WO2009099020A1 - Mediation device for controlling air conditioning, air conditioning control system, air conditioning control method, and air conditioning control program - Google Patents

Mediation device for controlling air conditioning, air conditioning control system, air conditioning control method, and air conditioning control program Download PDF

Info

Publication number
WO2009099020A1
WO2009099020A1 PCT/JP2009/051685 JP2009051685W WO2009099020A1 WO 2009099020 A1 WO2009099020 A1 WO 2009099020A1 JP 2009051685 W JP2009051685 W JP 2009051685W WO 2009099020 A1 WO2009099020 A1 WO 2009099020A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
air conditioning
unit
estimated value
air conditioner
Prior art date
Application number
PCT/JP2009/051685
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Nishimura
Mizuki Tanaka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2009099020A1 publication Critical patent/WO2009099020A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values

Definitions

  • the present invention relates to an air conditioning control intermediary device, an air conditioning control system, an air conditioning control method, and an air conditioning control program.
  • an object of the present invention is to provide an environment in which an inverter-controlled air conditioner newly introduced using an existing general-purpose thermostat can be used in order to efficiently realize a comfortable air-conditioning environment.
  • An intermediary device is an intermediary device for air conditioning control connected to an air conditioning interface, and includes a signal reception unit, a room temperature acquisition unit, a set temperature estimation unit, and an estimated value transmission unit.
  • the air conditioning interface receives a set temperature input to the air conditioner and generates a first signal requesting activation or deactivation of the heat source of the air conditioner.
  • the signal receiving unit receives a first signal input from the air conditioning interface.
  • the room temperature acquisition unit acquires the room temperature.
  • the set temperature estimation unit calculates an estimated value of the set temperature of the air conditioning interface based on the first signal received by the signal reception unit and the room temperature acquired by the room temperature acquisition unit.
  • the estimated value transmission unit transmits the estimated value to the air conditioner.
  • the estimated value of the temperature set by the air conditioning interface is calculated based on the information obtained from the air conditioning interface.
  • the estimated value is transmitted to the air conditioner, and the air conditioner operates based on the estimated value. Therefore, since the mediation device can calculate the estimated value of the set temperature based on other information without receiving the information on the set temperature from the air conditioning interface, the set temperature value for the operation using the existing air conditioning interface can be calculated.
  • the intermediary device is the mediation device according to the first invention, and further comprises an operating condition acquisition unit and an operation command transmission unit.
  • the operating state acquisition unit acquires the thermo signal from the indoor unit after the estimated value is calculated by the set temperature estimation unit.
  • a thermo signal is a signal which shows the operating condition of thermo-ON or thermo-OFF of the indoor unit which comprises an air conditioner.
  • the operation command transmission unit transmits an operation command at the highest load or the lowest load to the air conditioner according to the first signal and the thermo signal.
  • the operation command at the maximum load for the air conditioner includes an operation command at a value near the maximum load in addition to the operation command at the maximum load for the compressor.
  • the operation command at the minimum load includes an operation command at a value near the minimum load, an operation command for only blowing air by a fan, and a stop command for the compressor, in addition to an operation command at the minimum load for the compressor.
  • the mediation apparatus After calculating the estimated value, the first signal input from the air conditioning interface and the thermo signal acquired from the indoor unit are confirmed, and an operation command for the air conditioner is transmitted in accordance with these signals. To do. Therefore, since the intermediary device grasps the signal of the air conditioning interface after calculating the estimated value and the operating status of the indoor unit, it can appropriately cope with the change of the set temperature in the air conditioning interface.
  • the mediation device is the mediation device according to the second invention, further comprising a timer unit.
  • the timer unit measures a predetermined time after the estimated value is calculated by the set temperature estimating unit.
  • the operation command transmission unit transmits a maximum load operation command or a minimum load operation command to the air conditioner after a lapse of a predetermined time in accordance with the first signal and the thermo signal.
  • the timer unit measures a predetermined time after the set temperature estimation unit calculates the estimated value
  • the operation command transmission unit performs the predetermined time after the predetermined time elapses according to the first signal and the thermo signal. Send an operation command to the air conditioner. Therefore, since the intermediary device periodically transmits an operation command to the air conditioner, even when the set temperature of the air conditioning interface is changed, it can be appropriately adjusted to the changed set temperature.
  • the intermediary device is the intermediary device according to the third aspect of the present invention, wherein when the first signal changes within a predetermined time, the set temperature estimation unit recalculates the estimated value.
  • the set temperature estimation unit recalculates the estimated value according to the change of the first signal within a predetermined time. Thereby, the estimated value of the temperature set by the air conditioning interface can be calculated as appropriate.
  • An intermediary device is the mediation device according to the third or fourth invention, wherein the first signal does not change within a predetermined time, and the status of the air conditioning interface indicated by the first signal and the thermo signal When the operation status of the indoor unit indicated by is inconsistent, the operation command transmission unit transmits an operation command with the highest load or an operation command with the lowest load to the air conditioner.
  • the change of the first signal, the status of the air conditioning interface, and the operating status of the indoor unit in a predetermined time are determined, and the status of the air conditioning interface and the status of the indoor unit are not changed. If the operation status does not match, the operation command transmission unit transmits an operation command to the air conditioner. Thereby, the estimated value of the temperature set by the air conditioning interface can be reviewed as appropriate.
  • An intermediary device is the mediation device according to the fifth aspect, wherein the state of the air conditioning interface and the operation state of the indoor unit do not coincide with each other includes a first state and a second state.
  • the first state is a state in which the driving status acquisition unit receives a thermo signal indicating the driving status of the thermo OFF when the signal receiving unit receives the first signal requesting the operation.
  • the second state is a state in which the driving status acquisition unit receives a thermo signal indicating the driving status of the thermo-ON when the signal receiving unit receives the first signal requesting non-operation.
  • the operation command transmission unit transmits an operation command of the highest load to the air conditioner.
  • the operation command transmission unit transmits an operation command of the lowest load to the air conditioner. Send.
  • the mediation apparatus when the status of the air conditioning interface and the operation status of the indoor unit are inconsistent, an operation command corresponding to the status is transmitted by the operation command transmission unit. Thereby, the estimated value of the temperature set by the air conditioning interface can be reviewed as appropriate.
  • An intermediary device is the mediation device according to the fifth or sixth invention, wherein the first signal does not change within a predetermined time, and the status of the air conditioning interface indicated by the first signal and the thermo signal If the operation status of the indoor unit indicated by is consistent with the operation status of the indoor unit, the operation command transmission unit will not operate until the maximum load operation command or minimum It waits without sending the load operation command to the air conditioner.
  • the change of the first signal in a predetermined time, the status of the air conditioning interface and the operating status of the indoor unit are determined, the first signal does not change, and the status of the air conditioning interface and the indoor unit
  • the operation command from the operation command transmission unit is not transmitted to the air conditioner. Therefore, when it is not necessary to change the estimated temperature value set in the air conditioning interface, the operation command is not transmitted, so that the room temperature can be maintained at an appropriate temperature.
  • An intermediary device is the mediation device according to any one of the first to seventh inventions, wherein the set temperature estimation unit is a temperature obtained by subtracting a predetermined temperature from the room temperature acquired by the room temperature acquisition unit or A temperature obtained by adding the predetermined temperature to the room temperature acquired by the room temperature acquisition unit is calculated as the estimated value.
  • the estimated value of the temperature set by the air conditioning interface can be calculated.
  • An intermediary apparatus is the intermediary apparatus according to the eighth aspect, wherein the air conditioner is performing a cooling operation, and the first signal requesting non-operation within a predetermined time requests the operation.
  • a preset temperature estimation part calculates the temperature which deducted predetermined temperature from the room temperature acquired in the room temperature acquisition part as an estimated value.
  • the set temperature estimation unit is the room temperature acquisition unit. A temperature obtained by adding a predetermined temperature to the acquired room temperature is calculated as an estimated value.
  • the temperature obtained by adding the predetermined temperature to the room temperature acquired by the room temperature acquisition unit or subtracting the predetermined temperature from the room temperature acquired by the room temperature acquisition unit is Calculated as an estimated value.
  • the estimated value of the temperature set by the air conditioning interface can be calculated.
  • An intermediary apparatus is the intermediary apparatus according to the eighth aspect of the present invention, wherein the air conditioner is performing a cooling operation, and the first signal that requests operation within a predetermined time is a non-operation request.
  • a preset temperature estimation part calculates the temperature which added predetermined temperature to the room temperature acquired in the room temperature acquisition part as an estimated value.
  • the set temperature estimation unit is the room temperature acquisition unit. A temperature obtained by subtracting a predetermined temperature from the acquired room temperature is calculated as an estimated value.
  • the temperature obtained by adding the predetermined temperature to the room temperature acquired by the room temperature acquisition unit or subtracting the predetermined temperature from the room temperature acquired by the room temperature acquisition unit is Calculated as an estimated value.
  • the estimated value of the temperature set by the air conditioning interface can be calculated.
  • An air conditioning control system comprises an intermediary device according to the first invention, an air conditioning interface, and an air conditioner.
  • the air conditioning interface can communicate with the mediation device.
  • the air conditioner receives the estimated value transmitted from the mediation device and performs air conditioning control based on the estimated value.
  • the intermediary device calculates an estimated value of the temperature set by the air conditioning interface based on information obtained from the air conditioning interface, and transmits the estimated value to the air conditioner.
  • the machine operates based on the estimated value. Therefore, the air conditioning control system can calculate the estimated value of the set temperature based on other information without the mediation device receiving the information about the set temperature from the air conditioning interface. It is possible to operate an air conditioner that requires a set temperature value for operation.
  • An air conditioning control method is an air conditioning control method using an air conditioning interface, and includes first to fourth steps.
  • the air conditioning interface receives an input of a set temperature for the air conditioner and generates a first signal requesting activation or deactivation of the heat source of the air conditioner.
  • a first signal is received.
  • the room temperature is acquired.
  • an estimated value of the set temperature of the air conditioning interface is calculated based on the room temperature acquired in the second step.
  • the estimated value is transmitted to the air conditioner.
  • the air conditioning control method After receiving the first signal from the air conditioning interface, an estimated value of the temperature set in the air conditioning interface is calculated based on the acquired room temperature, and the calculated estimated value is then used as the air conditioner. Sent to. Therefore, the air conditioning control method can calculate the estimated value of the set temperature based on the first signal obtained from the air conditioning interface without receiving information on the set temperature from the air conditioning interface. It is possible to operate an air conditioner that requires a set temperature value for operation.
  • the air conditioning control system is an air conditioning control program that uses an air conditioning interface, and causes a computer to execute the first step to the fourth step.
  • the air conditioning interface receives a set temperature input to the air conditioner and generates a first signal requesting activation or deactivation.
  • a first signal is received.
  • the room temperature is acquired.
  • an estimated value of the set temperature of the air conditioning interface is calculated based on the room temperature acquired in the second step.
  • the estimated value is transmitted to the air conditioner.
  • an estimated value of the temperature set in the air conditioning interface is calculated based on the acquired room temperature, and the calculated estimated value is then used as the air conditioner. Sent to. Therefore, by causing the computer to execute the air conditioning control program, it is possible to calculate the estimated value of the set temperature based on the first signal obtained from the air conditioning interface without receiving information on the set temperature from the air conditioning interface.
  • the existing air conditioning interface can be used to operate an air conditioner that requires a set temperature value for operation.
  • an air conditioner that requires a set temperature value for operation can be operated using an existing air conditioning interface.
  • the mediation apparatus according to the second aspect of the present invention it is possible to appropriately cope with a change in the set temperature in the air conditioning interface after calculating the estimated value.
  • the intermediary device according to the third invention since the intermediary device periodically transmits an operation command to the air conditioner, even when the set temperature of the air conditioning interface is changed, it can be appropriately adjusted to the changed set temperature. it can.
  • an estimated value of the temperature set by the air conditioning interface can be calculated as appropriate.
  • the estimated value of the temperature set by the air conditioning interface can be reviewed as appropriate.
  • the estimated value of the temperature set by the air conditioning interface can be reviewed as appropriate.
  • the estimated value of the temperature set by the air conditioning interface can be calculated.
  • the estimated value of the temperature set by the air conditioning interface can be calculated.
  • an estimated value of the temperature set by the air conditioning interface can be calculated.
  • an air conditioner that requires a set temperature value for operation can be operated using an existing air conditioning interface.
  • an air conditioner that requires a set temperature value for operation can be operated using an existing air conditioning interface.
  • an air conditioner that requires a set temperature value for operation can be operated using an existing air conditioning interface.
  • FIG. 1 is an overview of an air conditioning control system according to an embodiment of the present invention. It is an example of the thermostat which concerns on embodiment of this invention. It is a figure which shows the control signal output from the thermostat which concerns on embodiment of this invention. It is a schematic block diagram of the auxiliary unit which concerns on embodiment of this invention. It is a schematic block diagram of the mediation apparatus which concerns on embodiment of this invention. It is a figure which shows the flow of a process at the time of air_conditionaing
  • Air conditioning control system 10 Outdoor heat pump unit 20a-20d Indoor heat pump unit 30 Thermostat (air conditioning interface) 31 Control Line 40 Mediation Device 50 Auxiliary Unit 51 Gas Furnace Unit 52 Fan Unit 58 Aeration Duct 78 Supply Duct 81 Communication Line 88 Refrigerant Circuit
  • FIG. 1 shows a configuration of an air conditioning system 1 according to an embodiment of the present invention.
  • This air conditioning system 1 is an air conditioning system used in a building (property) such as a house or an office building, for example.
  • the thermostat 30 and the intermediary device 40 are configured.
  • an auxiliary unit 50 including a gas furnace unit 51 and a fan unit 52 is connected to the thermostat 30.
  • indoor air conditioning can be performed by appropriately using an air conditioner and a gas furnace unit 51 and a fan unit 52 provided in the auxiliary unit 50.
  • air conditioned in the auxiliary unit 50 is supplied to each room through the supply duct 78, and the air supplied to each room is further conditioned by an air conditioner installed in each room. Thereafter, the air in each room harmonized by the air conditioner is sent to the auxiliary unit 50 through the air duct 58.
  • FIG. 2 shows an example of the display unit of the thermostat 30.
  • the thermostat 30 is often used particularly as an air conditioning control interface in the United States, and has an on / off control function, a temperature setting function, a cooling / heating setting function, a dehumidification setting function, and the like of devices connected to the thermostat 30.
  • the thermostat 30 includes a room temperature grasping unit for grasping the room temperature and an input unit for the set temperature, and compares the input set temperature with the room temperature grasped by the room temperature grasping unit to determine whether the operation of the compressor is performed or not.
  • a signal requesting operation (operation / non-operation request signal) is generated.
  • the operation / non-operation request signal that requires operation is a signal that requests operation of the compressor 12, and the operation / non-operation request signal that requires operation is operation for the compressor 12. This is a signal requesting the non-operation. If the activation / deactivation request signal requires activation, the activation / deactivation request signal is set ON, and if the activation / deactivation request signal requires deactivation, the activation / deactivation request signal is set OFF.
  • the operation start / non-operation request signal for the compressor is set to ON by performing the operation start operation with the thermostat 30.
  • the operation stop / operation request signal for the compressor 12 is set to OFF by operating the thermostat 30 to stop the operation.
  • the operation / non-operation request signal is also set to ON even when the room temperature grasped by the room temperature grasping unit of the thermostat 30 becomes higher than the temperature set in the thermostat 30.
  • the operation / non-operation request signal is set to OFF.
  • the activation / deactivation request signal when operating in the heating operation mode, when the temperature grasped by the room temperature grasping portion of the thermostat 30 becomes lower than the temperature set in the thermostat 30, the activation / deactivation request signal is set to ON. When the temperature grasped by the room temperature grasping unit of the thermostat 30 becomes higher than the temperature set in the thermostat 30, the operation / non-operation request signal is set to OFF. Further, in the above-described determination process of the thermostat 30, there may be a case where a differential is provided for the determination temperature of the thermostat 30 in order to prevent hunting of the operation / non-operation request signal.
  • the thermostat 30 is used as an interface of the air conditioner, the gas furnace unit 51, and the fan unit 52.
  • the thermostat 30 is connected to a gas furnace unit 51 and a fan unit 52 by a control line 31, and controls these units.
  • the thermostat 30 is connected to the mediation device 40 via a control line 31 and controls the air conditioner via the mediation device 40.
  • FIG. 3 is a table showing signals output from the thermostat 30.
  • the intermediary device 40 described later converts these signals into signals that can be read by the air conditioner and transmits them to the air conditioner. Details will be described later. (2) Structure of air conditioner Next, the air conditioner used for the air conditioning system 1 of this embodiment is demonstrated.
  • the air conditioner used in this embodiment is a multi-type heat pump air conditioner, and the outdoor heat pump unit 10 and the indoor heat pump units 20a to 20d are connected by a refrigerant communication pipe 88 and a communication line 81.
  • the air conditioner adjusts the number of rotations of the compressor of the outdoor heat pump unit 10 and the opening of the indoor expansion valve of the indoor heat pump units 20a-20d in a stepwise manner in accordance with the set temperature value. Control the amount of refrigerant flowing.
  • the indoor heat pump units 20a-20d are controlled so that the operation of the thermo OFF and the thermo ON is automatically repeated, and the indoor environment is maintained in the vicinity of the set temperature value.
  • the thermo OFF means a state in which the cooling operation and the heating operation are stopped. Specifically, it refers to a low-load operation in which the refrigerant flows slightly, an operation in which only the fan is operated without flowing the refrigerant, or a state in which the fan is stopped without flowing the refrigerant.
  • the thermo-ON refers to a state where a cooling operation or a heating operation is performed.
  • the value obtained by the room temperature thermistor provided in the indoor heat pump units 20a-20d is 0.5 ° C. or lower of the set temperature value during cooling operation and 0.5 ° C. or higher of the set temperature value during heating operation In this case, the thermo-OFF operation is performed.
  • the value obtained by the room temperature thermistor is not less than the set temperature value of 0.5 ° C. during the cooling operation and when the value obtained is not more than the set temperature value of 0.5 ° C. during the heating operation, Do the driving.
  • the auxiliary unit 50 is disposed in, for example, a basement, and accommodates the gas furnace unit 51 and the fan unit 52.
  • the gas furnace unit 51 is mainly composed of a gas furnace 51a that performs gas combustion and a gas furnace controller 51b that controls the amount of combustion, and heats the air in the auxiliary unit 50.
  • the fan unit 52 mainly includes a fan 52a such as a sirocco fan and a fan controller 52b, and sends out air in the auxiliary unit 50 from the supply duct 78 to the room. As shown in FIG.
  • the intermediary device 40 mainly includes a communication unit 41, a storage unit 42, a room temperature acquisition unit 43, a timer unit 44, and a control unit 45.
  • the communication unit 41 includes an input / output port, inputs various signals from the thermostat 30 and the air conditioner, and outputs a control signal to the air conditioner.
  • the storage unit 42 stores a control program used to calculate an estimated value by a set temperature estimation unit 45b described later.
  • the room temperature acquisition unit 43 is a room temperature thermistor and can thereby obtain the temperature of the room where the mediation device 40 is installed.
  • the timer unit 44 measures a predetermined time after a set temperature estimation unit 45b described later calculates an estimated value. In this embodiment, the predetermined time of the timer after calculating the estimated value is 15 minutes.
  • the control unit 45 is configured by a CPU or the like, and includes a signal reception unit 45a, a set temperature estimation unit 45b, an estimated value transmission unit 45c, a signal conversion unit 45d, an operation command transmission unit 45e, and an operation status acquisition unit. 45f.
  • the signal receiving unit 45a receives an output signal from the thermostat 30 shown in FIG.
  • the Y1 (compressor) signal is used as an operation / non-operation request signal during cooling operation
