WO2009098865A1 - Heat spreader, and method for manufacturing the same - Google Patents

Heat spreader, and method for manufacturing the same Download PDF

Info

Publication number
WO2009098865A1
WO2009098865A1 PCT/JP2009/000414 JP2009000414W WO2009098865A1 WO 2009098865 A1 WO2009098865 A1 WO 2009098865A1 JP 2009000414 W JP2009000414 W JP 2009000414W WO 2009098865 A1 WO2009098865 A1 WO 2009098865A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat spreader
frame
base material
aluminum
copper
Prior art date
Application number
PCT/JP2009/000414
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Omachi
Tomoyuki Sugiyama
Original Assignee
A.L.M.T. Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A.L.M.T. Corp. filed Critical A.L.M.T. Corp.
Priority to JP2009521662A priority Critical patent/JP4382154B2/en
Publication of WO2009098865A1 publication Critical patent/WO2009098865A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat spreader that is preferably used for removing heat from an element that generates a large amount of heat during operation, such as a power semiconductor element, and a manufacturing method thereof.
  • a power semiconductor element such as an insulated gate bipolar transistor used in an inverter circuit for performing power conversion from direct current to alternating current when driving an induction motor in an electric vehicle, a hybrid vehicle, a railway vehicle, and the like
  • Examples thereof include an image display element such as a plasma display panel, a microprocessor unit for a computer, or a laser diode.
  • the element is made of silicon (Si), gallium arsenide (GaAs),
  • Si silicon carbide
  • GaN gallium nitride
  • a flat plate heat spreader is generally used. That is, the element is mounted directly on one surface of the flat plate heat spreader or by soldering or the like via a ceramic substrate or the like.
  • the other surface of the heat spreader is screwed in a state where the other surface of the heat spreader is brought into contact with the surface of a cooler, a heat sink, or a heat transfer member to the cooler (hereinafter sometimes referred to as “cooling member”). And fix. Then, heat from the element can be removed by quickly conducting heat to the cooling member via the heat sink.
  • the heat spreader has been integrally formed of a metal such as aluminum or copper, or an alloy.
  • a metal such as aluminum or copper, or an alloy.
  • the thermal expansion coefficient is close to the elements made of various materials described above or the ceramic substrate made of aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), or the like.
  • AlN aluminum nitride
  • Al 2 O 3 aluminum oxide
  • Si 3 N 4 silicon nitride
  • the use of a heat spreader made of an aluminum-ceramic composite material having a thermal conductivity equivalent to that of a metal or alloy has been studied (see, for example, Patent Documents 1 to 3).
  • the composite materials are extremely hard and difficult to process, and are cut into a predetermined planar shape, or are provided with a blind hole or a counterbore for positioning at a predetermined position, or a screw hole for screwing.
  • an expensive carbide tool such as a diamond tool must be used.
  • the processing of the composite material has a problem that it takes time and labor compared to the processing of metal or alloy.
  • the composite material is brittle compared to metals and alloys, there is also a problem that it is easy to crack or start during processing.
  • the surface of the heat spreader is made of a nickel plating film having excellent wettability and affinity for the solder. It is preferable to coat.
  • the plating conditions differ greatly between the various materials constituting the composite material, for example, metals, alloys and ceramics, so that the surface of the heat spreader made of the composite material is directly stable and uniform. Another problem is that it is difficult to form a simple nickel plating film.
  • Patent Document 3 or Patent Documents 4 to 6 a coating layer made of the same or different metal or alloy as that forming the composite material is laminated on the front and back surfaces of the thin plate-like base material made of the composite material.
  • a heat spreader having a laminated structure has been proposed.
  • the surface or the back surface of the base material, which is the element mounting surface is covered with a smooth coating layer made of a single metal or alloy, so that it is stable and uniform on the coating layer.
  • a nickel plating film can be formed. Therefore, the element, the ceramic substrate, etc. can be satisfactorily soldered to the surface on which the nickel plating film is formed without generating voids or the like that hinder heat conduction. Further, the nickel plating film can be omitted by using a metal or an alloy constituting the coating layer having excellent wettability and affinity for solder.
  • the screw hole can be processed in a short time using a normal tool or the like, and can be prevented from being cracked or chipped in the base material made of the composite material.
  • the heat spreader having the structure is manufactured by the method described in Patent Document 7, for example. That is, the composite material is compression-molded or the like to produce a ceramic porous body (preform) as a base material. Also, a casting mold having a cavity having a predetermined three-dimensional shape of a heat spreader is prepared, and the previously produced porous body is set in the cavity. At this time, a space corresponding to the thickness of the frame body and the coating layer is provided between the porous body and the inner wall surface of the cavity. Next, in this state, a metal or alloy heated to a melting point or higher and melted is poured into the cavity. As a result, the poured metal or alloy is impregnated into the porous body to form a base material made of the composite material. At the same time, the space around the base material is filled with a metal or an alloy, and the frame body and the coating layer are formed integrally with the base material to manufacture the heat spreader.
  • An object of the present invention is to provide a novel heat spreader that can intuitively grasp the position of a base material from the appearance, and a manufacturing method for manufacturing the heat spreader in as few steps as possible while preventing the base material from being greatly displaced. Is to provide.
  • the present invention includes a flat base material, an annular frame made of a metal or an alloy, surrounding the outer periphery in the surface direction of the base material, and integrated with the base material, and a metal or alloy that is the same as or different from the frame body
  • a flat plate-like heat spreader including a thin plate-like coating layer coated on the surface and the back surface of the base material, wherein at least one of the surface and the back surface of the heat spreader composed of the coating layer and the frame body, It is a heat spreader characterized by having a groove along the outer edge of the internal substrate in the surface direction of the front surface or the back surface.
  • the position of the base material is determined from the appearance by the groove along the outer edge of the internal base material, which is provided on at least one of the front surface and the back surface of the heat spreader composed of the coating layer and the frame body. While intuitively grasping visually, it is possible to perform processing for forming a screw hole or the like, or to solder an element, a ceramic substrate, or the like. Therefore, it is not necessary to design the frame and the base material in consideration of the positional deviation of the base material, and the size of the equipment including the heat spreader is reduced and the size is reduced by minimizing the size of the frame body and the base material. It can contribute to space.
  • the base material it is preferable to remove heat from the element as quickly as possible while preventing various problems based on the difference in thermal expansion coefficient with the various elements and ceramic substrates described above. Any of various materials having a thermal expansion coefficient of 15 ⁇ 10 ⁇ 6 / K or less and a thermal conductivity of 150 W / m ⁇ K or more can be used.
  • the substrate for example, (1) Aluminum-ceramic composite material, (2) Copper-ceramic composite material, (3) silicon-ceramic composite material, (4) Copper-tungsten composite material, (5) Copper-molybdenum composite material, (6) Tungsten, (7) molybdenum, (8) Aluminum-silicon composite material, and (9) There may be mentioned at least one selected from the group consisting of copper-diamond composite materials.
  • the metal or alloy for forming the frame and the coating layer various metals having excellent thermal conductivity equivalent to or higher than that of the base material in addition to excellent workability when processing to form screw holes and the like Any alloy can be used. Among them, a metal having a Vickers hardness Hv of 200 or less at a test force of 49.03 N (test load of 5 kgf), particularly aluminum, an aluminum alloy, copper, or a copper alloy is preferable.
  • the frame and the covering layer may be formed of the same metal or alloy, or may be formed of different metals or alloys.
  • the distance between the surface of the heat spreader on the side where the element or ceramic substrate is soldered and the surface in contact with the cooling member on the opposite side, that is, the total thickness of the heat spreader is 1 mm or more.
  • the thickness of the heat spreader is preferably 10 mm or less even within the above range. Thereby, it can contribute to size reduction, space saving, and weight reduction of the apparatus containing the said heat spreader.
  • the groove may be continuous or may be formed intermittently as long as the position of the base material embedded therein can be intuitively grasped from the appearance.
  • the groove has a width of 0.02 mm or more and a depth of 0.01 mm or more.
  • the width of the groove is preferably 0.5 mm or less even within the above range. Thereby, the precision of positioning of a base material can be improved.
  • the depth is preferably 0.2 mm or less even within the above range. Thereby, it can prevent that the heat conduction of the surface direction of a heat spreader is inhibited.
  • the present invention is a manufacturing method for manufacturing the heat spreader of the present invention, wherein the substrate is made of an aluminum-ceramic composite material or an aluminum-silicon composite material, and the frame and the coating layer are made of aluminum or an aluminum alloy,
  • the bottom surface of the press die including a lower punch having a bottom surface having a planar shape that matches the planar shape of the heat spreader and a die having an inner peripheral surface that surrounds the bottom surface and that has a shape that matches the shape of the side surface of the heat spreader.
  • the annular frame body has a predetermined clearance at the fitting portion between the frame body and is fitted to the frame body to be one of the front surface or the back surface of the base material
  • Setting a thin plate to be a coating layer for coating the frame, or setting a molded body having a shape obtained by integrating the frame and the thin plate A step of setting an annular jig having the same planar shape as the frame on the frame or molded body, and a region surrounded by the thin plate and the frame and jig, or the molded body and the jig
  • a mixture of aluminum or aluminum alloy powder and ceramic powder or a mixture of aluminum or aluminum alloy powder and silicon powder in the compression molded body is sintered. While forming a base material, the frame body and thin plate which consist of aluminum or aluminum alloy can be integrated with the said base material, and a frame body and a coating layer can be formed.
  • both of them can be determined based on the clearance set in the fitting portion between the frame and the thin plate.
  • the groove can be accurately formed on the boundary line, that is, along the outer edge of the substrate. Therefore, the heat spreader having the groove can be efficiently manufactured with as few steps as possible.
  • the mixture which is filled and compression-molded later, is sintered at a temperature below the melting point in a ring of a frame having a predetermined size and shape set in advance in a press die. Therefore, there is no possibility that the base material is largely displaced in the heat spreader.
  • the compression-molded body is fired after being taken out of the press mold. According to such a configuration, the compression molded body taken out from the press die can be fired as it is or in a state where it is fitted in a simple (small heat capacity) mold frame for preventing the deformation of the mold, and thus it is necessary for firing. Energy and time can be saved.
  • the thickness of the thin plate that is the basis of the coating layer is preferably 0.05 mm or more. If the thickness is less than 0.05 mm, there is a possibility that a groove having a size that can be sufficiently visually recognized cannot be formed based on the mechanism described above.
  • the thickness of the thin plate is preferably 1 mm or less even within the above range. As a result, the thickness of the coating layer to be formed is made as small as possible, and excessive stress is applied to the element based on the difference in thermal expansion coefficient between the aluminum or aluminum alloy forming the coating layer and the element or ceramic substrate. It is possible to prevent the element itself from being damaged or the solder joint from being destroyed.
  • the clearance between the fitting portion of the frame and the thin plate is preferably 0.05 mm or more. If the clearance is less than 0.05 mm, there is a possibility that a groove having a size that can be sufficiently visually recognized cannot be formed based on the mechanism described above.
  • the clearance is preferably 0.5 mm or less even within the above range. Thereby, it can prevent that the groove
  • the pressure during compression molding it is preferable to set the pressure during compression molding to 98 MPa or more and 686 MPa or less.
  • the pressure is less than 98 MPa, the strength of the compression-molded body is insufficient, and there is a possibility that the mold may be easily lost when it is taken out from the press die for firing or in the firing step after removal.
  • the pressure exceeds 686 MPa, there is a problem that the effect of increasing the strength of the compression molded body cannot be obtained any more, and a device such as a press die becomes too large for performing the high pressure compression molding.
  • the present invention is a manufacturing method for manufacturing the heat spreader of the present invention in which the frame body and the coating layer are made of copper or a copper alloy, and a step of producing a base material and a step of copper plating the surface of the base material
  • a lower punch having a bottom surface having a planar shape that matches the planar shape of the heat spreader, and a die having an inner peripheral surface surrounding the bottom surface and having a shape that matches the shape of the side surface of the heat spreader.
  • the base material, an annular frame surrounding the base material, and a fitting portion between the frame body have a predetermined clearance, and the frame body is overlaid on the front surface and the back surface of the base material.
  • a frame and a thin plate made of copper or a copper alloy can be integrated with a base material in a step of heat treatment while compression molding, thereby forming a frame and a coating layer. Further, at that time, by setting the temperature of the heat treatment to a temperature not higher than the melting point at which copper or a copper alloy melts and does not flow greatly, both of the heat treatment are performed based on the clearance set in the fitting portion between the frame and the thin plate.
  • the groove can be accurately formed on the boundary line, that is, along the outer edge of the substrate. Therefore, the heat spreader having the groove can be efficiently manufactured with as few steps as possible.
  • the thickness of the thin plate that is the basis of the coating layer is 0.05 mm or more. If the thickness is less than 0.05 mm, there is a possibility that a groove having a size that can be sufficiently visually recognized cannot be formed based on the mechanism described above.
  • the thickness of the thin plate is preferably 1 mm or less even within the above range.
  • the thickness of the coating layer to be formed is made as small as possible, and excessive stress is applied to the element based on the difference in thermal expansion coefficient between the copper or copper alloy forming the coating layer and the element or the ceramic substrate. It is possible to prevent the element itself from being damaged or the solder joint from being destroyed.
  • the clearance between the fitting portion of the frame and the thin plate is preferably 0.05 mm or more. If the clearance is less than 0.05 mm, there is a possibility that a groove having a size that can be sufficiently visually recognized cannot be formed based on the mechanism described above.
  • the clearance is preferably 0.5 mm or less even within the above range. Thereby, it can prevent that the groove
  • a novel heat spreader that can intuitively grasp the position of the base material from the appearance, and a manufacturing method for manufacturing the heat spreader in as few steps as possible while preventing the base material from being greatly displaced. Can be provided.
  • FIG. 1 is a partially cutaway plan view showing an example of an embodiment of a heat spreader of the present invention.
  • FIG. 2 is a partially cutaway side view of the heat spreader of the example of FIG.
  • FIG. 3 is an enlarged cross-sectional view of a part of FIG.
  • FIG. 4 is a perspective view of the heat spreader in the example of FIG.
  • FIG. 5 is a cross-sectional view showing one step of an example of the method for manufacturing the heat spreader of the present invention.
  • FIG. 6 is a cross-sectional view showing the next step of the above example.
  • FIG. 7 is a cross-sectional view showing the next step of the above example.
  • FIG. 8 is a cross-sectional view showing the next step of the above example.
  • FIG. 1 is a partially cutaway plan view showing an example of an embodiment of a heat spreader of the present invention.
  • FIG. 2 is a partially cutaway side view of the heat spreader of the example of FIG.
  • FIG. 3 is an
  • FIG. 9 is a cross-sectional view showing the next step of the above example.
  • FIG. 10 is a cross-sectional view showing one step of another example of the method for manufacturing a heat spreader of the present invention.
  • FIG. 11 is a cross-sectional view showing a process of still another example of the method for manufacturing a heat spreader of the present invention.
  • FIG. 12 is a cross-sectional view showing the next step of the above example.
  • FIG. 13 is a cross-sectional view showing the next step of the above example.
  • 14 is an optical micrograph showing a cut surface of the heat spreader manufactured in Example 1.
  • FIG. FIG. 15 is an optical micrograph showing a cut surface of the heat spreader manufactured in Example 3.
  • FIG. 1 is a partially cutaway plan view showing an example of an embodiment of a heat spreader of the present invention.
  • FIG. 2 is a partially cutaway side view of the heat spreader of the example of FIG.
  • FIG. 3 is an enlarged cross-sectional view of a part of FIG.
  • FIG. 4 is a perspective view of the heat spreader in the example of FIG.
  • a heat spreader 1 of this example includes a base plate 2 that is a rectangular flat plate as a whole, and an annular frame that surrounds the outer periphery in the surface direction of the base 2 and is integrated with the base 2. 3 and thin plate-like coating layers 6 and 7 coated on the front surface 4 and the back surface 5 of the substrate 2.
  • the base material 2 is provided with semicircular cutouts 9 for avoiding the screw holes 8 at three locations on the long side.
  • the frame body 3 includes semicircular bulging portions 10 having the screw holes 8 at three locations on the long side corresponding to the notches 9.
  • the frame 3 is integrated with the base material 2 in a state where the notch 9 is filled with the bulging portion 10.
  • the frame 3 is made of a metal or an alloy, and the coating layers 6 and 7 are made of the same or different metal or alloy as the frame 3.
  • the front surface 11 and the back surface 12 of the heat spreader 1 constituted by the frame 3 and the coating layers 6 and 7 have grooves 13 and 14 along the outer edge 2a of the inner base material 2 in the surface direction of the both surfaces 11 and 12, respectively. is doing.
  • “grooves 13, 14” along the outer edge 2 a of the inner substrate 2 means that the outer edge 2 a and the deepest point 13 a in the cross-section in the width direction of the grooves 13, 14.
  • 14a is a state in which the deviation G 1 in the surface direction is within ⁇ 1 mm, particularly within ⁇ 0.5 mm.
  • the heat spreader 1 of this example since the both surfaces 11 and 12 have the grooves 13 and 14, respectively, the screw hole 8 Etc., and the element, the ceramic substrate and the like can be joined by soldering. Therefore, it is not necessary to design the frame body 3 and the base material 2 in consideration of the positional deviation of the base material 2, and the heat spreader 1 is included with the size of the frame body 3 and the base material 2 being kept to the minimum necessary. It is possible to contribute to downsizing and space saving of equipment.
  • the grooves 13 and 14 may be continuous or may be formed intermittently as long as the position of the substrate 2 can be intuitively grasped from the appearance. However, in order to make the grooves 13 and 14 visible as easily as possible, it is preferable that the grooves 13 and 14 have a width of 0.02 mm or more and a depth of 0.01 mm or more.
  • the widths of the grooves 13 and 14 are preferably 0.5 mm or less, particularly 0.1 mm or more and 0.2 mm or less in order to increase the positioning accuracy of the substrate 2, and the depth is the surface of the heat spreader 1. In order to prevent the heat conduction in the direction from being hindered, it is preferably 0.2 mm or less, particularly preferably 0.1 mm or less.
  • the thermal expansion coefficient of the substrate 2 is preferably 15 ⁇ 10 ⁇ 6 / K or less.
  • the difference in thermal expansion coefficient between the heat spreader 1 and a Si-based, GaAs-based, InP-based, SiC-based, GaN-based element, or a ceramic substrate such as AlN, Al 2 O 3 , Si 3 N 4, etc. Can be reduced. Therefore, when the heat generation due to the operation of the element and the cooling after the stop are repeated, excessive stress is applied to the element based on the difference in the thermal expansion coefficient, and the element itself is damaged, or the solder joint is destroyed. Can be suppressed.
  • the thermal expansion coefficient of the base material 2 is preferably 2 ⁇ 10 ⁇ 6 / K or more even within the above range.
  • the thermal expansion coefficient of the base material 2 made of the composite material can be adjusted by increasing or decreasing the ceramic content ratio.
  • the content of ceramic must be excessively increased, and the content of aluminum or the like as a binder is relatively decreased, This is because it becomes difficult to form the base material 2 having the composite structure substantially.
  • the lower limit of the thermal expansion coefficient is set according to the circumstances specific to each material.
  • the thermal expansion coefficient of the base material 2 can be arbitrarily set within the above range depending on the thermal expansion coefficient of the element combined with the heat spreader 1, the ceramic substrate, and the cooling member.
  • a Si-based or SiC-based device having a thermal expansion coefficient of 3 ⁇ 10 ⁇ 6 / K is used as the device, and a thermal expansion coefficient of 17 ⁇ 10 ⁇ 6 / K or more is used as the cooling member, and 24 ⁇ 10 ⁇ 6 / K.
  • the thermal expansion coefficient of the substrate 2 is set to, for example, 6.5 ⁇ 10 ⁇ 6 / K or more and 15 ⁇ 10 ⁇ 6 / K or less. If it does so, all the difference of the thermal expansion coefficient between the said each part can be made small, and it can suppress that the various problems demonstrated previously generate
  • the heat spreader 1 is usually fixed to the cooling member by screwing or the like as described above. Therefore, some stress relaxation mechanism (such as making a screw hole a long hole) is provided between the heat spreader 1 and the cooling member to relieve the stress based on the difference in thermal expansion coefficient. May be adjusted so as to coincide with each other as much as possible so that the difference in coefficient of thermal expansion between the element and the ceramic substrate solder-bonded to the heat spreader 1 is as small as possible.
  • the thermal expansion coefficient of the substrate 2 can be set to about 3 ⁇ 10 ⁇ 6 / K, which is the same as the device.
  • the thermal conductivity of the substrate 2 is preferably 150 W / m ⁇ K or more.
  • the base material 2 that satisfies the ranges of the thermal expansion coefficient and the thermal conductivity, for example, (1) Aluminum-ceramic composite material, (2) Copper-ceramic composite material, (3) silicon-ceramic composite material, (4) Copper-tungsten composite material, (5) Copper-molybdenum composite material, (6) Tungsten, (7) molybdenum, (8) Aluminum-silicon composite material, and (9) There may be mentioned at least one selected from the group consisting of copper-diamond composite materials.
  • the base material 2 made of the aluminum-ceramic composite material (1) includes, for example, those formed by any of the following forming methods.
  • (1-1) A mixture of aluminum or aluminum alloy powder and ceramic powder is compression-molded into the shape of the substrate 2 and then fired at a temperature not higher than the melting point of aluminum or aluminum alloy.
  • the base material 2 obtained in the above (1-1) is compression-molded again while being heated to a temperature equal to or lower than the melting point of aluminum or aluminum alloy, thereby densifying the composite structure.
  • a porous body (preform) made of ceramic formed in the shape of the substrate 2 is impregnated with molten aluminum or an aluminum alloy in, for example, a vacuum furnace.
  • the base material 2 formed in the heat spreader 1 corresponds to the one formed by the methods (1-1) and (1-2). .
  • the powder of aluminum or aluminum alloy used in the method (1-1) or (1-2) for example, pure aluminum powder produced by an atomizing method or the like, or silicon (Si) at a ratio of 12% by mass or less.
  • examples thereof include aluminum-silicon alloy powder.
  • pure aluminum-based spreading materials such as alloy numbers A1050, A1070, and A1100 defined in Japanese Industrial Standard JIS H4000: 2006 “Aluminum and Aluminum Alloy Plates and Strips”, and aluminum-magnesium alloys such as A2014, A3004, and A5005 It is also possible to use a material such as a powder of an aluminum alloy for casting such as AC3A or AC4A.
  • the aluminum or aluminum alloy powder preferably has an average particle size of 30 ⁇ m or more and 60 ⁇ m or less. Thereby, aluminum or an aluminum alloy and ceramic can be distributed as finely and uniformly as possible in the base material 2, and the base material 2 can be formed without any bias in the distribution of both.
  • the ceramic powder include powder made of ceramic such as silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and aluminum oxide (Al 2 O 3 ).
  • the ceramic powder combined with the aluminum or aluminum alloy powder having the particle size range preferably has an average particle size of 30 ⁇ m or more and 60 ⁇ m or less. In particular, it is more preferable that the average particle diameter is equal to the aluminum or aluminum alloy powder to be combined. Thereby, aluminum or an aluminum alloy and ceramic can be distributed as finely and uniformly as possible in the base material 2, and the base material 2 can be formed without any bias in the distribution of both.
  • the mixing ratio of the aluminum or aluminum alloy powder and the ceramic powder can be arbitrarily set.
  • the thermal expansion coefficient of the substrate 2 made of an aluminum-ceramic composite material can be adjusted by increasing or decreasing the ceramic content ratio. Therefore, what is necessary is just to adjust the mixing
  • the ceramic porous body used in the forming method of (1-3) is formed by, for example, forming a mixture obtained by mixing the ceramic powder with a binder such as a resin into the shape of the base material 2 and then firing to remove the binder.
  • the ceramic powder can be formed by sintering.
  • the base material 2 made of the copper-ceramic composite material (2) is the same as the aluminum-ceramic composite material (1) except that copper or a copper alloy is used instead of aluminum or an aluminum alloy. What was formed by the formation method etc. are mentioned. (2-1) A mixture of copper or copper alloy powder and ceramic powder is compression-molded into the shape of the substrate 2 and then fired at a temperature below the melting point of copper or copper alloy.
  • the base material 2 obtained in (2-1) is compression-molded again while being heated to a temperature equal to or lower than the melting point of copper or a copper alloy, thereby densifying the composite structure.
  • the porous body made of ceramic formed in the shape of the substrate 2 is impregnated with molten copper or a copper alloy, for example, in a vacuum furnace.
  • the powder of copper or copper alloy used in the forming method of (2-1) and (2-2) for example, pure copper powder produced by an atomizing method or the like, Japanese Industrial Standard JIS H3100: 2006 “copper and copper Examples thereof include powders such as alloy numbers C1020 “oxygen-free copper” and C1100 “tough pitch copper” defined in “Alloy plates and strips”.
  • the ceramic porous body used in the forming method of (2-3) is formed by mixing a ceramic powder with a binder such as a resin into a shape of the base material 2 and then firing the binder as described above.
  • the ceramic powder can be formed by, for example, sintering the ceramic powder.
  • the base material 2 made of the silicon-ceramic composite material of (3) those formed in the same manner as the aluminum-ceramic composite material of (1) above, except that silicon is used instead of aluminum or aluminum alloy, etc. It is done.
  • the substrate 2 made of the copper-tungsten composite material (4) include those formed by the following forming method.
  • (4-1) A mixture of copper or copper alloy powder and tungsten powder is compression-molded into the shape of the substrate 2 and then fired at a temperature equal to or higher than the melting point of copper or copper alloy.
  • (4-2) The porous body made of tungsten formed in the shape of the substrate 2 is impregnated with molten copper or a copper alloy in a vacuum furnace, for example.
  • the tungsten porous body used in the forming method of (4-2) is a ceramic in which, for example, a mixture in which tungsten powder is mixed with a binder such as a resin is formed into the shape of the base material 2 and then fired to remove the binder. It can be formed by sintering powder.
  • the method of forming (4-2) is detailed in, for example, Japanese Patent Application Laid-Open No. 59-21032.
  • Examples of the substrate 2 made of the copper-molybdenum composite material (5) include those formed in the same manner as the copper-tungsten composite material (4) except that molybdenum is used instead of tungsten.
  • the formation method for forming the copper-molybdenum composite material in the same manner as the formation method of (4-2) is described in detail in JP-A-59-21032.
  • Examples of the base material 2 made of tungsten of (6) include those in which the tungsten is formed into the shape of the base material 2 by an arbitrary forming method.
  • Examples of the base material 2 made of molybdenum of (7) include those obtained by forming the molybdenum into the shape of the base material 2 by an arbitrary forming method.
  • Examples of the base material 2 made of the aluminum-silicon composite material of (8) include those formed in the same manner as the aluminum-ceramic composite material of (1) except that silicon powder is used instead of ceramic powder. .
  • the base material 2 formed in the heat spreader 1 is the same as the method (1-1) (1-2) using the silicon powder. It corresponds to what was formed.
  • examples of the base material 2 made of the copper-diamond composite material (9) include those formed by the forming method described in JP-A No. 2004-175626.
  • the metal or alloy forming the frame 3 and the coating layers 6 and 7 is excellent in workability when processing the screw holes 8 and the like, and has various heat conductivities that are equal to or higher than that of the substrate 2. Any of these metals or alloys can be used. Among them, a metal having a Vickers hardness Hv of 200 or less at a test force of 49.03 N (test load of 5 kgf), particularly aluminum, an aluminum alloy, copper, a copper alloy, or the like can be given.
  • the frame 3 and the coating layers 6 and 7 may be formed of the same metal or alloy, or may be formed of different metals or alloys.
  • the aluminum or aluminum alloy is preferably alloy numbers A1050, A2014, A3004, A5005, etc. defined in the above JIS H4000: 2006.
  • the frame 3 made of aluminum or an aluminum alloy is formed into a predetermined three-dimensional shape having the bulging portion 10 shown in FIGS. 1 to 4 or the bulging portion 10 of the manufactured heat spreader 1.
  • the processability for forming the screw hole 8 is excellent.
  • the aluminum or aluminum alloy may be a pure aluminum-based wrought material such as alloy numbers A1050, A1070, or A1100, or a casting material such as AC3A or AC4A. Alloys are preferred. These aluminum or aluminum alloys are excellent in workability and the like for finishing the thickness of the thin plate on which the coating layers 6 and 7 are based as uniform as possible.
  • the copper or copper alloy is alloy number C1020 “oxygen-free copper” defined in the above-mentioned JIS H3100: 2006. C1100 “tough pitch copper” or the like is preferable.
  • These copper or copper alloys have the workability for forming the frame 3 in a predetermined three-dimensional shape, as described above, and the workability for forming the screw holes 8 in the bulging portion 10 of the manufactured heat spreader 1. Alternatively, it is excellent in workability and the like for finishing the thickness of the thin plate as the basis of the coating layers 6 and 7 as uniform as possible.
  • the substrate 2 is made of the aluminum-ceramic composite material (1) or the aluminum-silicon composite material (8), and the frame 3 and the covering layers 6 and 7 are both aluminum or aluminum. What consists of an alloy can be manufactured with the manufacturing method of this invention demonstrated below. 5 to 9 are cross-sectional views showing respective steps of an example of the manufacturing method.
  • a lower punch 16 having a bottom surface 15 having a planar shape that matches the planar shape of the back surface 12 of the heat spreader 1 to be manufactured, and the bottom surface 15 are formed.
  • a press die 20 is prepared that includes a die 19 having an inner peripheral surface 18 that is formed to coincide with the shape of the side surface 17 of the heat spreader 1 that is enclosed.
  • the lower punch 16 and the die 19 are formed separately. However, for simplification, both are formed integrally, or the lower opening of the die 19 is replaced with an anvil instead of the lower punch 16. You can close it with
  • the annular frame body 3 is fitted into the ring of the frame body 3 and the back surface 5 of the substrate 2.
  • an annular jig 23 having the same planar shape as the frame 3 is set on the previously set frame 3, and the thin plate 22 and the frame 3 are cured.
  • a region 25 surrounded by the tool 23 is filled with a mixture 25 of aluminum or aluminum alloy powder and ceramic powder or silicon powder, which is the basis of the substrate 2.
  • a thin plate 26 to be a coating layer 6 that covers the surface 4 of the substrate 2 is overlaid on the mixture 25.
  • the filling amount of the mixture 25 depends on the density and particle size of the ceramic powder and silicon powder constituting the mixture 25, the particle size of the powder of aluminum or aluminum alloy, the blending ratio of the two components, the density of the base material 2 to be formed, etc. It can be set as desired.
  • an upper punch 28 in which the planar shape of the abutting surface 27 coincides with the planar shape of the thin plate 26 is abutted on the thin plate 26 stacked on the mixture 25.
  • the upper punch 28 is pushed in the direction of the lower punch 16 and compression molded in the thickness direction to obtain a compression molded body 29, and then the compression molded body 29 is fired at a temperature not higher than the melting point of aluminum or aluminum alloy.
  • the base material 2 is formed by sintering the mixture 25 in the compression molded body 29.
  • the frame 3 is integrated with the base material 2
  • the thin plates 22 and 26 are integrated with the base material 2 to form the covering layers 6 and 7, whereby the heat spreader 1 shown in FIGS. 1 to 4 is manufactured.
  • the compression-molded body 29 may be fired by heating means (not shown) together with the press die 20 while maintaining the compression state of FIG. 9 by a so-called hot press molding method.
  • the press die 20 is large as a whole because an excessive pressure of about 98 MPa or more is applied during compression molding, and the heat capacity is necessarily large. Therefore, when the hot press molding method is adopted, the compression molded body 29 must be continuously heated together with the press die 20 having a large heat capacity for the time required for firing (usually 0.5 hours or more). The energy and time required to manufacture one heat spreader 1 increases.
  • the compression molded body 29 compression-molded at room temperature is not shown, but is taken out from the press mold 20 as it is, or a simple (small heat capacity) mold frame for preventing the collapse of the mold. It is preferable to fire it by fitting it into the plate. Thereby, the energy and time required for firing can be reduced, and the productivity of the heat spreader 1 can be improved.
  • the firing temperature may be equal to or lower than the melting point of aluminum or aluminum alloy.
  • the aluminum or aluminum alloy powder forming the base material 2 and the ceramic powder or the silicon powder are bonded as well as possible, and the frame 3 and the thin plates 22 and 26 are integrated with the base material 2 as firmly as possible.
  • the firing temperature is preferably 550 ° C. or higher and 650 ° C. or lower.
  • the firing time is preferably 0.5 hours or more and 2 hours or less.
  • the pressure during compression molding is preferably 98 MPa or more and 686 MPa or less.
  • the pressure is less than 98 MPa, the strength of the compression-molded body 29 is insufficient, and there is a possibility that the mold is likely to lose its shape when it is taken out from the die 19 for firing or in the firing step after removal. Further, even if the pressure exceeds 686 MPa, the effect of further increasing the strength of the compression molded body 29 cannot be obtained, and the press die 20 for performing the high pressure compression molding becomes too large.
  • the frame 3 has a substantially rectangular shape in which the outer peripheral surface 17 is along the inner peripheral surface 18 of the die 19 and the inner peripheral surface is along the outer edge of the substrate 2.
  • a bulging portion 10 is projected from a plurality of locations on the inner periphery (in this example, 3 locations on the long side, 6 locations in total) inward in the surface direction.
  • the frame body 3 is integrally formed of the above-described aluminum or aluminum alloy.
  • the thin plates 22 and 26 a flat plate shape having a planar shape that matches the planar shape in the ring of the frame body 3 and fitted to the frame body 3 is used. That is, as the thin plates 22 and 26, the outer periphery is a substantially rectangular flat plate shape along the inner peripheral surface of the ring of the frame body 3, that is, the outer edge of the planar shape of the base material 2, and corresponds to the bulging portion 10 of the outer periphery. In this case, those provided with notches having a planar shape that matches the planar shape of the bulging portion 10 are used.
  • Each of the thin plates 22 and 26 is integrally formed of the aluminum or aluminum alloy described above.
  • a predetermined clearance is set in the fitting portion between the inner periphery of the frame 3 and the outer periphery of the thin plates 22 and 26.
  • the mixture 25 filled later is sintered at a temperature not higher than the melting point of the aluminum or aluminum alloy so that the base material 2 is Since it is formed, it is possible to prevent the base material 2 from being largely displaced in the heat spreader 1 to be manufactured.
  • the thickness of the thin plates 22 and 26 is preferably 0.05 mm or more. Thereby, the groove
  • the thickness of the thin plates 22 and 26 is preferably 1 mm or less even within the above range. Thereby, the thickness of the coating layers 6 and 7 to be formed is made as small as possible, and the element is formed on the basis of the difference in thermal expansion coefficient between the aluminum or aluminum alloy forming the coating layers 6 and 7 and the element or ceramic substrate. It is possible to prevent the element itself from being damaged due to excessive stress and the solder joint from being destroyed.
  • the clearance of the fitting portion between the inner periphery of the frame 3 and the outer periphery of the thin plates 22 and 26 is preferably 0.05 mm or more and 0.5 mm or less.
  • the clearance is 0.05 mm or less, there is a possibility that the grooves 13 and 14 having a size that can be sufficiently visually recognized cannot be formed on the front surface 11 and the back surface 12 of the heat spreader 1 by the mechanism.
  • the thickness exceeds 0.5 mm, the formed grooves 13 and 14 become too large, and the accuracy of alignment of the base material 2 by the grooves 13 and 14 may be lowered.
  • the area of the heat spreader 1 in the same direction is used to securely surround the outer periphery of the substrate 2 with the frame 3 over the entire circumference, or the area of the element mounting surface defined by the area of the substrate 2 in the surface direction.
  • the thickness of the frame 3 in the surface direction is 1 mm or more, 20 mm or less, particularly 5 mm. As mentioned above, it is preferable that it is 15 mm or less.
  • the heat spreader 1 formed through the above steps may be further pressurized under heating.
  • produce on the surface 11 and the back surface 12 can be corrected, and the base material 2 can be densified and thermal conductivity can be improved.
  • the heat spreader 1 after firing is set again in the region 21 of the press die 20 shown in FIG. 5, and this time the jig 23 is not set, and the planar shape of the contact surface is on the heat spreader 1.
  • An upper punch having a shape matching the planar shape of the surface 11 of the heat spreader 1 is brought into contact.
  • the upper punch When the upper punch is pushed in the direction of the lower punch 16 while being heated to a predetermined temperature and pressed in the thickness direction, the deformation of the heat spreader 1 and the unevenness of the front surface 11 and the back surface 12 are corrected, and the base material 2 is densely formed. To improve the thermal conductivity.
  • the heating temperature (mold temperature) is used in order to correct the deformation and unevenness as well as possible and improve the thermal conductivity while maintaining the grooves 13 and 14 in a state that is easy to visually recognize.
  • the pressure of the pressurization is 245 MPa or more and 490 MPa or less
  • the pressurization time is 0.1 seconds or more and 5 seconds or less.
  • a process such as hot forging may be employed instead of the pressurizing process. Absent.
  • FIG. 10 is a cross-sectional view showing one process of another example of the production method of the present invention.
  • the region 21 of the press die 20 is made of aluminum or an aluminum alloy instead of the frame 3 and the thin plate 22, and has a shape in which the frame 3 and the thin plate 22 are integrated.
  • the point which sets the molded object 30 to have differs from the previous example. Subsequent steps are performed in the same manner as in the previous example.
  • the portion corresponding to the frame body 3 in the molded body 30 and the thin plate 26 constituting the coating layer 6 on the surface 4 side of the base material 2 fitted in the ring of the portion are fitted.
  • a groove 13 is formed on the surface 11 of the heat spreader 1 by the above mechanism based on the clearance set in the portion.
  • the base 2 is made of any of the materials (1) to (9) and the frame 3 and the covering layers 6 and 7 are both made of copper or a copper alloy. It can manufacture with the manufacturing method of this invention demonstrated to. 11 to 13 are cross-sectional views showing the steps of an example of the manufacturing method.
  • the lower punch 16 having a bottom surface 15 having a planar shape that matches the planar shape of the back surface 12 of the heat spreader 1 to be manufactured
  • the lower punch 16 and the die 19 are formed separately. However, for simplification, both are formed integrally, or the lower opening of the die 19 is replaced with an anvil instead of the lower punch 16. You can close it with Moreover, the positional relationship of each part which comprises the press die 20 may be upside down from the figure.
  • a base material 2 formed in a predetermined three-dimensional shape in advance in a region 21 surrounded by the bottom surface 15 and the inner peripheral surface 18 of the press die 20, and the base material 2.
  • An annular frame 3 that surrounds the frame 3 and a fitting portion between the frame 3 and a predetermined clearance, and is fitted onto the frame 3 in a state of being overlapped with the front surface 4 and the back surface 5 of the substrate 2.
  • the two thin plates 22 and 26 to be the layers 6 and 7 are set.
  • the base material 2 may be made of any one of the materials (1) to (9) and formed in advance into a predetermined shape by any of the manufacturing methods described above.
  • the base material 2 covers the entire surface with a copper plating film in advance. This prevents materials other than copper from being exposed on the surface, and when the substrate 2 is heat-treated at a temperature equal to or lower than the melting point of copper or copper alloy while being pressed in the press die 20, the substrate 2 is made of copper or copper. It can be satisfactorily integrated with the frame 3 made of an alloy and the thin plates 22 and 26.
  • the base material 2, the frame body 3, and the thin plates 22 and 26 may be set in the region 21 in the state illustrated in the figure outside the region 21, or may be assembled in the state illustrated in the region 21. Good.
  • the upper punch 32 in which the planar shape of the contact surface 31 is the same as the planar shape of the surface 11 of the heat spreader 1.
  • the upper punch 32 is pushed in the direction of the lower punch 16 and pressed in the thickness direction, and heat-treated at a temperature below the melting point of copper or copper alloy.
  • the frame 3 is integrated with the base material 2
  • the thin plates 22 and 26 are integrated with the base material 2 to form the covering layers 6 and 7, whereby the heat spreader 1 shown in FIGS. 1 to 4 is manufactured.
  • the temperature of heat processing should just be below the melting point of copper or a copper alloy.
  • the heat treatment temperature is preferably 300 ° C. or more and 600 ° C. or less.
  • the heat treatment time is preferably 0.5 hours or more and 2 hours or less.
  • the pressure during compression molding is preferably 49 MPa or more and 196 MPa or less. If the pressure is less than 49 MPa, the heat spreader 1 in which the frame 3 and the thin plates 22 and 26 are firmly integrated with the base material 2 may not be manufactured.
  • the frame 3 has a substantially rectangular shape in which the outer peripheral surface 17 is along the inner peripheral surface 18 of the die 19 and the inner peripheral surface is along the outer edge of the substrate 2.
  • a bulging portion 10 is projected from a plurality of locations on the inner periphery (in this example, 3 locations on the long side, 6 locations in total) inward in the surface direction.
  • the frame 3 is integrally formed as a whole by the copper or copper alloy described above.
  • the thin plates 22 and 26 a flat plate shape having a planar shape that matches the planar shape in the ring of the frame body 3 and fitted to the frame body 3 is used. That is, as the thin plates 22 and 26, the outer periphery is a substantially rectangular flat plate shape along the inner peripheral surface of the ring of the frame body 3, that is, the outer edge of the planar shape of the base material 2, and corresponds to the bulging portion 10 of the outer periphery. In this case, those provided with notches having a planar shape that matches the planar shape of the bulging portion 10 are used.
  • Each of the thin plates 22 and 26 is integrally formed of copper or a copper alloy described above.
  • a predetermined clearance is set in the fitting portion between the inner periphery of the frame 3 and the outer periphery of the thin plates 22 and 26.
  • the thickness of the thin plates 22 and 26 is preferably 0.05 mm or more. Thereby, the groove
  • the thickness of the thin plates 22 and 26 is preferably 1 mm or less even within the above range. Thereby, the thickness of the coating layers 6 and 7 to be formed is made as small as possible, and the element is formed on the basis of the difference in thermal expansion coefficient between the copper or copper alloy forming the coating layers 6 and 7 and the element or the ceramic substrate. It is possible to prevent the element itself from being damaged due to excessive stress and the solder joint from being destroyed.
  • the clearance of the fitting portion between the inner periphery of the frame 3 and the outer periphery of the thin plates 22 and 26 is preferably 0.05 mm or more and 0.5 mm or less.
  • the clearance is 0.05 mm or less, there is a possibility that the grooves 13 and 14 having a size that can be sufficiently visually recognized cannot be formed on the front surface 11 and the back surface 12 of the heat spreader 1 by the mechanism.
  • the thickness exceeds 0.5 mm, the formed grooves 13 and 14 become too large, and the accuracy of alignment of the base material 2 by the grooves 13 and 14 may be lowered.
  • the area of the heat spreader 1 in the same direction is used to securely surround the outer periphery of the substrate 2 with the frame 3 over the entire circumference, or the area of the element mounting surface defined by the area of the substrate 2 in the surface direction.
  • the thickness of the frame 3 in the surface direction is 1 mm or more, 20 mm or less, particularly 5 mm. As mentioned above, it is preferable that it is 15 mm or less.
  • a molded body having a shape obtained by integrating the frame 3 and one thin plate is used, and the molded body, the base material 2 and the other thin plate are set in the region 21 and compression molded. May be.
  • the front surface 11 or the back surface 12 of the heat spreader 1 by the above mechanism is formed in one of them.
  • the heat spreader 1 in which the substrate 2 is made of the aluminum-ceramic composite material (1) and the frame 3 and the coating layers 6 and 7 are made of aluminum or an aluminum alloy is manufactured as described above with reference to FIGS. It can be manufactured not only by the method but also by the manufacturing method shown in FIGS.
  • the base material 2 previously formed into a predetermined three-dimensional shape by any one of the methods (1-1) to (1-3) is attached to the frame 3 and the thin plates 22, 26. At the same time, it is set in the region 21 of the press die 20.
  • the upper punch 32 is brought into contact with the frame 3 and the thin plate 26 set in the region 21, and the upper punch 32 is pushed in the direction of the lower punch 16 and pressed in the thickness direction. It heat-processes below the melting point of aluminum or aluminum alloy, Preferably it is 550 degreeC or more and 650 degrees C or less.
  • the frame 3 is integrated with the base material 2, and the thin plates 22 and 26 are integrated with the base material 2 to form the covering layers 6 and 7, whereby the heat spreader 1 shown in FIGS. 1 to 4 is manufactured.
  • the frame 3 and the thin plates 22 and 26 out of the front surface 11 and the back surface 12 of the heat spreader 1 by the mechanism described above.
  • the grooves 13 and 14 are accurately formed on the boundary line between the two, that is, at a position along the outer edge of the substrate 2.
  • the heat spreader 1 made of a combination of other materials other than the above can also be manufactured by an arbitrary manufacturing method according to the characteristics of each material.
  • the heat spreader 1 in which the base material 2 is made of the aluminum-ceramic composite material (1), the coating layers 6 and 7 are made of aluminum or an aluminum alloy, and the frame 3 is made of copper or a copper alloy is, for example, the base material 2 and a thin plate
  • the combination with the frame 3 made of copper or copper alloy is set in the region 21 of the press die 20 and compression molded. At the same time, it is manufactured by heat treatment below the melting point of copper or copper alloy, preferably at 300 ° C. or more and 600 ° C. or less.
  • the laminate of the base material 2 and the thin plates 22 and 26 is formed by compressing the mixture 25 and the thin plates 22 and 26, which are the basis of the base material 2, in a predetermined press die, and then aluminum or It can be formed by firing below the melting point of the aluminum alloy, preferably 550 ° C. or higher and 650 ° C. or lower. Further, the base material 2 formed by the methods (1-1) to (1-3) and the thin plates 22 and 26 may be laminated and fired at the above temperature to form a laminate.
  • the heat spreader 1 in the example shown in the figure has a flat plate shape, and has grooves 13 and 14 serving as marks for soldering the elements and the ceramic substrate on both the front surface 11 and the back surface 12.
  • the groove 13 can be formed only on the front surface 11 and the groove 14 on the back surface 12 can be omitted.
  • the coating layer 7 constituting the back surface 12 without the grooves 14 is integrally formed with a large number of fins or pins protruding from the back surface 12 in the thickness direction, and the heat spreader 1 of the present invention is used as a part of the heat sink. Is also possible.
  • various design changes can be made without departing from the scope of the present invention.
  • the heat spreader 1 having a substantially rectangular flat plate shape shown in FIGS. 1 to 4 and having a width of 180 mm, a length of 90 mm, and a thickness of 3.0 mm is manufactured by the manufacturing method of FIGS.
  • a mold 20 or the like was prepared.
  • a mixture 25 was prepared by blending 65 parts by mass of silicon carbide powder (average particle size 50 ⁇ m) as a ceramic powder and 35 parts by mass of aluminum powder (average particle size 50 ⁇ m).
  • the thickness is 3.0 mm which matches the thickness of the heat spreader 1
  • the outer periphery is a rectangular shape of 180 mm wide ⁇ 90 mm long which matches the outer periphery of the planar shape of the heat spreader 1
  • the inner periphery is 160 mm wide along the outer edge of the planar shape of the base material 2
  • the bulging part 10 for forming the screw hole 8 is formed in a rectangular shape with a length of 70 mm, and protrudes inward in the surface direction from each of three locations on the long side of the rectangular shape in the inner circumference.
  • a rectangular annular frame 3 was integrally formed of aluminum.
  • Thin plates 22 and 26 on which the coating layers 6 and 7 are based A thin plate provided with a notch having a planar shape that is a substantially rectangular flat plate shape along the inner edge of the frame 3 and that coincides with the planar shape of the bulging portion 10 from the outer periphery toward the inner side in the surface direction. 22 and 26 were integrally formed of aluminum. The thickness of the thin plates 22 and 26 was set to 0.3 mm, and the clearance with the frame 3 was set to 0.15 mm.
  • the die 19 having 18 was formed separately from each other by stainless steel.
  • annular jig 23 having the same planar shape as the frame 3 was formed of stainless steel.
  • the press die 20 is fitted into the ring frame 3 and the ring of the frame body 3 in a region 21 surrounded by the bottom surface 15 and the inner peripheral surface 18 to cover the back surface 5 of the substrate 2.
  • the frame 3, and the jig 23 in a state where the thin plate 22 to be the covering layer 7 to be set is set and the annular jig 23 is set on the frame 3.
  • a thin plate 26 was stacked on the mixture 25.
  • the heat spreader 1 is set again in the region 21 of the press die 20 that has been heated to 400 ° C. in advance, and this time, the jig 23 is not set, and the planar shape of the contact surface on the heat spreader 1 is the heat spreader 1.
  • An upper punch having a shape coinciding with the planar shape of the surface 11 was brought into contact.
  • the upper punch is pushed in the direction of the lower punch 16 and pressure is applied under the conditions of a pressure of 294 MPa and a pressurization time of 2 seconds to correct the deformation of the heat spreader 1 and the unevenness of the front surface 11 and the back surface 12 and the substrate 2 Density was increased to improve thermal conductivity.
  • the deviation G 1 in the surface direction between the outer edge 2a of the substrate 2 and the deepest point 13a in the cross section in the width direction of the groove 13 was measured and found to be 0.23 mm. Further, from the result of confirming the position of the base material 2 by ultrasonic inspection, it was confirmed that the grooves 13 and 14 were formed along the outer edge of the base material 2 inside.
  • the coefficient of thermal expansion of the region surrounded by the grooves 13 in the surface 11 of the heat spreader 1 was measured using a differential thermal dilatometer to be 8.5 ⁇ 10 ⁇ 6 / K. Further, when the thermal conductivity between the region surrounded by the groove 13 in the front surface 11 of the heat spreader 1 and the region surrounded by the groove 14 in the back surface 12 was measured by the laser flash method, it was 185 W / m ⁇ K. there were. (Processing test) When the screw hole 8 is formed on the bulging portion 10 of the heat spreader 1 by using a normal cutting tool, the predetermined screw hole can be obtained in a short time without touching the base material 2 and damaging the cutting tool. 8 could be formed.
  • Example 2 A molded body 30 having a shape in which the frame 3 and the thin plate 22 having the same shape and the same dimensions as those used in Example 1 were integrally formed of aluminum was prepared. Then, the heat spreader 1 is manufactured in the same manner as in Example 1 except that the molded body 30 is combined with the same thin plate 26, mixture 25, press die 20, jig 23, and upper punch 28 as used in Example 1. did.
  • the coefficient of thermal expansion of the region surrounded by the groove 13 in the surface 11 of the heat spreader 1 was measured using a differential thermal dilatometer to be 9.1 ⁇ 10 ⁇ 6 / K. Further, the thermal conductivity between the region surrounded by the grooves 13 in the front surface 11 of the heat spreader 1 and the central portion in the rear surface 12 was measured by a laser flash method to be 195 W / m ⁇ K. (Processing test) When the screw hole 8 is formed on the bulging portion 10 of the heat spreader 1 by using a normal cutting tool, the predetermined screw hole can be obtained in a short time without touching the base material 2 and damaging the cutting tool. 8 could be formed.
  • ⁇ Comparative example 1> A mixture obtained by mixing 70 parts by mass of silicon carbide powder having an average particle diameter of 50 ⁇ m and 30 parts by mass of silicon carbide powder having an average particle diameter of 10 ⁇ m with a binder such as a resin was molded and then fired to obtain a width of 159.7 mm ⁇ length of 69.
  • a notch 9 corresponding to a bulging portion 10 for forming a screw hole 8 is formed in a rectangular flat plate shape of 7 mm ⁇ thickness 2.4 mm and from the three long sides of the rectangle toward the inner side in the surface direction.
  • a porous body having was prepared.
  • the porous body is melted by being heated above the melting point in a state where the casting mold is set in a cavity having a width of 180 mm, a length of 90 mm, and a depth of 3.0 mm, which matches the three-dimensional shape of the frame.
  • the cast aluminum alloy was poured to impregnate the porous body, and a frame body and a coating layer were integrally formed around it, and then removed from the mold to obtain a heat spreader 1.
  • the front surface 11 and the back surface 12 thereof were both smooth and the grooves 13 and 14 were not observed, and the position of the internal substrate 2 could not be specified from the appearance.
  • the position of the base material 2 was confirmed by ultrasonic inspection, it was confirmed that the base material 2 was shifted from the regular position by about 3 mm in the surface direction of the heat spreader 1.
  • the porous body is set in the cavity in a state of being fitted in the ring of the same frame body 3 used in Example 1, and is heated and melted in the cavity to a melting point or higher.
  • the aluminum alloy was poured and impregnated into the porous body to form a coating layer and integrated with the frame, and then removed from the mold to obtain the heat spreader 1.
  • the base material 2 was no longer displaced, but the front surface 11 and the back surface 12 were both smooth and the grooves 13 and 14 were not observed.
  • the position of the internal substrate 2 could not be specified from the appearance.
  • Example 3 As the heat spreader 1 having a substantially rectangular flat plate shape having a width of 50 mm, a height of 50 mm, and a thickness of 1.5 mm, the following various materials, a press die 20 and the like were prepared.
  • Substrate 2 A substantially rectangular flat plate made of a copper-molybdenum composite material and having a width of 10 mm, a length of 10 mm, and a thickness of 0.5 mm was formed using molybdenum instead of tungsten in the method (4-2). The ratio of copper and molybdenum was 30/70 by mass ratio. Next, the entire surface of the flat plate was covered with a copper plating film to form a substrate 2.
  • the thickness is 1.4 mm
  • the outer periphery is a rectangular shape of 50 mm in width and 50 mm in length that matches the outer periphery of the planar shape of the heat spreader 1
  • the inner periphery is a rectangular shape of 10 mm in width and 10 mm in length along the outer edge of the planar shape of the substrate 2.
  • the annular frame 3 was integrally formed of copper.
  • the thin plates 22 and 26 on which the coating layers 6 and 7 are based
  • the thin plates 22 and 26 whose planar shape was a rectangular flat plate shape along the inner edge of the frame body were integrally formed of copper.
  • the thickness of the thin plates 22 and 26 was set to 0.5 mm, and the clearance with the frame 3 was set to 0.1 mm.
  • a die 19 having 18 is formed separately from stainless steel.
  • the upper punch 32 having a shape in which the planar shape of the contact surface 31 coincides with the planar shape of the surface 11 of the heat spreader 1 was formed of stainless steel.
  • Manufacture of heat spreader 1 In the area 21 surrounded by the bottom surface 15 and the inner peripheral surface 18 of the press die 20, the base material 2, the annular frame 3 surrounding the base material 2, the front surface 4 and the back surface of the base material 2. The two thin plates 22 and 26 fitted on the frame 3 in a state of being overlaid on 5 were set.
  • the upper punch 32 is pressed in the direction of the lower punch 16 at a pressure of 118 MPa while being compression-formed in the thickness direction.
  • the press mold 20 was heated to 400 ° C. in a vacuum furnace. Then, when the heating of the vacuum furnace was stopped and the temperature in the furnace decreased to room temperature, the press die 20 was taken out, and then the heat spreader 1 was taken out from the press die 20.
  • the deviation G 1 in the surface direction between the outer edge 2a of the substrate 2 and the deepest point 13a in the cross section in the width direction of the groove 13 was measured and found to be 0.21 mm. Further, from the result of confirming the position of the base material 2 by ultrasonic inspection, it was confirmed that the grooves 13 and 14 were formed along the outer edge of the base material 2 inside.
  • the coefficient of thermal expansion of the region surrounded by the grooves 13 in the surface 11 of the heat spreader 1 was measured using a differential thermal dilatometer to be 9.7 ⁇ 10 ⁇ 6 / K. Further, when the thermal conductivity between the region surrounded by the groove 13 in the front surface 11 of the heat spreader 1 and the region surrounded by the groove 14 in the back surface 12 was measured by the laser flash method, it was 236 W / m ⁇ K. there were.

