WO2009097749A1 - 防止家庭基站欺骗用户的方法、系统及设备 - Google Patents

防止家庭基站欺骗用户的方法、系统及设备 Download PDF

Info

Publication number
WO2009097749A1
WO2009097749A1 PCT/CN2009/070020 CN2009070020W WO2009097749A1 WO 2009097749 A1 WO2009097749 A1 WO 2009097749A1 CN 2009070020 W CN2009070020 W CN 2009070020W WO 2009097749 A1 WO2009097749 A1 WO 2009097749A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
command
home base
security mode
user equipment
Prior art date
Application number
PCT/CN2009/070020
Other languages
English (en)
French (fr)
Inventor
Yanmei Yang
Zheng Zhou
Xijun Xue
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009097749A1 publication Critical patent/WO2009097749A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, system and device for preventing a home base station from tricking a user.
  • HNB Home NodeB
  • the HNB is a home micro base station that accesses a mobile communication network provided by an operator through an IP, an Asymmetric Digital Subscriber Line (ADSL), or the Internet to obtain a wireless communication service.
  • HNBs are usually purchased by users and placed in hotspots such as homes and offices. Unlike traditional carrier base stations, HNBs are more easily accessible to general users, and HNB ownership is no longer owned by operators. HNB is not as secure as traditional base stations.
  • HNBs such as HNBs of reputable groups, or HNBs arranged by users themselves
  • HNBs reputable groups, or HNBs arranged by users themselves
  • HNBs reputable groups, or HNBs arranged by users themselves
  • HNBs reputable groups, or HNBs arranged by users themselves
  • the identity of the user equipment (UE) is accessed. For example, the identity of the HNB that the malicious HNB spoofs the user himself is attracted to the user equipment to obtain the service flow of the user equipment, and then the traffic is used to the user equipment. Users provide free services.
  • the prior art provides a method for preventing HNBs from spoofing users.
  • UMTS Universal Mobile Telecommunications Systems
  • a key agreement and authentication (AKA) process is required between the UE and the core network (CN).
  • the core network generates A pair of encryption key (CK) and integrity key (IK), after which the UE and the core network will communicate based on the pair CK and ⁇ .
  • CK encryption key
  • IK integrity key
  • the identity (HNB-ID) is bound, and then the core network sends the IK to the HNB, and the UE also uses the same key binding algorithm as the core network to transmit the identity that is transmitted by the broadcast and the ⁇ Binding, generating a ⁇ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
  • the prior art value is only applicable to a UE having a key binding operation function, and cannot be compatible with a legacy UE that does not have a key binding operation function, that is, if an existing method for preventing a user from being tricked by a user is used, This will cause the legacy UE to fail, causing the UE to fail to establish a connection with any UI.
  • the UE In order to enable the prior art to be compatible with the legacy UE, that is, the legacy UE does not affect the establishment of the connection between the UE and the UE, the UE is required to report the version information when the UE accesses the network. If the core network determines that the UE is a legacy UE according to the version information of the UE, the core network The key binding operation is not started, that is, the mechanism for preventing spoofing of the user is not started, but IK, CK is directly sent to ⁇ , and then the UE communicates with ⁇ based on the ⁇ , CK.
  • the inventor has found that the prior art has the following problems:
  • the UE reporting version information is performed before the core network initiates air interface integrity protection, and the version information of the UE is likely.
  • Will be maliciously tampering, for example, ⁇ change the version information of the new version of the UE to the version information of the traditional UE, then the core network will not initiate a mechanism to prevent spoofing of the user, so that the new version of the UE cannot authenticate against the ,, ⁇ successfully deceived UE.
  • the prior art has the risk that the HNB successfully spoofs the UE, and it cannot effectively prevent the UE from being spoofed by the HNB.
  • the technical problem to be solved by the embodiments of the present invention is to provide a method, system, and device for preventing a home base station from spoofing a user, which can effectively prevent the UE from being spoofed by the HNB.
  • the embodiment of the invention provides a method for preventing a home base station from tricking a user, which is characterized in that: Includes:
  • An embodiment of the present invention provides a home base station gateway, including: a security mode command receiving unit, and a startup command creation ⁇ sending unit;
  • the security mode command receiving unit is configured to receive a security mode command sent by the core network, where the security mode startup command creation and sending unit is configured to create and send a security mode startup command that carries the identity information of the home base station, where the security mode is The startup command is forwarded to the user equipment via the home base station.
  • An embodiment of the present invention provides a home base station, including:
  • a security mode startup command receiving unit configured to receive a security mode startup command that is sent by the home base station gateway and carries the identity information of the home base station;
  • the secure mode initiates a command forwarding unit for forwarding the secure mode start command to the user device.
  • the embodiment of the invention provides a user equipment, including:
  • a security mode startup command receiving unit configured to receive a security mode startup command sent by the home base station
  • the identity information verification unit is configured to verify whether the home base station identity information carried by the security mode initiation command is consistent with the identity information pre-broadcasted by the home base station, and if not, the access to the home base station is denied.
  • the embodiment of the invention further provides a system for preventing a home base station from spoofing a user, including: a home base station, a home base station gateway;
  • the home base station gateway includes: a security mode command receiving unit, a security mode start command creation and sending unit;
  • the security mode command receiving unit is configured to receive a security mode command sent by the core network, where the security mode startup command creation and sending unit is configured to create and send a security mode startup command that carries the identity information of the home base station, where the security mode is The startup command is forwarded to the user equipment via the home base station;
  • the home base station includes: a security mode startup command receiving unit, and a security mode startup command forwarding unit;
  • the security mode startup command receiving unit is configured to receive a security mode startup command that is sent by the home base station gateway and carries the identity information of the home base station;
  • the secure mode initiates a command forwarding unit for forwarding the secure mode start command to a user device.
  • the HNB's real identity information is sent to the HNB through a security mode startup command that cannot be tampered with. Therefore, any malicious HNB cannot spoof the HNB, effectively preventing the HNB from spoofing the user.
  • FIG. 1 is a flowchart of a method for preventing an HNB from spoofing a user according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for preventing a HNB from spoofing a user according to a first embodiment of the present invention
  • FIG. 3 is a flowchart of a second embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for preventing an HNB from spoofing a user according to a third embodiment of the present invention;
  • FIG. 5 is a protocol stack according to an embodiment of the present invention;
  • FIG. 6 is a flowchart of a method for preventing a HNB from spoofing a user according to a fourth embodiment of the present invention
  • FIG. 7 is a schematic diagram of a system for preventing a HNB from spoofing a user according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a UE composition according to an embodiment of the present invention.
  • the UE refers to the new version of the UE.
  • the embodiment of the present invention provides A method for preventing an HNB from spoofing a user, as shown in FIG. 1, the method includes: Step 101: The HNB-GW receives a security mode command sent by a core network.
  • Step 102 The HNB-GW sends a security mode start command carrying HNB identity information to the HNB.
  • Step 103 The HNB forwards the security mode start command to the UE.
  • Step 104 The UE verifies whether the HNB identity information carried by the security mode initiation command is consistent with the identity information pre-broadcasted by the HNB. If not, the UE refuses to access the HNB.
  • the above is a method for preventing an HNB from spoofing a user according to an embodiment of the present invention.
  • the HNB-GW sends the real identity of the HNB to the HNB through a security mode startup command that cannot be tampered with by the HNB. Therefore, any malicious HNB cannot Deceive HNB, effectively preventing HNB from tricking users.
  • the core network starts the mechanism for preventing the HNB from spoofing the user provided by the embodiment of the present invention, and does not affect the connection between the legacy UE and the HNB, because the legacy UE does not recognize the security mode startup command.
  • the IE carrying the HNB identity information is directly ignored by the legacy UE for the IE that is not recognized. Therefore, after receiving the security mode start command, the legacy UE directly creates a security mode start command response that is forwarded to the HNB-GW via the HNB. After receiving the response, the HNB-GW sends the stored IK, CK to the HNB, and the UE and the HNB communicate based on the IK, CK.
  • the security mode initiation command carrying the HNB real identity information may be sent to the UE by other devices that know the HNB real identity information, and the implementation of the embodiment of the present invention is not affected.
  • a method for preventing an HNB from spoofing a user includes:
  • Step 201 The UE receives the HNB identity information that is transmitted by the HNB, and the identity information may be the identity information of the HNB itself, or the information of the Closed Subscriber Group (CSG) of the HNB.
  • CSG Closed Subscriber Group
  • the UE If the user decides to access the HNB according to the HNB identity information received by the UE, the UE performs step 202.
  • Step 202 The UE sends an RRC connection setup request to the HNB, and establishes an RRC connection with the HNB.
  • Step 203 The UE sends an initial direct transmission message to the HNB.
  • the initial direct transmission message may be an attach request, a routing area update message, a RAU, a service request, or a paging response.
  • Step 204 The HNB forwards the initial direct transmission message to the home base station gateway (Home).
  • NodeB-GateWay HNB-GW
  • the HNB may add an air interface encryption startup time to the initial direct transmission message when forwarding the initial direct transmission message.
  • Step 205 The HNB-GW forwards the initial direct transmission message to a GPRS (General Packet Radio Service) support node (SGSN) of the core network, or a mobile switching center (Mobile Switching Center) , MSC ), or, Visited Location Register (VLR);
  • GPRS General Packet Radio Service
  • MSC Mobile Switching Center
  • VLR Visited Location Register
  • the HNB-GW sends the initial direct transmission message to the SGSN. If the user service is in the Circuit Switch (CS) domain, the HNB-GW will initially send a direct message. Send to the MSC or VLR.