  • the W1 (heater) signal is used as an operation / non-operation request signal during heating operation.
  • the set temperature estimation unit 45b calculates an estimated value of the temperature set by the thermostat 30.
  • the air conditioner treats the estimated value calculated by the set temperature estimation unit 45b as the set temperature for the air conditioner.
  • the estimated value transmitting unit 45c transmits the estimated value calculated by the set temperature estimating unit 45b to the air conditioner.
  • the signal converter 45d converts the signal from the thermostat 30 shown in FIG. 3 into a signal that can be read by the air conditioner.
  • the signal G (fan) is converted into an operation / stop command, and the other signals B (heating), W1 (heater), O (cooling), Y1 (compressor), and DHM (dehumidification) are respectively
  • the operation mode (cooling operation mode / heating operation mode) is determined from this signal pattern, converted to an operation mode signal readable by the air conditioner, and then transmitted to the air conditioner.
  • the operation command transmission unit 45e transmits an operation command or a stop command at the maximum load to the air conditioner. In the present embodiment, when an operation command at the maximum load is transmitted from the intermediary device 40 to the air conditioner, an operation command at the lower limit value is transmitted during cooling operation, and an operation command at the upper limit value is transmitted during heating operation. To do.
  • the stop command here includes a stop command for stopping both the air blowing by the fan and the cooling or heating operation, and a stop command for operating only the fan.
  • the operating status acquisition unit 45f acquires a signal (thermo signal) indicating whether the indoor heat pump units 20a-20d are operating with the thermo-ON or thermo-OFF. Note that when a plurality of indoor heat pump units 20a-20d are controlled by a single thermostat 30 as in this embodiment, the thermo signal of the indoor heat pump unit set as a representative machine is transmitted to the indoor heat pump units 20a-20d. Acquired as a thermo signal.
  • FIG. 6 shows a processing flow of the mediation device 40 during the cooling operation.
  • the signal receiving unit 45a receives the fan signal (fan ON signal) set to ON by the thermostat 30 and the compressor signal (compressor ON signal) set to ON (step S101).
  • the signal receiving unit 45a receives the compressor ON signal from the thermostat 30, it is determined whether or not the compressor ON signal is the first compressor ON signal after the start of the cooling operation (step S102).
  • the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the lower limit value as the set temperature (step S103).
  • the room temperature gradually decreases, and eventually the temperature grasped by the room temperature grasping portion of the thermostat 30 falls below the set temperature actually set in the thermostat, and the compressor signal is set to OFF in the thermostat 30.
  • the compressor signal set to OFF by the thermostat 30 compressor OFF signal
  • the set temperature estimation unit 45b is the room temperature acquisition unit 43 when the compressor OFF signal is input.
  • an estimated value of the temperature set in the thermostat 30 is calculated, and the estimated value is transmitted to the air conditioner (step S105). The details of the process for calculating the estimated value will be described later.
  • step S106 the timer unit 44 starts measuring time (step S106).
  • the intermediary device 40 determines whether or not there is a change in the compressor signal from the thermostat 30 (step S107).
  • step S107 the process returns to step S105 again, the set temperature estimating unit 45b calculates the estimated value of the set temperature, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Send. If there is no change in the compressor signal in step S107, the process proceeds to step S108, and it is determined whether or not the time measured by the timer unit 44 has passed 15 minutes (step S108).
  • the operating status acquisition unit 45f acquires a thermo signal indicating the operating status of the indoor heat pump unit 20c from the indoor heat pump unit 20c, and then Then, it is determined whether or not the operation state of the indoor heat pump unit 20c indicated by the thermo signal matches the state of the thermostat 30 indicated by the compressor signal (step S109).
  • whether the operation signal acquisition unit 45f acquires from the indoor heat pump unit 20c is a signal that is set to ON (thermo ON signal) or a signal that is set to OFF (thermo OFF signal). Further, it is determined whether the compressor signal from the thermostat 30 received by the signal receiving unit 45a is a compressor ON signal or a compressor OFF signal. More specifically, when the compressor signal input from the thermostat 30 is the compressor ON signal and the thermo signal acquired from the indoor heat pump unit 20c is the thermo ON signal, or the compressor signal input from the thermostat 30 is When it is a compressor OFF signal and the thermo signal acquired from the indoor heat pump unit 20c is a thermo OFF signal, it is determined that the state of the thermostat 30 matches the state of the indoor heat pump unit 20c.
  • the compressor signal input from the thermostat 30 is the compressor ON signal and the thermo signal acquired from the indoor heat pump unit 20c is the thermo OFF signal, or the compressor signal input from the thermostat 30 is the compressor.
  • the compressor signal input from the thermostat 30 is the compressor.
  • it is an OFF signal and the thermo signal acquired from the indoor heat pump unit 20c is a thermo ON signal it is determined that the state of the thermostat 30 and the state of the indoor heat pump unit 20c are inconsistent.
  • step S109 If it is determined in step S109 that the state of the thermostat 30 indicated by the compressor signal and the state of the indoor heat pump unit 20c indicated by the thermo signal are inconsistent, whether or not the compressor signal from the thermostat 30 is the compressor OFF signal. Is determined (step S110).
  • the reason why the situation of the thermostat 30 indicated by the compressor signal and the situation of the indoor heat pump unit 20c indicated by the thermo signal do not match the estimated value calculated by the mediating device 40 is transmitted to the air conditioner, The case where the temperature set to the thermostat 30 by the user is changed is considered.
  • the process returns to step S103, and the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the lower limit value as the set temperature, and the thermostat.
  • the operation command transmission unit 45e transmits an operation stop command to the air conditioner (step S111).
  • step S109 when it is determined in step S109 that the state of the thermostat 30 indicated by the compressor signal matches the state of the indoor heat pump unit 20c indicated by the thermo signal, the process returns to step 107 and the compressor signal from the thermostat 30 is converted. Determine if there is a change.
  • the reason why the situation of the thermostat 30 indicated by the compressor signal and the situation of the indoor heat pump unit 20c indicated by the thermo signal coincide with each other is that the set temperature in the thermostat 30 and the estimated value calculated by the mediation device 40 And the room temperature has not yet reached the set temperature of the thermostat 30. Therefore, the processing from step S107 to step S109 is continued until the compressor signal from the thermostat 30 is changed.
  • the processing content regarding the calculation of the estimated value in step S105 described above will be described.
  • the set temperature estimation unit 45b is a temperature obtained by adding a predetermined temperature to the temperature obtained by the room temperature acquisition unit 43 when the compressor OFF signal is input. Is calculated as an estimated value.
  • the set temperature estimation unit 45b subtracts a predetermined temperature from the temperature obtained by the room temperature acquisition unit 43 when the compressor ON signal is input. The calculated temperature is calculated as an estimated value.
  • the predetermined temperature is 1 ° C.
  • FIGS. 7 and 8 show changes in the room temperature grasped by the mediating device 40 during the cooling operation, signals from the thermostat 30 and the indoor heat pump unit 20c detected by the mediating device 40 (compressor signal and thermo signal), and the mediating device 40 The relationship with the operation command transmitted to an air conditioner is shown.
  • the signal receiving unit 45a first receives the compressor ON signal (ON signal A1) from the thermostat 30. Since the ON signal A1 is the first compressor ON signal, as described in step S103, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the lower limit value as the set temperature. Thereafter, when the cooling operation is continued, the room temperature is lowered, and the compressor OFF signal (OFF signal B1) from the thermostat 30 is input to the intermediary device 40 before long.
  • the set temperature estimating unit 45b calculates an estimated value based on the temperature obtained by the room temperature acquiring unit 43, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Is transmitted (the above-mentioned step S105), but after the estimated value is transmitted and a predetermined time elapses after the estimated value is transmitted due to a rise in room temperature or a temperature detection error of the room temperature grasping part of the thermostat 30 (for example, In FIG. 7, after 10 minutes, when the compressor ON signal (ON signal A2) is input (step S107 described above), the set temperature is based on the temperature obtained by the room temperature acquisition unit 43 when the ON signal A2 is input.
  • the estimation unit 45b calculates the estimated value again, and the estimated value transmission unit 45c transmits the estimated value to the air conditioner (step S105).
  • the compressor signal when the 15 minutes have elapsed is the compressor ON signal, and the thermo OFF signal is acquired from the indoor heat pump unit 20c. is doing. Therefore, it is determined that the state of the thermostat 30 indicated by the compressor signal and the state of the indoor heat pump unit 20c indicated by the thermo signal are inconsistent (step S109). That is, since the set temperature has been lowered, it is determined that the room temperature has not reached the temperature set in the thermostat 30.
  • the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the lower limit value as the set temperature (step S103).
  • the signal receiving unit 45a receives a compressor ON signal (ON signal A1) from the thermostat 30. Since the ON signal A1 is the first compressor ON signal, as described in step S103, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the lower limit value as the set temperature. Thereafter, the compressor OFF signal (OFF signal B1) from the thermostat 30 is input to the mediating device 40.
  • the set temperature estimating unit 45b calculates an estimated value based on the temperature obtained by the room temperature acquiring unit 43, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner.
  • step S105 Transmit (step S105 described above). Thereafter, there is no change in the compressor signal received from the thermostat 30 for 15 minutes measured by the timer unit 44, the compressor signal when the 15 minutes have elapsed is the compressor OFF signal, and a thermo ON signal is acquired from the indoor heat pump unit 20c. ing. Therefore, it is determined that the state of the thermostat 30 indicated by the compressor signal and the state of the air conditioner indicated by the thermo signal are inconsistent (step S109). That is, since the set temperature has been raised, it is determined that the room temperature has not reached the temperature set in the thermostat 30.
  • the compressor signal indicating the state of the thermostat 30 is a compressor OFF signal
  • the operation command transmission unit 45e transmits a stop operation command to the air conditioner as described in step S111.
  • the flow of the process of the mediation apparatus 40 at the time of heating operation is shown using FIG.
  • the G signal (fan signal) described with reference to FIG. 3 is set to ON (operation) in the thermostat 30.
  • the W1 signal (heater signal) is set to ON.
  • the signal receiving unit 45a is set to ON by the thermostat 30 and receives the fan signal (fan ON signal) and the heater signal (heater ON signal) set to ON (step S201).
  • step S202 When the signal receiving unit 45a receives the heater ON signal from the thermostat 30, it is determined whether or not the heater ON signal is the first heater ON signal (step S202).
  • step S202 when the heater ON signal is the first heater ON signal, the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the upper limit value as the set temperature (step S203). If the heating operation is continued in this state, the room temperature gradually rises, and eventually the temperature grasped by the room temperature grasping part of the thermostat 30 exceeds the set temperature actually set in the thermostat 30, and the heater signal is set to OFF in the thermostat 30.
  • the set temperature estimation unit 45b is the room temperature acquisition unit 43 when the heater OFF signal is input.
  • An estimated value of the temperature set in the thermostat 30 is calculated based on the obtained temperature, and the estimated value is transmitted to the air conditioner (step S205). The details of the process for calculating the estimated value will be described later.
  • step S206 the timer unit 44 starts measuring time (step S206).
  • the mediating device 40 determines whether or not there is a change in the heater signal of the thermostat 30 (step S207).
  • step S207 the process returns to step S205 again, the set temperature estimating unit 45b calculates the estimated value of the set temperature, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Send.
  • step S208 the process proceeds to step S208, and it is determined whether or not the time measured by the timer unit 44 has passed 15 minutes (step S208).
  • the operating status acquisition unit 45f acquires a thermo signal indicating the operating status of the indoor heat pump unit 20c from the indoor heat pump unit 20c, and the thermo signal It is determined whether or not the operation status of the indoor heat pump unit 20c indicated by and the status of the thermostat 30 indicated by the heater signal match (step S209).
  • the operation status acquisition unit 45f is either a signal in which a thermo signal acquired from the indoor heat pump unit 20c is set to ON (thermo ON signal) or a signal that is set to OFF (thermo OFF signal). It is also determined whether the heater signal from the thermostat 30 received by the signal receiving unit 45a is a heater ON signal or a heater OFF signal. More specifically, when the heater signal input from the thermostat 30 is a heater ON signal and the thermo signal acquired from the indoor heat pump unit 20c is a thermo ON signal, or the heater signal input from the thermostat 30 is When it is a heater OFF signal and the thermo signal acquired from the indoor heat pump unit 20c is a thermo OFF signal, it is determined that the state of the thermostat 30 matches the state of the indoor heat pump unit 20c.
  • thermo signal input from the thermostat 30 is the heater ON signal and the thermo signal acquired from the indoor heat pump unit 20c is the thermo OFF signal, or the heater signal input from the thermostat 30 is the heater OFF
  • thermo signal indicating the status of the indoor heat pump unit 20c is a thermo ON signal
  • step S209 If it is determined in step S209 that the state of the thermostat 30 indicated by the heater signal and the state of the indoor heat pump unit 20c indicated by the thermo signal are inconsistent, whether or not the heater signal from the thermostat 30 is a heater OFF signal. Is determined (step S210).
  • the reason why the state of the thermostat 30 indicated by the heater signal and the state of the indoor heat pump unit 20c indicated by the thermo signal do not match is similar to the above-described explanation during the cooling operation, as estimated by the mediation device 40. It is conceivable that the temperature set in the thermostat 30 is changed by the user after the value is transmitted to the air conditioner.
  • the process returns to step S203, and the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the upper limit value as the set temperature.
  • the operation command transmission unit 45e transmits an operation stop command to the air conditioner (step S211).
  • step S209 determines whether the state of the thermostat 30 indicated by the heater signal matches the state of the indoor heat pump unit 20c indicated by the thermo signal.
  • the process returns to step 207 to return the heater signal from the thermostat 30.
  • the reason why the condition of the thermostat 30 indicated by the heater signal and the condition of the indoor heat pump unit 20c indicated by the thermo signal coincide with each other is the same as the set temperature in the thermostat 30 as described above in the cooling operation.
  • the estimated value calculated by the intermediary device 40 may coincide with each other and the room temperature has not yet reached the set temperature of the thermostat. Therefore, the processing from step S207 to step S209 is continued until the heater signal from the thermostat 30 changes.
  • the set temperature estimation unit 45b is a temperature obtained by subtracting a predetermined temperature from the temperature obtained by the room temperature acquisition unit 43 when the heater OFF signal is input. Is calculated as an estimated value.
  • the set temperature estimation unit 45b adds a predetermined temperature to the temperature obtained by the room temperature acquisition unit 43 when the heater ON signal is input. The temperature is calculated as an estimated value.
  • the predetermined temperature is 1 ° C.
  • FIGS. 10 and 11 show changes in room temperature grasped by the mediating device 40 during heating operation, signals (heater signals and thermo signals) detected from the thermostat 30 and the indoor heat pump unit 20c detected by the mediating device 40, and the mediating device 40 The relationship with the operation command transmitted to an air conditioner is shown.
  • the signal receiving unit 45a receives the heater ON signal (ON signal A1) from the thermostat 30. Since the ON signal A1 is the first heater ON signal, as described in step S203, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the upper limit value as the set temperature. Thereafter, when the heating operation is continued, the room temperature rises, and a heater OFF signal (OFF signal B1) from the thermostat 30 is input to the intermediary device 40 eventually.
  • OFF signal B1 a heater OFF signal
  • the set temperature estimating unit 45b calculates an estimated value based on the temperature obtained by the room temperature acquiring unit 43, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Is transmitted (step S205 described above), but after the estimated value is transmitted, the heater ON signal (ON signal A2) is generated after the timer starts measuring until a predetermined time elapses (for example, 10 minutes in FIG. 10).
  • the set temperature estimation unit 45b calculates the estimated value again based on the temperature obtained by the room temperature acquisition unit 43 when the ON signal A2 is input, and the estimated value transmission unit 45c. Transmits the estimated value to the air conditioner (step S205).
  • the heater signal when the 15 minutes have elapsed is the heater ON signal, and the thermo OFF signal is acquired from the indoor heat pump unit 20c. is doing. Therefore, it is determined that the state of the thermostat 30 indicated by the heater signal is inconsistent with the state of the indoor heat pump unit 20c indicated by the thermo signal (step S209). That is, since the set temperature has been raised, it is determined that the room temperature has not reached the temperature set in the thermostat 30.
  • the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the upper limit value as the set temperature (step S203).
  • the signal receiving unit 45a receives the heater ON signal (ON signal A1) from the thermostat 30. Since the ON signal A1 is the first heater ON signal, as described in step S203, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the upper limit value as the set temperature. Thereafter, the heater OFF signal (OFF signal B1) from the thermostat 30 is input to the intermediary device 40.
  • the set temperature estimating unit 45b calculates an estimated value based on the temperature obtained by the room temperature acquiring unit 43, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner.
  • step S205 Transmit (step S205 described above). Thereafter, there is no change in the heater signal received from the thermostat 30 for 15 minutes measured by the timer unit 44, the heater signal when the 15 minutes have elapsed is the heater OFF signal, and a thermo ON signal is acquired from the indoor heat pump unit 20c. ing. Therefore, it is determined that the state of the thermostat 30 indicated by the heater signal is inconsistent with the state of the indoor heat pump unit 20c indicated by the thermo signal (step S209). That is, since the set temperature has been lowered, it is determined that the room temperature has not reached the temperature set in the thermostat 30.
  • the operation command transmission unit 45e transmits a stop operation command to the air conditioner as described in step S211.
  • the intermediary device 40 receives a control signal output from the thermostat 30 and converts it into a signal that can be read by the air conditioner. Further, the mediating device 40 calculates an estimated value of the temperature set by the thermostat 30 based on the signal output by the thermostat 30. Therefore, an air conditioner that requires a set temperature value for operation can be operated using the thermostat 30. Thereby, even if it is a case where the air conditioner which performs inverter control is newly introduced, the thermostat 30 as an air conditioning interface used conventionally can be continuously used for the interface of a new air conditioner. Further, since the thermostat 30 can be used continuously, the existing gas furnace unit 51 and the fan unit 52 can be continuously used together, and the air conditioning environment can be efficiently prepared.
  • the intermediary device 40 uses the basic signal output from the thermostat 30 to calculate the estimated value of the set temperature. It can be applied to a partial thermostat 30.
  • the intermediary device 40 according to the present embodiment includes a timer unit 44, and again calculates an estimated value of the set temperature for each predetermined time measured by the timer unit 44. Therefore, even if the set temperature is changed by the user after the estimated value of the set temperature is transmitted to the air conditioner, the estimated value is calculated as appropriate, and thus the indoor environment desired by the user is continuously provided. can do.
  • ⁇ Modification> (1)
  • a single type heat pump type air conditioner may be used. Moreover, it is applicable not only to a heat pump type air conditioner but also to any other air conditioner as long as it is an inverter controlled air conditioner.
  • the room temperature acquisition unit 43 is a room temperature thermistor and calculates an estimated value of the set temperature based on the room temperature acquired by its own room temperature thermistor.
  • the room temperature information obtained by the room temperature thermistor of the indoor heat pump units 20a-20d may be acquired from the indoor heat pump units 20a-20d.
  • the room temperature obtained by the room temperature thermistor of the indoor heat pump unit set as a representative machine is related. Use information.
  • the set temperature estimation unit 45b can calculate an estimated value of the set temperature in the thermostat 30 based on the room temperature acquired from the representative machine among the plurality of indoor heat pump units 20a-20d. Further, a thermistor for measuring the room temperature may be attached to the outside of the mediation device 40, the external thermistor may be connected to the room temperature acquisition unit 43, and the estimated value of the set temperature may be calculated based on the room temperature acquired by the external thermistor .
  • the control signal from the thermostat 30 is transmitted to the outdoor heat pump unit 10 via the mediation device 40.
  • the control signal from the thermostat 30b is transmitted to the mediation device 40b. May be transmitted to the indoor heat pump units 20a-20c.
  • thermostats 30a-30c and intermediary devices 40a-40c are provided according to the number of indoor heat pump units 20a-20d, and each indoor heat pump unit 20a-20d is connected to one mediator. You may make it receive the control signal from one different thermostat 30a-30c converted by apparatus 40a-40c.
  • each thermostat 30a-30c and an intermediary device 40a-40c are installed, and a control signal from the thermostat 30a-30c to which each intermediary device 40a-40c is connected to itself. May be input, converted, and transmitted to the air conditioner to control the indoor heat pump units 20a-20c.
  • each indoor heat pump unit 20a to 20c can be operated at different set temperatures.
  • each indoor heat pump unit 20a-20d may include a remote controller (not shown).
  • a remote controller When a remote controller is set for each indoor heat pump unit 20a-20d, an estimated value of the set temperature based on an output signal from the thermostat 30 and a set temperature input by the individual remote controller may be selected. Thereby, a comfortable air-conditioning environment can be realized more flexibly.
  • the Y1 signal (compressor signal) of the signal (see FIG. 3) output from the thermostat 30 during the cooling operation, the heating operation
  • the W1 signal hereinter signal
  • the estimated value may be calculated using only the Y1 signal, only the W1 signal, or other signals.
  • the present invention has an effect of providing an environment in which an inverter-controlled air conditioner newly introduced using an existing general-purpose thermostat can be used in order to efficiently realize a comfortable air-conditioning environment. It is useful as an intermediary device, an air conditioning control system, an air conditioning control method, and an air conditioning control program.