Abstract

Provided are a heat spreader (1), which can grasp the position of a backing intuitively from the appearance thereof, and a manufacturing method which can manufacture the heat spreader at less steps while preventing the displacement of the backing. The heat spreader (1) is formed in a flat plate shape, in which a flat-shaped backing (2) is covered at its planar outer periphery with a frame (3) of a metal or an alloy and at its surface (4) and back (5) with coating layers (6 and 7) of a metal or an alloy, and in which at least one of a surface (11) and a back (12) has grooves (13 and 14) formed in the planar direction along the outer edge of the internal backing (2). The manufacturing method either fills a mixture (25) for the backing (2) in the region, which is enclosed by the frame (3) and by thin sheets (22 and 26) to be fitted in the ring of the frame (3) to form the coating layers (6 and 7), or fits the backing (2) in that region, and performs a compression-molding treatment. After this, the method performs a sintering treatment at the metal or alloy melting point or lower.

Description

ヒートスプレッダおよびその製造方法Heat spreader and manufacturing method thereof
 本発明は、特にパワー半導体素子等の、動作時に大きな発熱を伴う素子からの熱除去用として好適に使用されるヒートスプレッダと、その製造方法に関するものである。 The present invention relates to a heat spreader that is preferably used for removing heat from an element that generates a large amount of heat during operation, such as a power semiconductor element, and a manufacturing method thereof.
 動作時に大きな発熱を伴う素子においては、前記熱をできるだけ速やかに除去することが求められる。発生した熱を速やかに除去しないと素子自体が過熱して誤動作(熱暴走)したり、破損したりするおそれがあるためである。かかる素子としては、例えば電気自動車やハイブリッド自動車、鉄道車両等において誘導モータを駆動させる際に直流から交流への電力変換を行うためのインバータ回路に用いる絶縁ゲート型バイポーラトランジスタ等のパワー半導体素子や、プラズマディスプレイパネル等の画像表示素子、コンピュータ用のマイクロプロセッサユニット、あるいはレーザーダイオード等が挙げられる。 In an element that generates a large amount of heat during operation, it is required to remove the heat as quickly as possible. This is because if the generated heat is not removed promptly, the element itself may overheat, causing malfunction (thermal runaway) or damage. As such an element, for example, a power semiconductor element such as an insulated gate bipolar transistor used in an inverter circuit for performing power conversion from direct current to alternating current when driving an induction motor in an electric vehicle, a hybrid vehicle, a railway vehicle, and the like, Examples thereof include an image display element such as a plasma display panel, a microprocessor unit for a computer, or a laser diode.
 近年、前記各種装置類のより一層の高性能化や高出力化の進展に伴って、前記素子を、現在、一般的に用いられているケイ素(Si)系、ガリウム-砒素(GaAs)系、インジウム-燐(InP)系の素子から、炭化ケイ素(SiC)系、窒化ガリウム(GaN)系の素子へと移行することが検討されている。その場合、素子の動作可能温度を例えばSi系の素子等の120℃前後から、SiC系の素子等の200℃前後まで引き上げることが可能となり、過熱による誤動作や破損等をこれまでよりも起こりにくくできるものと考えられている。 In recent years, with the progress of higher performance and higher output of the various devices, the element is made of silicon (Si), gallium arsenide (GaAs), The transition from indium-phosphorus (InP) elements to silicon carbide (SiC) elements and gallium nitride (GaN) elements has been studied. In that case, it becomes possible to raise the operable temperature of the element from around 120 ° C., such as a Si element, to around 200 ° C., such as a SiC element, and it is less likely to cause malfunction or damage due to overheating. It is considered possible.
 しかし、これらの素子においてもできるだけ速やかに熱を除去する必要があることには変わりはない。素子からの熱を速やかに除去して誤動作や破損を防止するためには、例えば平板状のヒートスプレッダを用いるのが一般的である。すなわち前記素子を、前記平板状のヒートスプレッダの一方の面に直接に、あるいはセラミック基板等を介してはんだ接合等により搭載する。また前記ヒートスプレッダの他方の面を冷却器やヒートシンク、あるいは前記冷却器等への伝熱部材(以下これらを「冷却部材」と総称する場合がある)の表面と接触させた状態でネジ止め等して固定する。そうすると素子からの熱を、前記ヒートシンクを介して速やかに冷却部材に熱伝導させて除去できる。 However, it is still necessary to remove heat from these elements as quickly as possible. In order to quickly remove heat from the element and prevent malfunction and damage, for example, a flat plate heat spreader is generally used. That is, the element is mounted directly on one surface of the flat plate heat spreader or by soldering or the like via a ceramic substrate or the like. In addition, the other surface of the heat spreader is screwed in a state where the other surface of the heat spreader is brought into contact with the surface of a cooler, a heat sink, or a heat transfer member to the cooler (hereinafter sometimes referred to as “cooling member”). And fix. Then, heat from the element can be removed by quickly conducting heat to the cooling member via the heat sink.
 従来、前記ヒートスプレッダとしてはアルミニウムや銅等の金属、もしくは合金によって一体に形成したものが用いられてきた。しかし近時、先に説明した各種材料からなる素子や、あるいは窒化アルミニウム(AlN)、酸化アルミニウム(Al23)、窒化ケイ素(Si34)等からなるセラミック基板と熱膨張係数が近い上、金属や合金と同等程度の熱伝導率を有するアルミニウム-セラミック複合材料等からなるヒートスプレッダを用いることが検討されている(例えば特許文献1ないし3参照)。これは、素子やセラミック基板とヒートスプレッダとの熱膨張係数をできるだけ近づけることによって、素子の動作による発熱と停止後の冷却とを繰り返した際に、熱膨張係数の違いに基づいて素子に過剰な応力が加わって前記素子自体が破損したりはんだ接合が破壊されたりするのを抑制できると考えられるためである。 Conventionally, the heat spreader has been integrally formed of a metal such as aluminum or copper, or an alloy. However, recently, the thermal expansion coefficient is close to the elements made of various materials described above or the ceramic substrate made of aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), or the like. In addition, the use of a heat spreader made of an aluminum-ceramic composite material having a thermal conductivity equivalent to that of a metal or alloy has been studied (see, for example, Patent Documents 1 to 3). This is because the thermal expansion coefficient of the element or the ceramic substrate and the heat spreader is made as close as possible, so that excessive stress is applied to the element based on the difference in thermal expansion coefficient when heat generation due to element operation and cooling after stopping are repeated. This is because it is considered that the element itself can be prevented from being damaged or the solder joint can be destroyed.
 ところが前記複合材料の多くは非常に硬質の難加工材であって、所定の平面形状に切り出したり、所定の位置に位置決めのための止まり穴や座ぐり、あるいはネジ止めのためのネジ穴等を形成したりするために、高価なダイヤモンド工具等の超硬工具を用いなければならないという問題がある。また、複合材料の加工には金属や合金の加工に比べて手間と時間がかかるという問題もある。さらに、前記複合材料は金属や合金に比べて脆いため加工時に割れたりかけたりしやすいという問題もある。 However, many of the composite materials are extremely hard and difficult to process, and are cut into a predetermined planar shape, or are provided with a blind hole or a counterbore for positioning at a predetermined position, or a screw hole for screwing. In order to form them, there is a problem that an expensive carbide tool such as a diamond tool must be used. In addition, the processing of the composite material has a problem that it takes time and labor compared to the processing of metal or alloy. Furthermore, since the composite material is brittle compared to metals and alloys, there is also a problem that it is easy to crack or start during processing.
 また素子やセラミック基板等を、熱伝導の妨げになるボイド等を生じることなく良好にはんだ接合するためには、ヒートスプレッダの表面を、前記はんだに対する濡れ性、親和性に優れたニッケルめっき膜等で被覆するのが好ましい。しかし複合材料からなるヒートスプレッダの場合、前記複合材料を構成する各種の材料間、例えば金属や合金とセラミックとではめっきの条件が大きく異なるため、複合材料からなるヒートスプレッダの表面に直接に、安定で均一なニッケルめっき膜を形成するのは難しいという問題もある。 In addition, in order to solder the element and ceramic substrate, etc., without causing voids that hinder heat conduction, the surface of the heat spreader is made of a nickel plating film having excellent wettability and affinity for the solder. It is preferable to coat. However, in the case of a heat spreader made of a composite material, the plating conditions differ greatly between the various materials constituting the composite material, for example, metals, alloys and ceramics, so that the surface of the heat spreader made of the composite material is directly stable and uniform. Another problem is that it is difficult to form a simple nickel plating film.
 そこで前記特許文献3や、あるいは特許文献4ないし6において、複合材料からなる薄板状の基材の表面および裏面に、前記複合材料を形成するのと同じまたは異なる金属または合金からなる被覆層を積層した積層構造を有するヒートスプレッダが提案されている。
 前記積層構造を有するヒートスプレッダは、素子の搭載面である基材の表面または裏面が、単一の金属または合金からなる平滑な被覆層で覆われているため、前記被覆層上に安定で均一なニッケルめっき膜を形成できる。そのためニッケルめっき膜を形成した表面に、前記素子やセラミック基板等を、熱伝導の妨げになるボイド等を生じることなく良好にはんだ接合できる。また被覆層を構成する金属または合金としてはんだに対する濡れ性、親和性に優れたものを用いてニッケルめっき膜を省略することもできる。
Therefore, in Patent Document 3 or Patent Documents 4 to 6, a coating layer made of the same or different metal or alloy as that forming the composite material is laminated on the front and back surfaces of the thin plate-like base material made of the composite material. A heat spreader having a laminated structure has been proposed.
In the heat spreader having the laminated structure, the surface or the back surface of the base material, which is the element mounting surface, is covered with a smooth coating layer made of a single metal or alloy, so that it is stable and uniform on the coating layer. A nickel plating film can be formed. Therefore, the element, the ceramic substrate, etc. can be satisfactorily soldered to the surface on which the nickel plating film is formed without generating voids or the like that hinder heat conduction. Further, the nickel plating film can be omitted by using a metal or an alloy constituting the coating layer having excellent wettability and affinity for solder.
 しかし、前記被覆層で挟まれた基材を構成する複合材料が難加工材であることには変わりはない。そのため、依然としてネジ穴等を形成する加工に手間と時間とがかかる上、加工時に割れや欠け等が生じやすいという問題は解消されない。そこで、前記基材の面方向の外周を囲んで金属または合金からなる枠体を設け、ネジ穴等は前記枠体の部分に形成するようにしたヒートスプレッダが提案されている(特許文献7参照)。 However, the composite material constituting the base material sandwiched between the coating layers is still difficult to process. For this reason, it still takes time and labor to form screw holes and the like, and the problem that cracks and chips are likely to occur during processing cannot be solved. Therefore, a heat spreader has been proposed in which a frame body made of metal or alloy is provided surrounding the outer periphery in the surface direction of the base material, and screw holes are formed in the frame body portion (see Patent Document 7). .
 前記構成によれば、ネジ穴等は通常の工具等を使用してできるだけ少ない工数で、短時間で加工できる上、加工時に複合材料からなる基材に割れや欠けが発生するのを抑制できるという利点がある。
特開昭63-192801号公報 特開平9-157773号公報 特開2004-91862号公報 特開2002-235126号公報 特開2003-253371号公報 WO2006/077755A1 特開2003-204022号公報
According to the above-described configuration, the screw hole can be processed in a short time using a normal tool or the like, and can be prevented from being cracked or chipped in the base material made of the composite material. There are advantages.
JP-A-63-192801 JP-A-9-157773 JP 2004-91862 A JP 2002-235126 A JP 2003-253371 A WO2006 / 077755A1 JP 2003-204022 A
 前記構造を有するヒートスプレッダは、例えば特許文献7に記載の方法で製造される。
 すなわち複合材料を圧縮成形等して、基材のもとになるセラミック製の多孔質体(プリフォーム)を作製する。また、所定のヒートスプレッダの立体形状を有するキャビティを備えた注型用の金型を用意し、先に作製した多孔質体を前記キャビティ内にセットする。この際、多孔質体の周囲には、キャビティの内壁面との間に枠体および被覆層の厚み分の空間を設けておく。次いでこの状態で、融点以上に加熱して溶融させた金属または合金を前記キャビティ内に流し込む。そうすると、流し込んだ金属または合金が多孔質体に含浸されて複合材料からなる基材が形成される。それと共に、前記基材の周囲の空間に金属または合金が充填されて枠体および被覆層が基材と一体に形成されて、ヒートスプレッダが製造される。
The heat spreader having the structure is manufactured by the method described in Patent Document 7, for example.
That is, the composite material is compression-molded or the like to produce a ceramic porous body (preform) as a base material. Also, a casting mold having a cavity having a predetermined three-dimensional shape of a heat spreader is prepared, and the previously produced porous body is set in the cavity. At this time, a space corresponding to the thickness of the frame body and the coating layer is provided between the porous body and the inner wall surface of the cavity. Next, in this state, a metal or alloy heated to a melting point or higher and melted is poured into the cavity. As a result, the poured metal or alloy is impregnated into the porous body to form a base material made of the composite material. At the same time, the space around the base material is filled with a metal or an alloy, and the frame body and the coating layer are formed integrally with the base material to manufacture the heat spreader.
 ところが、前記多孔質体からなる基材をヒートスプレッダ中で正確に位置決めするのは難しい。キャビティ内に金属または合金を流し込む際に前記多孔質体がずれたりして、基材が、特にヒートスプレッダの面方向におよそ2mmないし3mm程度ずれるのはよくあることである。しかも製造されたヒートスプレッダにおいては、前記のように基材の全面が金属または合金からなる被覆層と枠体とで覆われており、外観から基材の位置を把握することができない。そのため、下記のような問題を生じるおそれがある。
(1)  枠体のうち加工を要する領域に位置ずれした基材がはみ出して加工の妨げとなる。
(2)  ヒートスプレッダの表面または裏面の、位置ずれして基材が存在しない領域(金属または合金のみからなる領域)に、素子やセラミック基板等がはみ出した状態ではんだ接合されてしまい、両者の熱膨張係数の違いに基づいて素子に過剰な応力が加わって前記素子自体が破損したりはんだ接合が破壊されたりする。
However, it is difficult to accurately position the substrate made of the porous body in the heat spreader. When the metal or alloy is poured into the cavity, the porous body is displaced, and the substrate is often displaced by about 2 mm to 3 mm, particularly in the surface direction of the heat spreader. Moreover, in the manufactured heat spreader, as described above, the entire surface of the base material is covered with the coating layer made of metal or alloy and the frame, and the position of the base material cannot be grasped from the appearance. As a result, the following problems may occur.
(1) The base material shifted in the region requiring processing out of the frame protrudes and hinders processing.
(2) Soldered with the element or ceramic substrate protruding to the area where the base material does not exist (area consisting only of metal or alloy) on the front or back surface of the heat spreader. Excessive stress is applied to the element based on the difference in expansion coefficient, and the element itself is damaged or the solder joint is destroyed.
 これらの問題が生じるのを防止するためには、前記位置ずれを考慮して枠体や基材を大きめに設計しなければならない。しかしその場合にはヒートスプレッダが大型化してしまうため、特に近年の、ヒートスプレッダを含む機器類の小型化、省スペース化の要求に十分に対応できないという問題がある。
 例えば超音波検査等によって基材の位置を特定する作業を製造されたヒートスプレッダの全数に対して行えば、基材の位置を正確に把握できる。しかし検査の工程が増える分だけ製造に手間がかかり、ヒートスプレッダの生産性が低下するという問題がある。
In order to prevent these problems from occurring, it is necessary to design the frame body and the base material in a larger size in consideration of the positional deviation. However, in that case, the heat spreader becomes large, and there is a problem that it cannot sufficiently meet the recent demands for downsizing and space saving of devices including the heat spreader.
For example, if the operation of specifying the position of the substrate by ultrasonic inspection or the like is performed on the total number of manufactured heat spreaders, the position of the substrate can be accurately grasped. However, there is a problem that the manufacturing process is time-consuming as the number of inspection processes increases, and the productivity of the heat spreader decreases.
 本発明の目的は、基材の位置を外観から直感的に把握できる新規なヒートスプレッダと、前記ヒートスプレッダを、基材が大きく位置ずれするのを防止しながらできるだけ少ない工程で製造するための製造方法とを提供することにある。 An object of the present invention is to provide a novel heat spreader that can intuitively grasp the position of a base material from the appearance, and a manufacturing method for manufacturing the heat spreader in as few steps as possible while preventing the base material from being greatly displaced. Is to provide.
 本発明は、平板状の基材と、金属または合金からなり基材の面方向の外周を囲んで前記基材と一体化された環状の枠体と、前記枠体と同じまたは異なる金属または合金からなり基材の表面および裏面に被覆された薄板状の被覆層とを含む平板状のヒートスプレッダであって、前記被覆層と枠体とで構成されるヒートスプレッダの表面および裏面のうち少なくとも一方は、前記表面または裏面の面方向において内部の基材の外縁に沿う溝を有することを特徴とするヒートスプレッダである。 The present invention includes a flat base material, an annular frame made of a metal or an alloy, surrounding the outer periphery in the surface direction of the base material, and integrated with the base material, and a metal or alloy that is the same as or different from the frame body A flat plate-like heat spreader including a thin plate-like coating layer coated on the surface and the back surface of the base material, wherein at least one of the surface and the back surface of the heat spreader composed of the coating layer and the frame body, It is a heat spreader characterized by having a groove along the outer edge of the internal substrate in the surface direction of the front surface or the back surface.
 本発明によれば、被覆層と枠体とで構成されるヒートスプレッダの表面および裏面のうちの少なくとも一方に設けられた、内部の基材の外縁に沿う溝によって、前記基材の位置を外観から目視によって直感的に把握しながら、ネジ穴等を形成する加工をしたり、素子やセラミック基板等をはんだ接合したりできる。そのため基材の位置ずれを考慮して枠体や基材を大きめに設計する必要がなくなり、前記枠体や基材の大きさを必要最小限にとどめてヒートスプレッダを含む機器類の小型化、省スペース化に寄与できる。 According to the present invention, the position of the base material is determined from the appearance by the groove along the outer edge of the internal base material, which is provided on at least one of the front surface and the back surface of the heat spreader composed of the coating layer and the frame body. While intuitively grasping visually, it is possible to perform processing for forming a screw hole or the like, or to solder an element, a ceramic substrate, or the like. Therefore, it is not necessary to design the frame and the base material in consideration of the positional deviation of the base material, and the size of the equipment including the heat spreader is reduced and the size is reduced by minimizing the size of the frame body and the base material. It can contribute to space.
 基材としては、先に説明した各種の素子やセラミック基板等との熱膨張係数の違いに基づく種々の問題が生じるのを防止しつつ、素子からの熱をできるだけ速やかに除去するために、好ましくは熱膨張係数が15×10-6/K以下で、かつ熱伝導率が150W/m・K以上である種々の材料からなるものがいずれも使用可能である。
 前記基材としては、例えば、
(1)  アルミニウム-セラミック複合材料、
(2)  銅-セラミック複合材料、
(3)  ケイ素-セラミック複合材料、
(4)  銅-タングステン複合材料、
(5)  銅-モリブデン複合材料、
(6)  タングステン、
(7)  モリブデン、
(8)  アルミニウム-ケイ素複合材料、および
(9)  銅-ダイヤモンド複合材料
からなる群より選ばれた少なくとも1種からなるものが挙げられる。
As the base material, it is preferable to remove heat from the element as quickly as possible while preventing various problems based on the difference in thermal expansion coefficient with the various elements and ceramic substrates described above. Any of various materials having a thermal expansion coefficient of 15 × 10 −6 / K or less and a thermal conductivity of 150 W / m · K or more can be used.
As the substrate, for example,
(1) Aluminum-ceramic composite material,
(2) Copper-ceramic composite material,
(3) silicon-ceramic composite material,
(4) Copper-tungsten composite material,
(5) Copper-molybdenum composite material,
(6) Tungsten,
(7) molybdenum,
(8) Aluminum-silicon composite material, and
(9) There may be mentioned at least one selected from the group consisting of copper-diamond composite materials.
 枠体および被覆層を形成する金属または合金としては、ネジ穴等を形成する加工をする際の加工性に優れる上、基材と同等またはそれ以上の良好な熱伝導率を有する種々の金属または合金がいずれも使用可能である。中でも試験力49.03N(試験荷重5kgf)でのビッカース硬さHvが200以下の金属、特にアルミニウム、アルミニウム合金、銅、または銅合金等が好ましい。枠体と被覆層とは同じ金属または合金によって形成してもよいし、互いに異なる金属または合金によって形成してもよい。 As the metal or alloy for forming the frame and the coating layer, various metals having excellent thermal conductivity equivalent to or higher than that of the base material in addition to excellent workability when processing to form screw holes and the like Any alloy can be used. Among them, a metal having a Vickers hardness Hv of 200 or less at a test force of 49.03 N (test load of 5 kgf), particularly aluminum, an aluminum alloy, copper, or a copper alloy is preferable. The frame and the covering layer may be formed of the same metal or alloy, or may be formed of different metals or alloys.
 ヒートスプレッダの、素子やセラミック基板等をはんだ接合する側の面と、その反対面である冷却部材と接する面との間の距離、すなわちヒートスプレッダの全体の厚みは1mm以上であるのが好ましい。これにより、前記ヒートスプレッダの厚み方向および厚み方向と交差する面方向に素子からの熱をできるだけ効率よく伝えることができる。
 またヒートスプレッダの厚みは、前記範囲内でも10mm以下であるのが好ましい。これにより、前記ヒートスプレッダを含む機器類の小型化、省スペース化、および軽量化に寄与できる。
It is preferable that the distance between the surface of the heat spreader on the side where the element or ceramic substrate is soldered and the surface in contact with the cooling member on the opposite side, that is, the total thickness of the heat spreader is 1 mm or more. Thereby, the heat from the element can be transferred as efficiently as possible in the thickness direction of the heat spreader and the surface direction intersecting the thickness direction.
The thickness of the heat spreader is preferably 10 mm or less even within the above range. Thereby, it can contribute to size reduction, space saving, and weight reduction of the apparatus containing the said heat spreader.
 溝は、内部に埋設された基材の位置を外観から直感的に把握できるのであれば、連続していてもよいし断続的に形成されていても構わない。ただし、溝を目視によって視認しやすくするためには、前記溝の幅は0.02mm以上、深さは0.01mm以上であるのが好ましい。なお溝の幅は、前記範囲内でも0.5mm以下であるのが好ましい。これにより、基材の位置決めの精度を高めることができる。また深さは、前記範囲内でも0.2mm以下であるのが好ましい。これにより、ヒートスプレッダの面方向の熱伝導が阻害されるのを防止できる。 The groove may be continuous or may be formed intermittently as long as the position of the base material embedded therein can be intuitively grasped from the appearance. However, in order to make the groove easy to visually recognize, it is preferable that the groove has a width of 0.02 mm or more and a depth of 0.01 mm or more. The width of the groove is preferably 0.5 mm or less even within the above range. Thereby, the precision of positioning of a base material can be improved. The depth is preferably 0.2 mm or less even within the above range. Thereby, it can prevent that the heat conduction of the surface direction of a heat spreader is inhibited.
 本発明は、基材がアルミニウム-セラミック複合材料、またはアルミニウム-ケイ素複合材料からなり、枠体および被覆層がアルミニウムまたはアルミニウム合金からなる前記本発明のヒートスプレッダを製造するための製造方法であって、ヒートスプレッダの平面形状と一致する平面形状とされた底面を有する下パンチと、前記底面を囲む、ヒートスプレッダの側面の形状と一致する形状とされた内周面を有するダイとを含むプレス型の前記底面と内周面とで囲まれた領域に、環状の枠体と、前記枠体との嵌め合い部に所定のクリアランスを有し、枠体に嵌め合わされて基材の表面または裏面のうちの一方を被覆する被覆層となる薄板とをセットするか、または前記枠体と薄板とを一体化した形状を有する成形体をセットする工程と、セットした前記枠体または成形体上に、枠体と同じ平面形状を有する環状の治具をセットする工程と、前記薄板と枠体と治具、または成形体と治具とで囲まれた領域に、アルミニウムまたはアルミニウム合金の粉末とセラミック粉末との混合物、またはアルミニウムまたはアルミニウム合金の粉末とケイ素粉末との混合物を充填する工程と、前記混合物上に、枠体との嵌め合い部に所定のクリアランスを有し、前記枠体に嵌め合わされて基材の表面または裏面のうち他方を被覆する被覆層となる薄板を重ねた状態で、ヒートスプレッダの厚み方向に圧縮成形して圧縮成形体を得る工程と、前記圧縮成形体をアルミニウムまたはアルミニウム合金の融点以下の温度で焼成する工程とを含むことを特徴とする。 The present invention is a manufacturing method for manufacturing the heat spreader of the present invention, wherein the substrate is made of an aluminum-ceramic composite material or an aluminum-silicon composite material, and the frame and the coating layer are made of aluminum or an aluminum alloy, The bottom surface of the press die including a lower punch having a bottom surface having a planar shape that matches the planar shape of the heat spreader and a die having an inner peripheral surface that surrounds the bottom surface and that has a shape that matches the shape of the side surface of the heat spreader. In the region surrounded by the inner peripheral surface, the annular frame body has a predetermined clearance at the fitting portion between the frame body and is fitted to the frame body to be one of the front surface or the back surface of the base material Setting a thin plate to be a coating layer for coating the frame, or setting a molded body having a shape obtained by integrating the frame and the thin plate; A step of setting an annular jig having the same planar shape as the frame on the frame or molded body, and a region surrounded by the thin plate and the frame and jig, or the molded body and the jig And a step of filling a mixture of aluminum or aluminum alloy powder and ceramic powder, or a mixture of aluminum or aluminum alloy powder and silicon powder, and a predetermined clearance at a fitting portion of the frame on the mixture. And compressing in the thickness direction of the heat spreader to obtain a compression-molded body in a state in which a thin plate that is fitted to the frame body and serves as a coating layer that covers the other of the front surface and the back surface of the base material is stacked. And a step of firing the compression-molded body at a temperature not higher than the melting point of aluminum or an aluminum alloy.