  • PS Packet Switch
  • CS Circuit Switch
  • the traditional Iu interface is used between the HNB-GW and the SGSN/MSC/VLR.
  • the HNB-GW After receiving the initial direct transmission message, the HNB-GW sends a signaling connection control protocol to the core network SGSN/MSC/VLR through the Iu interface.
  • (Skinny Client Control Protocol, SCCP) is a connection request message (CR), and the message data is an initial direct transmission message sent by the UE.
  • Step 206 The core network SGSN/MSC/VLR determines whether it is necessary to perform a new key negotiation and authentication process according to the preset operator policy, and if yes, initiates an AKA process, and if no, proceeds to step 207;
  • the preset operator policy may be CK, whether the IK expires, or whether the CK, IK security level meets the service requirements, and the like.
  • Step 207 The core network SGSN/MSC/VLR sends a security mode command to the HNB-GW, the command carries the allowed air interface encryption algorithm/integrity algorithm, and CK, IK;
  • Step 208 The HNB-GW saves the CK and the IK, and creates an RRC security mode start command, where the security mode start command carries the real identity information of the HNB currently in the UE (such as the HNB cell identifier, the identity of the CSG where the HNB is located, or HNB's own public identity or private body
  • the HNB-GW uses the IK to perform integrity protection on the security mode startup command, and the startup command is sent to the UE via the HNB;
  • the HNB-GW knows the true identity of the HNB because the HNB is authenticated by the HNB-GW when the HNB accesses the network.
  • the HNB-GW sends a security mode command start command to the HNB and sends it to the HNB-GW.
  • the other messages of the HNB are different, and the HNB is required to be forwarded to the UE as an RRC message. Therefore, the HNB-GW and the HNB interface may also need to have related indication functions. For example, the HNB-GW puts the security mode startup command into the HNB-GW. A special type of IE is sent to the HNB (the information in this IE needs to be sent to the UE as an RRC message as it is), or a special indication is added to the message header to inform the HNB of the security mode command in the message. The RRC message is sent to the UE as it is.
  • the RRC security mode start command created by the HNB-GW is similar to the security mode start command that is created by the RNC and sent to the UE. The difference is that the RRC security mode start command created by the HNB-GW adds one HNB that carries the current UE.
  • the true identity information of IE is similar to the security mode start command that is created by the RNC and sent to the UE. The difference is that the RRC security mode start command created by the HNB-GW adds one HNB that carries the current UE. The true identity information of IE.
  • the HNB-GW may use the air interface from the allowed air port according to the security capability of the HNB and the security capability reported by the UE.
  • the encryption algorithm/integrity algorithm a reasonable algorithm is selected to put the RRC security mode start command, and the RRC security mode start command is used for integrity protection using IK and the selected algorithm.
  • the HNB selects a set of security algorithms to report to the HNB-GW according to the security capabilities of the UE and the security capabilities reported by the UE during the RRC connection process, and the HNB-GW puts the set of algorithms into the RRC security mode start command.
  • the HNB-GW adds the air interface encryption start time reported by the HNB to the RRC security mode start command. Otherwise, the HNB-GW selects an air interface encryption start time and adds to RRC security mode startup command.
  • Step 209 After receiving the RRC security mode start command, the UE verifies the integrity of the command. If the command is complete, it is verified whether the HNB identity information carried by the command is consistent with the identity information sent by the HNB through the broadcast mode. If yes, go to step 210, if no, release The RRC connection of the HNB refuses to establish a connection with the HNB.
  • Step 210 The UE creates a security mode start command response, and performs integrity protection on the response by using IK, and the response is forwarded to the HNB-GW through the HNB.
  • Step 211 The HNB-GW verifies the integrity of the response of the security mode startup command. If the response is complete, the command sends a key to the HNB, and the command carries the stored CK and IK;
  • the UE may carry the version information (or capability information) in the security mode startup command response, then the HNB After the GW passes the security mode to initiate the command, the HNB-GW can further select the mode of sending the CK and the IK according to the UE version information (or the capability information).
  • the HNB-GW is The CK and IK can be directly sent to the HNB, and for the new UE, the HNB-GW can also initiate a key binding algorithm, which sends the new key bound to the CK, IK and HNB identity to the HNB.
  • the UE also needs to use the same key binding algorithm to derive a new key. In the subsequent process, the UE and the HNB use the new key to communicate.
  • Step 212 The HNB saves the IK and CK, and returns a key receiving response to the HNB-GW.
  • the above is a method for preventing a HNB from spoofing a user according to the first embodiment of the present invention.
  • the HNB-GW sends a real identity of the HNB to the UE through a security mode start command that cannot be tampered with by the HNB. Therefore, any malicious HNB It is impossible to spoof the UE, effectively preventing the HNB from spoofing the user.
  • FIG. 3 is a flowchart of a method for preventing an HNB from spoofing a user according to a second embodiment of the present invention. Steps 301 to 307 in the second embodiment are the same as steps 201 to 207 in the first embodiment. No longer praise.
  • Step 308 The HNB-GW saves the CK and the IK, and creates an RRC security mode start command, where the security mode start command carries the real identity information of the HNB currently in the UE (such as the HNB cell identifier, the identity of the CSG where the HNB is located, or The HNB-GW uses the IK to perform integrity protection on the security mode startup command, and the startup command is sent to the UE via the HNB;
  • the HNB-GW since the HNB accesses the network, the HNB-GW authenticates, so the HNB-GW knows the true identity of the HNB.
  • the HNB-GW sends the HNB-GW to the HNB, and the HNB-GW sends the HNB-GW to the HNB.
  • the HNB-GW sends the security mode start command to a special type of IE and sends it to the HNB.
  • the information in the IE needs to be sent to the UE as an RRC message.
  • a special indication flag is added to the message header to inform the HNB that the security mode command in the message is sent to the UE as an RRC message intact.
  • the RRC security mode start command created by the HNB-GW is similar to the security mode start command that is created by the RNC and sent to the UE. The difference is that the RRC security mode start command created by the HNB-GW adds one HNB that carries the current UE.
  • the true identity information of IE is similar to the security mode start command that is created by the RNC and sent to the UE. The difference is that the RRC security mode start command created by the HNB-GW adds one HNB that carries the current UE. The true identity information of IE.
  • the air interface encryption/integrity algorithm carried in the security mode start command may be the algorithm selected by the HNB-GW according to the UE security capabilities and the allowed algorithms.
  • the HNB-GW adds the encryption start time reported by the HNB to the RRC security mode start command, otherwise, the HNB-GW selects an encryption start time and adds to the RRC security mode. Start the command.
  • Steps 309 to 312 in the second embodiment are the same as steps 209 to 212 in the first embodiment, and are not described herein.
  • Step 313 The HNB selects a new air interface encryption/integrity algorithm that can be supported by both the HNB and the UE, and notifies the UE of the new algorithm;
  • the algorithm selected in step 313 may be sent to the UE by using any one of the following messages:
  • the RB establishes the message RADIO BEARER SETUP, or the RB releases the message RADIO BEARER RELEASE.
  • step 313 and subsequent steps may or may not be optional.
  • the so-called optional that is, only when the HNB finds that the selected algorithm of the HNB-GW is not an algorithm that it can support, step 313 and subsequent steps are performed.
  • Step 314 The UE switches to the local cell, and adopts a new algorithm to perform air interface communication with the HNB. It is worth noting that the above steps 313 and 314 achieve the purpose of notifying the UE of the new algorithm by sending a handover command to the UE by the HNB.
  • the manner in which the HNB-GW sends a handover command to the UE and is forwarded by the HNB is not excluded.
  • the above is a method for preventing a HNB from spoofing a user according to the second embodiment of the present invention.
  • the HNB-GW sends a real identity of the HNB to the UE through a security mode start command that cannot be tampered with by the HNB. Therefore, any malicious HNB It is impossible to spoof the UE, effectively preventing the HNB from spoofing the user.
  • the following describes the method for preventing the HNB from spoofing the user according to the third embodiment of the present invention.
  • the main difference between the method and the method provided by the first embodiment is that the UE does not establish an RRC connection with the HNB, but establishes an RRC connection with the HNB-GW. If the HNB passes the verification, the UE needs to switch to the HNB. Referring to FIG.
  • a method for preventing a HNB from spoofing a user includes: Step 401: A UE receives HNB identity information that is sent by a HNB by using a broadcast mode; and if a user receives HNB identity information according to a UE, If the decision is made to access the HNB, the UE performs step 402.
  • Step 402 The UE sends an RRC connection setup request to the HNB, and the HNB forwards the RRC connection setup request to the HNB-GW, and the UE establishes an RRC connection with the HNB-GW.
  • HNB because the HNB only plays the role of forwarding the RRC connection establishment request in step 402, the HNB can be equivalent to the NodeB or the Drift Radio Network Control (D-RNC). Then, in specific implementation, HNB and HNB-GW can adopt the following communication protocols:
  • the HNB and the HNB-GW communicate via an interface similar to the Iub. If the HNB is equivalent to the D-RNC, the HNB and the HNB-GW communicate with each other through an interface similar to the Iur. For example, the HNB can use the Uplink Signalling Transfer procedure message to send an uplink message sent by the UE to the HNB-GW, and the Downlink Signalling Transfer procedure message is used. Send a downlink message sent by the HNB-GW to the UE.
  • the HNB and HNB-GW can also communicate using the extended Iu interface (RANAP protocol).
  • RANAP protocol extended Iu interface
  • Step 403 The UE sends an initial direct transmission message to the HNB.
  • Step 404 The HNB forwards the initial direct transmission message to the HNB-GW.
  • Step 405 The HNB-GW forwards the initial direct transmission message to the core network SGSN/MSC/VLR.
  • Step 407 The core network SGSN/MSC/VLR sends a security mode command to the HNB-GW, the command carries the allowed air interface encryption/integrity algorithm, and CK, IK;
  • Step 408 The HNB-GW creates an RRC security mode start command, where the security mode command carries
  • the HNB-GW uses the IK to perform integrity protection on the security mode command, and the startup command is sent to the UE via the HNB.
