WO2009098964A1 - Ofdm receiver - Google Patents

Ofdm receiver Download PDF

Info

Publication number
WO2009098964A1
WO2009098964A1 PCT/JP2009/051209 JP2009051209W WO2009098964A1 WO 2009098964 A1 WO2009098964 A1 WO 2009098964A1 JP 2009051209 W JP2009051209 W JP 2009051209W WO 2009098964 A1 WO2009098964 A1 WO 2009098964A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
spurious
unit
phase rotation
Prior art date
Application number
PCT/JP2009/051209
Other languages
French (fr)
Japanese (ja)
Inventor
Handa Chen
Original Assignee
Megachips Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Megachips Corporation filed Critical Megachips Corporation
Publication of WO2009098964A1 publication Critical patent/WO2009098964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a technique for removing a spurious signal from a received signal in an OFDM transmission system.
  • an OFDM (Orthogonal Frequency Division Multiplexing) system is adopted as a transmission system.
  • the OFDM scheme is one of multicarrier transmission schemes in which transmission data is divided into a plurality of carrier waves and transmitted.
  • the spectrum of each subchannel, which is strong against frequency selective fading of a multipath transmission path, can be densely arranged, There are advantages such as high frequency utilization efficiency.
  • the OFDM demodulating IC is not only mounted on a stationary TV but also has a wide range of applications.
  • an OFDM demodulation IC is mounted on a mobile phone, a game machine, or a car navigation system.
  • the spurious interference is interference that a received signal receives due to an image signal, a harmonic component of local oscillation, or a frequency of another oscillator used in the receiver and its harmonic component.
  • Spurious interference has been a challenge for OFDM demodulation ICs for the following reasons.
  • Spurious signals have different properties depending on the application in which the OFDM demodulation IC is mounted.
  • the spurious frequency that falls within the band of the OFDM signal is indefinite, and a cancel filter cannot be provided in advance as in CCI (Co-Channel-Interference).
  • the amplitude of the spurious signal is much larger than that of the OFDM signal. For this reason, the amplitude of the spurious signal in the signal demodulated by the FFT operation is much larger than the amplitude of the OFDM signal.
  • the bit accuracy of the demodulator is limited, and if a bit is assigned to a spurious signal with a large amplitude, the quantization accuracy of an OFDM signal with a relatively small amplitude will deteriorate rapidly.
  • Non-Patent Document 1 discloses a technique for removing spurious signals using an adaptive filter. This technique automatically detects the frequency of a spurious signal mixed in a received signal, forms a notch filter corresponding to the detected frequency, and cancels the spurious signal.
  • the adaptive filter since the adaptive filter requires a large number of taps and the OFDM signal is a complex signal, the adaptive filter must also have a complex coefficient. Therefore, the amount of calculation of a complex adaptive filter having a large number of taps is enormously increased, which is not practical.
  • the OFDM receiver of the present invention includes an analysis unit that detects a frequency of an unnecessary signal from a reception signal converted into a frequency domain, an unnecessary signal removal unit that attenuates a frequency of an unnecessary signal detected in the analysis unit in a time domain, A demodulation unit that performs FFT conversion on the received signal from which the unnecessary signal is removed in the unnecessary signal removal unit.
  • the analysis unit includes a calculation unit that calculates a phase rotation amount for making the detected frequency of the unnecessary signal coincide with the target frequency, and the unnecessary signal removal unit includes the phase of the received signal.
  • a first phase rotator that rotates the signal based on the amount of phase rotation, a filter that attenuates the signal of the target frequency included in the received signal whose phase is rotated by the first phase rotator, and the received signal output from the filter
  • a second phase rotation unit that rotates the phase in a direction opposite to the rotation direction of the first phase rotation unit based on the amount of phase rotation.
  • Unnecessary signals can be attenuated using a filter with a fixed stop frequency. Compared to the case of using an adaptive filter, the circuit scale of the filter can be significantly reduced.
  • the analysis unit detects the frequency of the unnecessary signal from the received signal converted into the frequency domain using the FFT operation circuit provided in the demodulation unit. Accordingly, the circuit scale of the receiving device can be reduced by sharing the FFT operation circuit.
  • an object of the present invention is to provide a technique for efficiently removing unnecessary signals without increasing the circuit scale of the receiving apparatus.
  • FIG. 1 is a block diagram showing an OFDM receiving apparatus according to the present embodiment.
  • An RF (Radio Frequency) signal 1 transmitted from an OFDM transmitter (not shown) is received by a receiving antenna 2 through a transmission path.
  • the received RF signal is frequency-converted by the tuner 3 into an IF (Intermediate Frequency) signal.
  • the IF signal is input to the mixer 5 via the BPF (band pass filter) 4, multiplied by the signal supplied from the carrier wave oscillator 6, and then output to the LPF (low pass filter) 7.
  • BPF band pass filter
  • the reception signal from which the high-frequency component has been removed by the LPF 7 is output to the A / D converter 8, and the A / D converter 8 converts it into a digital signal (symbol signal) at a predetermined sampling frequency.
  • the received signal converted into the digital signal is output to an FFT (Fast Fourier Transform) calculator 10 after the spurious signal removing unit 9 removes the spurious component.
  • FFT Fast Fourier Transform
  • the FFT calculator 10 Fourier-transforms the input time domain symbol signal into a frequency domain signal.
  • the reception signal output from the spurious signal removal unit 9 is also input to the symbol synchronization circuit 11.
  • the symbol synchronization circuit 11 In the state where the spurious signal is not removed, the symbol synchronization circuit 11 cannot perform symbol synchronization with high accuracy. Even after performing symbol synchronization in such a state and performing FFT calculation, an effective demodulated signal cannot be obtained. Therefore, in the present embodiment, the symbol synchronization circuit 11 is not operated until the spurious signal is removed. The start of symbol synchronization processing in the symbol synchronization circuit 11 is delayed, and the FFT operation unit 10 is used for detection of spurious signals during the delayed period.
  • the symbol synchronization circuit 11 detects the symbol period using the guard interval and outputs a detection signal to the FFT calculator 10. Based on this detection signal, the FFT calculator 10 determines a symbol period and performs an FFT calculation. By performing the FFT operation, the received signal is converted into a frequency domain signal.
  • the received signal in the frequency domain is input to the equalizer 12 that performs waveform equalization.
  • the equalizer 12 equalizes the received signal based on the calculation result in the transmission path estimation circuit (not shown).
  • the transmission path estimation circuit calculates a transmission path function based on a pilot signal included in the received signal, and estimates the calculated transmission path function for other signals.
  • the received signal that has been equalized in the equalizer 12 is subjected to Viterbi decoding or Reed-Solomon decoding in the channel decoder 13, and then MPEG (Moving Picture Experts Group) in the source decoder 14- After being decoded by the two methods, it is converted to analog by the D / A converter 15 and output.
