WO2009096580A1 - Method for producing fiber-reinforced plastic - Google Patents

Method for producing fiber-reinforced plastic Download PDF

Info

Publication number
WO2009096580A1
WO2009096580A1 PCT/JP2009/051717 JP2009051717W WO2009096580A1 WO 2009096580 A1 WO2009096580 A1 WO 2009096580A1 JP 2009051717 W JP2009051717 W JP 2009051717W WO 2009096580 A1 WO2009096580 A1 WO 2009096580A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
curable composition
reinforced plastic
base material
atom
Prior art date
Application number
PCT/JP2009/051717
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Kiuchi
Tadao Natsuume
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2009096580A1 publication Critical patent/WO2009096580A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture

Definitions

  • the present invention relates to a method for producing a fiber reinforced plastic, which can easily produce a fiber reinforced plastic excellent in mechanical strength and appearance, suitable for sports applications, vehicle components such as automobiles and aircraft, and other general industrial applications.
  • fiber reinforced plastics using carbon fibers or glass fibers as reinforcing fibers have been used in various applications because of their excellent specific strength and specific elastic modulus.
  • a prepreg obtained by impregnating a matrix resin into a reinforcing fiber base in advance is used, and this prepreg is laminated so that the arrangement direction of the reinforcing fibers is shifted for each layer (pseudo isotropic lamination). And an autoclave molding method for curing the matrix resin.
  • a woven base As a reinforcing fiber base not impregnated with a matrix resin, which is mainly used for resin injection molding, etc., a woven base has been used, but in recent years, sheets with reinforcing fiber yarns arranged in parallel have been cross-laminated. Thus, so-called multi-axis stitch base materials integrated with stitch yarns have been attracting attention (for example, Patent Documents 1 to 3). Such a multi-axis stitch base material has a high productivity of the base material and excellent mechanical properties of the obtained fiber reinforced plastic because there is no labor for weaving the reinforcing fiber yarns compared to a conventional woven base material.
  • the fiber basis weight per sheet can be increased, and by laminating and integrating in multiple directions in advance, a unit with the desired configuration and characteristics can be obtained, so the labor for laminating is greatly reduced.
  • an inexpensive fiber-reinforced plastic can be obtained.
  • such a multi-axis stitch base material has a complicated shape, so that the matrix resin cannot be uniformly impregnated. There was a problem that foaming occurred.
  • An object of the present invention is to provide a method for producing a fiber-reinforced composite plastic that does not cause voids, deformed shapes, foaming, etc., using a multiaxial stitch base material having excellent mechanical properties.
  • the present inventors have impregnated a curable composition comprising a cycloolefin monomer, a polymerization catalyst, a cross-linking agent, and the like into a multiaxial stitch base material, and then cured the complex composition. It was found that a matrix resin can be uniformly impregnated even on a multi-axis stitch base material having a simple shape, and a fiber-reinforced plastic that does not have a hollow shape or a deformed shape or foaming can be easily produced. Based on these findings, the present inventors have completed the present invention.
  • the step (1) of impregnating a curable composition comprising a cycloolefin monomer, a polymerization catalyst and a crosslinking agent into a multiaxial stitch base, and then the step of curing the curable composition (2) ) Is provided.
  • the multiaxial stitch base material is preferably made of carbon fiber.
  • the polymerization catalyst is preferably a ruthenium catalyst having a compound containing a heterocyclic structure as a ligand.
  • a fiber-reinforced composite plastic having excellent mechanical strength and appearance can be easily produced using a multiaxial stitch base material having excellent mechanical properties.
  • the fiber reinforced plastic obtained by the production method of the present invention is excellent in mechanical strength and appearance. Therefore, it is suitably used as various members in the fields of vehicles, aircraft, and other vehicle structures, and sports, civil engineering, and architecture. be able to.
  • the method for producing a fiber reinforced plastic according to the present invention includes a step (1) of impregnating a curable composition comprising a cycloolefin monomer, a polymerization catalyst and a crosslinking agent into a multiaxial stitch base, and then curing the curable composition. Step (2).
  • the cycloolefin monomer used in the present invention is a compound having a ring structure formed of carbon atoms and having a carbon-carbon double bond in the ring. Examples thereof include norbornene monomers and monocyclic cycloolefins, and norbornene monomers are preferred.
  • the norbornene-based monomer is a monomer containing a norbornene ring.
  • the norbornene-based monomer is not particularly limited, and examples thereof include bicyclic compounds such as 2-norbornene and norbornadiene, tricyclic compounds such as dicyclopentadiene and dihydrodicyclopentadiene, tetracyclododecene, and ethylidenetetracyclododecene.
  • Tetracycles such as phenyltetracyclododecene, pentacycles such as tricyclopentadiene, heptacycles such as tetracyclopentadiene, and alkyl substituents thereof (methyl, ethyl, propyl, butyl substituents, etc.), alkylidene Substitutes (eg, ethylidene substitutes), aryl substitutes (eg, phenyl, tolyl substitutes), epoxy groups, methacryl groups, hydroxyl groups, amino groups, carboxyl groups, cyano groups, halogen groups, ether bond-containing groups, esters Derivatives having a polar group such as a bond-containing group Etc., and the like.
  • Examples of the monocyclic cycloolefin include monocyclic cycloolefins such as cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene, and derivatives having a substituent.
  • Examples of the substituent of the monocyclic cycloolefin include the same substituents as those of the norbornene monomer. These cycloolefin monomers can be used alone or in combination of two or more.
  • the polymerization catalyst used in the present invention is not particularly limited as long as it can polymerize a cycloolefin monomer, but a metathesis polymerization catalyst is usually used.
  • the metathesis polymerization catalyst is capable of metathesis ring-opening polymerization of a cycloolefin monomer, and usually includes a complex formed by bonding a plurality of ions, atoms, polyatomic ions and / or compounds with a transition metal atom as a central atom.
  • transition metal atoms atoms of Group 5, Group 6, and Group 8 (long-period periodic table, the same applies hereinafter) are used.
  • examples of the Group 5 atom include tantalum
  • examples of the Group 6 atom include molybdenum and tungsten
  • examples of the Group 8 atom include ruthenium and osmium.
  • Examples of the ruthenium carbene complex include those represented by the following formula (1) or formula (2).
  • R 1 and R 2 may each independently contain a hydrogen atom, a halogen atom, or a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom or silicon atom. It represents a good hydrocarbon group having 1 to 20 carbon atoms.
  • X 1 and X 2 each independently represents an arbitrary anionic ligand.
  • An anionic ligand is a ligand having a negative charge when pulled away from a central metal atom, such as a halogen atom, a diketonate group, a substituted cyclopentadienyl group, an alkoxyl group, an aryloxy group, A carboxyl group etc. can be mentioned. Among these, a halogen atom is preferable and a chlorine atom is more preferable.
  • L 1 and L 2 each independently represents a hetero atom-containing carbene compound or a neutral electron donating compound.
  • a hetero atom means an atom of Group 15 and Group 16 of the Periodic Table, and specific examples thereof include N, O, P, S, As, and Se atoms. Among these, from the viewpoint of obtaining a stable carbene compound, N, O, P, S atoms and the like are preferable, and N atoms are particularly preferable.
  • heteroatom-containing carbene compound examples include compounds represented by the following formula (3) or formula (4).
  • each of R 3 to R 6 independently represents a hydrogen atom, a halogen atom, or a carbon atom having 1 to 20 carbon atoms that may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. Represents a hydrogen group.
  • R 3 to R 6 may be bonded to each other in any combination to form a ring.
  • the neutral electron-donating compound may be any ligand as long as it has a neutral charge when separated from the central metal.
  • Specific examples thereof include phosphines, ethers and pyridines, and trialkylphosphine is more preferable.
  • R 1 and R 2 may be bonded to each other to form a ring, and further R 1 , R 2 , X 1 , X 2 , L 1 and L 2 May be bonded together in any combination to form a multidentate chelating ligand.
  • the ruthenium catalyst having a compound having a heterocyclic structure as a ligand as a polymerization catalyst has good compatibility with acrylic carbon fibers, adhesion to the coating film of the fiber reinforced resin substrate, appearance, machine Properties such as strength, heat resistance, and chemical resistance can be highly balanced, which is preferable.
  • a hetero atom which comprises a heterocyclic structure an oxygen atom, a nitrogen atom, etc. are mentioned, for example, Preferably it is a nitrogen atom.
  • an imidazoline structure and an imidazolidine structure are preferable.
  • ruthenium catalyst having a compound having such a heterocyclic structure as a ligand ruthenium having a ligand represented by the above formula (1) or (2) and comprising a hetero atom-containing carbene compound as L 1 or L 2 A catalyst can be suitably used.
  • a hetero atom which comprises a hetero atom containing carbene compound a nitrogen atom is preferable.
  • heteroatom-containing carbene compound examples include 1,3-di (1-adamantyl) imidazolidin-2-ylidene, 1,3-dimesityloctahydrobenzimidazol-2-ylidene, 1,3-diene (1-phenylethyl) -4-imidazoline-2-ylidene, 1,3-dimesitylimidazolidine-2-ylidene, 1,3-dicyclohexylimidazolidine-2-ylidene, 1,3-diisopropyl-4-imidazoline -2-ylidene, 1,3-dimesityl-2,3-dihydrobenzimidazol-2-ylidene and the like.
  • the ruthenium catalyst having a ligand composed of a heteroatom-containing carbene compound include benzylidene (1,3-dimesitymylimidazolidine-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, (1,3 -Dimesitylimidazolidine-2-ylidene) (3-methyl-2-buten-1-ylidene) (tricyclopentylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-octahydrobenzimidazol-2-ylidene) Tricyclohexylphosphine) ruthenium dichloride, benzylidene [1,3-di (1-phenylethyl) -4-imidazoline-2-ylidene] (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesitymy
  • polymerization catalysts may be used alone or in combination of two or more.
  • the use amount of the polymerization catalyst is usually 1: 2,000 to 1: 2,000,000, preferably 1: 5,000 to 1: 1, in a molar ratio of (metal atom in catalyst: cycloolefin monomer).
  • the range is from 1,000,000, more preferably from 1: 10,000 to 1: 500,000.
  • the polymerization catalyst can be used by dissolving or suspending in a small amount of an inert solvent, if desired.
  • solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, liquid paraffin, mineral spirits; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane , Decahydronaphthalene, dicycloheptane, tricyclodecane, hexahydroindene, cyclooctane and other alicyclic hydrocarbons; benzene, toluene, xylene and other aromatic hydrocarbons; indene, tetrahydronaphthalene and other alicyclic and aromatic rings A nitrogen-containing hydrocarbon such as nitromethane,
  • the crosslinking agent used in the present invention is not particularly limited as long as it can induce a crosslinking reaction in a curable composition or a polymer obtained by subjecting a curable composition to polymerization.
  • An agent is used.
  • the radical generator include organic peroxides, diazo compounds, and nonpolar radical generators, with organic peroxides and nonpolar radical generators being preferred.
  • organic peroxide examples include hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide; dicumyl peroxide, t-butylcumyl peroxide, ⁇ , ⁇ '-bis (t- Butylperoxy-m-isopropyl) benzene, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, 2,5-dimethyl-2,5-di ( dialkyl peroxides such as t-butylperoxy) hexane; diacyl peroxides such as dipropionyl peroxide and benzoyl peroxide; 2,2-di (t-butylperoxy) butane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy)
  • diazo compound examples include 4,4'-bisazidobenzal (4-methyl) cyclohexanone, 2,6-bis (4'-azidobenzal) cyclohexanone, and the like.
  • Nonpolar radical generators include 2,3-dimethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4-diphenylhexane, 1,1,2-triphenylethane, 1,1,1- And triphenyl-2-phenylethane.
  • the one-minute half-life temperature is appropriately selected depending on the crosslinking conditions, but is usually 100 to 300 ° C, preferably 150 to 250 ° C, more preferably 160. It is in the range of ⁇ 230 ° C.
  • the half-life temperature for 1 minute is a temperature at which half of the radical generator decomposes in 1 minute.
  • cross-linking agents can be used alone or in combination of two or more.
  • the amount of the crosslinking agent used is usually in the range of 0.01 to 10 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the cycloolefin monomer. .
  • the cycloolefin monomer, the polymerization catalyst and the crosslinking agent are essential components, and if desired, a chain transfer agent, a polymerization reaction retarding agent, a crosslinking aid, an elastomer material, and an antiaging agent. , Fillers and other additives can be added.
  • chain olefins which may have a substituent
  • chain olefins which may have a substituent
  • Specific examples thereof include, for example, aliphatic olefins such as 1-hexene and 2-hexene; olefins having an aromatic group such as styrene, divinylbenzene, and stilbene; and alicyclic hydrocarbon groups such as vinylcyclohexane.
  • Vinyl ethers such as ethyl vinyl ether; methyl vinyl ketone, 1,5-hexadien-3-one, 2-methyl-1,5-hexadien-3-one, vinyl methacrylate, allyl methacrylate, 3-methacrylic acid 3- Buten-1-yl, 3-buten-2-yl methacrylate, styryl methacrylate, allyl acrylate, 3-buten-1-yl acrylate, 3-buten-2-yl acrylate, 1-methyl acrylate 3-buten-2-yl, styryl acrylate, ethylene glycol diacrylate Allyl trivinyl silane, allyl methyl divinyl silane, allyl dimethyl vinyl silane, glycidyl acrylate, allyl glycidyl ether, allylamine, 2- (diethylamino) ethanol vinyl ether, 2- (diethylamino) ethyl acrylate, and 4-vin
  • chain transfer agents can be used alone or in combination of two or more, and the addition amount is usually 0.01 to 10 parts by weight, preferably 0. 1 to 5 parts by weight.
  • the curable composition used in the present invention contains a polymerization reaction retarder, because the increase in viscosity can be suppressed and the multiaxial stitch substrate can be easily impregnated uniformly with the curable composition.
  • Polymerization retarders include phosphine compounds such as triphenylphosphine, tributylphosphine, trimethylphosphine, triethylphosphine, dicyclohexylphosphine, vinyldiphenylphosphine, allyldiphenylphosphine, triallylphosphine, styryldiphenylphosphine; Lewis bases such as aniline and pyridine Etc. can be used.
  • a phosphine compound is preferable because of its great effect of suppressing the progress of the polymerization reaction at room temperature or lower, and triphenylphosphine, triethylphosphine, dicyclohexylphosphine, and vinyldiphenylphosphine are more preferable.
  • the amount of the polymerization reaction retarder is usually 1: 0.01 to 1: 100, preferably 1: 0.1 to 1 in a molar ratio of (ruthenium metal atom: polymerization reaction retarder). : 10, more preferably in the range of 1: 0.1 to 1: 5.
  • the curable composition used in the present invention preferably contains a crosslinking aid.
  • a crosslinking aid By adding a crosslinking aid to the curable composition, it is possible to highly improve the impregnation of the curable composition into the multiaxial stitch base material and the mechanical strength of the fiber reinforced plastic obtained by curing. It is.
  • crosslinking aid used in the present invention those generally used can be used without particular limitation.
  • a bifunctional compound having two carbon-carbon unsaturated bonds a carbon-carbon unsaturated bond can be used.
  • the polyfunctional compound which has 3 or more can be mentioned.
  • the carbon-carbon unsaturated bond means a carbon-carbon double bond or a carbon-carbon triple bond.
  • the structure of the crosslinking aid used in the present invention is not particularly limited, but there are many curable compositions containing a cycloolefin monomer when the compound has a highly symmetric structure (a compound having a symmetric structure).
  • the impregnation property to the shaft stitch base material is highly improved, which is preferable.
  • the crosslinking aid is a hydrocarbon and a compound having a highly symmetrical structure, the impregnation property of the curable composition into the multiaxial stitch base material, and the mechanical strength of the fiber reinforced plastic obtained by curing Can be improved to a high degree.
  • crosslinking aids include bifunctional compounds such as p-diisopropenylbenzene, m-diisopropenylbenzene, o-diisopropenylbenzene, and trifunctional such as triisopropenylbenzene and trimethallyl isocyanate.
  • bifunctional compounds such as p-diisopropenylbenzene, m-diisopropenylbenzene, o-diisopropenylbenzene
  • trifunctional such as triisopropenylbenzene and trimethallyl isocyanate.
  • triisopropenylbenzene, p-diisopropenylbenzene, m-diisopropenylbenzene, and o-diisopropenylbenzene are preferable, and m-diisopropenylbenzene is more preferable.
  • crosslinking aids can be used alone or in combination of two or more.
  • the amount of the crosslinking aid is appropriately selected according to the purpose of use, but is usually 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. 1 to 20 parts by weight, most preferably 5 to 15 parts by weight. When the amount of the crosslinking aid is within this range, the resulting fiber-reinforced plastic is excellent in mechanical strength.
  • an elastomer material to the curable composition used in the present invention is preferable because the impact strength can be remarkably improved without lowering the mechanical strength of the resulting fiber-reinforced plastic.
  • elastomer materials include natural rubber, polyisoprene, polybutadiene, styrene-butadiene copolymer, chloroprene, acrylonitrile-butadiene copolymer, styrene-isoprene-styrene block copolymer, and styrene-butadiene-styrene block copolymer.
  • These elastomer materials can be used alone or in combination of two or more.
  • the amount used is usually in the range of 0.1 to 100 parts by weight, preferably 1 to 50 parts by weight, more preferably 3 to 30 parts by weight with respect to 100 parts by weight of the cycloolefin monomer.
  • the curable composition used in the present invention is at least one selected from the group consisting of a phenol-based anti-aging agent, an amine-based anti-aging agent, a phosphorus-based anti-aging agent and a sulfur-based anti-aging agent as an anti-aging agent.
  • an anti-aging agent By adding an anti-aging agent, the heat resistance of the fiber-reinforced plastic obtained can be improved to a high degree without inhibiting the polymerization reaction and the crosslinking reaction, which is preferable.
  • a phenolic antiaging agent and an amine antiaging agent are preferable, and a phenolic antiaging agent is particularly preferable.
  • the phenolic antioxidant is not particularly limited as long as it is a substance usually used in the general resin industry.
  • 2-t-butyl-6- (3-t-butyl-2-hydroxy-5- Methylbenzyl) -4-methylphenyl acrylate 2,4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate, 3,5- Di-t-butyl-4-hydroxyanisole, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-t- Butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 3,9-bis (2- (3- (3-tert-butyl-4-hydroxy-5-methylphenyl)) Professional Onyloxy) -1,1-dimethylethyl)
  • the amine anti-aging agent is not particularly limited as long as it is a substance usually used in the general resin industry.
  • the phosphorus anti-aging agent is not particularly limited as long as it is usually used in the general resin industry.
  • Sulfur-based antioxidants include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3-thiodipropio And pentaerythritol-tetrakis- ( ⁇ -lauryl-thio-propionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane It is done.
  • antioxidants can be used alone or in combination of two or more.
  • the amount of the antioxidant used is appropriately selected according to the purpose of use, but is usually 0.0001 to 10 parts by weight, preferably 0.001 to 5 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is in the range of 0.01 to 1 part by weight.
  • the mechanical strength and heat resistance of the obtained fiber reinforced plastic can be remarkably improved, which is preferable.
  • the filler is not particularly limited as long as it is generally used industrially, and either an inorganic filler or an organic filler can be used, but an inorganic filler is preferred.
  • the inorganic filler examples include metal particles such as iron, copper, nickel, gold, silver, aluminum, lead, and tungsten; carbon particles such as carbon black, graphite, activated carbon, and carbon balloon; silica, silica balloon, alumina, Inorganic oxide particles such as titanium oxide, iron oxide, zinc oxide, magnesium oxide, tin oxide, beryllium oxide, barium ferrite, strontium ferrite; inorganic carbonate particles such as calcium carbonate, magnesium carbonate, sodium hydrogen carbonate; calcium sulfate, etc.
  • metal particles such as iron, copper, nickel, gold, silver, aluminum, lead, and tungsten
  • carbon particles such as carbon black, graphite, activated carbon, and carbon balloon
  • silica, silica balloon, alumina Inorganic oxide particles such as titanium oxide, iron oxide, zinc oxide, magnesium oxide, tin oxide, beryllium oxide, barium ferrite, strontium ferrite
  • inorganic carbonate particles such as calcium carbonate, magnesium carbonate,
  • Inorganic sulfate particles inorganic silicate particles such as talc, clay, mica, kaolin, fly ash, montmorillonite, calcium silicate, glass, glass balloon; titanate particles such as calcium titanate and lead zirconate titanate, Aluminum nitride, silicon carbide grains And whiskers, and the like.
  • organic filler include compound particles such as wood powder, starch, organic pigments, polystyrene, nylon, polyolefins such as polyethylene and polypropylene, vinyl chloride, various elastomers, and waste plastics.
  • fillers can be used alone or in combination of two or more, and the amount used is usually 1 to 1,000 parts by weight, preferably 10 to 100 parts by weight per 100 parts by weight of the cycloolefin monomer. The amount is in the range of 500 parts by weight, more preferably 50 to 350 parts by weight.
  • Examples of other additives include flame retardants, colorants, light stabilizers, pigments, foaming agents, polymer modifiers, and the like.
  • Examples of the flame retardant include phosphorus flame retardants, nitrogen flame retardants, halogen flame retardants, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and antimony compounds such as antimony trioxide.
  • As the colorant dyes, pigments and the like are used. There are various kinds of dyes, and known ones may be appropriately selected and used.
  • additives can be used alone or in combination of two or more, and the amount used is appropriately selected within a range not impairing the effect of the present invention.
  • the curable composition used in the present invention can be obtained by mixing the above components.
  • a mixing method a conventional method may be followed.
  • a liquid (catalyst solution) in which the polymerization catalyst is dissolved or dispersed in an appropriate solvent is used as a cycloolefin monomer and a crosslinking agent, and other additives as required. It can be prepared by adding to a liquid (monomer liquid) blended and stirring.
  • the curable composition constitutes a matrix resin layer and a multiaxial stitch base material is used as the reinforcing fiber. Since the curable composition used in the present invention is excellent in fluidity and wettability with reinforcing fibers, it can be uniformly impregnated into a complex-shaped multiaxial stitch base.
  • multi-axis stitch base material used in the present invention those generally used in industry can be used without any particular limitation.
  • the multiaxial stitch base material it is usually possible to use a multi-axis stitch base material formed by laminating a plurality of sheets of reinforcing fiber yarns arranged in one direction and being integrated by stitch yarns.
  • the constituent fibers of the multiaxial stitch base material used in the present invention are not particularly limited.
  • PET polyethylene terephthalate
  • aramid fiber ultrahigh molecular polyethylene fiber
  • polyamide (nylon) fiber polyamide
  • liquid crystal polyester examples thereof include organic fibers such as fibers; inorganic fibers such as glass fibers, carbon fibers, alumina fibers, tungsten fibers, molybdenum fibers, budene fibers, titanium fibers, steel fibers, boron fibers, silicon carbide fibers, and silica fibers.
  • organic fiber, glass fiber, and carbon fiber are preferable, and carbon fiber is more preferable.
  • carbon fiber is excellent in compatibility with a curable composition containing a cycloolefin monomer, and by uniformly impregnating the curable composition, it does not inhibit the polymerization reaction and the crosslinking reaction of the curable composition.
  • the mechanical strength and impact resistance of the obtained fiber reinforced plastic can be improved to a high degree, which is preferable.
  • the type of carbon fiber is not particularly limited.
  • carbon fibers produced by various conventionally known methods such as acrylic, pitch-based, rayon-based, etc. can be used.
  • acrylic carbon fiber (PAN-based) Carbon fiber) is preferred because it does not cause polymerization inhibition, and properties such as mechanical strength and toughness can be highly enhanced in the fiber-reinforced plastic obtained.
  • the strength property of the reinforcing fiber is not particularly limited and is appropriately selected according to the purpose of use.
  • the tensile strength is a strand tensile strength measured according to JIS R7601 and is usually in the range of 0.5 to 50 GPa, preferably 1 to 10 GPa, more preferably 2 to 8 GPa.
  • the tensile modulus is a strand tensile modulus measured according to JIS R7601, and is usually in the range of 100 to 1,000 GPa, preferably 200 to 800 GPa, more preferably 300 to 700 GPa.
  • the elongation is a strand tensile elongation measured according to JIS R7601, and is usually in the range of 0.1 to 10%, preferably 0.5 to 5%, more preferably 1 to 3%.
  • the obtained fiber-reinforced plastic is suitable because the properties of appearance, mechanical strength, and toughness are highly balanced.
  • the number of filaments when used as a fiber bundle yarn of reinforcing fibers is not particularly limited, but the number of filaments in one fiber bundle yarn is usually 1,000 to 100,000, preferably 2, The range is from 000 to 20,000, more preferably from 5,000 to 15,000.
  • the stitch yarn is not particularly limited, and polyamide fiber, polyester fiber, polyaramid fiber, polyethylene fiber, polyvinyl alcohol fiber, and the like can be used. Particularly, polyaramid fiber and polyethylene fiber have good adhesion to the curable composition. It is preferable because the elongation is large.
  • the integration of the laminated sheets by stitch yarn is usually performed by so-called stitch bonding in which the stitch yarn is stitched with a needle using a knitting machine, a sewing machine or the like.
  • Examples of the knitting structure of the multi-axis stitch base material include chain knitting, 1 ⁇ 1 tricot knitting, and 1 ⁇ 1 irregular tricot knitting in which chain knitting and 1 ⁇ 1 tricot knitting are combined.
  • the number of laminated multi-axis stitch base materials used in the present invention is appropriately selected depending on the purpose of use, but is usually in the range of 2 to 100 sheets, preferably 3 to 60 sheets, more preferably 4 to 12 sheets. It is. When the number of laminated multi-axis stitch base materials is within this range, the handleability and the impregnation property of the curable composition are balanced and suitable.
  • the multi-axis stitch base material used in the present invention is suitable because the mechanical strength is remarkably enhanced when it is substantially isotropic.
  • an isotropic multi-axis stitch base material is usually a pseudo isotropic lamination method in which fiber yarns constituting each sheet are laminated so that the arrangement directions thereof are 0 °, 90 °, and ⁇ 45 ° crossing angles. Can be manufactured.
  • the reinforcing fiber basis weight of each sheet constituting the multiaxial stitch base material used in the present invention is appropriately selected according to the purpose of use, but is usually 50 to 400 g / m 2 , preferably 70 to 300 g / m 2. More preferably, it is in the range of 100 to 200 g / m 2 . If the basis weight of the reinforcing fiber yarn is too small, a gap is formed between adjacent reinforcing fiber yarns, and the mechanical strength of the resulting fiber reinforced plastic tends to be insufficient, and conversely, the basis weight is excessive. If the amount is too large, a portion where adjacent reinforcing fiber yarns overlap each other is formed, so that the thickness becomes thick and the impregnation property of the curable composition tends to be impaired.
  • the ratio of the multiaxial stitch base material in the fiber reinforced plastic may be appropriately selected depending on the intended use, but is usually 10 to 90% by weight, preferably Is in the range of 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the ratio of the multiaxial stitch base material in the fiber reinforced plastic is within this range, the mechanical strength and impact resistance characteristics are highly balanced, which is preferable.
  • Fiber reinforced plastic In the present invention, mechanical strength and impact resistance are achieved by carrying out the step (1) of impregnating the curable composition into the multiaxial stitch base, and then the step (2) of curing the curable composition. Highly superior fiber reinforced plastic can be manufactured.
  • the impregnation of the curable composition into the multiaxial stitch base material is performed by, for example, applying a predetermined amount of the curable composition to a spray coating method, a dip coating method, a roll coating method, a curtain coating method, a die coating method, a slit coating method, or the like. It can apply by apply
  • a multiaxial stitch base material is placed in the mold, and the curable composition is poured into the mold, followed by curing.
  • a conventionally known mold for example, a mold having a split mold structure, that is, a core mold and a cavity mold, can be used, and a curable composition is injected into the cavity (cavity). And let it harden.
  • the core mold and the cavity mold are produced so as to form a gap that matches the shape of the multiaxial stitch base material.
  • the material and size of the mold are not particularly limited.
  • a plate-shaped mold such as a glass plate or a metal plate and a spacer having a predetermined thickness are prepared, and the curable composition is injected into a space formed by sandwiching the spacer between two plate-shaped molds. Curing can be performed in the mold.
  • the curable composition has a low viscosity as compared with a conventionally used polymer varnish obtained by dissolving an epoxy resin or the like in a solvent, and is excellent in impregnation with respect to a multiaxial stitch base material.
  • the resulting matrix resin can be uniformly impregnated into the multiaxial stitch base material.
  • the curing reaction after impregnation with the curable composition comprises two reactions, a polymerization reaction and a crosslinking reaction, and the polymerization reaction and the crosslinking reaction may be performed simultaneously, or the polymerization reaction and the crosslinking reaction may be performed simultaneously. You may carry out in order.
  • the curing temperature is usually in the range of 50 to 300 ° C., preferably 100 to 250 ° C., more preferably 120 to 250 ° C.
  • the curing time is 0.1 to 180 ° C. It is in the range of minutes, preferably 1 to 120 minutes, more preferably 2 to 20 minutes.
  • the polymerization temperature is usually in the range of 50 to 250 ° C., preferably 100 to 200 ° C., more preferably 120 to 170 ° C.
  • the polymerization temperature is usually 1 of the radical generator.
  • the half-life temperature is 1 minute or less, preferably 10 ° C. or less, more preferably 20 ° C. or less.
  • the polymerization time may be appropriately selected, but is usually 10 seconds to 20 minutes, preferably within 5 minutes.
  • the polymer obtained here is substantially uncrosslinked and is soluble in, for example, toluene.
  • the molecular weight of the polymer is a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (eluent: tetrahydrofuran), and is usually 1,000 to 1,000,000, preferably It is in the range of 5,000 to 500,000, more preferably 10,000 to 100,000.
  • the cross-linking temperature is a temperature at which a cross-linking reaction is induced by the cross-linking agent.
  • a radical generator When a radical generator is used, it is at least 1 minute half-life temperature, preferably at least 5 ° C. higher than the 1-minute half-life temperature.
  • the temperature is preferably 10 ° C. or more higher than the 1 minute half-life temperature, and is usually in the range of 100 to 300 ° C., preferably 150 to 250 ° C.
  • the crosslinking time is in the range of 0.1 to 180 minutes, preferably 1 to 120 minutes, more preferably 2 to 20 minutes.
  • the fiber-reinforced plastic of the present invention thus obtained is excellent in mechanical strength and appearance.
  • OA and AV equipment automobile structures such as automobiles and railways, aircraft interior parts, golf shafts, fishing rods, etc. It is suitably used as various members in sports applications and other general industrial applications.
  • Specific applications include, for example, sports applications such as fishing rods, golf club shafts, tennis rackets, and skistocks; displays, FDD carriages, chassis, HDD, MO, motor brush holders, parabolic antennas, notebook computers, mobile phones, Electric / electronic devices such as digital still cameras, PDAs, portable MDs, liquid crystal displays, plasma displays; telephones, facsimiles, VTRs, photocopiers, televisions, irons, hair dryers, rice cookers, microwave ovens, audio equipment, vacuum cleaners, toiletries Supplies, leather discs, compact discs, lighting, refrigerators, air conditioners, typewriters, word processors, office automation equipment and household appliances; undercovers, scuff plates, pillar trims, professionals Automobiles such as rubber shafts, drive shafts, wheels, wheel covers, fenders, door mirrors, room mirrors, feshers, bumpers, bumper beams, bonnets, trunk hoods, aero parts, platforms, cowl louvers, roofs, instrument panels, spirals and various modules
  • a catalyst solution was prepared by dissolving 51 parts of benzylidene (1,3-dimesityl-4-imidazolidin-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride and 79 parts of triphenylphosphine in 952 parts of toluene. Separately, 100 parts of dicyclopentadiene (DCP) is added as a cycloolefin monomer, and 1.2 parts of di-t-butyl peroxide (1 minute half-life temperature 186 ° C.) is used as a crosslinking agent.
  • DCP dicyclopentadiene
  • Curable composition A was prepared by adding and stirring at a ratio.
  • Production Example 2 (adjustment of curable composition B) A curable composition B was prepared in the same manner as in Production Example 1 except that the cycloolefin monomer was replaced with 60 parts of DCP and 40 parts of tetracyclododecene (TCD).
  • TCD tetracyclododecene
  • Production Example 3 (adjustment of curable composition C) A curable composition C was prepared in the same manner as in Production Example 1 except that 40 parts of fused silica was further added as a filler.
  • Example 1 Reinforced fiber yarns are arranged so as to be -45 ° / 0 ° / + 45 ° / 90 ° / 90 ° / + 45 ° / 0 ° / -45 ° in order from the upper layer with respect to the fiber direction, and stitched together with stitch yarn A multi-axis stitched substrate was prepared.
  • As the reinforcing fiber yarn a PAN-based carbon fiber having a tensile strength of 4,900 MPa, a tensile elastic modulus of 230 GPa and a filament number of 12,000 was used, and as the stitch yarn, a 56 dtex polyester yarn composed of 24 filaments was used. .
  • the knitting structure was a 1 ⁇ 1 irregular tricot knitting with a stitch length of 2.3 mm and a gauge length of 5 mm. Moreover, the fabric weight of each sheet
  • Example 2 A biaxial stitch base material in which reinforcing fiber yarns are arranged so as to be ⁇ 45 ° / 0 ° in order from the upper layer with respect to the fiber direction, and stitched together with stitch yarn (nylon yarn consisting of five filaments) was produced. .
  • biaxial stitch base materials each having reinforcing fiber yarns arranged so as to be + 45 ° / 90 °, 90 ° / + 45 °, and 0 ° / ⁇ 45 ° were prepared.
  • the reinforcing fiber yarn a PAN-based carbon fiber having a tensile strength of 4,900 MPa, a tensile elastic modulus of 230 GPa and a filament number of 12,000 was used, and as the stitch yarn, a nylon yarn composed of five filaments was used.
  • the knitting structure was a 1 ⁇ 1 irregular tricot knitting with a stitch length of 2.3 mm and a gauge length of 5 mm.
  • seat of the reinforced fiber yarn which comprises a biaxial stitch base material was 150 g / m ⁇ 2 >.
  • these two types of biaxially stitched base materials are reinforced fiber yarns in the order from the upper layer ( ⁇ 45 ° / 0 °) / (+ 45 ° / 90 °) / (90 ° / + 45 °) / (0 ° /
  • the multiaxial stitch base material was produced by laminating to ⁇ 45 °) and stitching together with stitch yarn.
  • the stitching was performed by 1 ⁇ 1 irregular tricot knitting with a stitch length of 5 mm and a gauge length of 5 mm.
  • Example 3 A fiber reinforced plastic was produced in the same manner as in Example 1 except that the curable composition B was used instead of the curable composition A, and each characteristic was evaluated. The results are shown in Table 1.
  • Example 4 A fiber reinforced plastic was produced in the same manner as in Example 1 except that the curable composition C was used in place of the curable composition A, and each characteristic was evaluated. The results are shown in Table 1.
  • Comparative Example 1 An epoxy resin composition comprising 100 parts of Epicoat 828 (manufactured by Yuka Shell Co., Ltd., liquid bisphenol A type epoxy resin), 90 parts of Kayahard MCD (manufactured by Nippon Explosives Co., Ltd., methyl nadic acid anhydride) and 2 parts of benzyldimethylamine Prepared.
  • a fiber reinforced plastic was obtained in the same manner as in Example 1 except that the curable composition A was changed to the above epoxy resin composition, and each characteristic was evaluated. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A fiber-reinforced plastic is obtained by impregnating a multiaxially stitched base with a curable composition containing a cycloolefin monomer, a polymerization catalyst and a crosslinking agent, and then curing the curable composition. The multiaxially stitched base is preferably made of carbon fibers, and the polymerization catalyst is preferably composed of a ruthenium catalyst which has a compound containing a heterocyclic structure as a ligand.