  • Step 409 After receiving the RRC security mode start command, the UE verifies the integrity of the command. If the command is complete, it is verified whether the HNB identity information carried by the command is consistent with the information sent by the HNB through the broadcast mode. Go to step 410, if no, the UE releases the RRC connection with the HNB-GW, and refuses to access the HNB;
  • Step 410 The UE creates a security mode command to initiate a command response, and uses IK to perform integrity protection on the response, and the response is sent to the HNB-GW via the HNB.
  • Step 411 After receiving the response from the security mode start command sent by the UE, the HNB-GW verifies the integrity, and after the verification is passed, sends the UE context carried in the security mode command, and CK and IK to the HNB.
  • the HNB-GW may use a RELOCATION COMMIT message sent by the S-RNC to the D-RNC in the S-RNC relocation, and deliver the UE context and CK and IK. Other types of messages, such as extensions, may also be used.
  • the RANAP message After the RANAP message.
  • the handover message may be a RAN mobility information message or
  • the RNTI re-allocates the message, and the HNB can select a new air interface encryption/integrity algorithm according to the UE security capability and the allowed algorithm, and carry the algorithm to the UE through the RAN mobility information message; Channel reconfiguration, physical channel reconfiguration,
  • RB configuration / reconfiguration RB releases the command for hard handover.
  • Step 413 After receiving the handover message, the UE switches to the HNB.
  • the UE uses a new algorithm to communicate with the HNB.
  • steps 411 to 413 are for implementing handover of the UE to
  • the HNB-GW may perform a service radio network controller (S-RNC) similar to the UE participating in the service.
  • S-RNC service radio network controller
  • the UE is switched to the HNB, and the UE is configured to perform a hard handover process.
  • the process includes:
  • the HNB-GW After receiving the response from the security mode start command returned by the UE, the HNB-GW sends a handover command to the HNB, where the handover command can carry the UE security capability, the allowed air interface encryption/integrity algorithm, CK and IK;
  • the HNB-GW After receiving the HNB return handover command response, the HNB-GW sends a handover related command to the UE, where the command can carry the newly selected air interface encryption/and integrity algorithm and the air interface encryption startup time of the HNB-GW;
  • the handover related command includes:
  • the UE After receiving the handover related command, the UE sends a handover complete message to the HNB, and switches to HNB.
  • the above is a method for preventing a HNB from spoofing a user according to a third embodiment of the present invention.
  • the HNB-GW sends a real identity of the HNB to the UE through a security mode start command that cannot be tampered with by the HNB. Therefore, any malicious HNB It is impossible to spoof the UE, effectively preventing the HNB from spoofing the user.
  • FIG. 6 is a flowchart of a method for preventing a HNB from spoofing a user according to a fourth embodiment of the present invention.
  • the method is applicable to the protocol stack shown in FIG. 5, where the physical layer to the RRC layer is implemented in the UE 501, and the RRC layer is placed.
  • the HNB-GW 503 is implemented, and the RLC layer is implemented in the HNB 502.
  • the step 601 in the fourth embodiment, and the steps 603 to 607 are the same as the first embodiment, and the fourth embodiment and the first embodiment are omitted.
  • the difference between the embodiments is:
  • Step 602 The HNB forwards the RRC connection establishment request of the UE to the HNB-GW, and the UE establishes an RRC connection with the HNB-GW.
  • Step 608 The RRC security mode start command sent by the HNB-GW to the HNB, and sending the CK to the HNB. After receiving the security mode start command, the HNB saves the CK, and starts the RRC security mode start command. Forward to the UE;
  • the IK since the RRC is implemented in the HNB-GW, the IK may not be sent to the HNB.
  • the HNB-GW when the HNB-GW sends an RRC security mode start command to the HNB, the HNB-GW may not send the CK to the HNB, but after the HNB-GW receives the security mode start command response. , then send CK to HNB.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the above is a method for preventing an HNB from spoofing a user according to the fourth embodiment of the present invention, in which the HNB-GW activates the HNB by a security mode startup command that cannot be tampered with by the HNB. It is sent to the UE. Therefore, any malicious HNB cannot spoof the UE, effectively preventing the HNB from spoofing the user.
  • the embodiment of the present invention further provides a system for preventing the HNB from spoofing the user. See FIG. 7, including: HNB-GW701, HNB702;
  • the HNB-GW 701 includes: a security mode command receiving unit 7011, a startup command creation and sending unit 7012;
  • the security mode command receiving unit 7011 is configured to receive a security mode command sent by the core network.
  • the security mode command carries CK and IK, and therefore, the security mode command receiving unit 7011 receives the After the safe mode command is described, the CK and IK are saved.
  • the security mode startup command creation and transmission unit 7012 is configured to create and send a security mode startup command that carries the ⁇ identity information, where the security mode startup command is forwarded to the UE via ⁇ ;
  • the security mode startup command receiving unit 7021 is configured to receive a security mode startup command that is sent by the HNB-GW and carries the identity information.
  • the security mode startup command forwarding unit 7022 is configured to forward the security mode startup command to
  • the foregoing provides a system for preventing an HNB from spoofing a user.
  • the UE needs to perform mutual authentication with the core network by using the HNB and the HNB-GW, and the UE needs to perform a connection process in the HNB through user authentication. Therefore, in the foregoing HNB 702 And HNB-GW701 also needs to include the following units:
  • the HNB 702 further includes:
  • a direct message receiving and forwarding unit configured to receive an initial direct transmission message sent by the UE, and forward the message to the HNB-GW;
  • the security mode start command response receiving and forwarding unit is configured to receive a security mode start response command sent by the UE, and forward the response command to the HNB-GW.
  • the HNB-GW701 further includes:
  • a direct forwarding message forwarding unit configured to forward the initial direct transmission message forwarded by the UE via the HNB to the core network
  • the secure mode start command response receiving unit is configured to receive a secure mode start response command of the UE forwarded via the HNB.
  • the HNB needs to further include:
  • connection establishing unit configured to receive an RRC connection setup request sent by the UE, and establish an RRC connection with the UE;
  • the HNB-GW701 needs to further include:
  • a first key sending unit configured to send the CK, IK carried in the security mode command to the HNB after the security mode start command response receiving unit receives the response command;
  • the HNB 702 further includes: a first key holding unit;
  • the first key holding unit is configured to save the CK, IK sent by the HNB-GW.
  • the ⁇ 702 further includes:
  • the connection forwarding unit is configured to forward the RRC connection request sent by the UE to the HNB-GW.
  • the HNB-GW 701 further includes:
  • An RRC connection establishing unit configured to receive an RRC connection setup request sent by the UE that is forwarded by the HNB, and establish an RRC connection with the UE;
  • the embodiment of the present invention provides two ways to switch the UE to the HNB:
  • the HNB-GW 701 may further include:
  • a UE context sending unit configured to: after the security mode start command response receiving unit receives the response command, send the UE context carried by the security mode start command, and the CK and IK carried in the security mode command to the HNB ;
  • the HNB 702 can further include:
  • a UE context receiving unit configured to receive a UE context carried by the security mode start command sent by the HNB-GW;
  • a handover message sending unit configured to send a handover message to the UE after the UE context receiving unit receives the UE context.
  • the HNB-GW 701 may further include: The switching command sending unit sends the CK and IK carried in the security mode command to the HNB through the switching command after the security mode startup command response receiving unit receives the response command; and switches the related command sending unit for After receiving the handover response message returned by the HNB, sending a handover related command to the UE;
  • the HNB 702 can further include:
  • a handover command receiving unit configured to receive a handover command that carries the CK and the IK sent by the HNB-GW; and a handover response sending unit, configured to send a handover response to the HNB-GW after the handover command receiving unit receives the handover command Message.
  • the HNB-GW 701 may further include: a second key sending unit, And sending the CK carried by the security mode command to the HNB, where the second key sending unit may send the saved CK to the HNB after the HNB-GW receives the security mode command, or may be in the HNB- After receiving the response of the security mode start command, the GW sends the CK to the HNB.
  • the HNB 702 can further include:
  • the second key holding unit is configured to save the CK sent by the HNB-GW.
  • the system provided by the embodiment of the present invention and the HNB and the HNB-GW are described in detail.
  • the system provided by the embodiment of the present invention sends the real identity of the HNB to the UE through a security mode startup command that cannot be tampered with by the HNB. Therefore, any A malicious HNB cannot spoof the UE, effectively preventing the HNB from spoofing the user.
  • FIG. 8 is a schematic structural diagram of a UE according to an embodiment of the present disclosure, where the UE includes:
  • a security mode startup command receiving unit 801 configured to receive a security mode startup command sent by the HNB
  • the identity information verification unit 802 is configured to verify whether the HNB identity information carried by the security mode initiation command is consistent with the identity information pre-broadcasted by the HNB, and if not, the access to the HNB is denied.
  • the foregoing UE may further include:
  • a first connection request establishing unit configured to send an RRC connection to the HNG-GW via the HNB Establish a request and establish an RRC connection with the HNB-GW;
  • a first transmission message sending unit configured to send an initial direct transmission message to the HNB
  • the UE may further include:
  • a first switching unit configured to receive a handover message sent by the HNB, and switch to the HNB; or, the second switching unit is configured to receive a handover related command sent by the HNB-GW, and switch to the HNB.
  • HNB-GW related functions described in the above invention may be implemented on a single network entity (another entity existing between the core network SGSN/MSC and the HNB), or may be placed with the SGSN. Implemented on one entity.
  • the UE provided by the embodiment of the present invention obtains the real identity of the HNB by using a security mode start command that cannot be tampered with by the HNB, and verifies whether the HNB identity information is consistent with the pre-broadcast identity information of the HNB, and if not, the access is denied.
  • the HNB can effectively prevent the HNB from spoofing the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computer Security & Cryptography (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

