WO2009096750A2 - 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치 - Google Patents

광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치 Download PDF

Info

Publication number
WO2009096750A2
WO2009096750A2 PCT/KR2009/000484 KR2009000484W WO2009096750A2 WO 2009096750 A2 WO2009096750 A2 WO 2009096750A2 KR 2009000484 W KR2009000484 W KR 2009000484W WO 2009096750 A2 WO2009096750 A2 WO 2009096750A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
tomography
unit
monitoring
processing
Prior art date
Application number
PCT/KR2009/000484
Other languages
English (en)
French (fr)
Other versions
WO2009096750A3 (ko
Inventor
Tae Joong Eom
Ik-Bu Sohn
Young-Chul Noh
Jong-Min Lee
Original Assignee
Gwangju Institute Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gwangju Institute Of Science And Technology filed Critical Gwangju Institute Of Science And Technology
Publication of WO2009096750A2 publication Critical patent/WO2009096750A2/ko
Publication of WO2009096750A3 publication Critical patent/WO2009096750A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment

Definitions

  • the present invention relates to a processing apparatus using a laser, and more particularly, based on optical coherence tomography imaging technology, obtains three-dimensional image information of a workpiece during processing using a femtosecond laser to change the progress of the processing and the change of the processing target in real time.
  • the present invention relates to a processing apparatus using a laser capable of controlling the overall process by monitoring with.
  • the processing laser used in the general laser processing apparatus has a limitation in performing an extremely fine process in precision.
  • Vision system for monitoring the processing state acquires the image of the processing object, adjusts the initial processing position and focal length, and can observe the progress of the processing, but this is based on the two-dimensional surface image information of the processing object. It is stopping.
  • An object of the present invention is to provide a laser processing apparatus that provides ultra-precision machining using a femtosecond laser and actively controls the machining by measuring the degree of change and the change of the sample by using real-time three-dimensional image information of the object to be processed. .
  • Laser processing apparatus for achieving the above object of the present invention is a processing unit using a femtosecond laser for processing by breaking the molecular bonds of the workpiece to provide ultra-precision processing, to provide a three-dimensional state of the workpiece to provide real-time three-dimensional image information
  • a tomography monitoring unit for generating a tomography image by monitoring and a control unit for controlling the output of the femtosecond laser using the tomography image generated by the tomography monitoring unit.
  • the laser processing apparatus may further include a surface monitoring unit for generating a surface image by monitoring the surface state of the workpiece.
  • the use of a femtosecond laser that breaks the molecular bonds of the workpiece is processed so that ultra-precision processing is possible and the optical coherence tomography technology that can show a three-dimensional image of the workpiece in real time, the degree of processing of the workpiece And change status can be determined in real time, enabling efficient machining of new workpieces.
  • a high-interference broadband light source and a high resolution spectrometer can be used to improve the acquisition speed of the tomographic image of the object to be processed.
  • Charge-Coupled Device can be used to improve the resolution of tomographic images of workpieces.
  • FIG. 1 is a conceptual diagram of a laser processing apparatus for monitoring a processing state using a light coherence tomography imaging technique.
  • FIG. 2 is a conceptual diagram of a laser processing apparatus further having a surface monitoring unit.
  • Figure 3 is an illustration of femtosecond laser processing according to an embodiment of the present invention.
  • Fig. 4 is an exemplary view showing the surface of the object to be processed in which the surface state during femtosecond laser processing is measured by a CCD camera in the visible light band.
  • FIG. 5 is an exemplary view of a tomography image of a laser processing object measured based on light coherence tomography imaging technology.
  • FIG. 6 is an exemplary view of a laser processing apparatus for monitoring a processing state using a photocoherence tomography imaging technique according to an embodiment of the present invention.
  • FIG. 7 is an exemplary view of a laser processing apparatus for monitoring a processing state using a light coherence tomography imaging technology according to another embodiment of the present invention.
  • FIG 8 is an exemplary view according to another embodiment of the present invention.
  • FIG 9 is an exemplary view according to another embodiment of the present invention.
  • Optical Coherence Tomography is a type of high-definition image recording technology that uses ultra low-intensity light sources to detect light reflected from the surface of a biological sample and to obtain an ultra-high-resolution tomography of the inside of the sample. It is a technique that can non-invasively photograph the structure of the lower tissue that is not visible to the naked eye.
  • FIG. 1 is a conceptual diagram of a laser processing apparatus for monitoring a processing state using a light coherence tomography imaging technique.
  • a laser processing apparatus for monitoring a processing state using a photocoherence tomography imaging process includes a processing unit 1100 using a femtosecond laser for processing by breaking a molecular bond of a workpiece, and monitoring a three-dimensional state of the workpiece.