 前記本発明の製造方法によれば、焼成工程において、圧縮成形体のうちアルミニウムまたはアルミニウム合金の粉末とセラミック粉末との混合物、またはアルミニウムまたはアルミニウム合金の粉末とケイ素粉末との混合物を焼結させて基材を形成すると共に、アルミニウムまたはアルミニウム合金からなる枠体および薄板を前記基材と一体化させて枠体と被覆層とを形成できる。 According to the production method of the present invention, in the firing step, a mixture of aluminum or aluminum alloy powder and ceramic powder or a mixture of aluminum or aluminum alloy powder and silicon powder in the compression molded body is sintered. While forming a base material, the frame body and thin plate which consist of aluminum or aluminum alloy can be integrated with the said base material, and a frame body and a coating layer can be formed.
 またその際に、前記焼成の温度をアルミニウムまたはアルミニウム合金が溶融して大きく流動しない融点以下の温度に設定することで、前記枠体と薄板との嵌め合い部に設定されるクリアランスに基づいて両者の境界線上、すなわち基材の外縁に沿う位置に正確に溝を形成できる。そのため前記溝を有するヒートスプレッダを、できるだけ少ない工程で効率よく製造できる。 Further, at that time, by setting the firing temperature to a temperature not higher than the melting point at which the aluminum or aluminum alloy melts and does not flow significantly, both of them can be determined based on the clearance set in the fitting portion between the frame and the thin plate. The groove can be accurately formed on the boundary line, that is, along the outer edge of the substrate. Therefore, the heat spreader having the groove can be efficiently manufactured with as few steps as possible.
 しかも前記製造方法によれば、あらかじめプレス型内にセットされた所定の寸法および形状を有する枠体の環内で、後から充填され圧縮成形された前記混合物を融点以下の温度で焼結させることによって基材が形成されるため、前記基材がヒートスプレッダ内において大きく位置ずれするおそれもない。
 前記本発明の製造方法においては、圧縮成形体をプレス型から取り出した後に焼成するのが好ましい。かかる構成によれば、前記プレス型から取り出した圧縮成形体をそのままで、あるいは型崩れを防止するための簡単な(熱容量の小さい)型枠に嵌め込む等した状態で焼成できるため、焼成に要するエネルギーと時間とを削減できる。
Moreover, according to the manufacturing method, the mixture, which is filled and compression-molded later, is sintered at a temperature below the melting point in a ring of a frame having a predetermined size and shape set in advance in a press die. Therefore, there is no possibility that the base material is largely displaced in the heat spreader.
In the production method of the present invention, it is preferable that the compression-molded body is fired after being taken out of the press mold. According to such a configuration, the compression molded body taken out from the press die can be fired as it is or in a state where it is fitted in a simple (small heat capacity) mold frame for preventing the deformation of the mold, and thus it is necessary for firing. Energy and time can be saved.
 前記製造方法において、被覆層のもとになる薄板の厚みは0.05mm以上であるのが好ましい。厚みが0.05mm未満では、先に説明したメカニズムに基づいて、目視によって十分に視認できる大きさの溝を形成できないおそれがある。なお薄板の厚みは、前記範囲内でも1mm以下であるのが好ましい。これにより、形成される被覆層の厚みをできるだけ小さくして、前記被覆層を形成するアルミニウムまたはアルミニウム合金と、素子やセラミック基板との熱膨張係数の違いに基づいて素子に過剰な応力が加わって前記素子自体が破損したり、はんだ接合が破壊されたりするのを防止できる。 In the above manufacturing method, the thickness of the thin plate that is the basis of the coating layer is preferably 0.05 mm or more. If the thickness is less than 0.05 mm, there is a possibility that a groove having a size that can be sufficiently visually recognized cannot be formed based on the mechanism described above. The thickness of the thin plate is preferably 1 mm or less even within the above range. As a result, the thickness of the coating layer to be formed is made as small as possible, and excessive stress is applied to the element based on the difference in thermal expansion coefficient between the aluminum or aluminum alloy forming the coating layer and the element or ceramic substrate. It is possible to prevent the element itself from being damaged or the solder joint from being destroyed.
 また枠体と薄板の嵌め合い部のクリアランスは0.05mm以上であるのが好ましい。クリアランスが0.05mm未満では、先に説明したメカニズムに基づいて、目視によって十分に視認できる大きさの溝を形成できないおそれがある。なおクリアランスは、前記範囲内でも0.5mm以下であるのが好ましい。これにより、形成される溝が大きくなりすぎて前記溝による基材の位置合わせの精度が低下するのを防止できる。 Also, the clearance between the fitting portion of the frame and the thin plate is preferably 0.05 mm or more. If the clearance is less than 0.05 mm, there is a possibility that a groove having a size that can be sufficiently visually recognized cannot be formed based on the mechanism described above. The clearance is preferably 0.5 mm or less even within the above range. Thereby, it can prevent that the groove | channel formed is enlarged too much and the precision of the alignment of the base material by the said groove | channel falls.
 また前記製造方法においては、圧縮成形時の圧力を98MPa以上、686MPa以下に設定するのが好ましい。圧力が98MPa未満では圧縮成形体の強度が不足して、特に焼成のためにプレス型から取り出す際や、取り出した後の焼成工程等において型崩れしやすくなるおそれがある。また圧力が686MPaを超えてもそれ以上圧縮成形体の強度を高める効果は得られない上、前記高圧の圧縮成形を行うためにプレス型等の装置が大掛かりになりすぎるという問題もある。 In the production method, it is preferable to set the pressure during compression molding to 98 MPa or more and 686 MPa or less. When the pressure is less than 98 MPa, the strength of the compression-molded body is insufficient, and there is a possibility that the mold may be easily lost when it is taken out from the press die for firing or in the firing step after removal. Moreover, even if the pressure exceeds 686 MPa, there is a problem that the effect of increasing the strength of the compression molded body cannot be obtained any more, and a device such as a press die becomes too large for performing the high pressure compression molding.
 本発明は、枠体および被覆層が銅または銅合金からなる前記本発明のヒートスプレッダを製造するための製造方法であって、基材を作製する工程と、前記基材の表面を銅めっきする工程と、ヒートスプレッダの平面形状と一致する平面形状とされた底面を有する下パンチと、前記底面を囲む、ヒートスプレッダの側面の形状と一致する形状とされた内周面を有するダイとを含むプレス型の前記底面と内周面とで囲まれた領域に、
(a)  前記基材と、基材を囲む環状の枠体と、前記枠体との嵌め合い部に所定のクリアランスを有し、前記基材の表面および裏面に重ねられた状態で枠体に嵌め合わされて被覆層となる2枚の薄板とをセットするか、または
(b)  前記基材と、前記枠体と一方の薄板とを一体化した形状を有する成形体と、前記枠体との嵌め合い部に所定のクリアランスを有し、前記基材の表面または裏面に重ねられた状態で枠体に嵌め合わされて被覆層となる他方の薄板とをセットする工程と、
 前記各部をヒートスプレッダの厚み方向に圧縮成形しながら銅または銅合金の融点以下の温度で熱処理する工程とを含むことを特徴とする。
The present invention is a manufacturing method for manufacturing the heat spreader of the present invention in which the frame body and the coating layer are made of copper or a copper alloy, and a step of producing a base material and a step of copper plating the surface of the base material A lower punch having a bottom surface having a planar shape that matches the planar shape of the heat spreader, and a die having an inner peripheral surface surrounding the bottom surface and having a shape that matches the shape of the side surface of the heat spreader. In the region surrounded by the bottom surface and the inner peripheral surface,
(a) The base material, an annular frame surrounding the base material, and a fitting portion between the frame body have a predetermined clearance, and the frame body is overlaid on the front surface and the back surface of the base material. Set two thin plates that are fitted together to form a coating layer, or
(b) The base material, a molded body having a shape in which the frame body and one thin plate are integrated, and a fitting portion between the frame body and a predetermined clearance, and a front surface or a back surface of the base material A step of setting the other thin plate that is fitted to the frame body to be a covering layer in a state of being overlaid on,
And heat-treating each part at a temperature below the melting point of copper or copper alloy while compression-molding each part in the thickness direction of the heat spreader.
 前記本発明の製造方法によれば、圧縮成形しながら熱処理する工程において銅または銅合金からなる枠体および薄板を基材と一体化させて枠体と被覆層とを形成できる。またその際に、前記熱処理の温度を銅または銅合金が溶融して大きく流動しない融点以下の温度に設定することで、前記枠体と薄板との嵌め合い部に設定されるクリアランスに基づいて両者の境界線上、すなわち基材の外縁に沿う位置に正確に溝を形成できる。そのため前記溝を有するヒートスプレッダを、できるだけ少ない工程で効率よく製造できる。 According to the production method of the present invention, a frame and a thin plate made of copper or a copper alloy can be integrated with a base material in a step of heat treatment while compression molding, thereby forming a frame and a coating layer. Further, at that time, by setting the temperature of the heat treatment to a temperature not higher than the melting point at which copper or a copper alloy melts and does not flow greatly, both of the heat treatment are performed based on the clearance set in the fitting portion between the frame and the thin plate. The groove can be accurately formed on the boundary line, that is, along the outer edge of the substrate. Therefore, the heat spreader having the groove can be efficiently manufactured with as few steps as possible.
 しかも前記製造方法によれば、あらかじめプレス型内にセットされた所定の寸法および形状を有する枠体の環内に基材を嵌め合わせてヒートスプレッダが製造されるため、前記基材がヒートスプレッダ内において大きく位置ずれするおそれもない。
 前記本発明の製造方法においても、被覆層のもとになる薄板の厚みは0.05mm以上であるのが好ましい。厚みが0.05mm未満では、先に説明したメカニズムに基づいて、目視によって十分に視認できる大きさの溝を形成できないおそれがある。なお薄板の厚みは、前記範囲内でも1mm以下であるのが好ましい。これにより、形成される被覆層の厚みをできるだけ小さくして、前記被覆層を形成する銅または銅合金と、素子やセラミック基板との熱膨張係数の違いに基づいて素子に過剰な応力が加わって前記素子自体が破損したり、はんだ接合が破壊されたりするのを防止できる。
Moreover, according to the manufacturing method, since the heat spreader is manufactured by fitting the base material into the ring of the frame body having a predetermined size and shape set in the press die in advance, the base material is greatly increased in the heat spreader. There is no risk of displacement.
Also in the manufacturing method of the present invention, it is preferable that the thickness of the thin plate that is the basis of the coating layer is 0.05 mm or more. If the thickness is less than 0.05 mm, there is a possibility that a groove having a size that can be sufficiently visually recognized cannot be formed based on the mechanism described above. The thickness of the thin plate is preferably 1 mm or less even within the above range. Thereby, the thickness of the coating layer to be formed is made as small as possible, and excessive stress is applied to the element based on the difference in thermal expansion coefficient between the copper or copper alloy forming the coating layer and the element or the ceramic substrate. It is possible to prevent the element itself from being damaged or the solder joint from being destroyed.
 また枠体と薄板の嵌め合い部のクリアランスは0.05mm以上であるのが好ましい。クリアランスが0.05mm未満では、先に説明したメカニズムに基づいて、目視によって十分に視認できる大きさの溝を形成できないおそれがある。なおクリアランスは、前記範囲内でも0.5mm以下であるのが好ましい。これにより、形成される溝が大きくなりすぎて前記溝による基材の位置合わせの精度が低下するのを防止できる。 Also, the clearance between the fitting portion of the frame and the thin plate is preferably 0.05 mm or more. If the clearance is less than 0.05 mm, there is a possibility that a groove having a size that can be sufficiently visually recognized cannot be formed based on the mechanism described above. The clearance is preferably 0.5 mm or less even within the above range. Thereby, it can prevent that the groove | channel formed is enlarged too much and the precision of the alignment of the base material by the said groove | channel falls.
 本発明によれば、基材の位置を外観から直感的に把握できる新規なヒートスプレッダと、前記ヒートスプレッダを、基材が大きく位置ずれするのを防止しながらできるだけ少ない工程で製造するための製造方法とを提供することができる。 According to the present invention, a novel heat spreader that can intuitively grasp the position of the base material from the appearance, and a manufacturing method for manufacturing the heat spreader in as few steps as possible while preventing the base material from being greatly displaced. Can be provided.
図1は、本発明のヒートスプレッダの実施の形態の一例を示す一部切欠平面図である。FIG. 1 is a partially cutaway plan view showing an example of an embodiment of a heat spreader of the present invention. 図2は、図1の例のヒートスプレッダの一部切欠側面図である。FIG. 2 is a partially cutaway side view of the heat spreader of the example of FIG. 図3は、図2の一部を拡大した断面図である。FIG. 3 is an enlarged cross-sectional view of a part of FIG. 図4は、図1の例のヒートスプレッダの斜視図である。FIG. 4 is a perspective view of the heat spreader in the example of FIG. 図5は、本発明のヒートスプレッダの製造方法の一例の一工程を示す断面図である。FIG. 5 is a cross-sectional view showing one step of an example of the method for manufacturing the heat spreader of the present invention. 図6は、前記例の次の工程を示す断面図である。FIG. 6 is a cross-sectional view showing the next step of the above example. 図7は、前記例の次の工程を示す断面図である。FIG. 7 is a cross-sectional view showing the next step of the above example. 図8は、前記例の次の工程を示す断面図である。FIG. 8 is a cross-sectional view showing the next step of the above example. 図9は、前記例の次の工程を示す断面図である。FIG. 9 is a cross-sectional view showing the next step of the above example. 図10は、本発明のヒートスプレッダの製造方法の他の例の一工程を示す断面図である。FIG. 10 is a cross-sectional view showing one step of another example of the method for manufacturing a heat spreader of the present invention. 図11は、本発明のヒートスプレッダの製造方法のさらに他の例の一工程を示す断面図である。FIG. 11 is a cross-sectional view showing a process of still another example of the method for manufacturing a heat spreader of the present invention. 図12は、前記例の次の工程を示す断面図である。FIG. 12 is a cross-sectional view showing the next step of the above example. 図13は、前記例の次の工程を示す断面図である。FIG. 13 is a cross-sectional view showing the next step of the above example. 図14は、実施例1で製造したヒートスプレッダの切断面を示す光学顕微鏡写真である。14 is an optical micrograph showing a cut surface of the heat spreader manufactured in Example 1. FIG. 図15は、実施例3で製造したヒートスプレッダの切断面を示す光学顕微鏡写真である。FIG. 15 is an optical micrograph showing a cut surface of the heat spreader manufactured in Example 3.
符号の説明Explanation of symbols
1     ヒートスプレッダ
2     基材
2a   外縁
3     枠体
4     表面
5     裏面
6、7 被覆層
8     ネジ穴
9     切欠
10   膨出部
11   表面
12   裏面
13、14    溝
13a、14a       最深点
15   底面
16   下パンチ
17   側面(外周面)
18   内周面
19   ダイ
20   プレス型
21   領域
22、26    薄板
23   治具
24   領域
25   混合物
26   薄板
27   当接面
28   上パンチ
29   圧縮成形体
30   成形体
31   当接面
32   上パンチ
DESCRIPTION OF SYMBOLS 1 Heat spreader 2 Base material 2a Outer edge 3 Frame body 4 Front surface 5 Back surface 6, 7 Coating layer 8 Screw hole 9 Notch 10 Bulging part 11 Surface 12 Back surface 13, 14 Groove 13a, 14a Deepest point 15 Bottom surface 16 Lower punch 17 Side surface (outer periphery) surface)
18 Inner peripheral surface 19 Die 20 Press die 21 Region 22, 26 Thin plate 23 Jig 24 Region 25 Mixture 26 Thin plate 27 Contact surface 28 Upper punch 29 Compression molded body 30 Molded body 31 Contact surface 32 Upper punch
 〈ヒートスプレッダ〉
 図1は、本発明のヒートスプレッダの実施の形態の一例を示す一部切欠平面図である。図2は、図1の例のヒートスプレッダの一部切欠側面図である。図3は、図2の一部を拡大した断面図である。図4は、図1の例のヒートスプレッダの斜視図である。
 これらの図を参照して、この例のヒートスプレッダ1は、全体が矩形平板状の基材2と、前記基材2の面方向の外周を囲んで基材2と一体化された環状の枠体3と、前記基材2の表面4および裏面5に被覆された薄板状の被覆層6、7とを含んでいる。
<Heat spreader>
FIG. 1 is a partially cutaway plan view showing an example of an embodiment of a heat spreader of the present invention. FIG. 2 is a partially cutaway side view of the heat spreader of the example of FIG. FIG. 3 is an enlarged cross-sectional view of a part of FIG. FIG. 4 is a perspective view of the heat spreader in the example of FIG.
Referring to these drawings, a heat spreader 1 of this example includes a base plate 2 that is a rectangular flat plate as a whole, and an annular frame that surrounds the outer periphery in the surface direction of the base 2 and is integrated with the base 2. 3 and thin plate-like coating layers 6 and 7 coated on the front surface 4 and the back surface 5 of the substrate 2.
 基材2は、長辺側のそれぞれ3箇所にネジ穴8を避けるための半円状の切欠9を備えている。また枠体3は、前記切欠9に対応する長辺側のそれぞれ3箇所に前記ネジ穴8を有する半円状の膨出部10を備えている。枠体3は、切欠9を膨出部10によって埋めた状態で基材2と一体化されている。枠体3は金属または合金からなり、被覆層6、7は前記枠体3と同じまたは異なる金属または合金からなる。 The base material 2 is provided with semicircular cutouts 9 for avoiding the screw holes 8 at three locations on the long side. The frame body 3 includes semicircular bulging portions 10 having the screw holes 8 at three locations on the long side corresponding to the notches 9. The frame 3 is integrated with the base material 2 in a state where the notch 9 is filled with the bulging portion 10. The frame 3 is made of a metal or an alloy, and the coating layers 6 and 7 are made of the same or different metal or alloy as the frame 3.
 枠体3と被覆層6、7とで構成されるヒートスプレッダ1の表面11および裏面12は、それぞれ前記両面11、12の面方向において内部の基材2の外縁2aに沿う溝13、14を有している。
 図3を参照して、本発明において溝13、14が内部の基材2の外縁2aに「沿う」とは、前記外縁2aと、前記溝13、14の幅方向の断面中の最深点13a、14aとの間の面方向のずれG1が±1mm以内、特に±0.5mm以内である状態を指すこととする。
The front surface 11 and the back surface 12 of the heat spreader 1 constituted by the frame 3 and the coating layers 6 and 7 have grooves 13 and 14 along the outer edge 2a of the inner base material 2 in the surface direction of the both surfaces 11 and 12, respectively. is doing.
Referring to FIG. 3, in the present invention, “ grooves 13, 14” along the outer edge 2 a of the inner substrate 2 means that the outer edge 2 a and the deepest point 13 a in the cross-section in the width direction of the grooves 13, 14. , 14a is a state in which the deviation G 1 in the surface direction is within ± 1 mm, particularly within ± 0.5 mm.
 この例のヒートスプレッダ1によれば、前記両面11、12がぞれぞれ溝13、14を有することによって、内部の基材2の位置を外観から目視によって直感的に把握しながら、ネジ穴8等を形成する加工をしたり、素子やセラミック基板等をはんだ接合したりできる。したがって基材2の位置ずれを考慮して枠体3や基材2を大きめに設計する必要がなくなり、前記枠体3や基材2の大きさを必要最小限にとどめて、ヒートスプレッダ1を含む機器類の小型化、省スペース化に寄与することが可能となる。 According to the heat spreader 1 of this example, since the both surfaces 11 and 12 have the grooves 13 and 14, respectively, the screw hole 8 Etc., and the element, the ceramic substrate and the like can be joined by soldering. Therefore, it is not necessary to design the frame body 3 and the base material 2 in consideration of the positional deviation of the base material 2, and the heat spreader 1 is included with the size of the frame body 3 and the base material 2 being kept to the minimum necessary. It is possible to contribute to downsizing and space saving of equipment.
 溝13、14は、前記基材2の位置を外観から直感的に把握できるのであれば、連続していてもよいし断続的に形成されていても構わない。ただし溝13、14を目視によってできるだけ視認しやすくするためには、前記溝13、14の幅は0.02mm以上、深さは0.01mm以上であるのが好ましい。また溝13、14の幅は、基材2の位置決めの精度を高めるためには0.5mm以下、特に0.1mm以上、0.2mm以下であるのが好ましく、深さは、ヒートスプレッダ1の面方向の熱伝導が阻害されるのを防止するためには0.2mm以下、特に0.1mm以下であるのが好ましい。 The grooves 13 and 14 may be continuous or may be formed intermittently as long as the position of the substrate 2 can be intuitively grasped from the appearance. However, in order to make the grooves 13 and 14 visible as easily as possible, it is preferable that the grooves 13 and 14 have a width of 0.02 mm or more and a depth of 0.01 mm or more. The widths of the grooves 13 and 14 are preferably 0.5 mm or less, particularly 0.1 mm or more and 0.2 mm or less in order to increase the positioning accuracy of the substrate 2, and the depth is the surface of the heat spreader 1. In order to prevent the heat conduction in the direction from being hindered, it is preferably 0.2 mm or less, particularly preferably 0.1 mm or less.
 基材2の熱膨張係数は15×10-6/K以下であるのが好ましい。これにより、Si系、GaAs系、InP系、SiC系、GaN系等の素子や、あるいはAlN、Al23、Si34等のセラミック基板等と、ヒートスプレッダ1との熱膨張係数の差を小さくできる。そのため素子の動作による発熱と停止後の冷却とを繰り返した際に、前記熱膨張係数の違いに基づいて素子に過剰な応力が加わって前記素子自体が破損したり、はんだ接合が破壊されたりするのを抑制できる。 The thermal expansion coefficient of the substrate 2 is preferably 15 × 10 −6 / K or less. Thus, the difference in thermal expansion coefficient between the heat spreader 1 and a Si-based, GaAs-based, InP-based, SiC-based, GaN-based element, or a ceramic substrate such as AlN, Al 2 O 3 , Si 3 N 4, etc. Can be reduced. Therefore, when the heat generation due to the operation of the element and the cooling after the stop are repeated, excessive stress is applied to the element based on the difference in the thermal expansion coefficient, and the element itself is damaged, or the solder joint is destroyed. Can be suppressed.
 基材2の熱膨張係数は、例えばアルミニウム-セラミック複合材料、ケイ素-セラミック複合材料等からなる基材2の場合、前記範囲内でも2×10-6/K以上であるのが好ましい。前記複合材料からなる基材2の熱膨張係数は、セラミックの含有割合を増減させることで調整可能である。しかし熱膨張係数を2×10-6/K未満とするためにはセラミックの含有割合を過剰に多くしなければならず、相対的に結合材としてのアルミニウム等の含有割合が少なくなりすぎて、実質的に前記複合構造を有する基材2を形成するのが容易でなくなるためである。また基材2を形成できたとしても強度が不足して、十分に実用に供しえなくなるおそれがあるためである。他の材料からなる基材2についても、それぞれの材料に固有の事情に応じて熱膨張係数の下限が設定される。 In the case of the base material 2 made of, for example, an aluminum-ceramic composite material, a silicon-ceramic composite material or the like, the thermal expansion coefficient of the base material 2 is preferably 2 × 10 −6 / K or more even within the above range. The thermal expansion coefficient of the base material 2 made of the composite material can be adjusted by increasing or decreasing the ceramic content ratio. However, in order to make the thermal expansion coefficient less than 2 × 10 −6 / K, the content of ceramic must be excessively increased, and the content of aluminum or the like as a binder is relatively decreased, This is because it becomes difficult to form the base material 2 having the composite structure substantially. Moreover, even if the base material 2 can be formed, the strength is insufficient, and there is a possibility that the base material 2 may not be practically used. For the base material 2 made of other materials, the lower limit of the thermal expansion coefficient is set according to the circumstances specific to each material.
 また基材2の熱膨張係数は、ヒートスプレッダ1と組み合わせる素子、セラミック基板、および冷却部材等の熱膨張係数との兼ね合いによって、前記範囲内で任意に設定できる。例えば素子として、熱膨張係数が3×10-6/KであるSi系またはSiC系の素子を用いると共に、冷却部材として熱膨張係数が17×10-6/K以上、24×10-6/K以下程度のものを用いる場合は、基材2の熱膨張係数を例えば6.5×10-6/K以上、15×10-6/K以下に設定する。そうすると、前記各部間での熱膨張係数の差をいずれも小さくして、先に説明した種々の問題が発生するのを抑制できる。 Moreover, the thermal expansion coefficient of the base material 2 can be arbitrarily set within the above range depending on the thermal expansion coefficient of the element combined with the heat spreader 1, the ceramic substrate, and the cooling member. For example, a Si-based or SiC-based device having a thermal expansion coefficient of 3 × 10 −6 / K is used as the device, and a thermal expansion coefficient of 17 × 10 −6 / K or more is used as the cooling member, and 24 × 10 −6 / K. In the case where a material having a temperature of about K or less is used, the thermal expansion coefficient of the substrate 2 is set to, for example, 6.5 × 10 −6 / K or more and 15 × 10 −6 / K or less. If it does so, all the difference of the thermal expansion coefficient between the said each part can be made small, and it can suppress that the various problems demonstrated previously generate | occur | produce.
 またヒートスプレッダ1は通常、先に説明したようにネジ止め等によって冷却部材に固定される。そのため前記ヒートスプレッダ1と冷却部材との間には何らかの応力緩和機構(ネジ穴を長穴にする等)を設けて熱膨張係数の差に基づく応力を緩和することとし、基材2の熱膨張係数を、ヒートスプレッダ1にはんだ接合される素子やセラミック基板との熱膨張係数の差ができるだけ小さくなるように、できれば一致するように調整してもよい。例えば素子として前記Si系またはSiC系の素子を用いる場合に、基材2の熱膨張係数を、前記素子と同じ3×10-6/K前後に設定できる。 Further, the heat spreader 1 is usually fixed to the cooling member by screwing or the like as described above. Therefore, some stress relaxation mechanism (such as making a screw hole a long hole) is provided between the heat spreader 1 and the cooling member to relieve the stress based on the difference in thermal expansion coefficient. May be adjusted so as to coincide with each other as much as possible so that the difference in coefficient of thermal expansion between the element and the ceramic substrate solder-bonded to the heat spreader 1 is as small as possible. For example, when the Si-based or SiC-based device is used as the device, the thermal expansion coefficient of the substrate 2 can be set to about 3 × 10 −6 / K, which is the same as the device.
 基材2の熱伝導率は150W/m・K以上であるのが好ましい。これにより、素子において発生した熱をできるだけ速やかに冷却部材に伝導して除去できるため、素子自体が過熱して誤動作したり破損したりするのを確実に防止できる。
 前記熱膨張係数および熱伝導率の範囲を満足する基材2としては、例えば、
(1)  アルミニウム-セラミック複合材料、
(2)  銅-セラミック複合材料、
(3)  ケイ素-セラミック複合材料、
(4)  銅-タングステン複合材料、
(5)  銅-モリブデン複合材料、
(6)  タングステン、
(7)  モリブデン、
(8)  アルミニウム-ケイ素複合材料、および
(9)  銅-ダイヤモンド複合材料
からなる群より選ばれた少なくとも1種からなるものが挙げられる。
The thermal conductivity of the substrate 2 is preferably 150 W / m · K or more. As a result, the heat generated in the element can be conducted and removed to the cooling member as quickly as possible, so that it is possible to reliably prevent the element itself from overheating and malfunctioning or being damaged.