Abstract

Provided is an environment for controlling an inverter-controlled air conditioning apparatus newly introduced by using existing general-purpose thermostats so as to efficiently provide comfortable air-conditioning environment. A mediation device (40) for controlling air conditioning is connected to an air conditioning interface (30), which receives input of a setting temperature for air conditioning apparatuses (10, 20a-20d) and generates a first signal for requesting operation or non-operation to a heat source of the air conditioning apparatuses. The mediation device is provided with a signal receiving section (45a) for receiving the first signal inputted from the air conditioning interface; a room temperature acquiring section (43) for acquiring a room temperature; a setting temperature estimating section (45b) which calculates an estimated value of the setting temperature of the air conditioning interface, based on the first signal received by the signal receiving section and the room temperature acquired by the room temperature acquiring section; and an estimated value transmitting section (45c) for transmitting the estimated value to the air conditioning apparatuses.

Description

空調制御の仲介装置、空調制御システム、空調制御方法および空調制御プログラムMediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
 本発明は、空調制御の仲介装置、空調制御システム、空調制御方法および空調制御プログラムに関する。 The present invention relates to an air conditioning control intermediary device, an air conditioning control system, an air conditioning control method, and an air conditioning control program.
 従来、特に米国の住宅またはオフィスビル等では、汎用のサーモスタットを空調機のマンマシンインターフェース(コントローラ)として利用することがデファクトスタンダードとなっており、当該汎用のサーモスタットを用いて、空調機とともに他の暖房用機器やファンを制御し、快適な空調環境を効率よく実現している。また、米国の空調システムにおいては、空調機として、熱源となる圧縮機をオン・オフ制御するものが多く用いられており、汎用のサーモスタットは、入力された設定温度と室温とを比較して、当該空調機に対して圧縮機オンあるいは圧縮機オフの指令信号を送る。
 一方、最近では、設定温度に基づいて圧縮機をきめ細かくインバータ制御する空調機も登場してきている。そのような空調機は、制御を行う際に設定温度値が必要となるため、設定温度値を出力できない汎用のサーモスタットではなく空調機専用のインターフェースを用意して、利用者がその専用インターフェースを用いて設定温度の入力をするように促している。
Conventionally, the use of general-purpose thermostats as man-machine interfaces (controllers) for air conditioners has become the de facto standard, especially in US homes or office buildings, and other general-purpose thermostats can be used together with other air-conditioners. Controls heating equipment and fans to efficiently realize a comfortable air-conditioning environment. In addition, in the air conditioning system in the United States, many air conditioners that turn on and off a compressor that is a heat source are used, and a general-purpose thermostat compares an input set temperature with room temperature, The compressor on / off command signal is sent to the air conditioner.
On the other hand, recently, air conditioners that finely control the inverter based on the set temperature have also appeared. Such an air conditioner requires a set temperature value when performing control, so prepare a dedicated interface for the air conditioner rather than a general-purpose thermostat that cannot output the set temperature value, and the user uses that dedicated interface. Prompts you to enter the set temperature.
 しかし、従来の空調システムにインバータ制御を行う最新の空調機を組み込んだ場合、汎用のサーモスタットに加えて空調機専用のインターフェースを使わなければならなくなり、利用者にとって煩雑である。また、従来の空調システムにインバータ制御を行う最新の空調機のみを導入した場合であっても、利用者は、従来から使い慣れている汎用のサーモスタットではなく、最新の空調機専用のインターフェースの操作方法を習得し、利用しなければならない。
 そこで、本発明の課題は、快適な空調環境の実現を効率よく行うため、既存の汎用のサーモスタットを用いて新たに導入したインバータ制御の空調機を利用可能とする環境を提供することにある。
However, when the latest air conditioner that performs inverter control is incorporated in a conventional air conditioning system, an interface dedicated to the air conditioner must be used in addition to the general-purpose thermostat, which is cumbersome for the user. In addition, even when only the latest air conditioner that controls inverters is installed in a conventional air conditioning system, the user is not a general-purpose thermostat that has been used to date, but a method for operating the interface dedicated to the latest air conditioner. Must be learned and used.
Accordingly, an object of the present invention is to provide an environment in which an inverter-controlled air conditioner newly introduced using an existing general-purpose thermostat can be used in order to efficiently realize a comfortable air-conditioning environment.
 第1発明に係る仲介装置は、空調インターフェースに接続される空調制御のための仲介装置であって、信号受付部と、室温取得部と、設定温度推定部と、推定値送信部とを備える。空調インターフェースは、空調機に対する設定温度の入力を受け付けるとともに空調機の熱源に対して作動または非作動を要求する第1信号を生成する。信号受付部は、空調インターフェースから入力される第1信号を受け付ける。室温取得部は、室温を取得する。設定温度推定部は、信号受付部で受け付けた第1信号と室温取得部で取得された室温とに基づき、空調インターフェースの設定温度の推定値を算出する。推定値送信部は、推定値を空調機に送信する。 An intermediary device according to a first aspect of the present invention is an intermediary device for air conditioning control connected to an air conditioning interface, and includes a signal reception unit, a room temperature acquisition unit, a set temperature estimation unit, and an estimated value transmission unit. The air conditioning interface receives a set temperature input to the air conditioner and generates a first signal requesting activation or deactivation of the heat source of the air conditioner. The signal receiving unit receives a first signal input from the air conditioning interface. The room temperature acquisition unit acquires the room temperature. The set temperature estimation unit calculates an estimated value of the set temperature of the air conditioning interface based on the first signal received by the signal reception unit and the room temperature acquired by the room temperature acquisition unit. The estimated value transmission unit transmits the estimated value to the air conditioner.
 本発明に係る仲介装置では、空調インターフェースから得られる情報に基づいて、空調インターフェースで設定された温度の推定値が算出される。当該推定値は空調機に送信され、空調機は当該推定値に基づいて運転を行う。
 したがって、仲介装置は空調インターフェースからの設定温度に関する情報を受信せずに、他の情報に基づいて設定温度の推定値を算出することができるので、既存の空調インターフェースを用いて運転に設定温度値を必要とする空調機を作動させることができる。   
In the mediation apparatus according to the present invention, the estimated value of the temperature set by the air conditioning interface is calculated based on the information obtained from the air conditioning interface. The estimated value is transmitted to the air conditioner, and the air conditioner operates based on the estimated value.
Therefore, since the mediation device can calculate the estimated value of the set temperature based on other information without receiving the information on the set temperature from the air conditioning interface, the set temperature value for the operation using the existing air conditioning interface can be calculated. The air conditioner that requires
 第2発明に係る仲介装置は、第1発明に係る仲介装置であって、運転状況取得部と、動作命令送信部と、をさらに備える。運転状況取得部は、設定温度推定部によって推定値が算出された後、サーモ信号を室内機から取得する。サーモ信号は、空調機を構成する室内機のサーモONあるいはサーモOFFの運転状況を示す信号である。動作命令送信部は、第1信号とサーモ信号とに応じ、空調機に対して最高負荷あるいは最低負荷での動作命令を送信する。ここで、空調機に対する最高負荷での動作命令とは、圧縮機に対する最高負荷での運転命令の他、最高負荷近傍の値での運転命令も含む。また、最低負荷での動作命令とは、圧縮機に対する最低負荷での運転命令の他、最低負荷近傍の値での運転命令、ファンによる送風のみの運転命令および圧縮機に対する停止命令を含む。 The intermediary device according to the second invention is the mediation device according to the first invention, and further comprises an operating condition acquisition unit and an operation command transmission unit. The operating state acquisition unit acquires the thermo signal from the indoor unit after the estimated value is calculated by the set temperature estimation unit. A thermo signal is a signal which shows the operating condition of thermo-ON or thermo-OFF of the indoor unit which comprises an air conditioner. The operation command transmission unit transmits an operation command at the highest load or the lowest load to the air conditioner according to the first signal and the thermo signal. Here, the operation command at the maximum load for the air conditioner includes an operation command at a value near the maximum load in addition to the operation command at the maximum load for the compressor. The operation command at the minimum load includes an operation command at a value near the minimum load, an operation command for only blowing air by a fan, and a stop command for the compressor, in addition to an operation command at the minimum load for the compressor.
 本発明に係る仲介装置では、推定値を算出した後、空調インターフェースから入力される第1信号と室内機から取得するサーモ信号とを確認し、これらの信号に応じて空調機に対する動作命令を送信する。
 したがって、仲介装置は、推定値を算出した後の空調インターフェースの信号と、室内機の運転状況とを把握するため、空調インターフェースにおける設定温度の変更に対しても適宜対応することができる。
In the mediation apparatus according to the present invention, after calculating the estimated value, the first signal input from the air conditioning interface and the thermo signal acquired from the indoor unit are confirmed, and an operation command for the air conditioner is transmitted in accordance with these signals. To do.
Therefore, since the intermediary device grasps the signal of the air conditioning interface after calculating the estimated value and the operating status of the indoor unit, it can appropriately cope with the change of the set temperature in the air conditioning interface.
 第3発明に係る仲介装置は、第2発明に係る仲介装置であって、タイマー部をさらに備える。タイマー部は設定温度推定部によって推定値が算出された後の所定時間を計測する。また、動作命令送信部は、第1信号とサーモ信号とに応じ、所定時間の経過後に空調機に対する最高負荷の動作命令あるいは最低負荷の動作命令を送信する。 The mediation device according to the third invention is the mediation device according to the second invention, further comprising a timer unit. The timer unit measures a predetermined time after the estimated value is calculated by the set temperature estimating unit. The operation command transmission unit transmits a maximum load operation command or a minimum load operation command to the air conditioner after a lapse of a predetermined time in accordance with the first signal and the thermo signal.
 本発明に係る仲介装置では、設定温度推定部が推定値を算出した後の所定時間をタイマー部が計測し、第1信号とサーモ信号とに応じて、所定時間の経過後に動作命令送信部が空調機に対する動作命令を送信する。
 したがって、仲介装置は空調機に対して定期的に動作命令を送信するため、空調インターフェースの設定温度が変更された場合にも、変更された設定温度に適宜合わせることができる。
In the intermediary device according to the present invention, the timer unit measures a predetermined time after the set temperature estimation unit calculates the estimated value, and the operation command transmission unit performs the predetermined time after the predetermined time elapses according to the first signal and the thermo signal. Send an operation command to the air conditioner.
Therefore, since the intermediary device periodically transmits an operation command to the air conditioner, even when the set temperature of the air conditioning interface is changed, it can be appropriately adjusted to the changed set temperature.
 第4発明に係る仲介装置は、第3発明に係る仲介装置であって、第1信号が所定時間内に変化した場合、設定温度推定部は推定値を改めて算出する。
 本発明に係る仲介装置では、所定時間内における第1信号の変化に応じて、設定温度推定部が推定値を改めて算出する。
 これにより、空調インターフェースで設定された温度の推定値を適宜算出することができる。 
The intermediary device according to a fourth aspect of the present invention is the intermediary device according to the third aspect of the present invention, wherein when the first signal changes within a predetermined time, the set temperature estimation unit recalculates the estimated value.
In the mediation apparatus according to the present invention, the set temperature estimation unit recalculates the estimated value according to the change of the first signal within a predetermined time.
Thereby, the estimated value of the temperature set by the air conditioning interface can be calculated as appropriate.
 第5発明に係る仲介装置は、第3または第4発明に係る仲介装置であって、第1信号が所定時間内に変化せず、かつ、第1信号が示す空調インターフェースの状況と、サーモ信号が示す室内機の運転状況とが不一致の状態である場合、動作命令送信部は、空調機に対して最高負荷の動作命令あるいは最低負荷の動作命令を送信する。 An intermediary device according to a fifth invention is the mediation device according to the third or fourth invention, wherein the first signal does not change within a predetermined time, and the status of the air conditioning interface indicated by the first signal and the thermo signal When the operation status of the indoor unit indicated by is inconsistent, the operation command transmission unit transmits an operation command with the highest load or an operation command with the lowest load to the air conditioner.
 本発明に係る仲介装置では、所定時間における第1信号の変化と、空調インターフェースの状況と、室内機の運転状況とが判断され、第1信号に変化がなく、空調インターフェースの状況と室内機の運転状況とが一致していない場合には、動作命令送信部が空調機に対して動作命令を送信する。
 これにより、空調インターフェースで設定された温度の推定値を適宜見直すことができる。
In the intermediary device according to the present invention, the change of the first signal, the status of the air conditioning interface, and the operating status of the indoor unit in a predetermined time are determined, and the status of the air conditioning interface and the status of the indoor unit are not changed. If the operation status does not match, the operation command transmission unit transmits an operation command to the air conditioner.
Thereby, the estimated value of the temperature set by the air conditioning interface can be reviewed as appropriate.
 第6発明に係る仲介装置は、第5発明に係る仲介装置であって、空調インターフェースの状況と室内機の運転状況とが不一致の状態には、第1状態と、第2状態とが含まれる。第1状態とは、信号受付部が作動を要求する第1信号を受け付けている際に、運転状況取得部がサーモOFFの運転状況を示すサーモ信号を受信する状態である。第2状態とは、信号受付部が非作動を要求する第1信号を受け付けている際に、運転状況取得部がサーモONの運転状況を示すサーモ信号を受信する状態である。また、第1状態の場合、動作命令送信部は空調機に対して最高負荷の動作命令を送信し、第2状態の場合は、動作命令送信部は空調機に対して最低負荷の動作命令を送信する。 An intermediary device according to a sixth aspect is the mediation device according to the fifth aspect, wherein the state of the air conditioning interface and the operation state of the indoor unit do not coincide with each other includes a first state and a second state. . The first state is a state in which the driving status acquisition unit receives a thermo signal indicating the driving status of the thermo OFF when the signal receiving unit receives the first signal requesting the operation. The second state is a state in which the driving status acquisition unit receives a thermo signal indicating the driving status of the thermo-ON when the signal receiving unit receives the first signal requesting non-operation. In the first state, the operation command transmission unit transmits an operation command of the highest load to the air conditioner. In the second state, the operation command transmission unit transmits an operation command of the lowest load to the air conditioner. Send.
 本発明に係る仲介装置では、空調インターフェースの状況と室内機の運転状況とが不一致の状態である場合に、その状況に応じた動作命令が動作命令送信部によって送信される。
 これにより、空調インターフェースで設定された温度の推定値を適宜見直すことができる。
In the mediation apparatus according to the present invention, when the status of the air conditioning interface and the operation status of the indoor unit are inconsistent, an operation command corresponding to the status is transmitted by the operation command transmission unit.
Thereby, the estimated value of the temperature set by the air conditioning interface can be reviewed as appropriate.
 第7発明に係る仲介装置は、第5または第6発明に係る仲介装置であって、第1信号が所定時間内に変化せず、かつ、第1信号が示す空調インターフェースの状況と、サーモ信号が示す室内機の運転状況とが一致している状態である場合、動作命令送信部は、空調インターフェースの状況と室内機の運転状況とが不一致の状態になるまで、最高負荷の動作命令あるいは最低負荷の動作命令を空調機に送信せず待機する。 An intermediary device according to a seventh invention is the mediation device according to the fifth or sixth invention, wherein the first signal does not change within a predetermined time, and the status of the air conditioning interface indicated by the first signal and the thermo signal If the operation status of the indoor unit indicated by is consistent with the operation status of the indoor unit, the operation command transmission unit will not operate until the maximum load operation command or minimum It waits without sending the load operation command to the air conditioner.
 本発明に係る仲介装置では、所定時間における第1信号の変化と、空調インターフェースの状況および室内機の運転状況とを判断し、第1信号が変化せず、かつ、空調インターフェースの状況と室内機の運転状況とが一致している場合には、動作命令送信部による動作命令が空調機に送信されない。
 したがって、空調インターフェースに設定された温度の推定値を変動させる必要がない場合には、動作命令が送信されないため、室温を適当な温度で維持することができる。
In the intermediary device according to the present invention, the change of the first signal in a predetermined time, the status of the air conditioning interface and the operating status of the indoor unit are determined, the first signal does not change, and the status of the air conditioning interface and the indoor unit In the case where the operation status coincides with the operation status, the operation command from the operation command transmission unit is not transmitted to the air conditioner.
Therefore, when it is not necessary to change the estimated temperature value set in the air conditioning interface, the operation command is not transmitted, so that the room temperature can be maintained at an appropriate temperature.
 第8発明に係る仲介装置は、第1から第7発明のいずれか一つに記載の仲介装置であって、設定温度推定部は、室温取得部で取得した室温から所定温度を減じた温度あるいは室温取得部で取得した室温に前記所定温度を加えた温度を前記推定値として算出する。
 これにより、仲介装置において、空調インターフェースで設定された温度の推定値を算出することができる。
An intermediary device according to an eighth invention is the mediation device according to any one of the first to seventh inventions, wherein the set temperature estimation unit is a temperature obtained by subtracting a predetermined temperature from the room temperature acquired by the room temperature acquisition unit or A temperature obtained by adding the predetermined temperature to the room temperature acquired by the room temperature acquisition unit is calculated as the estimated value.
Thereby, in the mediation apparatus, the estimated value of the temperature set by the air conditioning interface can be calculated.
 第9発明に係る仲介装置は、第8発明に係る仲介装置であって、空調機が冷房運転を行っており、かつ、所定時間内に非作動を要求する第1信号が作動を要求する第1信号に変化した場合は、設定温度推定部は、室温取得部で取得した室温から所定温度を減じた温度を推定値として算出する。一方、空調機が暖房運転を行っており、かつ、所定時間内に非作動を要求する第1信号が作動を要求する第1信号に変化した場合は、設定温度推定部は、室温取得部で取得した室温に所定温度を加えた温度を推定値として算出する。 An intermediary apparatus according to a ninth aspect is the intermediary apparatus according to the eighth aspect, wherein the air conditioner is performing a cooling operation, and the first signal requesting non-operation within a predetermined time requests the operation. When it changes to 1 signal, a preset temperature estimation part calculates the temperature which deducted predetermined temperature from the room temperature acquired in the room temperature acquisition part as an estimated value. On the other hand, when the air conditioner is performing the heating operation and the first signal requesting non-operation changes to the first signal requesting operation within a predetermined time, the set temperature estimation unit is the room temperature acquisition unit. A temperature obtained by adding a predetermined temperature to the acquired room temperature is calculated as an estimated value.
 本発明に係る仲介装置では、所定時間内に第1信号が変化した場合に、室温取得部で取得した室温に所定温度を加えるか、あるいは室温取得部で取得した室温から所定温度減じた温度が推定値として算出される。
 これにより、仲介装置において、空調インターフェースで設定された温度の推定値を算出することができる。
In the intermediary device according to the present invention, when the first signal changes within a predetermined time, the temperature obtained by adding the predetermined temperature to the room temperature acquired by the room temperature acquisition unit or subtracting the predetermined temperature from the room temperature acquired by the room temperature acquisition unit is Calculated as an estimated value.