  • the processing unit 1100 includes a processing laser generating unit 1110 for emitting the femtosecond laser and a processing position adjusting unit 1120 for adjusting a processing position of the workpiece.
  • the processing unit 1100 may include a mirror having a wavelength dividing function for dividing light by wavelengths so that interference between the surface monitoring unit 1400 and the tomography monitoring unit 1200 does not occur.
  • the processing position adjusting unit 1120 includes a three-dimensional moving stage 1121 capable of moving the workpiece in the front, rear, left and right directions, or a high speed scan mirror capable of moving a position where the femtosecond laser is irradiated onto the workpiece ( 1122).
  • the tomography monitoring unit 1200 is a tomography monitoring laser generator 1210 for emitting a tomography monitoring laser, a tomography monitoring laser distribution unit 1220 for branching the tomography monitoring laser emitted from the tomography monitoring laser generator. And an interference signal detection unit 1230 for detecting an interference signal between each distributed tomography monitoring laser divided by the tomography laser distribution unit to generate a tomography image.
  • the tomography monitoring laser generator 1210 includes generating any one of a tunable fiber laser and a low coherence broadband light.
  • the tomography monitoring laser distributor 1220 includes any one of an optical fiber coupler and an optical splitter.
  • the interference signal detector 1230 may generate an interference signal by compensating for an optical path difference between each of the distributed tomography lasers divided by the tomography laser distribution unit, and generate the interference signal.
  • the interference signal generator 1231 includes an optical fiber coupler, and the tomogram image generator 1232 includes one of an optical signal balance detector, a high resolution spectrometer, and a high sensitivity CCD camera.
  • the control unit 1300 compares the tomography image generated by the tomography monitoring unit with a processing target to be processed, and determines a processing state 1310 and an optical output for controlling the output of the femtosecond laser according to the determination of the determination unit. And an adjusting unit 1320 having a shutter to adjust the processing state.
  • the determination unit 1310 may include image processing software for determining the degree of processing.
  • FIG. 2 is a conceptual diagram of a laser processing apparatus further having a surface monitoring unit 1400.
  • a laser processing apparatus for monitoring a processing state using a photocoherence tomography imaging technology further includes a surface monitoring unit 1400 for generating a surface image by monitoring the surface state of the workpiece in addition to the components.
  • the control unit 1300 determines the processing state in comparison with the processing target to be processed in consideration of both the tomographic image generated by the tomography monitoring unit 1200 and the surface image generated by the surface monitoring unit 1400. 1310.
  • Figure 3 is an illustration of femtosecond laser processing according to an embodiment of the present invention.
  • cylindrical machining is performed on the object by an 800 nm center laser beam emitted from the femtosecond laser light source.
  • Fig. 4 is an exemplary view showing the surface of the object to be processed in which the surface state during femtosecond laser processing is measured by a CCD camera in the visible light band.
  • the surface image of the surface monitoring unit 1400 for processing a cylindrical shape on the object to be processed by the laser beam emitted from the femtosecond laser light source is shown.
  • FIG. 5 is an exemplary view of a tomography image of a laser processing object measured based on light coherence tomography imaging technology.
  • the tomography image of the object to be processed using the tomography monitoring unit 1200 is shown for processing a cylindrical shape on the object by the laser beam emitted from the femtosecond laser light source.
  • FIG. 6 is an exemplary view of a laser processing apparatus for monitoring a processing state using a photocoherence tomography imaging technique according to an embodiment of the present invention.
  • the processing unit 1100 is based on the femtosecond laser light source of the processing laser generating unit 1110 and the three-dimensional moving stage 1121 of the processing position adjusting unit 1120 as a basic configuration, the near infrared reflecting mirror 1501 and the near infrared transmission mirror as peripheral devices. 1502 and the light focusing lens 1511.
  • the mirror 1501 After passing the laser beam of 800 nm center wavelength emitted from the femtosecond laser light source of the processing laser generating unit 1110 through the optical shutter of the adjusting unit 1320 in the control unit 1300, the mirror 1501 reflects only light in the near infrared band. Direction is changed, and after passing through the mirror 1502 which transmits light of 800 nm center wavelength and reflects long wavelength near infrared rays of 800 nm wavelength band or more, it irradiates an object to be processed using the light converging lens 1511. In this case, since the object to be processed is on the three-dimensional moving stage 1121, the position can be adjusted and the desired shape can be processed.
  • the surface monitoring unit 1400 uses a visible light band CCD camera including an image lens, and uses reflective mirrors 1501 and 1502 having transmission characteristics to visible light band light as peripheral devices.