Description

繊維強化プラスチックの製造方法Manufacturing method of fiber reinforced plastic
 本発明は、スポーツ用途、自動車や航空機などの乗物用部材用途、その他一般産業用途に適した、機械強度と外観性に優れる繊維強化プラスチックを容易に製造できる繊維強化プラスチックの製造方法に関する。 The present invention relates to a method for producing a fiber reinforced plastic, which can easily produce a fiber reinforced plastic excellent in mechanical strength and appearance, suitable for sports applications, vehicle components such as automobiles and aircraft, and other general industrial applications.
 従来、炭素繊維やガラス繊維を強化繊維として用いた繊維強化プラスチックは、比強度、比弾性率に優れることから、様々な用途に使われている。かかる繊維強化プラスチックの代表的な製造方法としては、強化繊維基材に予めマトリックス樹脂を含浸させたプリプレグを用い、このプリプレグを層毎に強化繊維の配列方向がずれるように積層(擬似等方積層)し、マトリックス樹脂を硬化させるオートクレーブ成形法がある。この他にも、繊維強化プラスチックの成形コストを低減させるために、樹脂未含浸の強化繊維基材を積層し、その積層体にマトリックス樹脂を注入し、硬化させる樹脂注入成形法がある。 Conventionally, fiber reinforced plastics using carbon fibers or glass fibers as reinforcing fibers have been used in various applications because of their excellent specific strength and specific elastic modulus. As a typical method for producing such fiber reinforced plastic, a prepreg obtained by impregnating a matrix resin into a reinforcing fiber base in advance is used, and this prepreg is laminated so that the arrangement direction of the reinforcing fibers is shifted for each layer (pseudo isotropic lamination). And an autoclave molding method for curing the matrix resin. In addition to this, in order to reduce the molding cost of fiber reinforced plastics, there is a resin injection molding method in which a resin-impregnated reinforcing fiber base material is laminated, a matrix resin is injected into the laminated body, and cured.
 主に樹脂注入成形法などに用いられる、マトリックス樹脂未含浸の強化繊維基材としては、従来、織物基材が用いられていたが、近年、強化繊維糸条を並行に配列したシートを交差積層してステッチ糸にて一体化した、いわゆる多軸ステッチ基材が注目を浴びるようになってきた(例えば、特許文献1~3)。かかる多軸ステッチ基材は、従来の織物基材に比べ、強化繊維糸条同士を織り込む手間がないため基材生産性が高く、且つ得られる繊維強化プラスチックの力学的特性に優れる。また1シートごとの繊維目付を大きくすることができ、かつ予め多方向に積層して一体化することによって1ユニットで所望の構成、特性を有する基材となるため、積層作業が大幅に省力化され安価な繊維強化プラスチックが得られるという利点もある。しかしながら、このような多軸ステッチ基材は、一方で、複雑な形状をしていることから、マトリックス樹脂が均一に含浸できず、得られる強化繊維プラスチックに空洞や外観の形状崩れ、およびマトリックス樹脂の泡立ち等が生じる問題があった。 As a reinforcing fiber base not impregnated with a matrix resin, which is mainly used for resin injection molding, etc., a woven base has been used, but in recent years, sheets with reinforcing fiber yarns arranged in parallel have been cross-laminated. Thus, so-called multi-axis stitch base materials integrated with stitch yarns have been attracting attention (for example, Patent Documents 1 to 3). Such a multi-axis stitch base material has a high productivity of the base material and excellent mechanical properties of the obtained fiber reinforced plastic because there is no labor for weaving the reinforcing fiber yarns compared to a conventional woven base material. In addition, the fiber basis weight per sheet can be increased, and by laminating and integrating in multiple directions in advance, a unit with the desired configuration and characteristics can be obtained, so the labor for laminating is greatly reduced. There is also an advantage that an inexpensive fiber-reinforced plastic can be obtained. However, such a multi-axis stitch base material, on the other hand, has a complicated shape, so that the matrix resin cannot be uniformly impregnated. There was a problem that foaming occurred.
米国特許出願公開第2005/0059309号公報US Patent Application Publication No. 2005/0059309 国際公開第01/063033号パンフレットInternational Publication No. 01/063033 Pamphlet 特開2007-162151号公報JP 2007-162151 A
 本発明の目的は、力学特性に優れる多軸ステッチ基材を用いて、空洞や外観の形状崩れ、泡立ち等を生じさせない繊維強化複合プラスチックの製造方法を提供することにある。 An object of the present invention is to provide a method for producing a fiber-reinforced composite plastic that does not cause voids, deformed shapes, foaming, etc., using a multiaxial stitch base material having excellent mechanical properties.
 本発明者らは、上記課題に鑑み鋭意検討の結果、シクロオレフィンモノマー、重合触媒及び架橋剤等を含んでなる硬化性組成物を多軸ステッチ基材に含浸させ、次いで硬化させることで、複雑な形状の多軸ステッチ基材に対してもマトリックス樹脂を均一に含浸させることが可能で、空洞や外観の形状崩れや泡立ち等のない繊維強化プラスチックが容易に製造できることを見出した。本発明者らは、これらの知見に基づいて本発明を完成するに至ったものである。 As a result of intensive studies in view of the above problems, the present inventors have impregnated a curable composition comprising a cycloolefin monomer, a polymerization catalyst, a cross-linking agent, and the like into a multiaxial stitch base material, and then cured the complex composition. It was found that a matrix resin can be uniformly impregnated even on a multi-axis stitch base material having a simple shape, and a fiber-reinforced plastic that does not have a hollow shape or a deformed shape or foaming can be easily produced. Based on these findings, the present inventors have completed the present invention.
 かくして本発明によれば、シクロオレフィンモノマー、重合触媒及び架橋剤を含んでなる硬化性組成物を多軸ステッチ基材に含浸させる工程(1)、次いで前記硬化性組成物を硬化させる工程(2)を有する繊維強化プラスチックの製造方法が提供される。
 前記多軸ステッチ基材は、炭素繊維からなるものであることが好ましい。
 前記重合触媒は、ヘテロ環構造を含有する化合物を配位子として有するルテニウム触媒であることが好ましい。
Thus, according to the present invention, the step (1) of impregnating a curable composition comprising a cycloolefin monomer, a polymerization catalyst and a crosslinking agent into a multiaxial stitch base, and then the step of curing the curable composition (2) ) Is provided.
The multiaxial stitch base material is preferably made of carbon fiber.
The polymerization catalyst is preferably a ruthenium catalyst having a compound containing a heterocyclic structure as a ligand.
 本発明によれば、力学特性に優れる多軸ステッチ基材を用いて機械強度と外観に優れる繊維強化複合プラスチックを容易に製造できる。また、本発明の製造方法により得られる繊維強化プラスチックは、機械強度と外観に優れるため、自動車や航空機などの乗物用構造体、及びスポーツ、土木、建築などの分野において各種部材として好適に使用することができる。 According to the present invention, a fiber-reinforced composite plastic having excellent mechanical strength and appearance can be easily produced using a multiaxial stitch base material having excellent mechanical properties. Further, the fiber reinforced plastic obtained by the production method of the present invention is excellent in mechanical strength and appearance. Therefore, it is suitably used as various members in the fields of vehicles, aircraft, and other vehicle structures, and sports, civil engineering, and architecture. be able to.
 本発明の繊維強化プラスチックの製造方法は、シクロオレフィンモノマー、重合触媒及び架橋剤を含んでなる硬化性組成物を多軸ステッチ基材に含浸させる工程(1)、次いで前記硬化性組成物を硬化させる工程(2)を有する。 The method for producing a fiber reinforced plastic according to the present invention includes a step (1) of impregnating a curable composition comprising a cycloolefin monomer, a polymerization catalyst and a crosslinking agent into a multiaxial stitch base, and then curing the curable composition. Step (2).
(シクロオレフィンモノマー)
 本発明に使用されるシクロオレフィンモノマーは、炭素原子で形成される環構造を有し、該環中に炭素-炭素二重結合を有する化合物である。その例として、ノルボルネン系モノマーおよび単環シクロオレフィンなどが挙げられ、ノルボルネン系モノマーが好ましい。ノルボルネン系モノマーは、ノルボルネン環を含むモノマーである。ノルボルネン系モノマーとしては、格別な限定はないが、例えば、2-ノルボルネン、ノルボルナジエンなどの二環体、ジシクロペンタジエン、ジヒドロジシクロペンタジエンなどの三環体、テトラシクロドデセン、エチリデンテトラシクロドデセン、フェニルテトラシクロドデセンなどの四環体、トリシクロペンタジエンなどの五環体、テトラシクロペンタジエンなどの七環体、及びこれらのアルキル置換体(メチル、エチル、プロピル、ブチル置換体など)、アルキリデン置換体(例えば、エチリデン置換体)、アリール置換体(例えば、フェニル、トリル置換体)、並びにエポキシ基、メタクリル基、水酸基、アミノ基、カルボキシル基、シアノ基、ハロゲン基、エーテル結合含有基、エステル結合含有基などの極性基を有する誘導体などが挙げられる。単環シクロオレフィンとしては、例えば、シクロブテン、シクロペンテン、シクロオクテン、シクロドデセン、1,5-シクロオクタジエンなどの単環シクロオレフィン及び置換基を有するそれらの誘導体が挙げられる。単環シクロオレフィンの置換基としては、ノルボルネン系モノマーの置換基と同様のものが挙げられる。これらのシクロオレフィンモノマーは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
(Cycloolefin monomer)
The cycloolefin monomer used in the present invention is a compound having a ring structure formed of carbon atoms and having a carbon-carbon double bond in the ring. Examples thereof include norbornene monomers and monocyclic cycloolefins, and norbornene monomers are preferred. The norbornene-based monomer is a monomer containing a norbornene ring. The norbornene-based monomer is not particularly limited, and examples thereof include bicyclic compounds such as 2-norbornene and norbornadiene, tricyclic compounds such as dicyclopentadiene and dihydrodicyclopentadiene, tetracyclododecene, and ethylidenetetracyclododecene. , Tetracycles such as phenyltetracyclododecene, pentacycles such as tricyclopentadiene, heptacycles such as tetracyclopentadiene, and alkyl substituents thereof (methyl, ethyl, propyl, butyl substituents, etc.), alkylidene Substitutes (eg, ethylidene substitutes), aryl substitutes (eg, phenyl, tolyl substitutes), epoxy groups, methacryl groups, hydroxyl groups, amino groups, carboxyl groups, cyano groups, halogen groups, ether bond-containing groups, esters Derivatives having a polar group such as a bond-containing group Etc., and the like. Examples of the monocyclic cycloolefin include monocyclic cycloolefins such as cyclobutene, cyclopentene, cyclooctene, cyclododecene, 1,5-cyclooctadiene, and derivatives having a substituent. Examples of the substituent of the monocyclic cycloolefin include the same substituents as those of the norbornene monomer. These cycloolefin monomers can be used alone or in combination of two or more.
(重合触媒)
 本発明に使用される重合触媒としては、シクロオレフィンモノマーを重合できるものであれば格別な限定はないが、通常はメタセシス重合触媒が用いられる。メタセシス重合触媒は、シクロオレフィンモノマーをメタセシス開環重合できるものであり、通常遷移金属原子を中心原子として、複数のイオン、原子、多原子イオン及び/又は化合物が結合してなる錯体が挙げられる。遷移金属原子としては、5族、6族及び8族(長周期型周期表、以下同じ)の原子が使用される。それぞれの族の原子は特に限定されないが、5族の原子としては例えばタンタルが挙げられ、6族の原子としては、例えばモリブデンやタングステンが挙げられ、8族の原子としては、例えばルテニウムやオスミウムが挙げられる。これらの中でも、8族のルテニウムやオスミウムの錯体をメタセシス重合触媒として用いることが好ましく、ルテニウムカルベン錯体が特に好ましい。ルテニウムカルベン錯体は、塊状重合時の触媒活性が優れるため、未反応のモノマーに由来する臭気が少ない繊維強化プラスチックを効率的に生産可能である。また、酸素や空気中の水分に対して比較的安定であって、失活しにくいので、大気下でも繊維強化プラスチックを生産可能である。
(Polymerization catalyst)
The polymerization catalyst used in the present invention is not particularly limited as long as it can polymerize a cycloolefin monomer, but a metathesis polymerization catalyst is usually used. The metathesis polymerization catalyst is capable of metathesis ring-opening polymerization of a cycloolefin monomer, and usually includes a complex formed by bonding a plurality of ions, atoms, polyatomic ions and / or compounds with a transition metal atom as a central atom. As transition metal atoms, atoms of Group 5, Group 6, and Group 8 (long-period periodic table, the same applies hereinafter) are used. Although the atoms of each group are not particularly limited, examples of the Group 5 atom include tantalum, examples of the Group 6 atom include molybdenum and tungsten, and examples of the Group 8 atom include ruthenium and osmium. Can be mentioned. Among these, it is preferable to use a group 8 ruthenium or osmium complex as a metathesis polymerization catalyst, and a ruthenium carbene complex is particularly preferable. Since ruthenium carbene complexes have excellent catalytic activity during bulk polymerization, it is possible to efficiently produce fiber-reinforced plastics with less odor originating from unreacted monomers. Further, since it is relatively stable against oxygen and moisture in the air and hardly deactivates, fiber reinforced plastic can be produced even in the atmosphere.
 ルテニウムカルベン錯体としては、下記式(1)または式(2)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
Examples of the ruthenium carbene complex include those represented by the following formula (1) or formula (2).
Figure JPOXMLDOC01-appb-C000001
 上記式(1)及び式(2)において、R及びRは、それぞれ独立して水素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子を含んでもよい炭素数1~20の炭化水素基を表す。 In the above formulas (1) and (2), R 1 and R 2 may each independently contain a hydrogen atom, a halogen atom, or a halogen atom, oxygen atom, nitrogen atom, sulfur atom, phosphorus atom or silicon atom. It represents a good hydrocarbon group having 1 to 20 carbon atoms.
 X1及びX2は、それぞれ独立して任意のアニオン性配位子を示す。アニオン性配位子とは、中心金属原子から引き離されたときに負の電荷を持つ配位子であり、例えば、ハロゲン原子、ジケトネート基、置換シクロペンタジエニル基、アルコキシル基、アリールオキシ基、カルボキシル基などを挙げることができる。これらの中でもハロゲン原子が好ましく、塩素原子がより好ましい。 X 1 and X 2 each independently represents an arbitrary anionic ligand. An anionic ligand is a ligand having a negative charge when pulled away from a central metal atom, such as a halogen atom, a diketonate group, a substituted cyclopentadienyl group, an alkoxyl group, an aryloxy group, A carboxyl group etc. can be mentioned. Among these, a halogen atom is preferable and a chlorine atom is more preferable.
 L1及びL2はそれぞれ独立して、ヘテロ原子含有カルベン化合物又は中性電子供与性化合物を表す。ヘテロ原子とは、周期律表第15族及び第16族の原子を意味し、具体的には、N、O、P、S、As、Se原子などを挙げることができる。これらの中でも、安定なカルベン化合物が得られる観点から、N、O、P、S原子などが好ましく、N原子が特に好ましい。 L 1 and L 2 each independently represents a hetero atom-containing carbene compound or a neutral electron donating compound. A hetero atom means an atom of Group 15 and Group 16 of the Periodic Table, and specific examples thereof include N, O, P, S, As, and Se atoms. Among these, from the viewpoint of obtaining a stable carbene compound, N, O, P, S atoms and the like are preferable, and N atoms are particularly preferable.
 ヘテロ原子含有カルベン化合物としては、下記式(3)又は式(4)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Examples of the heteroatom-containing carbene compound include compounds represented by the following formula (3) or formula (4).
Figure JPOXMLDOC01-appb-C000002
 式中、R~Rは、それぞれ独立して水素原子、ハロゲン原子、又はハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子若しくは珪素原子を含んでもよい炭素数1~20個の炭化水素基を表す。また、R~Rは任意の組合せで互いに結合して環を形成していてもよい。 In the formula, each of R 3 to R 6 independently represents a hydrogen atom, a halogen atom, or a carbon atom having 1 to 20 carbon atoms that may contain a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, or a silicon atom. Represents a hydrogen group. R 3 to R 6 may be bonded to each other in any combination to form a ring.
