WO2009098180A1 - Method for guiding a torpedo attack - Google Patents
Method for guiding a torpedo attack Download PDFInfo
- Publication number
- WO2009098180A1 WO2009098180A1 PCT/EP2009/051145 EP2009051145W WO2009098180A1 WO 2009098180 A1 WO2009098180 A1 WO 2009098180A1 EP 2009051145 W EP2009051145 W EP 2009051145W WO 2009098180 A1 WO2009098180 A1 WO 2009098180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- torpedo
- target
- torpedoes
- spectra
- sonar
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B19/00—Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
- F42B19/01—Steering control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/28—Arrangement of offensive or defensive equipment
- B63G8/32—Arrangement of offensive or defensive equipment of torpedo-launching means; of torpedo stores or handlers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/801—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/802—Systems for determining direction or deviation from predetermined direction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/82—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves with means for adjusting phase or compensating for time-lag errors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/84—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves with indication presented on cathode-ray tubes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
- G01S5/20—Position of source determined by a plurality of spaced direction-finders
Definitions
- the invention relates to a method for conducting a torpedo attack launched from a platform, in particular from a submarine, according to the preamble of claim 1.
- a target complex is targeted with a platform sonar installed on the platform, and the positions of the torpedo starting at the target complex, together with the bearing line to the target complex, are continuously displayed in a combat position display.
- the single-target bearings of the torpedo-ons of the torpedoes approaching the target complex are represented as bearing beams emanating from the current torpedo position.
- Signals from target bearings of a torpedo-sonar are compared with the signals of the boron-sonar or a torpedo-sonar of another torpedo, and if coincident, a signal tag is displayed in association with at least one of the bearing beams.
- signals received from target locations of two torpedo-onsignals are compared with one another at the central station.
- the signals can be processed in a variety of ways and represented, for example, as spectra or partial spectra of the signals or as demodulated partial spectra.
- the target mark is displayed at the intersection of the two outgoing beams emanating from the positions of the torpedoes.
- the battle position indicator allows a decision as to which of the two torpedoes should attack the target and which is excluded from the attack.
- the decision is made by the operator in the control center, who activates the torpedo by releasing the self-steering for attack.
- the invention is based on the object in a torpedo attack with a large number of torpedoes, which are fired at a targeted target complex, to continuously give the operator an easily manageable and traceable overview of the individual objectives covered by the torpedo so that the operator can assign a single target for each Monitor the torpedo and, if necessary, correct it by manual intervention.
- the method according to the invention has the advantage of providing the operator with an aid for controlling the fired torpedoes in a torpedo attack on a target complex with a cluster of torpedoes and each of the torpedoes having its own target within the target complex assign.
- the usual battle situation representation is by the continuous display of the current positions of the torpedoes along with the torpedo-onarial target sightings, the battlefield at launch of a torpedo salvo very confusing.
- the correlation maximum as a measure for the existing match of the torpedo spectra will result in the measure "1" for the autocorrelation.
- the correlation maximum of the cross correlation will be close to "1" and close to "0" if the match is low or not
- Correlation function and the display of the correlation maximum the operator can easily distinguish whether a target is assigned to only one torpedo or two or more torpedoes start the same target. The operator can intervene and release the self-steering of both torpedoes, if the torpedoes have understood different goals, or at Conceiving the same objective, one Torpedo on the target and assign the other Torpedo another destination.
- target bearings are displayed as the bearing angle ⁇ associated symbols and displayed the symbol for the destination assigned targeting in the color characteristic of the torpedo.
- the assigned targeting is clarified which of the target bearings of the torpedo son represents the goal assigned to the torpedo, thus representing the target contact of the torpedo, and which torpedo spectrum in the sum spectrogram or sum sonogram belongs to the target contact of the respective torpedo.
- FIG. 2 shows a block diagram of a control unit installed on a platform, connected to the torpedoes of the torpedo cluster via data lines,
- FIG. 1 schematically shows a scenario of a torpedo attack with a cluster of four torpedoes 11 on a target complex consisting of six individual targets 12 at a time before the torpedoes 11 are released on self-steering with so-called homing in plan view shown.
- the torpedoes 11 are designated by the letters A, B, C and D and the targets by Z1, Z2, Z3, Z4, Z5 and Z6.
- the four torpedoes 11 have been launched at a great distance from the target complex of a platform, such as a submarine, towards the target complex.
- the target complex had previously been passively sighted by a Bordsonar installed on the platform, with the bearing capturing the acoustic focus of the target complex.
- All torpedoes 11 are equipped with a torpedo sonar 13, which receive directionally selective target noise in a known manner and the receiving direction of the target noise as a bearing angle ⁇ , measured against the torpedo axis, deliver.
- the torpedo sonar 13 is connected via a data line 14, preferably a glass fiber, to a central station 15 installed on the platform. From the center 15 of the torpedo attack is controlled and monitored. As is not further illustrated in the block diagram of FIG.
- an operator has the option of influencing the steering of the torpedoes 11 by means of steering signals transmitted via the data line 14 and switching the torpedoes 11 to self-steering after destination assignment, after which the torpedoes with the aid of their torpedo sonar 13 autonomously start the assigned destination.
- the torpedo-sonars 13 form directional characteristics under predetermined receiving directions, so-called preformed beams, and are able to simultaneously grasp and aim several targets within reach of the torpedo sonar 13. If these targets lie in different beams of the torpedo-sonar 13, then they can be separated from one another directionally and a destination direction, the so-called bearing angle ⁇ , can be assigned to each target.
- preformed beams so-called preformed beams
- the target complex consisting of six targets 12 is detected by the torpedo nacelles 13 of the four torpedoes 11, the torpedo sonar 13 of the torpedo A, the targets Zl to Z4 under four different bearing angles ⁇ , the torpedo B, the targets Z2, Z3, Z4 and Z5 under four different bearing angles ⁇ , the torpedo C, the targets Z3, Z4 and Z5 under two different bearing angles ⁇ and the torpedo D, the targets Z5 and Z6 at two different bearing angles ⁇ .
- the target bearings are shown in Fig. 1 by DF beams.
- the bearing angles of the torpedo sonar 13 of the torpedo C are represented as representative of the bearing angles ⁇ of the torpedo-sonar.
- the target Z3 is aimed at the bearing angle - ⁇ c3, the target Z4 at the bearing angle - ⁇ C 4, and the target Z5 at the bearing angle + ⁇ C s.
- the bearing angles ⁇ of the torpedo-sonar 13 of torpedo A would carry the indices A1 to A4, of torpedo B the indices B2 to B5 and of torpedo D the indices D5 and D6.
- the target bearings of the torpedo-sonars 13 are transmitted via the data lines 14 to the "target bearings" block 16 in the central station 15.
- the target bearings are graphically processed into an analysis image for the torpedo 11.
- These analysis images of the torpedoes 11 are shown in FIG 1 is shown by way of example in Fig. 1.
- the analysis images are presented on a screen 20 to the operator.
- the target bearings of the torpedo-sonars 13 for each torpedo A to D are shown in association with the bearing angle ⁇ with a circle symbol.
- the torpedo sonar 13 of the torpedo A aims at targets the bearing angle ⁇ of -20 °, -12.5 °, 0 ° and + 12.5 ° and the torpedo sonar 13 of the torpedo D at the bearing angles ⁇ of -7.5 ° and + 10 °.
- the operator assigns each torpedo 11 one of the six targeted targets 12.
- Each assigned target 12 receives a changed symbol in the analysis image by the assignment, in the example of FIG. 3 a square.
- each torpedo 11 is assigned a characteristic color.
- the square symbol representing the assigned target is assigned the color associated with the respective torpedo 11. This is symbolically indicated in Fig. 3 with the color information "GREEN”, “RED”, “YELLOW”, “BLUE”.
- the target noises perceived by the connected targets 12 are transmitted via the data lines 14 to the central station 15.
- the target noises of the individual torpedo sonars 13 are pre-processed and demodulated, and in the "DEMON analysis” block the spectra of the demodulated target noises are formed.