Thereby, in the mediation apparatus, the estimated value of the temperature set by the air conditioning interface can be calculated.
 第10発明に係る仲介装置は、第8発明に係る仲介装置であって、空調機が冷房運転を行っており、かつ、所定時間内に作動を要求する第1信号が非作動を要求する第1信号に変化した場合は、設定温度推定部は、室温取得部で取得した室温に所定温度を加えた温度を推定値として算出する。一方、空調機が暖房運転を行っており、かつ、所定時間内に作動を要求する第1信号が非作動を要求する第1信号に変化した場合は、設定温度推定部は、室温取得部で取得した室温から所定温度を減じた温度を推定値として算出する。 An intermediary apparatus according to a tenth aspect of the present invention is the intermediary apparatus according to the eighth aspect of the present invention, wherein the air conditioner is performing a cooling operation, and the first signal that requests operation within a predetermined time is a non-operation request. When it changes to 1 signal, a preset temperature estimation part calculates the temperature which added predetermined temperature to the room temperature acquired in the room temperature acquisition part as an estimated value. On the other hand, when the air conditioner is performing the heating operation and the first signal for requesting the operation changes to the first signal for requesting the non-operation within the predetermined time, the set temperature estimation unit is the room temperature acquisition unit. A temperature obtained by subtracting a predetermined temperature from the acquired room temperature is calculated as an estimated value.
 本発明に係る仲介装置では、所定時間内に第1信号が変化した場合に、室温取得部で取得した室温に所定温度を加えるか、あるいは室温取得部で取得した室温から所定温度減じた温度が推定値として算出される。
 これにより、仲介装置において、空調インターフェースで設定された温度の推定値を算出することができる。 
In the intermediary device according to the present invention, when the first signal changes within a predetermined time, the temperature obtained by adding the predetermined temperature to the room temperature acquired by the room temperature acquisition unit or subtracting the predetermined temperature from the room temperature acquired by the room temperature acquisition unit is Calculated as an estimated value.
Thereby, in the mediation apparatus, the estimated value of the temperature set by the air conditioning interface can be calculated.
 第11発明に係る空調制御システムは、第1発明に係る仲介装置と、空調インターフェースと、空調機とからなる。空調インターフェースは、仲介装置と通信可能である。空調機は、仲介装置から送信される推定値を受信し、推定値に基づき空調制御を行う。 An air conditioning control system according to an eleventh invention comprises an intermediary device according to the first invention, an air conditioning interface, and an air conditioner. The air conditioning interface can communicate with the mediation device. The air conditioner receives the estimated value transmitted from the mediation device and performs air conditioning control based on the estimated value.
 本発明に係る空調制御システムでは、仲介装置が、空調インターフェースから得られる情報に基づいて、空調インターフェースで設定された温度の推定値を算出し、その推定値を空調機に送信することで、空調機が当該推定値に基づいて運転を行う。 したがって、空調制御システムは、仲介装置が空調インターフェースからの設定温度に関する情報を受信せずに、他の情報に基づいて設定温度の推定値を算出することができるため、既存の空調インターフェースを用いて、運転に設定温度値を必要とする空調機を作動させることができる。 In the air conditioning control system according to the present invention, the intermediary device calculates an estimated value of the temperature set by the air conditioning interface based on information obtained from the air conditioning interface, and transmits the estimated value to the air conditioner. The machine operates based on the estimated value. Therefore, the air conditioning control system can calculate the estimated value of the set temperature based on other information without the mediation device receiving the information about the set temperature from the air conditioning interface. It is possible to operate an air conditioner that requires a set temperature value for operation.
 第12発明に係る空調制御方法は、空調インターフェースを利用した空調制御方法であって、第1ステップから第4ステップを備える。空調インターフェースは空調機に対する設定温度の入力を受け付けるとともに、空調機の熱源に対する作動または非作動を要求する第1信号を生成する。第1ステップでは、第1信号を受け付ける。第2ステップでは、室温を取得する。第3ステップでは、第1ステップにおいて第1信号を受け付けた後、第2ステップで取得された室温に基づき、空調インターフェースの設定温度の推定値を算出する。第4ステップでは、推定値を空調機に送信する。 An air conditioning control method according to a twelfth aspect of the present invention is an air conditioning control method using an air conditioning interface, and includes first to fourth steps. The air conditioning interface receives an input of a set temperature for the air conditioner and generates a first signal requesting activation or deactivation of the heat source of the air conditioner. In the first step, a first signal is received. In the second step, the room temperature is acquired. In the third step, after receiving the first signal in the first step, an estimated value of the set temperature of the air conditioning interface is calculated based on the room temperature acquired in the second step. In the fourth step, the estimated value is transmitted to the air conditioner.
 本発明に係る空調制御方法では、空調インターフェースから第1信号を受け付けた後、取得した室温に基づいて、空調インターフェースで設定された温度の推定値が算出され、算出された推定値がその後空調機に送信される。
 したがって、空調制御方法は、空調インターフェースからの設定温度に関する情報を受信せずに、空調インターフェースから得られる第1信号に基づいて設定温度の推定値を算出することができるため、既存の空調インターフェースを用いて、運転に設定温度値を必要とする空調機を作動させることができる。
In the air conditioning control method according to the present invention, after receiving the first signal from the air conditioning interface, an estimated value of the temperature set in the air conditioning interface is calculated based on the acquired room temperature, and the calculated estimated value is then used as the air conditioner. Sent to.
Therefore, the air conditioning control method can calculate the estimated value of the set temperature based on the first signal obtained from the air conditioning interface without receiving information on the set temperature from the air conditioning interface. It is possible to operate an air conditioner that requires a set temperature value for operation.
 第13発明に係る空調制御システムは、空調インターフェースを利用した空調制御プログラムであって、第1ステップから第4ステップをコンピュータに実行させる。空調インターフェースは空調機に対する設定温度の入力を受け付けるとともに、作動または非作動を要求する第1信号を生成する。第1ステップでは、第1信号を受け付ける。第2ステップでは、室温を取得する。第3ステップでは、第1ステップにおいて第1信号を受け付けた後、第2ステップで取得された室温に基づき、空調インターフェースの設定温度の推定値を算出する。第4ステップでは、推定値を空調機に送信する。 The air conditioning control system according to the thirteenth aspect of the present invention is an air conditioning control program that uses an air conditioning interface, and causes a computer to execute the first step to the fourth step. The air conditioning interface receives a set temperature input to the air conditioner and generates a first signal requesting activation or deactivation. In the first step, a first signal is received. In the second step, the room temperature is acquired. In the third step, after receiving the first signal in the first step, an estimated value of the set temperature of the air conditioning interface is calculated based on the room temperature acquired in the second step. In the fourth step, the estimated value is transmitted to the air conditioner.
 本発明に係る空調制御プログラムでは、空調インターフェースから第1信号を受信した後、取得した室温に基づいて、空調インターフェースで設定された温度の推定値が算出され、算出された推定値がその後空調機に送信される。 したがって、空調制御プログラムをコンピュータに実行させることで、空調インターフェースからの設定温度に関する情報を受信せずに、空調インターフェースから得られる第1信号に基づいて設定温度の推定値を算出することができるため、既存の空調インターフェースを用いて、運転に設定温度値を必要とする空調機を作動させることができる。 In the air conditioning control program according to the present invention, after receiving the first signal from the air conditioning interface, an estimated value of the temperature set in the air conditioning interface is calculated based on the acquired room temperature, and the calculated estimated value is then used as the air conditioner. Sent to. Therefore, by causing the computer to execute the air conditioning control program, it is possible to calculate the estimated value of the set temperature based on the first signal obtained from the air conditioning interface without receiving information on the set temperature from the air conditioning interface. The existing air conditioning interface can be used to operate an air conditioner that requires a set temperature value for operation.
 第1発明に係る仲介装置では、既存の空調インターフェースを用いて運転に設定温度値を必要とする空調機を作動させることができる。
 第2発明に係る仲介装置では、推定値を算出した後の空調インターフェースにおける設定温度の変更に対しても適宜対応することができる。
 第3発明に係る仲介装置では、仲介装置は空調機に対して定期的に動作命令を送信するため、空調インターフェースの設定温度が変更された場合にも、変更された設定温度に適宜合わせることができる。
 第4発明に係る仲介装置では、空調インターフェースで設定された温度の推定値を適宜算出することができる。
In the mediation apparatus according to the first aspect of the present invention, an air conditioner that requires a set temperature value for operation can be operated using an existing air conditioning interface.
In the mediation apparatus according to the second aspect of the present invention, it is possible to appropriately cope with a change in the set temperature in the air conditioning interface after calculating the estimated value.
In the intermediary device according to the third invention, since the intermediary device periodically transmits an operation command to the air conditioner, even when the set temperature of the air conditioning interface is changed, it can be appropriately adjusted to the changed set temperature. it can.
In the intermediary device according to the fourth aspect of the present invention, an estimated value of the temperature set by the air conditioning interface can be calculated as appropriate.
 第5発明に係る仲介装置では、空調インターフェースで設定された温度の推定値を適宜見直すことができる。
 第6発明に係る仲介装置では、空調インターフェースで設定された温度の推定値を適宜見直すことができる。
 第7発明に係る仲介装置では、空調インターフェースに設定された温度の推定値を変動させる必要がない場合には、動作命令が送信されないため、室温を適当な温度で維持することができる。
 第8発明に係る仲介装置では、空調インターフェースで設定された温度の推定値を算出することができる。
 第9発明に係る仲介装置では、空調インターフェースで設定された温度の推定値を算出することができる。
In the intermediary device according to the fifth aspect of the present invention, the estimated value of the temperature set by the air conditioning interface can be reviewed as appropriate.
In the intermediary device according to the sixth aspect of the present invention, the estimated value of the temperature set by the air conditioning interface can be reviewed as appropriate.
In the intermediary device according to the seventh aspect of the invention, when it is not necessary to change the estimated temperature value set in the air conditioning interface, the operation command is not transmitted, so that the room temperature can be maintained at an appropriate temperature.
In the intermediary device according to the eighth aspect of the present invention, the estimated value of the temperature set by the air conditioning interface can be calculated.
In the mediation device according to the ninth aspect of the present invention, the estimated value of the temperature set by the air conditioning interface can be calculated.
 第10発明に係る仲介装置では、空調インターフェースで設定された温度の推定値を算出することができる。
 第11発明に係る空調制御システムでは、既存の空調インターフェースを用いて、運転に設定温度値を必要とする空調機を作動させることができる。
 第12発明に係る空調制御方法では、既存の空調インターフェースを用いて、運転に設定温度値を必要とする空調機を作動させることができる。 
 第13発明に係る空調制御プログラムでは、既存の空調インターフェースを用いて、運転に設定温度値を必要とする空調機を作動させることができる。
In the intermediary device according to the tenth aspect of the present invention, an estimated value of the temperature set by the air conditioning interface can be calculated.
In the air conditioning control system according to the eleventh aspect of the invention, an air conditioner that requires a set temperature value for operation can be operated using an existing air conditioning interface.
In the air conditioning control method according to the twelfth aspect of the invention, an air conditioner that requires a set temperature value for operation can be operated using an existing air conditioning interface.
In the air conditioning control program according to the thirteenth aspect of the invention, an air conditioner that requires a set temperature value for operation can be operated using an existing air conditioning interface.
本発明の実施形態に係る空調制御システムの概観図である。1 is an overview of an air conditioning control system according to an embodiment of the present invention. 本発明の実施形態に係るサーモスタットの例である。It is an example of the thermostat which concerns on embodiment of this invention. 本発明の実施形態に係るサーモスタットから出力される制御信号を示す図である。It is a figure which shows the control signal output from the thermostat which concerns on embodiment of this invention. 本発明の実施形態に係る補助ユニットの概略構成図である。It is a schematic block diagram of the auxiliary unit which concerns on embodiment of this invention. 本発明の実施形態に係る仲介装置の概略構成図である。It is a schematic block diagram of the mediation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る仲介装置の冷房運転時の処理の流れを示す図である。It is a figure which shows the flow of a process at the time of air_conditionaing | cooling operation of the mediation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る仲介装置が冷房運転時に把握する室温および仲介装置が検出する各種信号を示す図である。It is a figure which shows various signals which the mediation apparatus which concerns on embodiment of this invention grasps | ascertains at the time of cooling operation, and the mediation apparatus. 本発明の実施形態に係る仲介装置が冷房運転時に把握する室温および仲介装置が検出する各種信号を示す図である。It is a figure which shows various signals which the mediation apparatus which concerns on embodiment of this invention grasps | ascertains at the time of cooling operation, and the mediation apparatus. 本発明の実施形態に係る仲介装置の暖房運転時の処理の流れを示す図である。It is a figure which shows the flow of the process at the time of the heating operation of the mediation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る仲介装置が暖房運転時に把握するする室温および仲介装置が検出する各種信号を示す図である。It is a figure which shows the various signals which the room temperature which the mediation apparatus which concerns on embodiment of this invention grasps at the time of heating operation, and a mediation apparatus detect. 本発明の実施形態に係る仲介装置が暖房運転時に把握する室温および仲介装置が検出する各種信号を示す図である。It is a figure which shows various signals which the mediation apparatus which concerns on embodiment of this invention grasps | ascertains at the time of heating operation, and the mediation apparatus. 本発明の実施形態の変形例(3)に係る空調制御システムの概観図である。It is a general-view figure of the air-conditioning control system which concerns on the modification (3) of embodiment of this invention. 本発明の実施形態の変形例(3)に係る空調制御システムの概観図である。It is a general-view figure of the air-conditioning control system which concerns on the modification (3) of embodiment of this invention.
符号の説明Explanation of symbols
   1  空調制御システム
  10  室外ヒートポンプユニット
  20a-20d  室内ヒートポンプユニット
  30  サーモスタット(空調インターフェース)
  31  制御線
  40  仲介装置
  50  補助ユニット
  51  ガスファーネスユニット
  52  ファンユニット
  58  環気ダクト
  78  供給ダクト  81  通信線
  88  冷媒回路
DESCRIPTION OF SYMBOLS 1 Air conditioning control system 10 Outdoor heat pump unit 20a-20d Indoor heat pump unit 30 Thermostat (air conditioning interface)
31 Control Line 40 Mediation Device 50 Auxiliary Unit 51 Gas Furnace Unit 52 Fan Unit 58 Aeration Duct 78 Supply Duct 81 Communication Line 88 Refrigerant Circuit
 ≪第1実施形態≫
 <空調システムの全体構成>
 図1は、本発明の実施形態に係る空調システム1の構成を示す。この空調システム1は、例えば、住宅またはオフィスビル等の建物(物件)で用いられる空調システムであり、主として、室外機10および室内機20a-20dからなる空調機と、空調制御インターフェースとして用いる汎用のサーモスタット30と、仲介装置40と、から構成されている。さらに、図1では、ガスファーネスユニット51およびファンユニット52を備える補助ユニット50がサーモスタット30に接続されている。図1に示す物件では、空調機と、補助ユニット50内に備えられたガスファーネスユニット51およびファンユニット52とを適宜用いることにより室内の空気調和を行うことができる。このシステムでは、補助ユニット50内で調和された空気が供給ダクト78を通って各部屋に供給され、各部屋に供給された空気は、各部屋に設置された空調機によってさらに調和される。その後、空調機によって調和された各部屋の空気は、環気ダクト58を通って補助ユニット50へと送り込まれる。
<< First Embodiment >>
<Overall configuration of air conditioning system>
FIG. 1 shows a configuration of an air conditioning system 1 according to an embodiment of the present invention. This air conditioning system 1 is an air conditioning system used in a building (property) such as a house or an office building, for example. The thermostat 30 and the intermediary device 40 are configured. Further, in FIG. 1, an auxiliary unit 50 including a gas furnace unit 51 and a fan unit 52 is connected to the thermostat 30. In the property shown in FIG. 1, indoor air conditioning can be performed by appropriately using an air conditioner and a gas furnace unit 51 and a fan unit 52 provided in the auxiliary unit 50. In this system, air conditioned in the auxiliary unit 50 is supplied to each room through the supply duct 78, and the air supplied to each room is further conditioned by an air conditioner installed in each room. Thereafter, the air in each room harmonized by the air conditioner is sent to the auxiliary unit 50 through the air duct 58.
 <各部の構成> 
(1)サーモスタット30の構成
 まず、図2および図3を用いて、サーモスタット30について説明する。図2は、サーモスタット30の表示部の一例を示す。サーモスタット30は、特に米国で空調制御インターフェースとして多く用いられており、サーモスタット30に接続される機器のオン・オフ制御機能、温度設定機能、冷暖房の設定機能、除湿設定機能等を有する。また、サーモスタット30は、室温を把握する室温把握部と、設定温度の入力部とを備え、入力された設定温度と室温把握部の把握した室温とを比較し、圧縮機に対する運転の作動または非作動を要求する信号(作動/非作動要求信号)を生成する。作動を要求する作動/非作動要求信号とは、圧縮機12に対して運転の作動を要求する信号であり、非作動を要求する作動/非作動要求信号とは、圧縮機12に対して運転の非作動を要求する信号である。作動/非作動要求信号が作動を要求する場合、作動/非作動要求信号がONに設定され、作動/非作動要求信号が非作動を要求する場合、作動/非作動要求信号がOFFに設定される。
<Configuration of each part>
(1) Configuration of Thermostat 30 First, the thermostat 30 will be described with reference to FIGS. 2 and 3. FIG. 2 shows an example of the display unit of the thermostat 30. The thermostat 30 is often used particularly as an air conditioning control interface in the United States, and has an on / off control function, a temperature setting function, a cooling / heating setting function, a dehumidification setting function, and the like of devices connected to the thermostat 30. The thermostat 30 includes a room temperature grasping unit for grasping the room temperature and an input unit for the set temperature, and compares the input set temperature with the room temperature grasped by the room temperature grasping unit to determine whether the operation of the compressor is performed or not. A signal requesting operation (operation / non-operation request signal) is generated. The operation / non-operation request signal that requires operation is a signal that requests operation of the compressor 12, and the operation / non-operation request signal that requires operation is operation for the compressor 12. This is a signal requesting the non-operation. If the activation / deactivation request signal requires activation, the activation / deactivation request signal is set ON, and if the activation / deactivation request signal requires deactivation, the activation / deactivation request signal is set OFF. The