  • the surface monitoring unit 1400 monitors the basic processing state and process progress by photographing the surface of the object to be processed with a CCD camera from above.
  • the tomography monitoring unit 1200 includes a tunable fiber laser 1211, an optical fiber coupler 1221, optical circulators 1521 and 1522, an optical concentrator 1514, an optical path compensator 1237, an optical fiber coupler 1233, and an optical fiber.
  • a signal balance detector 1234 is included in The tomography monitoring unit 1200.
  • the laser light in the near infrared band (1320 nm or 1550 nm) output from the tunable fiber laser 1211 is divided at a constant ratio in the optical fiber coupler 1221 and passes through the optical circulator 1522 and the optical concentrator 1514 to compensate for the optical path compensator ( 1237 reflects the first light path through the optical concentrator 1514 and the optical circulator 1522 to the optical fiber coupler 1233 and the remaining light divided by the optical coupler 1221 and the optical circulator 1521.
  • the irradiation position of the laser is adjusted by the reflection mirror 1503 after passing through the light concentrator 1513, and then irradiated and scattered through the focusing lens 1512, the near-infrared reflection mirror 1502, and the focusing lens 1511 to be processed and scattered again. Pass the second optical path through the focusing lens 1511, the near infrared reflecting mirror 1502 and the reflecting mirror 1503 to the optical fiber coupler 1233 through the optical concentrator 1513 and the optical circulator 1521. do. After the interference signal is generated by the optical fiber coupler 1233, the optical signal balance detector 1234 converts the optical interference signal into an electrical signal to generate a tomography image.
  • the controller 1300 includes an optical shutter that can be controlled by the determination unit 1310 and the adjustment unit 1320.
  • the determination unit 1310 determines the degree of processing based on the tomographic image generated by the optical signal balance detector 1234 of the tomography monitoring unit 1200, and an adjustment unit for controlling the output of the processing femtosecond laser based on the determination
  • the light output shutter of 1320 is integrated control.
  • FIG. 7 is an exemplary view of a laser processing apparatus for monitoring a processing state using a light coherence tomography imaging technology according to another embodiment of the present invention.
  • the low-interference broadband light source 1212 is used in place of the tunable fiber laser 1211 in the tomography monitoring laser generator 1210.
  • the high resolution spectrometer 1235 in place of the optical signal balance detector 1234 in the interference signal detector 1230.
  • the configuration structure is simplified.
  • the light of the near-infrared band output from the low coherence broadband light source 1212 is divided at a constant ratio in the optical fiber coupler 1221 and is reflected by the optical path compensator 1237 after passing through the optical concentrator 1514 to again return the optical concentrator 1514.
  • the first light path to the optical fiber coupler 1221 and the remaining light divided by the optical fiber coupler 1221 are irradiated to the object by adjusting the irradiation position of the laser at the reflection mirror 1503 through the optical concentrator 1513 Scattered through the light converging lens 1511, the near infrared reflecting mirror 1502 and the reflecting mirror 1503 again, passing through the optical concentrator 1513 to the second optical path to the optical fiber coupler 1221.
  • the optical fiber coupler 1221 generates an interference signal between the first optical path and the second optical path, and then generates a tomographic image in the high resolution spectrometer 1235.
  • the rest of the rest is the same as the configuration of FIG.
  • FIG 8 is an exemplary view according to another embodiment of the present invention.
  • the low-interference broadband light source 1212 is used in place of the tunable fiber laser 1211 in the tomography monitoring laser generator 1210.
  • the interference signal detector 1230 replaces the optical signal balance detector 1234 with a high sensitivity CCD camera 1236 to improve tomographic image resolution.
  • the light of the near infrared band output from the low coherence broadband light source 1212 is emitted from the optical concentrator 1515 to the outside of the optical fiber and divided by the optical splitter 1222, and then the optical transmission lens 1516, the 90 degree reflective mirror 1505, and After passing through the light converging lens 1514, the first light path reflected by the optical path compensator 1237 and going back to the optical splitter 1222 and the remaining light divided by the optical splitter 1222 are light transmitting lenses 1512. After passing through the object to be irradiated and scattered through the focusing lens 1511, the near-infrared reflecting mirror (1502) and passes through the optical transmission lens 1512 again through the second optical path to the optical splitter (1222). . Thereafter, the tomography lens 1517 and the high sensitivity CCD camera 1236 generate a tomography image. The remaining part other than that is the same as that of FIG.
  • FIG 9 is an exemplary view according to another embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치가 개시된다. 레이저 가공장치는 펨토초 레이저를 이용하여 가공물의 분자결합을 파괴하여 가공하는 가공부, 가공물의 입체 상태를 모니터링 하는 단층 모니터링부 및 3차원 단층영상을 이용하여 펨토초 레이저의 출력을 제어하는 제어부로 구성된다. 여기에 가공물의 표면 상태를 모니터링 하는 표면 모니터링부를 더 가지는 구성도 가능하다. 가공 상태에 대한 실시간 모니터링이 가능하므로 공정 전반에 대한 능동적 제어가 가능하다.