As the base material 2 that satisfies the ranges of the thermal expansion coefficient and the thermal conductivity, for example,
(1) Aluminum-ceramic composite material,
(2) Copper-ceramic composite material,
(3) silicon-ceramic composite material,
(4) Copper-tungsten composite material,
(5) Copper-molybdenum composite material,
(6) Tungsten,
(7) molybdenum,
(8) Aluminum-silicon composite material, and
(9) There may be mentioned at least one selected from the group consisting of copper-diamond composite materials.
 このうち(1)のアルミニウム-セラミック複合材料からなる基材2としては、例えば下記のいずれかの形成方法によって形成したもの等が挙げられる。
 (1-1)  アルミニウムまたはアルミニウム合金の粉末とセラミック粉末との混合物を基材2の形状に圧縮成形したのち、アルミニウムまたはアルミニウム合金の融点以下の温度で焼成する。
Among these, the base material 2 made of the aluminum-ceramic composite material (1) includes, for example, those formed by any of the following forming methods.
(1-1) A mixture of aluminum or aluminum alloy powder and ceramic powder is compression-molded into the shape of the substrate 2 and then fired at a temperature not higher than the melting point of aluminum or aluminum alloy.
 (1-2)  前記(1-1)で得た基材2を、再度アルミニウムまたはアルミニウム合金の融点以下の温度に加熱しながら圧縮成形して複合構造の緻密化を図る。
 (1-3)  基材2の形状に形成したセラミックからなる多孔質体(プリフォーム)中に、例えば真空炉中で、溶融させたアルミニウムまたはアルミニウム合金を含浸させる。
 なお、後述する本発明の製造方法によってヒートスプレッダ1を製造するのと同時に、前記ヒートスプレッダ1内に形成される基材2は(1-1)(1-2)の方法によって形成したものに相当する。
(1-2) The base material 2 obtained in the above (1-1) is compression-molded again while being heated to a temperature equal to or lower than the melting point of aluminum or aluminum alloy, thereby densifying the composite structure.
(1-3) A porous body (preform) made of ceramic formed in the shape of the substrate 2 is impregnated with molten aluminum or an aluminum alloy in, for example, a vacuum furnace.
In addition, simultaneously with manufacturing the heat spreader 1 by the manufacturing method of the present invention described later, the base material 2 formed in the heat spreader 1 corresponds to the one formed by the methods (1-1) and (1-2). .
 前記(1-1)(1-2)の方法において使用するアルミニウムまたはアルミニウム合金の粉末としては、例えばアトマイズ法等によって作製された純アルミニウム粉末や、ケイ素(Si)を12質量%以下の割合で含有するアルミニウム-ケイ素合金粉末等が挙げられる。また日本工業規格JIS H4000:2006「アルミニウム及びアルミニウム合金の板及び条」において規定された合金番号A1050、A1070、A1100等の純アルミニウム系の展延材、A2014、A3004、A5005等のアルミニウム-マグネシウム合金系材料、あるいはAC3A、AC4Aといった鋳造用アルミニウム系合金等の粉末等も使用可能である。 As the powder of aluminum or aluminum alloy used in the method (1-1) or (1-2), for example, pure aluminum powder produced by an atomizing method or the like, or silicon (Si) at a ratio of 12% by mass or less. Examples thereof include aluminum-silicon alloy powder. Also, pure aluminum-based spreading materials such as alloy numbers A1050, A1070, and A1100 defined in Japanese Industrial Standard JIS H4000: 2006 “Aluminum and Aluminum Alloy Plates and Strips”, and aluminum-magnesium alloys such as A2014, A3004, and A5005 It is also possible to use a material such as a powder of an aluminum alloy for casting such as AC3A or AC4A.
 前記アルミニウムまたはアルミニウム合金の粉末は、平均粒径が30μm以上、60μm以下であるのが好ましい。これにより、基材2中でアルミニウムまたはアルミニウム合金とセラミックとをできるだけ細かくかつ均等に分布させて、両者の分布に偏りがない基材2を形成できる。
 セラミック粉末としては、例えば炭化ケイ素(SiC)、窒化ケイ素(Si34)、酸化アルミニウム(Al23)等のセラミックからなる粉末が挙げられる。前記粒径範囲を有するアルミニウムまたはアルミニウム合金の粉末と組み合わせるセラミック粉末は、平均粒径が30μm以上、60μm以下であるのが好ましい。特に組み合わせるアルミニウムまたはアルミニウム合金の粉末と平均粒径が等しいのがさらに好ましい。これにより、基材2中でアルミニウムまたはアルミニウム合金とセラミックとをできるだけ細かくかつ均等に分布させて、両者の分布に偏りがない基材2を形成できる。
The aluminum or aluminum alloy powder preferably has an average particle size of 30 μm or more and 60 μm or less. Thereby, aluminum or an aluminum alloy and ceramic can be distributed as finely and uniformly as possible in the base material 2, and the base material 2 can be formed without any bias in the distribution of both.
Examples of the ceramic powder include powder made of ceramic such as silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and aluminum oxide (Al 2 O 3 ). The ceramic powder combined with the aluminum or aluminum alloy powder having the particle size range preferably has an average particle size of 30 μm or more and 60 μm or less. In particular, it is more preferable that the average particle diameter is equal to the aluminum or aluminum alloy powder to be combined. Thereby, aluminum or an aluminum alloy and ceramic can be distributed as finely and uniformly as possible in the base material 2, and the base material 2 can be formed without any bias in the distribution of both.
 前記アルミニウムまたはアルミニウム合金の粉末とセラミック粉末との配合割合は任意に設定できる。先に説明したようにアルミニウム-セラミック複合材料からなる基材2の熱膨張係数は、セラミックの含有割合を増減させることで調整可能である。そのため、前記基材2の熱膨張係数が15×10-6/K以下の任意の値となるように両粉末の配合割合を調整すればよい。また前記(1-3)の形成方法において使用するセラミックの多孔質体は、例えば前記セラミック粉末を樹脂等のバインダと混合した混合物を基材2の形状に成形したのち焼成して、バインダを除去すると共にセラミック粉末を焼結させる等して形成できる。 The mixing ratio of the aluminum or aluminum alloy powder and the ceramic powder can be arbitrarily set. As described above, the thermal expansion coefficient of the substrate 2 made of an aluminum-ceramic composite material can be adjusted by increasing or decreasing the ceramic content ratio. Therefore, what is necessary is just to adjust the mixing | blending ratio of both powder so that the thermal expansion coefficient of the said base material 2 may become arbitrary values of 15 * 10 < -6 > / K or less. Further, the ceramic porous body used in the forming method of (1-3) is formed by, for example, forming a mixture obtained by mixing the ceramic powder with a binder such as a resin into the shape of the base material 2 and then firing to remove the binder. In addition, the ceramic powder can be formed by sintering.
 (2)の銅-セラミック複合材料からなる基材2としては、アルミニウムまたはアルミニウム合金に代えて銅または銅合金を用いること以外は(1)のアルミニウム-セラミック複合材料と同様にして、例えば下記の形成方法によって形成したもの等が挙げられる。
 (2-1)  銅または銅合金の粉末とセラミック粉末との混合物を基材2の形状に圧縮成形したのち、銅または銅合金の融点以下の温度で焼成する。
The base material 2 made of the copper-ceramic composite material (2) is the same as the aluminum-ceramic composite material (1) except that copper or a copper alloy is used instead of aluminum or an aluminum alloy. What was formed by the formation method etc. are mentioned.
(2-1) A mixture of copper or copper alloy powder and ceramic powder is compression-molded into the shape of the substrate 2 and then fired at a temperature below the melting point of copper or copper alloy.
 (2-2)  前記(2-1)で得た基材2を、再度銅または銅合金の融点以下の温度に加熱しながら圧縮成形して複合構造の緻密化を図る。
 (2-3)  基材2の形状に形成したセラミックからなる多孔質体中に、例えば真空炉中で、溶融させた銅または銅合金を含浸させる。
 このうち(2-1)(2-2)の形成方法において使用する銅または銅合金の粉末としては、例えばアトマイズ法等によって作製された純銅粉末や、日本工業規格JIS H3100:2006「銅及び銅合金の板並びに条」において規定された合金番号C1020「無酸素銅」、C1100「タフピッチ銅」等の粉末が挙げられる。また(2-3)の形成方法において使用するセラミックの多孔質体は、先に説明したようにセラミック粉末を樹脂等のバインダと混合した混合物を基材2の形状に成形したのち焼成してバインダを除去すると共にセラミック粉末を焼結させる等して形成できる。
(2-2) The base material 2 obtained in (2-1) is compression-molded again while being heated to a temperature equal to or lower than the melting point of copper or a copper alloy, thereby densifying the composite structure.
(2-3) The porous body made of ceramic formed in the shape of the substrate 2 is impregnated with molten copper or a copper alloy, for example, in a vacuum furnace.
Among these, as the powder of copper or copper alloy used in the forming method of (2-1) and (2-2), for example, pure copper powder produced by an atomizing method or the like, Japanese Industrial Standard JIS H3100: 2006 “copper and copper Examples thereof include powders such as alloy numbers C1020 “oxygen-free copper” and C1100 “tough pitch copper” defined in “Alloy plates and strips”. Also, the ceramic porous body used in the forming method of (2-3) is formed by mixing a ceramic powder with a binder such as a resin into a shape of the base material 2 and then firing the binder as described above. The ceramic powder can be formed by, for example, sintering the ceramic powder.
 (3)のケイ素-セラミック複合材料からなる基材2としても、アルミニウムまたはアルミニウム合金に代えてケイ素を用いること以外は前記(1)のアルミニウム-セラミック複合材料と同様にして形成したもの等が挙げられる。
 また(4)の銅-タングステン複合材料からなる基材2としては、例えば下記の形成方法によって形成したもの等が挙げられる。
As the base material 2 made of the silicon-ceramic composite material of (3), those formed in the same manner as the aluminum-ceramic composite material of (1) above, except that silicon is used instead of aluminum or aluminum alloy, etc. It is done.
Examples of the substrate 2 made of the copper-tungsten composite material (4) include those formed by the following forming method.
 (4-1)  銅または銅合金の粉末とタングステン粉末との混合物を基材2の形状に圧縮成形したのち、銅または銅合金の融点以上の温度で焼成する。
 (4-2)  基材2の形状に形成したタングステンからなる多孔質体中に、例えば真空炉中で、溶融させた銅または銅合金を含浸させる。
 前記(4-2)の形成方法において使用するタングステンの多孔質体は、例えばタングステン粉末を樹脂等のバインダと混合した混合物を基材2の形状に成形したのち焼成してバインダを除去すると共にセラミック粉末を焼結させる等して形成できる。(4-2)の形成方法については、例えば特開昭59-21032号公報に詳しい。
(4-1) A mixture of copper or copper alloy powder and tungsten powder is compression-molded into the shape of the substrate 2 and then fired at a temperature equal to or higher than the melting point of copper or copper alloy.
(4-2) The porous body made of tungsten formed in the shape of the substrate 2 is impregnated with molten copper or a copper alloy in a vacuum furnace, for example.
The tungsten porous body used in the forming method of (4-2) is a ceramic in which, for example, a mixture in which tungsten powder is mixed with a binder such as a resin is formed into the shape of the base material 2 and then fired to remove the binder. It can be formed by sintering powder. The method of forming (4-2) is detailed in, for example, Japanese Patent Application Laid-Open No. 59-21032.
 また(5)の銅-モリブデン複合材料からなる基材2としては、タングステンに代えてモリブデンを用いること以外は(4)の銅-タングステン複合材料と同様にして形成したもの等が挙げられる。このうち(4-2)の形成方法と同様にして銅-モリブデン複合材料を形成する形成方法については、前記特開昭59-21032号公報に詳しい。
 (6)のタングステンからなる基材2としては、前記タングステンを任意の形成方法によって基材2の形状に形成したものが挙げられる。また(7)のモリブデンからなる基材2としては、前記モリブデンを任意の形成方法によって基材2の形状に形成したものが挙げられる。
Examples of the substrate 2 made of the copper-molybdenum composite material (5) include those formed in the same manner as the copper-tungsten composite material (4) except that molybdenum is used instead of tungsten. Among these, the formation method for forming the copper-molybdenum composite material in the same manner as the formation method of (4-2) is described in detail in JP-A-59-21032.
Examples of the base material 2 made of tungsten of (6) include those in which the tungsten is formed into the shape of the base material 2 by an arbitrary forming method. Examples of the base material 2 made of molybdenum of (7) include those obtained by forming the molybdenum into the shape of the base material 2 by an arbitrary forming method.
 (8)のアルミニウム-ケイ素複合材料からなる基材2としては、例えばセラミック粉末に代えてケイ素粉末を用いること以外は(1)のアルミニウム-セラミック複合材料と同様にして形成したもの等が挙げられる。後述する本発明の製造方法によってヒートスプレッダ1を製造するのと同時に、前記ヒートスプレッダ1内に形成される基材2は、前記ケイ素粉末を用いて(1-1)(1-2)の方法と同様にして形成したものに相当する。さらに(9)の銅-ダイヤモンド複合材料からなる基材2としては、例えば特開2004-175626号公報に記載された形成方法によって形成したもの等が挙げられる。 Examples of the base material 2 made of the aluminum-silicon composite material of (8) include those formed in the same manner as the aluminum-ceramic composite material of (1) except that silicon powder is used instead of ceramic powder. . At the same time when the heat spreader 1 is manufactured by the manufacturing method of the present invention to be described later, the base material 2 formed in the heat spreader 1 is the same as the method (1-1) (1-2) using the silicon powder. It corresponds to what was formed. Furthermore, examples of the base material 2 made of the copper-diamond composite material (9) include those formed by the forming method described in JP-A No. 2004-175626.
 枠体3および被覆層6、7を形成する金属または合金としては、ネジ穴8等を加工する際の加工性に優れる上、基材2と同等またはそれ以上の良好な熱伝導率を有する種々の金属または合金がいずれも使用可能である。中でも試験力49.03N(試験荷重5kgf)でのビッカース硬さHvが200以下の金属、特にアルミニウム、アルミニウム合金、銅、または銅合金等が挙げられる。枠体3と被覆層6、7とは同じ金属または合金によって形成してもよいし、互いに異なる金属または合金によって形成してもよい。 The metal or alloy forming the frame 3 and the coating layers 6 and 7 is excellent in workability when processing the screw holes 8 and the like, and has various heat conductivities that are equal to or higher than that of the substrate 2. Any of these metals or alloys can be used. Among them, a metal having a Vickers hardness Hv of 200 or less at a test force of 49.03 N (test load of 5 kgf), particularly aluminum, an aluminum alloy, copper, a copper alloy, or the like can be given. The frame 3 and the coating layers 6 and 7 may be formed of the same metal or alloy, or may be formed of different metals or alloys.
 例えば枠体3をアルミニウムまたはアルミニウム合金によって形成する場合、前記アルミニウムまたはアルミニウム合金としては、前出のJIS H4000:2006において規定された合金番号A1050、A2014、A3004、A5005等が好ましい。これらのアルミニウムまたはアルミニウム合金からなる枠体3は、図1ないし図4に示す膨出部10等を有する所定の立体形状に形成するための加工性や、製造したヒートスプレッダ1の膨出部10にネジ穴8を形成するための加工性等に優れている。 For example, when the frame 3 is formed of aluminum or an aluminum alloy, the aluminum or aluminum alloy is preferably alloy numbers A1050, A2014, A3004, A5005, etc. defined in the above JIS H4000: 2006. The frame 3 made of aluminum or an aluminum alloy is formed into a predetermined three-dimensional shape having the bulging portion 10 shown in FIGS. 1 to 4 or the bulging portion 10 of the manufactured heat spreader 1. The processability for forming the screw hole 8 is excellent.
 一方、被覆層6、7をアルミニウムまたはアルミニウム合金によって形成する場合、前記アルミニウムまたはアルミニウム合金としては、合金番号A1050、A1070、A1100等の純アルミニウム系の展延材や、AC3A、AC4A等の鋳造用合金が好ましい。これらのアルミニウムまたはアルミニウム合金は、被覆層6、7のもとになる薄板の厚みをできるだけ均一に仕上げるための加工性等に優れている。 On the other hand, when the coating layers 6 and 7 are made of aluminum or an aluminum alloy, the aluminum or aluminum alloy may be a pure aluminum-based wrought material such as alloy numbers A1050, A1070, or A1100, or a casting material such as AC3A or AC4A. Alloys are preferred. These aluminum or aluminum alloys are excellent in workability and the like for finishing the thickness of the thin plate on which the coating layers 6 and 7 are based as uniform as possible.
 また枠体3、被覆層6、7をいずれも銅または銅合金によって形成する場合、前記銅または銅合金としては、それぞれ前出のJIS H3100:2006において規定された合金番号C1020「無酸素銅」、C1100「タフピッチ銅」等が好ましい。これらの銅または銅合金は、先に説明した、枠体3を所定の立体形状に形成するための加工性や、製造したヒートスプレッダ1の膨出部10にネジ穴8を形成するための加工性、あるいは被覆層6、7のもとになる薄板の厚みをできるだけ均一に仕上げるための加工性等に優れている。 When the frame 3 and the coating layers 6 and 7 are both formed of copper or a copper alloy, the copper or copper alloy is alloy number C1020 “oxygen-free copper” defined in the above-mentioned JIS H3100: 2006. C1100 “tough pitch copper” or the like is preferable. These copper or copper alloys have the workability for forming the frame 3 in a predetermined three-dimensional shape, as described above, and the workability for forming the screw holes 8 in the bulging portion 10 of the manufactured heat spreader 1. Alternatively, it is excellent in workability and the like for finishing the thickness of the thin plate as the basis of the coating layers 6 and 7 as uniform as possible.
 〈ヒートスプレッダの製造方法(その1)〉
 本発明のヒートスプレッダ1のうち基材2が(1)のアルミニウム-セラミック複合材料、または(8)のアルミニウム-ケイ素複合材料からなり、かつ枠体3および被覆層6、7がいずれもアルミニウムまたはアルミニウム合金からなるものは、以下に説明する本発明の製造方法によって製造できる。図5ないし図9は、前記製造方法の一例の各工程を示す断面図である。
<Method for manufacturing heat spreader (part 1)>
Of the heat spreader 1 of the present invention, the substrate 2 is made of the aluminum-ceramic composite material (1) or the aluminum-silicon composite material (8), and the frame 3 and the covering layers 6 and 7 are both aluminum or aluminum. What consists of an alloy can be manufactured with the manufacturing method of this invention demonstrated below. 5 to 9 are cross-sectional views showing respective steps of an example of the manufacturing method.
 図1ないし図5を参照して、この例の製造方法においては、まず製造するヒートスプレッダ1の裏面12の平面形状と一致する平面形状とされた底面15を有する下パンチ16と、前記底面15を囲む、ヒートスプレッダ1の側面17の形状と一致する形状とされた内周面18を有するダイ19とを含むプレス型20を用意する。なお図の例では下パンチ16とダイ19とを別体に形成しているが、簡略化のために両者を一体に形成したり、下パンチ16に代えてダイ19の下側の開口をアンビルで塞いだりしても構わない。 With reference to FIGS. 1 to 5, in the manufacturing method of this example, first, a lower punch 16 having a bottom surface 15 having a planar shape that matches the planar shape of the back surface 12 of the heat spreader 1 to be manufactured, and the bottom surface 15 are formed. A press die 20 is prepared that includes a die 19 having an inner peripheral surface 18 that is formed to coincide with the shape of the side surface 17 of the heat spreader 1 that is enclosed. In the example shown in the figure, the lower punch 16 and the die 19 are formed separately. However, for simplification, both are formed integrally, or the lower opening of the die 19 is replaced with an anvil instead of the lower punch 16. You can close it with
 次に前記プレス型20の、前記底面15と内周面18とで囲まれた領域21内に、環状の枠体3と、前記枠体3の環内に嵌め合わされて基材2の裏面5を被覆する被覆層7となる薄板22とをセットする。
 次に図6、図7を参照して、先にセットした枠体3上に、前記枠体3と同じ平面形状を有する環状の治具23をセットし、前記薄板22と枠体3と治具23とで囲まれた領域24内に、基材2のもとになるアルミニウムまたはアルミニウム合金の粉末と、セラミック粉末またはケイ素粉末との混合物25を充填する。そして前記混合物25上に、基材2の表面4を被覆する被覆層6となる薄板26を重ねる。混合物25の充填量は、前記混合物25を構成するセラミック粉末、ケイ素粉末の密度や粒径、アルミニウムまたはアルミニウム合金の粉末の粒径、前記両成分の配合割合、形成する基材2の密度等に応じて任意に設定できる。
Next, in the area 21 surrounded by the bottom surface 15 and the inner peripheral surface 18 of the press die 20, the annular frame body 3 is fitted into the ring of the frame body 3 and the back surface 5 of the substrate 2. And the thin plate 22 to be the coating layer 7 covering the substrate.
Next, referring to FIGS. 6 and 7, an annular jig 23 having the same planar shape as the frame 3 is set on the previously set frame 3, and the thin plate 22 and the frame 3 are cured. A region 25 surrounded by the tool 23 is filled with a mixture 25 of aluminum or aluminum alloy powder and ceramic powder or silicon powder, which is the basis of the substrate 2. Then, a thin plate 26 to be a coating layer 6 that covers the surface 4 of the substrate 2 is overlaid on the mixture 25. The filling amount of the mixture 25 depends on the density and particle size of the ceramic powder and silicon powder constituting the mixture 25, the particle size of the powder of aluminum or aluminum alloy, the blending ratio of the two components, the density of the base material 2 to be formed, etc. It can be set as desired.
 次に図8、図9を参照して、混合物25上に重ねた薄板26上に、当接面27の平面形状が前記薄板26の平面形状と一致する形状とされた上パンチ28を当接させ、前記上パンチ28を下パンチ16の方向に押し込んで厚み方向に圧縮成形して圧縮成形体29を得た後、前記圧縮成形体29をアルミニウムまたはアルミニウム合金の融点以下の温度で焼成する。そうすると前記圧縮成形体29のうち混合物25が焼結されて基材2が形成される。また枠体3が基材2と一体化されると共に、薄板22、26が基材2と一体化されて被覆層6、7が形成されて、図1ないし図4に示すヒートスプレッダ1が製造される。 Next, referring to FIG. 8 and FIG. 9, an upper punch 28 in which the planar shape of the abutting surface 27 coincides with the planar shape of the thin plate 26 is abutted on the thin plate 26 stacked on the mixture 25. The upper punch 28 is pushed in the direction of the lower punch 16 and compression molded in the thickness direction to obtain a compression molded body 29, and then the compression molded body 29 is fired at a temperature not higher than the melting point of aluminum or aluminum alloy. Then, the base material 2 is formed by sintering the mixture 25 in the compression molded body 29. In addition, the frame 3 is integrated with the base material 2, and the thin plates 22 and 26 are integrated with the base material 2 to form the covering layers 6 and 7, whereby the heat spreader 1 shown in FIGS. 1 to 4 is manufactured. The
 圧縮成形体29は、いわゆるホットプレス成形法により、図9の圧縮状態を維持しながらプレス型20ごと図示しない加熱手段によって加熱して焼成してもよい。しかしプレス型20は、圧縮成形時におよそ98MPa以上という過大な圧力が加えられるため全体が大きく、必然的に熱容量も大きい。そのため前記ホットプレス成形法を採用した場合には前記圧縮成形体29を、熱容量の大きいプレス型20ごと、焼成に要する時間(通常は0.5時間以上)の間、加熱し続けなければならないので、1つのヒートスプレッダ1を製造するのに要するエネルギーおよび時間が増大する。 The compression-molded body 29 may be fired by heating means (not shown) together with the press die 20 while maintaining the compression state of FIG. 9 by a so-called hot press molding method. However, the press die 20 is large as a whole because an excessive pressure of about 98 MPa or more is applied during compression molding, and the heat capacity is necessarily large. Therefore, when the hot press molding method is adopted, the compression molded body 29 must be continuously heated together with the press die 20 having a large heat capacity for the time required for firing (usually 0.5 hours or more). The energy and time required to manufacture one heat spreader 1 increases.
 そのため本発明では、例えば常温下で圧縮成形した圧縮成形体29を、図示していないがプレス型20から取り出した後にそのままで、あるいは型崩れを防止するための簡単な(熱容量の小さい)型枠に嵌め込む等して焼成するのが好ましい。これにより焼成に要するエネルギーと時間とを削減でき、ヒートスプレッダ1の生産性を向上できる。
 焼成の温度はアルミニウムまたはアルミニウム合金の融点以下であればよい。しかし基材2を形成するアルミニウムまたはアルミニウム合金の粉末と、セラミック粉末またはケイ素粉末とができるだけ良好に結合され、かつ枠体3および薄板22、26が前記基材2とできるだけ強固に一体化されたヒートスプレッダ1を、できるだけ効率よく製造するためには、焼成の温度は550℃以上、650℃以下であるのが好ましい。また、同様の理由で焼成の時間は0.5時間以上、2時間以下であるのが好ましい。
For this reason, in the present invention, for example, the compression molded body 29 compression-molded at room temperature is not shown, but is taken out from the press mold 20 as it is, or a simple (small heat capacity) mold frame for preventing the collapse of the mold. It is preferable to fire it by fitting it into the plate. Thereby, the energy and time required for firing can be reduced, and the productivity of the heat spreader 1 can be improved.
The firing temperature may be equal to or lower than the melting point of aluminum or aluminum alloy. However, the aluminum or aluminum alloy powder forming the base material 2 and the ceramic powder or the silicon powder are bonded as well as possible, and the frame 3 and the thin plates 22 and 26 are integrated with the base material 2 as firmly as possible. In order to produce the heat spreader 1 as efficiently as possible, the firing temperature is preferably 550 ° C. or higher and 650 ° C. or lower. For the same reason, the firing time is preferably 0.5 hours or more and 2 hours or less.
 また圧縮成形時の圧力は98MPa以上、686MPa以下であるのが好ましい。圧力が98MPa未満では圧縮成形体29の強度が不足して、特に焼成のためにダイ19から取り出す際や、取り出した後の焼成工程等において型崩れしやすくなるおそれがある。また圧力が686MPaを超えても、それ以上の、圧縮成形体29の強度を高める効果は得られない上、前記高圧の圧縮成形を行うためのプレス型20が大掛かりになりすぎるという問題もある。 The pressure during compression molding is preferably 98 MPa or more and 686 MPa or less. When the pressure is less than 98 MPa, the strength of the compression-molded body 29 is insufficient, and there is a possibility that the mold is likely to lose its shape when it is taken out from the die 19 for firing or in the firing step after removal. Further, even if the pressure exceeds 686 MPa, the effect of further increasing the strength of the compression molded body 29 cannot be obtained, and the press die 20 for performing the high pressure compression molding becomes too large.
 図1ないし図4の例のヒートスプレッダ1を製造する場合、枠体3としては、外周面17がダイ19の内周面18に沿い、かつ内周面が基材2の外縁に沿う略矩形の環状をなすと共に、前記内周の複数箇所(この例では長辺側のそれぞれ3箇所、計6箇所)から面方向の内方に向けて膨出部10が突設されたものが用いられる。前記枠体3は、先に説明したアルミニウムまたはアルミニウム合金によって全体が一体に形成される。 When the heat spreader 1 of the example of FIGS. 1 to 4 is manufactured, the frame 3 has a substantially rectangular shape in which the outer peripheral surface 17 is along the inner peripheral surface 18 of the die 19 and the inner peripheral surface is along the outer edge of the substrate 2. In addition to forming an annular shape, a bulging portion 10 is projected from a plurality of locations on the inner periphery (in this example, 3 locations on the long side, 6 locations in total) inward in the surface direction. The frame body 3 is integrally formed of the above-described aluminum or aluminum alloy.