- the envelope or envelope of the target noise delivered by the torpedo-sonar 13 is examined with regard to its frequency content and the frequency spectrum is calculated.
- An example of a DEMON analysis circuit can be found in EP 0 213 541 B1.
- Each spectrum is superimposed on the color characteristic of the torpedo 11 and the colored spectrum is output as a torpedo spectrum.
- All torpedo spectra are combined into a summation spectrogram or sum sonogram, in which the different colored spectral lines of all torpedo spectra are contained.
- the targets 11 of a target complex have distinguishable target noise frequencies, which is usually the case for ship consoles composed of different types of ships, and the torpedoes 11 are each assigned only one target 12, the coloration makes the various torpedo spectra clearly distinguishable from one another.
- the summation spectrogram calculated in successive time points is visualized in chronological succession on the screen 20 in a so-called waterfall representation, wherein the sum spectra calculated over a certain period of time at successive times are simultaneously visible on the screen 20.
- the operator immediately recognizes, on the basis of this type of representation of the target noise spectra, whether optimum guidance of the torpedoes has been carried out or not.
- FIG. 4 shows in simplified form a summation spectrogram of the four torpedo spectra at a specific point in time, with only the spectral lines of the fundamental frequencies of the torpedo spectra being shown for the sake of clarity.
- the colors of all four torpedoes 11 are represented and belong to different frequencies. So the torpedo A (GREEN) is on a target with the fundamental frequency fi, the torpedo B (RED) is switched to a target with the frequency f 3 , the torpedo C (YELLOW) to a target with the fundamental frequency f 4 and the torpedo D (BLUE) to a target with the fundamental frequency f 5 .
- GREEN GREEN
- RED torpedo B
- YELLOW torpedo C
- BLUE torpedo D
- each torpedo spectrum is correlated with itself and with the remaining torpedo spectra at block 19 "Correlation.”
- the autocorrelation maxima and cross correlation maxima are determined and displayed on the screen in association with the respective torpedo 11 in the analysis image, such as this is schematized in Fig. 3.
- the torpedo spectrum green
- the autocorrelation function always giving the measure "1".
- the autocorrelation maximum is shown in the analysis image of the torpedo A in the corresponding size in association with the target symbol in the color "green" at the bearing angle ⁇ Since these torpedo spectra do not match the torpedo spectra of torpedo A, the measure of the cross-correlation function will be close to "0", in any event being significantly less than the autocorrelation function of the torpedo spectrum of torpedo A.
- This three cross-correlation maxima are in the analysis image of the torpedo A respectively with a size corresponding to their size each represented in the color on the bearing angle ⁇ , which corresponds to the color of each used for cross-correlation torpedo spectrum of the other torpedo.
- the three cross-correlation functions are displayed in the size of the respectively determined correlation maximum in the colors "red”, “yellow” and "blue” on the symbol for the target "GREEN”.
- the torpedo spectra of the torpedoes B, C and D are correlated with themselves and with the other torpedo spectra and the correlation maxima are displayed in the same way.
- the cross-correlation of the torpedo spectrum of the torpedo B (ROT) with the torpedo spectrum of the torpedo C (YELLOW) results in a
- Cross correlation function whose correlation maximum is only slightly smaller than "1", since the two torpedo spectra largely coincide
- the cross correlation maximum is about the same size as the autocorrelation maximum and is shown in the analysis image of the torpedo B in the color of the torpedo C, ie "yellow".
- YELLOW the torpedo spectrum of the torpedo C
- RED the torpedo spectrum of the torpedo B
- Cross correlation maximum which is close to "1" and thus in the analysis image of the torpedo C is shown in about the same size as the autocorrelation maximum of the torpedo spectrum of the torpedo C.
- the cross correlation maximum is shown in the color "red" of the torpedo B.
- the cross-correlation maxima of the cross-correlation function of the torpedo spectra of torpedoes C and B appear in the color "red.”
- Fig. 4a in this constellation the assignment is missing of targets 12 and torpedoes 11 in the sum spectrogram spectral lines with the color "red” and “yellow”, and at a frequency f 4 occurs a spectral line with a mixed color here "orange” on.
- the operator also recognizes in the summing spectrogram that the two torpedoes B (RED) and C (YELLOW) are assigned to the same target.
- the symbol entered under this bearing angle is now converted from a circle into a quadrilateral and displayed in "RED.”
- the sum spectrogram in FIG. 4a thus changes in the manner illustrated in FIG Summing Spectrogram illustrates that each torpedo 11 now has its own destination assigned to it, and the torpedo B and Torpedo C torpedo spectra cross-correlation function would give a cross-correlation maximum close to "0" because the target noise is no longer consistent.
- the summation spectrogram shown in simplified form in FIG. 4b would correspond to a combat situation in which the target Z1 is the torpedo A, the target Z3 the torpedo B, the target Z4 the torpedo C and the target the torpedo D. Assigned to Z5. The goals Z2 and Z6 are not combated for lack of further torpedoes 11.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Acoustics & Sound (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
A method is provided for guiding a torpedo attack initiated from a platform, in particular a submarine boat, said attack comprising a group of multiple torpedoes (11) aimed at a target complex, each of said torpedoes carrying a torpedo sonar (13), wherein directionally-selective target noises received by the torpedo sonars (13) are sent to the control center (15) and represented there as spectra, and wherein battle targets are assigned to the individual torpedoes (11) by the control center (15). In order to provide the operator with an easy-to-follow and trackable overview of the battle situation with regard to the individual targets acquired by the torpedoes (11) so that he can monitor and correct individual assignments for each torpedo (11), an arbitrary target noise out of all the target noises received in a directionally-selective manner by the torpedo sonar (13) of the torpedo (11) is selected for target assignment, and the spectrum of the selected target noise is represented as a torpedo spectrogram in a color characteristic for the torpedo (11). The torpedo spectra of all torpedoes (11) are represented in a common spectrogram which is continuously updated.
Description
VERFAHREN ZUM LEITEN EINES TORPEDOANGRIFFS METHOD FOR LEADING A TORPEDO ATTACK
Die Erfindung betrifft ein Verfahren zum Leiten eines von einer Plattform, insbesondere von einem U-Boot, aus gestarteten Torpedoangriffs nach dem Oberbegriff des Anspruchs 1.The invention relates to a method for conducting a torpedo attack launched from a platform, in particular from a submarine, according to the preamble of claim 1.
Bei einem bekannten Torpedo-Leitverfahren dieser Art (EP 0 115 044 Bl) wird mit einem auf der Plattform installierten Bordsonar ein Zielkomplex gepeilt und die Positionen der den Zielkomplex anlaufenden Torpedos zusammen mit der Peillinie zum Zielkomplex fortlaufend in einer Gefechtslageanzeige dargestellt. Die Einzelzielpeilungen der Torpedosonare der den Zielkomplex anlaufenden Torpedos werden als von der momentanen Torpedoposition ausgehende Peilstrahlen dargestellt. Signale aus Zielpeilungen eines Torpedosonars werden mit den Signalen des Bordsonars oder eines Torpedosonars eines weiteren Torpedos verglichen, und bei Übereinstimmung wird eine Signalmarke in Zuordnung zu mindestens einen der Peilstrahlen dargestellt. Dadurch werden in der Gefechtslageanzeige dem Bediener wertvolle Erkenntnisse über die Struktur des Zielkomplexes und die Positionen der Torpedos gegeben, so dass er Entscheidungen für die Gestaltung des Torpedoangriffs leichter treffen kann. Um zu verhindern, dass zwei oder mehrere Torpedos das gleiche Ziel anlaufen, werden aus Zielpeilungen zweier Torpedosonare empfangene Signale in der Zentrale miteinander verglichen.