防止家庭基站欺骗用户的方法、 系统及设备
本申请要求于 2008 年 01 月 31 日提交中国专利局、 申请号为 200810006806.6, 发明名称为"防止家庭基站欺骗用户的方法、 系统及相关设 备"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域, 尤其涉及一种防止家庭基站欺骗用户的方法、 系统 及设备。
背景技术
随着因特网的发展以及各种无线业务的广泛应用 ,用户对于无线通信提出 了高速、 便捷、 低成本等方面的需求。 家庭基站(Home NodeB, HNB ) 的提 出, 充分满足了上述用户需求。
HNB 是一种家用微型基站, 其通过 IP、 非对称数字用户线路(ADSL, Asymmetric Digital Subscriber Line )、 因特网等方式接入运营商提供的移动通 信网络, 以获得无线通信服务。 通常情况下, HNB 由用户购买, 并布置在家 庭, 办公场所等热点覆盖区域, 与传统运营商的基站不同, HNB 更容易被一 般用户接触, 并且, HNB的所有权也不再属于运营商, 因而, HNB的安全性 不如传统基站。
而用户出于安全及隐私考虑, 有可能只愿意接入某些 HNB (如信誉良好 的集团的 HNB, 或者, 用户自己布置的 HNB等), 但一些恶意的 HNB为了经 济利益, 会假冒其他 HNB的身份吸引用户设备 ( User Equipment, UE )接入, 比如, 恶意的 HNB假冒用户自己设置的 HNB的身份吸引用户设备接入, 以 获取该用户设备的业务流, 然后, 利用该业务流给自己的用户提供无偿服务。
为了维护用户利益,防止用户被 HNB欺骗,现有技术提供了一种防止 HNB 欺骗用户的方法。
众所周知, UE 在接入通用移动通信系统 ( UMTS , Universal Mobile
Telecommunications System )或全球移动通讯系统 ( GSM, Global System for Mobile Communications )网络之前, UE和核心网 ( CN )之间需要进行密钥协 商与认证(AKA )流程, 在协商过程中, 核心网会生成一对加密密钥 (CK ) 和完整性密钥 (IK ), 之后, UE与核心网将基于这对 CK和 ΙΚ进行通信。 为了防止 HNB欺骗用户, 现有技术中, 核心网在将 IK发给 HNB之前, 需要完成一次密钥绑定运算 IK,=KDF ( IK, HNB— ID ), 即核心网将 IK与 HNB 的真实身份标识(HNB— ID )绑定, 然后, 核心网将 IK,发送给 HNB, 并且, UE亦会采用与核心网相同的密钥绑定算法, 将 ΗΝΒ通过广播方式发送的身 份标识与所述 ΙΚ绑定 , 生成一个 ΙΚ, , 只有 ΗΝΒ的 ΙΚ,和 UE的 ΙΚ,一致时 , UE才会接入该 ΗΝΒ , 若 ΗΝΒ假冒其他 ΗΝΒ身份, 则该 ΗΝΒ广播给 UE的 身份标识与其真实的身份标识将不一致, 从而, ΗΝΒ的 ΙΚ,与 UE的 ΙΚ,也会 不一致, 此时, 用户设备将会拒绝接入该 ΗΝΒ , 达到了防止用户设备被 ΗΝΒ 欺骗的目的。
由前文叙述可知, 现有技术值只适用于具有密钥绑定运算功能的 UE, 而 无法兼容不具备密钥绑定运算功能的传统 UE, 即若使用现有的防止 ΗΝΒ欺 骗用户的方法, 则会使传统 UE出错, 导致该 UE无法与任何的 ΗΝΒ建立连 接。
为了使现有技术能够兼容传统 UE, 即不影响传统 UE与 ΗΝΒ建立连接, 要求 UE在接入时上报其版本信息, 若核心网根据 UE的版本信息判断得到该 UE为传统 UE, 则核心网不启动密钥绑定运算, 即不启动防止 ΗΝΒ欺骗用户 的机制, 而是将 IK, CK直接发送给 ΗΝΒ , 之后, UE与 ΗΝΒ基于所述 ΙΚ, CK进行通信。
在对现有技术的研究和实践过程中 , 发明人发现现有技术存在以下问题: 现有技术中, UE上报版本信息是在核心网启动空口完整性保护之前进行, 则 UE的版本信息很可能会被恶意 ΗΝΒ篡改, 比如, ΗΝΒ将新版 UE的版本 信息篡改为传统 UE的版本信息, 则核心网将不会启动防止 ΗΝΒ欺骗用户的 机制, 使得新版 UE无法对 ΗΝΒ身份验证, ΗΝΒ成功骗过 UE。 由此可见, 现有技术存在 HNB成功骗过 UE的风险,其无法有效的防止 UE被 HNB欺骗。
发明内容
本发明实施例所要解决的技术问题是提供一种防止家庭基站欺骗用户的 方法、 系统及设备, 能够有效的防止 UE被 HNB欺骗。
为解决上述技术问题 , 本发明实施例所提供以下技术方案:
本发明实施例提供了一种防止家庭基站欺骗用户的方法,其特征在于, 包 括:
接收核心网发送的安全模式命令;
发送携带家庭基站身份信息的安全模式启动命令;
将所述安全模式启动命令经由所述家庭基站转发至用户设备。
本发明实施例提供了一种家庭基站网关, 包括: 安全模式命令接收单元, 启动命令创建^^送单元;
所述安全模式命令接收单元, 用于接收核心网发送的安全模式命令; 所述安全模式启动命令创建及发送单元,用于创建并发送携带家庭基站身 份信息的安全模式启动命令,所述安全模式启动命令经由家庭基站转发至用户 设备。
本发明实施例提供了一种家庭基站, 包括:
安全模式启动命令接收单元,用于接收所述家庭基站网关发送的携带家庭 基站身份信息的安全模式启动命令;
安全模式启动命令转发单元 ,用于将所述安全模式启动命令转发至用户设 备。
本发明实施例提供了一种用户设备, 包括:
安全模式启动命令接收单元,用于接收所述家庭基站发送来的安全模式启 动命令;
身份信息验证单元,用于验证所述安全模式启动命令携带的家庭基站身份 信息与所述家庭基站预先广播的身份信息是否一致, 若不一致, 则拒绝接入所 述家庭基站。
本发明实施例还提供了一种防止家庭基站欺骗用户的系统, 包括: 家庭基 站, 家庭基站网关;
其中, 所述家庭基站网关包括: 安全模式命令接收单元, 安全模式启动命 令创建及发送单元;
所述安全模式命令接收单元, 用于接收核心网发送的安全模式命令; 所述安全模式启动命令创建及发送单元,用于创建并发送携带家庭基站身 份信息的安全模式启动命令,所述安全模式启动命令经由家庭基站转发至用户 设备; 所述家庭基站包括: 安全模式启动命令接收单元,安全模式启动命令转发 单元;
所述安全模式启动命令接收单元,用于接收所述家庭基站网关发送的携带 家庭基站身份信息的安全模式启动命令;
所述安全模式启动命令转发单元,用于将所述安全模式启动命令转发至用 户设备。
上述技术方案具有如下有益效果:
在本发明实施例中, 通过一个不能被篡改的安全模式启动命令将 HNB的 真实身份信息发送给了 HNB, 因此, 任何恶意 HNB都无法欺骗 HNB, 有效 的防止了 HNB欺骗用户。
附图说明
图 1为本发明实施例提供的防止 HNB欺骗用户的方法流程图; 图 2为本发明第一实施例提供的防止 HNB欺骗用户的方法流程图; 图 3为本发明第二实施例提供的防止 HNB欺骗用户的方法流程图; 图 4为本发明第三实施例提供的防止 HNB欺骗用户的方法流程图; 图 5为本发明实施例提供的协议栈;
图 6为本发明第四实施例提供的防止 HNB欺骗用户的方法流程图; 图 7为本发明实施例提供的防止 HNB欺骗用户的系统组成示意图; 图 8为本发明实施例提供的 UE组成示意图。
具体实施方式
为使本发明实施例的目的、技术方案、及优点更加清楚明白, 以下参照附 图对本发明实施例提供的技术方案进行详细说明。
在本发明实施例中, 如无特别说明 UE均指新版 UE, 在 UE与核心网完 成互认证后, 若 UE想接入某个 HNB, 为了防止 UE被该 HNB欺骗, 本发明 实施例提供了一种防止 HNB欺骗用户的方法, 请参见图 1, 该方法包括: 步骤 101 : HNB-GW接收核心网发送的安全模式命令;
步骤 102:所述 HNB-GW发送携带 HNB身份信息的安全模式启动命令至 HNB;
步骤 103: 所述 HNB将所述安全模式启动命令转发至 UE; 步骤 104: 所述 UE验证所述安全模式启动命令携带的 HNB身份信息与 所述 HNB预先广播的身份信息是否一致, 若不一致, 则所述 UE拒绝接入所 述 HNB。
以上为本发明实施例提供的防止 HNB 欺骗用户的方法, 在该方法中 HNB-GW通过一个不能被 HNB篡改的安全模式启动命令将 HNB的真实身份 发送给了 HNB, 因此, 任何恶意 HNB都无法欺骗 HNB, 有效的防止了 HNB 欺骗用户。
进一步, 若在传统 UE与 HNB建立连接过程中, 核心网启动本发明实施 例提供的防止 HNB欺骗用户的机制, 并不会影响传统 UE与 HNB建立连接, 因为传统 UE不认识安全模式启动命令中携带 HNB身份信息的 IE,而传统 UE 对于不认识的 IE的处理就是直接忽略不计, 所以, 传统 UE在接收到安全模 式启动命令后, 直接创建经由 HNB转发至 HNB-GW的安全模式启动命令响 应, HNB-GW收到响应后将已存的 IK, CK发送给 HNB, UE和 HNB基于所 述 IK, CK进行通信。 由此可见, 本发明实施例提供的方法并不会影响传统 UE与任何的 HNB建立连接, 即本发明实施例提供的方法兼容传统 UE。