 また薄板22、26としては、枠体3の環内の平面形状と一致する平面形状を有する平板状をなし、前記枠体3に嵌め合わされるものが用いられる。すなわち薄板22、26としては、外周が前記枠体3の環の内周面、すなわち基材2の平面形状の外縁に沿う略矩形の平板状で、かつ前記外周のうち膨出部10に対応する6箇所に、前記膨出部10の平面形状と一致する平面形状を有する切欠が設けられたものが用いられる。前記薄板22、26はそれぞれ、先に説明したアルミニウムまたはアルミニウム合金によって一体に形成される。 Further, as the thin plates 22 and 26, a flat plate shape having a planar shape that matches the planar shape in the ring of the frame body 3 and fitted to the frame body 3 is used. That is, as the thin plates 22 and 26, the outer periphery is a substantially rectangular flat plate shape along the inner peripheral surface of the ring of the frame body 3, that is, the outer edge of the planar shape of the base material 2, and corresponds to the bulging portion 10 of the outer periphery. In this case, those provided with notches having a planar shape that matches the planar shape of the bulging portion 10 are used. Each of the thin plates 22 and 26 is integrally formed of the aluminum or aluminum alloy described above.
 前記枠体3の内周と薄板22、26の外周との間の嵌め合い部には所定のクリアランスが設定される。これにより前記クリアランスに基づいて、前記各工程を経て製造されるヒートスプレッダ1の表面11および裏面12のうち枠体3と薄板22、26との間の境界線上、すなわち基材2の外縁に沿う位置に正確に溝13、14が形成される。また、あらかじめ領域21内にセットした所定の寸法および形状を有する枠体3の環内で、後から充填した混合物25を前記アルミニウムまたはアルミニウム合金の融点以下の温度で焼結させて基材2が形成されるため、前記基材2が、製造されるヒートスプレッダ1内において大きく位置ずれするのも防止できる。 A predetermined clearance is set in the fitting portion between the inner periphery of the frame 3 and the outer periphery of the thin plates 22 and 26. Thereby, on the boundary line between the frame 3 and the thin plates 22 and 26 among the front surface 11 and the rear surface 12 of the heat spreader 1 manufactured through the respective steps based on the clearance, that is, the position along the outer edge of the base material 2. Thus, the grooves 13 and 14 are accurately formed. Further, in the ring of the frame 3 having a predetermined size and shape set in the region 21 in advance, the mixture 25 filled later is sintered at a temperature not higher than the melting point of the aluminum or aluminum alloy so that the base material 2 is Since it is formed, it is possible to prevent the base material 2 from being largely displaced in the heat spreader 1 to be manufactured.
 薄板22、26の厚みは0.05mm以上であるのが好ましい。これにより、前記メカニズムによってヒートスプレッダ1の表面11および裏面12に、目視によって十分に視認できる大きさの溝13、14を形成できる。また薄板22、26の厚みは、前記範囲内でも1mm以下であるのが好ましい。これにより、形成される被覆層6、7の厚みをできるだけ小さくして、前記被覆層6、7を形成するアルミニウムまたはアルミニウム合金と、素子やセラミック基板との熱膨張係数の違いに基づいて素子に過剰な応力が加わって前記素子自体が破損したり、はんだ接合が破壊されたりするのを防止できる。 The thickness of the thin plates 22 and 26 is preferably 0.05 mm or more. Thereby, the groove | channels 13 and 14 of the magnitude | size which can be visually recognized enough visually can be formed in the surface 11 and the back surface 12 of the heat spreader 1 by the said mechanism. The thickness of the thin plates 22 and 26 is preferably 1 mm or less even within the above range. Thereby, the thickness of the coating layers 6 and 7 to be formed is made as small as possible, and the element is formed on the basis of the difference in thermal expansion coefficient between the aluminum or aluminum alloy forming the coating layers 6 and 7 and the element or ceramic substrate. It is possible to prevent the element itself from being damaged due to excessive stress and the solder joint from being destroyed.
 また枠体3の内周と、薄板22、26の外周との間の嵌め合い部のクリアランスは0.05mm以上、0.5mm以下であるのが好ましい。クリアランスが0.05mm以下では、前記メカニズムによってヒートスプレッダ1の表面11および裏面12に、目視によって十分に視認できる大きさの溝13、14を形成できないおそれがある。また0.5mmを超える場合には、形成される溝13、14が大きくなりすぎて、前記溝13、14による、基材2の位置合わせの精度が低下するおそれがある。 Further, the clearance of the fitting portion between the inner periphery of the frame 3 and the outer periphery of the thin plates 22 and 26 is preferably 0.05 mm or more and 0.5 mm or less. When the clearance is 0.05 mm or less, there is a possibility that the grooves 13 and 14 having a size that can be sufficiently visually recognized cannot be formed on the front surface 11 and the back surface 12 of the heat spreader 1 by the mechanism. On the other hand, when the thickness exceeds 0.5 mm, the formed grooves 13 and 14 become too large, and the accuracy of alignment of the base material 2 by the grooves 13 and 14 may be lowered.
 また基材2の外周を全周に亘って枠体3で確実に囲むためや、あるいは基材2の面方向の面積によって規定される素子の搭載面の面積の、ヒートスプレッダ1の同方向の面積中に占める割合で表される面積率をできるだけ向上するためには、前記枠体3の面方向の厚み(外周面17と内周面との間の距離)は1mm以上、20mm以下、特に5mm以上、15mm以下であるのが好ましい。 In addition, the area of the heat spreader 1 in the same direction is used to securely surround the outer periphery of the substrate 2 with the frame 3 over the entire circumference, or the area of the element mounting surface defined by the area of the substrate 2 in the surface direction. In order to improve as much as possible the area ratio represented by the ratio of the inside, the thickness of the frame 3 in the surface direction (distance between the outer peripheral surface 17 and the inner peripheral surface) is 1 mm or more, 20 mm or less, particularly 5 mm. As mentioned above, it is preferable that it is 15 mm or less.
 前記各工程を経て形成されたヒートスプレッダ1を、さらに加熱下で加圧してもよい。これにより、焼成時に発生する変形(歪み等)や表面11および裏面12に発生する凹凸等を矯正し、かつ基材2を高密度化して熱伝導率を向上できる。
 具体的には、焼成後のヒートスプレッダ1を再び図5に示すプレス型20の領域21内にセットし、今度は治具23をセットせずに、前記ヒートスプレッダ1上に当接面の平面形状がヒートスプレッダ1の表面11の平面形状と一致する形状とされた上パンチを当接させる。そして所定の温度に加熱しながら前記上パンチを下パンチ16の方向に押し込んで厚み方向に加圧すると、ヒートスプレッダ1の変形や表面11、裏面12の凹凸等を矯正すると共に基材2を高密度化して熱伝導率を向上できる。
The heat spreader 1 formed through the above steps may be further pressurized under heating. Thereby, the deformation | transformation (distortion etc.) which generate | occur | produces at the time of baking, the unevenness | corrugation etc. which generate | occur | produce on the surface 11 and the back surface 12 can be corrected, and the base material 2 can be densified and thermal conductivity can be improved.
Specifically, the heat spreader 1 after firing is set again in the region 21 of the press die 20 shown in FIG. 5, and this time the jig 23 is not set, and the planar shape of the contact surface is on the heat spreader 1. An upper punch having a shape matching the planar shape of the surface 11 of the heat spreader 1 is brought into contact. When the upper punch is pushed in the direction of the lower punch 16 while being heated to a predetermined temperature and pressed in the thickness direction, the deformation of the heat spreader 1 and the unevenness of the front surface 11 and the back surface 12 are corrected, and the base material 2 is densely formed. To improve the thermal conductivity.
 前記加圧工程においては、溝13、14を目視によって視認しやすい状態に維持しながら前記変形や凹凸等をできるだけ良好に矯正し、かつ熱伝導率を向上するために、加熱温度(金型温度)は300℃以上、650℃以下、加圧の圧力は245MPa以上、490MPa以下、加圧時間は0.1秒以上、5秒以下であるのが好ましい。またヒートスプレッダ1の変形や表面11、裏面12の凹凸等を矯正すると共に基材2を高密度化させるためには、前記加圧処理に代えて例えば熱間鍛造等の処理を採用しても構わない。 In the pressurizing step, the heating temperature (mold temperature) is used in order to correct the deformation and unevenness as well as possible and improve the thermal conductivity while maintaining the grooves 13 and 14 in a state that is easy to visually recognize. ) Is preferably 300 ° C. or more and 650 ° C. or less, the pressure of the pressurization is 245 MPa or more and 490 MPa or less, and the pressurization time is 0.1 seconds or more and 5 seconds or less. Further, in order to correct the deformation of the heat spreader 1 and the unevenness of the front surface 11 and the back surface 12 and to increase the density of the substrate 2, for example, a process such as hot forging may be employed instead of the pressurizing process. Absent.
 図10は、本発明の製造方法の他の例の一工程を示す断面図である。図10を参照して、この例ではプレス型20の領域21内に、枠体3と薄板22に代えて、アルミニウムまたはアルミニウム合金からなり、前記枠体3と薄板22とを一体化した形状を有する成形体30をセットする点が、先の例と相違している。その後の工程は先の例と同様に実施される。前記製造方法では、前記成形体30のうち枠体3に相当する部分と、前記部分の環内に嵌め合わされる、基材2の表面4側の被覆層6を構成する薄板26との嵌め合い部に設定されるクリアランスに基づき、先のメカニズムによって、ヒートスプレッダ1の表面11に溝13が形成される。 FIG. 10 is a cross-sectional view showing one process of another example of the production method of the present invention. Referring to FIG. 10, in this example, the region 21 of the press die 20 is made of aluminum or an aluminum alloy instead of the frame 3 and the thin plate 22, and has a shape in which the frame 3 and the thin plate 22 are integrated. The point which sets the molded object 30 to have differs from the previous example. Subsequent steps are performed in the same manner as in the previous example. In the manufacturing method, the portion corresponding to the frame body 3 in the molded body 30 and the thin plate 26 constituting the coating layer 6 on the surface 4 side of the base material 2 fitted in the ring of the portion are fitted. A groove 13 is formed on the surface 11 of the heat spreader 1 by the above mechanism based on the clearance set in the portion.
 〈ヒートスプレッダの製造方法(その2)〉
 本発明のヒートスプレッダ1のうち基材2が前記(1)~(9)のいずれかの材料からなり、かつ枠体3および被覆層6、7がいずれも銅または銅合金からなるものは、以下に説明する本発明の製造方法によって製造できる。図11ないし図13は、前記製造方法の一例の各工程を示す断面図である。
<Method for manufacturing heat spreader (part 2)>
In the heat spreader 1 of the present invention, the base 2 is made of any of the materials (1) to (9) and the frame 3 and the covering layers 6 and 7 are both made of copper or a copper alloy. It can manufacture with the manufacturing method of this invention demonstrated to. 11 to 13 are cross-sectional views showing the steps of an example of the manufacturing method.
 図1ないし図4、図11を参照して、この例の製造方法においては、まず製造するヒートスプレッダ1の裏面12の平面形状と一致する平面形状とされた底面15を有する下パンチ16と、前記底面15を囲む、ヒートスプレッダ1の側面17の形状と一致する形状とされた内周面18を有するダイ19とを含むプレス型20を用意する。なお図の例では下パンチ16とダイ19とを別体に形成しているが、簡略化のために両者を一体に形成したり、下パンチ16に代えてダイ19の下側の開口をアンビルで塞いだりしても構わない。またプレス型20を構成する各部の位置関係は、図とは上下逆であってもよい。 With reference to FIGS. 1 to 4 and 11, in the manufacturing method of this example, first, the lower punch 16 having a bottom surface 15 having a planar shape that matches the planar shape of the back surface 12 of the heat spreader 1 to be manufactured, A press die 20 including a die 19 having an inner peripheral surface 18 that surrounds the bottom surface 15 and has a shape that matches the shape of the side surface 17 of the heat spreader 1 is prepared. In the example shown in the figure, the lower punch 16 and the die 19 are formed separately. However, for simplification, both are formed integrally, or the lower opening of the die 19 is replaced with an anvil instead of the lower punch 16. You can close it with Moreover, the positional relationship of each part which comprises the press die 20 may be upside down from the figure.
 次に図12を参照して、前記プレス型20の、前記底面15と内周面18とで囲まれた領域21内に、あらかじめ所定の立体形状に形成した基材2と、前記基材2を囲む環状の枠体3と、前記枠体3との嵌め合い部に所定のクリアランスを有し、前記基材2の表面4および裏面5に重ねられた状態で枠体3に嵌め合わされて被覆層6、7となる2枚の薄板22、26とをセットする。 Next, referring to FIG. 12, a base material 2 formed in a predetermined three-dimensional shape in advance in a region 21 surrounded by the bottom surface 15 and the inner peripheral surface 18 of the press die 20, and the base material 2. An annular frame 3 that surrounds the frame 3 and a fitting portion between the frame 3 and a predetermined clearance, and is fitted onto the frame 3 in a state of being overlapped with the front surface 4 and the back surface 5 of the substrate 2. The two thin plates 22 and 26 to be the layers 6 and 7 are set.
 このうち基材2としては、前記(1)~(9)のいずれかの材料からなり、先に説明した任意の製造方法によってあらかじめ所定の形状に形成したものを用いることができる。基材2は、表面の全面をあらかじめ銅めっき膜で被覆しておく。これにより、表面に銅以外の材料が露出するのを防いで、前記プレス型20内でプレスしながら銅または銅合金の融点以下の温度で熱処理した際に、前記基材2を、銅または銅合金からなる枠体3、および薄板22、26と良好に一体化させることができる。 Of these, the base material 2 may be made of any one of the materials (1) to (9) and formed in advance into a predetermined shape by any of the manufacturing methods described above. The base material 2 covers the entire surface with a copper plating film in advance. This prevents materials other than copper from being exposed on the surface, and when the substrate 2 is heat-treated at a temperature equal to or lower than the melting point of copper or copper alloy while being pressed in the press die 20, the substrate 2 is made of copper or copper. It can be satisfactorily integrated with the frame 3 made of an alloy and the thin plates 22 and 26.
 基材2、枠体3、および薄板22、26は、あらかじめ領域21外で図の状態に組み立てたものを領域21内にセットしてもよいし、領域21内で図の状態に組み立ててもよい。
 次に図13を参照して、領域21内にセットした枠体3および薄板26上に、当接面31の平面形状がヒートスプレッダ1の表面11の平面形状と一致する形状とされた上パンチ32を当接させ、前記上パンチ32を下パンチ16の方向に押し込んで厚み方向にプレスしながら銅または銅合金の融点以下の温度で熱処理する。そうすると枠体3が基材2と一体化されると共に、薄板22、26が基材2と一体化されて被覆層6、7が形成されて、図1ないし図4に示すヒートスプレッダ1が製造される。
The base material 2, the frame body 3, and the thin plates 22 and 26 may be set in the region 21 in the state illustrated in the figure outside the region 21, or may be assembled in the state illustrated in the region 21. Good.
Next, referring to FIG. 13, on the frame 3 and the thin plate 26 set in the region 21, the upper punch 32 in which the planar shape of the contact surface 31 is the same as the planar shape of the surface 11 of the heat spreader 1. The upper punch 32 is pushed in the direction of the lower punch 16 and pressed in the thickness direction, and heat-treated at a temperature below the melting point of copper or copper alloy. Then, the frame 3 is integrated with the base material 2, and the thin plates 22 and 26 are integrated with the base material 2 to form the covering layers 6 and 7, whereby the heat spreader 1 shown in FIGS. 1 to 4 is manufactured. The
 熱処理の温度は銅または銅合金の融点以下であればよい。しかし枠体3および薄板22、26が基材2とできるだけ強固に一体化されたヒートスプレッダ1を、できるだけ効率よく製造するためには、熱処理の温度は300℃以上、600℃以下であるのが好ましい。また、同様の理由で熱処理の時間は0.5時間以上、2時間以下であるのが好ましい。
 また圧縮成形時の圧力は49MPa以上、196MPa以下であるのが好ましい。圧力が49MPa未満では、枠体3および薄板22、26が基材2と強固に一体化されたヒートスプレッダ1を製造できないおそれがある。また圧力が196MPaを超えても、それ以上の、枠体3および薄板22、26を基材2と強固に一体化する効果は得られない上、前記高圧の圧縮成形を行うためのプレス型20が大掛かりになりすぎるという問題もある。
The temperature of heat processing should just be below the melting point of copper or a copper alloy. However, in order to manufacture the heat spreader 1 in which the frame 3 and the thin plates 22 and 26 are integrated with the base material 2 as firmly as possible, the heat treatment temperature is preferably 300 ° C. or more and 600 ° C. or less. . For the same reason, the heat treatment time is preferably 0.5 hours or more and 2 hours or less.
The pressure during compression molding is preferably 49 MPa or more and 196 MPa or less. If the pressure is less than 49 MPa, the heat spreader 1 in which the frame 3 and the thin plates 22 and 26 are firmly integrated with the base material 2 may not be manufactured. Further, even if the pressure exceeds 196 MPa, no further effect of firmly integrating the frame 3 and the thin plates 22 and 26 with the base material 2 can be obtained, and the press die 20 for performing the high-pressure compression molding. There is also a problem that becomes too large.
 図1ないし図4の例のヒートスプレッダ1を製造する場合、枠体3としては、外周面17がダイ19の内周面18に沿い、かつ内周面が基材2の外縁に沿う略矩形の環状をなすと共に、前記内周の複数箇所(この例では長辺側のそれぞれ3箇所、計6箇所)から面方向の内方に向けて膨出部10が突設されたものが用いられる。前記枠体3は、先に説明した銅または銅合金によって全体が一体に形成される。 When the heat spreader 1 of the example of FIGS. 1 to 4 is manufactured, the frame 3 has a substantially rectangular shape in which the outer peripheral surface 17 is along the inner peripheral surface 18 of the die 19 and the inner peripheral surface is along the outer edge of the substrate 2. In addition to forming an annular shape, a bulging portion 10 is projected from a plurality of locations on the inner periphery (in this example, 3 locations on the long side, 6 locations in total) inward in the surface direction. The frame 3 is integrally formed as a whole by the copper or copper alloy described above.
 また薄板22、26としては、枠体3の環内の平面形状と一致する平面形状を有する平板状をなし、前記枠体3に嵌め合わされるものが用いられる。すなわち薄板22、26としては、外周が前記枠体3の環の内周面、すなわち基材2の平面形状の外縁に沿う略矩形の平板状で、かつ前記外周のうち膨出部10に対応する6箇所に、前記膨出部10の平面形状と一致する平面形状を有する切欠が設けられたものが用いられる。前記薄板22、26はそれぞれ、先に説明した銅または銅合金によって一体に形成される。 Further, as the thin plates 22 and 26, a flat plate shape having a planar shape that matches the planar shape in the ring of the frame body 3 and fitted to the frame body 3 is used. That is, as the thin plates 22 and 26, the outer periphery is a substantially rectangular flat plate shape along the inner peripheral surface of the ring of the frame body 3, that is, the outer edge of the planar shape of the base material 2, and corresponds to the bulging portion 10 of the outer periphery. In this case, those provided with notches having a planar shape that matches the planar shape of the bulging portion 10 are used. Each of the thin plates 22 and 26 is integrally formed of copper or a copper alloy described above.
 前記枠体3の内周と薄板22、26の外周との間の嵌め合い部には所定のクリアランスが設定される。これにより前記クリアランスに基づいて、前記各工程を経て製造されるヒートスプレッダ1の表面11および裏面12のうち枠体3と薄板22、26との間の境界線上、すなわち基材2の外縁に沿う位置に正確に溝13、14が形成される。また、あらかじめ領域21内にセットした所定の寸法および形状を有する枠体3の環内に基材2を嵌め合わせてヒートスプレッダ1が製造されるため、前記基材2がヒートスプレッダ1内において大きく位置ずれするのも防止できる。 A predetermined clearance is set in the fitting portion between the inner periphery of the frame 3 and the outer periphery of the thin plates 22 and 26. Thereby, on the boundary line between the frame 3 and the thin plates 22 and 26 among the front surface 11 and the rear surface 12 of the heat spreader 1 manufactured through the respective steps based on the clearance, that is, the position along the outer edge of the base material 2. Thus, the grooves 13 and 14 are accurately formed. Further, since the heat spreader 1 is manufactured by fitting the base material 2 into the ring of the frame 3 having a predetermined size and shape set in the region 21 in advance, the base material 2 is largely displaced in the heat spreader 1. Can also be prevented.
 薄板22、26の厚みは0.05mm以上であるのが好ましい。これにより、前記メカニズムによってヒートスプレッダ1の表面11および裏面12に、目視によって十分に視認できる大きさの溝13、14を形成できる。また薄板22、26の厚みは、前記範囲内でも1mm以下であるのが好ましい。これにより、形成される被覆層6、7の厚みをできるだけ小さくして、前記被覆層6、7を形成する銅または銅合金と、素子やセラミック基板との熱膨張係数の違いに基づいて素子に過剰な応力が加わって前記素子自体が破損したり、はんだ接合が破壊されたりするのを防止できる。 The thickness of the thin plates 22 and 26 is preferably 0.05 mm or more. Thereby, the groove | channels 13 and 14 of the magnitude | size which can be visually recognized enough visually can be formed in the surface 11 and the back surface 12 of the heat spreader 1 by the said mechanism. The thickness of the thin plates 22 and 26 is preferably 1 mm or less even within the above range. Thereby, the thickness of the coating layers 6 and 7 to be formed is made as small as possible, and the element is formed on the basis of the difference in thermal expansion coefficient between the copper or copper alloy forming the coating layers 6 and 7 and the element or the ceramic substrate. It is possible to prevent the element itself from being damaged due to excessive stress and the solder joint from being destroyed.
 また枠体3の内周と、薄板22、26の外周との間の嵌め合い部のクリアランスは0.05mm以上、0.5mm以下であるのが好ましい。クリアランスが0.05mm以下では、前記メカニズムによってヒートスプレッダ1の表面11および裏面12に、目視によって十分に視認できる大きさの溝13、14を形成できないおそれがある。また0.5mmを超える場合には、形成される溝13、14が大きくなりすぎて、前記溝13、14による、基材2の位置合わせの精度が低下するおそれがある。 Further, the clearance of the fitting portion between the inner periphery of the frame 3 and the outer periphery of the thin plates 22 and 26 is preferably 0.05 mm or more and 0.5 mm or less. When the clearance is 0.05 mm or less, there is a possibility that the grooves 13 and 14 having a size that can be sufficiently visually recognized cannot be formed on the front surface 11 and the back surface 12 of the heat spreader 1 by the mechanism. On the other hand, when the thickness exceeds 0.5 mm, the formed grooves 13 and 14 become too large, and the accuracy of alignment of the base material 2 by the grooves 13 and 14 may be lowered.
 また基材2の外周を全周に亘って枠体3で確実に囲むためや、あるいは基材2の面方向の面積によって規定される素子の搭載面の面積の、ヒートスプレッダ1の同方向の面積中に占める割合で表される面積率をできるだけ向上するためには、前記枠体3の面方向の厚み(外周面17と内周面との間の距離)は1mm以上、20mm以下、特に5mm以上、15mm以下であるのが好ましい。 In addition, the area of the heat spreader 1 in the same direction is used to securely surround the outer periphery of the substrate 2 with the frame 3 over the entire circumference, or the area of the element mounting surface defined by the area of the substrate 2 in the surface direction. In order to improve as much as possible the area ratio represented by the ratio of the inside, the thickness of the frame 3 in the surface direction (distance between the outer peripheral surface 17 and the inner peripheral surface) is 1 mm or more, 20 mm or less, particularly 5 mm. As mentioned above, it is preferable that it is 15 mm or less.
 なお図示していないが、枠体3と一方の薄板とを一体化した形状を有する成形体を用い、前記成形体と基材2と他方の薄板とを領域21内にセットして圧縮成形してもよい。この場合、前記成形体のうち枠体3に相当する部分と、前記部分の環内に嵌め合わされる薄板との嵌め合い部のクリアランスに基づき、先のメカニズムによって、ヒートスプレッダ1の表面11または裏面12のうちの一方に溝が形成される。 Although not shown, a molded body having a shape obtained by integrating the frame 3 and one thin plate is used, and the molded body, the base material 2 and the other thin plate are set in the region 21 and compression molded. May be. In this case, based on the clearance of the fitting portion between the portion corresponding to the frame 3 in the molded body and the thin plate fitted in the ring of the portion, the front surface 11 or the back surface 12 of the heat spreader 1 by the above mechanism. A groove is formed in one of them.
 〈ヒートスプレッダの製造方法(その他)〉
 基材2が(1)のアルミニウム-セラミック複合材料からなり、枠体3および被覆層6、7がアルミニウムまたはアルミニウム合金からなるヒートスプレッダ1は、先に説明した図5ないし図9もしくは図10の製造方法だけでなく、後から説明した図11ないし図13の製造方法によっても製造できる。
<Method for manufacturing heat spreader (others)>
The heat spreader 1 in which the substrate 2 is made of the aluminum-ceramic composite material (1) and the frame 3 and the coating layers 6 and 7 are made of aluminum or an aluminum alloy is manufactured as described above with reference to FIGS. It can be manufactured not only by the method but also by the manufacturing method shown in FIGS.
 すなわち図11、図12を参照して、前記(1-1)ないし(1-3)のいずれかの方法によってあらかじめ所定の立体形状に形成した基材2を、枠体3、薄板22、26と共にプレス型20の領域21内にセットする。
 次に図13を参照して、領域21内にセットした枠体3および薄板26上に上パンチ32を当接させ、前記上パンチ32を下パンチ16の方向に押し込んで厚み方向にプレスしながらアルミニウムまたはアルミニウム合金の融点以下、好ましくは550℃以上、650℃以下で熱処理する。
That is, with reference to FIG. 11 and FIG. 12, the base material 2 previously formed into a predetermined three-dimensional shape by any one of the methods (1-1) to (1-3) is attached to the frame 3 and the thin plates 22, 26. At the same time, it is set in the region 21 of the press die 20.
Next, referring to FIG. 13, the upper punch 32 is brought into contact with the frame 3 and the thin plate 26 set in the region 21, and the upper punch 32 is pushed in the direction of the lower punch 16 and pressed in the thickness direction. It heat-processes below the melting point of aluminum or aluminum alloy, Preferably it is 550 degreeC or more and 650 degrees C or less.
 そうすると枠体3が基材2と一体化されると共に、薄板22、26が基材2と一体化されて被覆層6、7が形成されて、図1ないし図4に示すヒートスプレッダ1が製造される。また枠体3と薄板22、26との間の嵌め合い部に設定されるクリアランスに基づき、先に説明したメカニズムにより、ヒートスプレッダ1の表面11および裏面12のうち枠体3と薄板22、26との間の境界線上、すなわち基材2の外縁に沿う位置に正確に溝13、14が形成される。 Then, the frame 3 is integrated with the base material 2, and the thin plates 22 and 26 are integrated with the base material 2 to form the covering layers 6 and 7, whereby the heat spreader 1 shown in FIGS. 1 to 4 is manufactured. The Moreover, based on the clearance set in the fitting part between the frame 3 and the thin plates 22 and 26, the frame 3 and the thin plates 22 and 26 out of the front surface 11 and the back surface 12 of the heat spreader 1 by the mechanism described above. The grooves 13 and 14 are accurately formed on the boundary line between the two, that is, at a position along the outer edge of the substrate 2.
 なお、かかる製造方法においても、枠体3と一方の薄板とに代えて両者を一体に形成した成形体を用いてもよいことはいうまでもない。この場合、前記成形体のうち枠体3に相当する部分と他方の薄板との嵌め合い部に設定されるクリアランスに基づき、先のメカニズムにより、ヒートスプレッダ1の表面11または裏面12のうちの一方に溝が形成される。 In addition, it cannot be overemphasized that it replaces with the frame 3 and one thin plate, and the molded object which formed both integrally in this manufacturing method may be used. In this case, on the one of the front surface 11 and the rear surface 12 of the heat spreader 1 based on the clearance set in the fitting portion between the portion corresponding to the frame 3 and the other thin plate in the molded body. A groove is formed.