 中性の電子供与性化合物は、中心金属から引き離されたときに中性の電荷を持つ配位子であればいかなるものでもよい。その具体例としては、ホスフィン類、エーテル類及びピリジン類などが挙げられ、トリアルキルホスフィンがより好ましい。 The neutral electron-donating compound may be any ligand as long as it has a neutral charge when separated from the central metal. Specific examples thereof include phosphines, ethers and pyridines, and trialkylphosphine is more preferable.
 なお、上記式(1)及び(2)において、RとRは互いに結合して環を形成してもよく、さらに、R、R、X1、X2、L1及びL2は、任意の組合せで互いに結合して、多座キレート化配位子を形成してもよい。 In the above formulas (1) and (2), R 1 and R 2 may be bonded to each other to form a ring, and further R 1 , R 2 , X 1 , X 2 , L 1 and L 2 May be bonded together in any combination to form a multidentate chelating ligand.
 本発明においては、重合触媒としてヘテロ環構造を有する化合物を配位子として有するルテニウム触媒が、アクリル系炭素繊維との相性がよく、繊維強化樹脂基材の塗膜との密着性、外観、機械強度、耐熱、耐薬品性等の特性を高度にバランスさせることができ好適である。ヘテロ環構造を構成するヘテロ原子としては、例えば、酸素原子、窒素原子等が挙げられ、好ましくは窒素原子である。また、ヘテロ環構造としては、イミダゾリン構造やイミダゾリジン構造が好ましい。
 かかるヘテロ環構造を有する化合物を配位子として有するルテニウム触媒としては、上記式(1)または(2)で表され、L1またはL2としてヘテロ原子含有カルベン化合物からなる配位子を有するルテニウム触媒を好適に用いることができる。ヘテロ原子含有カルベン化合物を構成するヘテロ原子としては、窒素原子が好ましい。かかるヘテロ原子含有カルベン化合物の具体例としては、1,3-ジ(1-アダマンチル)イミダゾリジン-2-イリデン、1,3-ジメシチルオクタヒドロベンズイミダゾール-2-イリデン、1,3-ジ(1-フェニルエチル)-4-イミダゾリン-2-イリデン、1,3-ジメシチルイミダゾリジン-2-イリデン、1,3-ジシクロヘキシルイミダゾリジン-2-イリデン、1,3-ジイソプロピル-4-イミダゾリン-2-イリデン、1,3-ジメシチル-2,3-ジヒドロベンズイミダゾール-2-イリデンなどが挙げられる。
In the present invention, the ruthenium catalyst having a compound having a heterocyclic structure as a ligand as a polymerization catalyst has good compatibility with acrylic carbon fibers, adhesion to the coating film of the fiber reinforced resin substrate, appearance, machine Properties such as strength, heat resistance, and chemical resistance can be highly balanced, which is preferable. As a hetero atom which comprises a heterocyclic structure, an oxygen atom, a nitrogen atom, etc. are mentioned, for example, Preferably it is a nitrogen atom. Moreover, as a heterocyclic structure, an imidazoline structure and an imidazolidine structure are preferable.
As a ruthenium catalyst having a compound having such a heterocyclic structure as a ligand, ruthenium having a ligand represented by the above formula (1) or (2) and comprising a hetero atom-containing carbene compound as L 1 or L 2 A catalyst can be suitably used. As a hetero atom which comprises a hetero atom containing carbene compound, a nitrogen atom is preferable. Specific examples of such a heteroatom-containing carbene compound include 1,3-di (1-adamantyl) imidazolidin-2-ylidene, 1,3-dimesityloctahydrobenzimidazol-2-ylidene, 1,3-diene (1-phenylethyl) -4-imidazoline-2-ylidene, 1,3-dimesitylimidazolidine-2-ylidene, 1,3-dicyclohexylimidazolidine-2-ylidene, 1,3-diisopropyl-4-imidazoline -2-ylidene, 1,3-dimesityl-2,3-dihydrobenzimidazol-2-ylidene and the like.
 また、ヘテロ原子含有カルベン化合物からなる配位子を有するルテニウム触媒の具体例としては、ベンジリデン(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、(1,3-ジメシチルイミダゾリジン-2-イリデン)(3-メチル-2-ブテン-1-イリデン)(トリシクロペンチルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3-ジメシチル-オクタヒドロベンズイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン[1,3-ジ(1-フェニルエチル)-4-イミダゾリン-2-イリデン](トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3-ジメシチル-2,3-ジヒドロベンズイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(トリシクロヘキシルホスフィン)(1,3,4-トリフェニル-2,3,4,5-テトラヒドロ-1H-1,2,4-トリアゾール-5-イリデン)ルテニウムジクロリド、(1,3-ジイソプロピルヘキサヒドロピリミジン-2-イリデン)(エトキシメチレン)(トリシクロヘキシルホスフィン)ルテニウムジクロリド、ベンジリデン(1,3-ジメシチルイミダゾリジン-2-イリデン)ピリジンルテニウムジクロリドなどの、配位子としてヘテロ原子含有カルベン化合物と中性電子供与性化合物とが結合したルテニウム錯体化合物が挙げられる。 Specific examples of the ruthenium catalyst having a ligand composed of a heteroatom-containing carbene compound include benzylidene (1,3-dimesitymylimidazolidine-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, (1,3 -Dimesitylimidazolidine-2-ylidene) (3-methyl-2-buten-1-ylidene) (tricyclopentylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-octahydrobenzimidazol-2-ylidene) Tricyclohexylphosphine) ruthenium dichloride, benzylidene [1,3-di (1-phenylethyl) -4-imidazoline-2-ylidene] (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesityl-2,3-dihydride) Benzimidazol-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (tricyclohexylphosphine) (1,3,4-triphenyl-2,3,4,5-tetrahydro-1H-1,2,4-triazole -5-ylidene) ruthenium dichloride, (1,3-diisopropylhexahydropyrimidin-2-ylidene) (ethoxymethylene) (tricyclohexylphosphine) ruthenium dichloride, benzylidene (1,3-dimesitylimidazolidine-2-ylidene) Examples thereof include a ruthenium complex compound in which a hetero atom-containing carbene compound and a neutral electron donating compound are bonded as a ligand, such as pyridine ruthenium dichloride.
 これらの重合触媒は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。重合触媒の使用量は、(触媒中の金属原子:シクロオレフィンモノマー)のモル比で、通常1:2,000~1:2,000,000、好ましくは1:5,000~1:1,000,000、より好ましくは1:10,000~1:500,000の範囲である。 These polymerization catalysts may be used alone or in combination of two or more. The use amount of the polymerization catalyst is usually 1: 2,000 to 1: 2,000,000, preferably 1: 5,000 to 1: 1, in a molar ratio of (metal atom in catalyst: cycloolefin monomer). The range is from 1,000,000, more preferably from 1: 10,000 to 1: 500,000.
 重合触媒は所望により、少量の不活性溶剤に溶解又は懸濁して使用することができる。かかる溶媒としては、n-ペンタン、n-ヘキサン、n-ヘプタン、流動パラフィン、ミネラルスピリットなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ジシクロヘプタン、トリシクロデカン、ヘキサヒドロインデン、シクロオクタンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;インデン、テトラヒドロナフタレンなどの脂環と芳香環とを有する炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリルなどの含窒素炭化水素;ジエチルエーテル、テトラヒドロフランなどの含酸素炭化水素;などが挙げられる。これらの中では鎖状脂肪族炭化水素、芳香族炭化水素、脂環式炭化水素、および脂環と芳香環とを有する炭化水素の使用が好ましい。 The polymerization catalyst can be used by dissolving or suspending in a small amount of an inert solvent, if desired. Such solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, liquid paraffin, mineral spirits; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane , Decahydronaphthalene, dicycloheptane, tricyclodecane, hexahydroindene, cyclooctane and other alicyclic hydrocarbons; benzene, toluene, xylene and other aromatic hydrocarbons; indene, tetrahydronaphthalene and other alicyclic and aromatic rings A nitrogen-containing hydrocarbon such as nitromethane, nitrobenzene, and acetonitrile; an oxygen-containing hydrocarbon such as diethyl ether and tetrahydrofuran; and the like. Among these, the use of chain aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, and hydrocarbons having an alicyclic ring and an aromatic ring is preferable.
(架橋剤)
 本発明で使用される架橋剤としては、硬化性組成物または硬化性組成物を重合に供して得られる重合体において架橋反応を誘起できるものであれば格別な制限はないが、通常、ラジカル発生剤が用いられる。ラジカル発生剤としては、有機過酸化物、ジアゾ化合物および非極性ラジカル発生剤などが挙げられ、好ましくは有機過酸化物や非極性ラジカル発生剤である。
(Crosslinking agent)
The crosslinking agent used in the present invention is not particularly limited as long as it can induce a crosslinking reaction in a curable composition or a polymer obtained by subjecting a curable composition to polymerization. An agent is used. Examples of the radical generator include organic peroxides, diazo compounds, and nonpolar radical generators, with organic peroxides and nonpolar radical generators being preferred.
 有機過酸化物としては、例えば、t-ブチルヒドロペルオキシド、p-メンタンヒドロペルオキシド、クメンヒドロペルオキシドなどのヒドロペルオキシド類;ジクミルペルオキシド、t-ブチルクミルペルオキシド、α,α’-ビス(t-ブチルペルオキシ-m-イソプロピル)ベンゼン、ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)-3-ヘキシン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサンなどのジアルキルペルオキシド類;ジプロピオニルペルオキシド、ベンゾイルペルオキシドなどのジアシルペルオキシド類;2,2-ジ(t-ブチルペルオキシ)ブタン、1,1-ジ(t-ヘキシルペルオキシ)シクロヘキサン、1,1-ジ(t-ブチルペルオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ブチルペルオキシ)シクロヘキサンなどのペルオキシケタール類;t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエートなどのペルオキシエステル類;t-ブチルペルオキシイソプロピルカルボナート、ジ(イソプロピルペルオキシ)ジカルボナートなどのペルオキシカルボナート類;t-ブチルトリメチルシリルペルオキシドなどのアルキルシリルペルオキシド類;などが挙げられる。中でも、重合反応に対する障害が少ない点で、ジアルキルペルオキシドおよびペルオキシケタール類が好ましい。 Examples of the organic peroxide include hydroperoxides such as t-butyl hydroperoxide, p-menthane hydroperoxide, cumene hydroperoxide; dicumyl peroxide, t-butylcumyl peroxide, α, α'-bis (t- Butylperoxy-m-isopropyl) benzene, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, 2,5-dimethyl-2,5-di ( dialkyl peroxides such as t-butylperoxy) hexane; diacyl peroxides such as dipropionyl peroxide and benzoyl peroxide; 2,2-di (t-butylperoxy) butane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-butylperoxy) -2-me Peroxyketals such as tilcyclohexane and 1,1-di (t-butylperoxy) cyclohexane; peroxyesters such as t-butylperoxyacetate and t-butylperoxybenzoate; t-butylperoxyisopropylcarbonate, di (isopropylperoxy) ) Peroxycarbonates such as dicarbonate; alkylsilyl peroxides such as t-butyltrimethylsilyl peroxide; and the like. Of these, dialkyl peroxides and peroxyketals are preferred in that they have little obstacle to the polymerization reaction.
 ジアゾ化合物としては、例えば、4,4’-ビスアジドベンザル(4-メチル)シクロヘキサノン、2,6-ビス(4’-アジドベンザル)シクロヘキサノンなどが挙げられる。 Examples of the diazo compound include 4,4'-bisazidobenzal (4-methyl) cyclohexanone, 2,6-bis (4'-azidobenzal) cyclohexanone, and the like.
 非極性ラジカル発生剤としては、2,3-ジメチル-2,3-ジフェニルブタン、3,4-ジメチル-3,4-ジフェニルヘキサン、1,1,2-トリフェニルエタン、1,1,1-トリフェニル-2-フェニルエタンなどが挙げられる。 Nonpolar radical generators include 2,3-dimethyl-2,3-diphenylbutane, 3,4-dimethyl-3,4-diphenylhexane, 1,1,2-triphenylethane, 1,1,1- And triphenyl-2-phenylethane.
 本発明に使用される架橋剤がラジカル発生剤の場合の1分間半減期温度は、架橋の条件により適宜選択されるが、通常、100~300℃、好ましくは150~250℃、より好ましくは160~230℃の範囲である。ここで1分間半減期温度は、ラジカル発生剤の半量が1分間で分解する温度である。 When the crosslinking agent used in the present invention is a radical generator, the one-minute half-life temperature is appropriately selected depending on the crosslinking conditions, but is usually 100 to 300 ° C, preferably 150 to 250 ° C, more preferably 160. It is in the range of ~ 230 ° C. Here, the half-life temperature for 1 minute is a temperature at which half of the radical generator decomposes in 1 minute.
 これらの架橋剤は、それぞれ単独で、または2種以上を組み合わせて用いることができる。架橋剤の使用量は、シクロオレフィンモノマー100重量部に対して、通常0.01~10重量部、好ましくは0.1~10重量部、より好ましくは0.5~5重量部の範囲である。 These cross-linking agents can be used alone or in combination of two or more. The amount of the crosslinking agent used is usually in the range of 0.01 to 10 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the cycloolefin monomer. .
(硬化性組成物)
 本発明に使用される硬化性組成物には、上記シクロオレフィンモノマー、重合触媒及び架橋剤を必須成分として、所望により、連鎖移動剤、重合反応遅延剤、架橋助剤、エラストマー材料、老化防止剤、充填剤及びその他の添加剤を添加することができる。
(Curable composition)
In the curable composition used in the present invention, the cycloolefin monomer, the polymerization catalyst and the crosslinking agent are essential components, and if desired, a chain transfer agent, a polymerization reaction retarding agent, a crosslinking aid, an elastomer material, and an antiaging agent. , Fillers and other additives can be added.
 連鎖移動剤としては、例えば、置換基を有していてもよい鎖状のオレフィン類を用いることができる。その具体例としては、例えば、1-ヘキセン、2-ヘキセンなどの脂肪族オレフィン類;スチレン、ジビニルベンゼン、スチルベンなどの芳香族基を有するオレフィン類;ビニルシクロヘキサンなどの脂環式炭化水素基を有するオレフィン類;エチルビニルエーテルなどのビニルエーテル類;メチルビニルケトン、1,5-ヘキサジエン-3-オン、2-メチル-1,5-ヘキサジエン-3-オン、メタクリル酸ビニル、メタクリル酸アリル、メタクリル酸3-ブテン-1-イル、メタクリル酸3-ブテン-2-イル、メタクリル酸スチリル、アクリル酸アリル、アクリル酸3-ブテン-1-イル、アクリル酸3-ブテン-2-イル、アクリル酸1-メチル-3-ブテン-2-イル、アクリル酸スチリル、エチレングリコールジアクリレート、アリルトリビニルシラン、アリルメチルジビニルシラン、アリルジメチルビニルシラン、アクリル酸グリシジル、アリルグリシジルエーテル、アリルアミン、2-(ジエチルアミノ)エタノールビニルエーテル、2-(ジエチルアミノ)エチルアクリレート、4-ビニルアニリンなどが挙げられる。 As the chain transfer agent, for example, chain olefins which may have a substituent can be used. Specific examples thereof include, for example, aliphatic olefins such as 1-hexene and 2-hexene; olefins having an aromatic group such as styrene, divinylbenzene, and stilbene; and alicyclic hydrocarbon groups such as vinylcyclohexane. Olefins; Vinyl ethers such as ethyl vinyl ether; methyl vinyl ketone, 1,5-hexadien-3-one, 2-methyl-1,5-hexadien-3-one, vinyl methacrylate, allyl methacrylate, 3-methacrylic acid 3- Buten-1-yl, 3-buten-2-yl methacrylate, styryl methacrylate, allyl acrylate, 3-buten-1-yl acrylate, 3-buten-2-yl acrylate, 1-methyl acrylate 3-buten-2-yl, styryl acrylate, ethylene glycol diacrylate Allyl trivinyl silane, allyl methyl divinyl silane, allyl dimethyl vinyl silane, glycidyl acrylate, allyl glycidyl ether, allylamine, 2- (diethylamino) ethanol vinyl ether, 2- (diethylamino) ethyl acrylate, and 4-vinyl aniline.
 これらの連鎖移動剤は、それぞれ単独で、あるいは2種以上組み合わせて用いることができ、その添加量は、シクロオレフィンモノマー100重量部に対して、通常0.01~10重量部、好ましくは0.1~5重量部である。 These chain transfer agents can be used alone or in combination of two or more, and the addition amount is usually 0.01 to 10 parts by weight, preferably 0. 1 to 5 parts by weight.
 本発明に用いる硬化性組成物は、重合反応遅延剤を含有していると、その粘度増加を抑制でき、容易に多軸ステッチ基材に均一に硬化性組成物を含浸できるので、好ましい。重合反応遅延剤としては、トリフェニルホスフィン、トリブチルホスフィン、トリメチルホスフィン、トリエチルホスフィン、ジシクロヘキシルホスフィン、ビニルジフェニルホスフィン、アリルジフェニルホスフィン、トリアリルホスフィン、スチリルジフェニルホスフィンなどのホスフィン化合物;アニリン、ピリジンなどのルイス塩基;等を用いることができる。 It is preferable that the curable composition used in the present invention contains a polymerization reaction retarder, because the increase in viscosity can be suppressed and the multiaxial stitch substrate can be easily impregnated uniformly with the curable composition. Polymerization retarders include phosphine compounds such as triphenylphosphine, tributylphosphine, trimethylphosphine, triethylphosphine, dicyclohexylphosphine, vinyldiphenylphosphine, allyldiphenylphosphine, triallylphosphine, styryldiphenylphosphine; Lewis bases such as aniline and pyridine Etc. can be used.
