the hot water flowing through the circulation circuit;
By adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal, at least one of the temperature of the return hot water coming out of the heating terminal and the temperature of the incoming hot water entering the heating terminal is adjusted to a predetermined temperature. A temperature control unit,
And a control unit that controls the temperature adjusting unit based on the output of the temperature sensor.
 上記構成の暖房給湯装置によれば、暖房運転を開始すると、貯湯タンクに貯えた温水が循環経路を介して暖房端末へ流れ、再び、貯湯タンクに戻る。これにより、上記温水の熱は暖房端末を介して室内に放出される。すなわち、上記暖房端末は、貯湯タンク内の温水の熱を直接取り出し、室内に放出する。 According to the heating and hot water supply apparatus having the above configuration, when the heating operation is started, the hot water stored in the hot water storage tank flows to the heating terminal through the circulation path and returns to the hot water storage tank again. Thereby, the heat of the warm water is released into the room through the heating terminal. That is, the heating terminal directly takes out the heat of the hot water in the hot water storage tank and releases it into the room.
 したがって、上記貯湯タンク内の温水の熱を暖房端末に効率良く供給できるので、例えば北欧等の暖房負荷の高い地域でも十分な暖房を行うことができる。 Therefore, since the heat of the hot water in the hot water storage tank can be efficiently supplied to the heating terminal, sufficient heating can be performed even in an area with a high heating load such as Northern Europe.
 従来においては、貯湯タンク内の熱交換器を介して熱を取り出して、暖房端末に供給していたから、効率が悪くて、十分な暖房を行うことができなかった。 Conventionally, since heat is taken out via a heat exchanger in the hot water storage tank and supplied to the heating terminal, the efficiency is poor and sufficient heating cannot be performed.
 また、上記温度調節部は、暖房端末に供給する温水の温度および流量の少なくとも一方を調節することにより、暖房端末から出る戻り温水、または、暖房端末に入る往き温水の温度を所定の温度に調節する。このとき、上記制御部が、循環回路を流れる温水の温度を検出する温度センサの出力に基づいて、温度調節部を制御する。 The temperature adjustment unit adjusts the temperature of the return hot water from the heating terminal or the temperature of the incoming hot water entering the heating terminal to a predetermined temperature by adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal. To do. At this time, the said control part controls a temperature control part based on the output of the temperature sensor which detects the temperature of the warm water which flows through a circulation circuit.
 したがって、上記暖房端末に入る往き温水の温度の調節精度が高く、暖房端末に所望の暖房性能を発揮させることができる。 Therefore, the temperature adjustment accuracy of the incoming hot water entering the heating terminal is high, and the heating terminal can exhibit the desired heating performance.
 また、上記温度調節部が、暖房端末に供給する温水の温度および流量の少なくとも一方を調節することによって、暖房端末から出る温水の温度を過度に高くならないようにして低く調節すると、低温の温水が貯湯タンクに戻り、貯湯タンク内の温水の温度が下がる。 Further, when the temperature adjusting unit adjusts at least one of the temperature and the flow rate of the hot water supplied to the heating terminal to adjust the temperature of the hot water from the heating terminal so as not to be excessively high, Returning to the hot water tank, the temperature of the hot water in the hot water tank drops.
 したがって、上記ヒートポンプユニットに貯湯タンク内の低温の温水を送ることができるので、ヒートポンプユニットのCOP(成績係数)を高くすることができる。 Therefore, since the low-temperature hot water in the hot water storage tank can be sent to the heat pump unit, the COP (coefficient of performance) of the heat pump unit can be increased.
 また、上記温度調節部が、暖房端末に供給する温水の温度および流量の少なくとも一方を調節することによって、暖房端末から出る温水の温度を、暖房に要求される所望の高い温度に調節すると、高温の温水が貯湯タンクに戻るので、貯湯タンク内の温水は高温となる。 When the temperature adjusting unit adjusts the temperature of the hot water supplied from the heating terminal to a desired high temperature required for heating by adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal, The hot water in the hot water tank returns to the hot water storage tank, so the hot water in the hot water storage tank becomes hot.
 したがって、上記貯湯タンク内の高温の温水は循環回路を流れて暖房端末に入るので、暖房能力を高くすることができる。 Therefore, since the hot water in the hot water storage tank flows through the circulation circuit and enters the heating terminal, the heating capacity can be increased.
 一実施形態の暖房給湯装置では、
 上記温度調節部は、上記暖房端末に供給する温水の温度および流量の少なくとも一方を調節することにより、上記暖房端末から出る戻り温水の温度、および、上記暖房端末に入る往き温水の温度を調節する。
In the heating and hot water supply apparatus of one embodiment,
The temperature adjusting unit adjusts the temperature of the return hot water coming out of the heating terminal and the temperature of the outgoing hot water entering the heating terminal by adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal. .
 上記実施形態の暖房給湯装置によれば、上記温度調節部が暖房端末から出る戻り温水の温度、および、上記暖房端末に入る往き温水の温度を調節するので、暖房負荷に応じた運転を確実に行うことができる。 According to the heating hot water supply apparatus of the above embodiment, the temperature adjusting unit adjusts the temperature of the return hot water coming out of the heating terminal and the temperature of the outgoing hot water entering the heating terminal, so that the operation according to the heating load is ensured. It can be carried out.
 一実施形態の暖房給湯装置では、
 上記温度センサは、上記暖房端末から出る戻り温水の温度を検出する戻り温水センサを含む。
In the heating and hot water supply apparatus of one embodiment,
The temperature sensor includes a return hot water sensor that detects the temperature of the return hot water coming out of the heating terminal.
 上記実施形態の暖房給湯装置によれば、上記温度センサは、暖房端末から出る戻り温水の温度を検出する戻り温水センサを含むので、温度調節部による戻り温水の温度の制御性を高くすることができる。 According to the heating and hot water supply apparatus of the above embodiment, the temperature sensor includes a return hot water sensor that detects the temperature of the return warm water coming out of the heating terminal, so that the controllability of the temperature of the return warm water by the temperature adjustment unit can be increased. it can.
 一実施形態の暖房給湯装置では、
 上記温度センサは、上記暖房端末に入る往き温水の温度を検出する往き温水センサを含む。
In the heating and hot water supply apparatus of one embodiment,
The temperature sensor includes an outgoing hot water sensor that detects the temperature of outgoing hot water entering the heating terminal.
 上記実施形態の暖房給湯装置によれば、上記温度センサは、暖房端末に入る往き温水の温度を検出する往き温水センサを含むので、温度調節部による往き温水の温度の制御性を高くすることができる。 According to the heating and hot water supply apparatus of the above embodiment, the temperature sensor includes the forward hot water sensor that detects the temperature of the incoming hot water entering the heating terminal, so that the controllability of the temperature of the outgoing hot water by the temperature adjustment unit can be increased. it can.
 一実施形態の暖房給湯装置では、
 外気温度を検出すると共に、上記外気温度を示す信号を上記制御部に出力する外気温度センサを備え、
 上記温度センサは、上記暖房端末から出る戻り温水の温度を検出する戻り温水センサと、上記暖房端末に入る往き温水の温度を検出する往き温水センサとを含み、
 上記制御部は、
 上記外気温度センサが検出した外気温度が予め定めた基準値よりも高いときは、上記往き温水センサの出力に基づいて、上記暖房端末に入る往き温水の温度が外気温度に基づいた予め定められた往き温水温度になるように上記温度調節部を制御する一方、
 上記外気温度センサが検出した外気温度が予め定めた基準値以下のときは、上記戻り温水センサの出力に基づいて、上記暖房端末から出る戻り温水の温度が外気温度に基づいた予め定められた戻り温水温度になるように上記温度調節部を制御する。
In the heating and hot water supply apparatus of one embodiment,
An outside temperature sensor that detects the outside temperature and outputs a signal indicating the outside temperature to the control unit;
The temperature sensor includes a return hot water sensor that detects the temperature of the return warm water that exits from the heating terminal, and a forward hot water sensor that detects the temperature of the forward warm water entering the heating terminal,
The control unit
When the outside air temperature detected by the outside air temperature sensor is higher than a predetermined reference value, the temperature of the outgoing hot water entering the heating terminal is predetermined based on the outside air temperature based on the output of the outgoing hot water sensor. While controlling the temperature control unit so as to reach the warm water temperature,
When the outside air temperature detected by the outside air temperature sensor is equal to or less than a predetermined reference value, the temperature of the return hot water coming out of the heating terminal is determined based on the outside air temperature based on the output of the return hot water sensor. The said temperature control part is controlled so that it may become warm water temperature.
 上記実施形態の暖房給湯装置によれば、上記制御部は、外気温度センサが検出した外気温度が予め定めた基準値よりも高いときは、往き温水センサの出力に基づいて、暖房端末に入る往き温水の温度が外気温度に基づいた予め定められた往き温水温度になるように温度調節部を制御する。これにより、上記暖房端末に入る往き温水の温度を低くして、暖房端末から出る戻り温水の温度をできる限り低くすることができる。 According to the heating and hot water supply apparatus of the above-described embodiment, when the outside air temperature detected by the outside air temperature sensor is higher than a predetermined reference value, the control unit enters the heating terminal based on the output of the going hot water sensor. The temperature adjustment unit is controlled so that the temperature of the hot water becomes a predetermined forward water temperature based on the outside air temperature. Thereby, the temperature of the incoming hot water entering the heating terminal can be lowered, and the temperature of the return hot water coming out of the heating terminal can be lowered as much as possible.
 したがって、上記外気温度が過度に低い温度でなければ、暖房端末の暖房性能を低く抑えて、エネルギの無駄な消費を防ぐことができると共に、ヒートポンプユニットに、温度をできる限り低くした温水を供給して、ヒートポンプユニットのCOPを向上させることができる。 Therefore, if the outside air temperature is not excessively low, the heating performance of the heating terminal can be kept low, wasteful consumption of energy can be prevented, and hot water having a temperature as low as possible can be supplied to the heat pump unit. Thus, the COP of the heat pump unit can be improved.
 一方、上記制御部は、外気温度センサが検出した外気温度が予め定めた基準値以下のときは、戻り温水センサの出力に基づいて、暖房端末から出る戻り温水の温度が外気温度に基づいた予め定められた戻り温水温度になるように温度調節部を制御する。これにより、上記暖房端末から出る戻り温水の温度を高くして、暖房端末に入る温水の温度を上げることができる。 On the other hand, when the outside air temperature detected by the outside air temperature sensor is equal to or less than a predetermined reference value, the control unit determines that the temperature of the return warm water from the heating terminal is based on the outside air temperature based on the output of the return warm water sensor. The temperature adjustment unit is controlled so that the return hot water temperature is set. Thereby, the temperature of the return warm water which comes out of the said heating terminal can be made high, and the temperature of the warm water which enters into a heating terminal can be raised.
 したがって、上記外気温度が過度に低い温度であれば、暖房端末の暖房性能を高くして、室内が冷えるのを防ぐことができる。 Therefore, if the outside air temperature is excessively low, the heating performance of the heating terminal can be increased and the room can be prevented from being cooled.
 一実施形態の暖房給湯装置では、
 上記貯湯タンクの上部に、上記貯湯タンク内に貯められた温水を取り出すための第1取水口が設けられる一方、上記貯湯タンクの下部に、上記暖房端末から出た温水を上記貯湯タンクに戻すための戻し口が設けられ、
 上記循環回路は、上記第1取水口と上記戻し口とに接続されている。
In the heating and hot water supply apparatus of one embodiment,
A first water intake port for taking out hot water stored in the hot water storage tank is provided at the upper part of the hot water storage tank, while hot water discharged from the heating terminal is returned to the hot water storage tank at the lower part of the hot water storage tank. There is a return opening,
The circulation circuit is connected to the first intake port and the return port.
 上記実施形態の暖房給湯装置によれば、上記第1取水口は、貯湯タンクの上部に設けられているので、貯湯タンク内の上部領域にある比較的高温の温水を取り出して暖房端末に送ることができる。したがって、上記比較的高温の温水で暖房を行うことができる。 According to the heating and hot water supply apparatus of the above embodiment, since the first intake port is provided in the upper part of the hot water storage tank, relatively hot hot water in the upper region in the hot water storage tank is taken out and sent to the heating terminal. Can do. Therefore, heating can be performed with the relatively hot water.
 また、上記戻し口は、貯湯タンクの下部に設けられているので、暖房端末で比較的低温になった温水を貯湯タンク内の下部領域に戻すことができる。したがって、上記貯湯タンク内の上部領域の比較的高温の温水が、暖房端末で比較的低温になった温水と混ざって低温になるのを防ぐことできる。 In addition, since the return port is provided at the lower part of the hot water storage tank, the hot water having a relatively low temperature at the heating terminal can be returned to the lower area in the hot water storage tank. Therefore, it is possible to prevent the relatively hot water in the upper region in the hot water storage tank from being mixed with the warm water that has become relatively cold at the heating terminal.
 一実施形態の暖房給湯装置では、
 上記貯湯タンクの下部に、上記貯湯タンク内に貯められた温水を上記ヒートポンプユニットに供給するための供給口が設けられている。
In the heating and hot water supply apparatus of one embodiment,
A supply port for supplying hot water stored in the hot water storage tank to the heat pump unit is provided at a lower portion of the hot water storage tank.
 上記実施形態の暖房給湯装置によれば、上記暖房端末から出た温水を貯湯タンクに戻すための戻し口が貯湯タンクの貯湯タンクの下部にあることと、貯湯タンク内に貯められた温水をヒートポンプユニットに供給するための供給口が貯湯タンクの下部にあることとが相俟って、ヒートポンプユニットには常に比較的低温の温水が供給されるため、ヒートポンプユニットのCOP(成績係数)が向上する。特に、上記ヒートポンプユニットの冷媒がCO冷媒であると、COPが向上する。 According to the heating and hot water supply apparatus of the above embodiment, the return port for returning the hot water discharged from the heating terminal to the hot water storage tank is located below the hot water storage tank of the hot water storage tank, and the hot water stored in the hot water storage tank is heat pumped Coupled with the fact that the supply port for supplying to the unit is at the lower part of the hot water storage tank, the heat pump unit is always supplied with relatively low temperature hot water, so the COP (coefficient of performance) of the heat pump unit is improved. . In particular, when the refrigerant of the heat pump unit is a CO 2 refrigerant, COP is improved.
 一実施形態の暖房給湯装置では、
 上記貯湯タンク内の上下方向の略中央部にはヒータが配置されている。
In the heating and hot water supply apparatus of one embodiment,
A heater is disposed at a substantially central portion in the vertical direction in the hot water storage tank.
 上記実施形態の暖房給湯装置によれば、上記貯湯タンク内にヒータを配置しているので、ヒートポンプユニットの故障時に、貯湯タンク内の温水の温度を、ヒータで保ったり、上げたりすることができる。 According to the heating and hot water supply apparatus of the above embodiment, since the heater is arranged in the hot water storage tank, the temperature of the hot water in the hot water storage tank can be maintained or raised by the heater when the heat pump unit fails. .
 また、上記ヒートポンプユニットが温水に与える熱量が不足している時、貯湯タンク内にヒータがあるので、ヒータがその不足分の熱量を温水に供給することができる。 Also, when the amount of heat given to the hot water by the heat pump unit is insufficient, there is a heater in the hot water storage tank, so the heater can supply the shortage of heat to the hot water.