Für den Vergleich können die Signale in vielfältiger Weise verarbeitet und zum Beispiel als Spektren oder Teilspektren der Signale oder als demodulierte Teilspektren dargestellt werden. In der Gefechtslageanzeige wird - wenn eine Übereinstimmung der Signale festgestellt wird - die Zielmarke am Schnittpunkt der beiden von den Positionen der Torpedos ausgehenden Peilstrahlen dargestellt. Damit erlaubt die Gefechtslageanzeige eine Entscheidung, welche der beiden Torpedos das Ziel angreifen soll und welcher von dem Angriff ausgeschlossen wird. Die Entscheidung wird von dem Bediener in der Zentrale getroffen, der den Torpedo durch Freigabe dessen Eigenlenkung zum Angriff aktiviert.In a known torpedo guidance method of this type (EP 0 115 044 B1), a target complex is targeted with a platform sonar installed on the platform, and the positions of the torpedo starting at the target complex, together with the bearing line to the target complex, are continuously displayed in a combat position display. The single-target bearings of the torpedo-ons of the torpedoes approaching the target complex are represented as bearing beams emanating from the current torpedo position. Signals from target bearings of a torpedo-sonar are compared with the signals of the boron-sonar or a torpedo-sonar of another torpedo, and if coincident, a signal tag is displayed in association with at least one of the bearing beams. This gives the operator valuable insight into the structure of the target complex and the positions of the torpedoes in the battlefield display, so that he can make decisions for the design of the torpedo attack easier. In order to prevent two or more torpedoes from starting at the same destination, signals received from target locations of two torpedo-onsignals are compared with one another at the central station. For the comparison, the signals can be processed in a variety of ways and represented, for example, as spectra or partial spectra of the signals or as demodulated partial spectra. In the battle position display, if a match of the signals is detected, the target mark is displayed at the intersection of the two outgoing beams emanating from the positions of the torpedoes. Thus, the battle position indicator allows a decision as to which of the two torpedoes should attack the target and which is excluded from the attack. The decision is made by the operator in the control center, who activates the torpedo by releasing the self-steering for attack.
Der Erfindung liegt die Aufgabe zugrunde bei einem Torpedoangriff mit einer Vielzahl von Torpedos, die auf einen gepeilten Zielkomplex abgeschossen sind, dem Bediener fortlaufend eine leicht überschaubare und verfolgbare Übersicht über die von den Torpedosonaren aufgefassten Einzelziele zu geben, so dass der Bediener eine Einzelzielzuweisung für jeden Torpedo überwachen und ggf. durch manuellen Eingriff korrigieren kann.The invention is based on the object in a torpedo attack with a large number of torpedoes, which are fired at a targeted target complex, to continuously give the operator an easily manageable and traceable overview of the individual objectives covered by the torpedo so that the operator can assign a single target for each Monitor the torpedo and, if necessary, correct it by manual intervention.
Die Aufgabe ist erfindungsgemäß durch die Merkmale im Anspruch 1 gelöst.The object is achieved by the features in claim 1.
Das erfindungsgemäße Verfahren hat den Vorteil, dass dem Bediener ein Hilfsmittel an die Hand gegeben ist, um bei einem von ihm überwachten Torpedoangriff auf einen Zielkomplex mit einem Pulk von Torpedos die abgefeuerten Torpedos unter Kontrolle zu halten und jedem der Torpedos ein eigenes Ziel innerhalb des Zielkomplexes zuzuweisen. Mit der bisher üblichen Gefechtslagedarstellung wird durch die fortlaufende Anzeige der momentanen Positionen der Torpedos
zusammen mit den von den Torpedosonaren aufgefassten Zielpeilungen die Gefechtslage bei Abschuß einer Torpedosalve sehr unübersichtlich. Durch Verzicht auf eine solche Darstellung und durch die erfindungsgemäße Einführung einer fortlaufenden, farbigen Wiedergabe der ausgewählten Zielgeräusche als sog. Torpedospektren über die Zeit des Torpedoangriffs in einer sog. Wasserfalldarstellung wird für den Bediener leicht erkennbar, welche Spektren sich deutlich unterscheiden und damit eindeutige Zuordnungen der Torpedos zu je einem Ziel des Zielkomplexes bestehen. Bilden sich in dem gemeinsamen Spektrogramm aller Torpedospektren, auch Summensonogramm genannt, Mischfarben, die von den den Torpedos zugeordneten Farben abweichen, so lässt dies erkennen, dass zwei oder mehrere Torpedos auf dasselbe Einzelziel aufgeschaltet sind, und der Bediener nunmehr korrigierend eingreifen muss. Aufgrund der noch kurz vor der eigentlichen Angriffsphase, dem sog. homing, vornehmbaren Paarungen von jeweils einem Torpedo mit jeweils einem Ziel und der Möglichkeit der schnellen Korrektur einer falschen Paarung wird ein optimaler Bekämpfungseinsatz mit einem Optimum an Ausnutzung der verfügbaren Kampfkraft gewährleistet. Gegenüber bekannten Verfahren wird der Wirkungsgrad des Waffeneinsatzes deutlich erhöht und die taktische Bindung der Plattform zeitlich wesentlich verkürzt, so dass von dieser bereits der nächste Angriff vorbereitet werden kann. Alle Torpedos können von einer einzigen Bedienkonsole aus überwacht und geführt werden.The method according to the invention has the advantage of providing the operator with an aid for controlling the fired torpedoes in a torpedo attack on a target complex with a cluster of torpedoes and each of the torpedoes having its own target within the target complex assign. With the usual battle situation representation is by the continuous display of the current positions of the torpedoes along with the torpedo-onarial target sightings, the battlefield at launch of a torpedo salvo very confusing. By dispensing with such a representation and by the introduction according to the invention of a continuous, colored reproduction of the selected target noises as so-called torpedo spectra over the time of the torpedo attack in a so-called waterfall representation, it is easily recognizable to the operator which spectrums differ significantly and thus unambiguous assignments Torpedoes each consist of a target of the target complex. Forming in the common spectrogram of all torpedo spectra, also called sum sonograms, mixed colors that deviate from the colors assigned to the torpedoes, this shows that two or more torpedoes are connected to the same individual target and the operator now has to take corrective action. Due to the shortly before the actual attack phase, the so-called homing, vornehmbaren pairings of one torpedo each with a goal and the ability to quickly correct a false pairing optimal combat use is guaranteed with an optimum use of the available combat power. Compared to known methods, the efficiency of the use of weapons is significantly increased and the tactical binding of the platform significantly shortened in time, so that the next attack can be prepared by this already. All torpedoes can be monitored and guided from a single control panel.
Zweckmäßige Ausführungsformen des erfindungsgemäßen Verfahrens mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen .
Gemäß einer vorteilhaften Ausgestaltung des Verfahrens werden alle Torpedospektren einer Kreuzkorrelation und einer Autokorrelation unterzogen und jeweils das Korrelationsmaximum bestimmt und dargestellt. Das Korrelationsmaximum als Maß für die bestehende Übereinstimmung der Torpedospektren wird bei der Autokorrelation das Maß „1" ergeben. Bei übereinstimmenden Zielgeräuschen wird das Korrelationsmaximum der Kreuzkorrelation nahe „1" und bei geringer oder nicht bestehender Übereinstimmung nahe „0" liegen. Aufgrund der Berechnung der Korrelationsfunktion und der Anzeige des Korrelationsmaximums kann der Bediener leicht unterscheiden, ob ein Ziel nur einem Torpedo zugeordnet ist oder zwei oder mehrere Torpedos dasselbe Ziel anlaufen. Der Bediener kann eingreifen und die Eigenlenkung beider Torpedos freigeben, wenn die Torpedos unterschiedliche Ziele aufgefasst haben, oder bei Auffassung desselben Ziels den einen Torpedo auf das Ziel aufschalten und dem anderen Torpedo ein anderes Ziel zuweisen .Advantageous embodiments of the method according to the invention with advantageous developments and embodiments of the invention will become apparent from the other claims. In accordance with an advantageous embodiment of the method, all torpedo spectra are subjected to a cross-correlation and an autocorrelation, and in each case the correlation maximum is determined and displayed. The correlation maximum as a measure for the existing match of the torpedo spectra will result in the measure "1" for the autocorrelation.With matching target noise, the correlation maximum of the cross correlation will be close to "1" and close to "0" if the match is low or not Correlation function and the display of the correlation maximum, the operator can easily distinguish whether a target is assigned to only one torpedo or two or more torpedoes start the same target.The operator can intervene and release the self-steering of both torpedoes, if the torpedoes have understood different goals, or at Conceiving the same objective, one Torpedo on the target and assign the other Torpedo another destination.