 前記以外の、他の材料の組み合わせからなるヒートスプレッダ1も、それぞれの材料の特性に応じた任意の製造方法によって製造できる。
 例えば基材2が(1)のアルミニウム-セラミック複合材料からなり、被覆層6、7がアルミニウムまたはアルミニウム合金からなり、枠体3が銅または銅合金からなるヒートスプレッダ1は、例えば基材2と薄板22、26との積層体を作製し、その側面を銅めっき膜で被覆したのち、銅または銅合金からなる枠体3と組み合わせたものをプレス型20の領域21内にセットして圧縮成形すると共に、銅または銅合金の融点以下、好ましくは300℃以上、600℃以下で熱処理して製造される。
The heat spreader 1 made of a combination of other materials other than the above can also be manufactured by an arbitrary manufacturing method according to the characteristics of each material.
For example, the heat spreader 1 in which the base material 2 is made of the aluminum-ceramic composite material (1), the coating layers 6 and 7 are made of aluminum or an aluminum alloy, and the frame 3 is made of copper or a copper alloy is, for example, the base material 2 and a thin plate After the laminates 22 and 26 are produced and the side surfaces thereof are coated with a copper plating film, the combination with the frame 3 made of copper or copper alloy is set in the region 21 of the press die 20 and compression molded. At the same time, it is manufactured by heat treatment below the melting point of copper or copper alloy, preferably at 300 ° C. or more and 600 ° C. or less.
 前記基材2と薄板22、26との積層体は、基材2のもとになる先に説明した混合物25と前記薄板22、26とを所定のプレス型中で圧縮成形した後、アルミニウムまたはアルミニウム合金の融点以下、好ましくは550℃以上、650℃以下で焼成して形成できる。また(1-1)ないし(1-3)の方法で形成した基材2と薄板22、26とを積層して、前記温度で焼成して積層体を形成してもよい。 The laminate of the base material 2 and the thin plates 22 and 26 is formed by compressing the mixture 25 and the thin plates 22 and 26, which are the basis of the base material 2, in a predetermined press die, and then aluminum or It can be formed by firing below the melting point of the aluminum alloy, preferably 550 ° C. or higher and 650 ° C. or lower. Further, the base material 2 formed by the methods (1-1) to (1-3) and the thin plates 22 and 26 may be laminated and fired at the above temperature to form a laminate.
 本発明の構成は、以上で説明した図の例のものには限定されない。例えば、図の例のヒートスプレッダ1は平板状で、その表面11および裏面12の両方に、素子やセラミック基板をはんだ接合等するための目印となる溝13、14を有していたが、先に説明した成形体30等を用いることで、例えばその表面11にのみ溝13を形成して裏面12の溝14は省略することもできる。また溝14を省略した裏面12を構成する被覆層7を、前記裏面12から厚み方向に突出する多数のフィン、もしくはピンと一体形成して、本発明のヒートスプレッダ1をヒートシンクの一部として利用することも可能である。その他、本発明の要旨を逸脱しない範囲で、種々の設計変更を施すことができる。 The configuration of the present invention is not limited to the example of the figure described above. For example, the heat spreader 1 in the example shown in the figure has a flat plate shape, and has grooves 13 and 14 serving as marks for soldering the elements and the ceramic substrate on both the front surface 11 and the back surface 12. By using the described molded body 30 or the like, for example, the groove 13 can be formed only on the front surface 11 and the groove 14 on the back surface 12 can be omitted. Further, the coating layer 7 constituting the back surface 12 without the grooves 14 is integrally formed with a large number of fins or pins protruding from the back surface 12 in the thickness direction, and the heat spreader 1 of the present invention is used as a part of the heat sink. Is also possible. In addition, various design changes can be made without departing from the scope of the present invention.
 〈実施例1〉
 図1ないし図4に示す略矩形の平板状で、横180mm×縦90mm×厚み3.0mmのヒートスプレッダ1を、図5ないし図9の製造方法によって製造することとして、下記の各種材料、およびプレス型20等を用意した。
 (基材2のもとになる混合物25)
 セラミック粉末としての炭化ケイ素粉末(平均粒径50μm)65質量部と、アルミニウム粉末(平均粒径50μm)35質量部とを配合して混合物25を調製した。
<Example 1>
The heat spreader 1 having a substantially rectangular flat plate shape shown in FIGS. 1 to 4 and having a width of 180 mm, a length of 90 mm, and a thickness of 3.0 mm is manufactured by the manufacturing method of FIGS. A mold 20 or the like was prepared.
(Mixture 25 which becomes the base material 2)
A mixture 25 was prepared by blending 65 parts by mass of silicon carbide powder (average particle size 50 μm) as a ceramic powder and 35 parts by mass of aluminum powder (average particle size 50 μm).
 (枠体3)
 厚みがヒートスプレッダ1の厚みと一致する3.0mm、外周がヒートスプレッダ1の平面形状の外周に一致する横180mm×縦90mmの矩形状、内周が基材2の平面形状の外縁に沿う横160mm×縦70mmの矩形状で、かつ、前記内周のうち矩形の長辺側のそれぞれ3箇所から面方向の内方に向けて、ネジ穴8を形成するための膨出部10が突出された略矩形の環状の枠体3を、アルミニウムによって一体に形成した。
(Frame 3)
The thickness is 3.0 mm which matches the thickness of the heat spreader 1, the outer periphery is a rectangular shape of 180 mm wide × 90 mm long which matches the outer periphery of the planar shape of the heat spreader 1, and the inner periphery is 160 mm wide along the outer edge of the planar shape of the base material 2 The bulging part 10 for forming the screw hole 8 is formed in a rectangular shape with a length of 70 mm, and protrudes inward in the surface direction from each of three locations on the long side of the rectangular shape in the inner circumference. A rectangular annular frame 3 was integrally formed of aluminum.
 (被覆層6、7のもとになる薄板22、26)
 平面形状が前記枠体3の内縁に沿う略矩形の平板状とされ、その外周から面方向の内方に向けて膨出部10の平面形状と一致する平面形状を有する切欠が設けられた薄板22、26を、アルミニウムによって一体に形成した。薄板22、26の厚みは0.3mm、枠体3とのクリアランスは0.15mmに設定した。
( Thin plates 22 and 26 on which the coating layers 6 and 7 are based)
A thin plate provided with a notch having a planar shape that is a substantially rectangular flat plate shape along the inner edge of the frame 3 and that coincides with the planar shape of the bulging portion 10 from the outer periphery toward the inner side in the surface direction. 22 and 26 were integrally formed of aluminum. The thickness of the thin plates 22 and 26 was set to 0.3 mm, and the clearance with the frame 3 was set to 0.15 mm.
 (プレス型20)
 製造するヒートスプレッダ1の裏面12の平面形状と一致する平面形状とされた底面15を有する下パンチ16と、前記底面15を囲む、ヒートスプレッダ1の側面17の形状と一致する形状とされた内周面18を有するダイ19とを、それぞれステンレス鋼によって別体に形成した。
(Press die 20)
A lower punch 16 having a bottom surface 15 having a planar shape that matches the planar shape of the back surface 12 of the heat spreader 1 to be manufactured, and an inner peripheral surface that surrounds the bottom surface 15 and has a shape that matches the shape of the side surface 17 of the heat spreader 1. The die 19 having 18 was formed separately from each other by stainless steel.
 (治具23)
 枠体3と同じ平面形状を有する環状の治具23をステンレス鋼によって形成した。
 (上パンチ28)
 当接面27の平面形状が薄板26の平面形状と一致する形状とされた上パンチ28をステンレス鋼によって形成した。
(Jig 23)
An annular jig 23 having the same planar shape as the frame 3 was formed of stainless steel.
(Upper punch 28)
The upper punch 28 in which the planar shape of the contact surface 27 coincides with the planar shape of the thin plate 26 was formed of stainless steel.
 (ヒートスプレッダ1の製造)
 プレス型20の、前記底面15と内周面18とで囲まれた領域21内に、環状の枠体3と、前記枠体3の環内に嵌め合わされて、基材2の裏面5を被覆する被覆層7となる薄板22とをセットすると共に、前記枠体3上に環状の治具23をセットした状態で、前記薄板22と枠体3と治具23とで囲まれた領域24内に75gの混合物25を充填した後、前記混合物25上に薄板26を重ねた。
(Manufacture of heat spreader 1)
The press die 20 is fitted into the ring frame 3 and the ring of the frame body 3 in a region 21 surrounded by the bottom surface 15 and the inner peripheral surface 18 to cover the back surface 5 of the substrate 2. In the region 24 surrounded by the thin plate 22, the frame 3, and the jig 23 in a state where the thin plate 22 to be the covering layer 7 to be set is set and the annular jig 23 is set on the frame 3. After charging 75 g of the mixture 25, a thin plate 26 was stacked on the mixture 25.
 次に、前記薄板26上に上パンチ28の当接面27を当接させた状態で、前記上パンチ28を下パンチ16の方向に、ヒートスプレッダ1の厚み、すなわち枠体3の厚み(=3.0mm)になるまで、圧力490MPaで押し込んで厚み方向に圧縮成形することで圧縮成形体29を得た後、前記圧縮成形体29をプレス型20から取り出し、650℃で2時間、焼成してヒートスプレッダ1を製造した。 Next, with the contact surface 27 of the upper punch 28 in contact with the thin plate 26, the upper punch 28 is moved in the direction of the lower punch 16, and the thickness of the heat spreader 1, that is, the thickness of the frame 3 (= 3). To obtain a compression-molded body 29 by pressing it at a pressure of 490 MPa until it reaches a thickness of 0.0 mm), and then removing the compression-molded body 29 from the press die 20 and firing at 650 ° C. for 2 hours. A heat spreader 1 was manufactured.
 次に前記ヒートスプレッダ1を、あらかじめ400℃に加熱したプレス型20の領域21内に再びセットし、今度は治具23をセットせずに、前記ヒートスプレッダ1上に当接面の平面形状がヒートスプレッダ1の表面11の平面形状と一致する形状とされた上パンチを当接させた。そして上パンチを下パンチ16の方向に押し込んで圧力294MPa、加圧時間2秒間の条件で加圧処理をしてヒートスプレッダ1の変形や表面11、裏面12の凹凸等を矯正すると共に基材2を高密度化して熱伝導率を向上させた。 Next, the heat spreader 1 is set again in the region 21 of the press die 20 that has been heated to 400 ° C. in advance, and this time, the jig 23 is not set, and the planar shape of the contact surface on the heat spreader 1 is the heat spreader 1. An upper punch having a shape coinciding with the planar shape of the surface 11 was brought into contact. Then, the upper punch is pushed in the direction of the lower punch 16 and pressure is applied under the conditions of a pressure of 294 MPa and a pressurization time of 2 seconds to correct the deformation of the heat spreader 1 and the unevenness of the front surface 11 and the back surface 12 and the substrate 2 Density was increased to improve thermal conductivity.
 (外観および切断面の観察)
 前記ヒートスプレッダ1の外観を観察したところ、その表面11および裏面12にそれぞれ、図1ないし図3に示すように溝13、14が観察された。そこで溝13、14を跨ぐようにヒートスプレッダ1を切断し、切断面の光学顕微鏡写真を撮影して観察したところ、図14に示すように、溝13(溝14も同様であった)は内部の基材2〔多数の粒子(セラミック粉末)の集合体として写されている〕の外縁に沿って形成されていることが確認された。また写真から、基材2の外縁2aと溝13の幅方向の断面中の最深点13aとの間の面方向のずれG1を測定したところ0.23mmであった。さらに超音波検査によって基材2の位置を確認した結果からも、溝13、14は内部の基材2の外縁に沿って形成されていることが確認された。
(External appearance and observation of cut surface)
When the appearance of the heat spreader 1 was observed, grooves 13 and 14 were observed on the front surface 11 and the rear surface 12 as shown in FIGS. Therefore, the heat spreader 1 was cut so as to straddle the grooves 13 and 14, and an optical micrograph of the cut surface was taken and observed. As shown in FIG. 14, the groove 13 (the groove 14 was also the same) was inside. It was confirmed that it was formed along the outer edge of the substrate 2 [photographed as an aggregate of a large number of particles (ceramic powder)]. Further, from the photograph, the deviation G 1 in the surface direction between the outer edge 2a of the substrate 2 and the deepest point 13a in the cross section in the width direction of the groove 13 was measured and found to be 0.23 mm. Further, from the result of confirming the position of the base material 2 by ultrasonic inspection, it was confirmed that the grooves 13 and 14 were formed along the outer edge of the base material 2 inside.
 またヒートスプレッダ1の表面11のうち溝13で囲まれた領域の熱膨張係数を、示差熱膨張計を用いて測定したところ8.5×10-6/Kであった。またヒートスプレッダ1の表面11のうち溝13で囲まれた領域と、裏面12のうち溝14で囲まれた領域との間の熱伝導率を、レーザーフラッシュ法で測定したところ185W/m・Kであった。
 (加工試験)
 前記ヒートスプレッダ1の膨出部10に、通常の切削工具を用いてネジ穴8を形成する加工をしたところ、基材2に触れて切削工具が破損したりせずに短時間で所定のネジ穴8を形成することができた。
The coefficient of thermal expansion of the region surrounded by the grooves 13 in the surface 11 of the heat spreader 1 was measured using a differential thermal dilatometer to be 8.5 × 10 −6 / K. Further, when the thermal conductivity between the region surrounded by the groove 13 in the front surface 11 of the heat spreader 1 and the region surrounded by the groove 14 in the back surface 12 was measured by the laser flash method, it was 185 W / m · K. there were.
(Processing test)
When the screw hole 8 is formed on the bulging portion 10 of the heat spreader 1 by using a normal cutting tool, the predetermined screw hole can be obtained in a short time without touching the base material 2 and damaging the cutting tool. 8 could be formed.
 〈実施例2〉
 実施例1で使用したのと同形状、同寸法の枠体3と薄板22とをアルミニウムによって一体に形成した形状を有する成形体30を用意した。そして前記成形体30を実施例1で使用したのと同じ薄板26、混合物25、プレス型20、治具23、および上パンチ28と組み合わせたこと以外は実施例1と同様にしてヒートスプレッダ1を製造した。
<Example 2>
A molded body 30 having a shape in which the frame 3 and the thin plate 22 having the same shape and the same dimensions as those used in Example 1 were integrally formed of aluminum was prepared. Then, the heat spreader 1 is manufactured in the same manner as in Example 1 except that the molded body 30 is combined with the same thin plate 26, mixture 25, press die 20, jig 23, and upper punch 28 as used in Example 1. did.
 (外観および切断面の観察)
 前記ヒートスプレッダ1の外観を観察したところ、その表面11のみに、図1ないし図3に示すように溝13が観察された。そこで溝13を跨ぐようにヒートスプレッダ1を切断し、切断面の光学顕微鏡写真を撮影して観察したところ、図11と同様に溝13は内部の基材2の外縁に沿って形成されていることが確認された。また写真から、基材2の外縁2aと溝13の幅方向の断面中の最深点13aとの間の面方向のずれG1を測定したところ0.34mmであった。さらに超音波検査によって基材2の位置を確認した結果からも、溝13は内部の基材2の外縁に沿って形成されていることが確認された。
(External appearance and observation of cut surface)
When the appearance of the heat spreader 1 was observed, grooves 13 were observed only on the surface 11 as shown in FIGS. Therefore, the heat spreader 1 was cut so as to straddle the groove 13, and an optical micrograph of the cut surface was taken and observed. As a result, the groove 13 was formed along the outer edge of the substrate 2 inside as shown in FIG. Was confirmed. Further, from the photograph, the deviation G 1 in the surface direction between the outer edge 2a of the substrate 2 and the deepest point 13a in the cross section in the width direction of the groove 13 was measured and found to be 0.34 mm. Further, from the result of confirming the position of the base material 2 by ultrasonic inspection, it was confirmed that the groove 13 was formed along the outer edge of the internal base material 2.
 またヒートスプレッダ1の表面11のうち溝13で囲まれた領域の熱膨張係数を、示差熱膨張計を用いて測定したところ9.1×10-6/Kであった。またヒートスプレッダ1の表面11のうち溝13で囲まれた領域と、裏面12のうち中央部分との間の熱伝導率を、レーザーフラッシュ法で測定したところ195W/m・Kであった。
 (加工試験)
 前記ヒートスプレッダ1の膨出部10に、通常の切削工具を用いてネジ穴8を形成する加工をしたところ、基材2に触れて切削工具が破損したりせずに短時間で所定のネジ穴8を形成することができた。
Further, the coefficient of thermal expansion of the region surrounded by the groove 13 in the surface 11 of the heat spreader 1 was measured using a differential thermal dilatometer to be 9.1 × 10 −6 / K. Further, the thermal conductivity between the region surrounded by the grooves 13 in the front surface 11 of the heat spreader 1 and the central portion in the rear surface 12 was measured by a laser flash method to be 195 W / m · K.
(Processing test)
When the screw hole 8 is formed on the bulging portion 10 of the heat spreader 1 by using a normal cutting tool, the predetermined screw hole can be obtained in a short time without touching the base material 2 and damaging the cutting tool. 8 could be formed.
 〈比較例1〉
 平均粒径50μmの炭化ケイ素粉末70質量部と、平均粒径10μmの炭化ケイ素粉末30質量部とを樹脂等のバインダと混合した混合物を成形したのち焼成して、横159.7mm×縦69.7mm×厚み2.4mmの矩形平板状で、かつその矩形の長辺側のそれぞれ3箇所から面方向の内方に向けてネジ穴8を形成するための膨出部10に対応する切欠9を有する多孔質体を用意した。
<Comparative example 1>
A mixture obtained by mixing 70 parts by mass of silicon carbide powder having an average particle diameter of 50 μm and 30 parts by mass of silicon carbide powder having an average particle diameter of 10 μm with a binder such as a resin was molded and then fired to obtain a width of 159.7 mm × length of 69. A notch 9 corresponding to a bulging portion 10 for forming a screw hole 8 is formed in a rectangular flat plate shape of 7 mm × thickness 2.4 mm and from the three long sides of the rectangle toward the inner side in the surface direction. A porous body having was prepared.
 そして前記多孔質体を注型用の金型の、前記枠体の立体形状と一致する横180mm×縦90mm×深さ3.0mmのキャビティ内にセットした状態で、融点以上に加熱して溶融させたアルミニウム合金を流し込んで多孔質体に含浸させると共に、その周囲に枠体および被覆層を一体に形成した後、金型から取り出してヒートスプレッダ1を得た。
 前記ヒートスプレッダ1の外観を観察したところ、その表面11および裏面12はいずれも平滑で溝13、14は観察されず、外観から内部の基材2の位置を特定することはできなかった。そこで超音波検査によって基材2の位置を確認したところ、前記基材2が正規の位置からヒートスプレッダ1の面方向に3mm程度ずれていることが確認された。
Then, the porous body is melted by being heated above the melting point in a state where the casting mold is set in a cavity having a width of 180 mm, a length of 90 mm, and a depth of 3.0 mm, which matches the three-dimensional shape of the frame. The cast aluminum alloy was poured to impregnate the porous body, and a frame body and a coating layer were integrally formed around it, and then removed from the mold to obtain a heat spreader 1.
When the appearance of the heat spreader 1 was observed, the front surface 11 and the back surface 12 thereof were both smooth and the grooves 13 and 14 were not observed, and the position of the internal substrate 2 could not be specified from the appearance. Then, when the position of the base material 2 was confirmed by ultrasonic inspection, it was confirmed that the base material 2 was shifted from the regular position by about 3 mm in the surface direction of the heat spreader 1.
 ずれを防止するため、前記多孔質体を実施例1で使用したのと同じ枠体3の環内に嵌め合わせた状態でキャビティ内にセットし、前記キャビティ内に融点以上に加熱して溶融させたアルミニウム合金を流し込んで多孔質体に含浸させ、被覆層を形成すると共に枠体と一体化させた後、金型から取り出してヒートスプレッダ1を得た。そして、超音波検査によって基材2の位置を確認したところ、前記基材2には位置ずれは見られなくなったが、その表面11および裏面12はいずれも平滑で溝13、14は観察されず、外観から内部の基材2の位置を特定することはできなかった。 In order to prevent deviation, the porous body is set in the cavity in a state of being fitted in the ring of the same frame body 3 used in Example 1, and is heated and melted in the cavity to a melting point or higher. The aluminum alloy was poured and impregnated into the porous body to form a coating layer and integrated with the frame, and then removed from the mold to obtain the heat spreader 1. And when the position of the base material 2 was confirmed by ultrasonic inspection, the base material 2 was no longer displaced, but the front surface 11 and the back surface 12 were both smooth and the grooves 13 and 14 were not observed. The position of the internal substrate 2 could not be specified from the appearance.
 〈実施例3〉
 略矩形の平板状で、横50mm×縦50mm×厚み1.5mmのヒートスプレッダ1を、図11ないし図13の製造方法によって製造することとして、下記の各種材料、およびプレス型20等を用意した。
 (基材2)
 銅-モリブデン複合材料からなり、横10mm×縦10mm×厚み0.5mmの略矩形の平板を、前記(4-2)の方法においてタングステンに代えてモリブデンを用いて形成した。銅とモリブデンの比率は質量比で30/70とした。次いで前記平板の表面の全面を銅めっき膜で被覆して基材2を形成した。
<Example 3>
As the heat spreader 1 having a substantially rectangular flat plate shape having a width of 50 mm, a height of 50 mm, and a thickness of 1.5 mm, the following various materials, a press die 20 and the like were prepared.
(Substrate 2)
A substantially rectangular flat plate made of a copper-molybdenum composite material and having a width of 10 mm, a length of 10 mm, and a thickness of 0.5 mm was formed using molybdenum instead of tungsten in the method (4-2). The ratio of copper and molybdenum was 30/70 by mass ratio. Next, the entire surface of the flat plate was covered with a copper plating film to form a substrate 2.
 (枠体3)
 厚みが1.4mm、外周がヒートスプレッダ1の平面形状の外周に一致する横50mm×縦50mmの矩形状、内周が基材2の平面形状の外縁に沿う横10mm×縦10mmの矩形状である環状の枠体3を銅によって一体に形成した。
 (被覆層6、7のもとになる薄板22、26)
 平面形状が前記枠体の内縁に沿う矩形の平板状とされた薄板22、26を銅によって一体に形成した。薄板22、26の厚みは0.5mm、枠体3とのクリアランスは0.1mmに設定した。
(Frame 3)
The thickness is 1.4 mm, the outer periphery is a rectangular shape of 50 mm in width and 50 mm in length that matches the outer periphery of the planar shape of the heat spreader 1, and the inner periphery is a rectangular shape of 10 mm in width and 10 mm in length along the outer edge of the planar shape of the substrate 2. The annular frame 3 was integrally formed of copper.
( Thin plates 22 and 26 on which the coating layers 6 and 7 are based)
The thin plates 22 and 26 whose planar shape was a rectangular flat plate shape along the inner edge of the frame body were integrally formed of copper. The thickness of the thin plates 22 and 26 was set to 0.5 mm, and the clearance with the frame 3 was set to 0.1 mm.
 (プレス型20)
 製造するヒートスプレッダ1の裏面12の平面形状と一致する平面形状とされた底面15を有する下パンチ16と、前記底面15を囲む、ヒートスプレッダ1の側面17の形状と一致する形状とされた内周面18を有するダイ19とを、それぞれステンレス鋼に世って別体に形成した。
(Press die 20)
A lower punch 16 having a bottom surface 15 having a planar shape that matches the planar shape of the back surface 12 of the heat spreader 1 to be manufactured, and an inner peripheral surface that surrounds the bottom surface 15 and has a shape that matches the shape of the side surface 17 of the heat spreader 1. A die 19 having 18 is formed separately from stainless steel.
 (上パンチ32)
 当接面31の平面形状がヒートスプレッダ1の表面11の平面形状と一致する形状とされた上パンチ32をステンレス鋼によって形成した。
 (ヒートスプレッダ1の製造)
 プレス型20の、前記底面15と内周面18とで囲まれた領域21内に、基材2と、前記基材2を囲む環状の枠体3と、前記基材2の表面4および裏面5に重ねられた状態で枠体3に嵌め合わされた2枚の薄板22、26とをセットした。
(Upper punch 32)
The upper punch 32 having a shape in which the planar shape of the contact surface 31 coincides with the planar shape of the surface 11 of the heat spreader 1 was formed of stainless steel.
(Manufacture of heat spreader 1)
In the area 21 surrounded by the bottom surface 15 and the inner peripheral surface 18 of the press die 20, the base material 2, the annular frame 3 surrounding the base material 2, the front surface 4 and the back surface of the base material 2. The two thin plates 22 and 26 fitted on the frame 3 in a state of being overlaid on 5 were set.
 次に、前記枠体3および薄板26上にパンチ32の当接面31を当接させた状態で、前記上パンチ32を下パンチ16の方向に圧力118MPaで押し込んで厚み方向に圧縮成形しながら、プレス型20ごと真空炉中で400℃に加熱した。そして真空炉の加熱を停止して炉内温度が室温まで低下した時点でプレス型20を取り出し、次いで前記プレス型20からヒートスプレッダ1を取り出した。 Next, with the abutment surface 31 of the punch 32 in contact with the frame 3 and the thin plate 26, the upper punch 32 is pressed in the direction of the lower punch 16 at a pressure of 118 MPa while being compression-formed in the thickness direction. The press mold 20 was heated to 400 ° C. in a vacuum furnace. Then, when the heating of the vacuum furnace was stopped and the temperature in the furnace decreased to room temperature, the press die 20 was taken out, and then the heat spreader 1 was taken out from the press die 20.
 (外観および切断面の観察)
 前記ヒートスプレッダの外観を観察したところ、その表面11および裏面12にそれぞれ溝13、14が観察された。そこで溝13、14を跨ぐようにヒートスプレッダ1を切断し、切断面の光学顕微鏡写真を撮影して観察したところ、図15に示すように、溝13(溝14も同様であった)は内部の基材2〔図の左下に縦横の線(基材2と薄板22(26)、枠体3との境界線)で区画された矩形状の領域〕の外縁に沿って形成されていることが確認された。また写真から、基材2の外縁2aと溝13の幅方向の断面中の最深点13aとの間の面方向のずれG1を測定したところ0.21mmであった。さらに超音波検査によって基材2の位置を確認した結果からも、溝13、14は内部の基材2の外縁に沿って形成されていることが確認された。
(External appearance and observation of cut surface)
When the appearance of the heat spreader was observed, grooves 13 and 14 were observed on the front surface 11 and the back surface 12, respectively. Therefore, the heat spreader 1 was cut so as to straddle the grooves 13 and 14, and an optical micrograph of the cut surface was taken and observed. As shown in FIG. 15, the groove 13 (the groove 14 was also the same) was formed inside. It is formed along the outer edge of the base material 2 (rectangular region defined by vertical and horizontal lines (boundary lines between the base material 2 and the thin plate 22 (26) and the frame body 3) in the lower left of the figure). confirmed. Further, from the photograph, the deviation G 1 in the surface direction between the outer edge 2a of the substrate 2 and the deepest point 13a in the cross section in the width direction of the groove 13 was measured and found to be 0.21 mm. Further, from the result of confirming the position of the base material 2 by ultrasonic inspection, it was confirmed that the grooves 13 and 14 were formed along the outer edge of the base material 2 inside.
 またヒートスプレッダ1の表面11のうち溝13で囲まれた領域の熱膨張係数を、示差熱膨張計を用いて測定したところ9.7×10-6/Kであった。またヒートスプレッダ1の表面11のうち溝13で囲まれた領域と、裏面12のうち溝14で囲まれた領域との間の熱伝導率を、レーザーフラッシュ法で測定したところ236W/m・Kであった。 The coefficient of thermal expansion of the region surrounded by the grooves 13 in the surface 11 of the heat spreader 1 was measured using a differential thermal dilatometer to be 9.7 × 10 −6 / K. Further, when the thermal conductivity between the region surrounded by the groove 13 in the front surface 11 of the heat spreader 1 and the region surrounded by the groove 14 in the back surface 12 was measured by the laser flash method, it was 236 W / m · K. there were.