 これら重合反応遅延剤の中でも、室温以下での重合反応の進行を抑制する効果が大きいので、ホスフィン化合物が好ましく、トリフェニルホスフィン、トリエチルホスフィン、ジシクロヘキシルホスフィンおよびビニルジフェニルホスフィンがより好ましい。重合反応遅延剤の量は、ルテニウム触媒を用いる場合、(ルテニウム金属原子:重合反応遅延剤)のモル比で、通常、1:0.01~1:100、好ましくは1:0.1~1:10、より好ましくは1:0.1~1:5の範囲である。 Among these polymerization reaction retarders, a phosphine compound is preferable because of its great effect of suppressing the progress of the polymerization reaction at room temperature or lower, and triphenylphosphine, triethylphosphine, dicyclohexylphosphine, and vinyldiphenylphosphine are more preferable. When the ruthenium catalyst is used, the amount of the polymerization reaction retarder is usually 1: 0.01 to 1: 100, preferably 1: 0.1 to 1 in a molar ratio of (ruthenium metal atom: polymerization reaction retarder). : 10, more preferably in the range of 1: 0.1 to 1: 5.
 本発明に用いられる硬化性組成物は、架橋助剤を含むことが好ましい。硬化性組成物に架橋助剤を配合することで、硬化性組成物の多軸ステッチ基材への含浸性、及び硬化して得られる繊維強化プラスチックの機械強度を高度に向上させることができ好適である。 The curable composition used in the present invention preferably contains a crosslinking aid. By adding a crosslinking aid to the curable composition, it is possible to highly improve the impregnation of the curable composition into the multiaxial stitch base material and the mechanical strength of the fiber reinforced plastic obtained by curing. It is.
 本発明で使用される架橋助剤としては、一般的に用いられるものを格別な限定なく使用でき、例えば、炭素-炭素不飽和結合を2つ有する2官能性化合物、炭素-炭素不飽和結合を3つ以上有する多官能性化合物などを挙げることができる。炭素-炭素不飽和結合とは、炭素-炭素二重結合、または炭素-炭素三重結合を意味する。 As the crosslinking aid used in the present invention, those generally used can be used without particular limitation. For example, a bifunctional compound having two carbon-carbon unsaturated bonds, a carbon-carbon unsaturated bond can be used. The polyfunctional compound which has 3 or more can be mentioned. The carbon-carbon unsaturated bond means a carbon-carbon double bond or a carbon-carbon triple bond.
 本発明に使用される架橋助剤の構造は、格別な限定はないが、対称性の高い構造を有する化合物(対称構造を有する化合物)であるときにシクロオレフィンモノマーを含む硬化性組成物の多軸ステッチ基材への含浸性を高度に改善でき好適である。特に、架橋助剤が、炭化水素で、対称性の高い構造を有する化合物であるときに硬化性組成物の多軸ステッチ基材への含浸性、及び硬化して得られる繊維強化プラスチックの機械強度を高度に改善できるため好適である。 The structure of the crosslinking aid used in the present invention is not particularly limited, but there are many curable compositions containing a cycloolefin monomer when the compound has a highly symmetric structure (a compound having a symmetric structure). The impregnation property to the shaft stitch base material is highly improved, which is preferable. In particular, when the crosslinking aid is a hydrocarbon and a compound having a highly symmetrical structure, the impregnation property of the curable composition into the multiaxial stitch base material, and the mechanical strength of the fiber reinforced plastic obtained by curing Can be improved to a high degree.
 かかる架橋助剤の具体例としては、p-ジイソプロペニルベンゼン、m-ジイソプロペニルベンゼン、o-ジイソプロペニルベンゼンなどの2官能性化合物、トリイソプロペニルベンゼン、トリメタアリルイソシアネートなどの3官能性化合物等が挙げられる。中でも、トリイソプロペニルベンゼン、p-ジイソプロペニルベンゼン、m-ジイソプロペニルベンゼン、o-ジイソプロペニルベンゼンが好ましく、m-ジイソプロペニルベンゼンがより好ましい。 Specific examples of such crosslinking aids include bifunctional compounds such as p-diisopropenylbenzene, m-diisopropenylbenzene, o-diisopropenylbenzene, and trifunctional such as triisopropenylbenzene and trimethallyl isocyanate. Compound. Of these, triisopropenylbenzene, p-diisopropenylbenzene, m-diisopropenylbenzene, and o-diisopropenylbenzene are preferable, and m-diisopropenylbenzene is more preferable.
 これらの架橋助剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。架橋助剤の使用量は、使用目的に応じて適宜選択されるが、シクロオレフィンモノマー100重量部に対し、通常0.1~50重量部、好ましくは0.5~30重量部、さらに好ましくは1~20重量部、最も好ましくは5~15重量部である。架橋助剤の量がこの範囲であると、得られる繊維強化プラスチックの機械強度に優れる。 These crosslinking aids can be used alone or in combination of two or more. The amount of the crosslinking aid is appropriately selected according to the purpose of use, but is usually 0.1 to 50 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. 1 to 20 parts by weight, most preferably 5 to 15 parts by weight. When the amount of the crosslinking aid is within this range, the resulting fiber-reinforced plastic is excellent in mechanical strength.
 本発明に使用される硬化性組成物にエラストマー材料を加えることにより、得られる繊維強化プラスチックの機械強度を低下させることなく格段に耐衝撃強度を向上させることができ好適である。エラストマー材料としては、例えば、天然ゴム、ポリイソプレン、ポリブタジエン、スチレン-ブタジエン共重合体、クロロプレン、アクリロニトリル-ブタジエン共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン三元共重合体、エチレン-酢酸ビニル共重合体及びこれらの水素添加物が挙げられる。これらのエラストマー材料は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。その使用量は、シクロオレフィンモノマー100重量部に対して、通常0.1~100重量部、好ましくは1~50重量部、より好ましくは3~30重量部の範囲である。 The addition of an elastomer material to the curable composition used in the present invention is preferable because the impact strength can be remarkably improved without lowering the mechanical strength of the resulting fiber-reinforced plastic. Examples of elastomer materials include natural rubber, polyisoprene, polybutadiene, styrene-butadiene copolymer, chloroprene, acrylonitrile-butadiene copolymer, styrene-isoprene-styrene block copolymer, and styrene-butadiene-styrene block copolymer. Ethylene-propylene copolymer, ethylene-propylene-diene terpolymer, ethylene-vinyl acetate copolymer, and hydrogenated products thereof. These elastomer materials can be used alone or in combination of two or more. The amount used is usually in the range of 0.1 to 100 parts by weight, preferably 1 to 50 parts by weight, more preferably 3 to 30 parts by weight with respect to 100 parts by weight of the cycloolefin monomer.
 本発明に使用される硬化性組成物は、老化防止剤として、フェノール系老化防止剤、アミン系老化防止剤、リン系老化防止剤及びイオウ系老化防止剤からなる群から選ばれる少なくとも1種の老化防止剤を添加することにより、重合反応及び架橋反応を阻害しないで、得られる繊維強化プラスチックの耐熱性を高度に向上させることができ好適である。これらの中でも、フェノール系老化防止剤とアミン系老化防止剤が好ましく、フェノール系老化防止剤が特に好ましい。 The curable composition used in the present invention is at least one selected from the group consisting of a phenol-based anti-aging agent, an amine-based anti-aging agent, a phosphorus-based anti-aging agent and a sulfur-based anti-aging agent as an anti-aging agent. By adding an anti-aging agent, the heat resistance of the fiber-reinforced plastic obtained can be improved to a high degree without inhibiting the polymerization reaction and the crosslinking reaction, which is preferable. Among these, a phenolic antiaging agent and an amine antiaging agent are preferable, and a phenolic antiaging agent is particularly preferable.
 フェノール系老化防止剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-(1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレート、3,5-ジ-t-ブチル-4-ヒドロキシアニソール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(6-t-ブチル-m-クレゾール)、3,9-ビス(2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、テトラキス(メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニルプロピオネート)メタン[すなわち、ペンタエリスリメチル-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート)]、6-(4-ヒドロキシ-3-メチル-5-t-ブチルアニリノ)-2,4-ビスオクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジ-t-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどが挙げられる。 The phenolic antioxidant is not particularly limited as long as it is a substance usually used in the general resin industry. For example, 2-t-butyl-6- (3-t-butyl-2-hydroxy-5- Methylbenzyl) -4-methylphenyl acrylate, 2,4-di-t-amyl-6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate, 3,5- Di-t-butyl-4-hydroxyanisole, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-t- Butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 3,9-bis (2- (3- (3-tert-butyl-4-hydroxy-5-methylphenyl)) Professional Onyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, tetrakis (methylene-3- (3 ′, 5′-di-t-butyl-4 ′) -Hydroxyphenylpropionate) methane [ie pentaerythrimethyl-tetrakis (3- (3,5-di-t-butyl-4-hydroxyphenylpropionate)], 6- (4-hydroxy-3-methyl- 5-t-butylanilino) -2,4-bisoctylthio-1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1 , 3,5-triazine and the like.
 アミン系老化防止剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-3,5-ジ-tブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸-ビス-(1,2,2,6,6-ペンタメチル-4-ピペリジル)などが挙げられる。 The amine anti-aging agent is not particularly limited as long as it is a substance usually used in the general resin industry. For example, 1- [2- [3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionyloxy] ethyl] -4- [3-3,5-di-tbutyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 2- (3,5 -Di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonic acid-bis- (1,2,2,6,6-pentamethyl-4-piperidyl) and the like.
 リン系老化防止剤としては、一般の樹脂工業で通常使用される物であれば格別な限定はなく、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト)、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスファイト、サイクリックネオペンタンテトライルビス(イソデシルホスファイト)などが挙げられる。 The phosphorus anti-aging agent is not particularly limited as long as it is usually used in the general resin industry. For example, triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) Phosphite, tris (dinonylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, 2,2-methylenebis (4,6-di-t-butylphenyl) octyl phosphite, 9 , 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl phosphite), tetrakis (2 , 4-Di-t-butylphenyl) -4,4'-biphenylene diphosphite, cyclic Like Oh tetraylbis (isodecyl phosphite).
 イオウ系老化防止剤は、例えば、ジラウリル3,3-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート、ジステアリル3,3-チオジプロピオネート、ラウリルステアリル3,3-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオ-プロピオネート)、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンなどを挙げられる。 Sulfur-based antioxidants include, for example, dilauryl 3,3-thiodipropionate, dimyristyl 3,3′-thiodipropionate, distearyl 3,3-thiodipropionate, lauryl stearyl 3,3-thiodipropio And pentaerythritol-tetrakis- (β-lauryl-thio-propionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane It is done.
 これらの老化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。老化防止剤の使用量は、使用目的に応じて適宜選択されるが、シクロオレフィンモノマー100重量部に対して、通常0.0001~10重量部、好ましくは0.001~5重量部、より好ましくは0.01~1重量部の範囲である。 These anti-aging agents can be used alone or in combination of two or more. The amount of the antioxidant used is appropriately selected according to the purpose of use, but is usually 0.0001 to 10 parts by weight, preferably 0.001 to 5 parts by weight, more preferably 100 parts by weight of the cycloolefin monomer. Is in the range of 0.01 to 1 part by weight.
 本発明においては、硬化性組成物に充填剤を加えることにより、得られる繊維強化プラスチックの機械強度と耐熱性を格段に向上させることができ好適である。充填剤としては、工業的に一般に使用されるものであれば格別な限定はなく、無機系充填剤や有機系充填剤のいずれも用いることができるが、好適には無機系充填剤である。 In the present invention, by adding a filler to the curable composition, the mechanical strength and heat resistance of the obtained fiber reinforced plastic can be remarkably improved, which is preferable. The filler is not particularly limited as long as it is generally used industrially, and either an inorganic filler or an organic filler can be used, but an inorganic filler is preferred.
 無機系充填剤としては、例えば、鉄、銅、ニッケル、金、銀、アルミニウム、鉛、タングステン等の金属粒子;カーボンブラック、グラファイト、活性炭、炭素バルーン等の炭素粒子;シリカ、シリカバルーン、アルミナ、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、酸化すず、酸化ベリリウム、バリウムフェライト、ストロンチウムフェライト等の無機酸化物粒子;炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム等の無機炭酸塩粒子;硫酸カルシウム等の無機硫酸塩粒子;タルク、クレー、マイカ、カオリン、フライアッシュ、モンモリロナイト、ケイ酸カルシウム、ガラス、ガラスバルーン等の無機ケイ酸塩粒子;チタン酸カルシウム、チタン酸ジルコン酸鉛等のチタン酸塩粒子、窒化アルミニウム、炭化ケイ素粒子やウィスカー等が挙げられる。有機系充填剤としては、例えば、木粉、デンプン、有機顔料、ポリスチレン、ナイロン、ポリエチレンやポリプロピレンのようなポリオレフィン、塩化ビニル、各種エラストマー、廃プラスチック等の化合物粒子が挙げられる。 Examples of the inorganic filler include metal particles such as iron, copper, nickel, gold, silver, aluminum, lead, and tungsten; carbon particles such as carbon black, graphite, activated carbon, and carbon balloon; silica, silica balloon, alumina, Inorganic oxide particles such as titanium oxide, iron oxide, zinc oxide, magnesium oxide, tin oxide, beryllium oxide, barium ferrite, strontium ferrite; inorganic carbonate particles such as calcium carbonate, magnesium carbonate, sodium hydrogen carbonate; calcium sulfate, etc. Inorganic sulfate particles; inorganic silicate particles such as talc, clay, mica, kaolin, fly ash, montmorillonite, calcium silicate, glass, glass balloon; titanate particles such as calcium titanate and lead zirconate titanate, Aluminum nitride, silicon carbide grains And whiskers, and the like. Examples of the organic filler include compound particles such as wood powder, starch, organic pigments, polystyrene, nylon, polyolefins such as polyethylene and polypropylene, vinyl chloride, various elastomers, and waste plastics.
 これらの充填剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、シクロオレフィンモノマー100重量部に対して、通常1~1,000重量部、好ましくは10~500重量部、より好ましくは50~350重量部の範囲である。 These fillers can be used alone or in combination of two or more, and the amount used is usually 1 to 1,000 parts by weight, preferably 10 to 100 parts by weight per 100 parts by weight of the cycloolefin monomer. The amount is in the range of 500 parts by weight, more preferably 50 to 350 parts by weight.
 その他の添加剤としては、例えば、難燃剤、着色剤、光安定剤、顔料、発泡剤、高分子改質剤などが挙げられる。難燃剤としては、リン系難燃剤、窒素系難燃剤、ハロゲン系難燃剤、水酸化アルミニウムや水酸化マグネシウムなどの金属水酸化物、三酸化アンチモンなどのアンチモン化合物などが挙げられる。着色剤としては、染料、顔料などが用いられる。染料の種類は多様であり、公知のものを適宜選択して使用すればよい。 Examples of other additives include flame retardants, colorants, light stabilizers, pigments, foaming agents, polymer modifiers, and the like. Examples of the flame retardant include phosphorus flame retardants, nitrogen flame retardants, halogen flame retardants, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, and antimony compounds such as antimony trioxide. As the colorant, dyes, pigments and the like are used. There are various kinds of dyes, and known ones may be appropriately selected and used.
 これらのその他の添加剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その使用量は、本発明の効果を損ねない範囲で適宜選択される。 These other additives can be used alone or in combination of two or more, and the amount used is appropriately selected within a range not impairing the effect of the present invention.