  • Viterbi decoding or Reed-Solomon decoding in the channel decoder 13
  • MPEG Motion Picture Experts Group
  • the spurious signal removal unit 9 includes a rotator 91, a notch filter 92, a de-rotator 93, and a spurious detection circuit 94.
  • the rotator 91 rotates the phase of the reception signal output from the A / D converter 8 based on the phase rotation amount p input from the spurious detection circuit 94.
  • the notch filter 92 attenuates the signal having the stop frequency f1 from the received signal.
  • the stop frequency f1 of the notch filter 92 is fixed.
  • the de-rotator 93 rotates the phase of the reception signal output from the notch filter 92 based on the phase rotation amount p input from the spurious detection circuit 94. However, the derotator 93 rotates the phase of the received signal in the direction opposite to the rotation direction in the rotator 91. In other words, the phase of the received signal is rotated by p phase in the rotator 91, and the phase of the received signal is rotated by ⁇ p phase in the de-rotator 93.
  • the spurious detection circuit 94 detects the frequency f2 of the spurious signal from the reception signal converted into the frequency domain by the FFT calculator 10. Since the OFDM signal is a signal like white noise, if the FFT operation is performed in a state where symbol synchronization is not achieved, the output after the operation also has a waveform like white noise. On the other hand, since a spurious signal is single-frequency interference, if a signal of one period is acquired, a spectrum peak can always be obtained by FFT calculation. Therefore, the spurious frequency f2 can be detected by obtaining a signal starting from an arbitrary point without taking symbol synchronization with respect to the received signal mixed with the spurious signal and performing the FFT operation.
  • the spurious power is concentrated in one frequency component. For this reason, even if the spurious power is smaller than the power of the OFDM signal by a dozen dB in the time domain, the spectrum height of the spurious is higher than the spectrum height of the OFDM signal in the frequency domain. Therefore, it is possible to easily detect the frequency f2 of the spurious signal mixed in the received signal.
  • the spurious detection circuit 94 When detecting the spurious frequency f2, the spurious detection circuit 94 obtains the phase rotation amount p from the difference between the fixed stop frequency f1 set in the notch filter 92 and the detected spurious frequency f2. That is, the phase rotation amount p in the time domain corresponding to the frequency difference (f1-f2) in the frequency domain is obtained. When the phase of the received signal in the time domain is rotated, the spectrum shifts in the frequency domain. As described above, the spurious detection circuit 94 outputs the calculated phase rotation amount p to the rotator 91 and the de-rotator 93. The rotator 91 and the de-rotator 93 set the input phase rotation amount p in the circuit.
  • the phase of the received signal input to the notch filter 92 is rotated by the rotator 91, and the frequency of the spurious signal is adjusted to f1.
  • the notch filter 92 attenuates the spurious signal based on a preset stop frequency f1. After the spurious signal is attenuated, the received signal is again subjected to reverse phase rotation in the derotator 93, and the phase is returned to the original state.
  • the received signal from which the spurious signal has been removed is output to the symbol synchronization circuit 11. Since the spurious signal is removed from the reception signal input to the symbol synchronization circuit 11, the symbol synchronization circuit 11 can perform symbol synchronization with high accuracy using the guard interval signal.
  • the FFT calculator 10 starts operating and outputs the output signal after the FFT calculation to the spurious detection circuit 94 (step S2).
  • the spurious detection circuit 94 detects the frequency f2 of the spurious signal, and calculates the phase rotation amount p in the time domain from the difference between the stop frequency f1 preset in the notch filter 92 and the detected frequency f2 of the spurious signal. Calculate (step S3).
  • the rotator 91 and the derotator 93 do not apply phase rotation to the received signal. Therefore, the spurious signal is not removed in the notch filter 92. In this state, the symbol synchronization circuit 11 is not operating. Therefore, the FFT calculator 10 performs an FFT operation on the received signal mixed with the spurious signal in a state where symbol synchronization is not established. However, as described above, since the spurious signal is a single frequency signal, the spurious detection circuit 94 can detect the spectrum peak of the spurious signal from the frequency domain signal.
  • the symbol synchronization processing by the symbol synchronization circuit 11 requires a certain amount of time.
  • the FFT operator 10 needs to wait for the symbol synchronization to be completed.
  • unnecessary symbol synchronization processing is cut, so that the FFT calculation processing is started at an early timing, and the time until spurious frequency detection is shortened.
  • the spurious detection circuit 94 sets the phase rotation amount p in the rotator 91 and the derotator 93, and the spurious signal removal processing in the spurious signal removal unit 9 starts (step S4). That is, the phase of the received signal is rotated by the rotator 91 based on the phase rotation amount p, whereby the frequency of the spurious signal is adjusted to f1, and the spurious signal is removed by the notch filter 92.
  • the FFT calculator 10 When the FFT calculator 10 confirms that the spurious signal has been removed from the input received signal, the FFT calculator 10 locks the phase rotation amount p of the rotator 91 and the de-rotator 93 and operates the symbol synchronization circuit 11. As a result, symbol synchronization processing is performed with high accuracy from the received signal from which the spurious signal has been removed. An FFT operation is performed on the symbol-synchronized reception signal. Thereafter, the FFT computing unit 10 is used for demodulation processing (step S5).
  • the stop frequency f1 of the notch filter 92 can be fixed. Therefore, a filter bank is unnecessary and the circuit scale can be greatly reduced as compared with the case of using an adaptive filter whose filter coefficient is variable according to the spurious frequency. Further, since the rotator 91 and the de-rotator 93 that perform phase rotation have a small circuit scale, the spurious signal removing unit 9 as a whole can also reduce the circuit scale.
  • the FFT calculator used for detecting the spurious signal is shared with the FFT calculator used for the demodulation process. This also makes it possible to reduce the scale of the circuit related to spurious detection.
  • the detection of the spurious frequency f2 and the calculation of the phase rotation amount p in the spurious detection circuit 94 may be performed once when the OFDM receiver is activated. Thereafter, the rotator 91 and the de-rotator 93 rotate the phase of the received signal based on the set phase rotation amount p. However, since the spurious frequency f2 may be changed due to a change in the external environment, the spurious frequency f2 may be detected and the phase rotation amount p may be calculated periodically from the output of the FFT that has entered the demodulation process. . Then, the updated phase rotation amount p may be set on the rotator 91 and the de-rotator 93 periodically. Even in this case, the stop frequency f1 of the notch filter 92 can be fixed.
  • the OFDM receiving apparatus removes spurious signals in the time domain before the demodulation processing is performed by the FFT calculator 10.
  • the FFT calculator 10 removes spurious signals in the time domain before the demodulation processing is performed by the FFT calculator 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