Description

광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치
본 발명은 레이저를 이용한 가공장치에 관한 것으로, 더욱 상세하게는 광결맞음 단층 영상기술을 기반으로 하여 펨토초 레이저를 이용한 가공시 가공물의 3차원 영상정보를 얻어서 가공의 진행 정도와 가공 대상물의 변화를 실시간으로 모니터링 하여 공정 전반을 제어할 수 있는 레이저를 이용한 가공장치에 관한 것이다.
최근에 레이저를 이용한 가공에 대한 많은 연구가 이루어지고 있으며, 다양한 분야에서 구조물 제작에 대한 필요성과 수요가 급증하고 있다.
일반적인 레이저 가공장치에서 이용되는 가공용 레이저는 정밀도에 있어서 극미세 공정을 하기에는 한계가 따르고 있다.
가공 상태를 모니터링하기위한 영상 시스템(Vision system)은 가공 대상물의 영상을 취득하여 초기 가공 위치 및 초점거리를 조절하며, 가공의 진행 상황을 관측할 수 있지만 이는 가공 대상물의 2차원적인 표면 영상정보에 그치고 있다.
본 발명의 목적은 펨토초 레이저를 이용하여 초정밀 가공을 제공하고 가공 대상물에 대한 실시간 3차원 영상 정보를 이용하여 가공 정도와 시료의 변화를 측정하여 가공을 능동적으로 제어하고자 하는 레이저 가공장치를 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위한 레이저 가공장치는 초정밀 가공을 제공하기 위하여 가공물의 분자결합을 파괴하여 가공하는 펨토초 레이저를 이용하는 가공부, 실시간 3차원 영상 정보를 제공하기 위하여 가공물의 입체 상태를 모니터링 하여 단층영상을 생성하는 단층 모니터링부 및 상기 단층 모니터링부에서 생성한 단층영상을 이용하여 펨토초 레이저의 출력을 제어하는 제어부로 구성된다. 여기에서, 레이저 가공장치는 가공물의 표면 상태를 모니터링 하여 표면영상을 생성하는 표면 모니터링부를 더 포함할 수 있다.
본 발명에 따를 경우, 가공물의 분자결합을 파괴하여 가공하는 펨토초 레이저를 이용하므로 초정밀 가공이 가능하고 실시간으로 가공 대상물의 3차원 영상을 보여줄 수 있는 광결맞음 단층 촬영기술을 이용하므로 가공 대상물의 가공 정도와 변화 상태를 실시간으로 판단할 수 있어 새로운 가공 대상물에 대한 효율적인 가공이 가능하다.
또한, 상기 광결맞음 단층 영상 시스템에 있어 전간섭성 광대역 광원과 고분해 분광기를 이용하여 가공 대상물의 단층 영상의 획득 속도를 향상시킬 수 있고, 광결맞음 단층 영상 시스템에 고출력 광대역 광원과 고해상도 CCD 카메라(Charge-Coupled Device)를 이용하여 가공 대상물의 단층 영상의 해상도를 향상시킬 수 있다.
또한, 펨토초 레이저를 이용한 초정밀 가공에 있어서 실시간으로 획득된 가공 대상물의 단층 영상을 근거로 가공용 펨토초 레이저의 출력을 제어하는 고속 광셔터를 조절하여 레이저 가공의 능동적 제어가 가능하다.
도 1은 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치의 개념도이다.
도 2는 표면 모니터링부를 더 가지는 레이저 가공장치의 개념도이다.
도 3은 본 발명의 일 실시예에 따른 펨토초 레이저 가공의 예시도이다.
도 4는 펨토초 레이저 가공시의 표면 상태를 가시광 대역의 CCD 카메라로 측정한 가공 대상물의 표면을 나타낸 예시도이다.
도 5는 광결맞음 단층 영상기술 기반으로 측정한 레이저 가공 대상물의 단층 영상의 예시도이다.
도 6은 본 발명의 일 실시예에 따른 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치의 예시도이다.
도 7은 본 발명의 다른 실시예에 따른 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치의 예시도이다.
도 8은 본 발명의 또 다른 실시예에 따른 예시도이다.
도 9는 본 발명의 또 다른 실시예에 따른 예시도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
광결맞음 단층 영상기술(Optical Coherence Tomography)은 고화질 영상 기록 기술의 일종으로서, 저간섭성 광원을 이용하여 생체 샘플의 표면으로부터 반사된 광을 검출하여 시료의 내부를 초고화질 단층 촬영을 하여 영상을 얻음으로써 육안으로 볼 수 없는 하부 조직의 구조를 비침습적으로 촬영 할 수 있는 기술이다.
도 1은 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치의 개념도이다.
도 1을 참조하면, 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치는 가공물의 분자결합을 파괴하여 가공하는 펨토초 레이저를 이용하는 가공부(1100), 상기 가공물의 입체 상태를 모니터링 하여 단층영상을 생성하는 단층 모니터링부(1200) 및 상기 단층 모니터링부에서 생성한 단층영상을 이용하여 펨토초 레이저의 출력을 제어하는 제어부(1300)를 포함한다.
상기 가공부(1100)는 상기 펨토초 레이저를 출사하는 가공용 레이저 발생부(1110) 및 상기 가공물의 가공위치를 조절하는 가공위치 조정부(1120)를 포함한다. 또한, 가공부(1100)는 표면 모니터링부(1400)와 단층 모니터링부(1200)에서 사용하는 레이저와의 간섭이 발생하지 않도록 파장별로 빛을 나누는 파장 분할 기능을 가진 거울을 포함할 수 있다.