 本発明に使用される硬化性組成物は、上記成分を混合して得ることができる。混合方法としては、常法に従えばよく、例えば、前記重合触媒を適当な溶媒に溶解若しくは分散させた液(触媒液)を、シクロオレフィンモノマーおよび架橋剤に、所望により、その他の添加剤等を配合した液(モノマー液)に添加し、攪拌することによって調製することができる。 The curable composition used in the present invention can be obtained by mixing the above components. As a mixing method, a conventional method may be followed. For example, a liquid (catalyst solution) in which the polymerization catalyst is dissolved or dispersed in an appropriate solvent is used as a cycloolefin monomer and a crosslinking agent, and other additives as required. It can be prepared by adding to a liquid (monomer liquid) blended and stirring.
(強化繊維)
 本発明においては、上記硬化性組成物がマトリックス樹脂層を構成し、強化繊維として多軸ステッチ基材を用いることを1つの特徴とする。上記本発明に使用される硬化性組成物は、流動性と強化繊維との濡れ性に優れるので、複雑形状の多軸ステッチ基材に均一含浸させることができる。
(Reinforced fiber)
One feature of the present invention is that the curable composition constitutes a matrix resin layer and a multiaxial stitch base material is used as the reinforcing fiber. Since the curable composition used in the present invention is excellent in fluidity and wettability with reinforcing fibers, it can be uniformly impregnated into a complex-shaped multiaxial stitch base.
 本発明に使用される多軸ステッチ基材としては、工業一般に用いられるものを格別な限定なく用いることができる。多軸ステッチ基材としては通常、強化繊維糸が多数本一方向に揃えられて配列されてなるシートの複数枚が積層されステッチ糸で一体化されて形成されているものを用いることができる。具体的には、米国特許出願公開第2005/0059309号公報、特開2006-299426号公報、特開2007-160587号公報、特開2007-162151号公報、国際公開第01/063033号パンフレットなどに開示される方法によって入手できる。 As the multi-axis stitch base material used in the present invention, those generally used in industry can be used without any particular limitation. As the multiaxial stitch base material, it is usually possible to use a multi-axis stitch base material formed by laminating a plurality of sheets of reinforcing fiber yarns arranged in one direction and being integrated by stitch yarns. Specifically, in US Patent Application Publication No. 2005/0059309, JP-A 2006-299426, JP-A 2007-160587, JP-A 2007-162151, International Publication No. 01/063033, etc. It can be obtained by the disclosed method.
 本発明に使用される多軸ステッチ基材の構成繊維としては、格別な制限はないが、例えば、PET(ポリエチレンテレフタレート)繊維、アラミド繊維、超高分子ポリエチレン繊維、ポリアミド(ナイロン)繊維、液晶ポリエステル繊維などの有機繊維;ガラス繊維、炭素繊維、アルミナ繊維、タングステン繊維、モリブデン繊維、ブデン繊維、チタン繊維、スチール繊維、ボロン繊維、シリコンカーバイド繊維、シリカ繊維などの無機繊維などを挙げることができる。これらの中でも、有機繊維、ガラス繊維、および炭素繊維が好ましく、炭素繊維がより好ましい。特に、炭素繊維は、シクロオレフィンモノマーを含む硬化性組成物との相溶性に優れ、且つ該硬化性組成物を均一に含浸させることで硬化性組成物の重合反応及び架橋反応を阻害せずに得られる繊維強化プラスチックの機械強度と耐衝撃性を高度に向上させることができ好適である。炭素繊維の種類としては、格別な限定はなく、例えば、アクリル系、ピッチ系、レーヨン系等の各種の従来公知の方法で製造される炭素繊維が使用でき、中でも、アクリル系炭素繊維(PAN系炭素繊維)が重合阻害を起こさず、得られる繊維強化プラスチックにおいて機械強度と靭性等の特性を高度に高めることができ、好適である。 The constituent fibers of the multiaxial stitch base material used in the present invention are not particularly limited. For example, PET (polyethylene terephthalate) fiber, aramid fiber, ultrahigh molecular polyethylene fiber, polyamide (nylon) fiber, liquid crystal polyester Examples thereof include organic fibers such as fibers; inorganic fibers such as glass fibers, carbon fibers, alumina fibers, tungsten fibers, molybdenum fibers, budene fibers, titanium fibers, steel fibers, boron fibers, silicon carbide fibers, and silica fibers. Among these, organic fiber, glass fiber, and carbon fiber are preferable, and carbon fiber is more preferable. In particular, carbon fiber is excellent in compatibility with a curable composition containing a cycloolefin monomer, and by uniformly impregnating the curable composition, it does not inhibit the polymerization reaction and the crosslinking reaction of the curable composition. The mechanical strength and impact resistance of the obtained fiber reinforced plastic can be improved to a high degree, which is preferable. The type of carbon fiber is not particularly limited. For example, carbon fibers produced by various conventionally known methods such as acrylic, pitch-based, rayon-based, etc. can be used. Among them, acrylic carbon fiber (PAN-based) Carbon fiber) is preferred because it does not cause polymerization inhibition, and properties such as mechanical strength and toughness can be highly enhanced in the fiber-reinforced plastic obtained.
 強化繊維の強度特性としては、格別な限定はなく使用目的に応じて適宜選択される。引張強度としては、JIS  R7601に従って測定されるストランド引張強度で、通常0.5~50GPa、好ましくは1~10GPa、より好ましくは2~8GPaの範囲である。引張弾性率としては、JIS  R7601に従って測定されるストランド引張弾性率で、通常100~1,000GPa、好ましくは200~800GPa、より好ましくは300~700GPaの範囲である。伸びとしては、JIS  R7601に従って測定されるストランド引張伸びで、通常0.1~10%、好ましくは0.5~5%、より好ましくは1~3%の範囲である。強化繊維の強度特性がこれらの範囲にあるときに、得られる繊維強化プラスチックにおいて外観性、機械強度、および靭性の各特性が高度にバランスされ好適である。 The strength property of the reinforcing fiber is not particularly limited and is appropriately selected according to the purpose of use. The tensile strength is a strand tensile strength measured according to JIS R7601 and is usually in the range of 0.5 to 50 GPa, preferably 1 to 10 GPa, more preferably 2 to 8 GPa. The tensile modulus is a strand tensile modulus measured according to JIS R7601, and is usually in the range of 100 to 1,000 GPa, preferably 200 to 800 GPa, more preferably 300 to 700 GPa. The elongation is a strand tensile elongation measured according to JIS R7601, and is usually in the range of 0.1 to 10%, preferably 0.5 to 5%, more preferably 1 to 3%. When the strength characteristics of the reinforcing fibers are within these ranges, the obtained fiber-reinforced plastic is suitable because the properties of appearance, mechanical strength, and toughness are highly balanced.
 強化繊維の繊維束糸条として利用する場合のフィラメント数は、格別な限定はないが、繊維束糸条1本中のフィラメント数は、通常、1,000~100,000本、好ましくは2,000~20,000本、より好ましくは5,000~15,000の範囲である。 The number of filaments when used as a fiber bundle yarn of reinforcing fibers is not particularly limited, but the number of filaments in one fiber bundle yarn is usually 1,000 to 100,000, preferably 2, The range is from 000 to 20,000, more preferably from 5,000 to 15,000.
 ステッチ糸としては、特に限定されず、ポリアミド繊維、ポリエステル繊維、ポリアラミド繊維、ポリエチレン繊維、ポリビニルアルコール繊維などを用いることができ、特にポリアラミド繊維やポリエチレン繊維が、硬化性組成物との接着性がよく、伸度も大きいため好適である。ステッチ糸による積層シートの一体化は、通常、ステッチ糸を編機、ミシン等を用いてニードルにて縫合する、いわゆるステッチ・ボンディングにより行なわれている。多軸ステッチ基材の編組織としては、例えば、鎖編み、1×1トリコット編み、鎖編みと1×1トリコット編みとを複合した1×1変則トリコット編みなどが挙げられる。 The stitch yarn is not particularly limited, and polyamide fiber, polyester fiber, polyaramid fiber, polyethylene fiber, polyvinyl alcohol fiber, and the like can be used. Particularly, polyaramid fiber and polyethylene fiber have good adhesion to the curable composition. It is preferable because the elongation is large. The integration of the laminated sheets by stitch yarn is usually performed by so-called stitch bonding in which the stitch yarn is stitched with a needle using a knitting machine, a sewing machine or the like. Examples of the knitting structure of the multi-axis stitch base material include chain knitting, 1 × 1 tricot knitting, and 1 × 1 irregular tricot knitting in which chain knitting and 1 × 1 tricot knitting are combined.
 本発明に使用される多軸ステッチ基材の積層枚数としては、使用目的に応じて適宜選択されるが、通常2~100枚、好ましくは3~60枚、より好ましくは4~12枚の範囲である。多軸ステッチ基材の積層枚数がこの範囲である時に、取扱性と硬化性組成物の含浸性とがバランスされ好適である。 The number of laminated multi-axis stitch base materials used in the present invention is appropriately selected depending on the purpose of use, but is usually in the range of 2 to 100 sheets, preferably 3 to 60 sheets, more preferably 4 to 12 sheets. It is. When the number of laminated multi-axis stitch base materials is within this range, the handleability and the impregnation property of the curable composition are balanced and suitable.
 本発明に使用される多軸ステッチ基材は、実質的に等方性であるときに機械強度が格段に高度化され好適である。例えば、等方性の多軸ステッチ基材は、通常、各シートを構成する繊維糸の配列方向が0°、90°、および±45°の交差角となるように積層する擬似等方積層方式で製造できる。 The multi-axis stitch base material used in the present invention is suitable because the mechanical strength is remarkably enhanced when it is substantially isotropic. For example, an isotropic multi-axis stitch base material is usually a pseudo isotropic lamination method in which fiber yarns constituting each sheet are laminated so that the arrangement directions thereof are 0 °, 90 °, and ± 45 ° crossing angles. Can be manufactured.
 本発明に使用される多軸ステッチ基材を構成する各シートの強化繊維目付量は、使用目的に応じて適宜選択されるが、通常50~400g/m、好ましくは70~300g/m、より好ましくは100~200g/mの範囲である。強化繊維糸目付量が過度に少ないと、隣り合う強化繊維糸同士の間に隙間ができて、得られる繊維強化プラスチックの機械強度が充分でなくなる傾向があり、また逆に、過度に目付量が多いと隣り合う強化繊維糸同士が重なる箇所ができるため厚くなり、硬化性組成物の含浸性を損ねる傾向がある。 The reinforcing fiber basis weight of each sheet constituting the multiaxial stitch base material used in the present invention is appropriately selected according to the purpose of use, but is usually 50 to 400 g / m 2 , preferably 70 to 300 g / m 2. More preferably, it is in the range of 100 to 200 g / m 2 . If the basis weight of the reinforcing fiber yarn is too small, a gap is formed between adjacent reinforcing fiber yarns, and the mechanical strength of the resulting fiber reinforced plastic tends to be insufficient, and conversely, the basis weight is excessive. If the amount is too large, a portion where adjacent reinforcing fiber yarns overlap each other is formed, so that the thickness becomes thick and the impregnation property of the curable composition tends to be impaired.
 繊維強化プラスチック(多軸ステッチ基材+硬化性組成物またはマトリックス樹脂)中の多軸ステッチ基材の割合は、使用目的に応じて適宜選択されればよいが、通常10~90重量%、好ましくは20~80重量%、より好ましくは30~70重量%の範囲である。繊維強化プラスチック中の多軸ステッチ基材の割合がこの範囲にあるときに、機械強度と耐衝撃性の特性が高度にバランスされ好適である。 The ratio of the multiaxial stitch base material in the fiber reinforced plastic (multiaxial stitch base material + curable composition or matrix resin) may be appropriately selected depending on the intended use, but is usually 10 to 90% by weight, preferably Is in the range of 20 to 80% by weight, more preferably 30 to 70% by weight. When the ratio of the multiaxial stitch base material in the fiber reinforced plastic is within this range, the mechanical strength and impact resistance characteristics are highly balanced, which is preferable.
(繊維強化プラスチック)
 本発明においては、前記硬化性組成物を上記多軸ステッチ基材に含浸させる工程(1)、次いで前記硬化性組成物を硬化させる工程(2)を実施することで、機械強度と耐衝撃性に高度に優れる繊維強化プラスチックが製造できる。
(Fiber reinforced plastic)
In the present invention, mechanical strength and impact resistance are achieved by carrying out the step (1) of impregnating the curable composition into the multiaxial stitch base, and then the step (2) of curing the curable composition. Highly superior fiber reinforced plastic can be manufactured.
 硬化性組成物の多軸ステッチ基材への含浸は、例えば、硬化性組成物の所定量を、スプレーコート法、ディップコート法、ロールコート法、カーテンコート法、ダイコート法、スリットコート法等の公知の方法により強化繊維に塗布し、所望により、その上に保護フィルムを重ね、上側からローラーなどで押圧することにより行うことができる。 The impregnation of the curable composition into the multiaxial stitch base material is performed by, for example, applying a predetermined amount of the curable composition to a spray coating method, a dip coating method, a roll coating method, a curtain coating method, a die coating method, a slit coating method, or the like. It can apply by apply | coating to a reinforced fiber by a well-known method, if necessary, putting a protective film on it and pressing with a roller etc. from an upper side.
 含浸を型内で行う場合は、型内に多軸ステッチ基材を設置し、該型内に硬化性組成物を注ぎ込み、次いで硬化を行う。ここで用いる型としては、従来公知の成形型、例えば、割型構造すなわちコア型とキャビティー型を有する成形型を用いることができ、それらの空隙部(キャビティー)に硬化性組成物を注入して硬化させる。コア型とキャビティー型は、多軸ステッチ基材の形状にあった空隙部を形成するように作製される。また、成形型の材質、大きさなどは特に制限されない。また、ガラス板や金属板などの板状成形型と所定の厚さのスペーサーとを用意し、スペーサーを2枚の板状成形型で挟んで形成される空間内に硬化性組成物を注入し、該型内で硬化を行うことができる。 When impregnation is performed in a mold, a multiaxial stitch base material is placed in the mold, and the curable composition is poured into the mold, followed by curing. As the mold used here, a conventionally known mold, for example, a mold having a split mold structure, that is, a core mold and a cavity mold, can be used, and a curable composition is injected into the cavity (cavity). And let it harden. The core mold and the cavity mold are produced so as to form a gap that matches the shape of the multiaxial stitch base material. The material and size of the mold are not particularly limited. Also, a plate-shaped mold such as a glass plate or a metal plate and a spacer having a predetermined thickness are prepared, and the curable composition is injected into a space formed by sandwiching the spacer between two plate-shaped molds. Curing can be performed in the mold.
 硬化性組成物は、従来用いられている、エポキシ樹脂等を溶媒に溶かしてなる重合体ワニスと比較して低粘度であり、多軸ステッチ基材に対する含浸性に優れるので、重合および架橋して得られるマトリックス樹脂を多軸ステッチ基材に均一に含浸させることができる。 The curable composition has a low viscosity as compared with a conventionally used polymer varnish obtained by dissolving an epoxy resin or the like in a solvent, and is excellent in impregnation with respect to a multiaxial stitch base material. The resulting matrix resin can be uniformly impregnated into the multiaxial stitch base material.
 本発明において、硬化性組成物の含浸後の硬化反応は、重合反応と架橋反応の二つの反応から成り立ち、重合反応と架橋反応とを同時に行なってもよいし、あるいは、重合反応、架橋反応の順で行なってもよい。重合反応と架橋反応を同時に行なう場合には、硬化温度は、通常50~300℃、好ましくは100~250℃、より好ましくは120~250℃の範囲であり、硬化時間は、0.1~180分間、好ましくは1~120分間、より好ましくは2~20分間の範囲である。 In the present invention, the curing reaction after impregnation with the curable composition comprises two reactions, a polymerization reaction and a crosslinking reaction, and the polymerization reaction and the crosslinking reaction may be performed simultaneously, or the polymerization reaction and the crosslinking reaction may be performed simultaneously. You may carry out in order. When the polymerization reaction and the crosslinking reaction are performed simultaneously, the curing temperature is usually in the range of 50 to 300 ° C., preferably 100 to 250 ° C., more preferably 120 to 250 ° C., and the curing time is 0.1 to 180 ° C. It is in the range of minutes, preferably 1 to 120 minutes, more preferably 2 to 20 minutes.