A technique of efficiently eliminating an unwanted signal without increasing the circuit scale of an OFDM receiver. A spurious detection circuit (94) detects the frequency (f2) of a spurious signal from a reception signal in frequency domain outputted by an FFT calculator (10). The spurious detection circuit (94) calculates the amount of phase rotation (p) in time domain by using the difference between the stop frequency (f1) of a notch filter (92) and the spurious frequency (f2) and sets the calculated amount of phase rotation (P) in a rotator (91) and a de-rotator (93). The rotator (91) rotates the phase of the reception signal according to the amount of phase rotation (p). The notch filter (92) attenuates the spurious signal whose frequency is adjusted to f1. The de-rotator (93) reversely rotates the phase of the reception signal according to the amount of phase rotation (p). The FFT calculator (10) demodulates the reception signal from which the spurious signal is eliminated.

Description

OFDM受信装置OFDM receiver
 本発明は、OFDM伝送方式において、受信信号からスプリアス信号を除去する技術に関する。 The present invention relates to a technique for removing a spurious signal from a received signal in an OFDM transmission system.
 日本の地上波デジタルテレビ放送では、伝送方式としてはOFDM(直交周波数分割多重;Orthogonal Frequency Division Multiplexing)方式が採用されている。OFDM方式は、送信データを複数の搬送波に分割して送信するマルチキャリア伝送方式の1つであり、マルチパス伝送路の周波数選択性フェーディングに強い、各サブチャネルのスペクトルが密に配置でき、周波数利用効率が高い、などの利点がある。 In Japanese terrestrial digital television broadcasting, an OFDM (Orthogonal Frequency Division Multiplexing) system is adopted as a transmission system. The OFDM scheme is one of multicarrier transmission schemes in which transmission data is divided into a plurality of carrier waves and transmitted. The spectrum of each subchannel, which is strong against frequency selective fading of a multipath transmission path, can be densely arranged, There are advantages such as high frequency utilization efficiency.
 OFDM復調用ICは、据え置き型テレビへの搭載のみならず、様々なアプリケーションへの適用が広がっている。たとえば、OFDM復調用ICが携帯電話機、ゲーム機、カーナビゲーションシステムへ搭載されるアプリケーション例がある。 The OFDM demodulating IC is not only mounted on a stationary TV but also has a wide range of applications. For example, there is an application example in which an OFDM demodulation IC is mounted on a mobile phone, a game machine, or a car navigation system.
 OFDM復調用ICの様々なアプリケーションへの適用が広がるにつれてスプリアス干渉の問題が大きくなっている。スプリアス干渉とは、イメージ信号や、局部発振の高調波成分、あるいは受信機内部で使用する他の発振器の周波数やその高調波成分により受信信号が受ける干渉である。 As the application of OFDM demodulation ICs to various applications spreads, the problem of spurious interference is increasing. The spurious interference is interference that a received signal receives due to an image signal, a harmonic component of local oscillation, or a frequency of another oscillator used in the receiver and its harmonic component.
 たとえば、OFDM復調用ICを内蔵するカートリッジをゲーム機に差し込むことで、ゲーム機においてワンセグ(1セグメント受信)の地上デジタル放送を受信可能とするシステムがある。この場合、ゲーム機内部で使用されている発振器の周波数や、その高調波成分がOFDM復調用ICに混入し、干渉源となって、OFDM信号のBER(Bit Error Rate)が劣化するという問題が発生している。 For example, there is a system that enables reception of one-segment (1-segment reception) terrestrial digital broadcasting in a game machine by inserting a cartridge containing an OFDM demodulation IC into the game machine. In this case, there is a problem that the frequency of the oscillator used in the game machine and its harmonic components are mixed in the OFDM demodulation IC and become an interference source, and the BER (Bit Error Rate) of the OFDM signal is deteriorated. It has occurred.
 スプリアス干渉は、以下に示す理由により、OFDM復調用ICにとっては、難題となっている。 Spurious interference has been a challenge for OFDM demodulation ICs for the following reasons.
 (1)スプリアス信号は、OFDM復調用ICが実装されるアプリケーションによって異なる性質を持つ。OFDM信号の帯域に入るスプリアスの周波数が不定であり、CCI(Co-Channel-Interference)のように、予めキャンセルフィルターを設けておくことができない。 (1) Spurious signals have different properties depending on the application in which the OFDM demodulation IC is mounted. The spurious frequency that falls within the band of the OFDM signal is indefinite, and a cancel filter cannot be provided in advance as in CCI (Co-Channel-Interference).
 (2)スプリアス信号の振幅がOFDM信号よりはるかに大きい場合が多い。そのため、FFT演算による復調後の信号においてスプリアス信号の振幅が、OFDM信号の振幅より非常に大きくなる。しかし、復調器のビット精度は限られており、振幅の大きなスプリアス信号にビットを割り当てると、相対的に振幅の小さいOFDM信号の量子化精度が急減に劣化することになる。 (2) In many cases, the amplitude of the spurious signal is much larger than that of the OFDM signal. For this reason, the amplitude of the spurious signal in the signal demodulated by the FFT operation is much larger than the amplitude of the OFDM signal. However, the bit accuracy of the demodulator is limited, and if a bit is assigned to a spurious signal with a large amplitude, the quantization accuracy of an OFDM signal with a relatively small amplitude will deteriorate rapidly.
 (3)スプリアス信号により、周波数同期処理に誤りが生じる。周波数誤差が正常に補正されないため、BERが劣化する。 (3) An error occurs in the frequency synchronization processing due to the spurious signal. Since the frequency error is not normally corrected, the BER deteriorates.
 (4)スプリアス干渉が強い場合、シンボル同期さえ取れない場合もある。 (4) If spurious interference is strong, even symbol synchronization may not be achieved.
 上記非特許文献1において、アダプティブフィルタによりスプリアス信号を除去する技術が示されている。この技術は、受信信号に混入したスプリアス信号の周波数を自動的に検出し、検出した周波数に対応するノッチフィルタを形成し、スプリアス信号をキャンセルするというものである。 Non-Patent Document 1 discloses a technique for removing spurious signals using an adaptive filter. This technique automatically detects the frequency of a spurious signal mixed in a received signal, forms a notch filter corresponding to the detected frequency, and cancels the spurious signal.
 しかし、アダプティブフィルタには数多くのタップ数が要求され、また、OFDM信号は複素信号であるため、アダプティブフィルタも複素係数でなければならない。したがって、タップ数の多い複素アダプティブフィルタの計算量が莫大に増加し、実用的でない。 However, since the adaptive filter requires a large number of taps and the OFDM signal is a complex signal, the adaptive filter must also have a complex coefficient. Therefore, the amount of calculation of a complex adaptive filter having a large number of taps is enormously increased, which is not practical.
 本発明のOFDM受信装置は、周波数領域に変換された受信信号から不要信号の周波数を検出する解析部と、時間領域において解析部において検出された不要信号の周波数を減衰させる不要信号除去部と、不要信号除去部において不要信号が除去された受信信号をFFT変換する復調部と、を備える。 The OFDM receiver of the present invention includes an analysis unit that detects a frequency of an unnecessary signal from a reception signal converted into a frequency domain, an unnecessary signal removal unit that attenuates a frequency of an unnecessary signal detected in the analysis unit in a time domain, A demodulation unit that performs FFT conversion on the received signal from which the unnecessary signal is removed in the unnecessary signal removal unit.