 また、上記ヒータは貯湯タンク内の上下方向の略中央部に配置されているので、主として、ヒータよりも上方にある、貯湯タンク内の上部領域の温水を加熱することになる。このとき、上記貯湯タンク内の上部領域の温水は、元々、貯湯タンク内の下部領域の温水に比べて高温だから、ヒータの加熱によって短時間でさらに高温となる。 In addition, since the heater is disposed at a substantially central portion in the vertical direction in the hot water storage tank, the hot water in the upper region in the hot water storage tank, which is above the heater, is mainly heated. At this time, since the hot water in the upper region in the hot water storage tank is originally higher in temperature than the hot water in the lower region in the hot water storage tank, it becomes higher in a short time by heating the heater.
 したがって、暖房負荷が瞬間的に増大しても、上記貯湯タンク内の上部領域でさらに高温となった温水を暖房端末に即座に送ることができる。 Therefore, even if the heating load increases momentarily, the hot water having a higher temperature in the upper region in the hot water storage tank can be immediately sent to the heating terminal.
 一実施形態の暖房給湯装置では、
 上記貯湯タンクの上下方向の略中央部に、上記貯湯タンク内に貯められた温水を取り出すための第2取水口が、上記ヒータ近傍かつ上方に位置するように設けられ、
 上記循環回路は上記第2取水口に接続されている。
In the heating and hot water supply apparatus of one embodiment,
A second water intake for taking out hot water stored in the hot water storage tank is provided at a substantially central portion in the vertical direction of the hot water storage tank so as to be positioned near and above the heater,
The circulation circuit is connected to the second water intake.
 上記実施形態の暖房給湯装置によれば、暖房運転時、暖房負荷が瞬間的に増大すると、貯湯タンク内の温水をヒータで高温にし、この高温の温水を循環回路の第2取水口から取り出して暖房端末に送る。このとき、上記第2取水口は、貯湯タンクの上下方向の略中央部に設けられて、ヒータ近傍かつ上方に位置しているので、ヒータで加熱した直後の温水を取り出して暖房端末に送ることができる。 According to the heating and hot water supply apparatus of the above embodiment, when the heating load momentarily increases during the heating operation, the hot water in the hot water storage tank is heated to a high temperature by the heater, and this hot water is taken out from the second intake port of the circulation circuit. Send to heating terminal. At this time, the second water intake port is provided at a substantially central portion in the vertical direction of the hot water storage tank and is positioned near and above the heater, so that the hot water immediately after being heated by the heater is taken out and sent to the heating terminal. Can do.
 したがって、暖房負荷が瞬間的に増大しても、暖房負荷の瞬間的な増大に迅速かつ確実に対応することができる。 Therefore, even if the heating load increases momentarily, the instantaneous increase in heating load can be quickly and reliably handled.
 一実施形態の暖房給湯装置では、
 上記熱交換器は上記貯湯タンク内の下部領域から上部領域に渡って配置されていて、給湯水が上記貯湯タンクの下部に入って上記貯湯タンクの上部から出る。
In the heating and hot water supply apparatus of one embodiment,
The heat exchanger is disposed from the lower region to the upper region in the hot water storage tank, and hot water enters the lower portion of the hot water storage tank and exits from the upper portion of the hot water storage tank.
 上記実施形態の暖房給湯装置によれば、上記熱交換器は貯湯タンク内の下部領域から上部領域に渡って配置されていて、給湯水が貯湯タンクの下部に入って貯湯タンクの上部から出るので、給湯水は熱交換器内を流れる間に貯湯タンク内の温水で十分に加熱される。したがって、上記熱交換器から高温の給湯水を出湯できる。 According to the heating and hot water supply apparatus of the above embodiment, the heat exchanger is arranged from the lower region to the upper region in the hot water storage tank, and hot water enters the lower part of the hot water storage tank and exits from the upper part of the hot water storage tank. The hot water is sufficiently heated by the hot water in the hot water storage tank while flowing through the heat exchanger. Therefore, hot hot water can be discharged from the heat exchanger.
 一実施形態の暖房給湯装置では、
 上記温度調節部は、上記貯湯タンクと上記暖房端末との間の上記循環回路に設けられて回転速度が調整可能な循環ポンプを含む。
In the heating and hot water supply apparatus of one embodiment,
The temperature adjustment unit includes a circulation pump provided in the circulation circuit between the hot water storage tank and the heating terminal and capable of adjusting a rotation speed.
 上記実施形態の暖房給湯装置によれば、上記循環ポンプは、貯湯タンクと暖房端末の間の循環回路に設けられて回転速度が調整可能であるから、暖房端末へ供給する温水の流量を容易かつ確実に調節することができる。 According to the heating and hot water supply apparatus of the above embodiment, the circulation pump is provided in a circulation circuit between the hot water storage tank and the heating terminal, and the rotation speed can be adjusted. Can be adjusted reliably.
 一実施形態の暖房給湯装置では、
 上記温度調節部は、上記貯湯タンクを出て上記暖房端末に向かう温水と、上記暖房端末から出た温水とを混合して、上記暖房端末に供給する混合弁を含む。
In the heating and hot water supply apparatus of one embodiment,
The temperature adjusting unit includes a mixing valve that mixes hot water that leaves the hot water storage tank and travels toward the heating terminal and hot water that has exited from the heating terminal and supplies the hot water to the heating terminal.
 上記実施形態の暖房給湯装置によれば、上記混合弁は、貯湯タンクを出て暖房端末に向かう温水と、暖房端末から出た温水とを混合して、暖房端末に供給するので、貯湯タンク内の温水とは異なる温度の温水を暖房端末に確実に供給することができる。 According to the heating and hot water supply apparatus of the above embodiment, the mixing valve mixes hot water that goes out of the hot water storage tank and goes to the heating terminal and hot water that comes out of the heating terminal, and supplies the hot water to the heating terminal. It is possible to reliably supply hot water having a temperature different from that of the hot water to the heating terminal.
 一実施形態の暖房給湯装置は、
 上記ヒートポンプユニットからの温水を、上記貯湯タンクの上部、あるいは、上記貯湯タンクの下部に供給可能な沸き上げ用三方弁を備えている。
The heating hot water supply apparatus of one embodiment
A boiling three-way valve capable of supplying hot water from the heat pump unit to the upper part of the hot water storage tank or the lower part of the hot water storage tank is provided.
 上記実施形態の暖房給湯装置によれば、上記沸き上げ用三方弁が、ヒートポンプユニットからの温水を貯湯タンクの下部に供給することにより、給湯運転および暖房運転の停止中に貯湯タンク内の温水の凍結を効果的に防ぐことができる。 According to the heating and hot water supply apparatus of the above embodiment, the boiling three-way valve supplies the hot water from the heat pump unit to the lower part of the hot water storage tank, so that the hot water in the hot water storage tank is stopped while the hot water supply operation and the heating operation are stopped. Freezing can be effectively prevented.
 一実施形態の暖房給湯装置では、
 上記外気温度の予め定められた基準値は、上記暖房端末を設置する住宅の断熱性能、床面積によって定められている。
In the heating and hot water supply apparatus of one embodiment,
The predetermined reference value of the outside air temperature is determined by the heat insulating performance and floor area of the house where the heating terminal is installed.
 上記実施形態の暖房給湯装置によれば、上記外気温度の予め定められた基準値は、上記暖房端末を設置する住宅の断熱性能、床面積によって定められているので、その基準値を用いて適切な暖房を室内に行うことができる。 According to the heating and hot water supply apparatus of the above embodiment, the predetermined reference value of the outside air temperature is determined by the heat insulation performance and floor area of the house where the heating terminal is installed. Heating can be performed indoors.
 一実施形態の暖房給湯装置では、
 上記循環回路は、上記往き温水が流れる往き配管と、上記戻り温水が流れる戻り配管とを有し、
 一端が上記往き配管に接続される一方、他端が上記戻り配管に接続されたバイパス流路を備えている。
In the heating and hot water supply apparatus of one embodiment,
The circulation circuit has an outgoing pipe through which the outgoing hot water flows, and a return pipe through which the return hot water flows,
One end is connected to the outgoing pipe, and the other end is provided with a bypass channel connected to the return pipe.
 上記実施形態の暖房給湯装置によれば、上記バイパス流路を備えているので、暖房端末を出た戻り温水の一部がバイパス流路を介して往き配管へ流れる。 According to the heating and hot water supply apparatus of the above-described embodiment, since the bypass flow path is provided, a part of the return warm water that has exited the heating terminal flows to the outgoing pipe through the bypass flow path.
 したがって、上記貯湯タンク内に流入する戻り温水の量が少なくなるので、貯湯タンク内の温水の攪拌を防ぐことができる。 Therefore, since the amount of the return hot water flowing into the hot water storage tank is reduced, the hot water in the hot water storage tank can be prevented from being stirred.
 また、上記貯湯タンク内の温水の攪拌を防ぐことによって、貯湯タンクの下部内の温水を比較的低温に保つことができるので、貯湯タンクの下部内の温水をヒートポンプユニットに送って、ヒートポンプユニットのCOPを高く保つことができる。 Further, by preventing the hot water in the hot water storage tank from being stirred, the hot water in the lower part of the hot water storage tank can be kept at a relatively low temperature, so the hot water in the lower part of the hot water storage tank is sent to the heat pump unit, COP can be kept high.
 一実施形態の暖房給湯装置では、
 上記バイパス流路の他端が上記戻り配管に接続する点と、上記貯湯タンクとの間に、上記戻り温水の流通を停止させる流通停止部が設けられている。
In the heating and hot water supply apparatus of one embodiment,
Between the point where the other end of the bypass flow path is connected to the return pipe and the hot water storage tank, there is provided a flow stop section for stopping the flow of the return hot water.
 上記実施形態の暖房給湯装置によれば、上記流通停止部が、バイパス流路の他端が戻り配管に接続する点と、貯湯タンクとの間に設けられているので、その間の戻り温水の流通を停止させると、戻り温水は、貯湯タンク内に流入せず、貯湯タンク内の温水の攪拌を引き起こさない。 According to the heating and hot water supply apparatus of the above embodiment, since the circulation stop part is provided between the point where the other end of the bypass flow path is connected to the return pipe and the hot water storage tank, the return hot water flows between them. When the operation is stopped, the return hot water does not flow into the hot water storage tank and does not cause the hot water in the hot water storage tank to be stirred.
 したがって、上記貯湯タンクの下部内の温水を確実に比較的低温に保つことができるので、貯湯タンクの下部内の温水をヒートポンプユニットに送って、ヒートポンプユニットのCOPを確実に高く保つことができる。 Therefore, since the hot water in the lower part of the hot water storage tank can be reliably kept at a relatively low temperature, the hot water in the lower part of the hot water storage tank can be sent to the heat pump unit, and the COP of the heat pump unit can be reliably kept high.
 一実施形態の暖房給湯装置では、
 上記ヒートポンプユニットはCO冷媒を使用する。
In the heating and hot water supply apparatus of one embodiment,
The heat pump unit uses a CO 2 refrigerant.
 上記実施形態の暖房給湯装置によれば、上記ヒートポンプユニットはCO冷媒を使用するので、ヒートポンプユニットは高温出湯できる。 According to the heating and hot water supply apparatus of the above-described embodiment, the heat pump unit uses CO 2 refrigerant, so that the heat pump unit can discharge hot water at a high temperature.
 本発明の暖房給湯装置によれば、貯湯タンクに貯えた温水を循環経路を介して暖房端末に送ることによって、その温水の熱を熱交換器を経由しないで暖房端末に効率良く供給できるので、例えば北欧等の冬場24時間暖房運転するような暖房負荷の高い地域で十分な暖房を行うことができる。 According to the heating hot water supply apparatus of the present invention, by sending the hot water stored in the hot water storage tank to the heating terminal via the circulation path, the heat of the hot water can be efficiently supplied to the heating terminal without passing through the heat exchanger. For example, sufficient heating can be performed in an area with a high heating load such as a 24-hour heating operation in winter such as Northern Europe.
 また、上記温度調節部が、暖房端末から出る温水の温度を低く調節することによって、貯湯タンク内の温水の温度を低温にしてヒートポンプユニットに供給できるので、ヒートポンプユニットのCOPを高くすることができる。 Moreover, since the said temperature control part adjusts the temperature of the warm water which comes out of a heating terminal low, the temperature of the warm water in a hot water storage tank can be made low temperature and it can supply to a heat pump unit, Therefore COP of a heat pump unit can be made high. .
 また、上記温度調節部が、暖房端末から出る温水の温度を高く調節することによって、貯湯タンク内の温水の温度を高温にして暖房端末に供給できるので、暖房能力を高くすることができる。 Also, since the temperature adjusting unit adjusts the temperature of the hot water coming out of the heating terminal to be high, the temperature of the hot water in the hot water storage tank can be increased and supplied to the heating terminal, so that the heating capacity can be increased.
図1は本発明の第1実施形態の暖房給湯装置の模式図である。FIG. 1 is a schematic diagram of a heating and hot water supply apparatus according to a first embodiment of the present invention. 図2は上記第1実施形態の暖房給湯装置の制御を説明するためのグラフである。FIG. 2 is a graph for explaining the control of the heating and hot water supply apparatus of the first embodiment. 図3は本発明の第2実施形態の暖房給湯装置の模式図である。FIG. 3 is a schematic diagram of a heating and hot water supply apparatus according to a second embodiment of the present invention. 図4は上記第2実施形態の暖房給湯装置の暖房運転制御のフローチャートである。FIG. 4 is a flowchart of the heating operation control of the heating and hot water supply apparatus according to the second embodiment. 図5は本発明の第3実施形態の暖房給湯装置の模式図である。FIG. 5 is a schematic diagram of a heating and hot water supply apparatus according to a third embodiment of the present invention. 図6は上記第3実施形態の暖房給湯装置の暖房運転制御のフローチャートである。FIG. 6 is a flowchart of the heating operation control of the heating and hot water supply apparatus according to the third embodiment. 図7は本発明の第4実施形態の暖房給湯装置の模式図である。FIG. 7 is a schematic diagram of a heating and hot water supply apparatus according to a fourth embodiment of the present invention. 図8は上記第4実施形態の暖房給湯装置の暖房運転制御のフローチャートである。FIG. 8 is a flowchart of the heating operation control of the heating and hot water supply apparatus of the fourth embodiment. 図9は上記第4実施形態の暖房給湯装置の暖房運転制御のフローチャートである。FIG. 9 is a flowchart of the heating operation control of the heating and hot water supply apparatus according to the fourth embodiment. 図10は上記第1実施形態、第2実施形態および第4実施形態の暖房給湯装置の他の暖房運転制御のフローチャートである。FIG. 10 is a flowchart of another heating operation control of the heating hot water supply apparatus of the first embodiment, the second embodiment, and the fourth embodiment.
 以下、本発明の暖房給湯装置を図示の実施の形態により詳細に説明する。 Hereinafter, the heating and hot water supply apparatus of the present invention will be described in detail with reference to the illustrated embodiments.
 (第1実施形態)
 図1は、本発明の第1実施形態の暖房給湯装置の構成を示す模式図である。
(First embodiment)
Drawing 1 is a mimetic diagram showing composition of a heating hot-water supply device of a 1st embodiment of the present invention.