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird für jeden Torpedo in einem Analysebild von dem Torpedo ermittelte Zielpeilungen als den Peilwinkel φ zugeordnete Symbole dargestellt und das Symbol für die als Ziel zugewiesene Zielpeilung in der für den Torpedo charakteristischen Farbe dargestellt. Durch die Darstellung der Zielpeilungen jedes Torpedosonars im Analysebild erhält der Bediener trotz Auftreten nicht unerheblicher Positionsabweichungen von den vermuteten Anlaufbahnen der Torpedos im Verlaufe ihrer Annäherung an den Zielkomplex eine brauchbare Hilfsinformation zur Zielkomplexgeometrie. Durch die mit den Torpedospektren identische Farbgebung der Symbole
der zugewiesenen Zielpeilung ist klargestellt, welches der Zielpeilungen des Torpedosonars das dem Torpedo zugewiesene Ziel repräsentiert, also den Zielkontakt des Torpedos darstellt, und welches Torpedospektrum im Summenspektrogramm oder Summensonogramm zu dem Zielkontakt des jeweiligen Torpedos gehört.According to an advantageous embodiment of the invention, for each torpedo in an analysis image of the torpedo determined target bearings are displayed as the bearing angle φ associated symbols and displayed the symbol for the destination assigned targeting in the color characteristic of the torpedo. By representing the target bearings of each torpedo sonar in the analysis image, the operator obtains useful auxiliary information on the target complex geometry despite the occurrence of significant position deviations from the suspected torpedo runways in the course of their approach to the target complex. Due to the colors of the symbols, which are identical to the torpedo spectra the assigned targeting is clarified which of the target bearings of the torpedo son represents the goal assigned to the torpedo, thus representing the target contact of the torpedo, and which torpedo spectrum in the sum spectrogram or sum sonogram belongs to the target contact of the respective torpedo.
Die Erfindung ist anhand eines in der Zeichnung illustrierten Ausführungsbeispiels im folgenden näher beschrieben. Es zeigen jeweils in schematischer DarstellungThe invention is described in more detail below with reference to an embodiment illustrated in the drawing. Each show in a schematic representation
Fig. 1 ein Szenario eines auf einen Zielkomplex gerichteten Torpedoangriffs mit einem Torpedopulk in Draufsicht,1 shows a scenario of a target complex directed torpedo attack with a torpedo well in plan view,
Fig. 2 ein Blockschaltbild einer auf einer Plattform installierten, über Datenleitungen mit den Torpedos des Torpedopulks verbundenen Zentrale,2 shows a block diagram of a control unit installed on a platform, connected to the torpedoes of the torpedo cluster via data lines,
Fig. 3 auf einem Bildschirm in der Zentrale dargestellte Analysebilder mit Zielpeilungen der Torpedos,3 on a screen in the center shown analysis images with target bearings of the torpedoes,
Fig. 4 jeweils ein Summenspektrogramm von4 each a sum spectrogram of
Torpedospektren für zwei verschiedene Fallgestaltungen .Torpedo spectra for two different scenarios.
In Fig. 1 ist schematisiert ein Szenario eines Torpedoangriffs mit einem aus vier Torpedos 11 bestehenden Pulk auf einen aus sechs Einzelzielen 12 bestehenden Zielkomplex zu einem Zeitpunkt vor Freischalten der Torpedos 11 auf Eigenlenkung mit sog. homing in Draufsicht
dargestellt. Zur Unterscheidung sind die Torpedos 11 mit den Buchstaben A, B, C und D und die Ziele mit Zl, Z2, Z3, Z4, Z5 und Z6 bezeichnet. Die vier Torpedos 11 sind in einer großen Entfernung vom Zielkomplex von einer Plattform, z.B. einem U- Boot, in Richtung des Zielkomplexes abgeschossen worden. Der Zielkomplex war zuvor von einem auf der Plattform installierten Bordsonar passiv gepeilt worden, wobei die Peilung den akustischen Schwerpunkt des Zielkomplexes erfasst. Alle Torpedos 11 sind mit einem Torpedosonar 13 ausgestattet, die in bekannter Weise Zielgeräusche richtungsselektiv empfangen und die Empfangsrichtung des Zielgeräusches als Peilwinkel φ, gemessen gegen die Torpedoachse, liefern. Das Torpedosonar 13 ist über eine Datenleitung 14, vorzugsweise eine Glasfaser, mit einer auf der Plattform installierten Zentrale 15 verbunden. Von der Zentrale 15 aus wird der Torpedoangriff gesteuert und überwacht. Wie im Blockschaltbild der Fig. 2 nicht weiter dargestellt ist, hat ein Bediener die Möglichkeit, die Lenkung der Torpedos 11 mittels über die Datenleitung 14 übertragener Lenksignale zu beeinflussen und die Torpedos 11 nach Zielzuweisung auf Eigenlenkung zu schalten, wonach die Torpedos mit Hilfe ihres Torpedosonars 13 das zugewiesene Ziel autonom anlaufen.FIG. 1 schematically shows a scenario of a torpedo attack with a cluster of four torpedoes 11 on a target complex consisting of six individual targets 12 at a time before the torpedoes 11 are released on self-steering with so-called homing in plan view shown. For the purpose of distinction, the torpedoes 11 are designated by the letters A, B, C and D and the targets by Z1, Z2, Z3, Z4, Z5 and Z6. The four torpedoes 11 have been launched at a great distance from the target complex of a platform, such as a submarine, towards the target complex. The target complex had previously been passively sighted by a Bordsonar installed on the platform, with the bearing capturing the acoustic focus of the target complex. All torpedoes 11 are equipped with a torpedo sonar 13, which receive directionally selective target noise in a known manner and the receiving direction of the target noise as a bearing angle φ, measured against the torpedo axis, deliver. The torpedo sonar 13 is connected via a data line 14, preferably a glass fiber, to a central station 15 installed on the platform. From the center 15 of the torpedo attack is controlled and monitored. As is not further illustrated in the block diagram of FIG. 2, an operator has the option of influencing the steering of the torpedoes 11 by means of steering signals transmitted via the data line 14 and switching the torpedoes 11 to self-steering after destination assignment, after which the torpedoes with the aid of their torpedo sonar 13 autonomously start the assigned destination.