在本发明其他实施例中, 亦可由其他知道 HNB真实身份信息的设备发送 携带 HNB真实身份信息的安全模式启动命令至 UE, 并不影响本发明实施例 的实现。
以上介绍了本发明实施例提供的防止 HNB欺骗用户的方法, 以下结合附 图对本发明实施例提供方法的具体实现过程进行详细介绍。
请参见图 2, 为本发明第一实施例提供的防止 HNB欺骗用户的方法, 包 括:
步骤 201 : UE接收 HNB通过广播方式发送来的 HNB身份信息, 该身份 信息可以是 HNB 自身的身份信息, 或者, 是 HNB 所在闭用户组(Closed Subscriber Group, CSG ) 的信息;
若用户根据 UE接收到的 HNB身份信息, 决定接入该 HNB, 则 UE执行 步骤 202。
步骤 202: UE向 HNB发送 RRC连接建立请求, 并与 HNB建立 RRC连 接; 步骤 203: UE向 HNB发送初始直传消息;
在具体实现时, 所述初始直传消息可以是附着请求(attach ), (路由区更 新消息) RAU, 服务请求 ( service request ), 或者, 寻呼响应 ( paging response ) 等消息;
步骤 204 : HNB 将所述初始直传消息转发至家庭基站网关 (Home
NodeB-GateWay, HNB-GW );
其中, HNB在转发所述初始直传消息时, 可以在所述初始直传消息中加 入空口加密启动时间;
步骤 205: HNB-GW将所述初始直传消息转发给核心网的通用分组无线业 务( GPRS, General Packet Radio Service ) 支持节点 (Serving GPRS Support Node, SGSN ), 或, 移动交换中心( Mobile Switching Center, MSC ), 或, 拜 访位置寄存器( Visited Location Register, VLR );
其中, 若用户业务在分组(Packet Switch, PS )域, 则 HNB-GW将初始 直传消息发送给 SGSN,若用户业务在电路( Circuit Switch, CS )域,则 HNB-GW 将初始直传消息发送给 MSC或者 VLR。
在具体实现时, HNB-GW与 SGSN/MSC/VLR之间采用传统的 Iu接口, HNB-GW收到初始直传消息后, 通过 Iu接口向核心网 SGSN/MSC/VLR发送 信令连接控制协议( Skinny Client Control Protocol, SCCP )连接请求消息( CR ), 消息数据为 UE发送的初始直传消息。
步骤 206: 核心网 SGSN/MSC/VLR根据预置的运营商策略, 判断是否需 要执行一次新的密钥协商与认证流程, 如果是, 则发起 AKA流程, 如果否, 则进入步骤 207;
其中, 所述预置的运营商策略可以是 CK, IK是否过期, 或者, CK, IK 安全等级是否符合业务需要等。
步骤 207:核心网 SGSN/MSC/VLR向 HNB-GW发送安全模式命令,该命 令携带允许采用的空口加密算法 /完整性算法, 以及 CK, IK;
步骤 208: HNB-GW保存所述 CK及 IK,并创建 RRC安全模式启动命令, 该安全模式启动命令携带 UE当前所在 HNB的真实身份信息(如 HNB小区标 识, HNB所在 CSG的身份标识, 或者, HNB 自身的公共身份标识或私有身 份标识), HNB-GW采用所述 IK对该安全模式启动命令进行完整性保护, 该 启动命令经由 HNB发送给 UE;
其中, 由于 HNB接入网络时,是由 HNB-GW进行认证 , 所以, HNB-GW 知道 HNB的真实身份。
另夕卜, HNB-GW发给 HNB 的安全模式命令启动命令与 HNB-GW发给
HNB的其他消息不同,是需要 HNB原封不动的作为 RRC消息转发给 UE, 因 此, HNB-GW和 HNB接口可能还需要有相关指示功能, 比如, HNB-GW将 所述安全模式启动命令放到一个特殊类型的 IE里发给 HNB (这个 IE里的信 息需要 HNB原封不动的作为 RRC消息发给 UE ), 或者, 在消息头加一个特 殊指示标志, 告知 HNB要对该消息里安全模式命令作为 RRC消息原封不动 发给 UE。
在具体实现时,本领域技术人员知道需要在发送给 UE的安全模式启动命 令中携带空口加密 /完整性算法, 以及要对安全模式启动命令进行完整性保护。 并且, HNB-GW创建的 RRC安全模式启动命令类似于 RNC创建并向 UE发 送的安全模式启动命令, 不同之处在于, HNB-GW创建的 RRC安全模式启动 命令中增加了一个携带 UE当前所在 HNB的真实身份信息的 IE。
并且, 为了保证所述安全模式启动命令携带的空口加密算法 /完整性算法 是 UE及 HNB支持的算法, HNB-GW可以根据 HNB的安全能力以及 UE上 报的安全能力, 从所述允许使用的空口加密算法 /完整性算法中, 选择一个合 理的算法放入所述 RRC安全模式启动命令, 并且,使用 IK及选择出的算法对 RRC安全模式启动命令进行完整性保护。 或者, HNB根据自身安全能力以及 UE在 RRC连接过程中上报的安全能力,选择一组安全算法,上报给 HNB-GW, HNB-GW将这组算法放入所述 RRC安全模式启动命令。
进一步, 如果 HNB上报了空口加密启动时间, 则 HNB-GW将 HNB上报 的空口加密启动时间添加到所述 RRC安全模式启动命令中,否则,由 HNB-GW 选择一个空口加密启动时间, 并添加到 RRC安全模式启动命令中。
步骤 209: UE收到所述 RRC安全模式启动命令后,验证该命令的完整性, 若该命令完整, 则验证该命令携带的 HNB身份信息是否与 HNB通过广播方 式发送来的身份信息一致, 如果一致, 则进入步骤 210, 如果否, 则释放与 HNB的 RRC连接, 拒绝与该 HNB建立连接。
步骤 210: UE创建安全模式启动命令响应, 并采用 IK对该响应进行完整 性保护, 该响应经由 HNB转发至 HNB-GW;
步骤 211 : HNB-GW验证安全模式启动命令响应的完整性,若该响应完整, 则发送密钥下发命令至 HNB, 该命令携带所述已存的 CK和 IK;
进一步, 由于新版 UE支持密钥绑定算法, 为了更好的防止恶意 HNB攻 击 UE, 在本发明其他实施例中, UE 可以安全模式启动命令响应中携带版本 信息(或者能力信息), 那么, HNB-GW对安全模式启动命令响应完整性验证 通过后, HNB-GW可以进一步根据 UE版本信息(或者能力信息), 选择发送 CK, IK的方式, 比如, 对于传统 UE和新版 UE, HNB-GW均可采用直接将 CK和 IK发送给 HNB的方式, 而对于新版 UE, HNB-GW还可以启动密钥绑 定算法, 即将 CK, IK与 HNB身份标识绑定后的新密钥发送给 HNB, 同时, UE也需要采用相同的密钥绑定算法衍生新密钥, 后续流程中, UE与 HNB采 用新密钥进行通信。
步骤 212: HNB保存所述 IK和 CK, 并向 HNB-GW返回密钥接收响应。 以上为本发明第一实施例提供的防止 HNB欺骗用户的方法, 在该方法中 HNB-GW通过一个不能被 HNB篡改的安全模式启动命令将 HNB的真实身份 发送给了 UE, 因此, 任何恶意 HNB都无法欺骗 UE, 有效的防止了 HNB欺 骗用户。
请参见图 3, 为本发明第二实施例提供的防止 HNB欺骗用户的方法流程 图,第二实施例中的步骤 301 ~步骤 307与第一实施例中的步骤 201 ~步骤 207 相同, 在此不再赞述。
步骤 308: HNB-GW保存所述 CK及 IK,并创建 RRC安全模式启动命令, 该安全模式启动命令携带 UE当前所在 HNB的真实身份信息(如 HNB小区标 识, HNB所在 CSG的身份标识, 或者, HNB 自身的公共身份标识或私有身 份标识), HNB-GW采用所述 IK对该安全模式启动命令进行完整性保护, 该 启动命令经由 HNB发送给 UE;
其中, 由于 HNB接入网络时,是由 HNB-GW进行认证 , 所以, HNB-GW 知道 HNB的真实身份。 另夕卜, HNB-GW发给 HNB 的安全模式命令启动命令与 HNB-GW发给 HNB的其他消息不同,是需要 HNB原封不动的作为 RRC消息转发给 UE, 因 此, HNB-GW和 HNB接口可能还需要有相关指示功能, 比如, HNB-GW将 所述安全模式启动命令放到一个特殊类型的 IE里发给 HNB (这个 IE里的信 息需要 HNB原封不动的作为 RRC消息发给 UE ), 或者, 在消息头加一个特 殊指示标志, 告知 HNB要对该消息里安全模式命令作为 RRC消息原封不动 发给 UE。