 具体的には、例えば、運転を開始する場合、サーモスタット30で運転開始の操作を行うことにより、圧縮機に対する作動/非作動要求信号がONに設定される。反対に、運転を終了する場合、サーモスタット30で運転停止の操作を行うことにより、圧縮機12に対する作動/非作動要求信号がOFFに設定される。また、冷房運転モードで動作している場合、サーモスタット30の室温把握部が把握する室温がサーモスタット30に設定された温度よりも高くなった場合にも、作動/非作動要求信号はONに設定され、サーモスタット30の室温把握部が把握する室温がサーモスタット30に設定された温度よりも低くなった場合には、作動/非作動要求信号がOFFに設定される。さらに、暖房運転モードで動作している場合は、サーモスタット30の室温把握部が把握する温度がサーモスタット30に設定された温度よりも低くなった場合には、作動/非作動要求信号はONに設定され、サーモスタット30の室温把握部が把握する温度がサーモスタット30に設定された温度よりも高くなった場合は、作動/非作動要求信号がOFFに設定される。また、サーモスタット30の上記判断処理においては、作動/非作動要求信号のハンチングを防止するために、サーモスタット30の判断温度にディファレンシャルを設けて処理している場合もある。 Specifically, for example, when the operation is started, the operation start / non-operation request signal for the compressor is set to ON by performing the operation start operation with the thermostat 30. On the contrary, when the operation is finished, the operation stop / operation request signal for the compressor 12 is set to OFF by operating the thermostat 30 to stop the operation. When operating in the cooling operation mode, the operation / non-operation request signal is also set to ON even when the room temperature grasped by the room temperature grasping unit of the thermostat 30 becomes higher than the temperature set in the thermostat 30. When the room temperature grasped by the room temperature grasping section of the thermostat 30 becomes lower than the temperature set in the thermostat 30, the operation / non-operation request signal is set to OFF. Furthermore, when operating in the heating operation mode, when the temperature grasped by the room temperature grasping portion of the thermostat 30 becomes lower than the temperature set in the thermostat 30, the activation / deactivation request signal is set to ON. When the temperature grasped by the room temperature grasping unit of the thermostat 30 becomes higher than the temperature set in the thermostat 30, the operation / non-operation request signal is set to OFF. Further, in the above-described determination process of the thermostat 30, there may be a case where a differential is provided for the determination temperature of the thermostat 30 in order to prevent hunting of the operation / non-operation request signal.
 本実施形態において、サーモスタット30は、空調機、ガスファーネスユニット51、およびファンユニット52のインターフェースとして用いられる。サーモスタット30は、制御線31により、ガスファーネスユニット51およびファンユニット52と接続されており、これらユニットを制御する。また、サーモスタット30は、制御線31により、仲介装置40と接続されており、仲介装置40を介して空調機の制御を行う。図3は、サーモスタット30から出力される信号を示す表である。本実施形態では、後述する仲介装置40が、これらの信号を空調機が読み取り可能な信号に変換して空調機に送信する。詳細については後述する。 
 (2)空調機の構成
 次に、本実施形態の空調システム1に用いられる空調機について説明する。本実施形態で用いられる空調機は、マルチタイプのヒートポンプ式空調機であり、室外ヒートポンプユニット10と、室内ヒートポンプユニット20a-20dとが、冷媒連絡配管88および通信線81により接続されている。空調機は、設定温度値に応じて、室外ヒートポンプユニット10の圧縮機の回転数と室内ヒートポンプユニット20a-20dの室内膨張弁の開度とを段階的に調整することで、冷媒連絡配管88に流れる冷媒の量を制御する。
In the present embodiment, the thermostat 30 is used as an interface of the air conditioner, the gas furnace unit 51, and the fan unit 52. The thermostat 30 is connected to a gas furnace unit 51 and a fan unit 52 by a control line 31, and controls these units. The thermostat 30 is connected to the mediation device 40 via a control line 31 and controls the air conditioner via the mediation device 40. FIG. 3 is a table showing signals output from the thermostat 30. In the present embodiment, the intermediary device 40 described later converts these signals into signals that can be read by the air conditioner and transmits them to the air conditioner. Details will be described later.
(2) Structure of air conditioner Next, the air conditioner used for the air conditioning system 1 of this embodiment is demonstrated. The air conditioner used in this embodiment is a multi-type heat pump air conditioner, and the outdoor heat pump unit 10 and the indoor heat pump units 20a to 20d are connected by a refrigerant communication pipe 88 and a communication line 81. The air conditioner adjusts the number of rotations of the compressor of the outdoor heat pump unit 10 and the opening of the indoor expansion valve of the indoor heat pump units 20a-20d in a stepwise manner in accordance with the set temperature value. Control the amount of refrigerant flowing.
 さらに、本実施形態に係る室内ヒートポンプユニット20a―20dは、サーモOFFおよびサーモONの運転を自動的に繰り返し、室内環境が当該設定温度値の近傍で保たれるように制御される。ここで、サーモOFFとは、冷房運転および暖房運転が停止した状態をいう。詳細には、冷媒をわずかに流す低負荷の運転、冷媒を流さずファンのみを作動させる運転、あるいは冷媒を流さずファンも停止させる状態をいう。一方、サーモONとは、冷房運転あるいは暖房運転を実施している状態をいう。詳細には、ファンを作動させ、さらに冷媒流量などを調整して、室内温度が設定温度に近づくにように運転している状態をいう。空調機は、室内ヒートポンプユニット20a-20dが備える室温サーミスタで得られる値が、冷房運転時に設定温度値の0.5℃以下である場合および暖房運転時に設定温度値の0.5℃以上である場合にサーモOFFの運転を行う。一方、空調機は、室温サーミスタで得られる値が、冷房運転時に設定温度値の0.5℃以上である場合および暖房運転時に設定温度値の0.5℃以下である場合にはサーモONの運転を行う。 Furthermore, the indoor heat pump units 20a-20d according to the present embodiment are controlled so that the operation of the thermo OFF and the thermo ON is automatically repeated, and the indoor environment is maintained in the vicinity of the set temperature value. Here, the thermo OFF means a state in which the cooling operation and the heating operation are stopped. Specifically, it refers to a low-load operation in which the refrigerant flows slightly, an operation in which only the fan is operated without flowing the refrigerant, or a state in which the fan is stopped without flowing the refrigerant. On the other hand, the thermo-ON refers to a state where a cooling operation or a heating operation is performed. Specifically, it refers to a state in which the fan is operated and the refrigerant flow rate and the like are adjusted so that the room temperature approaches the set temperature. In the air conditioner, the value obtained by the room temperature thermistor provided in the indoor heat pump units 20a-20d is 0.5 ° C. or lower of the set temperature value during cooling operation and 0.5 ° C. or higher of the set temperature value during heating operation In this case, the thermo-OFF operation is performed. On the other hand, when the value obtained by the room temperature thermistor is not less than the set temperature value of 0.5 ° C. during the cooling operation and when the value obtained is not more than the set temperature value of 0.5 ° C. during the heating operation, Do the driving.
 (3)補助ユニット50の構成
 次に、図4を用いて補助ユニット50の構成を説明する。補助ユニット50は、例えば、地下室等に配置され、ガスファーネスユニット51およびファンユニット52を収容する。ガスファーネスユニット51は、主として、ガスの燃焼を行うガスファーネス51aと、その燃焼量を制御するガスファーネスコントローラ51bとから構成されており、補助ユニット50内の空気を加熱する。ファンユニット52は、主として、シロッコファン等のファン52aと、ファンコントローラ52bとから構成されており、補助ユニット50内の空気を供給ダクト78から室内に送り出す。図4に示すように、ガスファーネスコントローラ51bおよびファンコントローラ52bは、サーモスタット30と制御線31でそれぞれ接続され、サーモスタット30からの制御信号を受信する。ガスファーネスコントローラ51bおよびファンコントローラ52bは、受信した制御信号に応じてガスファーネス51aおよびファン52aを動作させる。
 (4)仲介装置40の概略構成
 次に、仲介装置40について、図5を用いて説明する。仲介装置40は、主として、通信部41と、記憶部42と、室温取得部43と、タイマー部44と、制御部45とを備えている。通信部41は、入出力ポートからなり、上述のサーモスタット30および空調機からの各種信号を入力し、空調機に対し制御信号を出力する。記憶部42には、後述する設定温度推定部45bによる推定値の算出に用いられる制御プログラムが格納されている。室温取得部43は、室温サーミスタであり、これにより仲介装置40が設置された室内の温度を得ることができる。タイマー部44は、後述する設定温度推定部45bが推定値を算出した後の所定時間を計測する。なお、本実施形態では推定値を算出した後のタイマーの所定時間は15分である。
(3) Configuration of Auxiliary Unit 50 Next, the configuration of the auxiliary unit 50 will be described with reference to FIG. The auxiliary unit 50 is disposed in, for example, a basement, and accommodates the gas furnace unit 51 and the fan unit 52. The gas furnace unit 51 is mainly composed of a gas furnace 51a that performs gas combustion and a gas furnace controller 51b that controls the amount of combustion, and heats the air in the auxiliary unit 50. The fan unit 52 mainly includes a fan 52a such as a sirocco fan and a fan controller 52b, and sends out air in the auxiliary unit 50 from the supply duct 78 to the room. As shown in FIG. 4, the gas furnace controller 51 b and the fan controller 52 b are connected to the thermostat 30 and the control line 31, respectively, and receive control signals from the thermostat 30. The gas furnace controller 51b and the fan controller 52b operate the gas furnace 51a and the fan 52a according to the received control signal.
(4) Schematic Configuration of Mediating Device 40 Next, the mediating device 40 will be described with reference to FIG. The intermediary device 40 mainly includes a communication unit 41, a storage unit 42, a room temperature acquisition unit 43, a timer unit 44, and a control unit 45. The communication unit 41 includes an input / output port, inputs various signals from the thermostat 30 and the air conditioner, and outputs a control signal to the air conditioner. The storage unit 42 stores a control program used to calculate an estimated value by a set temperature estimation unit 45b described later. The room temperature acquisition unit 43 is a room temperature thermistor and can thereby obtain the temperature of the room where the mediation device 40 is installed. The timer unit 44 measures a predetermined time after a set temperature estimation unit 45b described later calculates an estimated value. In this embodiment, the predetermined time of the timer after calculating the estimated value is 15 minutes.
 制御部45は、CPU等により構成されており、信号受付部45aと、設定温度推定部45bと、推定値送信部45cと、信号変換部45dと、動作命令送信部45eと、運転状況取得部45fとを有する。信号受付部45aは、図3に示すサーモスタット30からの出力信号を受け付ける。ここで、信号受付部45aが受け付ける信号のうち、冷房運転時には、Y1(コンプレッサ)信号を作動/非作動要求信号として用い、暖房運転時には、W1(ヒーター)信号を作動/非作動要求信号として用いる。設定温度推定部45bは、サーモスタット30で設定された温度の推定値を算出する。本実施形態に係る空調機は、設定温度推定部45bによって算出された推定値を、空調機に対する設定温度として扱う。推定値送信部45cは、設定温度推定部45bが算出した推定値を空調機に送信する。信号変換部45dは、図3に示した、サーモスタット30からの信号を空調機が読み取り可能な信号に変換する。本実施形態では、信号G(ファン)は、運転/停止指令に変換され、その他の信号B(暖房),W1(ヒーター),O(冷房),Y1(コンプレッサ),DHM(除湿)は、それぞれの信号パターンから運転モード(冷房運転モード/暖房運転モード)が判断され、空調機で読み取り可能な運転モード信号に変換された後、空調機に送信される。動作命令送信部45eは、空調機に対して最高負荷での動作命令あるいは停止命令を送信する。本実施形態では、仲介装置40から空調機に対する最高負荷での動作命令を送信する際、冷房運転時は下限値での運転命令を送信し、暖房運転時は、上限値での運転命令を送信する。ここでいう停止命令には、ファンによる送風、および冷房あるいは暖房運転の両方を停止させる停止命令と、ファンのみ作動させる停止命令とが含まれる。運転状況取得部45fは、室内ヒートポンプユニット20a-20dがサーモONで作動している状況か、サーモOFFで作動している状況かを示す信号(サーモ信号)を取得する。なお、本実施形態のように、1台のサーモスタット30で複数台の室内ヒートポンプユニット20a-20dを制御する場合は、代表機として設定した室内ヒートポンプユニットのサーモ信号を、室内ヒートポンプユニット20a-20dのサーモ信号として取得する。 The control unit 45 is configured by a CPU or the like, and includes a signal reception unit 45a, a set temperature estimation unit 45b, an estimated value transmission unit 45c, a signal conversion unit 45d, an operation command transmission unit 45e, and an operation status acquisition unit. 45f. The signal receiving unit 45a receives an output signal from the thermostat 30 shown in FIG. Here, of the signals received by the signal receiving unit 45a, the Y1 (compressor) signal is used as an operation / non-operation request signal during cooling operation, and the W1 (heater) signal is used as an operation / non-operation request signal during heating operation. . The set temperature estimation unit 45b calculates an estimated value of the temperature set by the thermostat 30. The air conditioner according to the present embodiment treats the estimated value calculated by the set temperature estimation unit 45b as the set temperature for the air conditioner. The estimated value transmitting unit 45c transmits the estimated value calculated by the set temperature estimating unit 45b to the air conditioner. The signal converter 45d converts the signal from the thermostat 30 shown in FIG. 3 into a signal that can be read by the air conditioner. In the present embodiment, the signal G (fan) is converted into an operation / stop command, and the other signals B (heating), W1 (heater), O (cooling), Y1 (compressor), and DHM (dehumidification) are respectively The operation mode (cooling operation mode / heating operation mode) is determined from this signal pattern, converted to an operation mode signal readable by the air conditioner, and then transmitted to the air conditioner. The operation command transmission unit 45e transmits an operation command or a stop command at the maximum load to the air conditioner. In the present embodiment, when an operation command at the maximum load is transmitted from the intermediary device 40 to the air conditioner, an operation command at the lower limit value is transmitted during cooling operation, and an operation command at the upper limit value is transmitted during heating operation. To do. The stop command here includes a stop command for stopping both the air blowing by the fan and the cooling or heating operation, and a stop command for operating only the fan. The operating status acquisition unit 45f acquires a signal (thermo signal) indicating whether the indoor heat pump units 20a-20d are operating with the thermo-ON or thermo-OFF. Note that when a plurality of indoor heat pump units 20a-20d are controlled by a single thermostat 30 as in this embodiment, the thermo signal of the indoor heat pump unit set as a representative machine is transmitted to the indoor heat pump units 20a-20d. Acquired as a thermo signal.
 <仲介装置40における推定値の算出方法>
 以下、図6から図11を参照して、仲介装置40における推定値の算出方法を詳細に説明する。なお、以下の説明において、室内ヒートポンプユニット20a-20dのうち、室内ヒートポンプユニット20cを代表機として設定した場合の推定値の算出方法を説明する。
 〈冷房運転時〉
 図6は、冷房運転時における仲介装置40の処理のフローを示す。
 ユーザがサーモスタット30に設定した設定温度よりもサーモスタット30の室温把握部が把握した温度が高くなると、サーモスタット30では、図3を用いて説明したG信号(ファン信号)がON(運転)に設定され、またY1信号(コンプレッサ信号)がONに設定される。
<Calculation method of estimated value in mediation device 40>
Hereinafter, the calculation method of the estimated value in the mediation apparatus 40 will be described in detail with reference to FIGS. In the following description, a method of calculating an estimated value when the indoor heat pump unit 20c is set as a representative machine among the indoor heat pump units 20a to 20d will be described.
<During cooling operation>
FIG. 6 shows a processing flow of the mediation device 40 during the cooling operation.
When the temperature grasped by the room temperature grasping unit of the thermostat 30 becomes higher than the set temperature set by the user on the thermostat 30, the G signal (fan signal) described with reference to FIG. 3 is set to ON (operation) in the thermostat 30. In addition, the Y1 signal (compressor signal) is set to ON.
 仲介装置40では、信号受付部45aがサーモスタット30でONに設定されたファン信号(ファンON信号)と、ONに設定されたコンプレッサ信号(コンプレッサON信号)とを受け付ける(ステップS101)。信号受付部45aがサーモスタット30からのコンプレッサON信号を受け付けると、当該コンプレッサON信号が冷房運転開始後の最初のコンプレッサON信号か否かが判断される(ステップS102)。ステップS102において、コンプレッサON信号が最初のコンプレッサON信号であった場合、動作命令送信部45eは空調機に対し下限値を設定温度として運転をするように動作命令を送信する(ステップS103)。この状態で冷房運転を継続すると徐々に室温が低下し、やがてサーモスタット30の室温把握部が把握する温度が実際にサーモスタットに設定された設定温度を下回り、サーモスタット30においてコンプレッサ信号がOFFに設定される。サーモスタット30でOFFに設定されたコンプレッサ信号(コンプレッサOFF信号)が仲介装置40に入力されると(ステップS104)、設定温度推定部45bは、コンプレッサOFF信号が入力された際に室温取得部43で得られる温度に基づいてサーモスタット30に設定されている温度の推定値を算出し、当該推定値を空調機に送信する(ステップS105)。推定値の算出についての処理内容は後述する。 In the intermediary device 40, the signal receiving unit 45a receives the fan signal (fan ON signal) set to ON by the thermostat 30 and the compressor signal (compressor ON signal) set to ON (step S101). When the signal receiving unit 45a receives the compressor ON signal from the thermostat 30, it is determined whether or not the compressor ON signal is the first compressor ON signal after the start of the cooling operation (step S102). In step S102, when the compressor ON signal is the first compressor ON signal, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the lower limit value as the set temperature (step S103). If the cooling operation is continued in this state, the room temperature gradually decreases, and eventually the temperature grasped by the room temperature grasping portion of the thermostat 30 falls below the set temperature actually set in the thermostat, and the compressor signal is set to OFF in the thermostat 30. . When the compressor signal set to OFF by the thermostat 30 (compressor OFF signal) is input to the mediation device 40 (step S104), the set temperature estimation unit 45b is the room temperature acquisition unit 43 when the compressor OFF signal is input. Based on the obtained temperature, an estimated value of the temperature set in the thermostat 30 is calculated, and the estimated value is transmitted to the air conditioner (step S105). The details of the process for calculating the estimated value will be described later.
 その後、タイマー部44は時間の計測を始める(ステップS106)。
 仲介装置40では、その後、サーモスタット30からのコンプレッサ信号に変化があるか否かを判断する(ステップS107)。ここで、タイマーの設定時間以内に変化があった場合には、再度ステップS105に戻り、設定温度推定部45bが設定温度の推定値を算出し、推定値送信部45cが推定値を空調機に送信する。ステップS107でコンプレッサ信号に変化がなかった場合には、ステップS108に進み、タイマー部44が計測する時間が15分を経過したか否かが判断される(ステップS108)。ここで、空調機に推定値が送信されてから15分が経過していた場合、運転状況取得部45fは、室内ヒートポンプユニット20cの運転状況を示すサーモ信号を室内ヒートポンプユニット20cから取得し、その後、サーモ信号で示される室内ヒートポンプユニット20cの運転状況とコンプレッサ信号で示されるサーモスタット30の状況とが一致しているか否かが判断される(ステップS109)。
Thereafter, the timer unit 44 starts measuring time (step S106).
Thereafter, the intermediary device 40 determines whether or not there is a change in the compressor signal from the thermostat 30 (step S107). Here, when there is a change within the set time of the timer, the process returns to step S105 again, the set temperature estimating unit 45b calculates the estimated value of the set temperature, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Send. If there is no change in the compressor signal in step S107, the process proceeds to step S108, and it is determined whether or not the time measured by the timer unit 44 has passed 15 minutes (step S108). Here, when 15 minutes have passed since the estimated value was transmitted to the air conditioner, the operating status acquisition unit 45f acquires a thermo signal indicating the operating status of the indoor heat pump unit 20c from the indoor heat pump unit 20c, and then Then, it is determined whether or not the operation state of the indoor heat pump unit 20c indicated by the thermo signal matches the state of the thermostat 30 indicated by the compressor signal (step S109).
 詳細には、運転状況取得部45fが室内ヒートポンプユニット20cから取得するサーモ信号がONに設定された信号(サーモON信号)またはOFFに設定された信号(サーモOFF信号)のいずれの信号であるか、また、信号受付部45aが受け付けるサーモスタット30からのコンプレッサ信号がコンプレッサON信号またはコンプレッサOFF信号のいずれの信号であるかが判断される。
 より詳細には、サーモスタット30から入力されるコンプレッサ信号がコンプレッサON信号であり、かつ、室内ヒートポンプユニット20cから取得するサーモ信号がサーモON信号である場合、もしくは、サーモスタット30から入力されるコンプレッサ信号がコンプレッサOFF信号であり、かつ、室内ヒートポンプユニット20cから取得するサーモ信号がサーモOFF信号である場合は、サーモスタット30の状況と、室内ヒートポンプユニット20cの状況とが一致していると判断される。反対に、サーモスタット30から入力されるコンプレッサ信号がコンプレッサON信号であり、かつ、室内ヒートポンプユニット20cから取得されるサーモ信号がサーモOFF信号である場合、もしくは、サーモスタット30から入力されるコンプレッサ信号がコンプレッサOFF信号であり、かつ、室内ヒートポンプユニット20cから取得されるサーモ信号がサーモON信号である場合は、サーモスタット30の状況と室内ヒートポンプユニット20cの状況とが不一致の状態であると判断される。
Specifically, whether the operation signal acquisition unit 45f acquires from the indoor heat pump unit 20c is a signal that is set to ON (thermo ON signal) or a signal that is set to OFF (thermo OFF signal). Further, it is determined whether the compressor signal from the thermostat 30 received by the signal receiving unit 45a is a compressor ON signal or a compressor OFF signal.
More specifically, when the compressor signal input from the thermostat 30 is the compressor ON signal and the thermo signal acquired from the indoor heat pump unit 20c is the thermo ON signal, or the compressor signal input from the thermostat 30 is When it is a compressor OFF signal and the thermo signal acquired from the indoor heat pump unit 20c is a thermo OFF signal, it is determined that the state of the thermostat 30 matches the state of the indoor heat pump unit 20c. Conversely, when the compressor signal input from the thermostat 30 is the compressor ON signal and the thermo signal acquired from the indoor heat pump unit 20c is the thermo OFF signal, or the compressor signal input from the thermostat 30 is the compressor. When it is an OFF signal and the thermo signal acquired from the indoor heat pump unit 20c is a thermo ON signal, it is determined that the state of the thermostat 30 and the state of the indoor heat pump unit 20c are inconsistent.