 上記暖房給湯装置は、ヒートポンプユニット1、貯湯タンク2、給湯用熱交換器3および暖房用循環回路4を備えている。なお、上記給湯用熱交換器3は熱交換器の一例であり、暖房用循環回路4は循環回路の一例である。 The heating and hot water supply apparatus includes a heat pump unit 1, a hot water storage tank 2, a hot water supply heat exchanger 3, and a heating circulation circuit 4. The hot water supply heat exchanger 3 is an example of a heat exchanger, and the heating circulation circuit 4 is an example of a circulation circuit.
 上記ヒートポンプユニット1は冷媒回路16および電動送風機17を備え、貯湯タンク2内の水を沸き上げて温水にする。 The heat pump unit 1 includes a refrigerant circuit 16 and an electric blower 17 and boiles water in the hot water storage tank 2 to make warm water.
 上記冷媒回路16は、蒸発器11、圧縮機12、凝縮器13、過冷却熱交換器14および膨張弁15を有している。この冷媒回路16ではCO冷媒が循環する。 The refrigerant circuit 16 includes an evaporator 11, a compressor 12, a condenser 13, a supercooling heat exchanger 14, and an expansion valve 15. In the refrigerant circuit 16, CO 2 refrigerant circulates.
 上記CO冷媒は、蒸発器11において、電動送風機17から送られた空気中の熱を吸収して高温となる。そして、上記CO冷媒は、圧縮機12で圧縮されてさらに高温となった後、凝縮器13に到達して熱を放出する。これにより、上記CO冷媒は、凝縮器13に入る前に比べて低温となって、過冷却熱交換器14へ向かって流れる。そして、上記CO冷媒は、その過冷却熱交換器14でさらに冷却された後、膨張弁15を経て、蒸発器11に戻る。 In the evaporator 11, the CO 2 refrigerant absorbs heat in the air sent from the electric blower 17 and becomes high temperature. Then, the CO 2 refrigerant, after further a high temperature is compressed by the compressor 12, and reaches the condenser 13 emits heat. As a result, the CO 2 refrigerant becomes lower in temperature than before entering the condenser 13 and flows toward the supercooling heat exchanger 14. The CO 2 refrigerant is further cooled by the supercooling heat exchanger 14 and then returns to the evaporator 11 via the expansion valve 15.
 また、上記ヒートポンプユニット1は、沸き上げ用循環回路5を介して貯湯タンク2と接続されている。 The heat pump unit 1 is connected to a hot water storage tank 2 through a boiling circulation circuit 5.
 上記沸き上げ用循環回路5には、沸き上げ用循環ポンプ51および沸き上げ用三方弁52が設けられている。そして、上記沸き上げ用循環回路5は、第2暖房往き接続口42と、沸き上げ用の供給口53と、凍結防止水戻し接続口54とに接続されている。なお、上記第2暖房往き接続口42は第1取水口の一例である。 The boiling circulation circuit 5 is provided with a boiling circulation pump 51 and a boiling three-way valve 52. The boiling circulation circuit 5 is connected to the second heating forward connection port 42, the heating supply port 53, and the antifreezing water return connection port 54. In addition, the said 2nd heating outgoing connection port 42 is an example of a 1st water intake port.
 上記供給口53は貯湯タンク2の下部に設けられている。これにより、上記貯湯タンク2内の下部領域にある比較的低温の温水を、供給口53を介して沸き上げ用循環ポンプ51に供給することができる。 The supply port 53 is provided in the lower part of the hot water storage tank 2. Thereby, the relatively low temperature hot water in the lower region in the hot water storage tank 2 can be supplied to the boiling circulation pump 51 through the supply port 53.
 上記沸き上げ用循環ポンプ51は、貯湯タンク2内の下部領域にある比較的低温の温水を吸い込み、この吸い込んだ比較的低温の温水を凝縮器13へ向けて吐出する。 The boiling circulation pump 51 sucks the relatively low temperature hot water in the lower region in the hot water storage tank 2 and discharges the sucked relatively low temperature hot water toward the condenser 13.
 上記凝縮器13ではCO冷媒と温水とが熱交換されて、その温水が高温になる。この凝縮器13を出た高温の温水は沸き上げ用三方弁52へ向かう。 In the condenser 13, the CO 2 refrigerant and hot water are heat-exchanged, and the hot water becomes high temperature. The hot hot water exiting the condenser 13 goes to the boiling three-way valve 52.
 上記沸き上げ用三方弁52は、給湯運転中および暖房運転中、凝縮器13からの高温の温水を、第2暖房往き接続口42を介して貯湯タンク2内の上部領域に流す。また、ヒートポンプユニット1の起動時などの際に、まだヒートポンプユニットの凝縮器から出る温水が十分に高温となっていない場合、該温水は貯湯タンク2の上部ではなく、貯湯タンク2の下部に戻されるように沸き上げ用三方弁52が制御される。このように温水の温度により戻り口を切り替えることで、十分に高温になっていない温水が貯湯タンク2の上部に戻って貯湯タンク2内の温度分布が乱れるのを防止できる。 The boiling three-way valve 52 allows hot hot water from the condenser 13 to flow to the upper region in the hot water storage tank 2 through the second heating forward connection port 42 during hot water supply operation and heating operation. In addition, when the heat pump unit 1 is activated, for example, when the hot water coming out of the condenser of the heat pump unit is not sufficiently hot, the hot water is returned not to the upper part of the hot water tank 2 but to the lower part of the hot water tank 2. The boiling three-way valve 52 is controlled so that By switching the return port according to the temperature of the hot water in this way, it is possible to prevent the hot water that is not sufficiently hot from returning to the upper part of the hot water storage tank 2 and disturbing the temperature distribution in the hot water storage tank 2.
 上記貯湯タンク2はヒートポンプユニット1で加熱された温水を貯える。また、上記貯湯タンク2内の上下方向の略中央部にはヒータ6を配置していて、このヒータ6は貯湯タンク2内の温水を直接加熱する。また、図示しないが、上記貯湯タンク2内の各部の温水の温度を検出するため、複数の温度センサを貯湯タンク2に設けている。この複数の温度センサは、貯湯タンク2内の各部の温水の温度を検出し、その温度を示す信号を制御部7に送る。なお、上記制御部7は制御部の一例である。 The hot water storage tank 2 stores hot water heated by the heat pump unit 1. In addition, a heater 6 is disposed at a substantially central portion in the vertical direction in the hot water storage tank 2, and the heater 6 directly heats the hot water in the hot water storage tank 2. Although not shown, a plurality of temperature sensors are provided in the hot water storage tank 2 in order to detect the temperature of hot water in each part in the hot water storage tank 2. The plurality of temperature sensors detect the temperature of hot water in each part in the hot water storage tank 2 and send a signal indicating the temperature to the control unit 7. The control unit 7 is an example of a control unit.
 上記貯湯タンク2内の下部領域の温水の温度を示す信号は、圧縮機12および沸き上げ用循環ポンプ51のON/OFF制御に使用される。つまり、上記制御部7は、貯湯タンク2内の下部領域の温水の温度に基づいて、圧縮機12および沸き上げ用循環ポンプ51のON/OFF制御する。 The signal indicating the temperature of the hot water in the lower region in the hot water storage tank 2 is used for ON / OFF control of the compressor 12 and the boiling circulation pump 51. That is, the control unit 7 controls ON / OFF of the compressor 12 and the boiling circulation pump 51 based on the temperature of the hot water in the lower region in the hot water storage tank 2.
 上記給湯用熱交換器3は、コイル状のパイプから成って、貯湯タンク2内の下部領域から上部領域に渡って配置されている。給湯水は給湯用熱交換器3内を流れることによって加熱される。より詳しくは、上記給湯水は、貯湯タンク2の下部から貯湯タンク2内に入って、貯湯タンク2内の下部領域に配置された給湯用熱交換器3を上方に向かって流れる。そして、上記給湯水は、貯湯タンク2内の上部領域に配置された給湯用熱交換器3を上方に向かって流れた後、貯湯タンク2の上部から貯湯タンク2外に出る。 The heat exchanger 3 for hot water supply is composed of a coiled pipe and is arranged from the lower region to the upper region in the hot water storage tank 2. The hot water is heated by flowing through the hot water heat exchanger 3. More specifically, the hot water enters the hot water storage tank 2 from the lower part of the hot water storage tank 2 and flows upward through the hot water supply heat exchanger 3 arranged in the lower region of the hot water storage tank 2. The hot water flows through the hot water heat exchanger 3 disposed in the upper region of the hot water tank 2 upward, and then flows out of the hot water tank 2 from the upper part of the hot water tank 2.
 また、上記貯湯タンク2から出た給湯水の温度が高すぎた場合、給湯用混合弁31を開いて、貯湯タンク2から出た給湯水と、貯湯タンク2に流入する前の給湯水とを混ぜ合わせる。これにより、上記貯湯タンク2から出た給湯水の温度を下げることができる。 If the temperature of the hot water supplied from the hot water storage tank 2 is too high, the hot water mixing valve 31 is opened, and the hot water supplied from the hot water storage tank 2 and the hot water before flowing into the hot water storage tank 2 are separated. Mix together. Thereby, the temperature of the hot water supplied from the hot water storage tank 2 can be lowered.
 上記暖房用循環回路4は、貯湯タンク2内に貯められた温水を貯湯タンク2外の複数のラジエタ8を経由させた後、再び、貯湯タンク2内に戻して循環させるためのものである。そして、上記暖房用循環回路4は、第1,第2暖房往き接続口41,42と暖房戻り接続口43とに接続されている。なお、上記第1暖房往き接続口41は第2取水口の一例である。なお、上記ラジエタ8は暖房端末の一例である。暖房端末として、これに代えて、あるいは、これと併せて、床暖房パネルやファンコイルなどを用いてもよい。 The heating circulation circuit 4 is for circulating the hot water stored in the hot water storage tank 2 through the plurality of radiators 8 outside the hot water storage tank 2 and then returning it to the hot water storage tank 2 again. The heating circulation circuit 4 is connected to the first and second heating forward connection ports 41 and 42 and the heating return connection port 43. In addition, the said 1st heating outgoing connection port 41 is an example of a 2nd water intake port. The radiator 8 is an example of a heating terminal. As a heating terminal, a floor heating panel, a fan coil, or the like may be used instead of or in combination with this.
 上記第1暖房往き接続口41は、貯湯タンク2内の温水を取り出すためのものである。この第1暖房往き接続口41は、貯湯タンク2の上下方向の略中央部に設けられて、ヒータ6近傍かつ上方に位置している。これにより、上記ヒータ6で加熱された直後の温水を、第1暖房往き接続口41から取り出し、複数のラジエタ8に送ることができる。 The first heating outgoing connection port 41 is for taking out hot water in the hot water storage tank 2. The first heating / outgoing connection port 41 is provided at a substantially central portion in the vertical direction of the hot water storage tank 2, and is positioned near and above the heater 6. Thereby, the hot water immediately after being heated by the heater 6 can be taken out from the first heating forward connection port 41 and sent to the plurality of radiators 8.
 上記第2暖房往き接続口42も、上記第1暖房往き接続口41と同様に、貯湯タンク2内の温水を取り出すためのものである。この第2暖房往き接続口42は貯湯タンク2の上部に設けられている。これにより、上記貯湯タンク2内の上部領域の温水を、第2暖房往き接続口42から取り出し、複数のラジエタ8へ送ることができる。また、上記第2暖房往き接続口42は沸き上げ戻り接続口を兼用している。 The second heating forward connection port 42 is also for taking out hot water in the hot water storage tank 2 in the same manner as the first heating forward connection port 41. The second heating / outgoing connection port 42 is provided in the upper part of the hot water storage tank 2. Thereby, the hot water of the upper area | region in the said hot water storage tank 2 can be taken out from the 2nd heating outgoing connection port 42, and can be sent to the several radiator 8. FIG. The second heating / outgoing connection port 42 is also used as a heating return connection port.
 上記各ラジエタ8は、貯湯タンク2から流れてきた温水の熱を直接取り出し、室内に放出する。そして、上記温水は、低温となり、各ラジエタ8を出て、暖房戻り接続口43へ向かって流れる。 Each radiator 8 directly takes out the heat of the hot water flowing from the hot water storage tank 2 and discharges it into the room. And the said warm water becomes low temperature, leaves each radiator 8, and flows toward the heating return connection port 43. FIG.
 上記暖房戻り接続口43は貯湯タンク2の下部に設けられている。これにより、上記暖房戻り接続口43から出た温水を、貯湯タンク2内の下部領域の温水と混ぜることができる。 The heating return connection port 43 is provided in the lower part of the hot water storage tank 2. Thereby, the hot water which came out of the said heating return connection port 43 can be mixed with the hot water of the lower area | region in the hot water storage tank 2. FIG.
 また、上記暖房用循環回路4には、バイパス配管44、暖房用混合弁45、第1,第2温度センサ46,47、暖房用循環ポンプ48および暖房用三方弁49が設けられている。なお、上記バイパス配管44はバイパス流路の一例、暖房用混合弁45は混合弁の一例、暖房用循環ポンプ48は循環ポンプの一例、第1温度センサ46は往き温水センサの一例、第2温度センサ47は戻り温水センサの一例である。 The heating circulation circuit 4 is provided with a bypass pipe 44, a heating mixing valve 45, first and second temperature sensors 46 and 47, a heating circulation pump 48, and a heating three-way valve 49. The bypass pipe 44 is an example of a bypass flow path, the heating mixing valve 45 is an example of a mixing valve, the heating circulation pump 48 is an example of a circulation pump, the first temperature sensor 46 is an example of an outgoing hot water sensor, and the second temperature. The sensor 47 is an example of a return hot water sensor.
 上記バイパス配管44は、ラジエタ8から暖房戻り接続口43へ流れる温水の一部を暖房用混合弁45へ案内する。 The bypass pipe 44 guides a part of the hot water flowing from the radiator 8 to the heating return connection port 43 to the heating mixing valve 45.
 上記暖房用混合弁45は、貯湯タンク2からの温水が流入する入口と、バイパス配管44からの温水が流入する入口とを有している。詳しくは後述するが、上記暖房用混合弁45の各入口の開度は制御部7によって調節される。 The heating mixing valve 45 has an inlet through which hot water from the hot water storage tank 2 flows and an inlet through which hot water from the bypass pipe 44 flows. Although described in detail later, the opening degree of each inlet of the heating mixing valve 45 is adjusted by the control unit 7.
 上記第1温度センサ46は、貯湯タンク2からラジエタ8へ向かう温水の温度を検出し、この温度を示す信号を制御部7に送る。 The first temperature sensor 46 detects the temperature of the hot water from the hot water storage tank 2 toward the radiator 8 and sends a signal indicating this temperature to the control unit 7.
 上記第2温度センサ47は、ラジエタ8から貯湯タンク2へ向かう温水の温度を検出し、この温度を示す信号を制御部7に送る。 The second temperature sensor 47 detects the temperature of the hot water from the radiator 8 toward the hot water storage tank 2 and sends a signal indicating this temperature to the control unit 7.
 上記制御部7は、外気温度センサ18から、外気温度を示す信号を受けると共に、室内温度センサ(図示せず)から、室内温度を示す信号を受ける。 The control unit 7 receives a signal indicating the outside temperature from the outside temperature sensor 18 and also receives a signal indicating the room temperature from an indoor temperature sensor (not shown).