 これにより、FFT変換後の受信信号には不要信号が含まれないので、精度のよい復調処理を行うことができる。 Thereby, since the unnecessary signal is not included in the received signal after the FFT conversion, it is possible to perform a highly accurate demodulation process.
 この発明の好ましい実施例によれば、解析部は、検出した不要信号の周波数を目標周波数に一致させるための位相回転量を算出する算出部、を含み、不要信号除去部は、受信信号の位相を位相回転量に基づいて回転させる第1位相回転部と、第1位相回転部において位相が回転された受信信号に含まれる目標周波数の信号を減衰させるフィルタと、フィルタから出力された受信信号の位相を第1位相回転部における回転方向とは逆方向に位相回転量に基づいて回転させる第2位相回転部と、を含む。 According to a preferred embodiment of the present invention, the analysis unit includes a calculation unit that calculates a phase rotation amount for making the detected frequency of the unnecessary signal coincide with the target frequency, and the unnecessary signal removal unit includes the phase of the received signal. A first phase rotator that rotates the signal based on the amount of phase rotation, a filter that attenuates the signal of the target frequency included in the received signal whose phase is rotated by the first phase rotator, and the received signal output from the filter A second phase rotation unit that rotates the phase in a direction opposite to the rotation direction of the first phase rotation unit based on the amount of phase rotation.
 ストップ周波数が固定に設定されているフィルタを用いて、不要信号を減衰させることができる。アダプティブフィルタを利用する場合と比べてフィルタの回路規模を格段に小さくすることができる。 ∙ Unnecessary signals can be attenuated using a filter with a fixed stop frequency. Compared to the case of using an adaptive filter, the circuit scale of the filter can be significantly reduced.
 この発明の他の好ましい実施例によれば、解析部は、復調部が備えるFFT演算回路を利用して周波数領域に変換された受信信号から不要信号の周波数を検出する。これにより、FFT演算回路を共用することで、受信装置の回路規模を小さくすることができる。 According to another preferred embodiment of the present invention, the analysis unit detects the frequency of the unnecessary signal from the received signal converted into the frequency domain using the FFT operation circuit provided in the demodulation unit. Accordingly, the circuit scale of the receiving device can be reduced by sharing the FFT operation circuit.
 それゆえにこの発明の目的は、受信装置の回路規模を大きくすることなく、不要信号を効率的に除去する技術を提供することである。 Therefore, an object of the present invention is to provide a technique for efficiently removing unnecessary signals without increasing the circuit scale of the receiving apparatus.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面によって、明白となる。 The objects, features, aspects and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本実施の形態におけるOFDM受信装置のブロック図である。It is a block diagram of the OFDM receiver in this Embodiment. スプリアス信号除去処理を示すフローチャートである。It is a flowchart which shows a spurious signal removal process.
 {1.OFDM受信装置の全体構成と処理の流れ}
 以下、図面を参照しつつ本発明の実施の形態について説明する。図1は、本実施の形態に係るOFDM受信装置を示すブロック図である。OFDM送信装置(図示せず)から送信されたRF(Radio Frequency)信号1は伝送路を通って受信アンテナ2で受信される。受信RF信号は、チューナー3でIF(Intermediate Frequencyc)信号に周波数変換される。そのIF信号は、BPF(バンドパスフィルタ)4を介してミキサー5に入力され、搬送波発振器6から供給される信号と乗算された後にLPF(ローパスフィルタ)7に出力される。
{1. Overall structure and processing flow of OFDM receiver}
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an OFDM receiving apparatus according to the present embodiment. An RF (Radio Frequency) signal 1 transmitted from an OFDM transmitter (not shown) is received by a receiving antenna 2 through a transmission path. The received RF signal is frequency-converted by the tuner 3 into an IF (Intermediate Frequency) signal. The IF signal is input to the mixer 5 via the BPF (band pass filter) 4, multiplied by the signal supplied from the carrier wave oscillator 6, and then output to the LPF (low pass filter) 7.
 LPF7において高周波成分が除去された受信信号はA/D変換器8に対して出力され、A/D変換器8において所定のサンプリング周波数でデジタル信号(シンボル信号)に変換される。デジタル信号に変換された受信信号は、スプリアス信号除去部9においてスプリアス成分が除去された後、FFT(高速フーリエ変換)演算器10に出力される。スプリアス信号除去部9の処理内容については後述する。 The reception signal from which the high-frequency component has been removed by the LPF 7 is output to the A / D converter 8, and the A / D converter 8 converts it into a digital signal (symbol signal) at a predetermined sampling frequency. The received signal converted into the digital signal is output to an FFT (Fast Fourier Transform) calculator 10 after the spurious signal removing unit 9 removes the spurious component. The processing content of the spurious signal removal unit 9 will be described later.
 FFT演算器10は、入力する時間領域のシンボル信号を周波数領域の信号にフーリエ変換する。スプリアス信号除去部9から出力された受信信号は、また、シンボル同期回路11に入力される。 The FFT calculator 10 Fourier-transforms the input time domain symbol signal into a frequency domain signal. The reception signal output from the spurious signal removal unit 9 is also input to the symbol synchronization circuit 11.
 スプリアス信号が除去されていない状態では、シンボル同期回路11は、シンボル同期を精度よく行うことはできない。そして、このような状態でシンボル同期を行った後で、FFT演算を行っても、有効な復調信号を得ることはできない。そこで、本実施の形態においては、スプリアス信号が除去されるまでの間は、シンボル同期回路11を動作させないようにしている。シンボル同期回路11におけるシンボル同期処理の開始を遅延させ、その遅延させた期間は、FFT演算器10をスプリアス信号の検出に利用するのである。 In the state where the spurious signal is not removed, the symbol synchronization circuit 11 cannot perform symbol synchronization with high accuracy. Even after performing symbol synchronization in such a state and performing FFT calculation, an effective demodulated signal cannot be obtained. Therefore, in the present embodiment, the symbol synchronization circuit 11 is not operated until the spurious signal is removed. The start of symbol synchronization processing in the symbol synchronization circuit 11 is delayed, and the FFT operation unit 10 is used for detection of spurious signals during the delayed period.
 シンボル同期回路11は、ガードインターバルを利用して、シンボル期間を検出し、検出信号をFFT演算器10に出力する。この検出信号に基づいて、FFT演算器10は、シンボル期間を決定し、FFT演算を行う。FFT演算が行われることにより、受信信号は、周波数領域の信号に変換される。 The symbol synchronization circuit 11 detects the symbol period using the guard interval and outputs a detection signal to the FFT calculator 10. Based on this detection signal, the FFT calculator 10 determines a symbol period and performs an FFT calculation. By performing the FFT operation, the received signal is converted into a frequency domain signal.
 周波数領域の受信信号は、波形等化を実行する等化器12に入力される。等化器12は、伝送路推定回路(図示せず)における演算結果に基づいて、受信信号の等化を行う。伝送路推定回路は、受信信号に含まれるパイロット信号に基づいて伝送路関数を算出し、算出した伝送路関数を他の信号に対しても推定する。 The received signal in the frequency domain is input to the equalizer 12 that performs waveform equalization. The equalizer 12 equalizes the received signal based on the calculation result in the transmission path estimation circuit (not shown). The transmission path estimation circuit calculates a transmission path function based on a pilot signal included in the received signal, and estimates the calculated transmission path function for other signals.