在具体实现时,本领域技术人员知道需要在发送给 UE的安全模式启动命 令中携带空口加密 /完整性算法, 以及要对安全模式启动命令进行完整性保护。 并且, HNB-GW创建的 RRC安全模式启动命令类似于 RNC创建并向 UE发 送的安全模式启动命令, 不同之处在于, HNB-GW创建的 RRC安全模式启动 命令中增加了一个携带 UE当前所在 HNB的真实身份信息的 IE。
值得指出的是, 此安全模式启动命令里携带的空口加密 /完整性算法可以 是 HNB-GW根据 UE安全能力以及允许的算法, 所选定的算法。
进一步 , 如果 HNB上报了加密启动时间, 则 HNB-GW将 HNB上报的加 密启动时间添加到所述 RRC安全模式启动命令中, 否则, 由 HNB-GW选择 一个加密启动时间, 并添加到 RRC安全模式启动命令中。
第二实施例中的步骤 309〜步骤 312与第一实施例中的步骤 209〜步骤 212 相同, 在此不再赞述。
步骤 313: HNB选择 HNB和 UE都能支持的新的空口加密 /完整性算法, 并将新算法通知给 UE;
在具体实现时,步骤 313中选择出的算法可以通过以下任意一个消息发送 给 UE:
( 1 )物理信道重配置消息 PHYSICAL CHANNEL
RECONFIGURATION;
( 2 ) RNTI重分配消息;
( 3 ) ( UT ) RAN移动信息消息 ( UT ) RAN mobility information;
( 4 )传输信道重配置消息 TRANSPORT CHANNEL
RECONFIGURATION; ( 5 ) RB建立消息 RADIO BEARER SETUP , 或者, RB释放消息 RADIO BEARER RELEASE。
值得指出的是, 步骤 313以及后续步骤的实施可能是必选的,也可能是可 选的。 所谓可选的, 也就是只有当 HNB发现 HNB-GW所选算法不是其所能 支持的算法时才执行步骤 313以及后续步骤。
步骤 314: UE切换到本小区, 并且采用新算法与 HNB进行空口通信。 值得指出的是, 以上步骤 313和 314通过由 HNB向 UE发送切换命令的 方式, 达到了通知 UE新算法的目的。
当然,也不排除由 HNB-GW向 UE发送切换命令的方式, 由 HNB进行转 发的方式。
以上为本发明第二实施例提供的防止 HNB欺骗用户的方法, 在该方法中 HNB-GW通过一个不能被 HNB篡改的安全模式启动命令将 HNB的真实身份 发送给了 UE, 因此, 任何恶意 HNB都无法欺骗 UE, 有效的防止了 HNB欺 骗用户。
以下介绍本发明第三实施例提供的防止 HNB欺骗用户的方法, 该方法与 第一实施例提供方法的主要区别在于, UE不与 HNB建立 RRC连接, 而是与 HNB-GW建立 RRC连接, 因此, 若 HNB通过验证, 则 UE需要切换到 HNB。 请参见图 4, 为本发明第三实施例提供的防止 HNB欺骗用户的方法, 包括: 步骤 401 : UE接收 HNB通过广播方式发送来的 HNB身份信息; 若用户根据 UE接收到的 HNB身份信息, 决定接入该 HNB , 则 UE执行 步骤 402。
步骤 402: UE向 HNB发送 RRC连接建立请求, HNB将所述 RRC连接 建立请求转发至 HNB-GW, 并且, UE与 HNB-GW建立 RRC连接;
因为步骤 402中 HNB仅起到转发 RRC连接建立请求的作用,所以, HNB 既可以相当于 NodeB ,也可以相当于漂移无线网络控制器( Drift Radio Network Control , D-RNC )。 那么, 在具体实现时, HNB和 HNB-GW可以采用以下 通信协议:
若把 HNB相当于 NodeB, 则 HNB与 HNB-GW通过类似于 Iub的接口进 行通信。 若把 HNB相当于 D-RNC,则 HNB与 HNB-GW通过类似于 Iur的接口进 行通信,如 HNB可以采用 Uplink Signalling Transfer procedure消息发送 UE发 送给 HNB-GW的上行消息 , 采用 Downlink Signalling Transfer procedure消息 发送 HNB-GW发送给 UE的下行消息。
此外, HNB和 HNB-GW还可以采用扩展后的 Iu接口 ( RANAP协议 )进 行通信。
步骤 403: UE向 HNB发送初始直传消息;
步骤 404: HNB向 HNB-GW转发此初始直传消息;
步骤 405: HNB-GW将所述初始直传消息转发给核心网 SGSN/MSC/VLR; 步骤 406: 核心网 SGSN/MSC/VLR根据预置的运营商策略, 判断是否需 要执行一次新的密钥协商与认证流程, 如果是, 则发起 AKA流程, 如果否, 则进入步骤 407;
步骤 407:核心网 SGSN/MSC/VLR向 HNB-GW发送安全模式命令,该命 令携带允许采用的空口加密 /完整性算法, 以及 CK, IK;
步骤 408: HNB-GW创建 RRC安全模式启动命令, 该安全模式命令携带
UE当前所在 HNB的真实身份信息, HNB-GW采用所述 IK对该安全模式命令 进行完整性保护, 并且, 该启动命令经由 HNB发送给 UE;
步骤 409: UE收到所述 RRC安全模式启动命令后,验证该命令的完整性, 若该命令完整, 则验证该命令携带的 HNB身份信息是否与 HNB通过广播方 式发送来的信息一致, 如果一致, 则进入步骤 410, 如果否, 则 UE释放与 HNB-GW的 RRC连接, 拒绝接入该 HNB;
步骤 410: UE创建安全模式命令启动命令响应, 并采用 IK对该响应进行 完整性保护, 该响应经由 HNB发送给 HNB-GW;
步骤 411 : HNB-GW收到 UE发来的安全模式启动命令响应后, 验证其完 整性, 并在验证通过后, 将所述安全模式命令中携带的 UE上下文, 以及 CK 和 IK发送给 HNB;
在具体实现时, HNB-GW可以采用类似于 S-RNC relocation中, S-RNC 向 D-RNC发送的 RELOCATION COMMIT消息,下发 UE上下文及 CK和 IK, 也可以采用其他类型的消息 , 如扩展后的 RANAP消息。 步骤 412: HNB保存所述 CK及 IK, 并向 UE发送切换消息; 在具体实现时, 所述切换消息可以是 RAN mobility information消息或者
RNTI重分配消息, 并且, HNB可以根据 UE安全能力, 以及允许采用的算法 择新的空口加密 /完整性算法, 并通过 RAN mobility information消息将该算法 携带给 UE; 当然也不排除 HNB会利用传输信道重配置, 物理信道重配置,
RB配置 /重配置, RB释放硬切换的命令。
步骤 413: UE接收到所述切换消息后, 切换到 HNB上;
进一步, 若所述切换消息携带了新算法, 则 UE采用新算法与 HNB进行 通信。
在本发明上述实施例中, 步骤 411至步骤 413是为了实现将 UE切换到
HNB, 在本发明其他实施例中, HNB-GW在收到 UE返回的安全模式启动命 令响应后, 可以执行一个类似于有 UE参与的服务无线网络控制器(Server Radio Network Control , S-RNC ) 切换方式, 将 UE切换到 HNB上, 在 UE看来是执行一个硬切换过程, 该过程具体包括:
HNB-GW在收到 UE返回的安全模式启动命令响应后, 向 HNB发送一个 切换命令, 该切换命令可以携带 UE安全能力, 允许的空口加密 /完整性算法, CK及 IK;
HNB-GW在接收到 HNB返回切换命令响应后,向 UE发送切换相关命令, 该命令可以携带 HNB-GW新选择的空口加密 /及完整性算法及空口加密启动 时间;
其中, 所述切换相关命令包括:
( 1 )物理信道重配置消息 PHYSICAL CHANNEL
RECONFIGURATION;
( 2 )传输信道重配置消息 TRANSPORT CHANNEL
RECONFIGURATION;
( 3 ) RB建立消息 RADIO BEAR SETUP;
( 4 ) RB释放消息 RADIO BEAR RELEASE;
( 5 ) RB重配置消息 RADIO BEAR RECONFIGURATION
UE在收到所述切换相关命令后, 向 HNB发送切换完成消息, 并切换到 HNB。
以上为本发明第三实施例提供的防止 HNB欺骗用户的方法, 在该方法中 HNB-GW通过一个不能被 HNB篡改的安全模式启动命令将 HNB的真实身份 发送给了 UE, 因此, 任何恶意 HNB都无法欺骗 UE, 有效的防止了 HNB欺 骗用户。