 上記暖房用循環ポンプ48は、第2暖房往き接続口42または第1暖房往き接続口41を介して貯湯タンク2内の温水を吸い込み、複数のラジエタ8に向けて吐出する。 The heating circulation pump 48 sucks hot water in the hot water storage tank 2 through the second heating outgoing connection port 42 or the first heating outgoing connection port 41 and discharges the hot water toward the radiators 8.
 上記暖房用三方弁49は、貯湯タンク2内の温水の高温領域が第1暖房往き接続口41近傍に存在している場合、第1暖房往き接続口41から温水を取り出す。また、上記暖房用三方弁49は、貯湯タンク2内の温水の高温領域が第1暖房往き接続口41近傍に存在していない場合、第2暖房往き接続口42から温水を取り出す。この暖房用三方弁49の切り替えは制御部7によって行われる。つまり、上記制御部7は、貯湯タンク2内の各部の温水の温度を検出するための複数の温度センサからの信号に基づいて、暖房用三方弁49の切り替えを行う。 The heating three-way valve 49 extracts hot water from the first heating forward connection port 41 when a high temperature region of the hot water in the hot water storage tank 2 is present in the vicinity of the first heating forward connection port 41. Further, the heating three-way valve 49 extracts hot water from the second heating forward connection port 42 when the high temperature region of the hot water in the hot water storage tank 2 does not exist in the vicinity of the first heating forward connection port 41. The control unit 7 switches the heating three-way valve 49. That is, the control unit 7 switches the heating three-way valve 49 based on signals from a plurality of temperature sensors for detecting the temperature of hot water in each part in the hot water storage tank 2.
 上記構成の暖房給湯装置が暖房運転を開始すると、暖房用循環ポンプ48が稼働する。これにより、上記貯湯タンク2に貯えた温水が複数のラジエタ8に送られ、再び、貯湯タンク2に戻る。このとき、上記温水の熱はラジエタ8を介して室内に放出される。すなわち、上記各ラジエタ8は、貯湯タンク2内の温水の熱を直接取り出し、室内に放出する。 When the heating / hot water supply apparatus having the above configuration starts the heating operation, the heating circulation pump 48 is operated. Thereby, the hot water stored in the hot water storage tank 2 is sent to the plurality of radiators 8 and returned to the hot water storage tank 2 again. At this time, the heat of the warm water is released into the room through the radiator 8. That is, each radiator 8 directly takes out the heat of the hot water in the hot water storage tank 2 and discharges it into the room.
 したがって、上記貯湯タンク2内の温水の熱をラジエタ8に効率良く供給できるので、例えば北欧等の暖房負荷の高い地域でも十分な暖房を行うことができる。 Therefore, since the heat of the hot water in the hot water storage tank 2 can be efficiently supplied to the radiator 8, for example, sufficient heating can be performed even in an area with a high heating load such as Northern Europe.
 また、上記給湯用熱交換器3は貯湯タンク2内の下部領域から上部領域に渡って配置されていて、給湯水が貯湯タンク2の下部に入って貯湯タンク2の上部から出るので、給湯水は給湯用熱交換器3内を流れる間に貯湯タンク2内の温水で十分に加熱される。したがって、上記給湯用熱交換器3から高温の給湯水を出湯できる。 The hot water supply heat exchanger 3 is arranged from the lower region to the upper region in the hot water storage tank 2 and hot water enters the lower portion of the hot water storage tank 2 and exits from the upper portion of the hot water storage tank 2. Is sufficiently heated by the hot water in the hot water storage tank 2 while flowing in the hot water heat exchanger 3. Therefore, hot water can be discharged from the hot water supply heat exchanger 3.
 また、上記ラジエタ8で比較的低温になった温水は暖房戻り接続口43から貯湯タンク2内に戻るので、その比較的低温になった温水を貯湯タンク2内の下部領域に戻すことができる。したがって、上記貯湯タンク2内の上部領域の比較的高温の温水が、ラジエタ8で比較的低温になった温水と混ざって低温になるのを防ぐことできる。 In addition, since the warm water having a relatively low temperature by the radiator 8 returns to the hot water storage tank 2 from the heating return connection port 43, the relatively low temperature hot water can be returned to the lower region in the hot water storage tank 2. Therefore, it is possible to prevent the hot water having a relatively high temperature in the upper region in the hot water storage tank 2 from being mixed with the hot water having a relatively low temperature by the radiator 8 to become a low temperature.
 また、上記貯湯タンク2の下部に供給口53が設けられているので、その貯湯タンク2内の下部領域にある比較的低温の温水がヒートポンプユニット1の凝縮器13に供給される。したがって、上記ヒートポンプユニット1のCOPが向上する。 Further, since the supply port 53 is provided in the lower part of the hot water storage tank 2, relatively low temperature hot water in the lower area in the hot water storage tank 2 is supplied to the condenser 13 of the heat pump unit 1. Therefore, the COP of the heat pump unit 1 is improved.
 また、上記ヒートポンプユニット1の故障時には、ヒータ6で貯湯タンク2内の温水を直接加熱することによって、貯湯タンク2内の温水の温度を保ったり、上げたりすることができる。 Further, when the heat pump unit 1 fails, the temperature of the hot water in the hot water storage tank 2 can be maintained or raised by directly heating the hot water in the hot water storage tank 2 with the heater 6.
 また、上記ヒートポンプユニット1が温水に与える熱量が不足している時にも、その不足分の熱量をヒータ6で補うことができる。 In addition, when the heat pump unit 1 has a shortage of heat given to the hot water, the heater 6 can compensate for the shortage of heat.
 また、上記ヒータ6は貯湯タンク2内の上下方向の略中央部に配置されているので、
主として、ヒータ6よりも上方にある温水を加熱することになる。このとき、上記貯湯タンク2内の上部領域の温水は、元々、貯湯タンク2内の下部領域の温水に比べて高温だから、ヒータ6の加熱によって短時間でさらに高温となる。
Moreover, since the heater 6 is disposed at a substantially central portion in the vertical direction in the hot water storage tank 2,
Mainly, the hot water above the heater 6 is heated. At this time, since the hot water in the upper region in the hot water storage tank 2 is originally higher in temperature than the hot water in the lower region in the hot water storage tank 2, the hot water is further heated in a short time by the heating of the heater 6.
 したがって、暖房負荷が瞬間的に増大しても、上記貯湯タンク2内の上部領域でさらに高温となった温水をラジエタ8に即座に送ることができる。 Therefore, even if the heating load increases momentarily, the hot water having a higher temperature in the upper region in the hot water storage tank 2 can be immediately sent to the radiator 8.
 また、暖房運転時、暖房負荷が瞬間的に増大すると、貯湯タンク2内の温水をヒータ6で高温にし、この高温の温水を暖房用循環回路4の第1暖房往き接続口41から取り出してラジエタ8に送る。このとき、上記第1暖房往き接続口41は、貯湯タンク2の上下方向の略中央部に設けられて、ヒータ6近傍かつ上方に位置しているので、ヒータ6で加熱した直後の温水を取り出してラジエタ8に送ることができる。 Further, when the heating load increases momentarily during the heating operation, the hot water in the hot water storage tank 2 is heated to a high temperature by the heater 6, and this high temperature hot water is taken out from the first heating forward connection port 41 of the heating circulation circuit 4. Send to 8. At this time, the first heating / outgoing connection port 41 is provided at a substantially central portion in the vertical direction of the hot water storage tank 2 and is located near and above the heater 6, so that the hot water immediately after being heated by the heater 6 is taken out. Can be sent to the radiator 8.
 したがって、暖房負荷が瞬間的に増大しても、暖房負荷の瞬間的な増大に迅速かつ確実に対応することができる。 Therefore, even if the heating load increases momentarily, the instantaneous increase in heating load can be quickly and reliably handled.
 また、上記ヒートポンプユニット1は、冷媒としてCO冷媒を使用するので、高温出湯できる。 Further, the heat pump unit 1, because it uses CO 2 refrigerant as refrigerant, can be high temperature hot water.
 また、上記制御部7は、外気温度センサ18および第1,第2温度センサ46,47からの信号に基づき、暖房用混合弁45の2つの入口の夫々の開度を調節したり、暖房用循環ポンプ48の回転速度を調節したりする。 The control unit 7 adjusts the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, or for heating. The rotational speed of the circulation pump 48 is adjusted.
 その結果、上記各ラジエタ8へ入る温水の温度(以下、「暖房往き温度」と言う。)、または、各ラジエタ8から出る温水の温度(以下、「暖房戻り温度」と言う。)を調整することができる。 As a result, the temperature of warm water entering each radiator 8 (hereinafter referred to as “heating heating temperature”) or the temperature of warm water exiting from each radiator 8 (hereinafter referred to as “heating return temperature”) is adjusted. be able to.
 例えば、上記制御部7が、暖房用混合弁45の貯湯タンク2側の入口の開度に対して、暖房用混合弁45のバイパス配管44側の入口の開度を小さくすると、貯湯タンク2側からの高温の温水量に比べて、バイパス配管44側からの低温の温水量が少なくなる。その結果、上記暖房往き温度を高くすることができる。 For example, when the control unit 7 reduces the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side relative to the opening degree of the inlet of the heating mixing valve 45 on the hot water storage tank 2 side, Compared with the high temperature hot water amount from the low temperature, the low temperature hot water amount from the bypass piping 44 side decreases. As a result, the heating temperature can be increased.
 逆に、上記制御部7が、暖房用混合弁45の貯湯タンク2側の入口の開度に対して、暖房用混合弁45のバイパス配管44側の入口の開度を大きくすると、貯湯タンク2側からの高温の温水量に比べて、バイパス配管44側からの低温の温水量が多くなる。その結果、上記暖房往き温度を低くすることができる。 Conversely, when the controller 7 increases the opening degree of the heating mixing valve 45 on the bypass piping 44 side relative to the opening degree of the heating mixing valve 45 on the hot water storage tank 2 side, Compared to the high-temperature hot water amount from the side, the low-temperature hot water amount from the bypass pipe 44 side increases. As a result, the heating temperature can be lowered.
 また、上記制御部7が暖房用循環ポンプ48の回転速度を上げると、各ラジエタ8へ入る温水の量が多くなる。その結果、上記各ラジエタ8で温水が下がり難くなり、暖房戻り温度を高くすることができる。 Further, when the control unit 7 increases the rotational speed of the heating circulation pump 48, the amount of hot water entering each radiator 8 increases. As a result, it is difficult for hot water to drop in each of the radiators 8, and the heating return temperature can be increased.
 逆に、上記制御部7が暖房用循環ポンプ48の回転速度を下げると、各ラジエタ8へ入る温水の量が少なくなる。その結果、上記各ラジエタ8で温水が下がり易くなり、暖房戻り温度を低くすることができる。 Conversely, when the control unit 7 decreases the rotational speed of the heating circulation pump 48, the amount of hot water entering each radiator 8 decreases. As a result, the warm water can be easily lowered by the radiators 8 and the heating return temperature can be lowered.
 また、上記制御部7は、外気温度センサ18からの信号に基づき、外気温度センサ18が検出した外気温度が予め定めた基準値以下であって暖房負荷が比較的大きいと判断すると、暖房能力を高くする制御を優先的に行う。 Further, when the control unit 7 determines that the outside air temperature detected by the outside air temperature sensor 18 is equal to or less than a predetermined reference value and the heating load is relatively large, based on the signal from the outside air temperature sensor 18, the heating capacity is increased. Priority is given to higher control.
 また、上記制御部7は、外気温度センサ18からの信号に基づき、外気温度センサ18が検出した外気温度が予め定めた基準値よりも高くて暖房負荷が比較的小さいと判断すると、ヒートポンプユニット1のCOPを向上させる制御を優先的に行う。 When the control unit 7 determines that the outside air temperature detected by the outside air temperature sensor 18 is higher than a predetermined reference value and the heating load is relatively small, based on the signal from the outside air temperature sensor 18, the heat pump unit 1. The control for improving the COP is preferentially performed.
 上記基準値は、ラジエタ8を設置する住宅の断熱性能、床面積によって定められている。これにより、上記暖房能力を高くする制御を優先的に行うか否か、あるいは、ヒートポンプユニット1のCOPを向上させる制御を優先的に行うか否かが、的確に判断される。すなわち、上記室内に対して適切な暖房を行うことができる。 The above reference value is determined by the heat insulation performance and floor area of the house where the radiator 8 is installed. As a result, it is accurately determined whether or not the control for increasing the heating capacity is preferentially performed or the control for improving the COP of the heat pump unit 1 is preferentially performed. That is, appropriate heating can be performed for the room.
 以下、図2を用いて、上記暖房能力を高くする制御(暖房戻り温度制御)と、ヒートポンプユニット1のCOPを向上させる制御(暖房往き温度制御)とについてより詳しく説明する。 Hereinafter, the control for increasing the heating capacity (heating return temperature control) and the control for improving the COP of the heat pump unit 1 (heating forward temperature control) will be described in more detail with reference to FIG.
 上記暖房負荷が比較的大きい場合(図2において暖房負荷が点線より左側となる場合)、制御部7は、暖房負荷に応じて、暖房戻り温度を変更して、暖房往き温度を例えば80℃に保つ。このとき、上記暖房戻り温度は、暖房負荷の増加に伴って上げていくが、例えば50℃を最大値とする。 When the heating load is relatively large (when the heating load is on the left side of the dotted line in FIG. 2), the control unit 7 changes the heating return temperature according to the heating load and sets the heating forward temperature to 80 ° C., for example. keep. At this time, the heating return temperature increases as the heating load increases, and for example, 50 ° C. is set as the maximum value.
 したがって、上記各ラジエタ8には80℃の温水が入るので、暖房能力を高くすることができる。 Therefore, since each of the radiators 8 contains hot water of 80 ° C., the heating capacity can be increased.
 なお、上記暖房往き温度を80℃に保つ際、制御部7は、外気温度センサ18および第1,第2温度センサ46,47からの信号に基づき、暖房用混合弁45の2つの入口の夫々の開度を調節するか、あるいは、暖房用循環ポンプ48の回転速度を調節する。また、その際、上記制御部7は、外気温度センサ18および第1,第2温度センサ46,47からの信号に基づき、暖房用混合弁45の2つの入口の夫々の開度と、暖房用循環ポンプ48の回転速度とを調節してもよいのは勿論である。 When the heating temperature is kept at 80 ° C., the control unit 7 determines the two inlets of the heating mixing valve 45 based on signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47. Or the rotation speed of the heating circulation pump 48 is adjusted. Further, at that time, the control unit 7 determines the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, and for heating. Of course, the rotational speed of the circulation pump 48 may be adjusted.
 要するに、上記制御部7は、暖房用混合弁45と暖房用循環ポンプ48との少なくとも一方を制御して、暖房往き温度を80℃に保てばよい。 In short, the control unit 7 may control at least one of the heating mixing valve 45 and the heating circulation pump 48 to keep the heating forward temperature at 80 ° C.
 逆に、上記暖房負荷が比較的小さい場合(図2において暖房負荷が点線より右側となる場合)、制御部7は、暖房負荷に応じて、暖房往き温度を変更して、暖房戻り温度を例えば30℃に保つ。このとき、上記暖房往き温度は暖房負荷の減少に伴って下がるようにする。 Conversely, when the heating load is relatively small (when the heating load is on the right side of the dotted line in FIG. 2), the control unit 7 changes the heating forward temperature according to the heating load and sets the heating return temperature, for example, Keep at 30 ° C. At this time, the heating-out temperature is lowered as the heating load decreases.