 ステップS109において、コンプレッサ信号が示すサーモスタット30の状況とサーモ信号が示す室内ヒートポンプユニット20cの状況とが不一致の状態であると判断された場合、サーモスタット30からのコンプレッサ信号がコンプレッサOFF信号であるか否かが判断される(ステップS110)。ここで、コンプレッサ信号が示すサーモスタット30の状況と、サーモ信号が示す室内ヒートポンプユニット20cの状況とが不一致である理由としては、仲介装置40で算出された推定値が空調機に送信された後、ユーザによってサーモスタット30に設定された温度が変更された場合が考えられる。そこで、サーモスタット30からのコンプレッサ信号がON信号である場合は、ステップS103に戻って、動作命令送信部45eが空調機に対して下限値を設定温度として運転するように動作命令を送信し、サーモスタット30からのコンプレッサ信号がコンプレッサOFF信号である場合は、動作命令送信部45eが空調機に対して運転の停止命令を送信する(ステップS111)。 If it is determined in step S109 that the state of the thermostat 30 indicated by the compressor signal and the state of the indoor heat pump unit 20c indicated by the thermo signal are inconsistent, whether or not the compressor signal from the thermostat 30 is the compressor OFF signal. Is determined (step S110). Here, as the reason why the situation of the thermostat 30 indicated by the compressor signal and the situation of the indoor heat pump unit 20c indicated by the thermo signal do not match, the estimated value calculated by the mediating device 40 is transmitted to the air conditioner, The case where the temperature set to the thermostat 30 by the user is changed is considered. Therefore, when the compressor signal from the thermostat 30 is an ON signal, the process returns to step S103, and the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the lower limit value as the set temperature, and the thermostat. When the compressor signal from 30 is a compressor OFF signal, the operation command transmission unit 45e transmits an operation stop command to the air conditioner (step S111).
 一方、ステップS109において、コンプレッサ信号が示すサーモスタット30の状況とサーモ信号が示す室内ヒートポンプユニット20cの状況とが一致している判断された場合は、ステップ107に戻って、サーモスタット30からのコンプレッサ信号に変化があるかを判断する。なお、ここで、コンプレッサ信号が示すサーモスタット30の状況と、サーモ信号が示す室内ヒートポンプユニット20cの状況とが一致している理由としては、サーモスタット30における設定温度と仲介装置40で算出した推定値とが一致しており、かつ室温が未だサーモスタット30の設定温度に達していない場合が考えられる。したがってサーモスタット30からのコンプレッサ信号に変化があるまで、ステップS107からステップS109の処理を継続する。
 ここで、上述のステップS105における推定値の算出についての処理内容を説明する。信号受付部45aに入力されたコンプレッサ信号がコンプレッサOFF信号の場合には、設定温度推定部45bは、コンプレッサOFF信号が入力された際に室温取得部43で得られる温度に所定温度を加えた温度を推定値として算出する。一方、信号受付部45aに入力されたコンプレッサ信号がコンプレッサON信号の場合には、設定温度推定部45bは、コンプレッサON信号が入力された際に室温取得部43で得られる温度から所定温度を減じた温度を推定値として算出する。なお、本実施形態では所定温度は1℃である。
On the other hand, when it is determined in step S109 that the state of the thermostat 30 indicated by the compressor signal matches the state of the indoor heat pump unit 20c indicated by the thermo signal, the process returns to step 107 and the compressor signal from the thermostat 30 is converted. Determine if there is a change. Here, the reason why the situation of the thermostat 30 indicated by the compressor signal and the situation of the indoor heat pump unit 20c indicated by the thermo signal coincide with each other is that the set temperature in the thermostat 30 and the estimated value calculated by the mediation device 40 And the room temperature has not yet reached the set temperature of the thermostat 30. Therefore, the processing from step S107 to step S109 is continued until the compressor signal from the thermostat 30 is changed.
Here, the processing content regarding the calculation of the estimated value in step S105 described above will be described. When the compressor signal input to the signal reception unit 45a is a compressor OFF signal, the set temperature estimation unit 45b is a temperature obtained by adding a predetermined temperature to the temperature obtained by the room temperature acquisition unit 43 when the compressor OFF signal is input. Is calculated as an estimated value. On the other hand, when the compressor signal input to the signal reception unit 45a is a compressor ON signal, the set temperature estimation unit 45b subtracts a predetermined temperature from the temperature obtained by the room temperature acquisition unit 43 when the compressor ON signal is input. The calculated temperature is calculated as an estimated value. In the present embodiment, the predetermined temperature is 1 ° C.
 なお、図6の処理フローを実行中に、ユーザが冷房運転の停止を所望し、サーモスタット30で冷房停止命令を受け付けると、サーモスタット30では、ファン信号がOFFに設定される。仲介装置40では、信号受付部45aがサーモスタット30でOFFに設定されたファン信号(ファンOFF信号)を受け付けると、動作命令送信部45eが空調機に対する運転の停止命令を送信して、図6の処理フローを終了する。
 図7および図8は、冷房運転時に仲介装置40で把握する室温の変化と、仲介装置40で検出するサーモスタット30および室内ヒートポンプユニット20cからの信号(コンプレッサ信号およびサーモ信号)と、仲介装置40が空調機に送信する動作命令との関係を示す。
 まず図7を用いて、ユーザにより運転途中に設定温度が下げられた場合の動作について説明する。上記ステップS101で説明したように、初めに信号受付部45aがサーモスタット30からのコンプレッサON信号(ON信号A1)を受け付ける。当該ON信号A1が最初のコンプレッサON信号であったため、ステップS103で説明したように、動作命令送信部45eは空調機に対し下限値を設定温度として運転をするように動作命令を送信する。その後、冷房運転を継続すると室温が低下し、やがて仲介装置40には、サーモスタット30からのコンプレッサOFF信号(OFF信号B1)が入力される。仲介装置40では、OFF信号B1が入力された際に室温取得部43で得られる温度に基づいて設定温度推定部45bが推定値を算出し、推定値送信部45cが当該推定値を空調機に送信するが(上述のステップS105)、その後室温の上昇またはサーモスタット30の室温把握部の温度検出誤差により、推定値送信後にタイマーが計測を開始してから所定時間経過するまでの間に(例えば、図7では10分後)コンプレッサON信号(ON信号A2)が入力された場合は(上述のステップS107)、ON信号A2が入力された際に室温取得部43で得られる温度に基づいて設定温度推定部45bが推定値を再度算出し、推定値送信部45cが当該推定値を空調機に送信している(ステップS105)。ここでは、タイマー部44が計測する15分の間にサーモスタット30から受け付けるコンプレッサ信号に変化がなく、15分経過時のコンプレッサ信号がコンプレッサON信号であり、室内ヒートポンプユニット20cからはサーモOFF信号を取得している。そのため、コンプレッサ信号が示すサーモスタット30の状況と、サーモ信号が示す室内ヒートポンプユニット20cの状況とが不一致の状態であると判断される(ステップS109)。つまり、設定温度が下げられたため、室温がサーモスタット30に設定された温度に至っていないと判断される。ここで、サーモスタット30から入力される信号はコンプレッサON信号であるため、動作命令送信部45eが空調機に対して下限値を設定温度として運転するように動作命令を送信する(ステップS103)。
6, when the user desires to stop the cooling operation and receives a cooling stop command from the thermostat 30, the fan signal is set to OFF in the thermostat 30. In the intermediary device 40, when the signal reception unit 45a receives a fan signal (fan OFF signal) set to OFF by the thermostat 30, the operation command transmission unit 45e transmits a stop command for the operation to the air conditioner, as shown in FIG. The processing flow ends.
FIGS. 7 and 8 show changes in the room temperature grasped by the mediating device 40 during the cooling operation, signals from the thermostat 30 and the indoor heat pump unit 20c detected by the mediating device 40 (compressor signal and thermo signal), and the mediating device 40 The relationship with the operation command transmitted to an air conditioner is shown.
First, the operation when the set temperature is lowered during operation by the user will be described with reference to FIG. As described in step S101 above, the signal receiving unit 45a first receives the compressor ON signal (ON signal A1) from the thermostat 30. Since the ON signal A1 is the first compressor ON signal, as described in step S103, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the lower limit value as the set temperature. Thereafter, when the cooling operation is continued, the room temperature is lowered, and the compressor OFF signal (OFF signal B1) from the thermostat 30 is input to the intermediary device 40 before long. In the intermediary device 40, when the OFF signal B1 is input, the set temperature estimating unit 45b calculates an estimated value based on the temperature obtained by the room temperature acquiring unit 43, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Is transmitted (the above-mentioned step S105), but after the estimated value is transmitted and a predetermined time elapses after the estimated value is transmitted due to a rise in room temperature or a temperature detection error of the room temperature grasping part of the thermostat 30 (for example, In FIG. 7, after 10 minutes, when the compressor ON signal (ON signal A2) is input (step S107 described above), the set temperature is based on the temperature obtained by the room temperature acquisition unit 43 when the ON signal A2 is input. The estimation unit 45b calculates the estimated value again, and the estimated value transmission unit 45c transmits the estimated value to the air conditioner (step S105). Here, there is no change in the compressor signal received from the thermostat 30 during the 15 minutes measured by the timer unit 44, the compressor signal when the 15 minutes have elapsed is the compressor ON signal, and the thermo OFF signal is acquired from the indoor heat pump unit 20c. is doing. Therefore, it is determined that the state of the thermostat 30 indicated by the compressor signal and the state of the indoor heat pump unit 20c indicated by the thermo signal are inconsistent (step S109). That is, since the set temperature has been lowered, it is determined that the room temperature has not reached the temperature set in the thermostat 30. Here, since the signal input from the thermostat 30 is a compressor ON signal, the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the lower limit value as the set temperature (step S103).
 次に図8を用いて、ユーザにより運転途中に設定温度が上げられた場合の動作について説明する。初めに信号受付部45aがサーモスタット30からのコンプレッサON信号(ON信号A1)を受け付ける。当該ON信号A1が最初のコンプレッサON信号であったため、ステップS103で説明したように、動作命令送信部45eは空調機に対し下限値を設定温度として運転をするように動作命令を送信する。その後、仲介装置40には、サーモスタット30からのコンプレッサOFF信号(OFF信号B1)が入力される。仲介装置40では、OFF信号B1が入力された際に室温取得部43で得られる温度に基づいて設定温度推定部45bが推定値を算出し、推定値送信部45cが当該推定値を空調機に送信する(上述のステップS105)。その後、タイマー部44が計測する15分の間にサーモスタット30から受け付けるコンプレッサ信号に変化がなく、15分経過時のコンプレッサ信号がコンプレッサOFF信号であり、室内ヒートポンプユニット20cからはサーモON信号を取得している。そのため、コンプレッサ信号が示すサーモスタット30の状況と、サーモ信号が示す空調機の状況とが不一致の状態であると判断される(ステップS109)。つまり、設定温度が上げられたため、室温がサーモスタット30に設定された温度に至っていないと判断される。ここで、サーモスタット30の状況を示すコンプレッサ信号はコンプレッサOFF信号であるため、上記ステップS111で説明したように、動作命令送信部45eは空調機に対する運転の停止命令を送信する。 Next, the operation when the set temperature is raised during operation by the user will be described with reference to FIG. First, the signal receiving unit 45a receives a compressor ON signal (ON signal A1) from the thermostat 30. Since the ON signal A1 is the first compressor ON signal, as described in step S103, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the lower limit value as the set temperature. Thereafter, the compressor OFF signal (OFF signal B1) from the thermostat 30 is input to the mediating device 40. In the intermediary device 40, when the OFF signal B1 is input, the set temperature estimating unit 45b calculates an estimated value based on the temperature obtained by the room temperature acquiring unit 43, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Transmit (step S105 described above). Thereafter, there is no change in the compressor signal received from the thermostat 30 for 15 minutes measured by the timer unit 44, the compressor signal when the 15 minutes have elapsed is the compressor OFF signal, and a thermo ON signal is acquired from the indoor heat pump unit 20c. ing. Therefore, it is determined that the state of the thermostat 30 indicated by the compressor signal and the state of the air conditioner indicated by the thermo signal are inconsistent (step S109). That is, since the set temperature has been raised, it is determined that the room temperature has not reached the temperature set in the thermostat 30. Here, since the compressor signal indicating the state of the thermostat 30 is a compressor OFF signal, the operation command transmission unit 45e transmits a stop operation command to the air conditioner as described in step S111.
 〈暖房運転時〉
 次に、図9を用いて暖房運転時における仲介装置40の処理のフローを示す。
 ユーザがサーモスタット30に設定した設定温度よりもサーモスタット30の室温把握部が把握した温度が低くなると、サーモスタット30では、図3を用いて説明したG信号(ファン信号)がON(運転)に設定され、またW1信号(ヒーター信号)がONに設定される。
 仲介装置40では、信号受付部45aがサーモスタット30でONに設定されファン信号(ファンON信号)と、ONに設定されたヒーター信号(ヒーターON信号)を受け付ける(ステップS201)。信号受付部45aがサーモスタット30からのヒーターON信号を受け付けると、当該ヒーターON信号が最初のヒーターON信号か否かが判断される(ステップS202)。ステップS202において、ヒーターON信号が最初のヒーターON信号であった場合、動作命令送信部45eは空調機に対し上限値を設定温度として運転をするように動作命令を送信する(ステップS203)。この状態で暖房運転を継続すると徐々に室温は上昇し、やがてサーモスタット30の室温把握部が把握する温度が実際にサーモスタット30に設定された設定温度を上回り、サーモスタット30においてヒーター信号がOFFに設定される。サーモスタット30でOFFに設定されたヒーター信号(ヒーターOFF信号)が仲介装置40に入力されると(ステップS204)、設定温度推定部45bは、ヒーターOFF信号が入力された際に室温取得部43で得られる温度に基づいてサーモスタット30に設定されている温度の推定値を算出し、当該推定値を空調機に送信する(ステップS205)。推定値の算出についての処理内容は後述する。
<During heating operation>
Next, the flow of the process of the mediation apparatus 40 at the time of heating operation is shown using FIG.
When the temperature grasped by the room temperature grasping unit of the thermostat 30 becomes lower than the set temperature set by the user on the thermostat 30, the G signal (fan signal) described with reference to FIG. 3 is set to ON (operation) in the thermostat 30. In addition, the W1 signal (heater signal) is set to ON.
In the intermediary device 40, the signal receiving unit 45a is set to ON by the thermostat 30 and receives the fan signal (fan ON signal) and the heater signal (heater ON signal) set to ON (step S201). When the signal receiving unit 45a receives the heater ON signal from the thermostat 30, it is determined whether or not the heater ON signal is the first heater ON signal (step S202). In step S202, when the heater ON signal is the first heater ON signal, the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the upper limit value as the set temperature (step S203). If the heating operation is continued in this state, the room temperature gradually rises, and eventually the temperature grasped by the room temperature grasping part of the thermostat 30 exceeds the set temperature actually set in the thermostat 30, and the heater signal is set to OFF in the thermostat 30. The When the heater signal (heater OFF signal) set to OFF by the thermostat 30 is input to the intermediary device 40 (step S204), the set temperature estimation unit 45b is the room temperature acquisition unit 43 when the heater OFF signal is input. An estimated value of the temperature set in the thermostat 30 is calculated based on the obtained temperature, and the estimated value is transmitted to the air conditioner (step S205). The details of the process for calculating the estimated value will be described later.
 その後、タイマー部44は時間の計測を始める(ステップS206)。
 仲介装置40では、その後サーモスタット30のヒーター信号に変化があるか否かを判断する(ステップS207)。ここで、タイマーの設定時間以内に変化があった場合には、再度ステップS205に戻り、設定温度推定部45bが設定温度の推定値を算出し、推定値送信部45cが推定値を空調機に送信する。ステップS207でヒーター信号に変化がなかった場合には、ステップS208に進み、タイマー部44が計測する時間が15分を経過したか否かが判断される(ステップS208)。ここで、空調機に推定値が送信されてから15分が経過していた場合、運転状況取得部45fが室内ヒートポンプユニット20cの運転状況を示すサーモ信号を室内ヒートポンプユニット20cから取得し、サーモ信号で示される室内ヒートポンプユニット20cの運転状況とヒーター信号で示されるサーモスタット30の状況とが一致しているか否かが判断される(ステップS209)。
Thereafter, the timer unit 44 starts measuring time (step S206).
The mediating device 40 then determines whether or not there is a change in the heater signal of the thermostat 30 (step S207). Here, if there is a change within the set time of the timer, the process returns to step S205 again, the set temperature estimating unit 45b calculates the estimated value of the set temperature, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Send. When there is no change in the heater signal in step S207, the process proceeds to step S208, and it is determined whether or not the time measured by the timer unit 44 has passed 15 minutes (step S208). Here, when 15 minutes have passed since the estimated value was transmitted to the air conditioner, the operating status acquisition unit 45f acquires a thermo signal indicating the operating status of the indoor heat pump unit 20c from the indoor heat pump unit 20c, and the thermo signal It is determined whether or not the operation status of the indoor heat pump unit 20c indicated by and the status of the thermostat 30 indicated by the heater signal match (step S209).
 詳細には、運転状況取得部45fは、室内ヒートポンプユニット20cから取得するサーモ信号がONに設定された信号(サーモON信号)またはOFFに設定された信号(サーモOFF信号)のいずれの信号であるか、また、信号受付部45aが受け付けるサーモスタット30からのヒーター信号がヒーターON信号およびヒーターOFF信号のいずれの信号であるかが判断される。
 より詳細には、サーモスタット30から入力されるヒーター信号がヒーターON信号であり、かつ、室内ヒートポンプユニット20cから取得するサーモ信号がサーモON信号である場合、もしくは、サーモスタット30から入力されるヒーター信号がヒーターOFF信号であり、かつ、室内ヒートポンプユニット20cから取得するサーモ信号がサーモOFF信号である場合は、サーモスタット30の状況と、室内ヒートポンプユニット20cの状況が一致していると判断される。反対に、サーモスタット30から入力されるヒーター信号がヒーターON信号であり、かつ、室内ヒートポンプユニット20cから取得するサーモ信号がサーモOFF信号である場合、もしくは、サーモスタット30から入力されるヒーター信号がヒーターOFF信号であり、室内ヒートポンプユニット20cの状況を示すサーモ信号がサーモON信号である場合は、サーモスタット30の状況と室内ヒートポンプユニット20cの状況とが不一致の状態であると判断される。
Specifically, the operation status acquisition unit 45f is either a signal in which a thermo signal acquired from the indoor heat pump unit 20c is set to ON (thermo ON signal) or a signal that is set to OFF (thermo OFF signal). It is also determined whether the heater signal from the thermostat 30 received by the signal receiving unit 45a is a heater ON signal or a heater OFF signal.
More specifically, when the heater signal input from the thermostat 30 is a heater ON signal and the thermo signal acquired from the indoor heat pump unit 20c is a thermo ON signal, or the heater signal input from the thermostat 30 is When it is a heater OFF signal and the thermo signal acquired from the indoor heat pump unit 20c is a thermo OFF signal, it is determined that the state of the thermostat 30 matches the state of the indoor heat pump unit 20c. Conversely, when the heater signal input from the thermostat 30 is the heater ON signal and the thermo signal acquired from the indoor heat pump unit 20c is the thermo OFF signal, or the heater signal input from the thermostat 30 is the heater OFF When the thermo signal indicating the status of the indoor heat pump unit 20c is a thermo ON signal, it is determined that the status of the thermostat 30 and the status of the indoor heat pump unit 20c are inconsistent.
 ステップS209において、ヒーター信号が示すサーモスタット30の状況とサーモ信号が示す室内ヒートポンプユニット20cの状況とが不一致の状態であると判断された場合、サーモスタット30からのヒーター信号がヒーターOFF信号であるか否かが判断される(ステップS210)。ここで、ヒーター信号が示すサーモスタット30の状況と、サーモ信号が示す室内ヒートポンプユニット20cの状況とが不一致である理由としては、上述の冷房運転時の説明と同様、仲介装置40で算出された推定値が空調機に送信された後、ユーザによってサーモスタット30に設定された温度が変更された場合が考えられる。そこで、サーモスタット30からのヒーター信号がヒーターON信号である場合は、ステップS203に戻って、動作命令送信部45eが空調機に対して上限値を設定温度として運転するように動作命令を送信する。サーモスタット30からのヒーター信号がヒーターOFF信号である場合は、動作命令送信部45eが空調機に対する運転の停止命令を送信する(ステップS211)。 If it is determined in step S209 that the state of the thermostat 30 indicated by the heater signal and the state of the indoor heat pump unit 20c indicated by the thermo signal are inconsistent, whether or not the heater signal from the thermostat 30 is a heater OFF signal. Is determined (step S210). Here, the reason why the state of the thermostat 30 indicated by the heater signal and the state of the indoor heat pump unit 20c indicated by the thermo signal do not match is similar to the above-described explanation during the cooling operation, as estimated by the mediation device 40. It is conceivable that the temperature set in the thermostat 30 is changed by the user after the value is transmitted to the air conditioner. Therefore, when the heater signal from the thermostat 30 is the heater ON signal, the process returns to step S203, and the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the upper limit value as the set temperature. When the heater signal from the thermostat 30 is a heater OFF signal, the operation command transmission unit 45e transmits an operation stop command to the air conditioner (step S211).