 一方、等化器12において等化処理が行われた受信信号は、チャンネル復号器13でビタビ復号化やリードソロモン復号化を施され、次いで、ソース復号器14でMPEG(Moving Picture Experts Group)-2方式などの復号化を施された後、D/A変換器15でアナログ化され出力される。 On the other hand, the received signal that has been equalized in the equalizer 12 is subjected to Viterbi decoding or Reed-Solomon decoding in the channel decoder 13, and then MPEG (Moving Picture Experts Group) in the source decoder 14- After being decoded by the two methods, it is converted to analog by the D / A converter 15 and output.
 {2.スプリアス信号除去部の構成}
 次に、スプリアス信号除去部9の構成について説明する。図1に示すように、スプリアス信号除去部9は、ロテーター91、ノッチフィルタ92、デ・ロテーター93、スプリアス検出回路94を備えている。
{2. Configuration of Spurious Signal Removal Unit}
Next, the configuration of the spurious signal removal unit 9 will be described. As shown in FIG. 1, the spurious signal removal unit 9 includes a rotator 91, a notch filter 92, a de-rotator 93, and a spurious detection circuit 94.
 ロテーター91は、スプリアス検出回路94から入力する位相回転量pに基づいて、A/D変換器8から出力された受信信号の位相を回転させる。 The rotator 91 rotates the phase of the reception signal output from the A / D converter 8 based on the phase rotation amount p input from the spurious detection circuit 94.
 ノッチフィルタ92は、受信信号からストップ周波数f1の信号を減衰させる。ノッチフィルタ92のストップ周波数f1は固定である。 The notch filter 92 attenuates the signal having the stop frequency f1 from the received signal. The stop frequency f1 of the notch filter 92 is fixed.
 デ・ロテーター93は、スプリアス検出回路94から入力する位相回転量pに基づいて、ノッチフィルタ92から出力された受信信号の位相を回転させる。ただし、デ・ロテーター93は、ロテーター91における回転方向とは逆の方向に受信信号の位相を回転させる。言い換えると、ロテーター91において、受信信号の位相がp位相回転され、デ・ロテーター93において、受信信号の位相が-p位相回転される。 The de-rotator 93 rotates the phase of the reception signal output from the notch filter 92 based on the phase rotation amount p input from the spurious detection circuit 94. However, the derotator 93 rotates the phase of the received signal in the direction opposite to the rotation direction in the rotator 91. In other words, the phase of the received signal is rotated by p phase in the rotator 91, and the phase of the received signal is rotated by −p phase in the de-rotator 93.
 スプリアス検出回路94は、FFT演算器10において周波数領域に変換された受信信号からスプリアス信号の周波数f2を検出する。OFDM信号はホワイトノイズのような信号であるので、シンボル同期が取られていない状態でFFT演算を行うと、演算後の出力もホワイトノイズのような波形となる。一方、スプリアス信号は、単周波数の干渉であるので、一周期の信号を取得すれば、FFT演算によって、必ずスペクトラムのピークを得ることができる。したがって、スプリアス信号が混入した受信信号に対して、シンボル同期を取ることなく任意のポイントからスタートする信号を得て、FFT演算を行うことで、スプリアス周波数f2を検出することができるのである。また、OFDM信号のパワーが全ての周波数成分に分散するのに対し、スプリアスのパワーは一つの周波数成分に集中する。このため、たとえ時間領域において、スプリアスのパワーがOFDM信号のパワーより十数dB小さくても、周波数領域においては、スプリアスのスペクトルの高さがOFDM信号のスペクトルの高さより高い。したがって、受信信号に混入したスプリアス信号の周波数f2を容易に検出することができる。 The spurious detection circuit 94 detects the frequency f2 of the spurious signal from the reception signal converted into the frequency domain by the FFT calculator 10. Since the OFDM signal is a signal like white noise, if the FFT operation is performed in a state where symbol synchronization is not achieved, the output after the operation also has a waveform like white noise. On the other hand, since a spurious signal is single-frequency interference, if a signal of one period is acquired, a spectrum peak can always be obtained by FFT calculation. Therefore, the spurious frequency f2 can be detected by obtaining a signal starting from an arbitrary point without taking symbol synchronization with respect to the received signal mixed with the spurious signal and performing the FFT operation. Further, while the power of the OFDM signal is dispersed in all frequency components, the spurious power is concentrated in one frequency component. For this reason, even if the spurious power is smaller than the power of the OFDM signal by a dozen dB in the time domain, the spectrum height of the spurious is higher than the spectrum height of the OFDM signal in the frequency domain. Therefore, it is possible to easily detect the frequency f2 of the spurious signal mixed in the received signal.
 スプリアス検出回路94は、スプリアス周波数f2を検出すると、ノッチフィルタ92に設定されている固定のストップ周波数f1と検出したスプリアス周波数f2の差から、位相回転量pを求める。つまり、周波数領域における周波数差(f1-f2)に対応する時間領域における位相回転量pを求めるのである。時間領域の受信信号を位相回転させると、周波数領域においてはスペクトラムのシフトとなる。上述したように、スプリアス検出回路94は、算出した位相回転量pをロテーター91とデ・ロテーター93に出力する。ロテーター91およびデ・ロテーター93は、入力した位相回転量pを回路に設定する。 When detecting the spurious frequency f2, the spurious detection circuit 94 obtains the phase rotation amount p from the difference between the fixed stop frequency f1 set in the notch filter 92 and the detected spurious frequency f2. That is, the phase rotation amount p in the time domain corresponding to the frequency difference (f1-f2) in the frequency domain is obtained. When the phase of the received signal in the time domain is rotated, the spectrum shifts in the frequency domain. As described above, the spurious detection circuit 94 outputs the calculated phase rotation amount p to the rotator 91 and the de-rotator 93. The rotator 91 and the de-rotator 93 set the input phase rotation amount p in the circuit.
 これにより、ノッチフィルタ92に入力される受信信号は、ロテーター91により位相が回転されており、スプリアス信号の周波数がf1に調整されている。そして、ノッチフィルタ92は、予め設定されているストップ周波数f1に基づいて、スプリアス信号を減衰させるのである。スプリアス信号が減衰された後、受信信号は、再びデ・ロテーター93において位相の逆回転が加えられ、位相が元の状態に戻される。 Thus, the phase of the received signal input to the notch filter 92 is rotated by the rotator 91, and the frequency of the spurious signal is adjusted to f1. The notch filter 92 attenuates the spurious signal based on a preset stop frequency f1. After the spurious signal is attenuated, the received signal is again subjected to reverse phase rotation in the derotator 93, and the phase is returned to the original state.
 スプリアス信号が除去された受信信号は、シンボル同期回路11に出力される。シンボル同期回路11に入力される受信信号は、スプリアス信号が除去されているので、シンボル同期回路11は、ガードインターバル信号を利用して、精度よくシンボル同期を行うことができる。 The received signal from which the spurious signal has been removed is output to the symbol synchronization circuit 11. Since the spurious signal is removed from the reception signal input to the symbol synchronization circuit 11, the symbol synchronization circuit 11 can perform symbol synchronization with high accuracy using the guard interval signal.
 {3.スプリアス信号除去処理の流れ}
 次に、図2を参照しながら、スプリアス信号の除去処理の流れについて説明する。まず、受信装置の電源がONされ、OFDM受信装置が起動すると、ロテーター91およびデ・ロテーター93がリセットされる。具体的には、ロテーター91とデ・ロテーター93の位相回転量として0が設定される(ステップS1)。
{3. Flow of spurious signal removal processing}
Next, the flow of spurious signal removal processing will be described with reference to FIG. First, when the power of the receiving apparatus is turned on and the OFDM receiving apparatus is activated, the rotator 91 and the de-rotator 93 are reset. Specifically, 0 is set as the phase rotation amount of the rotator 91 and the de-rotator 93 (step S1).
 続いて、OFDM受信装置がOFDM信号の受信を開始すると、FFT演算器10が動作を開始し、FFT演算後の出力信号をスプリアス検出回路94に出力する(ステップS2)。 Subsequently, when the OFDM receiver starts receiving an OFDM signal, the FFT calculator 10 starts operating and outputs the output signal after the FFT calculation to the spurious detection circuit 94 (step S2).