 その結果、上記貯湯タンク2内の下部領域には30℃の温水が戻るので、貯湯タンク2内の下部領域の温水の温度が比較的低温に保たれる。 As a result, 30 ° C. warm water returns to the lower region in the hot water storage tank 2, so that the temperature of the hot water in the lower region in the hot water storage tank 2 is kept relatively low.
 したがって、上記貯湯タンク2内の下部領域にある比較的低温の温水がヒートポンプユニット1の凝縮器13に供給されるので、ヒートポンプユニット1のCOP(成績係数)を高くすることができる。 Therefore, since the relatively low temperature hot water in the lower region in the hot water storage tank 2 is supplied to the condenser 13 of the heat pump unit 1, the COP (coefficient of performance) of the heat pump unit 1 can be increased.
 なお、上記暖房戻り温度を30℃に保つ際、制御部7は、外気温度センサ18および第1,第2温度センサ46,47からの信号に基づき、暖房用混合弁45の2つの入口の夫々の開度を調節するか、あるいは、暖房用循環ポンプ48の回転速度を調節する。また、その際、上記制御部7は、外気温度センサ18および第1,第2温度センサ46,47からの信号に基づき、暖房用混合弁45の2つの入口の夫々の開度と、暖房用循環ポンプ48の回転速度とを調節してもよいのは勿論である。 When the heating return temperature is kept at 30 ° C., the control unit 7 determines the two inlets of the heating mixing valve 45 based on signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, respectively. Or the rotation speed of the heating circulation pump 48 is adjusted. Further, at that time, the control unit 7 determines the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 47, and for heating. Of course, the rotational speed of the circulation pump 48 may be adjusted.
 要するに、上記制御部7は、暖房用混合弁45と暖房用循環ポンプ48との少なくとも一方を制御して、暖房戻り温度を30℃に保てばよい。 In short, the controller 7 may control at least one of the heating mixing valve 45 and the heating circulation pump 48 to keep the heating return temperature at 30 ° C.
 上記第1実施形態では、暖房用混合弁45と暖房用循環ポンプ48とが温度調節部の一例を構成していたが、暖房用混合弁45と暖房用循環ポンプ48との一方のみが温度調節部の一例を構成してもよいし、暖房用混合弁45と暖房用循環ポンプ48との一方と他の機器とが温度調節部の一例を構成してもよい。 In the first embodiment, the heating mixing valve 45 and the heating circulation pump 48 constitute an example of the temperature adjustment unit, but only one of the heating mixing valve 45 and the heating circulation pump 48 adjusts the temperature. An example of the unit may be configured, or one of the heating mixing valve 45 and the heating circulation pump 48 and the other device may configure an example of the temperature adjusting unit.
 上記第1実施形態では、第1温度センサ46と第2温度センサ47とが温度センサの一例を構成していたが、第1温度センサ46と第2温度センサ47との一方のみが温度センサの一例を構成してもよいし、第1温度センサ46と第2温度センサ47と他の温度センサ(例えば外気温度センサ18)等とが温度センサの一例を構成してもよい。 In the first embodiment, the first temperature sensor 46 and the second temperature sensor 47 constitute an example of a temperature sensor, but only one of the first temperature sensor 46 and the second temperature sensor 47 is a temperature sensor. An example may be constituted, and the first temperature sensor 46, the second temperature sensor 47, another temperature sensor (for example, the outside air temperature sensor 18), etc. may constitute an example of the temperature sensor.
 上記第1実施形態では、暖房用三方弁49と暖房用循環ポンプ48との間の暖房用循環回路4に暖房用混合弁45を設けていたが、暖房用循環ポンプ48とラジエタ8との間の暖房用循環回路4に暖房用混合弁45を設けてもよい。つまり、上記暖房用混合弁45は、暖房用循環ポンプ48の吸い込み側に設けてもよいし、暖房用循環ポンプ48の吐出側に設けてもよい。 In the first embodiment, the heating mixing valve 45 is provided in the heating circulation circuit 4 between the heating three-way valve 49 and the heating circulation pump 48, but between the heating circulation pump 48 and the radiator 8. A heating mixing valve 45 may be provided in the heating circulation circuit 4. That is, the heating mixing valve 45 may be provided on the suction side of the heating circulation pump 48 or may be provided on the discharge side of the heating circulation pump 48.
 上記第1実施形態では、沸き上げ用三方弁52は、凍結防止運転中、凝縮器13からの高温の温水を貯湯タンク2内の下部領域に流していたが、貯湯タンク2内の上部領域に流してもよいし、貯湯タンク2内の上部領域および下部領域に流してもよい。 In the first embodiment, the boiling three-way valve 52 flows hot hot water from the condenser 13 to the lower region in the hot water storage tank 2 during the freeze prevention operation, but in the upper region in the hot water storage tank 2. It may flow or may flow to the upper region and the lower region in the hot water storage tank 2.
 上記第1実施形態では、ヒートポンプユニット1はCO冷媒を使用したが、NH冷媒やR22冷媒などを使用してもよい。 In the first embodiment, the heat pump unit 1 uses a CO 2 refrigerant, but an NH 3 refrigerant, an R22 refrigerant, or the like may be used.
 上記第1実施形態では、過冷却熱交換器14を有するヒートポンプユニット1を用いていたが、過冷却熱交換器14を有さないヒートポンプユニットを用いてもよい。 In the first embodiment, the heat pump unit 1 having the supercooling heat exchanger 14 is used, but a heat pump unit not having the supercooling heat exchanger 14 may be used.
 (第2実施形態)
 図3は、本発明の第2実施形態の暖房給湯装置の構成を示す模式図である。また、図3において、図1に示した第1実施形態の構成部と同一の構成部は、図1における構成部の参照番号と同一の参照番号を付して説明を省略するか、簡単に説明する。
(Second Embodiment)
Drawing 3 is a mimetic diagram showing the composition of the heating hot-water supply device of a 2nd embodiment of the present invention. In FIG. 3, the same components as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals as those of the components in FIG. explain.
 上記暖房給湯装置は暖房用循環回路4を備える。この暖房用循環回路4は、往き温水が流れる往き温水が流れる往き配管101と、上記戻り温水が流れる戻り配管102とを有している。ここで、上記往き温水とはラジエタ8へ入る温水ことであり、戻り温水とはラジエタ5から出る温水のことである。 The heating / hot water supply apparatus includes a heating circulation circuit 4. The heating circulation circuit 4 includes a forward pipe 101 through which the forward hot water flows and a return pipe 102 through which the return hot water flows. Here, the outgoing hot water is hot water that enters the radiator 8, and the return hot water is hot water that exits from the radiator 5.
 上記往き配管101と戻り配管102とはバイパス配管44を介して互いに連通可能となっている。つまり、上記バイパス配管44は、一端が往き配管101に接続されている一方、他端が戻り配管102に接続されている。 The forward pipe 101 and the return pipe 102 can communicate with each other via a bypass pipe 44. That is, the bypass pipe 44 has one end connected to the forward pipe 101 and the other end connected to the return pipe 102.
 上記戻り配管102には、戻り温水の温度を検出する第2温度センサ147を設けている。この第2温度センサ147は、上記第1実施形態の第2温度センサ47とは設置場所だけが異なるものである。 The return pipe 102 is provided with a second temperature sensor 147 that detects the temperature of the return hot water. The second temperature sensor 147 differs from the second temperature sensor 47 of the first embodiment only in the installation location.
 より詳しくは、上記第2温度センサ147は、バイパス配管44の他端が戻り配管102に接続する点と、ラジエタ8との間に設けられている。そして、上記第2温度センサ147は、バイパス配管44の他端と戻り配管102との接続点よりも上流側の戻り温水の温度を検出し、この温度を示す信号を制御部7に送る。 More specifically, the second temperature sensor 147 is provided between the point where the other end of the bypass pipe 44 is connected to the return pipe 102 and the radiator 8. The second temperature sensor 147 detects the temperature of the return hot water upstream from the connection point between the other end of the bypass pipe 44 and the return pipe 102, and sends a signal indicating this temperature to the control unit 7.
 上記制御部7は、外気温度センサ18および第1,第2温度センサ46,147からの信号に基づき、暖房用混合弁45の2つの入口の夫々の開度を調節したり、暖房用循環ポンプ48の回転速度を調節したりする。 The control unit 7 adjusts the opening degree of each of the two inlets of the heating mixing valve 45 based on the signals from the outside air temperature sensor 18 and the first and second temperature sensors 46 and 147, and the heating circulation pump. 48 rotation speed is adjusted.
 以下、図4のフローチャートにしたがって、上記暖房給湯装置による暖房運転の制御について説明する。 Hereinafter, the control of the heating operation by the heating and hot water supply apparatus will be described according to the flowchart of FIG.
 上記暖房運転が開始すると、まず、ステップS1で、暖房回路戻り温度が所定の暖房回路戻り目標温度以下であるか否かを判定する。つまり、上記第2温度センサ147の出力に基づき、戻り温水の温度が暖房回路戻り目標温度以下であるか否かを判定する。このステップ1で、戻り温水の温度が暖房回路戻り目標温度以下であると判定した場合は、暖房負荷が比較的大きい場合に相当するので、ステップS2を行った後、ステップS4に進む。一方、上記ステップS1で、戻り温水の温度が暖房回路戻り目標温度以下でないと判定した場合は、暖房負荷が比較的小さい場合に相当するので、ステップS3を行った後、ステップS4に進む。 When the heating operation is started, first, in step S1, it is determined whether or not the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the output of the second temperature sensor 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step 1 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large. Therefore, after performing step S2, the process proceeds to step S4. On the other hand, if it is determined in step S1 that the temperature of the return hot water is not equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively small. Therefore, after performing step S3, the process proceeds to step S4.
 上記ステップS2では、暖房回路流量を増やす制御を行う。具体的には、上記暖房用循環ポンプ48の回転速度を、予め設定された回転速度分上げる。これにより、上記各ラジエタ8に入る往き温水の量が増えるので、各ラジエタ8で十分な暖房を行うことができる。 In step S2, control for increasing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is increased by a preset rotational speed. Thereby, since the quantity of the going hot water which enters each said radiator 8 increases, each radiator 8 can fully heat.
 また、上記ステップS2では、戻り温水の温度が設定値となるように、暖房用混合弁45のバイパス配管44側の入口の開度と、暖房用混合弁45の暖房用三方弁49側の入口の開度とを調整して、往き温水の温度を制御する。なお、上記設定値はユーザインターフェイスにより任意に設定できる。 Further, in step S2, the opening degree of the heating mixing valve 45 on the bypass pipe 44 side and the heating mixing valve 45 side of the heating three-way valve 49 side so that the temperature of the return hot water becomes a set value. The temperature of the incoming hot water is controlled by adjusting the opening of the. The set value can be arbitrarily set by a user interface.
 上記ステップS3では、暖房回路流量を減らす制御を行う。具体的には、上記暖房用循環ポンプ48の回転速度を、予め設定された回転速度分下げる。これにより、上記各ラジエタ8に入る往き温水の量が減るので、各ラジエタ8に無駄に往き温水が供給されるのを防ぐことができる。 In step S3, control for reducing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is decreased by a preset rotational speed. Thereby, since the amount of the outgoing hot water entering each radiator 8 is reduced, it is possible to prevent the outgoing hot water from being supplied to each radiator 8 in vain.
 また、上記ステップS2と同様にステップS3でも、戻り温水の温度が設定値となるように、暖房用混合弁45のバイパス配管44側の入口の開度と、暖房用混合弁45の暖房用三方弁49側の入口の開度とを調整して、往き温水の温度を制御する。なお、上記設定値はユーザインターフェイスにより任意に設定できる。 Further, in step S3 as well as in step S2, the opening degree of the inlet on the bypass pipe 44 side of the heating mixing valve 45 and the three directions for heating of the heating mixing valve 45 are set so that the temperature of the return hot water becomes the set value. The temperature of the incoming hot water is controlled by adjusting the opening of the inlet on the valve 49 side. The set value can be arbitrarily set by a user interface.
 上記ステップS4では、暖房運転の停止操作が行われた否かを判定する。このステップS4で、暖房運転の停止操作が行われた判定すると、暖房運転を終了する。一方、上記ステップS4で、暖房運転の停止操作が行われていないと判定すると、ステップS1に戻る。 In step S4, it is determined whether or not a heating operation stop operation has been performed. If it determines with the stop operation of heating operation having been performed by this step S4, heating operation will be complete | finished. On the other hand, if it determines with the stop operation of heating operation not being performed by said step S4, it will return to step S1.
 したがって、上記ステップS2,S3の設定値を低く設定することによって、暖房負荷に関係なく、低温の戻り温水を貯湯タンク2の下部内に戻すことができる。 Therefore, by setting the set values in steps S2 and S3 low, the low-temperature return hot water can be returned into the lower part of the hot water storage tank 2 regardless of the heating load.
 その結果、上記貯湯タンク2の下部内の温水の温度を低く保たれるので、この低い温度の温水を供給口53から凝縮器13に送り続け、ヒートポンプユニット1のCOPを高く保つことができる。 As a result, the temperature of the hot water in the lower part of the hot water storage tank 2 is kept low, so that the low temperature hot water can be continuously fed from the supply port 53 to the condenser 13 and the COP of the heat pump unit 1 can be kept high.
 (第3実施形態)
 図5は、本発明の第3実施形態の暖房給湯装置の構成を示す模式図である。また、図5において、図3に示した第2実施形態の構成部と同一の構成部は、図3における構成部の参照番号と同一の参照番号を付して説明を省略するか、簡単に説明する。
(Third embodiment)
FIG. 5 is a schematic diagram showing a configuration of a heating and hot water supply apparatus according to a third embodiment of the present invention. In FIG. 5, the same components as those of the second embodiment shown in FIG. 3 are denoted by the same reference numerals as those of the components in FIG. explain.
 上記暖房給湯装置は遮断弁103を備えている。この遮断弁103は、バイパス配管44と戻り配管102との接続点から貯湯タンク2までの間に設けられている。なお、上記遮断弁103は流通停止部の一例である。 The heating / hot water supply apparatus includes a shut-off valve 103. The shutoff valve 103 is provided between the connection point between the bypass pipe 44 and the return pipe 102 and the hot water storage tank 2. The shut-off valve 103 is an example of a distribution stop unit.
 また、上記第1,第2実施形態では、流量可変ポンプである暖房用循環ポンプ48を循環回路4に設けていたが、本第3実施形態では、流量固定循環ポンプである暖房用循環ポンプ148を循環回路4に設けている。 Further, in the first and second embodiments, the heating circulation pump 48 that is a variable flow rate pump is provided in the circulation circuit 4, but in the third embodiment, the heating circulation pump 148 that is a fixed flow rate circulation pump. Is provided in the circulation circuit 4.
 以下、図6のフローチャートにしたがって、上記暖房給湯装置による暖房運転の制御について説明する。 Hereinafter, the control of the heating operation by the heating and hot water supply apparatus will be described according to the flowchart of FIG.