Die Torpedosonare 13 bilden Richtcharakteristiken unter vorbestimmten Empfangsrichtungen, sog. preformed beams, und sind in der Lage, mehrere Ziele in Reichweite des Torpedosonars 13 gleichzeitig aufzufassen und zu peilen. Liegen diese Ziele in verschiedenen Beams der Torpedosonare 13, so können diese richtungsmäßig voneinander getrennt werden und jedem Ziel eine Empfangsrichtung, der sog. Peilwinkel φ, zugeordnet werden. In dem in Fig. 1
dargestellten Szenario, in dem der aus sechs Zielen 12 bestehende Zielkomplex von den Torpedosonaren 13 der vier Torpedos 11 erfasst wird, kann das Torpedosonar 13 des Torpedos A die Ziele Zl bis Z4 unter vier verschiedenen Peilwinkeln φ, des Torpedos B die Ziele Z2, Z3, Z4 und Z5 unter vier verschiedenen Peilwinkeln φ, des Torpedos C die Ziele Z3, Z4 und Z5 unter zwei verschiedenen Peilwinkeln φ und des Torpedos D die Ziele Z5 und Z6 unter zwei verschiedenen Peilwinkeln φ peilen. Die Zielpeilungen sind in Fig. 1 durch Peilstrahlen dargestellt. Stellvertretend für die Peilwinkel φ der Torpedosonare sind die Peilwinkel des Torpedosonars 13 des Torpedos C eingetragen. So wird das Ziel Z3 unter dem Peilwinkel -φc3, das Ziel Z4 unter dem Peilwinkel -φC4 und das Ziel Z5 unter dem Peilwinkel +φCs gepeilt. Entsprechend würden die Peilwinkel φ des Torpedosonars 13 von Torpedo A die Indizes Al bis A4, von Torpedo B die Indizes B2 bis B5 und von Torpedo D die Indizes D5 und D6 tragen. Die Zielpeilungen der Torpedosonare 13 werden über die Datenleitungen 14 zu dem Block 16 „Zielpeilungen" in der Zentrale 15 übertragen. In dem Block 16 werden für den Torpedo 11 die Zielpeilungen grafisch zu einem Analysebild aufbereitet. Diese Analysebilder der Torpedos 11 sind für ein in Fig. 1 skizziertes Szenario in Fig. 3 beispielhaft dargestellt. Die Analysebilder werden auf einem Bildschirm 20 dem Bediener dargeboten .The torpedo-sonars 13 form directional characteristics under predetermined receiving directions, so-called preformed beams, and are able to simultaneously grasp and aim several targets within reach of the torpedo sonar 13. If these targets lie in different beams of the torpedo-sonar 13, then they can be separated from one another directionally and a destination direction, the so-called bearing angle φ, can be assigned to each target. In the in Fig. 1 illustrated scenario, in which the target complex consisting of six targets 12 is detected by the torpedo nacelles 13 of the four torpedoes 11, the torpedo sonar 13 of the torpedo A, the targets Zl to Z4 under four different bearing angles φ, the torpedo B, the targets Z2, Z3, Z4 and Z5 under four different bearing angles φ, the torpedo C, the targets Z3, Z4 and Z5 under two different bearing angles φ and the torpedo D, the targets Z5 and Z6 at two different bearing angles φ. The target bearings are shown in Fig. 1 by DF beams. The bearing angles of the torpedo sonar 13 of the torpedo C are represented as representative of the bearing angles φ of the torpedo-sonar. Thus, the target Z3 is aimed at the bearing angle -φc3, the target Z4 at the bearing angle -φ C 4, and the target Z5 at the bearing angle + φ C s. Correspondingly, the bearing angles φ of the torpedo-sonar 13 of torpedo A would carry the indices A1 to A4, of torpedo B the indices B2 to B5 and of torpedo D the indices D5 and D6. The target bearings of the torpedo-sonars 13 are transmitted via the data lines 14 to the "target bearings" block 16 in the central station 15. In the block 16, the target bearings are graphically processed into an analysis image for the torpedo 11. These analysis images of the torpedoes 11 are shown in FIG 1 is shown by way of example in Fig. 1. The analysis images are presented on a screen 20 to the operator.
Wie in Fig. 3 illustriert ist, sind die Zielpeilungen der Torpedosonare 13 für jeden Torpedo A bis D in Zuordnung zu dem Peilwinkel φ mit einem Kreissymbol dargestellt. So peilt beispielhaft das Torpedosonar 13 des Torpedos A Ziele unter
dem Peilwinkeln φ von -20°, -12,5°, 0° und +12,5° und das Torpedosonar 13 des Torpedos D unter den Peilwinkeln φ von -7,5° und +10° .As illustrated in FIG. 3, the target bearings of the torpedo-sonars 13 for each torpedo A to D are shown in association with the bearing angle φ with a circle symbol. For example, the torpedo sonar 13 of the torpedo A aims at targets the bearing angle φ of -20 °, -12.5 °, 0 ° and + 12.5 ° and the torpedo sonar 13 of the torpedo D at the bearing angles φ of -7.5 ° and + 10 °.
Anhand der Analysebilder weist der Bediener jedem Torpedo 11 eines der insgesamt sechs gepeilten Ziele 12 zu. In dem in Fig. 3 dargestellten Beispiel hat der Bediener dem Torpedo A das unter φ = -20° gepeilte Ziel Zl zugeordnet, dem Torpedo B das unter φ = -12,5° gepeilte Ziel Z4, dem Torpedo C das unter φ = -21,5° gepeilte Ziel Z4 und dem Torpedo D das unter φ = -1,5° gepeilte Ziel Z5 zugeordnet. Jedes zugewiesene Ziel 12 erhält in dem Analysebild durch die Zuweisung ein geändertes Symbol, im Beispiel der Fig. 3 ein Quadrat. Zugleich wird jedem Torpedo 11 eine charakteristische Farbe zugeordnet. So dem Torpedo A die Farbe „grün", dem Torpedo B die Farbe „rot", dem Torpedo C die Farbe „gelb" und dem Torpedo D die Farbe „blau". Das das zugewiesene Ziel repräsentierende Quadrat-Symbol wird mit der dem jeweiligen Torpedo 11 zugehörigen Farbe belegt. Dies ist in Fig. 3 symbolhaft mit den Farbenangaben „GRÜN", „ROT", „GELB", „BLAU", angedeutet.Based on the analysis images, the operator assigns each torpedo 11 one of the six targeted targets 12. In the example shown in FIG. 3, the operator has assigned to the torpedo A the target Z.sub.l targeted at .phi. = -20.degree., The torpedo B the target Z.sub.4 targeted at .phi. = -12.5.degree., The torpedo C the target under .phi. = - 21.5 ° targeted Z4 and the torpedo D assigned under φ = -1.5 ° target Z5 assigned. Each assigned target 12 receives a changed symbol in the analysis image by the assignment, in the example of FIG. 3 a square. At the same time each torpedo 11 is assigned a characteristic color. So the torpedo A the color "green", the torpedo B the color "red", the torpedo C the color "yellow" and the torpedo D the color "blue". The square symbol representing the assigned target is assigned the color associated with the respective torpedo 11. This is symbolically indicated in Fig. 3 with the color information "GREEN", "RED", "YELLOW", "BLUE".
Sind die Torpedosonare 13 der Torpedos 11 auf die ausgewählten Ziele 12 aufgeschaltet, so werden die von den aufgeschalteten Zielen 12 aufgefassten Zielgeräusche über die Datenleitungen 14 zu der Zentrale 15 übertragen. Im Block 17 „Zielgeräuschverarbeitung" werden die Zielgeräusche der einzelnen Torpedosonare 13 vorverarbeitet und demoduliert und im Block „DEMON-Analyse" die Spektren der demodulierten Zielgeräusche gebildet. Hierzu wird die Einhüllende oder Hüllkurve der von den Torpedosonaren 13 angelieferten Zielgeräusche bezüglich ihres Frequenzinhalts untersucht und
das Frequenzspektrum berechnet. Ein Beispiel für eine DEMON- Analyse-Schaltung findet sich in der EP 0 213 541 Bl. Jedem Spektrum wird die für den Torpedo 11 charakteristische Farbe überlagert und das farbige Spektrum als Torpedospektrum ausgegeben. Alle Torpedospektren werden zu einem Summenspektrogramm oder Summensonogramm vereinigt, in dem die verschiedenfarbigen Spektrallinien aller Torpedospektren enthalten sind. Unter der Voraussetzung, dass die Ziele 11 eines Zielkomplexes unterscheidbare Zielgeräuschfrequenzen aufweisen, was bei aus unterschiedlichen Schiffstypen zusammengesetzten Schiffsverbänden üblicherweise der Fall ist, und den Torpedos 11 jeweils nur ein Ziel 12 zugeordnet ist, sind durch die Farbgebung die verschiedenen Torpedospektren deutlich voneinander unterscheidbar. Das in aufeinanderfolgenden Zeitpunkten jeweils berechnete Summenspektrogramm wird auf dem Bildschirm 20 in einer sog. Wasserfalldarstellung zeitlich aufeinanderfolgend sichtbar gemacht, wobei die über einen bestimmten Zeitraum zu aufeinanderfolgenden Zeitpunkten errechneten Summenspektren gleichzeitig auf dem Bildschirm 20 sichtbar sind. In der Wasserfalldarstellung erkennt der Bediener aufgrund dieser Art der Darstellung der Zielgeräuschspektren sofort, ob eine optimale Zielführung der Torpedos vorgenommen worden ist oder nicht .If the torpedo-sonars 13 of the torpedoes 11 are connected to the selected targets 12, then the target noises perceived by the connected targets 12 are transmitted via the data lines 14 to the central station 15. In block 17 "target noise processing", the target noises of the individual torpedo sonars 13 are pre-processed and demodulated, and in the "DEMON analysis" block the spectra of the demodulated target noises are formed. For this purpose, the envelope or envelope of the target noise delivered by the torpedo-sonar 13 is examined with regard to its frequency content and the frequency spectrum is calculated. An example of a DEMON analysis circuit can be found in EP 0 213 541 B1. Each spectrum is superimposed on the color characteristic of the torpedo 11 and the colored spectrum is output as a torpedo spectrum. All torpedo spectra are combined into a summation spectrogram or sum sonogram, in which the different colored spectral lines of all torpedo spectra are contained. Assuming that the targets 11 of a target complex have distinguishable target noise frequencies, which is usually the case for ship consoles composed of different types of ships, and the torpedoes 11 are each assigned only one target 12, the coloration makes the various torpedo spectra clearly distinguishable from one another. The summation spectrogram calculated in successive time points is visualized in chronological succession on the screen 20 in a so-called waterfall representation, wherein the sum spectra calculated over a certain period of time at successive times are simultaneously visible on the screen 20. In the case of the waterfall representation, the operator immediately recognizes, on the basis of this type of representation of the target noise spectra, whether optimum guidance of the torpedoes has been carried out or not.