상기 가공위치 조정부(1120)는 상기 가공물을 전후, 좌우 및 상하 방향으로 이동할 수 있는 3차원 이동 스테이지(1121)를 포함하거나, 상기 펨토초 레이저가 상기 가공물에 조사되는 위치를 이동할 수 있는 고속 스캔 거울(1122)을 포함한다.
상기 단층 모니터링부(1200)는 단층 모니터링용 레이저를 출사하는 단층 모니터링용 레이저 발생부(1210), 상기 단층 모니터링용 레이저 발생부에서 출사된 단층 모니터링용 레이저를 분기시키는 단층 모니터링용 레이저 분배부(1220) 및 상기 단층 모니터링용 레이저 분배부에서 나누어진 각각의 분배된 단층 모니터링용 레이저간의 간섭신호를 검출하여 단층영상을 생성하는 간섭신호 검출부(1230)를 포함한다.
상기 단층 모니터링용 레이저 발생부(1210)는 파장 가변 광섬유 레이저 및 저간섭성 광대역 광 중 어느 하나를 발생시키는 것을 포함한다.
상기 단층 모니터링용 레이저 분배부(1220)는 광섬유 커플러 및 광분배기 중 어느 하나인 것을 포함한다.
상기 간섭신호 검출부(1230)는 상기 단층 모니터링용 레이저 분배부에서 나누어진 각각의 분배된 단층 모니터링용 레이저간의 광경로차를 보상하여 간섭신호를 생성하는 간섭신호 생성부(1231) 및 상기 간섭신호 생성부에서 제공한 간섭신호를 전기적인 신호로 변환하여 단층영상을 생성하는 단층영상 생성부(1232)를 포함한다.
상기 간섭신호 생성부(1231)는 광섬유 커플러를 포함하며, 상기 단층영상 생성부(1232)는 광신호 균형 검출기, 고분해 분광기 및 고감도 CCD카메라 중 어느 하나인 것을 포함한다.
상기 제어부(1300)는 상기 단층 모니터링부에서 생성한 단층영상과 가공하고자하는 가공목표를 비교하여 가공 상태를 판단하는 판단부(1310) 및 상기 판단부의 판단에 따라 펨토초 레이저의 출력을 제어하는 광출력 셔터를 구비하여 가공 상태를 조정하는 조정부(1320)를 포함한다. 상기 판단부(1310)에서는 가공의 정도를 판단하는 영상 처리 소프트웨어를 포함할 수 있다.
도 2는 표면 모니터링부(1400)를 더 가지는 레이저 가공장치의 개념도이다.
도 2를 참조하면, 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치는 상기 구성요소이외에 상기 가공물의 표면 상태를 모니터링 하여 표면영상을 생성하는 표면 모니터링부(1400)를 더 포함한다. 따라서 상기 제어부(1300)는 상기 단층 모니터링부(1200)에서 생성한 단층영상 및 표면 모니터링부(1400)에서 생성한 표면영상을 모두 고려하여 가공하고자하는 가공목표와 비교하여 가공 상태를 판단하는 판단부(1310)를 포함한다.
도 3은 본 발명의 일 실시예에 따른 펨토초 레이저 가공의 예시도이다.
도 3을 참조하면, 상기 펨토초 레이저 광원으로부터 방출된 800 nm 중심파장의 레이저 빔에 의해 상기 가공 대상물에 원통형 가공이 이루어지는 것을 묘사한 것이다.
도 4는 펨토초 레이저 가공시의 표면 상태를 가시광 대역의 CCD 카메라로 측정한 가공 대상물의 표면을 나타낸 예시도이다.
도 4를 참조하면, 상기 펨토초 레이저 광원으로부터 방출된 레이저 빔에 의해 가공 대상물에 원통형 모양의 가공이 이루어지는 것에 대한 표면 모니터링부(1400)의 표면 영상을 나타낸 것이다.
도 5는 광결맞음 단층 영상기술 기반으로 측정한 레이저 가공 대상물의 단층 영상의 예시도이다.
도 5를 참조하면, 상기 펨토초 레이저 광원으로부터 방출된 레이저 빔에 의해 가공 대상물에 원통형 모양의 가공이 이루어지는 것에 대하여 단층 모니터링부(1200)를 이용하여 생성된 가공 대상물의 단층 영상을 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치의 예시도이다.
도 6을 참조하면,
가공부(1100)는 가공용 레이저 발생부(1110)의 펨토초 레이저 광원과 가공위치 조정부(1120)의 3차원 이동 스테이지(1121)를 기본구성으로 하여 주변 장치로 근적외선 반사거울(1501), 근적외선 투과거울(1502) 및 광집속용 렌즈(1511)를 포함한다.
가공용 레이저 발생부(1110)의 펨토초 레이저 광원에서 방출된 800nm 중심파장의 레이저 빔을 제어부(1300)내 조정부(1320)의 광셔터를 통과시킨 후, 근적외선 대역의 빛만을 반사시키는 거울(1501)에 의해 방향을 바꾸고, 800nm 중심파장의 빛은 투과시키고 800nm 파장대역 이상의 장파장 근적외선은 반사시키는 거울(1502)을 통과한 후에 광집속용 렌즈(1511)를 이용하여 가공 대상물에 조사시킨다. 이 경우 가공 대상물은 3차원 이동 스테이지(1121)위에 있으므로 위치를 조정하며 원하는 형태의 가공이 가능하다.
표면 모니터링부(1400)는 이미지 렌즈를 포함한 가시광 대역 CCD 카메라를 이용하며 가시광 대역 빛에 투과 특성을 가지는 반사 거울(1501, 1502)을 주변장치로 이용한다. 표면 모니터링 부(1400)는 가공되는 가공 대상물의 표면 모습을 위에서 CCD 카메라로 촬영하여 기본적인 가공 상태와 공정 진행도를 모니터링 한다.