 上記暖房運転が開始すると、まず、ステップS11で、暖房回路戻り温度が所定の暖房回路戻り目標温度以下であるか否かを判定する。つまり、上記第2温度センサ147の出力に基づき、戻り温水の温度が暖房回路戻り目標温度以下であるか否かを判定する。このステップS11で、戻り温水の温度が暖房回路戻り目標温度以下であると判定した場合は、暖房負荷が比較的大きい場合に相当するので、ステップS12を行った後、ステップS14に進む。一方、上記ステップS11で、戻り温水の温度が暖房回路戻り目標温度以下でないと判定した場合は、暖房負荷が比較的小さい場合に相当するので、ステップS13を行った後、ステップS14に進む。 When the heating operation is started, first, in step S11, it is determined whether or not the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the output of the second temperature sensor 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step S11 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large. Therefore, after performing step S12, the process proceeds to step S14. On the other hand, if it is determined in step S11 that the temperature of the return hot water is not lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively small. Therefore, after performing step S13, the process proceeds to step S14.
 上記ステップS12では、遮断弁103を開放する。これにより、上記貯湯タンク2内の上部内の高温の温水を往き配管101に積極的に供給したり、貯湯タンク2内の略中央部内の中温の温水を往き配管101に積極的に供給したりして、各ラジエタ8で十分な暖房を行うことができる。 In step S12, the shutoff valve 103 is opened. As a result, the hot water in the upper part of the hot water storage tank 2 is actively supplied to the forward piping 101, or the warm water in the middle of the hot water storage tank 2 is actively supplied to the outgoing piping 101. Thus, each radiator 8 can perform sufficient heating.
 また、上記ステップS12では、戻り温水の温度が設定値となるように、暖房用混合弁45のバイパス配管44側の入口の開度と、暖房用混合弁45の暖房用三方弁49側の入口の開度とを調整して、往き温水の温度を制御する。なお、上記設定値はユーザインターフェイスにより任意に設定できる。 In step S12, the opening degree of the heating mixing valve 45 on the bypass pipe 44 side and the heating mixing valve 45 side of the heating three-way valve 49 side so that the temperature of the return hot water becomes a set value. The temperature of the incoming hot water is controlled by adjusting the opening of the. The set value can be arbitrarily set by a user interface.
 上記ステップS13では、遮断弁103を閉鎖する。これにより、上記戻り温水は、貯湯タンク2内に流入せず、貯湯タンク2内の温水の攪拌を引き起こさない。したがって、上記貯湯タンク2の下部内の温水を確実に比較的低温に保つことができるので、貯湯タンク2の下部内の温水をヒートポンプユニットに送って、ヒートポンプユニットのCOPを確実に高く保つことができる。 In step S13, the shutoff valve 103 is closed. Thereby, the return hot water does not flow into the hot water storage tank 2 and does not cause the hot water in the hot water storage tank 2 to be stirred. Therefore, since the hot water in the lower part of the hot water storage tank 2 can be reliably kept at a relatively low temperature, the hot water in the lower part of the hot water storage tank 2 can be sent to the heat pump unit to ensure that the COP of the heat pump unit is kept high. it can.
 また、上記ステップS13では、暖房用混合弁45のバイパス配管44側の入口を全開状態に固定すると共に、暖房用混合弁45の暖房用三方弁49側の入口を閉鎖状態に固定する。これにより、上記貯湯タンク2内に流入する戻り温水の量が少なくなるので、貯湯タンク2内の温水の攪拌が小さくなる。したがって、上記貯湯タンク2内の温水の攪拌を防ぐことによって、貯湯タンク2の下部内の温水を比較的低温に保つことができるので、貯湯タンク2の下部内の温水をヒートポンプユニットに送って、ヒートポンプユニットのCOPを高く保つことができる。 In step S13, the inlet on the bypass pipe 44 side of the heating mixing valve 45 is fixed in a fully open state, and the inlet on the heating three-way valve 49 side of the heating mixing valve 45 is fixed in a closed state. As a result, the amount of return hot water flowing into the hot water storage tank 2 is reduced, so that stirring of the hot water in the hot water storage tank 2 is reduced. Therefore, by preventing the hot water in the hot water storage tank 2 from being stirred, the hot water in the lower part of the hot water storage tank 2 can be kept at a relatively low temperature, so the hot water in the lower part of the hot water storage tank 2 is sent to the heat pump unit, The COP of the heat pump unit can be kept high.
 上記ステップS14では、暖房運転の停止操作が行われた否かを判定する。このステップS14で、暖房運転の停止操作が行われた判定すると、暖房運転を終了する。一方、上記ステップS14で、暖房運転の停止操作が行われていないと判定すると、ステップS11に戻る。 In step S14, it is determined whether or not a heating operation stop operation has been performed. If it determines with the stop operation of heating operation having been performed by this step S14, heating operation will be complete | finished. On the other hand, if it determines with the stop operation of heating operation not being performed by said step S14, it will return to step S11.
 以上のような制御は、上記暖房負荷が比較的大きい場合は、ステップS12の設定値を低く設定することによって、低温の戻り温水を貯湯タンク2の下部内に戻すことができる。 In the above control, when the heating load is relatively large, the low-temperature return hot water can be returned to the lower part of the hot water storage tank 2 by setting the set value in step S12 low.
 その結果、上記貯湯タンク2の下部内の温水の温度を低く保たれるので、この低い温度の温水を供給口53から凝縮器13に送り続け、ヒートポンプユニット1のCOPを高く保つことができる。 As a result, the temperature of the hot water in the lower part of the hot water storage tank 2 is kept low, so that the low temperature hot water can be continuously fed from the supply port 53 to the condenser 13 and the COP of the heat pump unit 1 can be kept high.
 また、上記暖房負荷が比較的小さい場合は、遮断弁103を閉鎖することによって、ヒートポンプユニットのCOPを確実に高く保つことができる。 Also, when the heating load is relatively small, the COP of the heat pump unit can be reliably kept high by closing the shutoff valve 103.
 すなわち、上記暖房給湯装置は、暖房負荷に関係なく、ヒートポンプユニットのCOPを高く保つことができる。 That is, the heating and hot water supply apparatus can keep the COP of the heat pump unit high regardless of the heating load.
 (第4実施形態)
 図7は、本発明の第4実施形態の暖房給湯装置の構成を示す模式図である。また、図7において、図3,図5に示した第2実施形態,第3実施形態の構成部と同一の構成部は、図3,図5における構成部の参照番号と同一の参照番号を付して説明を省略するか、簡単に説明する。
(Fourth embodiment)
FIG. 7 is a schematic diagram showing the configuration of the heating and hot water supply apparatus according to the fourth embodiment of the present invention. Further, in FIG. 7, the same components as those in the second and third embodiments shown in FIGS. 3 and 5 have the same reference numerals as those in FIGS. A description will be omitted or will be briefly described.
 上記暖房給湯装置は、上記暖房用循環ポンプ148の代わりに暖房用循環ポンプ48を備えている。 The heating water heater includes a heating circulation pump 48 instead of the heating circulation pump 148.
 以下、図8のフローチャートにしたがって、上記暖房給湯装置による暖房運転の制御について説明する。 Hereinafter, the control of the heating operation by the heating and hot water supply apparatus will be described according to the flowchart of FIG.
 上記暖房運転が開始すると、まず、ステップS21で、暖房回路戻り温度が所定の暖房回路戻り目標温度以下であるか否かを判定する。つまり、上記第2温度センサ147の出力に基づき、戻り温水の温度が暖房回路戻り目標温度以下であるか否かを判定する。このステップS21で、戻り温水の温度が暖房回路戻り目標温度以下であると判定した場合は暖房負荷が比較的大きい場合に相当するので、ステップS22に進む。一方、上記ステップS21で、戻り温水の温度が暖房回路戻り目標温度以下でないと判定した場合は、暖房負荷が比較的小さい場合に相当するので、ステップS23に進む。 When the heating operation is started, first, in step S21, it is determined whether or not the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the output of the second temperature sensor 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step S21 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large, and the process proceeds to step S22. On the other hand, if it is determined in step S21 that the temperature of the return hot water is not lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively small, and the process proceeds to step S23.
 上記ステップS22に進んだ場合、暖房回路流量を増やす制御を行う。具体的には、上記暖房用循環ポンプ48の回転速度を、予め設定された回転速度分上げる。これにより、上記各ラジエタ8に入る往き温水の量が増えるので、各ラジエタ8で十分な暖房を行うことができる。 When the process proceeds to step S22, control for increasing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is increased by a preset rotational speed. Thereby, since the quantity of the going hot water which enters each said radiator 8 increases, each radiator 8 can fully heat.
 また、上記ステップS22では、戻り温水の温度が設定値となるように、暖房用混合弁45のバイパス配管44側の入口の開度と、暖房用混合弁45の暖房用三方弁49側の入口の開度とを調整して、往き温水の温度を制御する。なお、上記設定値はユーザインターフェイスにより任意に設定できる。 In step S22, the opening of the inlet of the heating mixing valve 45 on the bypass piping 44 side and the inlet of the heating three-way valve 49 side of the heating mixing valve 45 so that the temperature of the return hot water becomes a set value. The temperature of the incoming hot water is controlled by adjusting the opening of the. The set value can be arbitrarily set by a user interface.
 上記ステップS22を行った後は、ステップS25で、暖房運転の停止操作が行われた否かを判定する。このステップS25で、暖房運転の停止操作が行われた判定すると、暖房運転を終了する。一方、上記ステップS25で、暖房運転の停止操作が行われていないと判定すると、ステップS21に戻る。 After performing step S22, it is determined in step S25 whether or not a heating operation stop operation has been performed. If it determines with the stop operation of heating operation having been performed by this step S25, heating operation will be complete | finished. On the other hand, if it determines with the stop operation of heating operation not being performed by said step S25, it will return to step S21.
 一方、上記ステップS23に進んだ場合、戻り温水の温度が暖房回路戻り目標温度以下でないと判定が所定回数以上継続しているか否かを判定する。このステップS23で、戻り温水の温度が暖房回路戻り目標温度以下でないと判定が所定回数以上継続していないと判定すると、ステップS24に進む。一方、上記ステップS23で、戻り温水の温度が暖房回路戻り目標温度以下でないと判定が所定回数以上継続していると判定すると、図9のステップS30に進む。 On the other hand, when the process proceeds to step S23, it is determined whether or not the determination is continued for a predetermined number of times or more if the temperature of the return hot water is not lower than the heating circuit return target temperature. If it is determined in step S23 that the temperature of the return hot water is not lower than the heating circuit return target temperature, it is determined that the determination has not continued for a predetermined number of times or more. On the other hand, if it is determined in step S23 that the return hot water temperature is not equal to or lower than the heating circuit return target temperature and the determination continues for a predetermined number of times, the process proceeds to step S30 in FIG.
 上記ステップS24に進んだ場合、暖房回路流量を減らす制御を行う。具体的には、上記暖房用循環ポンプ48の回転速度を、予め設定された回転速度分下げる。これにより、上記各ラジエタ8に入る往き温水の量が減るので、各ラジエタ8に無駄に往き温水が供給されるのを防ぐことができる。 If the process proceeds to step S24, control is performed to reduce the heating circuit flow rate. Specifically, the rotational speed of the heating circulation pump 48 is decreased by a preset rotational speed. Thereby, since the amount of the outgoing hot water entering each radiator 8 is reduced, it is possible to prevent the outgoing hot water from being supplied to each radiator 8 in vain.
 また、上記ステップS22と同様にステップS24でも、戻り温水の温度が設定値となるように、暖房用混合弁45のバイパス配管44側の入口の開度と、暖房用混合弁45の暖房用三方弁49側の入口の開度とを調整して、往き温水の温度を制御する。なお、上記設定値はユーザインターフェイスにより任意に設定できる。 Similarly to step S22, in step S24, the opening degree of the inlet on the bypass pipe 44 side of the heating mixing valve 45 and the three directions for heating of the heating mixing valve 45 are set so that the temperature of the return hot water becomes the set value. The temperature of the incoming hot water is controlled by adjusting the opening of the inlet on the valve 49 side. The set value can be arbitrarily set by a user interface.
 上記ステップS24を行った後は、ステップS25で、暖房運転の停止操作が行われた否かを判定する。このステップS25で、暖房運転の停止操作が行われた判定すると、暖房運転を終了する。一方、上記ステップS25で、暖房運転の停止操作が行われていないと判定すると、ステップS21に戻る。 After performing step S24, it is determined in step S25 whether or not the heating operation has been stopped. If it determines with the stop operation of heating operation having been performed by this step S25, heating operation will be complete | finished. On the other hand, if it determines with the stop operation of heating operation not being performed by said step S25, it will return to step S21.
 一方、図8のステップS30に進んだ場合、長時間、暖房負荷が比較的小さくなっている場合に相当するので、遮断弁103を閉鎖する。これにより、上記戻り温水は、貯湯タンク2内に流入せず、貯湯タンク2内の温水の攪拌を引き起こさない。したがって、上記貯湯タンク2の下部内の温水を確実に比較的低温に保つことができるので、貯湯タンク2の下部内の温水をヒートポンプユニットに送って、ヒートポンプユニットのCOPを確実に高く保つことができる。 On the other hand, when the process proceeds to step S30 in FIG. 8, this corresponds to a case where the heating load is relatively small for a long time, so the shutoff valve 103 is closed. Thereby, the return hot water does not flow into the hot water storage tank 2 and does not cause the hot water in the hot water storage tank 2 to be stirred. Therefore, since the hot water in the lower part of the hot water storage tank 2 can be reliably kept at a relatively low temperature, the hot water in the lower part of the hot water storage tank 2 can be sent to the heat pump unit to ensure that the COP of the heat pump unit is kept high. it can.
 次に、ステップS31で、暖房用混合弁45のバイパス配管44側の入口を全開状態に固定すると共に、暖房用混合弁45の暖房用三方弁49側の入口を閉鎖状態に固定する。これにより、上記貯湯タンク2内に流入する戻り温水の量が少なくなるので、貯湯タンク2内の温水の攪拌が小さくなる。したがって、上記貯湯タンク2内の温水の攪拌を防ぐことによって、貯湯タンク2の下部内の温水を比較的低温に保つことができるので、貯湯タンク2の下部内の温水をヒートポンプユニットに送って、ヒートポンプユニットのCOPを高く保つことができる。 Next, in step S31, the inlet on the bypass pipe 44 side of the heating mixing valve 45 is fixed in a fully open state, and the inlet on the heating three-way valve 49 side of the heating mixing valve 45 is fixed in a closed state. As a result, the amount of return hot water flowing into the hot water storage tank 2 is reduced, so that stirring of the hot water in the hot water storage tank 2 is reduced. Therefore, by preventing the hot water in the hot water storage tank 2 from being stirred, the hot water in the lower part of the hot water storage tank 2 can be kept at a relatively low temperature, so the hot water in the lower part of the hot water storage tank 2 is sent to the heat pump unit, The COP of the heat pump unit can be kept high.
 上記ステップS31を行った後は、ステップS32で、暖房回路戻り温度が所定の暖房回路戻り目標温度以下であるか否かを判定する。つまり、上記第2温度センサ147の出力に基づき、戻り温水の温度が暖房回路戻り目標温度以下であるか否かを判定する。このステップS32で、戻り温水の温度が暖房回路戻り目標温度以下であると判定した場合は暖房負荷が比較的大きい場合に相当するので、ステップS33に進む。一方、上記ステップS32で、戻り温水の温度が暖房回路戻り目標温度以下でないと判定した場合は、暖房負荷が比較的小さい状態がまだ続いている場合に相当するので、ステップS31に戻る。 After performing step S31, it is determined in step S32 whether the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the output of the second temperature sensor 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step S32 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large, and the process proceeds to step S33. On the other hand, if it is determined in step S32 that the temperature of the return hot water is not lower than the heating circuit return target temperature, this corresponds to the case where the heating load is still relatively small, and the process returns to step S31.