In Fig. 4 ist vereinfacht ein Summenspektrogramm der vier Torpedospektren zu einem bestimmten Zeitpunkt dargestellt, wobei der Übersichtlichkeit halber lediglich die Spektrallinien der Grundfrequenzen der Torpedospektren dargestellt sind. In dem in Fig. 4 b dargestellten Summenspektrogramm sind die Farben aller vier Torpedos 11 vertreten und unterschiedlichen Frequenzen zugehörig. So ist der Torpedo A (GRÜN) auf ein Ziel mit der Grundfrequenz fi,
der Torpedo B (ROT) auf ein Ziel mit der Frequenz f3, der Torpedo C (GELB) auf ein Ziel mit der Grundfrequenz f4 und der Torpedo D (BLAU) auf ein Ziel mit der Grundfrequenz f5 aufgeschaltet . Im Summenspektrogramm in Fig. 4a dagegen ist erkennbar, dass die Farben „rot" und „gelb" der Torpedos B und C nicht im Spektrogramm enthalten sind, vielmehr bei einer Grundfrequenz f4 eine Spektrallinie der Farbe „ORANGE" auftritt. Der Bediener erkennt daran, dass wahrscheinlich die beiden Torpedos B und C auf das gleiche Ziel mit der Grundfrequenz f4 aufgeschaltet sind.FIG. 4 shows in simplified form a summation spectrogram of the four torpedo spectra at a specific point in time, with only the spectral lines of the fundamental frequencies of the torpedo spectra being shown for the sake of clarity. In the summation spectrogram shown in FIG. 4 b, the colors of all four torpedoes 11 are represented and belong to different frequencies. So the torpedo A (GREEN) is on a target with the fundamental frequency fi, the torpedo B (RED) is switched to a target with the frequency f 3 , the torpedo C (YELLOW) to a target with the fundamental frequency f 4 and the torpedo D (BLUE) to a target with the fundamental frequency f 5 . By contrast, in the summation spectrogram in Fig. 4a it can be seen that the colors "red" and "yellow" of the torpedoes B and C are not contained in the spectrogram, but a spectral line of the color "ORANGE" occurs at a fundamental frequency f 4 in that the two torpedoes B and C are probably connected to the same target at the fundamental frequency f 4 .
Um dem Bediener die Zieltrennung zu erleichtern, wird im Block 19 „Korrelation" jedes Torpedospektrum mit sich selbst und mit den übrigen Torpedospektren korreliert. Die Autokorrelationsmaxima und die Kreuzkorrelationsmaxima werden bestimmt und in Zuordnung zu dem jeweiligen Torpedo 11 im Analysebild auf dem Bildschirm dargestellt, wie dies in Fig. 3 schematisiert skizziert ist. Im Falle des Torpedos A wird das Torpedospektrum (grün) mit sich selbst korreliert, wobei die Autokorrelationsfunktion immer das Maß „1" ergibt. Das Autokorrelationsmaximum wird im Analysebild des Torpedos A in entsprechender Größe in Zuordnung zu dem Zielsymbol in der Farbe „grün" unter dem Peilwinkel φ dargestellt. Außerdem wird das Torpedospektrum des Torpedos A mit den Torpedospektren der Torpedos B (ROT) , C (GELB) und D (BLAU) korreliert. Da diese Torpedospektren nicht mit dem Torpedospektren des Torpedos A übereinstimmen, wird das Maß der Kreuzkorrelationsfunktion in der Nähe von „0" liegen, auf jeden Fall deutlich kleiner sein als das Maß der Autokorrelationsfunktion des Torpedospektrums des Torpedos A. Diese drei Kreuzkorrelationsmaxima werden im Analysebild des Torpedos A jeweils mit einer ihrem Maß entsprechenden Größe
jeweils in der Farbe über den Peilwinkel φ dargestellt, die der Farbe des jeweils zur Kreuzkorrelation herangezogenen Torpedospektrums des anderen Torpedos entspricht. So werden im Analysebild des Torpedos A die drei Kreuzkorrelationsfunktionen in der Größe des jeweils ermittelten Korrelationsmaximums in den Farben „rot", „gelb" und „blau" am Symbol für das Ziel „GRÜN" dargestellt.To facilitate target separation for the operator, each torpedo spectrum is correlated with itself and with the remaining torpedo spectra at block 19 "Correlation." The autocorrelation maxima and cross correlation maxima are determined and displayed on the screen in association with the respective torpedo 11 in the analysis image, such as this is schematized in Fig. 3. In the case of the torpedo A, the torpedo spectrum (green) is correlated with itself, the autocorrelation function always giving the measure "1". The autocorrelation maximum is shown in the analysis image of the torpedo A in the corresponding size in association with the target symbol in the color "green" at the bearing angle φ Since these torpedo spectra do not match the torpedo spectra of torpedo A, the measure of the cross-correlation function will be close to "0", in any event being significantly less than the autocorrelation function of the torpedo spectrum of torpedo A. This three cross-correlation maxima are in the analysis image of the torpedo A respectively with a size corresponding to their size each represented in the color on the bearing angle φ, which corresponds to the color of each used for cross-correlation torpedo spectrum of the other torpedo. Thus, in the analysis image of the torpedo A, the three cross-correlation functions are displayed in the size of the respectively determined correlation maximum in the colors "red", "yellow" and "blue" on the symbol for the target "GREEN".