 重合反応と架橋反応を別々に行なう場合には別々に条件設定をおこなう。重合温度としては、通常50~250℃、好ましくは100~200℃、より好ましくは120~170℃の範囲であり、また、前記架橋剤としてラジカル発生剤を用いる場合は、通常ラジカル発生剤の1分間半減期温度以下、好ましくは1分間半減期温度の10℃以下、より好ましくは1分間半減期温度の20℃以下である。重合時間は適宜選択すればよいが、通常、10秒間から20分間、好ましくは5分間以内である。ここで得られる重合体は実質的に未架橋であり、例えば、トルエンに可溶である。当該重合体(シクロオレフィンポリマー)の分子量は、ゲル・パーミエーション・クロマトグラフィー(溶離液:テトラヒドロフラン)で測定されるポリスチレン換算の重量平均分子量で、通常1,000~1,000,000、好ましくは5,000~500,000、より好ましくは10,000~100,000の範囲である。 When performing the polymerization reaction and the crosslinking reaction separately, set the conditions separately. The polymerization temperature is usually in the range of 50 to 250 ° C., preferably 100 to 200 ° C., more preferably 120 to 170 ° C. When a radical generator is used as the crosslinking agent, the polymerization temperature is usually 1 of the radical generator. The half-life temperature is 1 minute or less, preferably 10 ° C. or less, more preferably 20 ° C. or less. The polymerization time may be appropriately selected, but is usually 10 seconds to 20 minutes, preferably within 5 minutes. The polymer obtained here is substantially uncrosslinked and is soluble in, for example, toluene. The molecular weight of the polymer (cycloolefin polymer) is a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (eluent: tetrahydrofuran), and is usually 1,000 to 1,000,000, preferably It is in the range of 5,000 to 500,000, more preferably 10,000 to 100,000.
 架橋温度は、前記架橋剤により架橋反応が誘起される温度であり、ラジカル発生剤を用いた場合は、その1分間半減期温度以上、好ましくは1分半減期温度より5℃以上高い温度、より好ましくは1分半減期温度より10℃以上高い温度であり、通常100~300℃、好ましくは150~250℃の範囲である。また、架橋時間は、0.1~180分間、好ましくは1~120分間、より好ましくは2~20分間の範囲である。 The cross-linking temperature is a temperature at which a cross-linking reaction is induced by the cross-linking agent. When a radical generator is used, it is at least 1 minute half-life temperature, preferably at least 5 ° C. higher than the 1-minute half-life temperature. The temperature is preferably 10 ° C. or more higher than the 1 minute half-life temperature, and is usually in the range of 100 to 300 ° C., preferably 150 to 250 ° C. The crosslinking time is in the range of 0.1 to 180 minutes, preferably 1 to 120 minutes, more preferably 2 to 20 minutes.
 かくして得られる本発明の繊維強化プラスチックは、機械強度と外観に優れるので、例えば、OAやAV機器、自動車や鉄道などの車両用構造体、航空機内装部品などをはじめとして、ゴルフシャフトや釣竿等のスポーツ用途、その他一般産業用途における各種部材として好適に用いられる。具体的な用途としては、例えば、釣竿、ゴルフクラブ用シャフト、テニスラケット、スキーストック等のスポーツ用途;ディスプレー、FDDキャリッジ、シャーシ、HDD、MO、モーターブラッシュホルダー、パラボラアンテナ、ノートパソコン、携帯電話、デジタルスチルカメラ、PDA、ポータブルMD、液晶ディスプレイ、プラズマディスプレイなどの電気・電子機器;電話、ファクシミリ、VTR、コピー機、テレビ、アイロン、ヘアドライヤー、炊飯器、電子レンジ、音響機器、掃除機、トイレタリー用品、レザーディスク、コンパクトディスク、照明、冷蔵庫、エアコン、タイプライター、ワードプロセッサーなどのオフィスオートメーション機器および家電機器;アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ドライブシャフト、ホイール、ホイールカバー、フェンダー、ドアミラー、ルームミラー、フェシャー、バンパー、バンパービーム、ボンネット、トランクフード、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スピラーおよび各種モジュールなどの自動車部品;ランディングギアポッド、ウイングレッド、スポイラー、エッジ、ラダー、フェイリングなどの航空機部品;およびパネルなどの建材などが挙げられる。これらの中でも、自動車や航空機などの乗物用部材として特に好適である。 The fiber-reinforced plastic of the present invention thus obtained is excellent in mechanical strength and appearance. For example, OA and AV equipment, automobile structures such as automobiles and railways, aircraft interior parts, golf shafts, fishing rods, etc. It is suitably used as various members in sports applications and other general industrial applications. Specific applications include, for example, sports applications such as fishing rods, golf club shafts, tennis rackets, and skistocks; displays, FDD carriages, chassis, HDD, MO, motor brush holders, parabolic antennas, notebook computers, mobile phones, Electric / electronic devices such as digital still cameras, PDAs, portable MDs, liquid crystal displays, plasma displays; telephones, facsimiles, VTRs, photocopiers, televisions, irons, hair dryers, rice cookers, microwave ovens, audio equipment, vacuum cleaners, toiletries Supplies, leather discs, compact discs, lighting, refrigerators, air conditioners, typewriters, word processors, office automation equipment and household appliances; undercovers, scuff plates, pillar trims, professionals Automobiles such as rubber shafts, drive shafts, wheels, wheel covers, fenders, door mirrors, room mirrors, feshers, bumpers, bumper beams, bonnets, trunk hoods, aero parts, platforms, cowl louvers, roofs, instrument panels, spirals and various modules Parts; aircraft parts such as landing gear pods, wing reds, spoilers, edges, ladders, and failings; and building materials such as panels. Among these, it is particularly suitable as a member for vehicles such as automobiles and airplanes.
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における部および%は、特に断りのない限り重量基準である。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In the examples and comparative examples, “part” and “%” are based on weight unless otherwise specified.
 実施例および比較例における各特性は、下記の方法に従い測定、評価した。
(1)樹脂含浸性:成形品のX線解析をX線非破壊解析装置(松定プレシジョン社製)を用いて行い、下記基準で判断した。
◎:空洞部が殆ど見られない
△:空洞が僅かに見られる。
×:中程度以上に空洞が見られる
Each characteristic in an Example and a comparative example was measured and evaluated according to the following method.
(1) Resin impregnation property: X-ray analysis of the molded product was performed using an X-ray nondestructive analyzer (manufactured by Matsusada Precision Co., Ltd.) and judged according to the following criteria.
(Double-circle): A cavity part is hardly seen (triangle | delta): A cavity is slightly seen.
X: A cavity is seen more than moderate
(2)外観:積層体を目視で観察し、下記基準で判断した。
◎:粉落ち、形状崩れ、泡立ちのいずれも全く認められない
○:粉落ち、形状崩れ、泡立ちのいずれも殆ど認められない
△:粉落ち、形状崩れ、泡立ちのいずれかが認められる
×:粉落ち、形状崩れ、泡立ちの全てが認められるか、いずれか一つだけでも程度が酷いもの
(2) Appearance: The laminate was visually observed and judged according to the following criteria.
A: No powder falling, shape collapse, or foaming is observed at all. ○: Most of powder falling, shape collapse, or foaming is not observed. Δ: Any of powder falling, shape collapse, or foaming is observed. All of fall, shape collapse, and foaming are recognized, or only one of them is severe
製造例1(硬化性組成物Aの調製)
 ベンジリデン(1,3-ジメシチル-4-イミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ルテニウムジクロリドを51部と、トリフェニルホスフィン79部とを、トルエン952部に溶解させて触媒液を調製した。これとは別に、シクロオレフィンモノマーとして、ジシクロペンタジエン(DCP)を100部入れ、ここに架橋剤としてジ-t-ブチルペルオキシド(1分間半減期温度186℃)を1.2部、フェノール系老化防止剤として3,5-ジ-t-ブチル-4-ヒドロキシアニソールを1部、連鎖移動剤としてアリルメタクリレートを0.74部を加えた後、上記触媒液をシクロオレフィンモノマー100gあたり0.12mLの割合で加えて撹拌し硬化性組成物Aを調製した。
Production Example 1 (Preparation of Curable Composition A)
A catalyst solution was prepared by dissolving 51 parts of benzylidene (1,3-dimesityl-4-imidazolidin-2-ylidene) (tricyclohexylphosphine) ruthenium dichloride and 79 parts of triphenylphosphine in 952 parts of toluene. Separately, 100 parts of dicyclopentadiene (DCP) is added as a cycloolefin monomer, and 1.2 parts of di-t-butyl peroxide (1 minute half-life temperature 186 ° C.) is used as a crosslinking agent. After adding 1 part of 3,5-di-t-butyl-4-hydroxyanisole as an inhibitor and 0.74 part of allyl methacrylate as a chain transfer agent, 0.12 mL of the above catalyst solution is added per 100 g of cycloolefin monomer. Curable composition A was prepared by adding and stirring at a ratio.
製造例2(硬化性組成物Bの調整)
 シクロオレフィンモノマーをDCP60部とテトラシクロドデセン(TCD)40部に替える以外は製造例1と同様にして硬化性組成物Bを調製した。
Production Example 2 (adjustment of curable composition B)
A curable composition B was prepared in the same manner as in Production Example 1 except that the cycloolefin monomer was replaced with 60 parts of DCP and 40 parts of tetracyclododecene (TCD).
製造例3(硬化性組成物Cの調整)
 充填剤として、溶融シリカ40部をさらに配合する以外は製造例1と同様にして硬化性組成物Cを調製した。
Production Example 3 (adjustment of curable composition C)
A curable composition C was prepared in the same manner as in Production Example 1 except that 40 parts of fused silica was further added as a filler.
実施例1
 強化繊維糸条が繊維方向に対して上層から順に-45°/0°/+45°/90°/90°/+45°/0°/-45°となるように配列し、ステッチ糸で縫合一体化した多軸ステッチ基材を作製した。なお、強化繊維糸としては、引張強度4,900MPa、引張弾性率230GPa、フィラメント数12,000本のPAN系炭素繊維を用い、ステッチ糸としては、24本フィラメントからなる56dtexのポリエステル糸を用いた。編組織としては、ステッチ長2.3mm、ゲージ長5mmの1×1変則トリコット編みとした。また、多軸ステッチ基材を構成する強化繊維糸条の各シートの目付は150g/mとした。
Example 1
Reinforced fiber yarns are arranged so as to be -45 ° / 0 ° / + 45 ° / 90 ° / 90 ° / + 45 ° / 0 ° / -45 ° in order from the upper layer with respect to the fiber direction, and stitched together with stitch yarn A multi-axis stitched substrate was prepared. As the reinforcing fiber yarn, a PAN-based carbon fiber having a tensile strength of 4,900 MPa, a tensile elastic modulus of 230 GPa and a filament number of 12,000 was used, and as the stitch yarn, a 56 dtex polyester yarn composed of 24 filaments was used. . The knitting structure was a 1 × 1 irregular tricot knitting with a stitch length of 2.3 mm and a gauge length of 5 mm. Moreover, the fabric weight of each sheet | seat of the reinforced fiber yarn which comprises a multiaxial stitch base material was 150 g / m < 2 >.
 次いで、金型内に上記多軸ステッチ基材を設置した後に先に調製した硬化性組成物Aを含浸させ、次いで200℃のオーブンで15分間硬化させ繊維強化プラスチックを得た。型から取り出した繊維強化プラスチックの各特性を評価した。その結果を表1に示す。 Next, after the multiaxial stitch base material was placed in the mold, the curable composition A prepared earlier was impregnated, and then cured in an oven at 200 ° C. for 15 minutes to obtain a fiber reinforced plastic. Each characteristic of the fiber reinforced plastic taken out from the mold was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例2
 強化繊維糸条が繊維方向に対して上層から順に-45°/0°となるように配列し、ステッチ糸(5本フィラメントからなるナイロン糸)で縫合一体にした2軸ステッチ基材を作製した。同様に、+45°/90°、90°/+45°、0°/-45°となるようにそれぞれ強化繊維糸条を配列した、2軸ステッチ基材をそれぞれ作製した。なお、強化繊維糸としては、引張強度4,900MPa、引張弾性率230GPa、フィラメント数12,000本のPAN系炭素繊維を用い、ステッチ糸としては、5本フィラメントからなるナイロン糸を用いた。編組織としては、ステッチ長2.3mm、ゲージ長5mmの1×1変則トリコット編みとした。また、2軸ステッチ基材を構成する強化繊維糸条の各シートの目付は150g/mとした。
Example 2
A biaxial stitch base material in which reinforcing fiber yarns are arranged so as to be −45 ° / 0 ° in order from the upper layer with respect to the fiber direction, and stitched together with stitch yarn (nylon yarn consisting of five filaments) was produced. . Similarly, biaxial stitch base materials each having reinforcing fiber yarns arranged so as to be + 45 ° / 90 °, 90 ° / + 45 °, and 0 ° / −45 ° were prepared. As the reinforcing fiber yarn, a PAN-based carbon fiber having a tensile strength of 4,900 MPa, a tensile elastic modulus of 230 GPa and a filament number of 12,000 was used, and as the stitch yarn, a nylon yarn composed of five filaments was used. The knitting structure was a 1 × 1 irregular tricot knitting with a stitch length of 2.3 mm and a gauge length of 5 mm. Moreover, the fabric weight of each sheet | seat of the reinforced fiber yarn which comprises a biaxial stitch base material was 150 g / m < 2 >.
 次に、これら2種の2軸ステッチ基材を強化繊維糸条が上層から順に(-45°/0°)/(+45°/90°)/(90°/+45°)/(0°/-45°)となるように積層し、さらにステッチ糸にて縫合一体化して多軸ステッチ基材を作製した。尚、ステッチは、ステッチ長5mm、ゲージ長5mmの1×1変則トリコット編みにて行なった。 Next, these two types of biaxially stitched base materials are reinforced fiber yarns in the order from the upper layer (−45 ° / 0 °) / (+ 45 ° / 90 °) / (90 ° / + 45 °) / (0 ° / The multiaxial stitch base material was produced by laminating to −45 °) and stitching together with stitch yarn. The stitching was performed by 1 × 1 irregular tricot knitting with a stitch length of 5 mm and a gauge length of 5 mm.
 次いで、金型内に上記多軸ステッチ基材を設置した後に先に調製した硬化性組成物Aを含浸させ、次いで200℃のオーブンで15分間硬化させ繊維強化プラスチックを得た。型から取り出した繊維強化プラスチックの各特性を評価した。その結果を表1に示す。 Next, after the multiaxial stitch base material was placed in the mold, the curable composition A prepared earlier was impregnated, and then cured in an oven at 200 ° C. for 15 minutes to obtain a fiber reinforced plastic. Each characteristic of the fiber reinforced plastic taken out from the mold was evaluated. The results are shown in Table 1.
実施例3
 硬化性組成物Aの代わりに硬化性組成物Bを用いる以外は実施例1と同様にして繊維強化プラスチックを製造し、各特性を評価した。その結果を表1に示す。
Example 3
A fiber reinforced plastic was produced in the same manner as in Example 1 except that the curable composition B was used instead of the curable composition A, and each characteristic was evaluated. The results are shown in Table 1.
実施例4
 硬化性組成物Aの代わりに硬化性組成物Cを用いる以外は実施例1と同様にして繊維強化プラスチックを製造し、各特性を評価した。その結果を表1に示す。
Example 4
A fiber reinforced plastic was produced in the same manner as in Example 1 except that the curable composition C was used in place of the curable composition A, and each characteristic was evaluated. The results are shown in Table 1.
比較例1
 エピコート828(油化シェル社製、液状ビスフェノールA型エポキシ樹脂)100部、カヤハードMCD(日本火薬社製、メチルナジック酸無水物)90部、及びベンジルジメチルアミン2部を加えたエポキシ樹脂組成物を調製した。
Comparative Example 1
An epoxy resin composition comprising 100 parts of Epicoat 828 (manufactured by Yuka Shell Co., Ltd., liquid bisphenol A type epoxy resin), 90 parts of Kayahard MCD (manufactured by Nippon Explosives Co., Ltd., methyl nadic acid anhydride) and 2 parts of benzyldimethylamine Prepared.
 硬化性組成物Aを上記エポキシ樹脂組成物に変えた以外は実施例1と同様にして繊維強化プラスチックを得、各特性を評価した。その結果を表1に示す。 A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the curable composition A was changed to the above epoxy resin composition, and each characteristic was evaluated. The results are shown in Table 1.
 表1の結果から明らかなように、本発明の製造方法によれば、機械特性に優れた炭素繊維等の強化繊維からなる多軸ステッチ基材を用いた、樹脂含浸性および外観に優れる繊維強化プラスチックが得られることが分かる(実施例1~4と比較例1の比較)。 As is apparent from the results in Table 1, according to the production method of the present invention, fiber reinforcement excellent in resin impregnation and appearance using a multiaxial stitch base material composed of reinforcing fibers such as carbon fibers excellent in mechanical properties. It can be seen that a plastic is obtained (Comparison between Examples 1 to 4 and Comparative Example 1).