 一方、ステップS209において、ヒーター信号が示すサーモスタット30の状況とサーモ信号が示す室内ヒートポンプユニット20cの状況とが一致していると判断された場合は、ステップ207に戻って、サーモスタット30からのヒーター信号に変化があるかを判断する。なお、ここで、ヒーター信号が示すサーモスタット30の状況と、サーモ信号が示す室内ヒートポンプユニット20cの状況とが一致している理由としては、上述の冷房運転時の説明と同様、サーモスタット30における設定温度と仲介装置40で算出した推定値とが一致しており、かつ室温が未だサーモスタットの設定温度に達していない場合が考えられる。したがってサーモスタット30からのヒーター信号に変化があるまで、ステップS207からステップS209の処理を継続する。
 ここで、上述のステップS205における推定値の算出についての処理内容を説明する。信号受付部45aに入力されたヒーター信号がヒーターOFF信号の場合には、設定温度推定部45bは、ヒーターOFF信号が入力された際に室温取得部43で得られる温度から所定温度を減じた温度を推定値として算出する。一方、信号受付部45aに入力されたヒーター信号がヒーターON信号の場合には、設定温度推定部45bは、ヒーターON信号が入力された際に室温取得部43で得られる温度に所定温度加えた温度を推定値として算出する。なお、本実施形態では所定温度は1℃である。
On the other hand, if it is determined in step S209 that the state of the thermostat 30 indicated by the heater signal matches the state of the indoor heat pump unit 20c indicated by the thermo signal, the process returns to step 207 to return the heater signal from the thermostat 30. To determine if there is any change. Here, the reason why the condition of the thermostat 30 indicated by the heater signal and the condition of the indoor heat pump unit 20c indicated by the thermo signal coincide with each other is the same as the set temperature in the thermostat 30 as described above in the cooling operation. And the estimated value calculated by the intermediary device 40 may coincide with each other and the room temperature has not yet reached the set temperature of the thermostat. Therefore, the processing from step S207 to step S209 is continued until the heater signal from the thermostat 30 changes.
Here, the processing content regarding the calculation of the estimated value in step S205 described above will be described. When the heater signal input to the signal reception unit 45a is a heater OFF signal, the set temperature estimation unit 45b is a temperature obtained by subtracting a predetermined temperature from the temperature obtained by the room temperature acquisition unit 43 when the heater OFF signal is input. Is calculated as an estimated value. On the other hand, when the heater signal input to the signal reception unit 45a is a heater ON signal, the set temperature estimation unit 45b adds a predetermined temperature to the temperature obtained by the room temperature acquisition unit 43 when the heater ON signal is input. The temperature is calculated as an estimated value. In the present embodiment, the predetermined temperature is 1 ° C.
 なお、図9の処理フローを実行中に、ユーザが暖房運転の停止を所望し、サーモスタット30で暖房停止命令を受け付けると、サーモスタット30では、ファン信号がOFFに設定される。仲介装置40では、信号受付部45aがサーモスタット30でOFFに設定されたファン信号(ファンOFF信号)を受け付けると、動作命令送信部45eが空調機に対する運転の停止命令を送信して、図9の処理フローを終了する。
 図10および図11は、暖房運転時に仲介装置40で把握する室温の変化と、仲介装置40で検出するサーモスタット30および室内ヒートポンプユニット20cからの信号(ヒーター信号およびサーモ信号)と、仲介装置40が空調機に送信する動作命令との関係を示す。
 まず図10を用いて、ユーザにより運転途中に設定温度が上げられた場合の動作について説明する。上記ステップS201で説明したように、初めに信号受付部45aがサーモスタット30からのヒーターON信号(ON信号A1)を受け付ける。当該ON信号A1が最初のヒーターON信号であったため、ステップS203で説明したように、動作命令送信部45eは空調機に対し上限値を設定温度として運転をするように動作命令を送信する。その後、暖房運転を継続すると室温が上昇し、やがて仲介装置40には、サーモスタット30からのヒーターOFF信号(OFF信号B1)が入力される。仲介装置40では、OFF信号B1が入力された際に室温取得部43で得られる温度に基づいて設定温度推定部45bが推定値を算出し、推定値送信部45cが当該推定値を空調機に送信するが(上述のステップS205)、その後推定値送信後にタイマーが計測を開始してから所定時間経過するまでの間に(例えば、図10では10分後)ヒーターON信号(ON信号A2)が入力された場合は(上述のステップS207)、ON信号A2が入力された際に室温取得部43で得られる温度に基づいて設定温度推定部45bが推定値を再度算出し、推定値送信部45cが当該推定値を空調機に送信している(ステップS205)。ここでは、タイマー部44が計測する15分の間にサーモスタット30から受け付けるヒーター信号に変化がなく、15分経過時のヒーター信号がヒーターON信号であり、室内ヒートポンプユニット20cからはサーモOFF信号を取得している。そのため、ヒーター信号が示すサーモスタット30の状況と、サーモ信号が示す室内ヒートポンプユニット20cの状況とが不一致の状態であると判断される(ステップS209)。つまり、設定温度が上げられたため、室温がサーモスタット30に設定された温度に至っていないと判断される。ここで、サーモスタット30の状況を示すヒーター信号はヒーターON信号であるため、動作命令送信部45eが空調機に対して上限値を設定温度として運転するように動作命令を送信する(ステップS203)。
9, when the user desires to stop the heating operation and receives a heating stop command from the thermostat 30, the fan signal is set to OFF in the thermostat 30. In the intermediary device 40, when the signal receiving unit 45a receives a fan signal (fan OFF signal) set to OFF by the thermostat 30, the operation command transmitting unit 45e transmits a stop command for operation to the air conditioner, as shown in FIG. The processing flow ends.
FIGS. 10 and 11 show changes in room temperature grasped by the mediating device 40 during heating operation, signals (heater signals and thermo signals) detected from the thermostat 30 and the indoor heat pump unit 20c detected by the mediating device 40, and the mediating device 40 The relationship with the operation command transmitted to an air conditioner is shown.
First, the operation when the set temperature is raised during operation by the user will be described with reference to FIG. As described in step S201 above, first, the signal receiving unit 45a receives the heater ON signal (ON signal A1) from the thermostat 30. Since the ON signal A1 is the first heater ON signal, as described in step S203, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the upper limit value as the set temperature. Thereafter, when the heating operation is continued, the room temperature rises, and a heater OFF signal (OFF signal B1) from the thermostat 30 is input to the intermediary device 40 eventually. In the intermediary device 40, when the OFF signal B1 is input, the set temperature estimating unit 45b calculates an estimated value based on the temperature obtained by the room temperature acquiring unit 43, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Is transmitted (step S205 described above), but after the estimated value is transmitted, the heater ON signal (ON signal A2) is generated after the timer starts measuring until a predetermined time elapses (for example, 10 minutes in FIG. 10). When it is input (step S207 described above), the set temperature estimation unit 45b calculates the estimated value again based on the temperature obtained by the room temperature acquisition unit 43 when the ON signal A2 is input, and the estimated value transmission unit 45c. Transmits the estimated value to the air conditioner (step S205). Here, there is no change in the heater signal received from the thermostat 30 during the 15 minutes measured by the timer unit 44, the heater signal when the 15 minutes have elapsed is the heater ON signal, and the thermo OFF signal is acquired from the indoor heat pump unit 20c. is doing. Therefore, it is determined that the state of the thermostat 30 indicated by the heater signal is inconsistent with the state of the indoor heat pump unit 20c indicated by the thermo signal (step S209). That is, since the set temperature has been raised, it is determined that the room temperature has not reached the temperature set in the thermostat 30. Here, since the heater signal indicating the state of the thermostat 30 is a heater ON signal, the operation command transmission unit 45e transmits an operation command to the air conditioner so as to operate with the upper limit value as the set temperature (step S203).
 次に図11を用いて、ユーザにより運転途中に設定温度が下げられた場合の動作について説明する。初めに信号受付部45aがサーモスタット30からのヒーターON信号(ON信号A1)を受け付ける。当該ON信号A1が最初のヒーターON信号であったため、ステップS203で説明したように、動作命令送信部45eは空調機に対し上限値を設定温度として運転をするように動作命令を送信する。その後、仲介装置40には、サーモスタット30からのヒーターOFF信号(OFF信号B1)が入力される。仲介装置40では、OFF信号B1が入力された際に室温取得部43で得られる温度に基づいて設定温度推定部45bが推定値を算出し、推定値送信部45cが当該推定値を空調機に送信する(上述のステップS205)。その後、タイマー部44が計測する15分の間にサーモスタット30から受け付けるヒーター信号に変化がなく、15分経過時のヒーター信号がヒーターOFF信号であり、室内ヒートポンプユニット20cからはサーモON信号を取得している。そのため、ヒーター信号が示すサーモスタット30の状況と、サーモ信号が示す室内ヒートポンプユニット20cの状況とが不一致の状態であると判断される(ステップS209)。つまり、設定温度が下げられたため、室温がサーモスタット30に設定された温度に至っていないと判断される。ここで、サーモスタット30の状況を示すヒーター信号はヒーターOFF信号であるため、上記ステップS211で説明したように、動作命令送信部45eが空調機に対する運転の停止命令を送信する。 Next, the operation when the set temperature is lowered during operation by the user will be described with reference to FIG. First, the signal receiving unit 45a receives the heater ON signal (ON signal A1) from the thermostat 30. Since the ON signal A1 is the first heater ON signal, as described in step S203, the operation command transmission unit 45e transmits an operation command to the air conditioner to operate with the upper limit value as the set temperature. Thereafter, the heater OFF signal (OFF signal B1) from the thermostat 30 is input to the intermediary device 40. In the intermediary device 40, when the OFF signal B1 is input, the set temperature estimating unit 45b calculates an estimated value based on the temperature obtained by the room temperature acquiring unit 43, and the estimated value transmitting unit 45c sends the estimated value to the air conditioner. Transmit (step S205 described above). Thereafter, there is no change in the heater signal received from the thermostat 30 for 15 minutes measured by the timer unit 44, the heater signal when the 15 minutes have elapsed is the heater OFF signal, and a thermo ON signal is acquired from the indoor heat pump unit 20c. ing. Therefore, it is determined that the state of the thermostat 30 indicated by the heater signal is inconsistent with the state of the indoor heat pump unit 20c indicated by the thermo signal (step S209). That is, since the set temperature has been lowered, it is determined that the room temperature has not reached the temperature set in the thermostat 30. Here, since the heater signal indicating the state of the thermostat 30 is a heater OFF signal, the operation command transmission unit 45e transmits a stop operation command to the air conditioner as described in step S211.
 <特徴>
 (1)本実施形態に係る空調システム1において、仲介装置40はサーモスタット30から出力される制御信号を入力し、空調機が読み取り可能な信号に変換する。また、仲介装置40は、サーモスタット30で出力される信号に基づいてサーモスタット30で設定された温度の推定値を算出する。したがって、サーモスタット30を用いて運転に設定温度値が必要な空調機を作動させることができる。これにより、インバータ制御を行う空調機を新たに導入する場合であっても、従来から使用する空調インターフェースとしてのサーモスタット30を新たな空調機のインターフェースに継続して用いることができる。また、サーモスタット30を継続して利用することが可能であるため、既存のガスファーネスユニット51およびファンユニット52を継続して併用することもでき、効率よく空調環境を整えることができる。
<Features>
(1) In the air conditioning system 1 according to the present embodiment, the intermediary device 40 receives a control signal output from the thermostat 30 and converts it into a signal that can be read by the air conditioner. Further, the mediating device 40 calculates an estimated value of the temperature set by the thermostat 30 based on the signal output by the thermostat 30. Therefore, an air conditioner that requires a set temperature value for operation can be operated using the thermostat 30. Thereby, even if it is a case where the air conditioner which performs inverter control is newly introduced, the thermostat 30 as an air conditioning interface used conventionally can be continuously used for the interface of a new air conditioner. Further, since the thermostat 30 can be used continuously, the existing gas furnace unit 51 and the fan unit 52 can be continuously used together, and the air conditioning environment can be efficiently prepared.
 (2)サーモスタット30は種類によって出力信号も多様であるが、本実施形態に係る仲介装置40は、サーモスタット30から出力される基本的な信号を用いて設定温度の推定値を算出するため、大部分のサーモスタット30に適用することができる。
 (3)さらに、本実施形態に係る仲介装置40は、タイマー部44を備えており、タイマー部44で計測する所定時間毎に、改めて設定温度の推定値を算出する。したがって、設定温度の推定値が空調機に送信された後に、ユーザによって設定温度が変更された場合であっても、適宜推定値が算出されるため、ユーザが所望する室内環境を継続して提供することができる。
 <変形例>
 (1)本実施形態ではマルチタイプのヒートポンプ式空調機を用いたが、シングルタイプのヒートポンプ式空調機を用いても構わない。また、ヒートポンプ式空調機に限らず、インバータ制御される空調機であれば、その他の空調機にも適用できる。
(2) Although the output signal of the thermostat 30 varies depending on the type, the intermediary device 40 according to the present embodiment uses the basic signal output from the thermostat 30 to calculate the estimated value of the set temperature. It can be applied to a partial thermostat 30.
(3) Furthermore, the intermediary device 40 according to the present embodiment includes a timer unit 44, and again calculates an estimated value of the set temperature for each predetermined time measured by the timer unit 44. Therefore, even if the set temperature is changed by the user after the estimated value of the set temperature is transmitted to the air conditioner, the estimated value is calculated as appropriate, and thus the indoor environment desired by the user is continuously provided. can do.
<Modification>
(1) Although the multi-type heat pump type air conditioner is used in the present embodiment, a single type heat pump type air conditioner may be used. Moreover, it is applicable not only to a heat pump type air conditioner but also to any other air conditioner as long as it is an inverter controlled air conditioner.
 (2)本実施形態において、仲介装置40は、室温取得部43が室温サーミスタであり、自己の室温サーミスタで取得した室温に基づいて設定温度の推定値を算出しているが、室温取得部43が、制御部45に含まれる機能の一部であり、室内ヒートポンプユニット20a-20dの有する室温サーミスタで得られた室温に関する情報を室内ヒートポンプユニット20a―20dから取得してもよい。この場合に、本実施形態のように、1台のサーモスタット30で複数台の室内ヒートポンプユニット20a―20dを制御する場合は、代表機として設定した室内ヒートポンプユニットの有する室温サーミスタで得られた室温に関する情報を用いる。これにより、設定温度推定部45bは、複数の室内ヒートポンプユニット20a-20dのうち、代表機から取得した室温に基づいてサーモスタット30における設定温度の推定値を算出することができる。また室温を測定するためのサーミスタを仲介装置40の外部に取り付け、その外部サーミスタを室温取得部43に接続し、その外部サーミスタで取得した室温に基づいて設定温度の推定値を算出してもよい。 (2) In the present embodiment, in the intermediary device 40, the room temperature acquisition unit 43 is a room temperature thermistor and calculates an estimated value of the set temperature based on the room temperature acquired by its own room temperature thermistor. However, it is a part of the functions included in the control unit 45, and the room temperature information obtained by the room temperature thermistor of the indoor heat pump units 20a-20d may be acquired from the indoor heat pump units 20a-20d. In this case, when a plurality of indoor heat pump units 20a-20d are controlled by one thermostat 30 as in this embodiment, the room temperature obtained by the room temperature thermistor of the indoor heat pump unit set as a representative machine is related. Use information. Accordingly, the set temperature estimation unit 45b can calculate an estimated value of the set temperature in the thermostat 30 based on the room temperature acquired from the representative machine among the plurality of indoor heat pump units 20a-20d. Further, a thermistor for measuring the room temperature may be attached to the outside of the mediation device 40, the external thermistor may be connected to the room temperature acquisition unit 43, and the estimated value of the set temperature may be calculated based on the room temperature acquired by the external thermistor .
 (3)本実施形態では、サーモスタット30からの制御信号は、仲介装置40を介して室外ヒートポンプユニット10に送信されているが、図12に示すように、サーモスタット30bからの制御信号が仲介装置40bを介して室内ヒートポンプユニット20a-20cに送信されてもよい。この場合、本実施形態と同様、一つのサーモスタット30bを用いて複数の室内ヒートポンプユニット20a-20cを集中的に制御することが可能である。
 さらに、図13に示すように、サーモスタット30a―30cおよび仲介装置40a―40cを室内ヒートポンプユニット20a-20dの数に応じて設け、各室内ヒートポンプユニット20a-20dが、それぞれに接続された一つの仲介装置40a―40cで変換された異なる一つのサーモスタット30a―30cからの制御信号を受信するようにしてもよい。すなわち、複数の室内ヒートポンプユニット20a-20cに対し、サーモスタット30a―30cおよび仲介装置40a―40cを1つずつ設置し、各仲介装置40a―40cが自己に接続されたサーモスタット30a-30cからの制御信号を入力および変換し空調機に送信することで、室内ヒートポンプユニット20a-20cを制御してもよい。この場合、サーモスタット30a―30cのそれぞれにおいて異なる設定を行うことで、各室内ヒートポンプユニット20a-20cに異なる設定温度での運転を行わせることができる。
(3) In this embodiment, the control signal from the thermostat 30 is transmitted to the outdoor heat pump unit 10 via the mediation device 40. However, as shown in FIG. 12, the control signal from the thermostat 30b is transmitted to the mediation device 40b. May be transmitted to the indoor heat pump units 20a-20c. In this case, as in the present embodiment, it is possible to centrally control the plurality of indoor heat pump units 20a-20c using a single thermostat 30b.
Further, as shown in FIG. 13, thermostats 30a-30c and intermediary devices 40a-40c are provided according to the number of indoor heat pump units 20a-20d, and each indoor heat pump unit 20a-20d is connected to one mediator. You may make it receive the control signal from one different thermostat 30a-30c converted by apparatus 40a-40c. That is, for each of the plurality of indoor heat pump units 20a-20c, one thermostat 30a-30c and an intermediary device 40a-40c are installed, and a control signal from the thermostat 30a-30c to which each intermediary device 40a-40c is connected to itself. May be input, converted, and transmitted to the air conditioner to control the indoor heat pump units 20a-20c. In this case, by performing different settings in each of the thermostats 30a to 30c, each indoor heat pump unit 20a to 20c can be operated at different set temperatures.
 (4)さらに、各室内ヒートポンプユニット20a-20dは、リモコン(図示せず)を備えていてもよい。各室内ヒートポンプユニット20a-20dにリモコンが設定された場合は、サーモスタット30からの出力信号に基づく設定温度の推定値と個別リモコンで入力された設定温度とを選択できるようにしてもよい。これにより、快適な空調環境の実現をより柔軟に行うことができる。
 (5)上述の実施形態では、サーモスタット30で設定された温度の推定値を算出する際、冷房運転時はサーモスタット30から出力される信号(図3参照)のY1信号(コンプレッサ信号)、暖房運転の際は、W1信号(ヒーター信号)をそれぞれ用いたが、Y1信号のみ、W1信号のみ、もしくはその他の信号を用いて推定値を算出しても構わない。これにより、冷房設定機能のみまたは暖房設定機能のみを有するサーモスタット30を用いた場合にも、インバータ制御の空調機を作動させることができる。
(4) Furthermore, each indoor heat pump unit 20a-20d may include a remote controller (not shown). When a remote controller is set for each indoor heat pump unit 20a-20d, an estimated value of the set temperature based on an output signal from the thermostat 30 and a set temperature input by the individual remote controller may be selected. Thereby, a comfortable air-conditioning environment can be realized more flexibly.
(5) In the above-described embodiment, when calculating the estimated value of the temperature set by the thermostat 30, the Y1 signal (compressor signal) of the signal (see FIG. 3) output from the thermostat 30 during the cooling operation, the heating operation In this case, the W1 signal (heater signal) is used, but the estimated value may be calculated using only the Y1 signal, only the W1 signal, or other signals. Thereby, even when the thermostat 30 having only the cooling setting function or only the heating setting function is used, the inverter-controlled air conditioner can be operated.
 (6)また、Y1信号(コンプレッサ信号)とB信号(暖房信号)とO信号(冷房信号)のみを用いて、冷房信号がONかつ暖房信号がOFFの場合にはコンプレッサ信号を用いて冷房運転を行い、冷房信号がOFFかつ暖房信号がONの場合にはコンプレッサ信号を用いて暖房運転を行う方式とすることも可能である。
 (7)上記実施形態において、タイマー部44による時間の計測は、推定値送信部45cにより推定値が空調機に送信された後開始されているが、設定温度推定部45bが推定値を算出した後、タイマー部44が時間の計測を始めてもよい。
 〈他の実施形態〉
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(6) When only the Y1 signal (compressor signal), B signal (heating signal) and O signal (cooling signal) are used, and the cooling signal is ON and the heating signal is OFF, the cooling operation is performed using the compressor signal. If the cooling signal is OFF and the heating signal is ON, a heating operation using a compressor signal may be used.
(7) In the above embodiment, the time measurement by the timer unit 44 is started after the estimated value is transmitted to the air conditioner by the estimated value transmitting unit 45c, but the set temperature estimating unit 45b calculates the estimated value. Thereafter, the timer unit 44 may start measuring time.
<Other embodiments>
As mentioned above, although embodiment of this invention was described based on drawing, a specific structure is not restricted to these embodiment, It can change in the range which does not deviate from the summary of invention.
 本発明は、快適な空調環境の実現を効率よく行うため、既存の汎用のサーモスタットを用いて新たに導入したインバータ制御の空調機を利用可能とする環境を提供するという効果を有し、空調制御の仲介装置、空調制御システム、空調制御方法および空調制御プログラムとして有用である。 
 