단층 모니터링부(1200)는 파장 가변 광섬유 레이저(1211), 광섬유 커플러(1221), 광 서큘레이터(1521, 1522), 광집속기(1514), 광경로 보상기(1237), 광섬유 커플러(1233) 및 광신호 균형 검출기(1234)를 포함한다.
상기 파장 가변 광섬유 레이저(1211)에서 출력된 근적외선 대역(1320nm 또는 1550nm)의 레이저 빛은 광섬유 커플러(1221)에서 일정한 비율로 나뉘어져 광 서큘레이터(1522)와 광집속기(1514)를 지나 광경로 보상기(1237)에서 반사되어 다시 광집속기(1514)와 광 서큘레이터(1522)를 지나 광섬유 커플러(1233)로 가는 제1 광경로와 상기 광섬유 커플러(1221)에서 나눠진 나머지 빛은 광 서큘레이터(1521)와 광집속기(1513)를 지나 반사 거울(1503)에서 레이저의 조사 위치를 조절하여 집속용 렌즈(1512), 근적외선 반사거울(1502), 집속용 렌즈(1511)를 거쳐 가공 대상물에 조사되고 산란되며 다시 집속용 렌즈(1511), 근적외선 반사거울(1502) 및 반사거울(1503)을 거쳐 상기 광집속기(1513)와 상기 광 서큘레이터(1521)를 지나 광섬유 커플러(1233)로 가는 제2 광경로를 거치게 된다. 상기 광섬유 커플러(1233)에서 간섭 신호를 생성한 후 광신호 균형 검출기(1234)에서 광 간섭신호를 전기적인 신호로 변환하여 단층 영상을 생성한다.
제어부(1300)는 판단부(1310)와 조정부(1320)의 제어 가능한 광셔터를 포함한다. 상기 판단부(1310)는 상기 단층 모니터링부(1200)의 광신호 균형 검출기(1234)에서 생성된 단층 영상을 바탕으로 가공의 정도를 판단하고, 판단을 근거로 가공용 펨토초 레이저의 출력을 제어하는 조정부(1320)의 광출력 셔터를 통합 제어한다.
도 7은 본 발명의 다른 실시예에 따른 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치의 예시도이다.
도 7과 도 6을 병행하여 참조하면, 단층 모니터링부(1200)의 경우에 단층 모니터링용 레이저 발생부(1210)에서 파장 가변 광섬유 레이저(1211)를 대신하여 저간섭성 광대역 광원(1212)을 사용하였고 간섭신호 검출부(1230)에서 광신호 균형 검출기(1234)를 대신하여 고분해 분광기(1235)를 이용하여 단층 영상 획득 속도를 향상 시키고자 하였다. 또한, 광 서큘레이터(1521, 1522)를 제외하여 구성 구조를 단순화 하였다.
상기 저간섭성 광대역 광원(1212)에서 출력된 근적외선 대역의 빛은 광섬유 커플러(1221)에서 일정한 비율로 나뉘어져 광집속기(1514)를 지나 광경로 보상기(1237)에서 반사되어 다시 광집속기(1514)를 지나 상기 광섬유 커플러(1221)로 가는 제1 광경로와 상기 광섬유 커플러(1221)에서 나눠진 나머지 빛은 광집속기(1513)를 지나 반사 거울(1503)에서 레이저의 조사 위치를 조절하여 가공 대상물에 조사되고 산란되며 다시 광집속용 렌즈(1511), 근적외선 반사거울(1502) 및 반사거울(1503)을 거쳐 다시 상기 광집속기(1513)를 지나 상기 광섬유 커플러(1221)로 가는 제2 광경로를 거치게 된다.
상기 광섬유 커플러(1221)에서 상기 제1 광경로와 상기 제2 광경로간의 간섭 신호를 생성한 후 고분해 분광기(1235)에서 단층 영상을 생성한다. 그 이외의 나머지 부분은 도 6의 구성과 역할이 동일하다.
도 8은 본 발명의 또 다른 실시예에 따른 예시도이다.
도 8과 도 6을 병행하여 참조하면, 단층 모니터링부(1200)의 경우에 단층 모니터링용 레이저 발생부(1210)에서 파장 가변 광섬유 레이저(1211)를 대신하여 저간섭성 광대역 광원(1212)을 사용하고 간섭신호 검출부(1230)에서 광신호 균형 검출기(1234)를 대신하여 고감도 CCD 카메라(1236)를 이용하여 단층 영상 분해능을 향상 시키고자 하였다.
상기 저간섭성 광대역 광원(1212)에서 출력된 근적외선 대역의 빛은 광집속기(1515)에서 광섬유 바깥으로 나와 광분배기(1222)에서 나눠진 후 광전송용 렌즈(1516), 90도 반사 거울(1505) 및 광집속용 렌즈(1514)를 거친 후 광경로 보상기(1237)에서 반사되어 다시 상기 광분배기(1222)로 가는 제1 광경로와 상기 광분배기(1222)에서 나눠진 나머지 빛은 광전송용 렌즈(1512)를 지나 가공 대상물에 조사되고 산란되며 다시 집속용 렌즈(1511), 근적외선 반사거울(1502)을 거쳐 다시 상기 광전송용 렌즈(1512)를 지나 상기 광분배기(1222)로 가는 제2 광경로를 거치게 된다. 이후 상기 이미지 확대용 렌즈(1517)와 고감도 CCD 카메라(1236)에서 단층영상을 생성한다. 그 이외의 나머지 부분은 도 6의 구성과 동일하다.
도 9는 본 발명의 또 다른 실시예에 따른 예시도이다.
도 9와 도 6을 병행하여 참조하면, 가공부(1100)의 경우에서 가공위치 조정부(1110)에서 가공 대상물을 이동시키기 위한 3차원 이동 스테이지(1121)를 대신하여 고속 스캔 거울(1122) 및 반사거울(1506)을 이용하여 레이저 가공 속도를 향상 시키고자 하였다. 그 이외의 나머지 부분은 도 6의 구성과 동일하다.