Claims (14)

  1.  平板状の基材と、
     金属または合金からなり基材の面方向の外周を囲んで前記基材と一体化された環状の枠体と、
     前記枠体と同じまたは異なる金属または合金からなり基材の表面および裏面に被覆された薄板状の被覆層と、
    を含む平板状のヒートスプレッダであって、
     前記被覆層と枠体とで構成されるヒートスプレッダの表面および裏面のうち少なくとも一方は、前記表面または裏面の面方向において内部の基材の外縁に沿う溝を有することを特徴とするヒートスプレッダ。
    A flat substrate;
    An annular frame made of metal or alloy and surrounding the outer periphery in the surface direction of the substrate and integrated with the substrate;
    A thin plate-like coating layer made of the same or different metal or alloy as the frame and coated on the front and back surfaces of the base material;
    A flat plate-shaped heat spreader comprising:
    At least one of the front surface and the back surface of the heat spreader composed of the coating layer and the frame has a groove along the outer edge of the internal substrate in the surface direction of the front surface or the back surface.
  2.  基材の熱膨張係数が15×10-6/K以下で、かつ熱伝導率が150W/m・K以上である請求項1に記載のヒートスプレッダ。 2. The heat spreader according to claim 1, wherein the substrate has a thermal expansion coefficient of 15 × 10 −6 / K or less and a thermal conductivity of 150 W / m · K or more.
  3.  基材が、
    (1)  アルミニウム-セラミック複合材料、
    (2)  銅-セラミック複合材料、
    (3)  ケイ素-セラミック複合材料、
    (4)  銅-タングステン複合材料、
    (5)  銅-モリブデン複合材料、
    (6)  タングステン、
    (7)  モリブデン、
    (8)  アルミニウム-ケイ素複合材料、および
    (9)  銅-ダイヤモンド複合材料
    からなる群より選ばれた少なくとも1種からなる請求項1または2に記載のヒートスプレッダ。
    The substrate is
    (1) Aluminum-ceramic composite material,
    (2) Copper-ceramic composite material,
    (3) silicon-ceramic composite material,
    (4) Copper-tungsten composite material,
    (5) Copper-molybdenum composite material,
    (6) Tungsten,
    (7) molybdenum,
    (8) Aluminum-silicon composite material, and
    (9) The heat spreader according to claim 1 or 2, comprising at least one selected from the group consisting of copper-diamond composite materials.
  4.  枠体および被覆層が、アルミニウム、アルミニウム合金、銅、または銅合金からなる請求項1ないし3のいずれか1つに記載のヒートスプレッダ。 The heat spreader according to any one of claims 1 to 3, wherein the frame body and the coating layer are made of aluminum, an aluminum alloy, copper, or a copper alloy.
  5.  厚みが1mm以上である請求項1ないし4のいずれか1つに記載のヒートスプレッダ。 The heat spreader according to any one of claims 1 to 4, wherein the thickness is 1 mm or more.
  6.  溝の幅が0.02mm以上で、かつ深さが0.01mm以上である請求項1ないし5のいずれか1つに記載のヒートスプレッダ。 The heat spreader according to any one of claims 1 to 5, wherein the groove has a width of 0.02 mm or more and a depth of 0.01 mm or more.
  7.  基材がアルミニウム-セラミック複合材料、またはアルミニウム-ケイ素複合材料からなり、枠体および被覆層がアルミニウムまたはアルミニウム合金からなる、請求項1ないし6のいずれか1つに記載のヒートスプレッダを製造するための製造方法であって、
     ヒートスプレッダの平面形状と一致する平面形状とされた底面を有する下パンチと、前記底面を囲む、ヒートスプレッダの側面の形状と一致する形状とされた内周面を有するダイとを含むプレス型の前記底面と内周面とで囲まれた領域に、環状の枠体と、前記枠体との嵌め合い部に所定のクリアランスを有し、枠体に嵌め合わされて基材の表面または裏面のうちの一方を被覆する被覆層となる薄板とをセットするか、または前記枠体と薄板とを一体化した形状を有する成形体をセットする工程と、
     セットした前記枠体または成形体上に、枠体と同じ平面形状を有する環状の治具をセットする工程と、
     前記薄板と枠体と治具、または成形体と治具とで囲まれた領域に、アルミニウムまたはアルミニウム合金の粉末とセラミック粉末との混合物、またはアルミニウムまたはアルミニウム合金の粉末とケイ素粉末との混合物を充填する工程と、
     前記混合物上に、枠体との嵌め合い部に所定のクリアランスを有し、前記枠体に嵌め合わされて基材の表面または裏面のうち他方を被覆する被覆層となる薄板を重ねた状態で、ヒートスプレッダの厚み方向に圧縮成形して圧縮成形体を得る工程と、
     前記圧縮成形体をアルミニウムまたはアルミニウム合金の融点以下の温度で焼成する工程と、
    を含むことを特徴とするヒートスプレッダの製造方法。
    7. The heat spreader according to claim 1, wherein the substrate is made of an aluminum-ceramic composite material or an aluminum-silicon composite material, and the frame and the covering layer are made of aluminum or an aluminum alloy. A manufacturing method comprising:
    The bottom surface of the press die including a lower punch having a bottom surface having a planar shape that matches the planar shape of the heat spreader, and a die having an inner peripheral surface that surrounds the bottom surface and that has a shape that matches the shape of the side surface of the heat spreader. In the region surrounded by the inner peripheral surface, the annular frame body has a predetermined clearance at the fitting portion between the frame body and is fitted to the frame body to be one of the front surface or the back surface of the base material A step of setting a thin plate to be a coating layer that covers the surface, or setting a molded body having a shape in which the frame and the thin plate are integrated;
    A step of setting an annular jig having the same planar shape as the frame on the set frame or molded body;
    A mixture of aluminum or aluminum alloy powder and ceramic powder or a mixture of aluminum or aluminum alloy powder and silicon powder is formed in the region surrounded by the thin plate, frame and jig, or molded body and jig. Filling, and
    On the mixture, in a state where a predetermined clearance is provided at a fitting portion with a frame body, and a thin plate that is fitted to the frame body and serves as a covering layer that covers the other of the front surface and the back surface of the base material is overlapped, A step of compression molding in the thickness direction of the heat spreader to obtain a compression molded body,
    Firing the compression-molded body at a temperature below the melting point of aluminum or aluminum alloy;
    The manufacturing method of the heat spreader characterized by including.
  8.  圧縮成形体をプレス型から取り出した後に焼成する請求項7に記載のヒートスプレッダの製造方法。 The method for producing a heat spreader according to claim 7, wherein the compression molded body is fired after being taken out of the press die.
  9.  薄板の厚みが0.05mm以上である請求項7または8に記載のヒートスプレッダの製造方法。 The method of manufacturing a heat spreader according to claim 7 or 8, wherein the thin plate has a thickness of 0.05 mm or more.
  10.  枠体と薄板の嵌め合い部のクリアランスが0.05mm以上である請求項7ないし9のいずれか1つに記載のヒートスプレッダの製造方法。 The method for manufacturing a heat spreader according to any one of claims 7 to 9, wherein the clearance between the fitting portion of the frame and the thin plate is 0.05 mm or more.
  11.  圧縮成形時の圧力が98MPa以上、686MPa以下である請求項7ないし10のいずれか1つに記載のヒートスプレッダの製造方法。 The method for producing a heat spreader according to any one of claims 7 to 10, wherein the pressure at the time of compression molding is 98 MPa or more and 686 MPa or less.
  12.  枠体および被覆層が銅または銅合金からなる、請求項1ないし6のいずれか1つに記載のヒートスプレッダを製造するための製造方法であって、
     基材を作製する工程と、
     前記基材の表面を銅めっきする工程と、
     ヒートスプレッダの平面形状と一致する平面形状とされた底面を有する下パンチと、前記底面を囲む、ヒートスプレッダの側面の形状と一致する形状とされた内周面を有するダイとを含むプレス型の前記底面と内周面とで囲まれた領域に、
    (a)  前記基材と、基材を囲む環状の枠体と、前記枠体との嵌め合い部に所定のクリアランスを有し、前記基材の表面および裏面に重ねられた状態で枠体に嵌め合わされて被覆層となる2枚の薄板とをセットするか、または
    (b)  前記基材と、前記枠体と一方の薄板とを一体化した形状を有する成形体と、前記枠体との嵌め合い部に所定のクリアランスを有し、前記基材の表面または裏面に重ねられた状態で枠体に嵌め合わされて被覆層となる他方の薄板とをセットする工程と、
     前記各部をヒートスプレッダの厚み方向に圧縮成形しながら銅または銅合金の融点以下の温度で熱処理する工程と、
    を含むことを特徴とするヒートスプレッダの製造方法。
    The manufacturing method for manufacturing a heat spreader according to any one of claims 1 to 6, wherein the frame and the coating layer are made of copper or a copper alloy.
    Producing a substrate;
    A step of copper plating the surface of the substrate;
    The bottom surface of the press die including a lower punch having a bottom surface having a planar shape that matches the planar shape of the heat spreader, and a die having an inner peripheral surface that surrounds the bottom surface and that has a shape that matches the shape of the side surface of the heat spreader. In the area surrounded by the inner peripheral surface,
    (a) The base material, an annular frame surrounding the base material, and a fitting portion between the frame body have a predetermined clearance, and the frame body is overlaid on the front surface and the back surface of the base material. Set two thin plates that are fitted together to form a coating layer, or
    (b) The base material, a molded body having a shape in which the frame body and one thin plate are integrated, and a fitting portion between the frame body and a predetermined clearance, and a front surface or a back surface of the base material A step of setting the other thin plate that is fitted to the frame body to be a covering layer in a state of being overlaid on,
    A step of heat-treating each part at a temperature below the melting point of copper or copper alloy while compression-molding each part in the thickness direction of the heat spreader;
    The manufacturing method of the heat spreader characterized by including.
  13.  薄板の厚みが0.05mm以上である請求項12に記載のヒートスプレッダの製造方法。 The method of manufacturing a heat spreader according to claim 12, wherein the thickness of the thin plate is 0.05 mm or more.
  14.  枠体と薄板の嵌め合い部のクリアランスが0.05mm以上である請求項12または13に記載のヒートスプレッダの製造方法。 The method of manufacturing a heat spreader according to claim 12 or 13, wherein the clearance between the fitting portion of the frame and the thin plate is 0.05 mm or more.
PCT/JP2009/000414 2008-02-06 2009-02-03 Heat spreader, and method for manufacturing the same WO2009098865A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009521662A JP4382154B2 (en) 2008-02-06 2009-02-03 Heat spreader and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008026827 2008-02-06
JP2008-026827 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009098865A1 true WO2009098865A1 (en) 2009-08-13