 上記ステップS33に進んだ場合、暖房負荷が比較的大きくなっているので、遮断弁103を開いた後、図8のステップS22に進み、上述した処理を行う。 When the process proceeds to step S33, the heating load is relatively large. Therefore, after opening the shut-off valve 103, the process proceeds to step S22 in FIG.
 以上のような制御は、上記ステップS22,S24の設定値を低く設定することによって、暖房負荷に関係なく、低温の戻り温水を貯湯タンク2の下部内に戻すことができる。 The control as described above can return the low-temperature return hot water into the lower part of the hot water storage tank 2 regardless of the heating load by setting the set values in the steps S22 and S24 low.
 その結果、上記貯湯タンク2の下部内の温水の温度を低く保たれるので、この低い温度の温水を供給口53から凝縮器13に送り続け、ヒートポンプユニット1のCOPを高く保つことができる。 As a result, the temperature of the hot water in the lower part of the hot water storage tank 2 is kept low, so that the low temperature hot water can be continuously fed from the supply port 53 to the condenser 13 and the COP of the heat pump unit 1 can be kept high.
 また、上記暖房負荷が比較的小さい状態が続いている場合は、遮断弁103を閉鎖することによって、ヒートポンプユニットのCOPを確実に高く保つことができる。 Also, when the heating load is relatively small, the COP of the heat pump unit can be reliably kept high by closing the shutoff valve 103.
 上記第1実施形態、第2実施形態および第4実施形態の暖房給湯装置は、図10のフローチャートに示すように、暖房運転の制御を行うこともできる。 The heating hot water supply apparatus of the first embodiment, the second embodiment, and the fourth embodiment can also control the heating operation as shown in the flowchart of FIG.
 上記暖房運転の制御では、暖房運転が開始すると、まず、ステップS41で、暖房回路戻り温度が所定の暖房回路戻り目標温度以下であるか否かを判定する。つまり、上記第2温度センサ47,147の出力に基づき、戻り温水の温度が暖房回路戻り目標温度以下であるか否かを判定する。このステップ41で、戻り温水の温度が暖房回路戻り目標温度以下であると判定した場合は、暖房負荷が比較的大きい場合に相当するので、ステップS42を行った後、ステップS44に進む。一方、上記ステップS41で、戻り温水の温度が暖房回路戻り目標温度以下でないと判定した場合は、暖房負荷が比較的小さい場合に相当するので、ステップS43を行った後、ステップS44に進む。 In the control of the heating operation, when the heating operation is started, first, in step S41, it is determined whether or not the heating circuit return temperature is equal to or lower than a predetermined heating circuit return target temperature. That is, based on the outputs of the second temperature sensors 47 and 147, it is determined whether or not the temperature of the return hot water is equal to or lower than the heating circuit return target temperature. If it is determined in step 41 that the temperature of the return hot water is equal to or lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively large. Therefore, after performing step S42, the process proceeds to step S44. On the other hand, when it is determined in step S41 that the temperature of the return hot water is not lower than the heating circuit return target temperature, this corresponds to a case where the heating load is relatively small. Therefore, after performing step S43, the process proceeds to step S44.
 上記ステップS42では、暖房回路流量を増やす制御を行う。具体的には、上記暖房用循環ポンプ48の回転速度を、予め設定された回転速度分上げる。これにより、上記各ラジエタ8に入る往き温水の量を増やして、各ラジエタ8の暖房能力を上げることができる。 In step S42, control for increasing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is increased by a preset rotational speed. As a result, the amount of outgoing hot water entering each radiator 8 can be increased, and the heating capacity of each radiator 8 can be increased.
 上記ステップS43では、暖房回路流量を減らす制御を行う。具体的には、上記暖房用循環ポンプ48の回転速度を、予め設定された回転速度分下げる。これにより、上記各ラジエタ8に入る往き温水の量を減らして、各ラジエタ8の暖房能力を下げることができる。 In step S43, control for reducing the heating circuit flow rate is performed. Specifically, the rotational speed of the heating circulation pump 48 is decreased by a preset rotational speed. As a result, the amount of hot water going into each radiator 8 can be reduced, and the heating capacity of each radiator 8 can be lowered.
 次に、ステップS44で、暖房回路往き温度が所定の暖房回路往き目標温度以下であるか否かを判定する。つまり、上記第1温度センサ46の出力に基づき、往き温水の温度が暖房回路往き目標温度以下であるか否かを判定する。このステップ44で、往き温水の温度が暖房回路往き目標温度以下であると判定した場合は、暖房負荷が比較的大きい場合に相当するので、ステップS45を行った後、ステップS47に進む。一方、上記ステップS44で、往き温水の温度が暖房回路往き目標温度以下でないと判定した場合は、暖房負荷が比較的小さい場合に相当するので、ステップS46を行った後、ステップS47に進む。 Next, in step S44, it is determined whether or not the heating circuit going temperature is equal to or lower than a predetermined heating circuit going target temperature. That is, based on the output of the first temperature sensor 46, it is determined whether or not the temperature of the outgoing hot water is equal to or lower than the heating circuit outgoing target temperature. If it is determined in step 44 that the temperature of the outgoing hot water is equal to or lower than the heating circuit outgoing target temperature, this corresponds to a case where the heating load is relatively large. Therefore, after performing step S45, the process proceeds to step S47. On the other hand, if it is determined in step S44 that the temperature of the outgoing hot water is not equal to or lower than the heating circuit outgoing target temperature, this corresponds to a case where the heating load is relatively small. Therefore, after performing step S46, the process proceeds to step S47.
 上記ステップS45では、暖房回路往き温度を上げるべく、暖房用混合弁開度調整を行う。すなわち、上記暖房用混合弁45のバイパス配管44側の入口の開度を、予め設定された分下げると共に、暖房用混合弁45の暖房用三方弁49側の入口の開度を、予め設定された分上げる。 In step S45, the heating mixing valve opening is adjusted in order to increase the temperature going to the heating circuit. That is, the opening degree of the inlet on the bypass pipe 44 side of the heating mixing valve 45 is lowered by a preset amount, and the opening degree of the inlet of the heating mixing valve 45 side on the heating three-way valve 49 side is preset. Raise it.
 上記ステップS46では、暖房回路往き温度を下げるべく、暖房用混合弁開度調整を行う。すなわち、上記暖房用混合弁45のバイパス配管44側の入口の開度を、予め設定された分上げると共に、暖房用混合弁45の暖房用三方弁49側の入口の開度を、予め設定された分下げる。 In step S46, the heating mixing valve opening is adjusted to lower the heating circuit going temperature. That is, the opening degree of the heating mixing valve 45 on the bypass pipe 44 side is increased by a predetermined amount, and the opening degree of the heating mixing valve 45 on the heating three-way valve 49 side is set in advance. Lower it.
 次に、上記ステップS47で、暖房運転の停止操作が行われた否かを判定する。このステップS47で、暖房運転の停止操作が行われた判定すると、暖房運転を終了する。一方、上記ステップS47で、暖房運転の停止操作が行われていないと判定すると、ステップS41に戻る。 Next, in step S47, it is determined whether or not a heating operation stop operation has been performed. If it is determined in step S47 that the heating operation has been stopped, the heating operation is terminated. On the other hand, if it determines with the stop operation of heating operation not being performed by said step S47, it will return to step S41.
 このように、上記ステップS42,S45を行うことによって、暖房負荷が比較的大きい時には、各ラジエタ8の暖房能力を確実に上げることができる。 Thus, by performing the above steps S42 and S45, when the heating load is relatively large, the heating capacity of each radiator 8 can be reliably increased.
 また、上記ステップS43,S44を行うことによって、暖房負荷が比較的小さい時には、各ラジエタ8の暖房能力を確実に下げることができる。 Further, by performing the above steps S43 and S44, when the heating load is relatively small, the heating capacity of each radiator 8 can be reliably lowered.
 なお、上記ステップS42に換えて、暖房用混合弁45のバイパス配管44側の入口の開度を、予め設定された分下げると共に、暖房用混合弁45の暖房用三方弁49側の入口の開度を、予め設定された分上げるようにしてもよい。あるいは、上記暖房用循環ポンプ48の回転速度を、予め設定された回転速度分上げ、かつ、暖房用混合弁45のバイパス配管44側の入口の開度を、予め設定された分下げ、かつ、暖房用混合弁45の暖房用三方弁49側の入口の開度を、予め設定された分上げるステップを行うようにしてもよい。 Instead of step S42, the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side is reduced by a preset amount, and the inlet of the heating three-way valve 49 side of the heating mixing valve 45 is opened. The degree may be increased by a preset amount. Alternatively, the rotational speed of the heating circulation pump 48 is increased by a predetermined rotational speed, and the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side is decreased by a predetermined amount, and You may make it perform the step which raises the opening degree of the entrance by the side of the three-way valve 49 for heating of the mixing valve 45 for heating by the preset amount.
 また、上記ステップS43に換えて、暖房用混合弁45のバイパス配管44側の入口の開度を、予め設定された分上げると共に、暖房用混合弁45の暖房用三方弁49側の入口の開度を、予め設定された分下げるようにしてもよい。あるいは、上記暖房用循環ポンプ48の回転速度を、予め設定された回転速度分下げ、かつ、暖房用混合弁45のバイパス配管44側の入口の開度を、予め設定された分上げ、かつ、暖房用混合弁45の暖房用三方弁49側の入口の開度を、予め設定された分下げるステップを行うようにしてもよい。 Further, instead of step S43, the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side is increased by a preset amount, and the inlet of the heating three-way valve 49 side of the heating mixing valve 45 is opened. The degree may be lowered by a preset amount. Alternatively, the rotation speed of the heating circulation pump 48 is decreased by a preset rotation speed, and the opening degree of the inlet on the bypass pipe 44 side of the heating mixing valve 45 is increased by a preset value, and You may make it perform the step which reduces the opening degree of the inlet_port | entrance by the side of the three-way valve 49 for heating of the mixing valve 45 for heating by the preset amount.
 また、上記ステップS45に換えて、暖房用循環ポンプ48の回転速度を、予め設定された回転速度分上げるようにしてもよい。あるいは、上記暖房用混合弁45のバイパス配管44側の入口の開度を、予め設定された分下げ、かつ、暖房用混合弁45の暖房用三方弁49側の入口の開度を、予め設定された分上げ、かつ、暖房用循環ポンプ48の回転速度を、予め設定された回転速度分上げるステップを行ってもよい。 Further, instead of step S45, the rotation speed of the heating circulation pump 48 may be increased by a preset rotation speed. Alternatively, the opening degree of the inlet of the heating mixing valve 45 on the bypass pipe 44 side is decreased by a preset amount, and the opening degree of the heating mixing valve 45 on the heating three-way valve 49 side is set in advance. And the step of increasing the rotation speed of the heating circulation pump 48 by a preset rotation speed may be performed.
 また、上記ステップS46に換えて、暖房用循環ポンプ48の回転速度を、予め設定された回転速度分下げるようにしてもよい。あるいは、上記暖房用混合弁45のバイパス配管44側の入口の開度を、予め設定された分上げ、かつ、暖房用混合弁45の暖房用三方弁49側の入口の開度を、予め設定された分下げ、かつ、暖房用循環ポンプ48の回転速度を、予め設定された回転速度分下げるステップを行ってもよい。 Further, instead of step S46, the rotational speed of the heating circulation pump 48 may be decreased by a preset rotational speed. Alternatively, the opening degree of the heating mixing valve 45 on the bypass pipe 44 side is increased by a preset amount, and the opening degree of the heating mixing valve 45 on the heating three-way valve 49 side is set in advance. And the step of lowering the rotational speed of the heating circulation pump 48 by a preset rotational speed may be performed.
 また、図10のフローチャートにおいて、ステップS42をステップS45と同様のステップとし、かつ、ステップS43をステップS45と同様のステップとした暖房運転制御は、上記第3実施形態の暖房給湯装置でも行うことができる。 In the flowchart of FIG. 10, the heating operation control in which step S42 is the same step as step S45 and step S43 is the same step as step S45 can also be performed in the heating and hot water supply apparatus of the third embodiment. it can.
 上記第1~第4実施形態およびこれらの変形例の暖房給湯装置は、CO冷媒を使用するヒートポンプユニット1を備えていたが、CO冷媒以外の超臨界冷媒を使用するヒートポンプユニットを備えてもよい。 The heating and hot water supply apparatuses of the first to fourth embodiments and the modifications thereof include the heat pump unit 1 that uses the CO 2 refrigerant, but includes the heat pump unit that uses a supercritical refrigerant other than the CO 2 refrigerant. Also good.

Claims (17)

  1.  ヒートポンプユニット(1)と、
     上記ヒートポンプユニット(1)で加熱された温水を貯える貯湯タンク(2)と、
     上記貯湯タンク(2)内に配置され、給湯水が内部を流れる熱交換器(3)と、
     上記貯湯タンク(2)内に貯められた温水を上記貯湯タンク(2)外の暖房端末(8)を経由させた後、再び、上記貯湯タンク(2)内に戻して循環させるための循環回路(4)と、
     上記循環回路(4)を流れる温水の温度を検出する温度センサ(46,47,147)と、
     上記暖房端末(8)に供給する温水の温度および流量の少なくとも一方を調節することにより、上記暖房端末(8)から出る戻り温水の温度と、上記暖房端末(8)に入る往き温水の温度との少なくとも一方を所定の温度に調節する温度調節部(45,48)と、
     上記温度センサ(46,47,147)の出力に基づいて、上記温度調節部(45,48)を制御する制御部(7)と
    を備えたことを特徴とする暖房給湯装置。
    Heat pump unit (1),
    A hot water storage tank (2) for storing hot water heated by the heat pump unit (1);
    A heat exchanger (3) which is disposed in the hot water storage tank (2) and in which hot water flows inside;
    A circulating circuit for circulating the hot water stored in the hot water storage tank (2) through the heating terminal (8) outside the hot water storage tank (2) and then returning it to the hot water storage tank (2). (4) and
    A temperature sensor (46, 47, 147) for detecting the temperature of the hot water flowing through the circulation circuit (4);
    By adjusting at least one of the temperature and flow rate of the hot water supplied to the heating terminal (8), the temperature of the return hot water coming out of the heating terminal (8) and the temperature of the outgoing hot water entering the heating terminal (8) A temperature adjusting unit (45, 48) for adjusting at least one of the temperature to a predetermined temperature;
    A heating and hot water supply apparatus comprising: a control unit (7) for controlling the temperature adjusting unit (45, 48) based on an output of the temperature sensor (46, 47, 147).
  2.  請求項1に記載の暖房給湯装置において、
     上記温度調節部(45,48)は、上記暖房端末(8)に供給する温水の温度および流量の少なくとも一方を調節することにより、上記暖房端末(8)から出る戻り温水の温度、および、上記暖房端末(8)に入る往き温水の温度を調節することを特徴とする暖房給湯装置。
    In the heating hot water supply apparatus according to claim 1,
    The temperature adjusting unit (45, 48) adjusts at least one of the temperature and flow rate of hot water supplied to the heating terminal (8), thereby returning the temperature of the return hot water coming out of the heating terminal (8), and A heating and hot water supply apparatus for adjusting the temperature of the incoming hot water entering the heating terminal (8).