请参见图 6, 为本发明第四实施例提供的防止 HNB欺骗用户的方法流程 图, 该方法适用于图 5所示的协议栈, 其中, UE501中实现物理层至 RRC层, RRC层放入 HNB-GW503实现, RLC层以下放到 HNB502实现, 其中, 第四 实施例中的步骤 601, 以及步骤 603 ~步骤 607与第一实施例相同在此不再赞 述, 第四实施例与第一实施例的区别在于:
步骤 602: HNB将 UE的 RRC连接建立请求转发至 HNB-GW, 并且, UE 与 HNB-GW建立 RRC连接;
步骤 608: HNB-GW向 HNB发送的 RRC安全模式启动命令, 并且, 将 CK发送给 HNB , HNB在接收到所述安全模式启动命令后 , 保存所述 CK, 并将所述 RRC安全模式启动命令转发给 UE;
在本实施例中, 由于 RRC在 HNB-GW中实现, 那么, IK可以不发送给 HNB。
值得注意的是, 在本发明第四实施例中, HNB-GW在向 HNB发送 RRC 安全模式启动命令时, 可以不将 CK发送给 HNB, 而是在 HNB-GW收到安全 模式启动命令响应后, 再将 CK发送给 HNB。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成 ,所述的程序可以存储于一种计算机可 读存储介质中, 该程序在执行时, 包括如下步骤:
接收核心网发送的安全模式命令;
发送携带家庭基站身份信息的安全模式启动命令, 所述安全模式启动命 令经由家庭基站转发至用户设备。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上为本发明第四实施例提供的防止 HNB欺骗用户的方法, 在该方法中 HNB-GW通过一个不能被 HNB篡改的安全模式启动命令将 HNB的真实身份 发送给了 UE, 因此, 任何恶意 HNB都无法欺骗 UE, 有效的防止了 HNB欺 骗用户。
若 UE想接入某个 HNB, 为了防止 UE被该 HNB欺骗, 本发明实施例还 提供了一种防止 HNB欺骗用户的系统, 请参见图 7, 包括: HNB-GW701 , HNB702;
其中, HNB-GW701包括: 安全模式命令接收单元 7011 , 启动命令创建及 发送单元 7012;
所述安全模式命令接收单元 7011 , 用于接收核心网发送的安全模式命令; 在具体实现时, 所述安全模式命令会携带 CK和 IK, 因此, 所述安全模 式命令接收单元 7011在接收到所述安全模式命令后, 会保存所述 CK和 IK。
所述安全模式启动命令创建及发送单元 7012, 用于创建并发送携带 ΗΝΒ 身份信息的安全模式启动命令, 所述安全模式启动命令经由 ΗΝΒ转发至 UE; 其中, ΗΝΒ702包括:
安全模式启动命令接收单元 7021, 用于接收所述 HNB-GW发送的携带 ΗΝΒ身份信息的安全模式启动命令;
安全模式启动命令转发单元 7022, 用于将所述安全模式启动命令转发至
UE。
以上为本发明实施例提供防止 HNB欺骗用户的系统, 由于 UE需要借助 HNB及 HNB-GW与核心网进行互认证, 并且, 在 HNB通过用户验证, UE 还需要进行连接流程, 因此, 在上述 HNB702及 HNB-GW701还需要包括以 下单元:
其中, HNB702进一步包括:
直传消息接收及转发单元, 用于接收 UE发送的初始直传消息, 并将所述 消息转发至 HNB-GW;
安全模式启动命令响应接收及转发单元,用于接收 UE发送的安全模式启 动响应命令, 并将所述响应命令转发至 HNB-GW。
HNB-GW701中进一步包括:
直传消息转发单元, 用于将 UE经由 HNB转发来的初始直传消息转发给 核心网; 安全模式启动命令响应接收单元, 用于接收经由 HNB转发来的 UE的安 全模式启动响应命令。
在具体实现时, 若 UE在接入网络时, 与 HNB建立 RRC连接, 则 HNB 中需要进一步包括:
连接建立单元, 用于接收 UE发送的 RRC连接建立请求, 并与 UE建立 RRC连接;
并且, HNB-GW701中还需要进一步包括:
第一密钥发送单元,用于在安全模式启动命令响应接收单元接收到所述响 应命令后, 将所述安全模式命令中携带的 CK, IK发送给 HNB;
HNB702中进一步包括: 第一密钥保存单元;
第一密钥保存单元, 用于保存 HNB-GW发送来的 CK, IK。
若 UE在接入网络时,与 HNB-GW建立 RRC连接, 则 ΗΝΒ702中进一步 包括:
连接转发单元, 用于将 UE发送来的 RRC连接请求转发至 HNB-GW; 所述 HNB-GW701中进一步包括:
RRC连接建立单元, 用于接收经由所述 HNB转发来的 UE发送的 RRC 连接建立请求, 并与 UE建立 RRC连接;
由于 UE与 HNB-GW建立了 RRC连接, 则需要将 UE切换至 HNB, 本 发明实施例提供了两种将 UE切换至 HNB的方式:
第一种方式中, 在 HNB-GW701中还可以进一步包括:
UE上下文发送单元, 用于在安全模式启动命令响应接收单元接收到所述 响应命令后, 将所述安全模式启动命令携带的 UE上下文, 及所述安全模式命 令中携带的 CK和 IK发送给 HNB;
HNB702中还可以进一步包括:
UE上下文接收单元, 用于接收 HNB-GW发送来的所述安全模式启动命 令携带的 UE上下文;
切换消息发送单元, 用于在所述 UE上下文接收单元接收到所述 UE上下 文后, 向 UE发送切换消息。
第二种方式中, HNB-GW701还可以进一步包括: 切换命令发送单元 ,在安全模式启动命令响应接收单元接收到所述响应命 令后, 将所述安全模式命令中携带的 CK和 IK通过切换命令中发送给 HNB; 切换相关命令发送单元 ,用于在接收到所述 HNB返回的切换响应消息后 , 向所述 UE发送切换相关命令;
HNB702中还可以进一步包括:
切换命令接收单元,用于接收 HNB-GW发送的携带 CK和 IK的切换命令; 切换响应发送单元, 用于在所述切换命令接收单元接收到所述切换命令 后, 向 HNB-GW发送切换响应消息。
进一步, 若采用图 5所示的协议栈, 即在所述 HNB-GW701中实现 RRC 层, 在所述 HNB中实现 RLC以下层, 则 HNB-GW701中可以进一步包括: 第二密钥发送单元, 用于将所述安全模式命令携带的 CK发送给 HNB; 其中, 第二密钥发送单元, 可以在 HNB-GW接收到安全模式命令后, 将 已保存的 CK发送给 HNB ,也可以在 HNB-GW收到安全模式启动命令响应后, 将 CK发送给 HNB;
在 HNB702中还可以进一步包括:
第二密钥保存单元, 用于保存 HNB-GW发送来的 CK。
以上对本发明实施例提供的系统以及 HNB, HNB-GW进行了详细介绍 , 本发明实施例提供的系统通过一个不能被 HNB 篡改的安全模式启动命令将 HNB的真实身份发送给了 UE, 因此, 任何恶意 HNB都无法欺骗 UE, 有效 的防止了 HNB欺骗用户。
以下参照附图对本发明实施例提供的 UE进行介绍。 请参见图 8, 为本发 明实施例提供的 UE组成示意图, 该 UE包括:
安全模式启动命令接收单元 801 , 用于接收所述 HNB发送来的安全模式 启动命令;
身份信息验证单元 802, 用于验证所述安全模式启动命令携带的 HNB身 份信息与所述 HNB预先广播的身份信息是否一致, 若不一致, 则拒绝接入所 述 HNB。
若 HNB通过 UE验证 , 则上述 UE还可以进一步包括:
第一连接请求建立单元, 用于经由所述 HNB向 HNG-GW发送 RRC连接 建立请求, 并与 HNB-GW建立 RRC连接;
第一直传消息发送单元 , 用于向所述 HNB发送初始直传消息;
由于 UE是与 HNB-GW建立 RRC连接 , 则为了将 UE切换到 HNB , UE 中还可以包括:
第一切换单元, 用于接收 HNB发送来的切换消息, 并切换到所述 HNB; 或者, 第二切换单元, 用于接收所述 HNB-GW发送的切换相关命令, 并 切换到所述 HNB。
值得指出的是, 以上本发明中所描述的 HNB-GW相关功能可能在一个单 独的网络实体上实现(在核心网 SGSN/MSC与 HNB之间存在的另外一个实 体), 也可以与 SGSN放在一个实体上实现。
本发明实施例提供的 UE通过一个不能被 HNB篡改的安全模式启动命令 获得所在 HNB的真实身份,验证所述 HNB身份信息与所述 HNB预先广播的 身份信息是否一致, 若不一致, 则拒绝接入所述 HNB, 从而可以有效的防止 HNB欺骗用户。
以上对本发明所提供的一种防止 HNB欺骗用户的方法、 系统及设备进行 了详细介绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体 实施方式及应用范围上均会有改变之处, 综上所述,本说明书内容不应理解为 对本发明的限制。