In gleicher Weise werden die Torpedospektren der Torpedos B, C und D mit sich selbst und mit den jeweils anderen Torpedospektren korreliert und die Korrelationsmaxima in der gleichen Weise dargestellt. Bei der Kreuzkorrelation des Torpedospektums des Torpedos B (ROT) mit dem Torpedospektrum des Torpedos C (GELB) ergibt sich eineIn the same way, the torpedo spectra of the torpedoes B, C and D are correlated with themselves and with the other torpedo spectra and the correlation maxima are displayed in the same way. In the cross-correlation of the torpedo spectrum of the torpedo B (ROT) with the torpedo spectrum of the torpedo C (YELLOW) results in a
Kreuzkorrelationsfunktion, deren Korrelationsmaximum nur wenig kleiner als „1" ist, da die beiden Torpedospektren weitgehend übereinstimmen. Das Kreuzkorrelationsmaximum ist etwa gleich groß wie das Autokorrelationsmaximum und wird im Analysebild des Torpedo B in der Farbe des Torpedos C, also „gelb" dargestellt. In gleicher Weise ergibt sich bei der Korrelation des Torpedospektrums des Torpedo C (GELB) mit dem Torpedospektrum des Torpedos B (ROT) einCross correlation function, whose correlation maximum is only slightly smaller than "1", since the two torpedo spectra largely coincide The cross correlation maximum is about the same size as the autocorrelation maximum and is shown in the analysis image of the torpedo B in the color of the torpedo C, ie "yellow". In the same way results in the correlation of the torpedo spectrum of the torpedo C (YELLOW) with the torpedo spectrum of the torpedo B (RED)
Kreuzkorrelationsmaximum, das nahe „1" liegt und damit im Analysebild des Torpedos C in etwa der gleichen Größe dargestellt wird wie das Autokorrelationsmaximum des Torpedospektrums des Torpedos C. Das Kreuzkorrelationsmaximum wird in der Farbe „rot" des Torpedos B dargestellt. Anhand der Darstellung der Korrelationsmaxima im Analysebild des Torpedo B erkennt der Bedienende, dass der Torpedo C (GELB) auf das gleiche Ziel aufgeschaltet ist, wie der Torpedo B (ROT) . Ebenso ist im Analysebild des Torpedos C unschwer zu erkennen, dass dem Torpedo C (GELB) das gleiche Ziel
zugewiesen ist wie dem Torpedo B (ROT) , da in der Darstellung der Korrelationsmaxima das Kreuzkorrelationsmaxima der Kreuzkorrelationsfunktion der Torpedospektren von Torpedo C und B in der Farbe „rot" erscheint. Wie aus Fig. 4a zu erkennen ist, fehlen bei dieser Konstellation der Zuweisung von Zielen 12 und Torpedos 11 im Summenspektrogramm Spektrallinien mit der Farbe „rot" und „gelb", und bei einer Frequenz f4 tritt eine Spektrallinie mit einer Mischfarbe hier „orange", auf. Der Bediener erkennt auch im Summenspektrogramm, dass die beiden Torpedos B (ROT) und C (GELB) demselben Ziel zugewiesen sind.Cross correlation maximum, which is close to "1" and thus in the analysis image of the torpedo C is shown in about the same size as the autocorrelation maximum of the torpedo spectrum of the torpedo C. The cross correlation maximum is shown in the color "red" of the torpedo B. Based on the representation of the correlation maxima in the analysis image of the torpedo B, the operator recognizes that the torpedo C (YELLOW) is connected to the same destination as the torpedo B (RED). Similarly, in the analysis image of the torpedo C is easy to see that the torpedo C (YELLOW) the same goal As in the representation of the correlation maxima, the cross-correlation maxima of the cross-correlation function of the torpedo spectra of torpedoes C and B appear in the color "red." As can be seen from Fig. 4a, in this constellation the assignment is missing of targets 12 and torpedoes 11 in the sum spectrogram spectral lines with the color "red" and "yellow", and at a frequency f 4 occurs a spectral line with a mixed color here "orange" on. The operator also recognizes in the summing spectrogram that the two torpedoes B (RED) and C (YELLOW) are assigned to the same target.
Der Bediener muss nunmehr korrigierend eingreifen und einem der Torpedos B oder C ein anderes Ziel zuweisen. Beispielsweise wird dem Torpedo B jetzt das unter dem Peilwinkel φ = -30° detektierte Ziel zugewiesen. Im Analysebild des Torpedos B wird nunmehr das unter diesem Peilwinkel eingetragene Symbol von einem Kreis in ein Viereck gewandelt und in „ROT" dargestellt. Das Summenspektrogramm in Fig. 4a ändert sich dadurch in der Weise, wie es in Fig. 4b dargestellt ist. Das Summenspektrogramm verdeutlicht, dass nunmehr jedem Torpedo 11 ein eigenes Ziel zugewiesen ist. Die Kreuzkorrelationsfunktion der Torpedospektren von Torpedo B und Torpedo C würde ein Kreuzkorrelationsmaximum ergeben, das nahe „0" liegt, da nunmehr die Zielgeräusche nicht mehr übereinstimmen. Bezogen auf das in Fig. 1 dargestellte Szenario würde das in Fig. 4b vereinfacht dargestellte Summensprektrogramm einer Gefechtslage entsprechen, bei der dem Torpedo A das Ziel Zl, dem Torpedo B das Ziel Z3, dem Torpedo C das Ziel Z4 und dem Torpedo D das Ziel Z5 zugewiesen sind. Die Ziele Z2 und Z6 werden mangels weiterer Torpedos 11 nicht bekämpft.
The operator now has to take corrective action and assign one of the torpedoes B or C a different target. For example, the torpedo B is now assigned the target detected at the bearing angle φ = -30 °. In the analysis image of the torpedo B, the symbol entered under this bearing angle is now converted from a circle into a quadrilateral and displayed in "RED." The sum spectrogram in FIG. 4a thus changes in the manner illustrated in FIG Summing Spectrogram illustrates that each torpedo 11 now has its own destination assigned to it, and the torpedo B and Torpedo C torpedo spectra cross-correlation function would give a cross-correlation maximum close to "0" because the target noise is no longer consistent. Referring to the scenario illustrated in FIG. 1, the summation spectrogram shown in simplified form in FIG. 4b would correspond to a combat situation in which the target Z1 is the torpedo A, the target Z3 the torpedo B, the target Z4 the torpedo C and the target the torpedo D. Assigned to Z5. The goals Z2 and Z6 are not combated for lack of further torpedoes 11.
Claims
1. Verfahren zum Leiten eines von einer Plattform, insbesondere U-Boot, aus gestarteten Torpedoangriffs mit einem Pulk aus mehreren zu einem Zielkomplex laufenden Torpedos (11), von denen jeder ein über eine Datenleitung (14) mit einer auf der Plattform angeordneten Zentrale (15) verbundenes Torpedosonar (13) trägt, bei dem von den Torpedosonaren (13) richtungsselektiv empfangene Zielgeräusche zur Zentrale (15) übertragen und dort als Spektren dargestellt und von der Zentrale (15) den einzelnen Torpedos Einzelziele (12) aus dem Zielkomplex zur Bekämpfung zugewiesen werden, dadurch gekennzeichnet, dass für die Zuweisung eines Ziels (12) zu einem Torpedo (11) eines der insgesamt von dem Torpedosonar (13) des Torpedos (11) richtungsselektiv empfangenen Zielgeräusche willkürlich ausgewählt und das Spektrum des ausgewählten Zielgeräusches in einer für den Torpedo (11) charakteristischen Farbe als Torpedospektrum dargestellt wird und dass die Torpedospektren aller Torpedos (11) in einem gemeinsamen Spektrogramm dargestellt werden, das fortlaufend aktualisiert wird.1. A method of routing a torpedo attack launched from a platform, in particular a submarine, comprising a cluster of a plurality of torpedoes (11) running to a target complex, each of which is connected via a data line (14) to a center (FIG. 15) connected torpedo-sonar (13), in which of the torpedo-sonar (13) directionally received target noise to the center (15) transmitted and displayed there as spectra and from the control center (15) the individual torpedoes individual targets (12) from the target complex to combat be assigned, characterized in that for the assignment of a target (12) to a torpedo (11) of one of the total of the torpedo (13) of the torpedo (11) directionally selectively received target noise selected arbitrarily and the spectrum of the selected target noise in one for the Torpedo (11) characteristic color is represented as a torpedo spectrum and that the torpedo spectra of all torpedoes (11) i n be presented in a common spectrogram, which is continuously updated.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das fortlaufend aktualisierte Spektrogramm den jeweils zuvor dargestellten Spektrogrammen hinzugefügt wird. 2. The method according to claim 1, characterized in that the continuously updated spectrogram is added to the respective previously shown spectrograms.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass alle Torpedospektren miteinander einer Kreuzkorrelation unterzogen werden und jeweils das Korrelationsmaximum bestimmt und dargestellt wird.3. The method of claim 1 or 2, characterized in that all torpedo spectra are subjected to a cross-correlation with each other and in each case the correlation maximum is determined and displayed.