Claims (12)

  1. 가공물의 분자결합을 파괴하여 가공하는 펨토초 레이저를 이용하는 가공부;
    상기 가공물의 입체 상태를 모니터링 하여 단층영상을 생성하는 단층 모니터링부; 및
    상기 단층 모니터링부에서 생성한 단층영상을 이용하여 펨토초 레이저의 출력을 제어하는 제어부로 구성된 것을 특징으로 하는 레이저 가공장치.
  2. 제1항에 있어서,
    상기 가공부는
    상기 펨토초 레이저를 출사하는 가공용 레이저 발생부; 및
    상기 가공물의 가공위치를 조절하는 가공위치 조정부를 포함하는 것을 특징으로 하는 레이저 가공장치.
  3. 제2항에 있어서,
    상기 가공위치 조정부는
    상기 가공물을 전후, 좌우 및 상하 방향으로 이동할 수 있는 3차원 이동 스테이지를 포함하는 것을 특징으로 하는 레이저 가공장치.
  4. 제2항에 있어서,
    상기 가공위치 조정부는
    상기 펨토초 레이저가 상기 가공물에 조사되는 위치를 이동할 수 있는 고속 스캔 거울을 포함하는 것을 특징으로 하는 레이저 가공장치.
  5. 제1항에 있어서,
    상기 단층 모니터링부는
    단층 모니터링용 레이저를 출사하는 단층 모니터링용 레이저 발생부;
    상기 단층 모니터링용 레이저 발생부에서 출사된 단층 모니터링용 레이저를 분기시키는 단층 모니터링용 레이저 분배부; 및
    상기 단층 모니터링용 레이저 분배부에서 나누어진 각각의 분배된 단층 모니터링용 레이저간의 간섭신호를 검출하여 단층영상을 생성하는 간섭신호 검출부를 포함하는 것을 특징으로 하는 레이저 가공장치.
  6. 제5항에 있어서,
    상기 단층 모니터링용 레이저 발생부는
    파장 가변 광섬유 레이저 및 저간섭성 광대역 광 중 어느 하나를 발생시키는 것을 특징으로 하는 레이저 가공장치.
  7. 제5항에 있어서,
    상기 단층 모니터링용 레이저 분배부는
    광섬유 커플러 및 광분배기 중 어느 하나인 것을 특징으로 하는 레이저 가공장치.
  8. 제5항에 있어서,
    상기 간섭신호 검출부는
    상기 단층 모니터링용 레이저 분배부에서 나누어진 각각의 분배된 단층 모니터링용 레이저간의 광경로차를 보상하여 간섭신호를 생성하는 간섭신호 생성부; 및
    상기 간섭신호 생성부에서 제공한 간섭신호를 전기적인 신호로 변환하여 단층영상을 생성하는 단층영상 생성부를 포함하는 것을 특징으로 하는 레이저 가공장치.
  9. 제8항에 있어서,
    상기 간섭신호 생성부는 광섬유 커플러인 것을 특징으로 하는 레이저 가공장치.
  10. 제8항에 있어서,
    상기 단층영상 생성부는 광신호 균형 검출기, 고분해 분광기 및 고감도 CCD카메라 중 어느 하나인 것을 특징으로 하는 레이저 가공장치.
  11. 제1항에 있어서,
    상기 제어부는
    상기 단층 모니터링부에서 생성한 단층영상과 가공하고자하는 가공목표를 비교하여 가공 상태를 판단하는 판단부; 및
    상기 판단부의 판단에 따라 펨토초 레이저의 출력을 제어하는 광출력 셔터를 구비하여 가공 상태를 조정하는 조정부를 포함하는 것을 특징으로 하는 레이저 가공장치.
  12. 제1항에 있어서,
    상기 레이저 가공장치는 상기 가공물의 표면 상태를 모니터링 하여 표면영상을 생성하는 표면 모니터링부를 더 포함하는 것을 특징으로 하는 레이저 가공장치.
PCT/KR2009/000484 2008-01-31 2009-02-02 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치 WO2009096750A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0010136 2008-01-31
KR1020080010136A KR101088479B1 (ko) 2008-01-31 2008-01-31 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링하는 레이저 가공장치

Publications (2)

Publication Number Publication Date
WO2009096750A2 true WO2009096750A2 (ko) 2009-08-06
WO2009096750A3 WO2009096750A3 (ko) 2009-11-05

Family

ID=40913434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000484 WO2009096750A2 (ko) 2008-01-31 2009-02-02 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치

Country Status (2)

Country Link
KR (1) KR101088479B1 (ko)
WO (1) WO2009096750A2 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017079091A1 (en) * 2015-11-06 2017-05-11 Velo3D, Inc. Adept three-dimensional printing
US9821411B2 (en) 2014-06-20 2017-11-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11999110B2 (en) 2022-01-26 2024-06-04 Velo3D, Inc. Quality assurance in formation of three-dimensional objects

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119945A1 (ko) * 2013-02-01 2014-08-07 경북대학교 산학협력단 다중 이미징 장치
KR102476246B1 (ko) 2017-01-18 2022-12-08 아이피지 포토닉스 코포레이션 재료의 수정을 위한 가간섭적 촬영 및 피드백 제어를 위한 방법 및 시스템
KR102306876B1 (ko) * 2020-01-21 2021-09-29 한국기계연구원 유리 용접 시스템
CN114178680B (zh) * 2021-11-03 2024-01-26 西安石油大学 飞秒激光微加工的同步监测装置
KR102507019B1 (ko) * 2022-10-05 2023-03-07 주식회사 아이티아이 레이저 가공 및 에칭 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030084117A (ko) * 2002-04-25 2003-11-01 이헌주 광학적 단층촬영 시스템 및 방법
KR20050030006A (ko) * 2003-09-24 2005-03-29 한국기계연구원 펨토초 레이저를 사용하는 정밀 가공장치 및 가공방법
JP2006198634A (ja) * 2005-01-18 2006-08-03 National Institute Of Information & Communication Technology レーザー加工装置、この装置を用いて製造した光デバイス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2531453B2 (ja) * 1993-10-28 1996-09-04 日本電気株式会社 レ―ザ加工装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030084117A (ko) * 2002-04-25 2003-11-01 이헌주 광학적 단층촬영 시스템 및 방법
KR20050030006A (ko) * 2003-09-24 2005-03-29 한국기계연구원 펨토초 레이저를 사용하는 정밀 가공장치 및 가공방법
JP2006198634A (ja) * 2005-01-18 2006-08-03 National Institute Of Information & Communication Technology レーザー加工装置、この装置を用いて製造した光デバイス