Claims

权 利 要 求
1、 一种防止家庭基站欺骗用户的方法, 其特征在于, 包括:
接收核心网发送的安全模式命令;
发送携带家庭基站身份信息的安全模式启动命令;
将所述安全模式启动命令经由所述家庭基站转发至用户设备。
2、 如权利要求 1所述的方法, 其特征在于, 还包括:
所述用户设备验证所述安全模式启动命令携带的所述家庭基站身份信息 与所述家庭基站预先广播的身份信息是否一致, 若不一致, 则所述用户设备拒 绝接入所述家庭基站。
3、 如权利要求 2所述的方法, 其特征在于, 所述安全模式命令携带加密 密钥及完整性密钥,若所述安全模式启动命令携带的所述家庭基站身份信息与 所述家庭基站预先广播的身份信息一致, 还包括:
接收所述用户设备发送的安全模式启动命令响应;
将所述安全模式命令携带的加密密钥和完整性密钥发送给所述家庭基站 保存。
4、 如权利要求 3所述的方法, 其特征在于, 所述接收到安全模式启动命 令响应之后, 还包括:
将所述安全模式启动命令携带的用户设备上下文发送给所述家庭基站; 所述家庭基站收到所述用户设备上下文后, 向用户设备发送切换消息; 所述用户设备收到所述切换消息后, 切换到所述家庭基站。
5、 如权利要求 3所述的方法, 其特征在于, 若通过切换命令将所述加密 密钥和完整性密钥发送给所述家庭基站, 还包括:
接收所述家庭基站返回的切换响应消息;
向所述用户设备发送切换相关命令;
所述用户设备收到所述切换相关命令后, 切换到所述家庭基站。
6、 如权利要求 2所述的方法, 其特征在于, 若所述安全模式命令携带加 密密钥及完整性密钥, 则在接收到所述安全模式命令之后, 还包括:
保存所述加密密钥和完整性密钥 , 将加密密钥发送至所述家庭基站保存。
7、 如权利要求 1至 3所述的任一方法, 其特征在于, 所述接收核心网发 送的安全模式命令之前, 还包括:
用户设备接收所述家庭基站通过广播方式发送的身份信息,若用户决定接 入所述家庭基站, 则所述用户设备发送 RRC连接建立请求至所述家庭基站, 所述家庭基站与用户设备建立 RRC连接;
所述用户设备发送初始直传消息至核心网。
8、 如权利要求 1或 2或 4或 5或 6所述的方法, 其特征在于, 若所述家 庭基站网关接收所述安全模式命令,则在核心网发送安全模式命令之前进一步 包括:
用户设备接收家庭基站通过广播方式发送来的身份信息,若用户决定接入 所述家庭基站, 则所述用户设备发送 RRC连接建立请求, 所述请求经由所述 家庭基站转发至所述家庭基站网关, 所述家庭基站网关与用户设备建立 RRC 连接;
所述用户设备发送初始直传消息至核心网。
9、 如权利要求 3至 6所述的任一方法, 其特征在于, 若所述安全模式启 动命令响应中进一步携带用户设备版本信息,则在收到所述安全模式启动命令 响应之后, 还包括:
根据所述用户设备版本信息, 判断是否启动密钥绑定算法, 若所述用户设 备为新版用户设备, 则启动密钥绑定算法, 并将绑定算法得到完整性密钥及加 密密钥发送给用户设备,若所述用户设备为传统用户设备,或者新版用户设备, 则家将所述完整性密钥, 加密密钥发送给用户设备。
10、 如权利要求 2至 6所述的任一方法, 其特征在于, 若所述安全模式命 令进一步携带空口加密 /完整性算法, 则在发送安全模式启动命令之前, 还包 括:
从接收的安全模式命令携带的允许空口加密 /完整性算法中 , 选择家庭基 站与用户设备支持的算法, 并将选择出的算法添加至所述安全模式启动命令 中, 并对所述安全模式启动命令进行完整性保护;
在所述用户设备验证所述安全模式启动命令携带的所述家庭基站身份信 息与所述家庭基站预先广播的身份信息是否一致之前, 还包括:
所述用户设备验证所述安全模式启动命令的完整性。
11、 一种家庭基站网关, 其特征在于, 包括: 安全模式命令接收单元, 启 动命令创建及发送单元;
所述安全模式命令接收单元, 用于接收核心网发送的安全模式命令; 所述安全模式启动命令创建及发送单元,用于创建并发送携带家庭基站身 份信息的安全模式启动命令,所述安全模式启动命令经由家庭基站转发至用户 设备。
12、 如权利要求 11所述的装置, 其特征在于, 进一步包括:
直传消息转发单元,用于将用户设备经由家庭基站转发来的初始直传消息 转发给核心网;
安全模式启动命令响应接收单元,用于接收经由家庭基站转发来的用户设 备的安全模式启动响应命令。
13、 如权利要求 11或 12所述的装置, 其特征在于, 若所述安全模式命令 携带加密密钥和完整性密钥, 则所述装置进一步包括: 第一密钥发送单元; 第一密钥发送单元, 用于将所述加密密钥, 完整性密钥发送给家庭基站保 存。
14、 如权利要求 11或 12所述的装置, 其特征在于, 进一步包括:
RRC连接建立单元, 用于接收经由所述家庭基站转发来的用户设备发送 的 RRC连接建立请求, 并与用户设备建立 RRC连接。
15、 如权利要求 14所述的装置, 其特征在于, 若所述安全模式命令携带 加密密钥和完整性密钥, 则所述装置进一步包括:
用户设备上下文发送单元,用于将所述安全模式启动命令携带的用户设备 上下文, 及所述加密密钥和完整性密钥发送给家庭基站保存。
16、 如权利要求 14所述的装置, 其特征在于, 若所述安全模式命令携带 加密密钥和完整性密钥, 则所述装置进一步包括:
切换命令发送单元,用于将所述加密密钥和完整性密钥携带在切换命令中 发送给家庭基站保存;
切换相关命令发送单元 ,用于在接收到所述家庭基站返回的切换响应消息 后, 向所述用户设备发送切换相关命令。
17、 如权利要求 14所述的装置, 其特征在于, 若所述安全模式命令携带 加密密钥和完整性密钥, 并且, 在所述家庭基站网关中实现 RRC层, 则所述 装置进一步包括:
第二密钥发送单元, 用于将所述加密密钥发送给家庭基站保存。
18、 一种家庭基站, 其特征在于, 包括:
安全模式启动命令接收单元,用于接收所述家庭基站网关发送的携带家庭 基站身份信息的安全模式启动命令;
安全模式启动命令转发单元 ,用于将所述安全模式启动命令转发至用户设 备。
19、 如权利要求 18所述的装置, 其特征在于, 所述装置进一步包括: 直传消息接收及转发单元, 用于接收用户设备发送的初始直传消息, 并将 所述消息转发至家庭基站网关;
安全模式启动命令响应接收及转发单元,用于接收用户设备发送的安全模 式启动响应命令, 并将所述响应命令转发至家庭基站网关。
20、 如权利要求 19所述的装置, 其特征在于, 所述装置进一步包括: 连接转发单元, 用于将用户设备发送来的 RRC连接请求转发至家庭基站 网关。
21、 如权利要求 20所述的装置, 其特征在于, 所述装置进一步包括: 用户设备上下文接收单元,用于接收家庭基站网关发送来的所述安全模式 启动命令携带的用户设备上下文;
切换消息发送单元,用于在所述用户设备上下文接收单元接收到所述用户 设备上下文后, 向用户设备发送切换消息。
22、 如权利要求 20所述的装置, 其特征在于, 所述装置进一步包括: 切换命令接收单元, 用于接收家庭基站网关发送的切换命令;
切换响应发送单元, 用于在所述切换命令接收单元接收到所述切换命令 后, 向家庭基站网关发送切换响应消息。
23、 一种用户设备, 其特征在于, 包括:
安全模式启动命令接收单元,用于接收所述家庭基站发送来的安全模式启 动命令;
身份信息验证单元,用于验证所述安全模式启动命令携带的家庭基站身份 信息与所述家庭基站预先广播的身份信息是否一致, 若不一致, 则拒绝接入所 述家庭基站。
24、 如权利要求 23所述的装置, 其特征在于, 所述装置进一步包括: 第一连接请求建立单元, 用于经由所述家庭基站向 HNG 网关发送 RRC 连接建立请求, 并与家庭基站网关建立 RRC连接;
第一直传消息发送单元, 用于向所述家庭基站发送初始直传消息。
25、 如权利要求 24所述的装置, 其特征在于, 所述装置进一步包括: 第一切换单元, 用于接收家庭基站发送来的切换消息, 并切换到所述家庭 基站。
26、 如权利要求 24所述的装置, 其特征在于, 所述装置进一步包括: 第二切换单元, 用于接收所述家庭基站网关发送的切换相关命令, 并切换 到所述家庭基站。
27、 一种防止家庭基站欺骗用户的系统, 其特征在于, 包括: 家庭基站, 家庭基站网关;
其中, 所述家庭基站网关包括: 安全模式命令接收单元, 安全模式启动命 令创建^送单元;
所述安全模式命令接收单元, 用于接收核心网发送的安全模式命令; 所述安全模式启动命令创建及发送单元,用于创建并发送携带家庭基站身 份信息的安全模式启动命令,所述安全模式启动命令经由家庭基站转发至用户 设备;
所述家庭基站包括: 安全模式启动命令接收单元,安全模式启动命令转发 单元;
所述安全模式启动命令接收单元 ,用于接收所述家庭基站网关发送的携带 家庭基站身份信息的安全模式启动命令;
所述安全模式启动命令转发单元,用于将所述安全模式启动命令转发至用 户设备。
PCT/CN2009/070020 2008-01-31 2009-01-05 防止家庭基站欺骗用户的方法、系统及设备 WO2009097749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100068066A CN101499899B (zh) 2008-01-31 2008-01-31 防止家庭基站欺骗用户的方法、系统及相关设备
CN200810006806.6 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009097749A1 true WO2009097749A1 (zh) 2009-08-13

Family

ID=40946792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070020 WO2009097749A1 (zh) 2008-01-31 2009-01-05 防止家庭基站欺骗用户的方法、系统及设备

Country Status (2)

Country Link
CN (1) CN101499899B (zh)
WO (1) WO2009097749A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102348206B (zh) * 2010-08-02 2014-09-17 华为技术有限公司 密钥隔离方法和装置
JP2012044325A (ja) * 2010-08-16 2012-03-01 Ntt Docomo Inc 移動通信方法及び無線基地局
US9794836B2 (en) 2012-12-24 2017-10-17 Nokia Technologies Oy Methods and apparatus for differencitating security configurations in a radio local area network
WO2017113063A1 (zh) * 2015-12-28 2017-07-06 华为技术有限公司 一种nas消息处理、小区列表更新方法及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561136A (zh) * 2004-02-18 2005-01-05 Ut˹�￵ͨѶ���޹�˾ Phs手机网络鉴权方法
CN1708006A (zh) * 2004-06-08 2005-12-14 华为技术有限公司 2g用户接入基于ip的多媒体子系统的方法
CN1764108A (zh) * 2004-10-22 2006-04-26 华为技术有限公司 控制是否启动加密过程的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1561136A (zh) * 2004-02-18 2005-01-05 Ut˹�￵ͨѶ���޹�˾ Phs手机网络鉴权方法
CN1708006A (zh) * 2004-06-08 2005-12-14 华为技术有限公司 2g用户接入基于ip的多媒体子系统的方法
CN1764108A (zh) * 2004-10-22 2006-04-26 华为技术有限公司 控制是否启动加密过程的方法

Also Published As

Publication number Publication date
CN101499899A (zh) 2009-08-05
CN101499899B (zh) 2011-11-02

Similar Documents

Publication Publication Date Title
US11653199B2 (en) Multi-RAT access stratum security
JP5937664B2 (ja) ハンドオーバー後の暗号化通信を確実にするシステム
US20100002883A1 (en) Security procedure and apparatus for handover in a 3gpp long term evolution system
WO2018145654A1 (zh) 实现多接入管理的方法、装置及计算机存储介质
CN101411115B (zh) 用于在接入系统间切换期间优化验证过程的系统和方法
JP4303752B2 (ja) 安全なドメイン内およびドメイン間ハンドオーバ
KR101712865B1 (ko) 이동 통신 시스템에서 비계층 프로토콜을 이용한 통신 지원 방법 및 장치
US8611859B2 (en) System and method for providing secure network access in fixed mobile converged telecommunications networks
EP3598711B1 (en) User authentication method and device
WO2008131689A1 (fr) Procédé et système de fourniture d'un service de communication d'urgence et dispositifs correspondants
WO2013185735A2 (zh) 一种加密实现方法及系统
KR20110138548A (ko) 응급 콜을 지원하는 이동 통신 시스템에서 보안 관리 방법 및 장치와 그 시스템
WO2010000185A1 (zh) 一种网络认证的方法、装置、系统及服务器
WO2007131455A1 (fr) Procédé, système et appareil de synchronisation de clés entre la commande et l'utilisateur
WO2009152656A1 (zh) 用户设备转移时密钥身份标识符的生成方法和生成系统
WO2013174267A1 (zh) 无线局域网络的安全建立方法及系统、设备
JP5888715B2 (ja) モバイル端末のハンドオーバを実行する方法及びシステム、並びに無線セルラ通信ネットワークにおいて用いるように意図されたモバイル端末
EP1305967A1 (en) Control of unciphered user traffic
WO2017167153A1 (zh) 移动通讯系统及寻呼方法
WO2014029267A1 (zh) 实现ue注册、以及业务呼叫的方法及装置及系统
US20110002272A1 (en) Communication apparatus and communication method
WO2009097749A1 (zh) 防止家庭基站欺骗用户的方法、系统及设备
US9137661B2 (en) Authentication method and apparatus for user equipment and LIPA network entities
JP2020521406A (ja) 通信方法、およびユーザ機器
WO2008148348A1 (fr) Procédé de communication, système et station de base domestique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708109

Country of ref document: EP

Kind code of ref document: A1