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass alle Torpedospektren einer Autokorrelation unterzogen werden und die Autokorrelationsmaxima bestimmt und zum Vergleich mit den Kreuzkorrelationsmaxima dargestellt werden .4. The method according to claim 3, characterized in that all torpedo spectra are subjected to an autocorrelation and the autocorrelation maxima are determined and displayed for comparison with the cross-correlation maxima.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass für jeden Torpedo (11) in einem Analysebild von dem Torpedosonar (13) bestimmte Zielpeilungen als den Peilwinkel (φ) zugeordnete Symbole dargestellt werden, und dass das Symbol für die als Ziel zugewiesene Zielpeilung in der für den Torpedo (11) charakteristischen Farbe dargestellt wird.5. The method according to claim 3 or 4, characterized in that for each torpedo (11) in an analysis image of the torpedo sonar (13) certain target bearings as the bearing angle (φ) associated symbols are displayed, and that the symbol assigned to the target Target bearing is shown in the characteristic of the torpedo (11) color.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Darstellung der Autokorrelationsmaxima und der Kreuzkorrelationsmaxima in den Analysebildern der Torpedos (11) vorgenommen wird.6. The method according to claim 5, characterized in that the representation of the autocorrelation maxima and the Kreuzkorrelationsmaxima in the analysis images of the torpedoes (11) is made.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Darstellung der Auto- und Kreuzkorrelationsmaxima in einer der Größe des jeweiligen Maximums entsprechenden Größe vorgenommen wird.7. The method according to claim 6, characterized in that the representation of the auto and Kreuzkorrelationsmaxima is made in a size corresponding to the size of each maximum size.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Darstellung der Autokorrelationsmaxima in den für die Torpedos charakteristischen Farben vorgenommen wird.8. The method according to claim 6 or 7, characterized in that the representation of Autocorrelationsmaxima is made in the characteristic of the torpedoes colors.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Darstellung der Kreuzkorrelationsmaxima in einem Analysebild eines Torpedos (11) jeweils in der Farbe vorgenommen wird, die der Farbe des jeweils zur Kreuzkorrelation herangezogenen Torpedospektrums eines anderen Torpedos9. The method according to any one of claims 6 to 8, characterized in that the representation of the Kreuzkorrelationsmaxima in an analysis image of a torpedo (11) is made in each case in the color, the color of each used for cross-correlation torpedo spectrum of another torpedo
(11) entspricht.(11) corresponds.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als Spektren der Zielgeräusche das Spektrum der Hüllkurve der Zielgeräusche berechnet wird. 10. The method according to any one of claims 1 to 9, characterized in that the spectrum of the envelope of the target noise is calculated as spectra of the target noise.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008007851A DE102008007851B3 (en) | 2008-02-07 | 2008-02-07 | Method for conducting a torpedo attack |
DE102008007851.4 | 2008-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009098180A1 true WO2009098180A1 (en) | 2009-08-13 |
Family
ID=40348826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/051145 WO2009098180A1 (en) | 2008-02-07 | 2009-02-02 | Method for guiding a torpedo attack |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102008007851B3 (en) |
WO (1) | WO2009098180A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2550197A1 (en) * | 1975-11-08 | 1978-12-14 | Licentia Gmbh | Sonar target position tracking system - uses sound receptors in submarine and torpedo to enable triangulation calculations to be performed |
EP0115044A2 (en) * | 1982-12-31 | 1984-08-08 | Fried. Krupp Gesellschaft mit beschränkter Haftung | Method for tactical situation reconnaissance |
EP0213541A2 (en) * | 1985-08-31 | 1987-03-11 | Fried. Krupp Gesellschaft mit beschränkter Haftung | Ship detection method |
WO1999018451A1 (en) * | 1997-10-06 | 1999-04-15 | ETAT FRANÇAIS représenté par le DELEGUE GENERAL POUR L'ARMEMENT | Method for representing on a display screen a multidirectional data field in particular data supplied by a passive listening sonar, and system for implementing said method |
WO2001098796A2 (en) * | 2000-06-22 | 2001-12-27 | Lockheed Martin Corporation | Acoustic surveillance system with signature and bearing data display |
FR2913115A1 (en) * | 2007-02-27 | 2008-08-29 | Thales Sa | Initial tracks or data fusing method for microband passive sonar application, involves analyzing combined tracks to select combined tracks whose spectrum is presented in form of ray comb of real object with harmonic characteristics |
-
2008
- 2008-02-07 DE DE102008007851A patent/DE102008007851B3/en not_active Expired - Fee Related
-
2009
- 2009-02-02 WO PCT/EP2009/051145 patent/WO2009098180A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2550197A1 (en) * | 1975-11-08 | 1978-12-14 | Licentia Gmbh | Sonar target position tracking system - uses sound receptors in submarine and torpedo to enable triangulation calculations to be performed |
EP0115044A2 (en) * | 1982-12-31 | 1984-08-08 | Fried. Krupp Gesellschaft mit beschränkter Haftung | Method for tactical situation reconnaissance |
EP0213541A2 (en) * | 1985-08-31 | 1987-03-11 | Fried. Krupp Gesellschaft mit beschränkter Haftung | Ship detection method |
WO1999018451A1 (en) * | 1997-10-06 | 1999-04-15 | ETAT FRANÇAIS représenté par le DELEGUE GENERAL POUR L'ARMEMENT | Method for representing on a display screen a multidirectional data field in particular data supplied by a passive listening sonar, and system for implementing said method |
WO2001098796A2 (en) * | 2000-06-22 | 2001-12-27 | Lockheed Martin Corporation | Acoustic surveillance system with signature and bearing data display |
FR2913115A1 (en) * | 2007-02-27 | 2008-08-29 | Thales Sa | Initial tracks or data fusing method for microband passive sonar application, involves analyzing combined tracks to select combined tracks whose spectrum is presented in form of ray comb of real object with harmonic characteristics |
Also Published As
Publication number | Publication date |
---|---|
DE102008007851B3 (en) | 2009-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69818504T2 (en) | AUTOMATIC THREAT ASSESSMENT AND KNOWLEDGE ASSIGNMENT OF WEAPONS | |
EP0977003A1 (en) | Method for combating at least one aerial target by means of a fire group, fire group comprising at least two fire units and use of the fire group | |
EP0240819B1 (en) | Method of deceiving radar or infrared-guided missiles, particularly for boats and naval units, and apparatus therefor | |
EP0031110A1 (en) | Apparatus for displaying a sea battle | |
EP1863702B1 (en) | Mine hunting system and mine hunting method | |
EP3495762A1 (en) | System and method for coordinated target identification of a guided missile | |
DE102008007851B3 (en) | Method for conducting a torpedo attack | |
CH665493A5 (en) | FIRE GUIDE DEVICE FOR A MOBILE AIR DEVICE SYSTEM. | |
EP2803938A2 (en) | Method for designating the target for a missile launching installation | |
EP3784977A2 (en) | Method and device for protecting a vehicle against a threat | |
DE3248744C2 (en) | ||
DE10146167A1 (en) | Anti terrorist safety system for passenger aircraft defines forbidden airspace and takes control from pilot and turns aircraft away if boundary is approached | |
DE3640427C2 (en) | ||
DE102016015689A1 (en) | Flight path determination device and flight path determination method | |
DE2550197B2 (en) | Method for determining the location of a moving or stationary object and the facility for its implementation | |
DE2932428A1 (en) | Guidance system for projectiles - measures azimuth and distance ensuring high steering accuracy towards moving ground target | |
EP1394495B1 (en) | Apparatus for fighting against targets | |
DE3818444A1 (en) | Method for threat analysis for an army anti-aircraft system | |
DE3041076C1 (en) | Guidance method for torpedoes | |
DE102018117743A1 (en) | Device for operating a weapon station, weapon station, military vehicle with a weapon station and method for operating a weapon station | |
DE3544401C1 (en) | Sea battle zone imaging system | |
DE102014018789A1 (en) | Method for fighting military vehicles | |
DE2540593C1 (en) | Procedure for steering a torpedo | |
Matthews | The Political-Military Rivalry for Operational Control in US Military Actions: A Soldier's Perspective | |
DE102021209154A1 (en) | Effective target engagement by a military facility having a first unclassified information network and a second classified information network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09708125 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09708125 Country of ref document: EP Kind code of ref document: A1 |