  3.  請求項1または2に記載の暖房給湯装置において、
     上記温度センサ(46,47,147)は、上記暖房端末(8)から出る戻り温水の温度を検出する戻り温水センサ(47,147)を含むことを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus of Claim 1 or 2,
    The temperature sensor (46, 47, 147) includes a return hot water sensor (47, 147) for detecting the temperature of the return warm water coming out of the heating terminal (8).
  4.  請求項1または2に記載の暖房給湯装置において、
     上記温度センサ(46,47)は、上記暖房端末(8)に入る往き温水の温度を検出する往き温水センサ(46)を含むことを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus of Claim 1 or 2,
    The temperature sensor (46, 47) includes a hot water supply sensor (46) for detecting the temperature of the incoming hot water entering the heating terminal (8).
  5.  請求項1に記載の暖房給湯装置において、
     外気温度を検出すると共に、上記外気温度を示す信号を上記制御部に出力する外気温度センサ(18)を備え、
     上記温度センサ(46,47)は、上記暖房端末(8)から出る戻り温水の温度を検出する戻り温水センサ(47)と、上記暖房端末(8)に入る往き温水の温度を検出する往き温水センサ(46)とを含み、
     上記制御部(7)は、
     上記外気温度センサ(18)が検出した外気温度が予め定めた基準値よりも高いときは、上記往き温水センサ(46)の出力に基づいて、上記暖房端末(8)に入る往き温水の温度が外気温度に基づいた予め定められた往き温水温度になるように上記温度調節部(45)を制御する一方、
     上記外気温度センサ(18)が検出した外気温度が予め定めた基準値以下のときは、上記戻り温水センサ(47)の出力に基づいて、上記暖房端末(8)から出る戻り温水の温度が外気温度に基づいた予め定められた戻り温水温度になるように上記温度調節部(48)を制御することを特徴とする暖房給湯装置。
    In the heating hot water supply apparatus according to claim 1,
    An outside air temperature sensor (18) for detecting an outside air temperature and outputting a signal indicating the outside air temperature to the control unit;
    The temperature sensors (46, 47) are a return hot water sensor (47) for detecting the temperature of the return hot water coming out of the heating terminal (8), and a forward hot water for detecting the temperature of the incoming hot water entering the heating terminal (8). Sensor (46),
    The control unit (7)
    When the outside air temperature detected by the outside air temperature sensor (18) is higher than a predetermined reference value, the temperature of the incoming hot water entering the heating terminal (8) is based on the output of the outgoing hot water sensor (46). While controlling the temperature adjusting unit (45) so as to be a predetermined outgoing hot water temperature based on the outside air temperature,
    When the outside air temperature detected by the outside air temperature sensor (18) is equal to or lower than a predetermined reference value, the temperature of the return hot water from the heating terminal (8) is determined based on the output of the return hot water sensor (47). The heating and hot water supply apparatus characterized by controlling the said temperature control part (48) so that it may become predetermined return hot water temperature based on temperature.
  6.  請求項1、2、5のいずれか一項に記載の暖房給湯装置において、
     上記貯湯タンク(2)の上部に、上記貯湯タンク(2)内に貯められた温水を取り出すための第1取水口(42)が設けられる一方、上記貯湯タンク(2)の下部に、上記暖房端末(8)から出た温水を上記貯湯タンク(2)に戻すための戻し口(43)が設けられ、
     上記循環回路(4)は、上記第1取水口(42)と上記戻し口(43)とに接続されていることを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus as described in any one of Claims 1, 2, and 5,
    A first water intake (42) for taking out hot water stored in the hot water storage tank (2) is provided at the upper part of the hot water storage tank (2), while the heating air is provided at the lower part of the hot water storage tank (2). A return port (43) is provided for returning hot water from the terminal (8) to the hot water storage tank (2).
    The heating and hot water supply apparatus, wherein the circulation circuit (4) is connected to the first water intake port (42) and the return port (43).
  7.  請求項6に記載の暖房給湯装置において、
     上記貯湯タンク(2)の下部に、上記貯湯タンク(2)内に貯められた温水を上記ヒートポンプユニット(1)に供給するための供給口(53)が設けられていることを特徴とする暖房給湯装置。
    In the heating hot water supply apparatus according to claim 6,
    A heating port characterized in that a supply port (53) for supplying hot water stored in the hot water storage tank (2) to the heat pump unit (1) is provided below the hot water storage tank (2). Hot water supply device.
  8.  請求項1、2、5のいずれか一項に記載の暖房給湯装置において、
     上記貯湯タンク(2)内の上下方向の略中央部にはヒータ(6)が配置されていることを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus as described in any one of Claims 1, 2, and 5,
    A heating and hot water supply apparatus, characterized in that a heater (6) is disposed at a substantially central portion in the vertical direction in the hot water storage tank (2).
  9.  請求項8に記載の暖房給湯装置において、
     上記貯湯タンク(2)の上下方向の略中央部に、上記貯湯タンク(2)内に貯められた温水を取り出すための第2取水口(41)が、上記ヒータ(6)近傍かつ上方に位置するように設けられ、
     上記循環回路(4)は上記第2取水口(41)に接続されていることを特徴とする暖房給湯装置。
    In the heating hot water supply apparatus according to claim 8,
    A second water intake port (41) for taking out hot water stored in the hot water storage tank (2) is located near and above the heater (6) at a substantially central portion in the vertical direction of the hot water storage tank (2). Provided to
    The heating and hot water supply apparatus, wherein the circulation circuit (4) is connected to the second water intake (41).
  10.  請求項1、2、5のいずれか一項に記載の暖房給湯装置において、
     上記熱交換器(3)は上記貯湯タンク(2)内の下部領域から上部領域に渡って配置されていて、給湯水が上記貯湯タンク(2)の下部に入って上記貯湯タンク(2)の上部から出ることを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus as described in any one of Claims 1, 2, and 5,
    The heat exchanger (3) is arranged from the lower region to the upper region in the hot water storage tank (2), and hot water enters the lower part of the hot water storage tank (2) and enters the hot water storage tank (2). A heating and hot water supply device characterized by exiting from the top.
  11.  請求項1、2、5のいずれか一項に記載の暖房給湯装置において、
     上記温度調節部(45,48)は、上記貯湯タンク(2)と上記暖房端末(8)との間の上記循環回路(4)に設けられて回転速度が調整可能な循環ポンプ(48)を含むことを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus as described in any one of Claims 1, 2, and 5,
    The temperature control unit (45, 48) is provided with a circulation pump (48) provided in the circulation circuit (4) between the hot water storage tank (2) and the heating terminal (8) and capable of adjusting the rotation speed. A heating and hot water supply apparatus comprising:
  12.  請求項1、2、5のいずれか一項に記載の暖房給湯装置において、
     上記温度調節部(45,48)は、上記貯湯タンク(2)を出て上記暖房端末(8)に向かう温水と、上記暖房端末(8)から出た温水とを混合して、上記暖房端末(8)に供給する混合弁(45)を含むことを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus as described in any one of Claims 1, 2, and 5,
    The temperature control unit (45, 48) mixes the hot water that leaves the hot water storage tank (2) and goes to the heating terminal (8) and the hot water that comes out of the heating terminal (8) to mix the heating terminal. A heating and hot water supply apparatus including a mixing valve (45) for supplying to (8).
  13.  請求項1、2、5のいずれか一項に記載の暖房給湯装置において、
     上記ヒートポンプユニット(1)からの温水を、上記貯湯タンク(2)の上部、あるいは、上記貯湯タンク(2)の下部に供給可能な沸き上げ用三方弁(52)を備えたことを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus as described in any one of Claims 1, 2, and 5,
    A boiling three-way valve (52) capable of supplying hot water from the heat pump unit (1) to the upper part of the hot water storage tank (2) or the lower part of the hot water storage tank (2) is provided. Heating water heater.
  14.  請求項5に記載の暖房給湯装置において、
     上記外気温度の予め定められた基準値は、上記暖房端末(8)を設置する住宅の断熱性能、床面積によって定められていることを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus of Claim 5,
    The heating / hot water supply apparatus characterized in that the predetermined reference value of the outside air temperature is determined by the heat insulating performance and floor area of a house where the heating terminal (8) is installed.
  15.  請求項1、2、5、14のいずれか一項に記載の暖房給湯装置において、
     上記循環回路(4)は、上記往き温水が流れる往き配管(101)と、上記戻り温水が流れる戻り配管(102)とを有し、
     一端が上記往き配管(101)に接続される一方、他端が上記戻り配管(102)に接続されたバイパス流路(44)を備えたことを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus as described in any one of Claims 1, 2, 5, and 14,
    The circulation circuit (4) has an outgoing pipe (101) through which the outgoing hot water flows, and a return pipe (102) through which the return hot water flows.
    A heating and hot water supply apparatus comprising a bypass passage (44) having one end connected to the forward pipe (101) and the other end connected to the return pipe (102).
  16.  請求項15に記載の暖房給湯装置において、
     上記バイパス流路(44)の他端が上記戻り配管(102)に接続する点と、上記貯湯タンク(2)との間に、上記戻り温水の流通を停止させる流通停止部(103)が設けられていることを特徴とする暖房給湯装置。
    The heating and hot water supply apparatus according to claim 15,
    Between the point where the other end of the bypass flow path (44) is connected to the return pipe (102) and the hot water storage tank (2), there is provided a flow stop portion (103) for stopping the flow of the return hot water. A heating and hot water supply apparatus characterized by being provided.
  17.  請求項1、2、5、14のいずれか一項に記載の暖房給湯装置において、
     上記ヒートポンプユニット(1)はCO冷媒を使用することを特徴とする暖房給湯装置。
    In the heating hot-water supply apparatus as described in any one of Claims 1, 2, 5, and 14,
    The heat pump unit (1) uses a CO 2 refrigerant and is a heating and hot water supply apparatus.
PCT/JP2009/051754 2008-02-04 2009-02-03 Heating and hot water supply device WO2009099046A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-023784 2008-02-04
JP2008023784 2008-02-04
JP2008-113959 2008-04-24
JP2008113959 2008-04-24
JP2009-014345 2009-01-26
JP2009014345A JP4561920B2 (en) 2008-02-04 2009-01-26 Heating and hot water supply equipment

Publications (1)

Publication Number Publication Date
WO2009099046A1 true WO2009099046A1 (en) 2009-08-13

Family

ID=40952121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051754 WO2009099046A1 (en) 2008-02-04 2009-02-03 Heating and hot water supply device

Country Status (2)

Country Link
JP (1) JP4561920B2 (en)
WO (1) WO2009099046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528314A (en) * 2014-07-17 2016-01-20 Sav United Kingdom Ltd A heating supply arrangement
CN109798572A (en) * 2017-11-15 2019-05-24 北京华源泰盟节能设备有限公司 One kind is every pressure type great temperature difference heat supply equipment and heat supply method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101216955B1 (en) * 2010-04-09 2013-01-02 주식회사 삼양발부종합메이커 Apparatus for heating control
JP5569127B2 (en) 2010-04-28 2014-08-13 ダイキン工業株式会社 Air conditioner outdoor unit
JP5423640B2 (en) * 2010-10-13 2014-02-19 ダイキン工業株式会社 Heating system
JP6391414B2 (en) * 2014-10-17 2018-09-19 シャープ株式会社 Heating and hot water supply equipment
JP2018169108A (en) * 2017-03-30 2018-11-01 三菱重工サーマルシステムズ株式会社 Heating device and heating method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277137A (en) * 1988-04-27 1989-11-07 Tokyo Gas Co Ltd Temperature control device in hot water-circulating heater
JP2001304688A (en) * 2000-04-21 2001-10-31 Kyushu Electric Power Co Inc Hot water tank, and its heat accumulating system
JP2003185271A (en) * 2001-12-17 2003-07-03 Matsushita Electric Ind Co Ltd Water heater
JP2003247753A (en) * 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd Multifunctional hot water supply apparatus
JP2006105546A (en) * 2004-10-08 2006-04-20 Hanshin Electric Co Ltd Hot water storage type hot water supply device using photovoltaic power generation panel
JP2007085663A (en) * 2005-09-22 2007-04-05 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008014585A (en) * 2006-07-06 2008-01-24 Denso Corp Brine heat radiation type heating apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101059A (en) * 1995-10-04 1997-04-15 Tokyo Gas Co Ltd Hot-water supply system
JP4250665B2 (en) * 2003-07-25 2009-04-08 大阪瓦斯株式会社 Freezing prevention operation method and heating system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277137A (en) * 1988-04-27 1989-11-07 Tokyo Gas Co Ltd Temperature control device in hot water-circulating heater
JP2001304688A (en) * 2000-04-21 2001-10-31 Kyushu Electric Power Co Inc Hot water tank, and its heat accumulating system
JP2003185271A (en) * 2001-12-17 2003-07-03 Matsushita Electric Ind Co Ltd Water heater
JP2003247753A (en) * 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd Multifunctional hot water supply apparatus
JP2006105546A (en) * 2004-10-08 2006-04-20 Hanshin Electric Co Ltd Hot water storage type hot water supply device using photovoltaic power generation panel
JP2007085663A (en) * 2005-09-22 2007-04-05 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2008014585A (en) * 2006-07-06 2008-01-24 Denso Corp Brine heat radiation type heating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528314A (en) * 2014-07-17 2016-01-20 Sav United Kingdom Ltd A heating supply arrangement
CN109798572A (en) * 2017-11-15 2019-05-24 北京华源泰盟节能设备有限公司 One kind is every pressure type great temperature difference heat supply equipment and heat supply method

Also Published As

Publication number Publication date
JP2009281719A (en) 2009-12-03
JP4561920B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US11162627B2 (en) Controller, method of operating a water source heat pump and a water source heat pump
WO2009099046A1 (en) Heating and hot water supply device
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
KR100685341B1 (en) Heat pump type hot water supply device
KR100847619B1 (en) Heat pump water heater
KR100923373B1 (en) Heat pump type hot water supply and floor heating device
CN106322768B (en) Water heater and control method thereof
WO2021068358A1 (en) Multi-line defrosting control method
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP5481942B2 (en) Heating system
WO2009096256A1 (en) Hot-water supply heater
JP4726573B2 (en) Heat pump hot water floor heater
KR20060030761A (en) Multi type air conditioning system and thereof method
CN108779938B (en) Air conditioner hot water supply system
JP2009287898A (en) Heat pump type hot water heat utilizing system
JPH05272812A (en) Heat pump type hot water feeder
JP4110843B2 (en) AIR CONDITIONER, AIR CONDITIONER INSTALLATION METHOD
JP2009264716A (en) Heat pump hot water system
JP4390401B2 (en) Hot water storage hot water source
JP2009287897A (en) Heating hot water supply device
JP4169453B2 (en) Hot water storage hot water source
JP2004044946A (en) Air conditioner
JP4208387B2 (en) Hot water storage hot water source
JP2004232912A (en) Heat pump water heater
JP2020153525A (en) Hot water supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708986

Country of ref document: EP

Kind code of ref document: A1