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821411B2 (en) 2014-06-20 2017-11-21 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10507549B2 (en) 2014-06-20 2019-12-17 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10493564B2 (en) 2014-06-20 2019-12-03 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US10195693B2 (en) 2014-06-20 2019-02-05 Vel03D, Inc. Apparatuses, systems and methods for three-dimensional printing
WO2017079091A1 (en) * 2015-11-06 2017-05-11 Velo3D, Inc. Adept three-dimensional printing
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
US10357957B2 (en) 2015-11-06 2019-07-23 Velo3D, Inc. Adept three-dimensional printing
US10065270B2 (en) 2015-11-06 2018-09-04 Velo3D, Inc. Three-dimensional printing in real time
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US10286603B2 (en) 2015-12-10 2019-05-14 Velo3D, Inc. Skillful three-dimensional printing
US10183330B2 (en) 2015-12-10 2019-01-22 Vel03D, Inc. Skillful three-dimensional printing
US10688722B2 (en) 2015-12-10 2020-06-23 Velo3D, Inc. Skillful three-dimensional printing
US10207454B2 (en) 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US9962767B2 (en) 2015-12-10 2018-05-08 Velo3D, Inc. Apparatuses for three-dimensional printing
US10252335B2 (en) 2016-02-18 2019-04-09 Vel03D, Inc. Accurate three-dimensional printing
US9919360B2 (en) 2016-02-18 2018-03-20 Velo3D, Inc. Accurate three-dimensional printing
US9931697B2 (en) 2016-02-18 2018-04-03 Velo3D, Inc. Accurate three-dimensional printing
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
US10259044B2 (en) 2016-06-29 2019-04-16 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US20180126649A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
US10611092B2 (en) 2017-01-05 2020-04-07 Velo3D, Inc. Optics in three-dimensional printing
US10888925B2 (en) 2017-03-02 2021-01-12 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
US10315252B2 (en) 2017-03-02 2019-06-11 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10357829B2 (en) 2017-03-02 2019-07-23 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10449696B2 (en) 2017-03-28 2019-10-22 Velo3D, Inc. Material manipulation in three-dimensional printing
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US11999110B2 (en) 2022-01-26 2024-06-04 Velo3D, Inc. Quality assurance in formation of three-dimensional objects
US12005647B2 (en) 2022-03-15 2024-06-11 Velo3D, Inc. Material manipulation in three-dimensional printing

Also Published As

Publication number Publication date
WO2009096750A3 (ko) 2009-11-05
KR101088479B1 (ko) 2011-11-30
KR20090084136A (ko) 2009-08-05

Similar Documents

Publication Publication Date Title
WO2009096750A2 (ko) 광결맞음 단층 영상기술을 이용하여 가공 상태를 모니터링 하는 레이저 가공장치
EP2719324B1 (en) Optical coherence tomography device
CN102264281B (zh) 光学断层图像摄像设备和光学断层图像摄像方法
JP6118441B2 (ja) 適応光学網膜結像装置及び方法
JP4202136B2 (ja) 組成分析
EP2375967B1 (en) Camera for recording surface structures, such as for dental purposes
KR101496357B1 (ko) 안과장치, 안과장치의 제어 방법, 및 기억매체
JP2010167253A5 (ja) 光断層撮像装置および撮像装置
JP6453885B2 (ja) 複数の光源を有する走査光学システム
KR20120072757A (ko) 광섬유 다발 기반의 내시경 타입 스펙트럼 영역 광학단층영상 시스템
US10620420B2 (en) Optical system for use with microscope
KR20120136511A (ko) 광간섭 단층촬영 장치 및 그를 이용한 광간섭 단층촬영 방법
US8770757B2 (en) Fast wave front measurement
CN110575142A (zh) 一种单光谱仪多光束光学相干层析成像仪
WO2017222086A1 (ko) 단일검출기 기반의 다초점 광 단층 영상 시스템
WO2012138065A2 (ko) 고해상도 분광기를 구비한 광 단층촬영 시스템 및 그 방법
JP2009287979A (ja) 光計測装置及び光計測装置のフォーカス調整方法
US11269174B2 (en) Endoscopic imaging
WO2019027123A1 (ko) 스테레오 현미경, 광학 장치 및 이를 이용한 광경로 형성 방법
JP3222233B2 (ja) 内視鏡観察システム
CN113891071B (zh) 一种双目测试装置
WO2022240005A1 (ko) 초점 심도 향상을 위한 다중 초점 기반 고해상도 광간섭 단층 촬영 장치
KR20140102034A (ko) 광 간섭 단층 촬영 장치 및 방법
JPH05261106A (ja) 光増幅器を用いた生体光計測装置
Czarske et al. Fast 3D imaging with lensless holographic endoscopy employing coherent fiber bundles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705181

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705181

Country of ref document: EP

Kind code of ref document: A2