Claims (5)

  1.  シクロオレフィンモノマー、重合触媒及び架橋剤を含んでなる硬化性組成物を多軸ステッチ基材に含浸させる工程(1)、次いで前記硬化性組成物を硬化させる工程(2)を有する繊維強化プラスチックの製造方法。 A fiber reinforced plastic comprising a step (1) of impregnating a curable composition comprising a cycloolefin monomer, a polymerization catalyst and a crosslinking agent into a multiaxial stitch base, and then a step (2) of curing the curable composition. Production method.
  2.  前記多軸ステッチ基材が、炭素繊維からなるものである請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the multi-axis stitch base material is made of carbon fiber.
  3.  炭素繊維が、アクリル系炭素繊維である請求項2記載の製造方法。 The production method according to claim 2, wherein the carbon fiber is an acrylic carbon fiber.
  4.  前記重合触媒が、ヘテロ環構造を含有する化合物を配位子として有するルテニウム触媒である請求項1~3いずれか記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the polymerization catalyst is a ruthenium catalyst having a compound containing a heterocyclic structure as a ligand.
  5.  硬化性組成物が、さらに架橋助剤を含んでなる請求項1~4いずれか記載の製造方法。 The method according to any one of claims 1 to 4, wherein the curable composition further comprises a crosslinking aid.
PCT/JP2009/051717 2008-01-31 2009-02-02 Method for producing fiber-reinforced plastic WO2009096580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008020436A JP2011068701A (en) 2008-01-31 2008-01-31 Method for producing fiber-reinforced plastic
JP2008-020436 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096580A1 true WO2009096580A1 (en) 2009-08-06