 そして、スプリアス検出回路94は、スプリアス信号の周波数f2を検出し、ノッチフィルタ92に予め設定されているストップ周波数f1と、検出したスプリアス信号の周波数f2との差から時間領域における位相回転量pを算出する(ステップS3)。 The spurious detection circuit 94 detects the frequency f2 of the spurious signal, and calculates the phase rotation amount p in the time domain from the difference between the stop frequency f1 preset in the notch filter 92 and the detected frequency f2 of the spurious signal. Calculate (step S3).
 ステップS1~S3の処理においては、ロテーター91およびデ・ロテーター93は、受信信号に位相回転を加えていない。したがって、ノッチフィルタ92において、スプリアス信号は除去されていない。この状態においては、シンボル同期回路11は動作していない。したがって、FFT演算器10は、シンボル同期がとれていない状態で、スプリアス信号が混入した受信信号に対してFFT演算を行う。しかし、上述したように、スプリアス信号は単周波数の信号であるので、スプリアス検出回路94は、周波数領域の信号からスプリアス信号のスペクトラムのピークを検出することが可能である。 In the processing of steps S1 to S3, the rotator 91 and the derotator 93 do not apply phase rotation to the received signal. Therefore, the spurious signal is not removed in the notch filter 92. In this state, the symbol synchronization circuit 11 is not operating. Therefore, the FFT calculator 10 performs an FFT operation on the received signal mixed with the spurious signal in a state where symbol synchronization is not established. However, as described above, since the spurious signal is a single frequency signal, the spurious detection circuit 94 can detect the spectrum peak of the spurious signal from the frequency domain signal.
 また、シンボル同期回路11によるシンボル同期処理にはある程度の時間を要する。復調処理を開始するためには、FFT演算器10は、シンボル同期が完了するのを待つ必要がある。しかし、スプリアス信号が除去されていない状態では、不必要なシンボル同期処理をカットすることで、FFT演算処理を早いタイミングで開始し、スプリアス周波数検出までの時間を短縮しているのである。 Further, the symbol synchronization processing by the symbol synchronization circuit 11 requires a certain amount of time. In order to start the demodulation process, the FFT operator 10 needs to wait for the symbol synchronization to be completed. However, in the state where the spurious signal is not removed, unnecessary symbol synchronization processing is cut, so that the FFT calculation processing is started at an early timing, and the time until spurious frequency detection is shortened.
 続いて、スプリアス検出回路94が、ロテーター91とデ・ロテーター93に位相回転量pをセットし、スプリアス信号除去部9におけるスプリアス信号の除去処理が開始する(ステップS4)。つまり、ロテーター91によって位相回転量pに基づいて受信信号の位相が回転されることで、スプリアス信号の周波数がf1に調整され、ノッチフィルタ92においてスプリアス信号が除去される。 Subsequently, the spurious detection circuit 94 sets the phase rotation amount p in the rotator 91 and the derotator 93, and the spurious signal removal processing in the spurious signal removal unit 9 starts (step S4). That is, the phase of the received signal is rotated by the rotator 91 based on the phase rotation amount p, whereby the frequency of the spurious signal is adjusted to f1, and the spurious signal is removed by the notch filter 92.
 FFT演算器10は、入力する受信信号からスプリアス信号が除去されたことを確認すると、ロテーター91とデ・ロテーター93の位相回転量pをロックし、シンボル同期回路11を動作させる。これにより、スプリアス信号が除去された受信信号から精度よくシンボル同期処理が行われる。そして、シンボル同期された受信信号に対してFFT演算が行われる。この後は、FFT演算器10は、復調処理用に利用されるのである(ステップS5)。 When the FFT calculator 10 confirms that the spurious signal has been removed from the input received signal, the FFT calculator 10 locks the phase rotation amount p of the rotator 91 and the de-rotator 93 and operates the symbol synchronization circuit 11. As a result, symbol synchronization processing is performed with high accuracy from the received signal from which the spurious signal has been removed. An FFT operation is performed on the symbol-synchronized reception signal. Thereafter, the FFT computing unit 10 is used for demodulation processing (step S5).
 このように、本実施の形態においては、ノッチフィルタ92のストップ周波数f1を固定することができる。したがって、スプリアス周波数に応じて、フィルタ係数を可変とするアダプティブフィルタを用いる場合と比べて、フィルタバンクが不要であり、非常に回路規模を小さくすることができる。また、位相回転を行うロテーター91およびデ・ロテーター93は回路規模が小さいので、スプリアス信号除去部9全体としても回路規模を小さくすることができる。 Thus, in the present embodiment, the stop frequency f1 of the notch filter 92 can be fixed. Therefore, a filter bank is unnecessary and the circuit scale can be greatly reduced as compared with the case of using an adaptive filter whose filter coefficient is variable according to the spurious frequency. Further, since the rotator 91 and the de-rotator 93 that perform phase rotation have a small circuit scale, the spurious signal removing unit 9 as a whole can also reduce the circuit scale.
 また、スプリアス信号を検出するために利用するFFT演算器は、復調処理に用いるFFT演算器と共用させている。これによっても、スプリアス検出に関わる回路の規模を縮小することができる。 Also, the FFT calculator used for detecting the spurious signal is shared with the FFT calculator used for the demodulation process. This also makes it possible to reduce the scale of the circuit related to spurious detection.
 スプリアス検出回路94におけるスプリアス周波数f2の検出および位相回転量pの算出は、OFDM受信装置の起動時に1回行えばよい。その後は、ロテーター91およびデ・ロテーター93は設定された位相回転量pに基づいて受信信号の位相を回転させる。ただし、外部環境の変動によりスプリアス周波数f2が変化する場合も想定されるので、復調処理に入ったFFTの出力から定期的に、スプリアス周波数f2の検出および位相回転量pの算出を行ってもよい。そして、定期的に、ロテーター91およびデ・ロテーター93に更新された位相回転量pを設定させればよい。この場合であっても、ノッチフィルタ92のストップ周波数f1を固定にすることができる。 The detection of the spurious frequency f2 and the calculation of the phase rotation amount p in the spurious detection circuit 94 may be performed once when the OFDM receiver is activated. Thereafter, the rotator 91 and the de-rotator 93 rotate the phase of the received signal based on the set phase rotation amount p. However, since the spurious frequency f2 may be changed due to a change in the external environment, the spurious frequency f2 may be detected and the phase rotation amount p may be calculated periodically from the output of the FFT that has entered the demodulation process. . Then, the updated phase rotation amount p may be set on the rotator 91 and the de-rotator 93 periodically. Even in this case, the stop frequency f1 of the notch filter 92 can be fixed.
 このように、本実施の形態のOFDM受信装置は、FFT演算器10により復調処理を行う前に、時間領域においてスプリアス信号を除去する。これにより、「背景技術」において説明したように、FFT演算後の受信信号にスプリアス信号が混入した場合の諸問題を解決することが可能である。 As described above, the OFDM receiving apparatus according to the present embodiment removes spurious signals in the time domain before the demodulation processing is performed by the FFT calculator 10. As a result, as described in “Background Art”, it is possible to solve various problems when a spurious signal is mixed in the received signal after the FFT operation.
 この発明を添付図面に示す実施態様について説明したが、この発明は、特に明記した部分を除いては、その詳細な説明の記載をもって制約しようとするものではなく、特許請求の範囲に記載する範囲において広く構成しようとするものである。 Although the invention has been described with reference to the embodiments shown in the accompanying drawings, the invention is not intended to be limited by the description of the detailed description, except as specifically stated, but not to the extent described in the claims. Is intended to be widely configured.

Claims (4)

  1.  OFDM受信装置であって、
     周波数領域に変換された受信信号から不要信号の周波数を検出する解析部(94)と、
     時間領域において前記解析部(94)において検出された不要信号の周波数を減衰させる不要信号除去部(9)と、
     前記不要信号除去部(9)において不要信号が除去された受信信号をFFT変換する復調部と、
    を備える。
    An OFDM receiver comprising:
    An analysis unit (94) for detecting the frequency of the unwanted signal from the received signal converted into the frequency domain;
    An unnecessary signal removing unit (9) for attenuating the frequency of the unnecessary signal detected by the analyzing unit (94) in the time domain;
    A demodulation unit that performs FFT conversion on the received signal from which the unnecessary signal has been removed in the unnecessary signal removal unit (9);
    Is provided.
  2.  請求項1に記載のOFDM受信装置において、
     前記解析部(94)は、
     検出した不要信号の周波数を目標周波数に一致させるための位相回転量(p)を算出する算出部、
    を含み、
     前記不要信号除去部(9)は、
     受信信号の位相を前記位相回転量(p)に基づいて回転させる第1位相回転部(91)と、
     前記第1位相回転部(91)において位相が回転された受信信号に含まれる前記目標周波数の信号を減衰させるフィルタ(92)と、
     前記フィルタ(92)から出力された受信信号の位相を前記第1位相回転部(91)における回転方向とは逆方向に前記位相回転量(p)に基づいて回転させる第2位相回転部(93)と、
    を含む。
    The OFDM receiver according to claim 1, wherein
    The analysis unit (94)
    A calculation unit for calculating a phase rotation amount (p) for making the frequency of the detected unnecessary signal coincide with the target frequency;
    Including
    The unnecessary signal removal unit (9)
    A first phase rotation unit (91) for rotating the phase of the received signal based on the phase rotation amount (p);
    A filter (92) for attenuating the signal of the target frequency contained in the received signal whose phase has been rotated in the first phase rotation unit (91);
    A second phase rotation unit (93) that rotates the phase of the reception signal output from the filter (92) based on the phase rotation amount (p) in a direction opposite to the rotation direction of the first phase rotation unit (91). )When,
    including.
  3.  請求項1に記載のOFDM受信装置において、
     前記解析部(94)は、前記復調部が備えるFFT演算回路(10)を利用して周波数領域に変換された受信信号から不要信号の周波数を検出する。
    The OFDM receiver according to claim 1, wherein
    The analysis unit (94) detects the frequency of the unnecessary signal from the received signal converted into the frequency domain using the FFT operation circuit (10) provided in the demodulation unit.
  4.  請求項3に記載のOFDM受信装置において、
     前記FFT演算回路(10)は、不要信号が除去されるまでの間は、前記解析部(94)に与えるための周波数領域の受信信号を生成し、不要信号が除去された後は、復調信号としての周波数領域の受信信号を生成する。
    The OFDM receiver according to claim 3,
    The FFT operation circuit (10) generates a reception signal in the frequency domain to be given to the analysis unit (94) until the unnecessary signal is removed, and after the unnecessary signal is removed, the demodulated signal is generated. The frequency domain received signal is generated.
PCT/JP2009/051209 2008-02-05 2009-01-26 Ofdm receiver WO2009098964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008024955A JP5098029B2 (en) 2008-02-05 2008-02-05 OFDM receiver
JP2008-024955 2008-02-05

Publications (1)

Publication Number Publication Date
WO2009098964A1 true WO2009098964A1 (en) 2009-08-13

Family

ID=40952042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051209 WO2009098964A1 (en) 2008-02-05 2009-01-26 Ofdm receiver

Country Status (2)

Country Link
JP (1) JP5098029B2 (en)
WO (1) WO2009098964A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062620A (en) * 2011-09-12 2013-04-04 Fujitsu Ltd Signal processing circuit, signal processing method, and reception system
JP2014023116A (en) * 2012-07-23 2014-02-03 Lapis Semiconductor Co Ltd Noise elimination circuit, receiver, and noise elimination method
EP3422566A1 (en) * 2017-06-28 2019-01-02 Airbus Defence and Space SA Superheterodyne radio receiver

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983996B2 (en) * 2012-05-31 2016-09-06 ソニー株式会社 Receiving apparatus and receiving method
JP6085976B2 (en) 2013-01-25 2017-03-01 富士通株式会社 Signal processing circuit and signal processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013357A (en) * 1998-06-22 2000-01-14 Toshiba Corp Ofdm receiver
JP2002094484A (en) * 2000-07-13 2002-03-29 Matsushita Electric Ind Co Ltd Ofdm receiver
JP2006174218A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Ofdm reception apparatus and ofdm reception method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013357A (en) * 1998-06-22 2000-01-14 Toshiba Corp Ofdm receiver
JP2002094484A (en) * 2000-07-13 2002-03-29 Matsushita Electric Ind Co Ltd Ofdm receiver
JP2006174218A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Ofdm reception apparatus and ofdm reception method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062620A (en) * 2011-09-12 2013-04-04 Fujitsu Ltd Signal processing circuit, signal processing method, and reception system
JP2014023116A (en) * 2012-07-23 2014-02-03 Lapis Semiconductor Co Ltd Noise elimination circuit, receiver, and noise elimination method
EP3422566A1 (en) * 2017-06-28 2019-01-02 Airbus Defence and Space SA Superheterodyne radio receiver

Also Published As

Publication number Publication date
JP5098029B2 (en) 2012-12-12
JP2009188602A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
US11695440B2 (en) Methods, circuits, systems and apparatus providing audio sensitivity enhancement in a wireless receiver, power management and other performances
JP5139445B2 (en) Interference signal detection and suppression for wireless communications
US8085859B2 (en) Platform noise mitigation
WO2008145799A1 (en) Interference in communication devices
US20020186791A1 (en) Method and apparatus for a multicarrier receiver circuit with guard interval size detection
EP2101461A1 (en) Method and arrangement for impact mitigation of sudden carrier frequency shifts in ofdm receiver.
WO2009098964A1 (en) Ofdm receiver
CA2877625A1 (en) Look ahead metrics to improve blending decision
WO2009098965A1 (en) Ofdm receiver
TWI481220B (en) Estimating method for maximum channel delay and cyclic prefix (cp) averaging method in ofdm receiver
WO2012137660A1 (en) Receiving device, receiving method, and program
JP5395368B2 (en) OFDM receiver
KR101266804B1 (en) Ofdm receiver apparatus
JP2007027879A (en) Receiver and reception method
KR101455841B1 (en) Frequency sensing method and apparatus for ofdm system
JP2009296532A (en) Receiver
US7664186B2 (en) Channel decoding for multicarrier signal transmission by means of DC-offset and carrier-frequency offset-dependent weighting of reliability information
RU2577316C2 (en) Signal processing device, signal processing method and programme
JP2010034854A (en) Demodulating device, demodulating method, demodulating program and computer readable recording medium
JP3793534B2 (en) OFDM receiving apparatus and OFDM signal receiving method
US8238479B2 (en) Synchronization and acquisition for mobile television reception
JP5027595B2 (en) OFDM demodulator and relay broadcast apparatus
JP2005191662A (en) Method of demodulating ofdm signal
JP4114524B2 (en) OFDM demodulator and method
JP2009182596A (en) Receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708302

Country of ref document: EP

Kind code of ref document: A1