The present invention has an effect of providing an environment in which an inverter-controlled air conditioner newly introduced using an existing general-purpose thermostat can be used in order to efficiently realize a comfortable air-conditioning environment. It is useful as an intermediary device, an air conditioning control system, an air conditioning control method, and an air conditioning control program.

Claims (13)

  1.  空調機(10,20a-20d)に対する設定温度の入力を受け付けるとともに前記空調機の熱源に対して作動または非作動を要求する第1信号を生成する空調インターフェース(30)、に接続される空調制御のための仲介装置(40)であって、
     前記空調インターフェースから入力される前記第1信号を受け付ける信号受付部(45a)と、
     室温を取得する室温取得部(43)と、
     前記信号受付部で受け付けた第1信号と前記室温取得部で取得された室温とに基づき、前記空調インターフェースの設定温度の推定値を算出する設定温度推定部(45b)と、
     前記推定値を前記空調機に送信する推定値送信部(45c)と、
    を備える、
    仲介装置。
    Air-conditioning control connected to an air-conditioning interface (30) for receiving a set temperature input to the air-conditioner (10, 20a-20d) and generating a first signal for requesting the heat source of the air-conditioner to be activated or deactivated An intermediary device (40) for
    A signal receiving unit (45a) for receiving the first signal input from the air conditioning interface;
    A room temperature acquisition unit (43) for acquiring a room temperature;
    A set temperature estimation unit (45b) that calculates an estimated value of the set temperature of the air conditioning interface based on the first signal received by the signal reception unit and the room temperature acquired by the room temperature acquisition unit;
    An estimated value transmission unit (45c) for transmitting the estimated value to the air conditioner;
    Comprising
    Mediation device.
  2.  前記設定温度推定部によって前記推定値が算出された後、前記空調機を構成する室内機のサーモONあるいはサーモOFFの運転状況を示すサーモ信号を前記室内機から取得する運転状況取得部(45f)と、
     前記第1信号と前記サーモ信号とに応じ、前記空調機に対して最高負荷の動作命令あるいは最低負荷の動作命令を送信する動作命令送信部(45e)と
    をさらに備える、
    請求項1に記載の仲介装置。
    After the estimated value is calculated by the set temperature estimation unit, an operation status acquisition unit (45f) that acquires from the indoor unit a thermo signal indicating an operation status of thermo-ON or thermo-OFF of the indoor units constituting the air conditioner. When,
    In accordance with the first signal and the thermo signal, the air conditioner further includes an operation command transmission unit (45e) for transmitting an operation command of the highest load or an operation command of the lowest load to the air conditioner.
    The mediation apparatus according to claim 1.
  3.  前記設定温度推定部によって前記推定値が算出された後の所定時間を計測するタイマー部(44)をさらに備え、
     前記動作命令送信部は、前記第1信号と前記サーモ信号とに応じ、前記所定時間の経過後に前記空調機に対する前記最高負荷の動作命令あるいは前記最低負荷の動作命令を送信する、
    請求項2に記載の仲介装置。
    A timer unit (44) for measuring a predetermined time after the estimated value is calculated by the set temperature estimating unit;
    The operation command transmission unit transmits the operation command for the highest load or the operation command for the lowest load to the air conditioner after the predetermined time has elapsed, according to the first signal and the thermo signal.
    The intermediary device according to claim 2.
  4.  前記第1信号が、前記所定時間内に変化した場合、前記設定温度推定部は、前記推定値を改めて算出する、
    請求項3に記載の仲介装置。
    When the first signal changes within the predetermined time, the set temperature estimation unit calculates the estimated value anew.
    The intermediary device according to claim 3.
  5.  前記第1信号が、前記所定時間内に変化せず、かつ、前記第1信号が示す前記空調インターフェースの状況と、前記サーモ信号が示す前記室内機の運転状況とが不一致の状態である場合、
     前記動作命令送信部は、前記空調機に対して前記最高負荷の動作命令あるいは前記最低負荷の動作命令を送信する、
    請求項3または4に記載の仲介装置。
    When the first signal does not change within the predetermined time, and the status of the air conditioning interface indicated by the first signal is inconsistent with the operation status of the indoor unit indicated by the thermo signal,
    The operation command transmission unit transmits the operation command of the highest load or the operation command of the lowest load to the air conditioner,
    The intermediary device according to claim 3 or 4.
  6.  前記空調インターフェースの状況と前記室内機の運転状況とが不一致の状態には、
     前記信号受付部が前記作動を要求する第1信号を受け付けている際に、前記運転状況取得部が前記サーモOFFの運転状況を示すサーモ信号を受信する第1状態と、
     前記信号受付部が前記非作動を要求する第1信号を受け付けている際に、前記運転状況取得部が前記サーモONの運転状況を示すサーモ信号を受信する第2状態と、
    が含まれ、
     前記第1状態の場合、前記動作命令送信部は前記空調機に対して前記最高負荷の動作命令を送信し、
     前記第2状態の場合、前記動作命令送信部は前記空調機に対して前記最低負荷の動作命令を送信する、
    請求項5に記載の仲介装置。
    In a state where the status of the air conditioning interface and the operation status of the indoor unit do not match,
    A first state in which the driving status acquisition unit receives a thermo signal indicating a driving status of the thermo OFF when the signal receiving unit is receiving a first signal requesting the operation;
    A second state in which the driving status acquisition unit receives a thermo signal indicating a driving status of the thermo ON when the signal receiving unit receives the first signal requesting the non-operation;
    Contains
    In the case of the first state, the operation command transmission unit transmits the operation command of the highest load to the air conditioner,
    In the case of the second state, the operation command transmission unit transmits the operation command for the minimum load to the air conditioner.
    The intermediary device according to claim 5.
  7.  前記第1信号が、前記所定時間内に変化せず、かつ、前記第1信号が示す前記空調インターフェースの状況と、前記サーモ信号が示す前記室内機の運転状況とが一致している状態である場合、
     前記動作命令送信部は、前記空調インターフェースの状況と前記室内機の運転状況とが不一致の状態になるまで、前記最高負荷の動作命令あるいは前記最低負荷の動作命令を前記空調機に送信せず待機する、
    請求項5または6に記載の仲介装置。
    The first signal does not change within the predetermined time, and the condition of the air conditioning interface indicated by the first signal matches the operating condition of the indoor unit indicated by the thermo signal. If
    The operation command transmission unit waits without transmitting the operation command of the highest load or the operation command of the lowest load to the air conditioner until the status of the air conditioning interface and the operation status of the indoor unit become inconsistent. To
    The intermediary device according to claim 5 or 6.
  8.  前記設定温度推定部は、前記室温取得部で取得した前記室温から所定温度を減じた温度あるいは前記室温取得部で取得した前記室温に前記所定温度を加えた温度を前記推定値として算出する、
    請求項1から7のいずれかに記載の仲介装置。
    The set temperature estimation unit calculates, as the estimated value, a temperature obtained by subtracting a predetermined temperature from the room temperature acquired by the room temperature acquisition unit or a temperature obtained by adding the predetermined temperature to the room temperature acquired by the room temperature acquisition unit.
    The intermediary device according to any one of claims 1 to 7.
  9.  前記設定温度推定部は、
     前記空調機が冷房運転を行っており、かつ、前記所定時間内に、前記非作動を要求する第1信号が前記作動を要求する第1信号に変化した場合は、前記室温取得部で取得した前記室温から前記所定温度を減じた温度を前記推定値として算出し、
     前記空調機が暖房運転を行っており、かつ、前記所定時間内に、前記非作動を要求する第1信号が前記作動を要求する第1信号に変化した場合は、前記室温取得部で取得した前記室温に前記所定温度を加えた温度を前記推定値として算出する、
    請求項8に記載の仲介装置。
    The set temperature estimator is
    When the air conditioner is performing a cooling operation and the first signal requesting the non-operation changes to the first signal requesting the operation within the predetermined time, it is acquired by the room temperature acquisition unit A temperature obtained by subtracting the predetermined temperature from the room temperature is calculated as the estimated value;
    When the air conditioner is performing a heating operation and the first signal requesting the non-operation changes to the first signal requesting the operation within the predetermined time, it is acquired by the room temperature acquisition unit A temperature obtained by adding the predetermined temperature to the room temperature is calculated as the estimated value;
    The intermediary device according to claim 8.
  10.  前記設定温度推定部は、
     前記空調機が冷房運転を行っており、かつ、前記所定時間内に、前記作動を要求する第1信号が前記非作動を要求する第1信号に変化した場合は、前記室温取得部で取得した前記室温に前記所定温度を加えた温度を前記推定値として算出し、
     前記空調機が暖房運転を行っており、かつ、前記所定時間内に、前記作動を要求する第1信号が前記非作動を要求する第1信号に変化した場合は、前記室温取得部で取得した前記室温から前記所定温度を減じた温度を前記推定値として算出する、
    請求項8に記載の仲介装置。
    The set temperature estimator is
    When the air conditioner is performing a cooling operation and the first signal requesting the operation changes to the first signal requesting the non-operation within the predetermined time, it is acquired by the room temperature acquisition unit. A temperature obtained by adding the predetermined temperature to the room temperature is calculated as the estimated value;
    When the air conditioner is performing a heating operation and the first signal requesting the operation changes to the first signal requesting the non-operation within the predetermined time, it is acquired by the room temperature acquisition unit. A temperature obtained by subtracting the predetermined temperature from the room temperature is calculated as the estimated value;
    The intermediary device according to claim 8.
  11.  請求項1記載の仲介装置(40)と、
     前記仲介装置と通信可能な前記空調インターフェース(30)と、
     前記仲介装置から送信される前記推定値を受信し、前記推定値に基づき空調制御を行う空調機(10,20a-20d)と、
    を備える空調制御システム。
    An intermediary device (40) according to claim 1,
    The air conditioning interface (30) capable of communicating with the intermediary device;
    An air conditioner (10, 20a-20d) that receives the estimated value transmitted from the mediation device and performs air-conditioning control based on the estimated value;
    An air conditioning control system.
  12.  空調機(10,20a-20d)に対する設定温度の入力を受け付けるとともに前記空調機の熱源に対して作動または非作動を要求する第1信号を生成する空調インターフェース(30)、を利用した空調制御方法であって、
     前記第1信号を受け付ける第1ステップと、
     室温を取得する第2ステップと、
     前記第1ステップにおいて前記第1信号を受け付けた後、前記第2ステップで取得された前記室温に基づき、前記空調インターフェースの設定温度の推定値を算出する第3ステップと、
     前記推定値を空調機に送信する第4ステップと、
    を備える空調制御方法。
    An air conditioning control method using an air conditioning interface (30) that receives a set temperature input to the air conditioner (10, 20a-20d) and generates a first signal that requests activation or deactivation of a heat source of the air conditioner Because
    A first step of accepting the first signal;
    A second step of acquiring room temperature;
    A third step of calculating an estimated value of a set temperature of the air conditioning interface based on the room temperature acquired in the second step after receiving the first signal in the first step;
    A fourth step of transmitting the estimated value to the air conditioner;
    An air conditioning control method comprising:
  13.  空調機(10,20a-20d)に対する設定温度の入力を受け付けるとともに前記空調機の熱源に対して作動または非作動を要求する第1信号を生成する空調インターフェース(30)、を利用した空調制御プログラムであって、
     前記第1信号を受け付ける第1ステップと、
     室温を取得する第2ステップと、
     前記第1ステップにおいて前記第1信号を受け付けた後、前記第2ステップで取得された前記室温に基づき、前記空調インターフェースの設定温度の推定値を算出する第3ステップと、
     前記推定値を空調機に送信する第4ステップと、
    をコンピュータに実行させるための空調制御プログラム。
     
     
    An air conditioning control program using an air conditioning interface (30) that receives an input of a set temperature for the air conditioner (10, 20a-20d) and generates a first signal that requests activation or deactivation of a heat source of the air conditioner Because
    A first step of accepting the first signal;
    A second step of acquiring room temperature;
    A third step of calculating an estimated value of a set temperature of the air conditioning interface based on the room temperature acquired in the second step after receiving the first signal in the first step;
    A fourth step of transmitting the estimated value to the air conditioner;
    Air conditioning control program for causing a computer to execute.

PCT/JP2009/051685 2008-02-06 2009-02-02 Mediation device for controlling air conditioning, air conditioning control system, air conditioning control method, and air conditioning control program WO2009099020A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008026590A JP4353301B2 (en) 2008-02-06 2008-02-06 Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
JP2008-026590 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009099020A1 true WO2009099020A1 (en) 2009-08-13

Family

ID=40952095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051685 WO2009099020A1 (en) 2008-02-06 2009-02-02 Mediation device for controlling air conditioning, air conditioning control system, air conditioning control method, and air conditioning control program

Country Status (2)

Country Link
JP (1) JP4353301B2 (en)
WO (1) WO2009099020A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107655178A (en) * 2017-11-08 2018-02-02 广东美的制冷设备有限公司 Air-conditioning interconnecting device and its control method, controller and computer-readable recording medium
US10310475B2 (en) 2015-10-09 2019-06-04 Carrier Corporation System and method of operating a variable speed HVAC system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG178497A1 (en) 2009-08-21 2012-03-29 Vigilent Corp Method and apparatus for efficiently coordinating data center cooling units
JP5673204B2 (en) * 2011-02-25 2015-02-18 ダイキン工業株式会社 Mediation device and air conditioning system
CN105318505A (en) * 2015-11-26 2016-02-10 广东美的制冷设备有限公司 Variable frequency air conditioner control device based on thermostat, terminal, system and method
CN105387568A (en) * 2015-11-26 2016-03-09 广东美的制冷设备有限公司 Variable frequency air conditioner control device, terminal, system and method based on thermolator
CN105299848A (en) * 2015-11-26 2016-02-03 广东美的制冷设备有限公司 Variable frequency air conditioner control device based on thermolator, terminal, system and method
CN112344539A (en) * 2020-11-12 2021-02-09 广东积微科技有限公司 Control method of variable frequency window air conditioner system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287036A (en) * 1989-04-28 1990-11-27 Mitsubishi Heavy Ind Ltd Control device for heat pump type air-conditioner
JPH03221747A (en) * 1990-01-25 1991-09-30 Mitsubishi Electric Corp Air conditioner
JPH04320748A (en) * 1991-04-19 1992-11-11 Mitsubishi Electric Corp Control device for air conditioner
JP4135766B2 (en) * 2006-09-19 2008-08-20 ダイキン工業株式会社 Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287036A (en) * 1989-04-28 1990-11-27 Mitsubishi Heavy Ind Ltd Control device for heat pump type air-conditioner
JPH03221747A (en) * 1990-01-25 1991-09-30 Mitsubishi Electric Corp Air conditioner
JPH04320748A (en) * 1991-04-19 1992-11-11 Mitsubishi Electric Corp Control device for air conditioner
JP4135766B2 (en) * 2006-09-19 2008-08-20 ダイキン工業株式会社 Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10310475B2 (en) 2015-10-09 2019-06-04 Carrier Corporation System and method of operating a variable speed HVAC system
CN107655178A (en) * 2017-11-08 2018-02-02 广东美的制冷设备有限公司 Air-conditioning interconnecting device and its control method, controller and computer-readable recording medium

Also Published As

Publication number Publication date
JP2009186095A (en) 2009-08-20
JP4353301B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4353301B2 (en) Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
JP4135766B2 (en) Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
US11686495B2 (en) Systems and methods for air temperature control using a target time based control plan
CA2871054C (en) An hvac controller and method for operating an hvac system based on a difference in temperature between return air and supply air and an hvac system employing the controller or method
US20230272931A1 (en) Systems and Methods for Controlling Rate of Change of Air Temperature in a Building
US20230272930A1 (en) Systems and methods for controlling a heating and air-conditioning (hvac) system
JP5332236B2 (en) Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
EP2757325A1 (en) HVAC system with an outdoor unit controller configured to receive request from an indoor unit controller and to reply thereon and indoor unit controller
JP4424416B2 (en) Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
JP5157532B2 (en) Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
US20220107105A1 (en) Systems and methods for air temperature control using a target time based control plan
JP5332283B2 (en) Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
JP2009270790A (en) Mediating device for air-conditioning control, air-conditioning control system, air-conditioning control method and air-conditioning control program
KR102560125B1 (en) Plug-in control system for integrating equipment
JP2009270789A (en) Mediating device for air-conditioning control, air-conditioning control system, air-conditioning control method and air-conditioning control program
JP2009281717A (en) Air-conditioning control intermediary device, air-conditioning control system, air-conditioning control method and air-conditioning control program
WO2022147273A1 (en) Systems and methods for controlling a heating and air-conditioning (hvac) system
JP2009250553A (en) Intermediary device for air-conditioning control, air-conditioning control system and air-conditioning control method
WO2017138956A1 (en) Systems and methods for air temperature control using a target time based control plan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707679

Country of ref document: EP

Kind code of ref document: A1