Family

ID=40951945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000414 WO2009098865A1 (en) 2008-02-06 2009-02-03 Heat spreader, and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP4382154B2 (en)
WO (1) WO2009098865A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182385A1 (en) * 2014-05-29 2015-12-03 株式会社アライドマテリアル Heat spreader and process for producing same
JP2016100431A (en) * 2014-11-20 2016-05-30 三菱マテリアル株式会社 Method for manufacturing joined body, method for manufacturing heat sink-equipped power module substrate, method for manufacturing heat sink, joined body, heat sink-equipped power module substrate, and heat sink
JP2016100430A (en) * 2014-11-20 2016-05-30 三菱マテリアル株式会社 Method for manufacturing joined body, method for manufacturing heat sink-equipped power module substrate, method for manufacturing heat sink, joined body, heat sink-equipped power module substrate, and heat sink
EP3206227A4 (en) * 2014-10-09 2017-10-25 Superufo291 Tec Heat dissipation substrate and method for manufacturing said heat dissipation substrate
CN109673137A (en) * 2019-01-09 2019-04-23 深圳兴奇宏科技有限公司 Heat-sink unit
JP6871524B1 (en) * 2020-03-23 2021-05-12 千住金属工業株式会社 Laminated bonding materials, semiconductor packages and power modules
WO2022230697A1 (en) * 2021-04-28 2022-11-03 千住金属工業株式会社 Layered bonding material, semiconductor package, and power module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299532A (en) * 2001-04-02 2002-10-11 Hitachi Metals Ltd Al-SiC BASED COMPOUND MATERIAL AND HEAT RADIATION COMPONENT
JP2003204022A (en) * 2002-01-10 2003-07-18 Denki Kagaku Kogyo Kk Heat radiating component
WO2007080701A1 (en) * 2006-01-13 2007-07-19 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum/silicon carbide composite and heat radiation part making use of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299532A (en) * 2001-04-02 2002-10-11 Hitachi Metals Ltd Al-SiC BASED COMPOUND MATERIAL AND HEAT RADIATION COMPONENT
JP2003204022A (en) * 2002-01-10 2003-07-18 Denki Kagaku Kogyo Kk Heat radiating component
WO2007080701A1 (en) * 2006-01-13 2007-07-19 Denki Kagaku Kogyo Kabushiki Kaisha Aluminum/silicon carbide composite and heat radiation part making use of the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182385A1 (en) * 2014-05-29 2015-12-03 株式会社アライドマテリアル Heat spreader and process for producing same
CN106460191A (en) * 2014-05-29 2017-02-22 联合材料公司 Heat spreader and process for producing same
JPWO2015182385A1 (en) * 2014-05-29 2017-04-20 株式会社アライドマテリアル Heat spreader
US10215512B2 (en) 2014-05-29 2019-02-26 A.L.M.T. Corp. Heat spreader and method for manufacturing the same
EP3206227A4 (en) * 2014-10-09 2017-10-25 Superufo291 Tec Heat dissipation substrate and method for manufacturing said heat dissipation substrate
US10115655B2 (en) 2014-10-09 2018-10-30 Superufo291 Tec Heat dissipation substrate and method for producing heat dissipation substrate
JP2016100431A (en) * 2014-11-20 2016-05-30 三菱マテリアル株式会社 Method for manufacturing joined body, method for manufacturing heat sink-equipped power module substrate, method for manufacturing heat sink, joined body, heat sink-equipped power module substrate, and heat sink
JP2016100430A (en) * 2014-11-20 2016-05-30 三菱マテリアル株式会社 Method for manufacturing joined body, method for manufacturing heat sink-equipped power module substrate, method for manufacturing heat sink, joined body, heat sink-equipped power module substrate, and heat sink
CN109673137A (en) * 2019-01-09 2019-04-23 深圳兴奇宏科技有限公司 Heat-sink unit
CN109673137B (en) * 2019-01-09 2024-03-15 深圳兴奇宏科技有限公司 Heat radiation unit
JP6871524B1 (en) * 2020-03-23 2021-05-12 千住金属工業株式会社 Laminated bonding materials, semiconductor packages and power modules
JP2021150559A (en) * 2020-03-23 2021-09-27 千住金属工業株式会社 Laminate bonding material, semiconductor package, and power module
WO2021193420A1 (en) * 2020-03-23 2021-09-30 千住金属工業株式会社 Layered bonding material, semiconductor package, and power module
KR20220123723A (en) * 2020-03-23 2022-09-08 센주긴조쿠고교 가부시키가이샤 Laminate bonding materials, semiconductor packages and power modules
KR102454265B1 (en) 2020-03-23 2022-10-14 센주긴조쿠고교 가부시키가이샤 Laminate bonding materials, semiconductor packages and power modules
TWI807282B (en) * 2020-03-23 2023-07-01 日商千住金屬工業股份有限公司 Multilayer bonding materials, semiconductor packages and power modules
US11712760B2 (en) 2020-03-23 2023-08-01 Senju Metal Industry Co., Ltd. Layered bonding material, semiconductor package, and power module
WO2022230697A1 (en) * 2021-04-28 2022-11-03 千住金属工業株式会社 Layered bonding material, semiconductor package, and power module

Also Published As

Publication number Publication date
JPWO2009098865A1 (en) 2011-05-26
JP4382154B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP4382154B2 (en) Heat spreader and manufacturing method thereof
JP4761157B2 (en) Aluminum-silicon carbide composite
US7993728B2 (en) Aluminum/silicon carbide composite and radiating part comprising the same
WO2010007922A1 (en) Aluminum-diamond composite and method for producing the same
JP6115900B2 (en) Heat spreader
EP2017886A1 (en) Aluminum-silicon carbide composite body and method for processing the same
JP5759902B2 (en) Laminate and method for producing the same
JP2006100770A (en) Manufacturing method of substrate base plate, substrate base plate and substrate using base plate
TWI669386B (en) Composite and manufacturing method thereof
EP3920215B1 (en) Heat-dissipating member and manufacturing method for same
JP3548991B2 (en) Heat dissipating substrate and manufacturing method thereof
JP4999983B2 (en) Heat spreader and manufacturing method thereof
JP4435868B1 (en) Heat spreader and manufacturing method thereof
JP7116690B2 (en) Heat dissipation member and manufacturing method thereof
JP4674999B2 (en) Integrated ceramic circuit board manufacturing method
JP2003046032A (en) Copper composite material heat-radiating board, semiconductor power module and manufacturing method therefor
JP3871599B2 (en) Structure
JP5198982B2 (en) Heat spreader and manufacturing method thereof
JP3732193B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2010177324A (en) Method of manufacturing heat spreader
JP2023055311A (en) Method of manufacturing heat dissipation member
JP2001291809A (en) Heat radiating component
JP2012064887A (en) Manufacturing method of heat sink
JP4349739B2 (en) Base plate integrated ceramic circuit board and its manufacturing method
JP2012049325A (en) Heat spreader and manufacturing method of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009521662

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707265

Country of ref document: EP

Kind code of ref document: A1