Family

ID=40912922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051717 WO2009096580A1 (en) 2008-01-31 2009-02-02 Method for producing fiber-reinforced plastic

Country Status (2)

Country Link
JP (1) JP2011068701A (en)
WO (1) WO2009096580A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5847033B2 (en) * 2012-07-19 2016-01-20 株式会社Shindo Carbon fiber stitch substrate and wet prepreg using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302400A (en) * 1998-04-22 1999-11-02 Hitachi Chem Co Ltd Production of frp molding product
WO2005017033A1 (en) * 2003-08-13 2005-02-24 Zeon Corporation Crosslinkable resin composition and resin formed body produced therefrom
JP2006182985A (en) * 2004-12-28 2006-07-13 Nippon Zeon Co Ltd Polymerizable composition and molded item made by using the same
JP2007182661A (en) * 2005-12-09 2007-07-19 Toray Ind Inc Multi-axial molding material, preform, frp and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302400A (en) * 1998-04-22 1999-11-02 Hitachi Chem Co Ltd Production of frp molding product
WO2005017033A1 (en) * 2003-08-13 2005-02-24 Zeon Corporation Crosslinkable resin composition and resin formed body produced therefrom
JP2006182985A (en) * 2004-12-28 2006-07-13 Nippon Zeon Co Ltd Polymerizable composition and molded item made by using the same
JP2007182661A (en) * 2005-12-09 2007-07-19 Toray Ind Inc Multi-axial molding material, preform, frp and production method thereof

Also Published As

Publication number Publication date
JP2011068701A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
WO2008038772A1 (en) Molded object, process for producing the same, and crosslinked molding and copper-clad laminate each obtained from the same
WO2010044461A1 (en) Polymerizable composition, cross-linkable molded object, crosslinked molded object, and crosslinked molded object composite body
JP5561158B2 (en) Method for producing molded body, prepreg, method for producing prepreg, and laminate
JP4497094B2 (en) Polymerizable composition and molded body thereof
JP5892167B2 (en) Polymerizable composition, resin molded body and method for producing the same, and laminate
JP5994843B2 (en) Polymerizable composition, resin molded body, and resin composite molded body
JP2011037910A (en) Prepreg, method for producing the same, and fiber-reinforced composite material
JP2011037002A (en) Metal/fiber-reinforced resin composite and process for producing the same
JP2010126573A (en) Method for producing honeycomb core
JP5223416B2 (en) A dimethacrylate compound-containing polymerizable composition, a prepreg, and a laminate using the same.
JP2009202514A (en) Fiber reinforced composite material and manufacturing method thereof
JP2010083079A (en) Method of manufacturing honeycomb core
JP2009191145A (en) Prepreg and laminated article of the same
WO2009096580A1 (en) Method for producing fiber-reinforced plastic
JP2010083080A (en) Honeycomb core laminate and method of manufacturing the same
JP2009143159A (en) Fiber-reinforced composite material and its manufacturing method
JP2009191087A (en) Prepreg, its manufacturing method, fiber-reinforced composite material, and fiber-reinforced composite material laminated body
JP2010084043A (en) Polymerizable composition, prepreg, and laminate
JP2009144081A (en) Prepreg, method for producing the same and frp
JP2010106219A (en) Prepreg, fiber-reinforced resin molded product, and laminate
JP5187110B2 (en) Layered double hydroxide-containing polymerizable composition, prepreg, and laminate
JP5434904B2 (en) Prepreg, manufacturing method thereof, and laminate using the same
JP2011037911A (en) Coated fiber-reinforced composite material and method for producing the same
JP2009191142A (en) Molded article
JP2009144082A (en) Prepreg, fiber-reinforced composite material by using the same, and fiber-reinforced composite material-laminated material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP