WO2009096460A1 - Imaging device, portable terminal, imaging device manufacturing method and portable terminal manufacturing method - Google Patents

Imaging device, portable terminal, imaging device manufacturing method and portable terminal manufacturing method Download PDF

Info

Publication number
WO2009096460A1
WO2009096460A1 PCT/JP2009/051443 JP2009051443W WO2009096460A1 WO 2009096460 A1 WO2009096460 A1 WO 2009096460A1 JP 2009051443 W JP2009051443 W JP 2009051443W WO 2009096460 A1 WO2009096460 A1 WO 2009096460A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
spacer
imaging device
imaging
space
Prior art date
Application number
PCT/JP2009/051443
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Hirao
Yasunari Fukuta
Keiji Matsusaka
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Publication of WO2009096460A1 publication Critical patent/WO2009096460A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention is an imaging device, a portable terminal, a manufacturing method of the imaging device, and a manufacturing method of the portable terminal.
  • a compact and thin imaging device is mounted on a portable terminal (for example, a mobile phone or a PDA (Personal Digital Assistant)) which is a compact and thin electronic device.
  • Information such as audio information and image information is transmitted bidirectionally between such a portable terminal and, for example, a remote electronic device.
  • Examples of the imaging device used in an imaging device such as a portable terminal include solid-state imaging devices such as a CCD (Charge Coupled Device) type image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor.
  • solid-state imaging devices such as a CCD (Charge Coupled Device) type image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor.
  • resin lenses that can be mass-produced inexpensively are used as imaging lenses that form subject images on these imaging elements in order to reduce costs.
  • the lens when the lens is formed of resin, it can be processed easily and with high accuracy.
  • a lens having a desired aspheric surface is easily manufactured. Therefore, in the case of a high-performance imaging lens, such a resin lens has been particularly used.
  • an imaging lens employing an optical system including only a resin lens and an imaging lens employing an optical system including a resin lens and a glass lens are known.
  • an imaging lens employing an optical system including a resin lens and a glass lens are known.
  • it is difficult to achieve both ultra-compact and high productivity for these imaging lenses due to technical limitations.
  • the replica method is a method in which a large number of lenses (lens elements) are simultaneously formed on one lens substrate (wafer). Further, a lens substrate (lens block unit) including a plurality of lenses formed by this method is divided after being connected to a wafer-like imaging device (sensor wafer) via a spacer (a space in which the spacer is interposed). Has a very high degree of sealing).
  • the lens block in a state where the lens block unit is divided, and the imaging lens including one or a plurality of lens blocks connected to the imaging device is referred to as a wafer scale lens.
  • the module including the image pickup device is called a wafer scale camera module (also referred to as a camera module for short).
  • Patent Document 1 discloses an imaging lens including a wafer scale lens (an optical element having a lens connected to at least one substrate surface of a lens substrate) formed by a replica method.
  • Patent Document 2 discloses an imaging lens including a wafer scale lens. JP 2006-323365 A Japanese Patent No. 3929479
  • an image pickup apparatus including such an image pickup lens and an image pickup device is attached to a printed circuit board on which paste-like solder is printed, and then subjected to a heat treatment (reflow treatment), thereby printing the print device.
  • a heat treatment reflow treatment
  • the imaging lens is placed in an environment near 300 ° C. (about 250 to 280 ° C.). Then, the air between the lens blocks sealed via the spacer and the air between the lens block and the image sensor expand. If such air expansion occurs excessively, for example, the lens blocks may be separated from each other, and the imaging lens may be damaged.
  • the present invention has been made in view of the above situation. And the objective of this invention is providing the imaging device etc. which can endure the heating in a reflow process.
  • a lens block a lens block having a lens connected to at least one of the object-side substrate surface and the image-side substrate surface of the lens substrate, an imaging element, and a first spacer interposed between the lens block and the imaging element;
  • An image pickup apparatus comprising: the lens block sandwiching the first spacer; the image pickup device; and a first pressure reduction mechanism for allowing air to pass between a space formed by the first spacer and the outside.
  • the imaging device A plurality of the lens blocks; A second spacer interposed between the lens blocks, 2.
  • the first pressure reduction mechanism includes: At least one of the adhesive between the first spacer and the lens substrate and between the first spacer and the imaging element is formed discontinuously so that the space communicates with the outside. 3.
  • the second pressure reduction mechanism includes: 3. The adhesive according to claim 2, wherein the adhesive between the second spacer and the lens substrate is an opening formed by a gap formed discontinuously so that the space communicates with the outside. Imaging device.
  • the second pressure reduction mechanism is a hollow cylinder that communicates a space formed by the lens block sandwiching the second spacer and the second spacer and the outside.
  • the imaging apparatus according to any one of 1 to 12, further comprising an adjustment member that adjusts a degree of communication between the space and the outside.
  • the adjustment member is a piston that is movable by a pressure difference between the outside and the space.
  • valve also serves as an isolation member that separates the space from the outside.
  • a portable terminal comprising the imaging device according to any one of 1 to 20.
  • the first pressure reduction mechanism allows air to pass between the lens block and the imaging device sandwiching the first spacer and the space formed by the first spacer and the outside, so that the space and the outside The pressure difference is eliminated. Therefore, a situation in which the pressure in the space becomes higher than the outside due to heating and the imaging apparatus is damaged does not occur.
  • FIG. 2 is a longitudinal sectional view at the position A-A ′ in FIG. 1. It is a perspective view of an example of an imaging device couple
  • FIG. 4 is a perspective view in which a first lens block and the like of the imaging device in FIG. 3 are omitted. It is a perspective view of a hollow cylinder. It is a perspective view of an example of an imaging device couple
  • FIG. 10B is a cross-sectional view taken along the line D-D ′ in FIG. (A) It is sectional drawing which shows the state in which the piston has block
  • (B) It is sectional drawing which shows the state which the piston has connected the exterior and space.
  • (C) It is sectional drawing which shows the state which the piston has block
  • (A) It is sectional drawing of a lens block unit.
  • (B) It is sectional drawing which shows the state in the middle of manufacture of an imaging lens.
  • (C) It is sectional drawing of an imaging lens.
  • BK Lens block UT Lens block unit PRB Printed board L, L1 to L4 Lens LS, LS1, LS2 Lens board PT Parallel flat plate (cover member) B1 Spacer B2 Substrate (cover member) BD1 to BD4 Adhesive GP1 to GP4 Gap HL1 to HL4 Opening (pressure reduction mechanism) 15 Passage port on the outside 16 Passage port on the space side MC, MC1, MC2 Hollow cylinder (pressure reduction mechanism) 11, 13 opening 12 intermediate port SP1, SP2 space VE valve (adjusting member, isolation member) PN piston (adjustment member, isolation member) 23 Main body 24N, 24T Specimen LN Imaging lens SR Imaging element IM Optical image (image plane) SS light receiving surface AX optical axis LU imaging device CU portable terminal 1 signal processing unit 2 control unit 3 memory 4 operation unit 5 display unit
  • the imaging lens is suitable for use in a digital device with an image input function (for example, a portable terminal).
  • a digital device including a combination of an imaging lens and an imaging element is an imaging device that optically captures an image of a subject and outputs it as an electrical signal.
  • the imaging device is a main component (optical device) of a camera that captures still images and moving images of a subject.
  • a main component optical device of a camera that captures still images and moving images of a subject.
  • an imaging lens that forms an optical image of an object in order from the object (that is, subject) side, and the imaging lens
  • an image sensor that converts the optical image formed by the method into an electrical signal.
  • cameras examples include digital cameras, video cameras, surveillance cameras, in-vehicle cameras, and videophone cameras.
  • Cameras are built into personal computers, mobile terminals (for example, compact and portable information device terminals such as mobile phones and mobile computers), peripheral devices (scanners, printers, etc.), and other digital devices. Or it may be externally attached.
  • a camera is configured by mounting an imaging apparatus, but also various devices having a camera function are configured by mounting the imaging apparatus.
  • a digital device with an image input function such as a mobile phone with a camera is configured.
  • FIG. 12 is a block diagram of a mobile terminal CU that is an example of a digital device with an image input function.
  • the imaging device LU mounted on the portable terminal CU in this figure includes an imaging lens LN, a plane parallel plate PT, and an imaging element SR.
  • the imaging lens LN forms an optical image IM of the object.
  • the imaging lens LN includes, for example, a lens block BK (details will be described later), and forms an optical image IM on the light receiving surface SS of the imaging element SR.
  • the symbol IM may indicate an image plane on which an optical image is formed.
  • the optical image IM to be formed by the imaging lens LN corresponds to, for example, an optical low-pass filter (a parallel flat plate PT shown in FIG. 12) having a predetermined cutoff frequency characteristic determined by the pixel pitch of the imaging element SR. .)
  • an optical low-pass filter a parallel flat plate PT shown in FIG. 12
  • the spatial frequency characteristics are adjusted so that so-called aliasing noise that occurs when converted into an electrical signal is minimized.
  • the plane parallel plate PT is, for example, an optical filter such as an optical low-pass filter or an infrared cut filter disposed as necessary (the plane parallel plate PT corresponds to a cover glass or the like of the image sensor SR). There is also.)
  • the imaging element SR converts the optical image IM formed on the light receiving surface SS by the imaging lens LN into an electrical signal.
  • a CCD (Charge Coupled Device) type image sensor having a plurality of pixels and a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor can be cited as the imaging element (solid imaging element) SR.
  • the imaging lens LN is positioned so as to form an optical image IM of the subject on the light receiving surface SS of the imaging element SR. Therefore, the optical image IM formed by the imaging lens LN is efficiently converted into an electrical signal by the imaging element SR.
  • the imaging device LU when such an imaging device LU is mounted on a portable terminal CU with an image input function, the imaging device LU is usually arranged inside the body of the portable terminal CU.
  • the imaging device LU takes a form as necessary.
  • the unitized imaging device LU may be detachable or rotatable with respect to the main body of the mobile terminal CU.
  • the mobile terminal CU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, and a display unit 5 in addition to the imaging device LU.
  • the signal processing unit 1 performs predetermined digital image processing, image compression processing, and the like on the signal generated by the image sensor SR as necessary.
  • the processed signal is recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.), or converted into an infrared signal via a cable and transmitted to another device.
  • the control unit 2 is a microcomputer and performs function control such as a photographing function and an image reproduction function, that is, control of a lens moving mechanism for focusing.
  • the control unit 2 controls the imaging device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the memory 3 stores, for example, a signal generated by the image sensor SR and processed by the signal processing unit 1.
  • the operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
  • operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
  • the display unit 5 includes a display such as a liquid crystal monitor, and displays an image using an image signal converted by the image sensor SR or image information recorded in the memory 3.
  • the imaging lens LN includes a lens block BK in which a plurality of optical elements are connected (see FIG. 13C and the like described later).
  • the lens block BK connects the lens L to at least one of the two surfaces (object-side substrate surface and image-side substrate surface) facing each other on the lens substrate LS (note that the lens L is Show positive or negative power).
  • continuous means that the substrate surface of the lens substrate LS and the lens L are in a directly adhered state, or that the substrate surface of the lens substrate LS and the lens L are in an indirectly bonded state through another member. Means.
  • the lens block unit UT in which a plurality of lens blocks BK are arranged on a plane as shown in the cross-sectional view of FIG. (The number of lens blocks BK included in the lens block unit UT may be singular or plural).
  • a curable resin is transferred onto a lens wafer in a lens shape using a mold.
  • a large number of lenses are simultaneously produced on the lens wafer.
  • a low softening point glass is formed on a glass substrate by a CVD (Chemical Vapor Deposition) method.
  • the low softening point glass film is finely processed by lithography and dry etching. Further, by heating, the low softening point glass film is melted into a lens shape. That is, in this reflow method, a large number of lenses are simultaneously produced on a glass substrate.
  • the reflow method processing for simultaneously producing a large number of lenses described here is different from the heat processing (reflow processing) described in [Problems to be Solved by the Invention].
  • the former is a process for softening the glass to produce the lens L
  • the latter is a process for softening the solder to mount an electronic component (such as the imaging device LU).
  • imaging device LU when manufacturing electronic products, such as portable terminal CU, ensuring relatively high productivity, mounting of imaging device LU to the printed circuit board contained in portable terminal CU is performed by the latter processing (reflow processing). Good. However, in this process, the imaging device LU must withstand high temperatures. The imaging device LU described below satisfies the requirement to withstand high temperatures.
  • the first lens block unit UT1 includes a first lens substrate LS1 that is a parallel flat plate whose opposing planes are parallel, a plurality of first lenses L1 that are bonded to one plane, and a plurality that are bonded to the other plane. And a second lens L2.
  • the second lens block unit UT2 includes a second lens substrate LS2 that is a parallel plate, a plurality of third lenses L3 bonded to one plane, a plurality of fourth lenses L4 bonded to the other plane, Consists of.
  • the lattice-like spacer B1 is interposed between the first lens block unit UT1 and the second lens block unit UT2 (specifically, between the first lens substrate LS1 and the second lens substrate LS2), and The distance between the lens block unit UT1 and the second lens block unit UT2 is kept constant. Further, the spacer B1 is interposed between the substrate B2 and the second lens block unit UT2, and keeps the distance between the substrate B2 and the lens block unit UT2 constant. And each lens L is located in the part of the hole of the grating
  • the substrate B2 is a plane parallel plate (corresponding to the plane parallel plate PT in FIG. 12) such as a sensor cover glass or an IR cut filter included in the image sensor SR.
  • the spacers B1 are interposed between the first lens block unit UT1 and the second lens block unit UT2 and between the second lens block unit UT2 and the substrate B2, so that the lens substrates LS (first The lens substrate LS1 and the second lens substrate LS2) are combined and integrated.
  • the imaging lens LN has been described as a two-lens configuration, but may be a single-lens configuration.
  • the first lens block unit UT1 is unnecessary, and after the second lens block unit UT2, the spacer B1, and the substrate B2 are integrated, the first lens block unit UT1 is cut along the lattice frame of the spacer B1. Imaging lens LN obtained in this way.
  • the imaging lens LN has a two-lens configuration, but it is needless to say that a single-lens configuration may be used.
  • the imaging lens LN is manufactured by separating the members in which the plurality of lens blocks BK (the first lens block BK1 and the second lens block BK2) are incorporated, the lens interval of each imaging lens LN is increased. Adjustment and assembly are not required. Therefore, more efficient mass production of the imaging lens LN is possible.
  • the spacer B1 has a lattice shape. Therefore, the spacer B1 also serves as a mark when the imaging lens LN is separated from a member in which the plurality of lens blocks BK are incorporated. Therefore, the imaging lens LN is easily separated from the member in which the plurality of lens blocks BK are incorporated, and it does not take time and effort. As a result, the imaging lens LN can be mass-produced at low cost.
  • FIG. 1 shows an imaging device (camera module) LU that covers the light receiving surface of the imaging element SR with the plane parallel plate PT (the substrate B2 in FIGS. 13B and 13C) of the imaging lens LN. . Further, as shown in FIG. 1, the imaging device LU is attached to a printed circuit board (circuit board) PRB on which paste solder is printed. Then, with the imaging device LU attached on the printed circuit board PRB, heat treatment (reflow processing) is performed, and the imaging device LU is mounted on the printed circuit board.
  • a printed circuit board circuit board
  • the first lens substrate LS1 and the second lens substrate LS2 of the imaging device LU. are formed with openings HL (HL1, HL2).
  • the opening HL1 allows the space SP1 formed by the first lens substrate LS1 and the second lens substrate LS2 to face each other to communicate with the outside without being closed. Therefore, the air in the space SP1 flows to the outside.
  • the opening HL2 allows the space SP2 formed by the second lens substrate LS2 and the plane parallel plate PT (and thus the image pickup element SR) to face each other without being closed, and communicates with the space SP1. Therefore, the air in the space SP2 flows into the space SP1, and further flows to the outside through the opening HL1.
  • the opening HL makes the pressure in the space SP (the space formed by the gap between the holding members holding the spacer B1) included in the imaging device LU the same as the external pressure.
  • the opening HL is formed easily, damage to the imaging device LU is easily prevented.
  • the opening (pressure reduction mechanism) HL is not necessarily formed in the lens substrate LS.
  • the opening HL (HL3, HL4) may be formed in a state in which a part of the spacer B1 is missing.
  • the opening HL3 allows the space SP1 to communicate with the outside. Therefore, the air in the space SP1 flows to the outside.
  • the opening HL4 allows the space SP2 to communicate with the outside. Therefore, the air in the space SP2 flows to the outside. Therefore, even if the air in the spaces SP1 and SP2 is thermally expanded by the reflow processing for the imaging device LU, the air flows to the outside. Therefore, a situation in which the lens block BK1, the lens block BK2, and the parallel flat plate PT are separated from each other by the pressure of the thermally expanded air does not occur.
  • the spacer B1 includes the opening HL, the amount of the material forming the spacer B1 is reduced, so that the imaging device LU becomes light and inexpensive.
  • a hollow cylinder (pressure reduction mechanism) MC as shown in FIG. 5 may be incorporated in the spacer B1.
  • This hollow cylinder MC not only allows the openings 11 and 13 at both ends of the cylinder to pass through, but also allows the intermediate port 12 located in the middle of the cylinder to communicate with the inside of the cylinder.
  • the hollow cylinder MC (MC1, MC2) is a perspective view of FIG. 6, FIG. 7 (A) (a cross-sectional view taken along the line BB ′ in FIG. 6 and viewed from the direction of the arrow), and FIG. As shown in FIG. 7 (B) (a cross-sectional view cut in the longitudinal direction at the CC ′ position in FIG. 6 and viewed from the direction of the arrow), it is incorporated in the spacer B1. Furthermore, the openings 11 and 13 at both ends of the hollow cylinder MC communicate with the outside, and the intermediate port 12 communicates with the space SP (SP1 and SP2).
  • the hollow cylinder MC1 causes the air in the space SP1 flowing through the intermediate port 12 to flow outside through the openings 11 and 13 at both ends.
  • the hollow cylinder MC2 allows the air in the space SP2 flowing through the intermediate port 12 to flow to the outside from the openings 11 and 13 at both ends. Therefore, in the imaging device LU incorporating such a hollow cylinder MC, the situation in which the lens block BK1, the lens block BK2, and the plane parallel plate PT are separated from each other by the pressure of air thermally expanded by the reflow process does not occur.
  • the integrated first lens block unit UT1, second lens block unit UT2, spacer B1, and substrate B2 are along the lattice frame (position of the broken line Q) of the spacer B1. If the hollow cylinder MC is included in each imaging lens LN when being cut and cut as shown in FIG. 13C, the imaging device LU including the imaging lens LN simply prevents damage due to the reflow process. .
  • the lens substrate LS1 and the spacer B1 are bonded with an adhesive or the like, the lens substrate LS1 and the spacer B1 are bonded to each other.
  • a place where the agent is not interposed can be provided, and the place where the adhesive is not interposed can be replaced with the openings HL3 and HL4 shown in FIG.
  • the imaging device LU has a lens substrate LS1, a spacer B1, a lens substrate LS2, a spacer B1, and a plane parallel plate PT coupled with an adhesive or the like.
  • the space SP1 is formed by overlapping the lens substrate LS1, the spacer B1, and the lens substrate LS2, and similarly, the space SP2 is formed by overlapping the lens substrate LS2, the spacer B1, and the plane parallel plate PT. Is done.
  • the lens substrate LS1, the spacer B1, and the lens substrate LS2 are overlapped and bonded to each other with an adhesive interposed therebetween.
  • the adhesive BD1 for bonding the spacer B1 and the lens substrate LS2 is not provided around the entire frame surface where the spacer B1 faces the lens substrate LS2.
  • the adhesive BD1 is provided on the side portion except for the corner portion of the spacer B1.
  • FIG. 8B shows a state where the state of the adhesive BD1 provided on the spacer B1 is seen through from the lower side (image sensor SR side) of FIG. 8A.
  • the adhesive BD3 is provided at the corners except for the side of the spacer B1.
  • FIG. 9B shows a state where the state of the adhesive BD3 provided on the spacer B1 is seen through from the lower side (image sensor SR side) of FIG. 9A.
  • gaps GP1 and GP3 are formed depending on the thickness of the adhesive, and air can flow between the outside and the space SP1.
  • the gaps GP2 and GP4 are formed in the portions where the adhesives BD2 and BD4 are not provided, depending on the thickness of the adhesive. Can flow.
  • the position where the gap is provided is not limited to the above position. It may be between the lens substrate LS1 and the spacer B1, or between the lens substrate LS2 and the spacer B1. Further, it is preferable that the adhesive contacting the frame surface of the spacer B1 is arranged with symmetry with respect to the optical axis of the imaging device LU. By providing symmetry, it is possible to prevent the optical axis from being inclined.
  • the adhesive that bonds the substrate LS1 and the spacer B1 is provided all around the frame surface of the spacer B1, but is omitted.
  • the gaps GP1 to GP4 in the imaging device LU for example, there is a method of applying an adhesive to the frame surface of the spacer B1 by screen printing.
  • the application area of the adhesive can be freely set within the grid-like frame surface of the spacer B1 by the mask pattern used for screen printing.
  • the adhesive to be applied is a mixture of resin and metal microspheres of the diameter specified in the adhesive material and dispersed.
  • the thickness of the adhesive can be defined by the microspheres having a defined diameter, and the gaps GP1 to GP4 can be set to desired widths.
  • the intervals between the lens substrate LS1, the lens substrate LS2, and the imaging element SR can be set. It can be set with high accuracy together with the thickness of the spacer B1.
  • the size of the microspheres to be mixed and dispersed in the adhesive material is preferably 5 ⁇ m to 50 ⁇ m, and more preferably 10 ⁇ m to 30 ⁇ m in consideration of the ease of adhesive application, air flow, and dust and the like.
  • the means for adjusting the thickness of the adhesive is not limited to the above-described mixing / dispersing of microspheres, and a clearance jig may be used.
  • the area of the opening surface in the opening HL, the area of the radial cross section in the hollow cylinder MC, and the opening area of the gap GP are desirably 2500 ⁇ m 2 or less. This is because dust cannot easily enter the inside of the imaging device LU.
  • the opening HL formed in the lens substrate LS, the opening HL formed in the spacer B1, the hollow cylinder MC incorporated in the spacer B1, and the gap GP by the adhesive is included in the imaging device LU. If so, the internal pressure will not increase to such an extent that the imaging device LU is damaged.
  • the imaging device LU may include an opening HL formed in the lens substrate LS and an opening HL formed in the spacer B1, or built in the opening HL and spacer B1 formed in the lens substrate LS.
  • the hollow cylinder MC may be included.
  • the imaging device LU may include an opening HL formed in the spacer B1 and a hollow cylinder MC built in the spacer B1, or may have a gap GP by an adhesive.
  • the number of the opening HL, the hollow cylinder MC, and the gap GP for one space may be singular or plural.
  • the number and combination of the opening HL, the hollow cylinder MC and the gap GP (combination of the same kind of opening HL, combination of different kinds of opening HL, The combination of the opening HL, the hollow cylinder MC, and the gap GP is not particularly limited.
  • Embodiment 2 A second embodiment will be described.
  • symbol is attached and the description is abbreviate
  • a member (adjustment member) that is a more preferable embodiment and prevents dust from entering the imaging device LU will be described.
  • a valve (adjustment member, isolation member) VE that separates the space SP1 may be included in the imaging device LU.
  • a thin-film valve VE may be formed so as to close the passage port 15 on the outside of the opening HL3.
  • Such a valve VE closes the passage opening 15 on the outside of the opening HL3 and separates the space SP from the outside when the pressure of the space SP1 at room temperature or the like is not too high than the external pressure. Therefore, it is difficult for dust to enter the space SP1 (as a result, inside the imaging device LU).
  • the valve VE is placed on the outside of the opening HL as shown in FIG. 10B (see the valve VE indicated by a dotted line). Open the passage opening 15 without blocking it. Then, the thermally expanded air in the space SP1 flows to the outside.
  • valve VE moves (opens and closes) in accordance with the pressure difference between the space SP and the outside that is generated by the thermal expansion of air, and adjusts the degree of communication between the space SP and the outside. Therefore, the valve VE does not prevent the damage of the imaging device LU when the imaging device LU is subjected to reflow processing.
  • the valve VE prevents dust from entering the imaging device LU when the imaging device LU is at room temperature or the like. The valve VE closes the opening HL again after the reflow process. Therefore, dust does not enter the imaging device LU after the reflow process.
  • valve VE there is a member that moves (opens and closes) according to the pressure difference between the space SP and the outside, and adjusts the degree of communication between the space SP and the outside.
  • piston PN adjustment member, isolation member shown in the cross-sectional views of FIGS. 11 (A) to 11 (C).
  • the piston PN includes a rod-shaped main body 23 that fits in the opening HL3 in the spacer B1, and flanges 24N and 24T formed at both ends of the body 23 (note that the flanges 24N and 24T are formed in the opening HL3).
  • the outer side passage port 15 and the space side passage port 16 are closed).
  • the piston PN is directed outward along the longitudinal direction of the main body 23 (along the longitudinal direction of the opening HL3) or toward the space SP1.
  • the outer flange (isolation member) 24T in the piston PN blocks the passage opening 15 on the outer side of the opening HL3.
  • the imaging device LU is reflowed in a state where the flange 24T closes the opening HL3 as described above and the air in the space SP1 is thermally expanded, the air pushes the flange 24N on the space SP1 side in the piston PN.
  • such a piston PN does not impair prevention of damage to the imaging device LU when the imaging device LU is subjected to reflow processing, while the imaging device LU is at room temperature or the like. Intrusion of dust into the imaging device LU is prevented.
  • valve VE and the piston PN can be said to be members that separate the space SP from the outside by sealing the opening HL after reducing the pressure increase in the space SP.
  • the opening HL may be sealed with a separate member instead of the valve VE and the piston PN.
  • the piston PN can be moved to the outside and the space SP side, the user may appropriately move the piston PN to seal the opening HL.
  • valve VE and the piston PN correspond to the opening HL, but may correspond to the hollow cylinder MC.
  • the valve VE may open and close the openings 11 and 13 at both ends of the hollow cylinder MC.
  • the piston PN may pass through the main body 23 through the hollow portion of the hollow cylinder MC, be provided in the openings 11 and 13 at both ends, and open and close the openings 11 and 13 at both ends of the hollow cylinder MC with the flange pieces 24N and 24T. .
  • the opening HL formed in the lens substrate LS may be positioned outside the effective diameter of the lens substrate LS (and thus the lens block BK).
  • the optical performance of the imaging lens LN is unlikely to deteriorate due to the opening HL. Therefore, the opening HL is easily formed.
  • the manufacturing burden of the imaging device LU is reduced, and as a result, the cost of the imaging device LU is reduced.
  • the spacer B1 is basically located outside the effective diameter of the lens substrate LS. Therefore, the imaging device LU including the opening HL formed in the spacer B1 and the hollow cylinder MC included in the spacer B1 is easily manufactured and the cost is reduced.
  • the opening HL formed in the lens substrate LS is positioned on the lens substrate LS closest to the object side.
  • adhesion of dust to the image sensor SR is further reduced.
  • the dust is relatively far from the image plane (the light receiving surface of the imaging element SR) and adheres to a location where the luminous flux spreads. . Therefore, the influence of dust on the imaging performance of the imaging device LU is small.
  • the effective diameter of the optical element for example, the first lens block BK1 located closest to the object side is relatively small. Therefore, a sufficient space for forming the opening HL is secured (the opening HL is easily formed).
  • the space SP is formed by the space SP1 formed by the lens substrates (LS1, LS2), the parallel flat plate PT which is the cover member of the image sensor SR, and the second lens substrate LS2.
  • the space SP2 was mentioned. However, it is not limited to this. For example, if the plane parallel plate PT does not exist, the space SP formed by the second lens substrate LS2 and the imaging element SR may be used.
  • a spacer B1 is arranged on the periphery of the lens block BK, and a plurality of lens block units UT are connected via the spacer B1, and a connected lens block unit UT is connected along the spacer B1.
  • a cutting process for cutting see FIGS. 13A to 13C).
  • the imaging device LU was completed by attaching the imaging lens LN manufactured with this manufacturing method so that the light-receiving surface of the image pick-up element SR may be covered.
  • the manufacturing method of the imaging device LU is not limited to this.
  • the imaging device LU may be manufactured by a manufacturing method including the following first connection step, second connection step, and cutting step.
  • the spacer B1 is arranged on the periphery of the lens block BK, and the plurality of lens block units UT are connected with the spacer B1 interposed.
  • the lens block unit UT in which spacers are arranged on the periphery of the lens block BK and the image sensor SR (however, when the parallel plane plate PT is attached to the light receiving surface of the image sensor SR, the parallel plane plate PT and the image sensor SR). ) With a spacer B1 interposed.
  • the lens block unit UT and the image sensor SR that are connected to each other are cut along the spacer B1.
  • the manufacturing method of the imaging device LU as described above the labor for attaching the imaging lens LN and the imaging element SR is reduced, and the imaging device LU is manufactured in large quantities at a lower cost.

Abstract

Provided is an imaging device durable to reflow process. The imaging device is provided with a lens block having a lens continuous to a lens substrate and to at least a lens substrate surface on the side of an object or to the lens substrate surface on the side of an image; an imaging element; and a first spacer between the lens block and the imaging element. The imaging device is also provided with a first pressure reducing mechanism for passing through air between the lens block, which sandwiches the first spacer, and the imaging element and between a space formed by the first spacer and the external.

Description

撮像装置、携帯端末、撮像装置の製造方法、および携帯端末の製造方法Imaging device, portable terminal, manufacturing method of imaging device, and manufacturing method of portable terminal
 本発明は、撮像装置、携帯端末、撮像装置の製造方法、および携帯端末の製造方法である。 The present invention is an imaging device, a portable terminal, a manufacturing method of the imaging device, and a manufacturing method of the portable terminal.
 昨今、コンパクトで薄型の撮像装置が、コンパクトで薄型の電子機器である携帯端末{例えば、携帯電話機やPDA(Personal Digital Assistant)等}に搭載される。そして、このような携帯端末と、例えば遠隔地の電子機器との間では、音声情報および画像情報等の情報が双方向で伝送される。 Recently, a compact and thin imaging device is mounted on a portable terminal (for example, a mobile phone or a PDA (Personal Digital Assistant)) which is a compact and thin electronic device. Information such as audio information and image information is transmitted bidirectionally between such a portable terminal and, for example, a remote electronic device.
 携帯端末等の撮像装置に使用される撮像素子としては、例えば、CCD(Charge Coupled Device)型イメージセンサおよびCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子が挙げられる。そして、昨今では、これらの撮像素子上に被写体像を形成する撮像レンズとして、安価に大量生産できる樹脂製レンズが、低コスト化のために用いられる。また、樹脂でレンズが形成される場合、簡易かつ高精度に加工でき、例えば、所望の非球面を有するレンズが簡易に製造される。そのため、高性能な撮像レンズの場合、このような樹脂製レンズが特に用いられてきた。 Examples of the imaging device used in an imaging device such as a portable terminal include solid-state imaging devices such as a CCD (Charge Coupled Device) type image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor. In recent years, resin lenses that can be mass-produced inexpensively are used as imaging lenses that form subject images on these imaging elements in order to reduce costs. In addition, when the lens is formed of resin, it can be processed easily and with high accuracy. For example, a lens having a desired aspheric surface is easily manufactured. Therefore, in the case of a high-performance imaging lens, such a resin lens has been particularly used.
 一般的には、樹脂製レンズのみを含む光学系を採用した撮像レンズ、および、樹脂製レンズとガラス製レンズとを含む光学系を採用した撮像レンズが知られている。しかしながら、これらの撮像レンズに対するさらなる超コンパクト化と高い生産性とは、技術的な限界から両立しにくい。 Generally, an imaging lens employing an optical system including only a resin lens, and an imaging lens employing an optical system including a resin lens and a glass lens are known. However, it is difficult to achieve both ultra-compact and high productivity for these imaging lenses due to technical limitations.
 このような問題点を克服する一対策として、レプリカ法(replica method)が特許文献1に挙げられる。レプリカ法とは、1つのレンズ基板(ウェハ)に多数のレンズ(レンズ要素)を同時に形成する方法である。さらに、この方法で形成されるレンズを複数並べて含むレンズ基板(レンズブロックユニット)は、スペーサを介してウェハ状の撮像素子(センサウェハ)につなげられた後に分割される(なお、スペーサを介在させる空間は、密閉度合いが非常に高い)。 As a countermeasure for overcoming such problems, the replica method is cited in Patent Document 1. The replica method is a method in which a large number of lenses (lens elements) are simultaneously formed on one lens substrate (wafer). Further, a lens substrate (lens block unit) including a plurality of lenses formed by this method is divided after being connected to a wafer-like imaging device (sensor wafer) via a spacer (a space in which the spacer is interposed). Has a very high degree of sealing).
 このようにして、レンズブロックユニットが分割された状態のレンズブロックであって、撮像素子につながる1つ、又は複数のレンズブロックで構成される撮像レンズはウェハスケールレンズと呼ばれるとともに、このウェハスケールレンズと撮像素子とを含むモジュールはウェハスケールカメラモジュール(略してカメラモジュールとも称する。)と呼ばれる。 In this way, the lens block in a state where the lens block unit is divided, and the imaging lens including one or a plurality of lens blocks connected to the imaging device is referred to as a wafer scale lens. The module including the image pickup device is called a wafer scale camera module (also referred to as a camera module for short).
 そして、特許文献1は、レプリカ法で形成されたウェハスケールレンズ(レンズ基板の少なくとも1つの基板面にレンズが連なる光学要素)を含む撮像レンズを開示する。また、特許文献2も、特許文献1同様に、ウェハスケールレンズを含む撮像レンズを開示する。
特開2006-323365号公報 特許第3929479号公報
Patent Document 1 discloses an imaging lens including a wafer scale lens (an optical element having a lens connected to at least one substrate surface of a lens substrate) formed by a replica method. Similarly to Patent Document 1, Patent Document 2 discloses an imaging lens including a wafer scale lens.
JP 2006-323365 A Japanese Patent No. 3929479
 ところで、このような撮像レンズと撮像素子とを含む撮像装置(カメラモジュール)は、ペースト状のハンダを印刷されたプリント基板に取り付けられた後、加熱処理(リフロー処理)されることで、そのプリント基板に実装される。特に、このような実装はオートメーションで行われる。 By the way, an image pickup apparatus (camera module) including such an image pickup lens and an image pickup device is attached to a printed circuit board on which paste-like solder is printed, and then subjected to a heat treatment (reflow treatment), thereby printing the print device. Mounted on the board. In particular, such implementation is done by automation.
 そして、このような実装過程におけるリフロー処理では、撮像レンズは、300℃近く(250~280℃程度)の環境下に置かれる。すると、スペーサを介して密閉されているレンズブロック間の空気、およびレンズブロックと撮像素子との間の空気は膨張する。このような空気膨張が過剰に起きてしまうと、例えばレンズブロック同士が乖離し、撮像レンズが破損しかねない。 In the reflow process in such a mounting process, the imaging lens is placed in an environment near 300 ° C. (about 250 to 280 ° C.). Then, the air between the lens blocks sealed via the spacer and the air between the lens block and the image sensor expand. If such air expansion occurs excessively, for example, the lens blocks may be separated from each other, and the imaging lens may be damaged.
 本発明は、前述の状況を鑑みてなされたものである。そして、本発明の目的は、リフロー処理における加熱に耐え得る撮像装置等を提供することにある。 The present invention has been made in view of the above situation. And the objective of this invention is providing the imaging device etc. which can endure the heating in a reflow process.
 上記の課題は、以下の構成により解決される。 The above problem is solved by the following configuration.
 1. レンズ基板並びに前記レンズ基板の物体側基板面および像側基板面の少なくとも一方の基板面に連なるレンズを有するレンズブロックと、撮像素子と、前記レンズブロックおよび前記撮像素子の間に介する第1スペーサとを含む撮像装置にあって、
 前記第1スペーサを挟む前記レンズブロック及び前記撮像素子並びに該第1スペーサで形成される空間と外部との間で空気を通すための第1圧力低減機構を備えていることを特徴とする撮像装置。
1. A lens block, a lens block having a lens connected to at least one of the object-side substrate surface and the image-side substrate surface of the lens substrate, an imaging element, and a first spacer interposed between the lens block and the imaging element; In an imaging apparatus including
An image pickup apparatus comprising: the lens block sandwiching the first spacer; the image pickup device; and a first pressure reduction mechanism for allowing air to pass between a space formed by the first spacer and the outside. .
 2. 前記撮像装置は、
 複数の前記レンズブロックと、
 前記レンズブロック同士の間に介する第2スペーサと、を有し、
 前記第2スペーサを挟む前記レンズブロックと該第2スペーサとで形成される空間と外部との間で空気を通すための第2圧力低減機構を備えていることを特徴とする1に記載の撮像装置。
2. The imaging device
A plurality of the lens blocks;
A second spacer interposed between the lens blocks,
2. The imaging according to 1, further comprising a second pressure reduction mechanism for allowing air to pass between a space formed by the lens block sandwiching the second spacer and the second spacer and the outside. apparatus.
 3. 前記第1圧力低減機構は、前記レンズ基板に形成されている開孔であることを特徴とする1又は2に記載の撮像装置。 3. The imaging apparatus according to 1 or 2, wherein the first pressure reduction mechanism is an opening formed in the lens substrate.
 4. 前記第2圧力低減機構は、前記レンズ基板に形成されている開孔であることを特徴とする2に記載の撮像装置。 4. 2. The imaging apparatus according to 2, wherein the second pressure reduction mechanism is an opening formed in the lens substrate.
 5. 前記第1圧力低減機構は、前記第1スペーサに形成されている開孔であることを特徴とする1又は2に記載の撮像装置。 5. The imaging apparatus according to 1 or 2, wherein the first pressure reduction mechanism is an opening formed in the first spacer.
 6. 前記第2圧力低減機構は、前記第2スペーサに形成されている開孔であることを特徴とする2に記載の撮像装置。 6. 2. The imaging apparatus according to 2, wherein the second pressure reduction mechanism is an opening formed in the second spacer.
 7. 前記第1スペーサと前記レンズ基板との間及び前記第1スペーサと前記撮像素子との間のそれぞれに接着剤を有し、
 前記第1圧力低減機構は、
 前記第1スペーサと前記レンズ基板との間、前記第1スペーサと前記撮像素子との間の少なくとも一方の前記接着剤が、前記空間と外部とが通じるように、不連続に設けられて形成された隙間による開孔であることを特徴とする1又は2に記載の撮像装置。
7). Having an adhesive between each of the first spacer and the lens substrate and between the first spacer and the imaging device;
The first pressure reduction mechanism includes:
At least one of the adhesive between the first spacer and the lens substrate and between the first spacer and the imaging element is formed discontinuously so that the space communicates with the outside. 3. The imaging device according to 1 or 2, wherein the imaging device is an opening by a gap.
 8. 前記第2スペーサと前記レンズ基板との間に接着剤を有し、
 前記第2圧力低減機構は、
 前記第2スペーサと前記レンズ基板との間の前記接着剤が、前記空間と外部とが通じるように、不連続に設けられて形成された隙間による開孔であることを特徴とする2に記載の撮像装置。
8). Having an adhesive between the second spacer and the lens substrate;
The second pressure reduction mechanism includes:
3. The adhesive according to claim 2, wherein the adhesive between the second spacer and the lens substrate is an opening formed by a gap formed discontinuously so that the space communicates with the outside. Imaging device.
 9. 前記第1圧力低減機構は、外部と前記空間とを連通する中空筒であることを特徴とする1又は2に記載の撮像装置。 9. The imaging apparatus according to 1 or 2, wherein the first pressure reduction mechanism is a hollow cylinder that communicates the outside with the space.
 10. 前記第2圧力低減機構は、前記第2スペーサを挟む前記レンズブロックと該第2スペーサとで形成される空間と外部とを連通する中空筒であることを特徴とする2に記載の撮像装置。 10. 3. The imaging apparatus according to 2, wherein the second pressure reduction mechanism is a hollow cylinder that communicates a space formed by the lens block sandwiching the second spacer and the second spacer and the outside.
 11. 前記開孔における開孔面の面積が、2500μm2以下であることを特徴とする3から8の何れか1項に記載の撮像装置。 11. The imaging device according to any one of 3 to 8, wherein an area of an aperture surface in the aperture is 2500 μm 2 or less.
 12. 前記中空筒における径方向の断面の面積が、2500μm2以下であることを特徴とする9又は10に記載の撮像装置。 12 The imaging apparatus according to 9 or 10, wherein an area of a cross section in a radial direction of the hollow cylinder is 2500 µm 2 or less.
 13. 前記空間と外部との連通度合いを調整する調整部材が含まれることを特徴とする1から12の何れか1項に記載の撮像装置。 13. The imaging apparatus according to any one of 1 to 12, further comprising an adjustment member that adjusts a degree of communication between the space and the outside.
 14. 前記調整部材は、外部と前記空間との圧力差によって可動する弁であることを特徴とする13に記載の撮像装置。 14. 14. The imaging apparatus according to 13, wherein the adjustment member is a valve that is movable by a pressure difference between the outside and the space.
 15. 前記調整部材は、外部と前記空間との圧力差によって可動するピストンであることを特徴とする13に記載の撮像装置。 15. 14. The imaging apparatus according to 13, wherein the adjustment member is a piston that is movable by a pressure difference between the outside and the space.
 16. 外部と前記空間とを隔てる隔離部材が含まれることを特徴とする1から13の何れか1項に記載の撮像装置。 16. 14. The imaging apparatus according to any one of 1 to 13, further comprising an isolation member that separates the outside from the space.
 17. 前記弁は、外部と前記空間とを隔てる隔離部材を兼ねることを特徴とする14に記載の撮像装置。 17. 15. The imaging apparatus according to 14, wherein the valve also serves as an isolation member that separates the space from the outside.
 18. 前記ピストンは、外部と前記空間とを隔てる隔離部材を兼ねることを特徴とする15に記載の撮像装置。 18. 16. The imaging apparatus according to 15, wherein the piston also serves as an isolation member that separates the space from the outside.
 19. 前記第1圧力低減機構は、前記レンズ基板の有効径外に位置することを特徴とする1又は2に記載の撮像装置。 19. The imaging apparatus according to 1 or 2, wherein the first pressure reduction mechanism is located outside the effective diameter of the lens substrate.
 20. 前記第2圧力低減機構は、前記レンズ基板の有効径外に位置することを特徴とする2に記載の撮像装置。 20. 3. The imaging apparatus according to 2, wherein the second pressure reduction mechanism is located outside the effective diameter of the lens substrate.
 21. 1から20の何れか1項に記載の撮像装置の製造方法にあって、
 少なくとも1つ以上の前記レンズブロックを平面に並べて含むレンズブロックユニットと前記撮像素子とを、前記第1スペーサを介在させて結合する連結工程と、
 結合された前記レンズブロックユニットと前記撮像素子とを、前記第1スペーサに沿って切断する切断工程と、を含むことを特徴とする撮像装置の製造方法。
21. In the manufacturing method of the imaging device according to any one of 1 to 20,
A coupling step of coupling a lens block unit including at least one or more of the lens blocks in a plane and the imaging element with the first spacer interposed therebetween;
And a cutting step of cutting the combined lens block unit and the image sensor along the first spacer.
 22. 1から20の何れか1項に記載の撮像装置を含むことを特徴とする携帯端末。 22. A portable terminal comprising the imaging device according to any one of 1 to 20.
 23. 22に記載の携帯端末の製造方法にあって、
 ペースト状のハンダが印刷されたプリント基板に前記撮像装置を配置する工程と、
 前記撮像装置が配置された前記プリント基板を該撮像装置と共にリフロー処理により加熱する工程と、を有することを特徴とする携帯端末の製造方法。
23. 22. The method of manufacturing a mobile terminal according to 22,
Placing the imaging device on a printed circuit board on which paste-like solder is printed;
Heating the printed circuit board on which the image pickup device is arranged together with the image pickup device by reflow processing.
 本発明によれば、第1圧力低減機構によって、第1スペーサを挟む前記レンズブロック及び撮像素子並びに該第1スペーサとで形成される空間と外部との間で空気を通すため、空間と外部との圧力差が無くなる。そのため、加熱により空間内の圧力が外部より高くなって、撮像装置が破損する事態は起きない。 According to the present invention, the first pressure reduction mechanism allows air to pass between the lens block and the imaging device sandwiching the first spacer and the space formed by the first spacer and the outside, so that the space and the outside The pressure difference is eliminated. Therefore, a situation in which the pressure in the space becomes higher than the outside due to heating and the imaging apparatus is damaged does not occur.
プリント基板に結合されている撮像装置の一例の斜視図である。It is a perspective view of an example of an imaging device couple | bonded with the printed circuit board. 図1でのA-A’位置における縦断面図である。FIG. 2 is a longitudinal sectional view at the position A-A ′ in FIG. 1. プリント基板に結合されている撮像装置の一例の斜視図である。It is a perspective view of an example of an imaging device couple | bonded with the printed circuit board. 図3における撮像装置の第1レンズブロック等を省略した斜視図である。FIG. 4 is a perspective view in which a first lens block and the like of the imaging device in FIG. 3 are omitted. 中空筒の斜視図である。It is a perspective view of a hollow cylinder. プリント基板に結合されている撮像装置の一例の斜視図である。It is a perspective view of an example of an imaging device couple | bonded with the printed circuit board. (A)図6でのB-B’位置における縦断面図である。(B)図6でのC-C’位置における縦断面図である。(A) It is a longitudinal cross-sectional view in the B-B 'position in FIG. FIG. 7B is a longitudinal sectional view taken along the line C-C ′ in FIG. (A)プリント基板に結合されている撮像装置の一例の斜視図である。(B)スペーサに設けてある接着剤の状態を示す図である。(A) It is a perspective view of an example of the imaging device couple | bonded with the printed circuit board. (B) It is a figure which shows the state of the adhesive agent provided in the spacer. (A)プリント基板に結合されている撮像装置の一例の斜視図である。(B)スペーサに設けてある接着剤の状態を示す図である。(A) It is a perspective view of an example of the imaging device couple | bonded with the printed circuit board. (B) It is a figure which shows the state of the adhesive agent provided in the spacer. A)プリント基板に結合されている撮像装置の一例の斜視図である。(B)図10(A)でのD-D’位置における横断面図である。A) A perspective view of an example of an imaging device coupled to a printed circuit board. FIG. 10B is a cross-sectional view taken along the line D-D ′ in FIG. (A)常温等の下での撮像装置にて、ピストンが開孔を塞いでいる状態を示す断面図である。(B)ピストンが外部と空間とをつないでいる状態を示す断面図である。(C)リフロー処理後での撮像装置にて、ピストンが開孔を塞いでいる状態を示す断面図である。(A) It is sectional drawing which shows the state in which the piston has block | closed the opening in the imaging device under normal temperature etc. FIG. (B) It is sectional drawing which shows the state which the piston has connected the exterior and space. (C) It is sectional drawing which shows the state which the piston has block | closed the opening in the imaging device after a reflow process. 携帯端末のブロック図である。It is a block diagram of a portable terminal. (A)レンズブロックユニットの断面図である。(B)撮像レンズの製造途中の状態を示す断面図である。(C)撮像レンズの断面図である。(A) It is sectional drawing of a lens block unit. (B) It is sectional drawing which shows the state in the middle of manufacture of an imaging lens. (C) It is sectional drawing of an imaging lens.
符号の説明Explanation of symbols
 BK レンズブロック
 UT レンズブロックユニット
 PRB プリント基板
 L、L1~L4 レンズ
 LS、LS1、LS2 レンズ基板
 PT 平行平面板(カバー部材)
 B1 スペーサ
 B2 基板(カバー部材)
 BD1~BD4 接着剤
 GP1~GP4 隙間
 HL1~HL4 開孔(圧力低減機構)
 15 外部側の通路口
 16 空間側の通路口
 MC、MC1、MC2 中空筒(圧力低減機構)
 11、13 開口
 12 中間口
 SP1、SP2 空間
 VE 弁(調整部材、隔離部材)
 PN ピストン(調整部材、隔離部材)
 23 本体
 24N、24T 鍔片
 LN 撮像レンズ
 SR 撮像素子
 IM 光学像(像面)
 SS 受光面
 AX 光軸
 LU 撮像装置
 CU 携帯端末
 1 信号処理部
 2 制御部
 3 メモリ
 4 操作部
 5 表示部
BK Lens block UT Lens block unit PRB Printed board L, L1 to L4 Lens LS, LS1, LS2 Lens board PT Parallel flat plate (cover member)
B1 Spacer B2 Substrate (cover member)
BD1 to BD4 Adhesive GP1 to GP4 Gap HL1 to HL4 Opening (pressure reduction mechanism)
15 Passage port on the outside 16 Passage port on the space side MC, MC1, MC2 Hollow cylinder (pressure reduction mechanism)
11, 13 opening 12 intermediate port SP1, SP2 space VE valve (adjusting member, isolation member)
PN piston (adjustment member, isolation member)
23 Main body 24N, 24T Specimen LN Imaging lens SR Imaging element IM Optical image (image plane)
SS light receiving surface AX optical axis LU imaging device CU portable terminal 1 signal processing unit 2 control unit 3 memory 4 operation unit 5 display unit
 [実施の形態1]
 実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、便宜上、ハッチング、部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。
[Embodiment 1]
The following describes one embodiment with reference to the drawings. For convenience, hatching, member codes, and the like may be omitted. In such a case, other drawings are referred to.
 [撮像装置および携帯端末について]
 通常、撮像レンズは、画像入力機能付きデジタル機器(例えば携帯端末)への使用に適する。なぜなら、撮像レンズと撮像素子等とを組み合わせて含むデジタル機器は、被写体の映像を光学的に取り込んで電気的な信号として出力する撮像装置になるためである。
[Imaging device and portable terminal]
In general, the imaging lens is suitable for use in a digital device with an image input function (for example, a portable terminal). This is because a digital device including a combination of an imaging lens and an imaging element is an imaging device that optically captures an image of a subject and outputs it as an electrical signal.
 撮像装置は、被写体の静止画および動画を撮影するカメラの主たる構成要素(光学装置)であり、例えば、物体(すなわち被写体)側から順に、物体の光学像を形成する撮像レンズと、その撮像レンズにより形成された光学像を電気的な信号に変換する撮像素子と、を含む。 The imaging device is a main component (optical device) of a camera that captures still images and moving images of a subject. For example, an imaging lens that forms an optical image of an object in order from the object (that is, subject) side, and the imaging lens And an image sensor that converts the optical image formed by the method into an electrical signal.
 カメラの例としては、デジタルカメラ、ビデオカメラ、監視カメラ、車載カメラ、およびテレビ電話用カメラ等が挙げられる。また、カメラは、パーソナルコンピュータ、携帯端末(例えば、携帯電話、モバイルコンピュータ等のコンパクトで携帯可能な情報機器端末)、これらの周辺機器(スキャナー、プリンター等)、および、その他のデジタル機器等に内蔵または外付けされてもよい。 Examples of cameras include digital cameras, video cameras, surveillance cameras, in-vehicle cameras, and videophone cameras. Cameras are built into personal computers, mobile terminals (for example, compact and portable information device terminals such as mobile phones and mobile computers), peripheral devices (scanners, printers, etc.), and other digital devices. Or it may be externally attached.
 これらの例からわかるように、撮像装置を搭載することでカメラが構成されるだけでなく、撮像装置を搭載することでカメラ機能を有する各種機器が構成される。例えば、カメラ付き携帯電話等の画像入力機能付きデジタル機器が構成される。 As can be seen from these examples, not only a camera is configured by mounting an imaging apparatus, but also various devices having a camera function are configured by mounting the imaging apparatus. For example, a digital device with an image input function such as a mobile phone with a camera is configured.
 図12は、画像入力機能付きデジタル機器の一例である携帯端末CUのブロック図である。この図での携帯端末CUに搭載されている撮像装置LUは、撮像レンズLN、平行平面板PT、および撮像素子SRを含む。 FIG. 12 is a block diagram of a mobile terminal CU that is an example of a digital device with an image input function. The imaging device LU mounted on the portable terminal CU in this figure includes an imaging lens LN, a plane parallel plate PT, and an imaging element SR.
 撮像レンズLNは、物体の光学像IMを形成する。詳説すると、撮像レンズLNは、例えばレンズブロックBK(詳細は後述)を含み、撮像素子SRの受光面SS上に光学像IMを形成する。尚、符号IMは、光学像が形成される面である像面を示す場合がある。 The imaging lens LN forms an optical image IM of the object. Specifically, the imaging lens LN includes, for example, a lens block BK (details will be described later), and forms an optical image IM on the light receiving surface SS of the imaging element SR. Note that the symbol IM may indicate an image plane on which an optical image is formed.
 なお、撮像レンズLNで形成されるべき光学像IMは、例えば、撮像素子SRの画素ピッチにより決定される所定の遮断周波数特性を有する光学的ローパスフィルター(図12で示す平行平面板PTに該当する。)を通過する。この通過により、電気的な信号に変換される場合に発生するいわゆる折り返しノイズが最小化されるように、空間周波数特性が調整される。 The optical image IM to be formed by the imaging lens LN corresponds to, for example, an optical low-pass filter (a parallel flat plate PT shown in FIG. 12) having a predetermined cutoff frequency characteristic determined by the pixel pitch of the imaging element SR. .) By this passage, the spatial frequency characteristics are adjusted so that so-called aliasing noise that occurs when converted into an electrical signal is minimized.
 そして、この空間周波数特性の調整により、色モアレの発生が抑えられる。ただし、解像限界周波数周辺の性能が抑えられれば、光学的ローパスフィルターを用いなくても、ノイズが発生しない。また、ノイズのあまり目立たない表示系(例えば、携帯電話の液晶画面等)を用いて、ユーザーが撮影や鑑賞を行う場合、光学的ローパスフィルターは不要である。 And, by adjusting this spatial frequency characteristic, generation of color moire can be suppressed. However, if the performance around the resolution limit frequency is suppressed, no noise is generated even if an optical low-pass filter is not used. Further, when a user performs shooting or viewing using a display system (for example, a liquid crystal screen of a mobile phone) that is not very noticeable, an optical low-pass filter is not necessary.
 平行平面板PTは、例えば、必要に応じて配置される光学的ローパスフィルター、赤外カットフィルタ等の光学フィルタである(なお、平行平面板PTは、撮像素子SRのカバーガラス等に相当することもある)。 The plane parallel plate PT is, for example, an optical filter such as an optical low-pass filter or an infrared cut filter disposed as necessary (the plane parallel plate PT corresponds to a cover glass or the like of the image sensor SR). There is also.)
 撮像素子SRは、撮像レンズLNにより受光面SS上に形成された光学像IMを電気的な信号に変換する。例えば、複数の画素を有するCCD(Charge Coupled Device)型イメージセンサおよびCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサが撮像素子(固体撮像素子)SRとして挙げられる。なお、撮像レンズLNは、撮像素子SRの受光面SS上に被写体の光学像IMを形成させるように位置する。そのため、撮像レンズLNによって形成された光学像IMは、撮像素子SRによって電気的な信号に効率よく変換される。 The imaging element SR converts the optical image IM formed on the light receiving surface SS by the imaging lens LN into an electrical signal. For example, a CCD (Charge Coupled Device) type image sensor having a plurality of pixels and a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor can be cited as the imaging element (solid imaging element) SR. The imaging lens LN is positioned so as to form an optical image IM of the subject on the light receiving surface SS of the imaging element SR. Therefore, the optical image IM formed by the imaging lens LN is efficiently converted into an electrical signal by the imaging element SR.
 なお、このような撮像装置LUが画像入力機能付きの携帯端末CUに搭載される場合、通常、携帯端末CUのボディ内部に撮像装置LUが配置される。ただし、携帯端末CUがカメラ機能を発揮する場合には、撮像装置LUが必要に応じた形態になる。例えば、ユニット化した撮像装置LUが、携帯端末CUの本体に対して着脱自在または回動自在になっていてもよい。 In addition, when such an imaging device LU is mounted on a portable terminal CU with an image input function, the imaging device LU is usually arranged inside the body of the portable terminal CU. However, when the mobile terminal CU exhibits the camera function, the imaging device LU takes a form as necessary. For example, the unitized imaging device LU may be detachable or rotatable with respect to the main body of the mobile terminal CU.
 ところで、携帯端末CUは、撮像装置LUの他に、信号処理部1、制御部2、メモリ3、操作部4、および表示部5を含む。 Incidentally, the mobile terminal CU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, and a display unit 5 in addition to the imaging device LU.
 信号処理部1は、撮像素子SRで生成された信号に対して、所定のデジタル画像処理および画像圧縮処理等を必要に応じて施す。そして、処理の施された信号は、デジタル映像信号としてメモリ3(半導体メモリ、光ディスク等)に記録されたり、ケーブルを介して赤外線信号に変換され、他の機器に伝送されたりする。 The signal processing unit 1 performs predetermined digital image processing, image compression processing, and the like on the signal generated by the image sensor SR as necessary. The processed signal is recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.), or converted into an infrared signal via a cable and transmitted to another device.
 制御部2は、マイクロコンピュータであり、撮影機能、画像再生機能等の機能制御、すなわち、フォーカシングのためのレンズ移動機構の制御等を集中的に行う。例えば、制御部2は、被写体の静止画撮影および動画撮影のうちの少なくとも一方を行うように、撮像装置LUを制御する。 The control unit 2 is a microcomputer and performs function control such as a photographing function and an image reproduction function, that is, control of a lens moving mechanism for focusing. For example, the control unit 2 controls the imaging device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
 メモリ3は、例えば、撮像素子SRで生成されるとともに信号処理部1にて処理された信号を記憶する。 The memory 3 stores, for example, a signal generated by the image sensor SR and processed by the signal processing unit 1.
 操作部4は、操作ボタン(例えばレリーズボタン)、操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者の操作入力した情報を制御部2に伝達する。 The operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
 表示部5は、液晶モニター等のディスプレイを含む部分であり、撮像素子SRによって変換された画像信号またはメモリ3に記録されている画像情報を用いて画像表示を行う。 The display unit 5 includes a display such as a liquid crystal monitor, and displays an image using an image signal converted by the image sensor SR or image information recorded in the memory 3.
 [撮像レンズについて]
 ここで、撮像レンズLNについて詳説する。撮像レンズLNは、複数の光学要素を連ねたレンズブロックBKを含む(後述の図13C等参照)。そして、このレンズブロックBKは、例えば、レンズ基板LSにて対向する2面(物体側基板面および像側基板面)のうちの少なくとも一方の基板面にレンズLを連ねる(なお、このレンズLは正パワーまたは負パワーを発揮する)。
[About imaging lens]
Here, the imaging lens LN will be described in detail. The imaging lens LN includes a lens block BK in which a plurality of optical elements are connected (see FIG. 13C and the like described later). The lens block BK, for example, connects the lens L to at least one of the two surfaces (object-side substrate surface and image-side substrate surface) facing each other on the lens substrate LS (note that the lens L is Show positive or negative power).
 なお、“連なる”とは、レンズ基板LSの基板面とレンズLとが直接接着状態にあること、または、レンズ基板LSの基板面とレンズLとが別部材を介しながら間接接着状態にあることを意味する。 Note that “continuous” means that the substrate surface of the lens substrate LS and the lens L are in a directly adhered state, or that the substrate surface of the lens substrate LS and the lens L are in an indirectly bonded state through another member. Means.
 [撮像レンズの製造方法について]
 ところで、図13Aの断面図に示すような、複数のレンズブロックBKを平面上に並べて配置された状態のレンズブロックユニットUTは、多数のレンズLを同時に作製できるとともに低コストであるレプリカ法またはリフロー法で製造される(なお、レンズブロックユニットUTに含まれるレンズブロックBKの数は単数であっても複数であってもよい)。
[Method for manufacturing imaging lens]
By the way, the lens block unit UT in which a plurality of lens blocks BK are arranged on a plane as shown in the cross-sectional view of FIG. (The number of lens blocks BK included in the lens block unit UT may be singular or plural).
 レプリカ法は、レンズウェーハ上に、金型を用いて硬化性の樹脂をレンズ形状にして転写する。これにより、このレプリカ法では、レンズウェーハ上に、多数のレンズが同時に作製される。 In the replica method, a curable resin is transferred onto a lens wafer in a lens shape using a mold. Thus, in this replica method, a large number of lenses are simultaneously produced on the lens wafer.
 リフロー法は、CVD(Chemical Vapor Deposition)法によって、ガラス基板に、低軟化点ガラスを成膜させる。そして、この低軟化点ガラス成膜は、リソグラフィーおよびドライエッチングによって微細加工される。さらに、加熱されることで、低軟化点ガラス成膜は溶融してレンズ状になる。つまり、このリフロー法では、ガラス基板上に、多数のレンズが同時に作製される。 In the reflow method, a low softening point glass is formed on a glass substrate by a CVD (Chemical Vapor Deposition) method. The low softening point glass film is finely processed by lithography and dry etching. Further, by heating, the low softening point glass film is melted into a lens shape. That is, in this reflow method, a large number of lenses are simultaneously produced on a glass substrate.
 なお、ここで説明した多数のレンズを同時に作製するリフロー法の処理は、[発明が解決しようとする課題]で説明した加熱処理(リフロー処理)とは異なる。前者は、ガラスを軟化させてレンズLを作製する処理であり、後者はハンダを軟化させて電子部品(撮像装置LU等)を実装する処理である。 It should be noted that the reflow method processing for simultaneously producing a large number of lenses described here is different from the heat processing (reflow processing) described in [Problems to be Solved by the Invention]. The former is a process for softening the glass to produce the lens L, and the latter is a process for softening the solder to mount an electronic component (such as the imaging device LU).
 そして、携帯端末CU等の電子製品を比較的高い生産性を確保しながら製造する場合、携帯端末CUに含まれるプリント基板への撮像装置LUの実装が、後者の処理(リフロー処理)で行われるとよい。ただし、この処理では、撮像装置LUは高温に耐えなくてはならない。そして、以下で説明する撮像装置LUは、高温に耐えるという要件を満たすものである。 And when manufacturing electronic products, such as portable terminal CU, ensuring relatively high productivity, mounting of imaging device LU to the printed circuit board contained in portable terminal CU is performed by the latter processing (reflow processing). Good. However, in this process, the imaging device LU must withstand high temperatures. The imaging device LU described below satisfies the requirement to withstand high temperatures.
 ここで、以上のような方法によって製造されたレンズブロックユニットUTから、撮像レンズLNが製造される工程の一部を、図13(B)の概略断面図で示す。 Here, a part of the process of manufacturing the imaging lens LN from the lens block unit UT manufactured by the method as described above is shown in a schematic sectional view of FIG.
 第1レンズブロックユニットUT1は、対向する平面が平行な平行平板である第1レンズ基板LS1と、その一方の平面に接着された複数の第1レンズL1と、他方の平面に接着された複数の第2レンズL2と、で構成される。 The first lens block unit UT1 includes a first lens substrate LS1 that is a parallel flat plate whose opposing planes are parallel, a plurality of first lenses L1 that are bonded to one plane, and a plurality that are bonded to the other plane. And a second lens L2.
 第2レンズブロックユニットUT2は、平行平板である第2レンズ基板LS2と、その一方の平面に接着された複数の第3レンズL3と、他方の平面に接着された複数の第4レンズL4と、で構成される。 The second lens block unit UT2 includes a second lens substrate LS2 that is a parallel plate, a plurality of third lenses L3 bonded to one plane, a plurality of fourth lenses L4 bonded to the other plane, Consists of.
 格子状のスペーサB1は、第1レンズブロックユニットUT1と第2レンズブロックユニットUT2との間(具体的には、第1レンズ基板LS1と第2レンズ基板LS2との間)に介在し、第1レンズブロックユニットUT1と第2レンズブロックユニットUT2との間隔を一定に保つ。さらに、スペーサB1は、基板B2と第2レンズブロックユニットUT2との間に介在し、基板B2とレンズブロックユニットUT2との間隔を一定に保つ。そして、スペーサB1の格子の穴の部分に、各レンズLが位置する。 The lattice-like spacer B1 is interposed between the first lens block unit UT1 and the second lens block unit UT2 (specifically, between the first lens substrate LS1 and the second lens substrate LS2), and The distance between the lens block unit UT1 and the second lens block unit UT2 is kept constant. Further, the spacer B1 is interposed between the substrate B2 and the second lens block unit UT2, and keeps the distance between the substrate B2 and the lens block unit UT2 constant. And each lens L is located in the part of the hole of the grating | lattice of spacer B1.
 なお、基板B2は、撮像素子SRが有するセンサーカバーガラスまたはIRカットフィルタ等の平行平面板(図12での平行平面板PTに相当するもの)である。 The substrate B2 is a plane parallel plate (corresponding to the plane parallel plate PT in FIG. 12) such as a sensor cover glass or an IR cut filter included in the image sensor SR.
 そして、スペーサB1が、第1レンズブロックユニットUT1と第2レンズブロックユニットUT2との間、および、第2レンズブロックユニットUT2と基板B2との間に介在することで、レンズ基板LS同士(第1レンズ基板LS1と第2レンズ基板LS2と)が、結合され一体化する。 The spacers B1 are interposed between the first lens block unit UT1 and the second lens block unit UT2 and between the second lens block unit UT2 and the substrate B2, so that the lens substrates LS (first The lens substrate LS1 and the second lens substrate LS2) are combined and integrated.
 そして、一体化した第1レンズブロックユニットUT1、第2レンズブロックユニットUT2、スペーサB1、および基板B2が、スペーサB1の格子枠(破線Qの位置)に沿って切断されると、図13(C)に示すように、2枚玉構成の撮像レンズLNが複数得られる。 Then, when the integrated first lens block unit UT1, second lens block unit UT2, spacer B1, and substrate B2 are cut along the lattice frame (the position of the broken line Q) of the spacer B1, FIG. ), A plurality of imaging lenses LN having a two-lens configuration are obtained.
 上記において、撮像レンズLNは、2枚玉構成として説明しているが、1枚玉構成としてもよい。例えば、図13において第1レンズブロックユニットUT1を不要とするものであって、第2レンズブロックユニットUT2、スペーサB1、および基板B2が一体化された後、スペーサB1の格子枠に沿って切断されて得られる撮像レンズLNである。以降での説明は、撮像レンズLNを2枚玉構成としているが、1枚玉構成としてもよいのは勿論である。 In the above description, the imaging lens LN has been described as a two-lens configuration, but may be a single-lens configuration. For example, in FIG. 13, the first lens block unit UT1 is unnecessary, and after the second lens block unit UT2, the spacer B1, and the substrate B2 are integrated, the first lens block unit UT1 is cut along the lattice frame of the spacer B1. Imaging lens LN obtained in this way. In the following description, the imaging lens LN has a two-lens configuration, but it is needless to say that a single-lens configuration may be used.
 このように、複数のレンズブロックBK(第1レンズブロックBK1および第2レンズブロックBK2)の組み込まれた部材が切り離されることで、撮像レンズLNが製造されると、撮像レンズLN毎のレンズ間隔の調整および組み立てが不要になる。そのため、撮像レンズLNのより効率のよい大量生産が可能となる。 As described above, when the imaging lens LN is manufactured by separating the members in which the plurality of lens blocks BK (the first lens block BK1 and the second lens block BK2) are incorporated, the lens interval of each imaging lens LN is increased. Adjustment and assembly are not required. Therefore, more efficient mass production of the imaging lens LN is possible.
 しかも、スペーサB1が格子形状である。そのため、このスペーサB1が、複数のレンズブロックBKの組み込まれた部材から撮像レンズLNを切り離す場合の印にもなる。したがって、複数のレンズブロックBKの組み込まれた部材から撮像レンズLNが簡単に切り離され、手間がかからない。その結果、撮像レンズLNが安価に大量生産できる。 Moreover, the spacer B1 has a lattice shape. Therefore, the spacer B1 also serves as a mark when the imaging lens LN is separated from a member in which the plurality of lens blocks BK are incorporated. Therefore, the imaging lens LN is easily separated from the member in which the plurality of lens blocks BK are incorporated, and it does not take time and effort. As a result, the imaging lens LN can be mass-produced at low cost.
 [撮像装置への加熱処理について]
 ここで、図1に、撮像レンズLNの平行平面板PT(図13(B)、図13(C)での基板B2)で撮像素子SRの受光面を覆う撮像装置(カメラモジュール)LUを示す。さらに、図1に示すように、この撮像装置LUはペースト状のハンダの印刷されたプリント基板(回路基板)PRBに取り付けられる。そして、このプリント基板PRB上に撮像装置LUが取り付けられた状態で、加熱処理(リフロー処理)され、撮像装置LUはプリント基板に実装される。
[About heat treatment to imaging device]
Here, FIG. 1 shows an imaging device (camera module) LU that covers the light receiving surface of the imaging element SR with the plane parallel plate PT (the substrate B2 in FIGS. 13B and 13C) of the imaging lens LN. . Further, as shown in FIG. 1, the imaging device LU is attached to a printed circuit board (circuit board) PRB on which paste solder is printed. Then, with the imaging device LU attached on the printed circuit board PRB, heat treatment (reflow processing) is performed, and the imaging device LU is mounted on the printed circuit board.
 ただし、図1および図2(図1のA-A’位置で縦方向に切断し矢印方向から見た断面図)に示すように、撮像装置LUの第1レンズ基板LS1および第2レンズ基板LS2には、開孔HL(HL1、HL2)が形成されている。この開孔HL1は、第1レンズ基板LS1と第2レンズ基板LS2とが向かい合うことで形成される空間SP1を閉じられた状態にしないで外部に通じさせる。そのため、空間SP1の空気は外部に流れる。 However, as shown in FIGS. 1 and 2 (a cross-sectional view taken along the line AA ′ in FIG. 1 and viewed from the direction of the arrow), the first lens substrate LS1 and the second lens substrate LS2 of the imaging device LU. Are formed with openings HL (HL1, HL2). The opening HL1 allows the space SP1 formed by the first lens substrate LS1 and the second lens substrate LS2 to face each other to communicate with the outside without being closed. Therefore, the air in the space SP1 flows to the outside.
 また、開孔HL2は、第2レンズ基板LS2と平行平面板PT(ひいては撮像素子SR)とが向かい合うことで形成される空間SP2を閉じられた状態にしないで空間SP1に通じさせる。そのため、空間SP2の空気は、空間SP1に流れ、さらに、開孔HL1を通じて外部に流れる。 Further, the opening HL2 allows the space SP2 formed by the second lens substrate LS2 and the plane parallel plate PT (and thus the image pickup element SR) to face each other without being closed, and communicates with the space SP1. Therefore, the air in the space SP2 flows into the space SP1, and further flows to the outside through the opening HL1.
 このようになっていると、撮像装置LUに対してリフロー処理され、空間SP1、SP2の空気が熱膨張したとしても、その空気は外部に流れる。そのため、空間SP1、SP2内にて空気の熱膨張に起因する圧力増大が起きない。すると、熱膨張した空気の圧力で、レンズブロックBK1とレンズブロックBK2とが乖離するような事態は起きない。 In this case, even if the reflow process is performed on the imaging device LU and the air in the spaces SP1 and SP2 is thermally expanded, the air flows to the outside. Therefore, the pressure increase due to the thermal expansion of air does not occur in the spaces SP1 and SP2. Then, a situation in which the lens block BK1 and the lens block BK2 are separated by the pressure of the thermally expanded air does not occur.
 つまり、開孔HLは、撮像装置LU内部に含まれる空間SP(スペーサB1を挟持する挟持部材同士の間隔によって形成される空間)の圧力を外部の圧力と同程度にさせる。なお、このような開孔HLは簡単に形成されるので、簡単に撮像装置LUの破損が防止される。 That is, the opening HL makes the pressure in the space SP (the space formed by the gap between the holding members holding the spacer B1) included in the imaging device LU the same as the external pressure. In addition, since such an opening HL is formed easily, damage to the imaging device LU is easily prevented.
 なお、開孔(圧力低減機構)HLは、レンズ基板LSに形成されるとは限らない。例えば、図3の斜視図および図4の斜視図(図3に示す撮像装置LUから第1レンズブロックBK1、および第2レンズ基板LS2上の第3レンズL3を省略した斜視図)に示すように、開孔HL(HL3、HL4)は、スペーサB1の一部が欠けた状態として形成されてもよい。また、上記と同様なスペーサB1の枠の側壁に貫通する開孔HLを設けてもよい(図示しない)。 Note that the opening (pressure reduction mechanism) HL is not necessarily formed in the lens substrate LS. For example, as shown in the perspective view of FIG. 3 and the perspective view of FIG. 4 (the perspective view in which the first lens block BK1 and the third lens L3 on the second lens substrate LS2 are omitted from the imaging device LU shown in FIG. 3). The opening HL (HL3, HL4) may be formed in a state in which a part of the spacer B1 is missing. Moreover, you may provide the opening HL which penetrates the side wall of the frame of the spacer B1 similar to the above (not shown).
 このようになっていると、開孔HL3は、空間SP1を外部に通じさせる。そのため、空間SP1の空気は外部に流れる。一方、開孔HL4は、空間SP2を外部に通じさせる。そのため、空間SP2の空気は外部に流れる。したがって、撮像装置LUに対するリフロー処理で、空間SP1、SP2の空気が熱膨張したとしても、その空気は外部に流れる。そのため、熱膨張した空気の圧力で、レンズブロックBK1、レンズブロックBK2及び平行平面板PTが乖離するような事態は起きない。 In this way, the opening HL3 allows the space SP1 to communicate with the outside. Therefore, the air in the space SP1 flows to the outside. On the other hand, the opening HL4 allows the space SP2 to communicate with the outside. Therefore, the air in the space SP2 flows to the outside. Therefore, even if the air in the spaces SP1 and SP2 is thermally expanded by the reflow processing for the imaging device LU, the air flows to the outside. Therefore, a situation in which the lens block BK1, the lens block BK2, and the parallel flat plate PT are separated from each other by the pressure of the thermally expanded air does not occur.
 さらに、スペーサB1に開孔HLが含まれる場合、スペーサB1を成す材料の量が少なくなるので、撮像装置LUは軽量になるとともに安価になる。 Further, when the spacer B1 includes the opening HL, the amount of the material forming the spacer B1 is reduced, so that the imaging device LU becomes light and inexpensive.
 また、スペーサB1に含まれるのは、開孔HLに限定されるものではない。例えば、図5に示されるような、中空筒(圧力低減機構)MCがスペーサB1に内蔵されてもよい。この中空筒MCは、筒の両端の開口11、13同士を通じさせているだけでなく、筒の中間に位置する中間口12を筒内部に通じさせる。 Further, what is included in the spacer B1 is not limited to the opening HL. For example, a hollow cylinder (pressure reduction mechanism) MC as shown in FIG. 5 may be incorporated in the spacer B1. This hollow cylinder MC not only allows the openings 11 and 13 at both ends of the cylinder to pass through, but also allows the intermediate port 12 located in the middle of the cylinder to communicate with the inside of the cylinder.
 そして、この中空筒MC(MC1、MC2)は、図6の斜視図、図7(A)(図6のB-B’位置で縦方向に切断し矢印方向から見た断面図)、および図7(B)(図6のC-C’位置で縦方向に切断し矢印方向から見た断面図)に示すように、スペーサB1に内蔵される。さらに、この中空筒MCの両端の開口11、13は外部に通じ、さらに、中間口12は、空間SP(SP1、SP2)に通じる。 The hollow cylinder MC (MC1, MC2) is a perspective view of FIG. 6, FIG. 7 (A) (a cross-sectional view taken along the line BB ′ in FIG. 6 and viewed from the direction of the arrow), and FIG. As shown in FIG. 7 (B) (a cross-sectional view cut in the longitudinal direction at the CC ′ position in FIG. 6 and viewed from the direction of the arrow), it is incorporated in the spacer B1. Furthermore, the openings 11 and 13 at both ends of the hollow cylinder MC communicate with the outside, and the intermediate port 12 communicates with the space SP (SP1 and SP2).
 すると、中空筒MC1は、中間口12を通じて流れ込む空間SP1の空気を、両端の開口11、13から外部に流す。また、中空筒MC2は、中間口12を通じて流れ込む空間SP2の空気を、両端の開口11、13から外部に流す。したがって、このような中空筒MCを内蔵した撮像装置LUでは、リフロー処理で熱膨張した空気の圧力で、レンズブロックBK1、レンズブロックBK2及び平行平面板PTが乖離するような事態は起きない。 Then, the hollow cylinder MC1 causes the air in the space SP1 flowing through the intermediate port 12 to flow outside through the openings 11 and 13 at both ends. The hollow cylinder MC2 allows the air in the space SP2 flowing through the intermediate port 12 to flow to the outside from the openings 11 and 13 at both ends. Therefore, in the imaging device LU incorporating such a hollow cylinder MC, the situation in which the lens block BK1, the lens block BK2, and the plane parallel plate PT are separated from each other by the pressure of air thermally expanded by the reflow process does not occur.
 また、図13(B)に示すように、一体化した第1レンズブロックユニットUT1、第2レンズブロックユニットUT2、スペーサB1、および基板B2が、スペーサB1の格子枠(破線Qの位置)に沿って切断され図13(C)に示すようにする場合に、中空筒MCが撮像レンズLN毎に含まれれば、その撮像レンズLNを含む撮像装置LUは、簡易に、リフロー処理による破損を防止する。 Further, as shown in FIG. 13B, the integrated first lens block unit UT1, second lens block unit UT2, spacer B1, and substrate B2 are along the lattice frame (position of the broken line Q) of the spacer B1. If the hollow cylinder MC is included in each imaging lens LN when being cut and cut as shown in FIG. 13C, the imaging device LU including the imaging lens LN simply prevents damage due to the reflow process. .
 また、外部と空間SP1、SP2との間で空気が流れるようにする方法として、例えば、レンズ基板LS1とスペーサB1とを接着剤等で結合する際に、レンズ基板LS1とスペーサB1と間に接着剤が介在しない箇所を設け、この接着剤が介在しない箇所を図3等で示す開口HL3、HL4に代えることができる。 Further, as a method for allowing air to flow between the outside and the spaces SP1 and SP2, for example, when the lens substrate LS1 and the spacer B1 are bonded with an adhesive or the like, the lens substrate LS1 and the spacer B1 are bonded to each other. A place where the agent is not interposed can be provided, and the place where the adhesive is not interposed can be replaced with the openings HL3 and HL4 shown in FIG.
 図8(A)、図9(A)において、撮像装置LUは、レンズ基板LS1、スペーサB1、レンズ基板LS2、スペーサB1および平行平面板PTを接着剤等で結合してある。これまで説明したように、レンズ基板LS1、スペーサB1及びレンズ基板LS2が重ね合わさることで空間SP1が形成され、同様にレンズ基板LS2、スペーサB1および平行平面板PTが重ね合わさることで空間SP2が形成される。 8A and 9A, the imaging device LU has a lens substrate LS1, a spacer B1, a lens substrate LS2, a spacer B1, and a plane parallel plate PT coupled with an adhesive or the like. As described above, the space SP1 is formed by overlapping the lens substrate LS1, the spacer B1, and the lens substrate LS2, and similarly, the space SP2 is formed by overlapping the lens substrate LS2, the spacer B1, and the plane parallel plate PT. Is done.
 空間SP1を例にすると、レンズ基板LS1、スペーサB1及びレンズ基板LS2は重ね合わされ、それぞれの間に介する接着剤で互いに結合される。この時、スペーサB1とレンズ基板LS2とを結合する接着剤BD1は、スペーサB1がレンズ基板LS2と対向する枠面の全周囲に設けない。 Taking the space SP1 as an example, the lens substrate LS1, the spacer B1, and the lens substrate LS2 are overlapped and bonded to each other with an adhesive interposed therebetween. At this time, the adhesive BD1 for bonding the spacer B1 and the lens substrate LS2 is not provided around the entire frame surface where the spacer B1 faces the lens substrate LS2.
 図8(A)では、接着剤BD1はスペーサB1の角部分を除いて辺の部分に設けている。図8(B)は、スペーサB1に設けられた接着剤BD1の様子を、図8(A)の下側(撮像素子SR側)から透過して見た様子を示している。図9(A)では、図8(A)とは逆に、接着剤BD3はスペーサB1の辺の部分を除いて角部分に設けている。図9(B)は、スペーサB1に設けられた接着剤BD3の様子を、図9(A)の下側(撮像素子SR側)から透過して見た様子を示している。 In FIG. 8A, the adhesive BD1 is provided on the side portion except for the corner portion of the spacer B1. FIG. 8B shows a state where the state of the adhesive BD1 provided on the spacer B1 is seen through from the lower side (image sensor SR side) of FIG. 8A. In FIG. 9 (A), contrary to FIG. 8 (A), the adhesive BD3 is provided at the corners except for the side of the spacer B1. FIG. 9B shows a state where the state of the adhesive BD3 provided on the spacer B1 is seen through from the lower side (image sensor SR side) of FIG. 9A.
 接着剤BD1、BD3を設けていない部分は、接着剤の厚み分により隙間GP1、GP3が形成され、外部と空間SP1との間で空気が流れるようすることができる。空間SP2の場合も上述の空間SP1の場合と同様に、接着剤BD2、BD4を設けていない部分は、接着剤の厚み分により隙間GP2、GP4が形成され、外部と空間SP2との間で空気が流れるようすることができる。 In the portions where the adhesives BD1 and BD3 are not provided, gaps GP1 and GP3 are formed depending on the thickness of the adhesive, and air can flow between the outside and the space SP1. In the case of the space SP2, as in the case of the space SP1, the gaps GP2 and GP4 are formed in the portions where the adhesives BD2 and BD4 are not provided, depending on the thickness of the adhesive. Can flow.
 隙間を設ける位置は、上記の位置に限定されない。レンズ基板LS1とスペーサB1との間でも良いし、レンズ基板LS2とスペーサB1との間としても良い。また、スペーサB1の枠面に接する接着剤は、撮像装置LUの光軸に対して対称性を持たせて配置するのが好ましい。対称性を持たせることで、光軸に傾きが生じ難くすることができる。 The position where the gap is provided is not limited to the above position. It may be between the lens substrate LS1 and the spacer B1, or between the lens substrate LS2 and the spacer B1. Further, it is preferable that the adhesive contacting the frame surface of the spacer B1 is arranged with symmetry with respect to the optical axis of the imaging device LU. By providing symmetry, it is possible to prevent the optical axis from being inclined.
 尚、図8(A)、図9(A)においては、接着剤BD1~BD4の厚み分により隙間GP1~GP4が形成される様子を誇張して示し、また他の接着剤の部分、例えばレンズ基板LS1とスペーサB1とを結合する接着剤は、スペーサB1の枠面の全周囲に設けているが省略している。 8A and 9A exaggerately show how the gaps GP1 to GP4 are formed depending on the thicknesses of the adhesives BD1 to BD4, and other adhesive parts such as lenses. The adhesive that bonds the substrate LS1 and the spacer B1 is provided all around the frame surface of the spacer B1, but is omitted.
 撮像装置LUにおいて、上記の隙間GP1~GP4を形成する方法として、例えば、スペーサB1の枠面に対しスクリーン印刷により接着剤を塗布する方法がある。スクリーン印刷に使用するマスクパターンにより、接着剤の塗布領域をスペーサB1の格子状の枠面内で自由に設定することができる。 As a method of forming the gaps GP1 to GP4 in the imaging device LU, for example, there is a method of applying an adhesive to the frame surface of the spacer B1 by screen printing. The application area of the adhesive can be freely set within the grid-like frame surface of the spacer B1 by the mask pattern used for screen printing.
 また、塗布する接着剤は、接着材料に規定された径の樹脂や金属等の微小球を混合し分散させたものを使用する。規定された径の微小球により、接着剤の厚みを規定することができ、隙間GP1~GP4を所望の幅とすることができ、ひいてはレンズ基板LS1、レンズ基板LS2及び撮像素子SRそれぞれの間隔をスペーサB1の厚みと併せて精度良く設定することができる。接着材料に混合、分散させる微小球の径の大きさは、5μmから50μmが好ましく、接着塗布の容易さや空気の流れ、埃等(ダスト)の混入を考慮すると、10μmから30μmがより好ましい。 Also, the adhesive to be applied is a mixture of resin and metal microspheres of the diameter specified in the adhesive material and dispersed. The thickness of the adhesive can be defined by the microspheres having a defined diameter, and the gaps GP1 to GP4 can be set to desired widths. As a result, the intervals between the lens substrate LS1, the lens substrate LS2, and the imaging element SR can be set. It can be set with high accuracy together with the thickness of the spacer B1. The size of the microspheres to be mixed and dispersed in the adhesive material is preferably 5 μm to 50 μm, and more preferably 10 μm to 30 μm in consideration of the ease of adhesive application, air flow, and dust and the like.
 接着剤の厚みを調整する手段として、上述の微小球の混合・分散に限らず、すきま治具を用いてもよい。 The means for adjusting the thickness of the adhesive is not limited to the above-described mixing / dispersing of microspheres, and a clearance jig may be used.
 なお、以上のような開孔HL、中空筒MCおよび隙間GPの少なくとも一方が撮像装置LUに含まれていると、外部から塵および埃等(ダスト)が混入しかねない。そこで、開孔HLにおける開孔面の面積、中空筒MCにおける径方向の断面の面積、および隙間GPの開口面積は、2500μm2以下であると望ましい。このようになっていれば、ダストが容易に撮像装置LUの内部に進入できないためである。 Note that if at least one of the opening HL, the hollow cylinder MC, and the gap GP as described above is included in the imaging device LU, dust, dust or the like (dust) may be mixed from the outside. Therefore, the area of the opening surface in the opening HL, the area of the radial cross section in the hollow cylinder MC, and the opening area of the gap GP are desirably 2500 μm 2 or less. This is because dust cannot easily enter the inside of the imaging device LU.
 また、レンズ基板LSに形成される開孔HL、スペーサB1に形成される開孔HL、スペーサB1に内蔵される中空筒MCおよび接着剤による隙間GPのうち、少なくとも何れかが撮像装置LUに含まれていれば、撮像装置LUが破損する程内部の圧力が高まることはない。 Further, at least one of the opening HL formed in the lens substrate LS, the opening HL formed in the spacer B1, the hollow cylinder MC incorporated in the spacer B1, and the gap GP by the adhesive is included in the imaging device LU. If so, the internal pressure will not increase to such an extent that the imaging device LU is damaged.
 例えば、撮像装置LUに、レンズ基板LSに形成される開孔HLおよびスペーサB1に形成される開孔HLが含まれてもよいし、レンズ基板LSに形成される開孔HLおよびスペーサB1に内蔵される中空筒MCが含まれてもよい。もちろん、撮像装置LUに、スペーサB1に形成される開孔HLおよびスペーサB1に内蔵される中空筒MCが含まれてもよいし、接着剤による隙間GPを有するようにしてもよい。 For example, the imaging device LU may include an opening HL formed in the lens substrate LS and an opening HL formed in the spacer B1, or built in the opening HL and spacer B1 formed in the lens substrate LS. The hollow cylinder MC may be included. Of course, the imaging device LU may include an opening HL formed in the spacer B1 and a hollow cylinder MC built in the spacer B1, or may have a gap GP by an adhesive.
 また、一つの空間に対する開孔HL、中空筒MCおよび隙間GPの数は単数であっても複数であってもかまわない。要は、撮像装置LUが破損する程内部の圧力が高まることがなければ、開孔HL、中空筒MCおよび隙間GPの個数、組み合わせ(同種の開孔HLの組み合わせ、異種の開孔HL組み合わせ、開孔HLと中空筒MCと隙間GPとの組み合わせ)は、特に限定されない。 Further, the number of the opening HL, the hollow cylinder MC, and the gap GP for one space may be singular or plural. In short, if the internal pressure does not increase to such an extent that the imaging device LU is damaged, the number and combination of the opening HL, the hollow cylinder MC and the gap GP (combination of the same kind of opening HL, combination of different kinds of opening HL, The combination of the opening HL, the hollow cylinder MC, and the gap GP is not particularly limited.
 [実施の形態2]
 実施の形態2について説明する。なお、実施の形態1で用いた部材と同様の機能を有する部材については同一の符号を付記し、その説明を省略する。この実施の形態では、より好ましい形態であって、撮像装置LUへのダスト進入を防止する部材(調整部材)について説明する。
[Embodiment 2]
A second embodiment will be described. In addition, about the member which has the same function as the member used in Embodiment 1, the same code | symbol is attached and the description is abbreviate | omitted. In this embodiment, a member (adjustment member) that is a more preferable embodiment and prevents dust from entering the imaging device LU will be described.
 図10(A)の斜視図および図10(B)の断面図(図10(A)のD-D’位置で横方向に切断し矢印方向から見た断面図)に示すように、外部と空間SP1とを隔てる弁(調整部材、隔離部材)VEが撮像装置LUに含まれてもよい。例えば、開孔HL3の外部側の通路口15を塞ぐように、薄膜状の弁VEが形成されるとよい。 As shown in the perspective view of FIG. 10A and the cross-sectional view of FIG. 10B (cross-sectional view cut in the lateral direction at the DD ′ position in FIG. 10A and viewed from the direction of the arrows) A valve (adjustment member, isolation member) VE that separates the space SP1 may be included in the imaging device LU. For example, a thin-film valve VE may be formed so as to close the passage port 15 on the outside of the opening HL3.
 このような弁VEは、常温等の空間SP1の圧力が外部の圧力より高すぎない場合、開孔HL3の外部側の通路口15を塞ぎ、空間SPと外部とを隔てる。そのため、ダストが空間SP1(ひいては、撮像装置LUの内部)に進入しにくい。しかしながら、リフロー処理によって空間SP1の空気が熱膨張し、空間SP1の圧力が増大すると、図10(B)(点線表記の弁VE参照)に示すように、弁VEが開孔HLの外部側の通路口15を塞がずに開く。すると、空間SP1に熱膨張した空気は外部に流れる。 Such a valve VE closes the passage opening 15 on the outside of the opening HL3 and separates the space SP from the outside when the pressure of the space SP1 at room temperature or the like is not too high than the external pressure. Therefore, it is difficult for dust to enter the space SP1 (as a result, inside the imaging device LU). However, when the air in the space SP1 is thermally expanded by the reflow process and the pressure in the space SP1 is increased, the valve VE is placed on the outside of the opening HL as shown in FIG. 10B (see the valve VE indicated by a dotted line). Open the passage opening 15 without blocking it. Then, the thermally expanded air in the space SP1 flows to the outside.
 つまり、このような弁VEは、空気の熱膨張により生じてしまう空間SPと外部との圧力差に応じて可動(開閉)し、空間SPと外部との連通度合いを調整する。そのため、この弁VEは、撮像装置LUがリフロー処理される場合には、その撮像装置LUの破損防止を妨げない。一方で、この弁VEは、撮像装置LUが常温等にある場合には、その撮像装置LU内へのダストの進入を防止する。なお、弁VEは、リフロー処理された後には、再び開孔HLを塞ぐ。したがって、リフロー処理後には、ダストは撮像装置LUに進入しない。 That is, such a valve VE moves (opens and closes) in accordance with the pressure difference between the space SP and the outside that is generated by the thermal expansion of air, and adjusts the degree of communication between the space SP and the outside. Therefore, the valve VE does not prevent the damage of the imaging device LU when the imaging device LU is subjected to reflow processing. On the other hand, the valve VE prevents dust from entering the imaging device LU when the imaging device LU is at room temperature or the like. The valve VE closes the opening HL again after the reflow process. Therefore, dust does not enter the imaging device LU after the reflow process.
 なお、このような弁VE以外でも、空間SPと外部との圧力差に応じて可動(開閉)し、空間SPと外部との連通度合いを調整する部材がある。例えば、図11(A)~図11(C)の断面図に示されるピストンPN(調整部材、隔離部材)である。 In addition to the valve VE, there is a member that moves (opens and closes) according to the pressure difference between the space SP and the outside, and adjusts the degree of communication between the space SP and the outside. For example, the piston PN (adjustment member, isolation member) shown in the cross-sectional views of FIGS. 11 (A) to 11 (C).
 ピストンPNは、スペーサB1にある開孔HL3に収まる棒状の本体23と、その本体23の両端に形成される鍔片24N、24Tと、を含む(なお、鍔片24N、24Tは、開孔HL3の外部側の通路口15、空間側の通路口16を塞げる面積を有する)。そして、このピストンPNは、本体23の長手方向に沿って(開孔HL3の長手方向に沿って)、外部に向かったり、空間SP1に向かったりする。 The piston PN includes a rod-shaped main body 23 that fits in the opening HL3 in the spacer B1, and flanges 24N and 24T formed at both ends of the body 23 (note that the flanges 24N and 24T are formed in the opening HL3). The outer side passage port 15 and the space side passage port 16 are closed). The piston PN is directed outward along the longitudinal direction of the main body 23 (along the longitudinal direction of the opening HL3) or toward the space SP1.
 なお、ピストンPNの本体23と開孔HL3との間には隙間があり、その隙間を通じて、空気は移動する。また、空気が移動した後に、ピストンPNが空間SP1を密閉したとしても、外部に移動した空気量分だけ、空間SP1の空気は膨張可能になり、その空間SP1の圧力が撮像装置LUを破損せしめる圧力に到達しないような圧力の余裕を確保することができる。 In addition, there is a gap between the main body 23 of the piston PN and the opening HL3, and air moves through the gap. Further, even if the piston PN seals the space SP1 after the air has moved, the air in the space SP1 can expand by the amount of air moved to the outside, and the pressure in the space SP1 damages the imaging device LU. It is possible to ensure a pressure margin that does not reach the pressure.
 そして、例えば撮像装置LUが常温等にある場合、図11(A)に示すように、ピストンPNにおける外部側の鍔片(隔離部材)24Tが、開孔HL3の外部側の通路口15を塞ぐ。このように鍔片24Tが開孔HL3を塞ぐ状態にて、撮像装置LUがリフロー処理され、空間SP1の空気が熱膨張すると、その空気はピストンPNにおける空間SP1側の鍔片24Nを押す。 For example, when the imaging device LU is at room temperature or the like, as shown in FIG. 11 (A), the outer flange (isolation member) 24T in the piston PN blocks the passage opening 15 on the outer side of the opening HL3. . When the imaging device LU is reflowed in a state where the flange 24T closes the opening HL3 as described above and the air in the space SP1 is thermally expanded, the air pushes the flange 24N on the space SP1 side in the piston PN.
 すると、図11(B)に示すように、ピストンPNの外部側の鍔片24Tが開孔HL3の外部側の通路口15から乖離し、空間SP1の空気が外部に流れる。そして、このように空気が流れて、外部と空間SP1との圧力差が無くなる頃には、図11Cに示すように、空間SP1の空気によって押されるピストンPNの空間SP1側の鍔片24Nが、開孔HL3の空間側の通路口16を塞ぐ。その結果、リフロー処理後には、ダストは撮像装置LUに進入しない(つまり、ピストンPNは、リフロー処理された後には、再び開孔HL3を塞ぐ)。 Then, as shown in FIG. 11 (B), the flange 24T on the outside of the piston PN is separated from the passage port 15 on the outside of the opening HL3, and the air in the space SP1 flows to the outside. Then, when the air flows and the pressure difference between the outside and the space SP1 disappears, as shown in FIG. 11C, the flange 24N on the space SP1 side of the piston PN pushed by the air in the space SP1 The passage opening 16 on the space side of the opening HL3 is closed. As a result, the dust does not enter the imaging device LU after the reflow process (that is, the piston PN closes the opening HL3 again after the reflow process).
 つまり、このようなピストンPNは、弁VE同様に、撮像装置LUがリフロー処理される場合には、その撮像装置LUの破損防止を損なわない一方、撮像装置LUが常温等にある場合には、その撮像装置LU内へのダストの進入を防止する。 That is, like the valve VE, such a piston PN does not impair prevention of damage to the imaging device LU when the imaging device LU is subjected to reflow processing, while the imaging device LU is at room temperature or the like. Intrusion of dust into the imaging device LU is prevented.
 また、以上を踏まえると、弁VEおよびピストンPNは、空間SPの圧力増大を減じた後に、開孔HLを封止することで、外部と空間SPとを隔てる部材ともいえる。ただし、このような弁VEおよびピストンPNではなく、別部材で開孔HLを封止してもかまわない。また、ピストンPNは外部側にも空間SP側にも移動可能であるので、ユーザーが適宜ピストンPNを移動させて、開孔HLを封止してもよい。 Also, based on the above, the valve VE and the piston PN can be said to be members that separate the space SP from the outside by sealing the opening HL after reducing the pressure increase in the space SP. However, the opening HL may be sealed with a separate member instead of the valve VE and the piston PN. Further, since the piston PN can be moved to the outside and the space SP side, the user may appropriately move the piston PN to seal the opening HL.
 なお、以上では、弁VEおよびピストンPNは、開孔HLに対応していたが、中空筒MCに対応してもよい。例えば、弁VEは、中空筒MCの両端の開口11、13を開閉してもよい。また、ピストンPNは、本体23を中空筒MCの中空部分に通し、両端の開口11、13に設け、鍔片24N、24Tで、中空筒MCの両端の開口11、13を開閉してもよい。 In the above description, the valve VE and the piston PN correspond to the opening HL, but may correspond to the hollow cylinder MC. For example, the valve VE may open and close the openings 11 and 13 at both ends of the hollow cylinder MC. Further, the piston PN may pass through the main body 23 through the hollow portion of the hollow cylinder MC, be provided in the openings 11 and 13 at both ends, and open and close the openings 11 and 13 at both ends of the hollow cylinder MC with the flange pieces 24N and 24T. .
 [その他の実施の形態]
 なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
[Other embodiments]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、レンズ基板LSに形成される開孔HLは、レンズ基板LS(ひいてはレンズブロックBK)の有効径外に位置するとよい。このようになっていると、開孔HLに起因して、撮像レンズLNの光学性能が劣化しにくい。そのため、開孔HLが簡易に形成される。また、このように簡易に開孔HLが形成されると、撮像装置LUの製造負担も軽減し、ひいては撮像装置LUのコストダウンにもつながる。 For example, the opening HL formed in the lens substrate LS may be positioned outside the effective diameter of the lens substrate LS (and thus the lens block BK). With such a configuration, the optical performance of the imaging lens LN is unlikely to deteriorate due to the opening HL. Therefore, the opening HL is easily formed. In addition, when the opening HL is easily formed in this way, the manufacturing burden of the imaging device LU is reduced, and as a result, the cost of the imaging device LU is reduced.
 なお、スペーサB1は、基本的に、レンズ基板LSの有効径外に位置する。したがって、スペーサB1に形成される開孔HLおよびスペーサB1に含まれ中空筒MCを含む撮像装置LUは、簡易に製造され、コストもダウンする。 The spacer B1 is basically located outside the effective diameter of the lens substrate LS. Therefore, the imaging device LU including the opening HL formed in the spacer B1 and the hollow cylinder MC included in the spacer B1 is easily manufactured and the cost is reduced.
 また、レンズ基板LSに形成される開孔HLは、最も物体側のレンズ基板LSに位置すると望ましい。このようになっていると、開孔HLは、撮像素子SRから最も離れて位置するため、ダストの撮像素子SRへの付着がより少なくされる。また、仮にダストが撮像レンズLN内のどこかに付着したとしても、そのダストは像面(撮像素子SRの受光面)から比較的離れており、光束の広がっている箇所に付着することになる。そのため、撮像装置LUの結像性能に対するダストの影響は小さい。 Further, it is desirable that the opening HL formed in the lens substrate LS is positioned on the lens substrate LS closest to the object side. In this case, since the opening HL is located farthest from the image sensor SR, adhesion of dust to the image sensor SR is further reduced. Further, even if dust adheres somewhere in the imaging lens LN, the dust is relatively far from the image plane (the light receiving surface of the imaging element SR) and adheres to a location where the luminous flux spreads. . Therefore, the influence of dust on the imaging performance of the imaging device LU is small.
 また、単焦点の撮像レンズLNでは、最も物体側に位置する光学素子(例えば、第1レンズブロックBK1)の有効径は比較的小さい。そのため、開孔HLを形成するスペースが十分確保される(開孔HLが簡易に形成される)。 In the single-focus imaging lens LN, the effective diameter of the optical element (for example, the first lens block BK1) located closest to the object side is relatively small. Therefore, a sufficient space for forming the opening HL is secured (the opening HL is easily formed).
 なお、以上では、空間SPとしては、レンズ基板(LS1、LS2)同士によって形成される空間SP1、および、撮像素子SRのカバー部材である平行平面板PTと第2レンズ基板LS2とによって形成される空間SP2が挙げられた。しかし、これに限定されるものではない。例えば、平行平面板PTが存在しなければ、第2レンズ基板LS2と撮像素子SRとによって形成される空間SPであってもよい。 In the above, the space SP is formed by the space SP1 formed by the lens substrates (LS1, LS2), the parallel flat plate PT which is the cover member of the image sensor SR, and the second lens substrate LS2. The space SP2 was mentioned. However, it is not limited to this. For example, if the plane parallel plate PT does not exist, the space SP formed by the second lens substrate LS2 and the imaging element SR may be used.
 また、撮像レンズLNは、レンズブロックBKの周縁にスペーサB1を並べ、複数のレンズブロックユニットUTを、スペーサB1を介在させてつなげる第1連結工程と、つながるレンズブロックユニットUTを、スペーサB1に沿って切断する切断工程と、を含む製造方法で製造された(図13(A)~図13(C)参照)。そして、この製造方法で製造された撮像レンズLNが撮像素子SRの受光面を覆うように取り付けられることで、撮像装置LUが完成していた。 In the imaging lens LN, a spacer B1 is arranged on the periphery of the lens block BK, and a plurality of lens block units UT are connected via the spacer B1, and a connected lens block unit UT is connected along the spacer B1. And a cutting process for cutting (see FIGS. 13A to 13C). And the imaging device LU was completed by attaching the imaging lens LN manufactured with this manufacturing method so that the light-receiving surface of the image pick-up element SR may be covered.
 しかし、撮像装置LUの製造方法は、これに限定されない。例えば、撮像装置LUは、以下の第1連結工程、第2連結工程、および切断工程を含む製造方法で製造されてもよい。 However, the manufacturing method of the imaging device LU is not limited to this. For example, the imaging device LU may be manufactured by a manufacturing method including the following first connection step, second connection step, and cutting step.
 第1連結工程は、レンズブロックBKの周縁にスペーサB1を並べ、複数のレンズブロックユニットUTを、スペーサB1を介在させてつなげる。 In the first connecting step, the spacer B1 is arranged on the periphery of the lens block BK, and the plurality of lens block units UT are connected with the spacer B1 interposed.
 第2連結工程は、レンズブロックBKの周縁にスペーサを並べたレンズブロックユニットUTと撮像素子SR(ただし、撮像素子SRの受光面に平行平面板PTを取り付ける場合、平行平面板PTと撮像素子SR)とを、スペーサB1を介在させてつなげる。 In the second connecting step, the lens block unit UT in which spacers are arranged on the periphery of the lens block BK and the image sensor SR (however, when the parallel plane plate PT is attached to the light receiving surface of the image sensor SR, the parallel plane plate PT and the image sensor SR). ) With a spacer B1 interposed.
 切断工程は、つながりあうレンズブロックユニットUTと撮像素子SRとを、スペーサB1に沿って切断する。 In the cutting step, the lens block unit UT and the image sensor SR that are connected to each other are cut along the spacer B1.
 そして、以上のような撮像装置LUの製造方法であれば、撮像レンズLNと撮像素子SRとを取り付ける労力が軽減し、より低コストで大量に撮像装置LUが製造される。 Then, with the manufacturing method of the imaging device LU as described above, the labor for attaching the imaging lens LN and the imaging element SR is reduced, and the imaging device LU is manufactured in large quantities at a lower cost.

Claims (23)

  1.  レンズ基板並びに前記レンズ基板の物体側基板面および像側基板面の少なくとも一方の基板面に連なるレンズを有するレンズブロックと、撮像素子と、前記レンズブロックおよび前記撮像素子の間に介する第1スペーサとを含む撮像装置にあって、
     前記第1スペーサを挟む前記レンズブロック及び前記撮像素子並びに該第1スペーサで形成される空間と外部との間で空気を通すための第1圧力低減機構を備えていることを特徴とする撮像装置。
    A lens block, a lens block having a lens connected to at least one of the object-side substrate surface and the image-side substrate surface of the lens substrate, an imaging element, and a first spacer interposed between the lens block and the imaging element; In an imaging apparatus including
    An image pickup apparatus comprising: the lens block sandwiching the first spacer; the image pickup device; and a first pressure reduction mechanism for allowing air to pass between a space formed by the first spacer and the outside. .
  2.  前記撮像装置は、
     複数の前記レンズブロックと、
     前記レンズブロック同士の間に介する第2スペーサと、を有し、
     前記第2スペーサを挟む前記レンズブロックと該第2スペーサとで形成される空間と外部との間で空気を通すための第2圧力低減機構を備えていることを特徴とする請求の範囲第1項に記載の撮像装置。
    The imaging device
    A plurality of the lens blocks;
    A second spacer interposed between the lens blocks,
    2. A first pressure reduction mechanism for allowing air to pass between a space formed by the lens block sandwiching the second spacer and the second spacer and the outside. The imaging device according to item.
  3.  前記第1圧力低減機構は、前記レンズ基板に形成されている開孔であることを特徴とする請求の範囲第1項又は第2項に記載の撮像装置。 The imaging device according to claim 1 or 2, wherein the first pressure reduction mechanism is an opening formed in the lens substrate.
  4.  前記第2圧力低減機構は、前記レンズ基板に形成されている開孔であることを特徴とする請求の範囲第2項に記載の撮像装置。 3. The imaging apparatus according to claim 2, wherein the second pressure reduction mechanism is an opening formed in the lens substrate.
  5.  前記第1圧力低減機構は、前記第1スペーサに形成されている開孔であることを特徴とする請求の範囲第1項又は第2項に記載の撮像装置。 The imaging apparatus according to claim 1 or 2, wherein the first pressure reduction mechanism is an opening formed in the first spacer.
  6.  前記第2圧力低減機構は、前記第2スペーサに形成されている開孔であることを特徴とする請求の範囲第2項に記載の撮像装置。 3. The imaging apparatus according to claim 2, wherein the second pressure reduction mechanism is an opening formed in the second spacer.
  7.  前記第1スペーサと前記レンズ基板との間及び前記第1スペーサと前記撮像素子との間のそれぞれに接着剤を有し、
     前記第1圧力低減機構は、
     前記第1スペーサと前記レンズ基板との間、前記第1スペーサと前記撮像素子との間の少なくとも一方の前記接着剤が、前記空間と外部とが通じるように、不連続に設けられて形成された隙間による開孔であることを特徴とする請求の範囲第1項又は第2項に記載の撮像装置。
    Having an adhesive between each of the first spacer and the lens substrate and between the first spacer and the imaging device;
    The first pressure reduction mechanism includes:
    At least one of the adhesive between the first spacer and the lens substrate and between the first spacer and the imaging element is formed discontinuously so that the space communicates with the outside. The imaging apparatus according to claim 1 or 2, wherein the imaging apparatus is an opening by a gap.
  8.  前記第2スペーサと前記レンズ基板との間に接着剤を有し、
     前記第2圧力低減機構は、
     前記第2スペーサと前記レンズ基板との間の前記接着剤が、前記空間と外部とが通じるように、不連続に設けられて形成された隙間による開孔であることを特徴とする請求の範囲第2項に記載の撮像装置。
    Having an adhesive between the second spacer and the lens substrate;
    The second pressure reduction mechanism includes:
    The adhesive between the second spacer and the lens substrate is an opening formed by a gap formed so as to be discontinuously provided so that the space communicates with the outside. The imaging device according to Item 2.
  9.  前記第1圧力低減機構は、前記空間と外部とを連通する中空筒であることを特徴とする請求の範囲第1項又は第2項に記載の撮像装置。 The imaging apparatus according to claim 1 or 2, wherein the first pressure reduction mechanism is a hollow cylinder that communicates the space with the outside.
  10.  前記第2圧力低減機構は、前記第2スペーサを挟む前記レンズブロックと該第2スペーサとで形成される空間と外部とを連通する中空筒であることを特徴とする請求の範囲第2項に記載の撮像装置。 3. The second aspect according to claim 2, wherein the second pressure reduction mechanism is a hollow cylinder that communicates a space formed by the lens block sandwiching the second spacer with the second spacer and the outside. The imaging device described.
  11.  前記開孔における開孔面の面積が、2500μm2以下であることを特徴とする請求の範囲第3項から第8項の何れか1項に記載の撮像装置。 The imaging device according to any one of claims 3 to 8, wherein an area of an aperture surface in the aperture is 2500 µm 2 or less.
  12.  前記中空筒における径方向の断面の面積が、2500μm2以下であることを特徴とする請求の範囲第9項又は第10項に記載の撮像装置。 11. The imaging device according to claim 9, wherein an area of a cross section in a radial direction of the hollow cylinder is 2500 μm 2 or less.
  13.  前記空間と外部との連通度合いを調整する調整部材が含まれることを特徴とする請求の範囲第1項から第12項の何れか1項に記載の撮像装置。 The imaging device according to any one of claims 1 to 12, further comprising an adjustment member that adjusts a degree of communication between the space and the outside.
  14.  前記調整部材は、外部と前記空間との圧力差によって可動する弁であることを特徴とする請求の範囲第13項に記載の撮像装置。 14. The imaging apparatus according to claim 13, wherein the adjustment member is a valve that is movable by a pressure difference between the outside and the space.
  15.  前記調整部材は、外部と前記空間との圧力差によって可動するピストンであることを特徴とする請求の範囲第13項に記載の撮像装置。 14. The imaging apparatus according to claim 13, wherein the adjustment member is a piston that is movable by a pressure difference between the outside and the space.
  16.  外部と前記空間とを隔てる隔離部材が含まれることを特徴とする請求の範囲第1項から第13項の何れか1項に記載の撮像装置。 The imaging apparatus according to any one of claims 1 to 13, further comprising an isolation member that separates the space from the outside.
  17.  前記弁は、外部と前記空間とを隔てる隔離部材を兼ねることを特徴とする請求の範囲第14項に記載の撮像装置。 15. The imaging apparatus according to claim 14, wherein the valve also serves as an isolation member that separates the space from the outside.
  18.  前記ピストンは、外部と前記空間とを隔てる隔離部材を兼ねることを特徴とする請求の範囲第15項に記載の撮像装置。 16. The imaging apparatus according to claim 15, wherein the piston also serves as an isolation member that separates the space from the outside.
  19.  前記第1圧力低減機構は、前記レンズ基板の有効径外に位置することを特徴とする請求の範囲第1項又は第2項に記載の撮像装置。 3. The imaging apparatus according to claim 1, wherein the first pressure reduction mechanism is located outside an effective diameter of the lens substrate.
  20.  前記第2圧力低減機構は、前記レンズ基板の有効径外に位置することを特徴とする請求の範囲第2項に記載の撮像装置。 The imaging apparatus according to claim 2, wherein the second pressure reduction mechanism is located outside the effective diameter of the lens substrate.
  21.  請求の範囲第1項から第20項の何れか1項に記載の撮像装置の製造方法にあって、
     少なくとも1つ以上の前記レンズブロックを平面に並べて含むレンズブロックユニットと前記撮像素子とを、前記第1スペーサを介在させて結合する連結工程と、
     結合された前記レンズブロックユニットと前記撮像素子とを、前記第1スペーサに沿って切断する切断工程と、を含むことを特徴とする撮像装置の製造方法。
    In the manufacturing method of the imaging device according to any one of claims 1 to 20,
    A coupling step of coupling a lens block unit including at least one or more of the lens blocks in a plane and the imaging element with the first spacer interposed therebetween;
    And a cutting step of cutting the combined lens block unit and the image sensor along the first spacer.
  22.  請求の範囲第1項から第20項の何れか1項に記載の撮像装置を含むことを特徴とする携帯端末。 A portable terminal comprising the imaging device according to any one of claims 1 to 20.
  23.  請求の範囲第22項に記載の携帯端末の製造方法にあって、
     ペースト状のハンダが印刷されたプリント基板に前記撮像装置を配置する工程と、
     前記撮像装置が配置された前記プリント基板を該撮像装置と共にリフロー処理により加熱する工程と、を有することを特徴とする携帯端末の製造方法。
    In the manufacturing method of the portable terminal according to claim 22,
    Placing the imaging device on a printed circuit board on which paste-like solder is printed;
    Heating the printed circuit board on which the image pickup device is arranged together with the image pickup device by reflow processing.
PCT/JP2009/051443 2008-01-31 2009-01-29 Imaging device, portable terminal, imaging device manufacturing method and portable terminal manufacturing method WO2009096460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008021091 2008-01-31
JP2008-021091 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096460A1 true WO2009096460A1 (en) 2009-08-06

Family

ID=40912811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051443 WO2009096460A1 (en) 2008-01-31 2009-01-29 Imaging device, portable terminal, imaging device manufacturing method and portable terminal manufacturing method

Country Status (1)

Country Link
WO (1) WO2009096460A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130315A (en) * 2009-12-21 2011-06-30 Ricoh Co Ltd Imaging apparatus, on-vehicle imaging apparatus, and method for manufacturing imaging apparatus
EP2477052A1 (en) * 2011-01-18 2012-07-18 Samsung Electro-Mechanics Co., Ltd. Lens module and method of manufacturing the same
JP2013007969A (en) * 2011-06-27 2013-01-10 Sharp Corp Imaging lens, lens array, imaging lens producing method, and imaging module
WO2020180428A1 (en) * 2019-03-05 2020-09-10 Microsoft Technology Licensing, Llc Lens system and imaging apparatus
WO2020208750A1 (en) * 2019-04-10 2020-10-15 オリンパス株式会社 Method for manufacturing imaging device, imaging device, and endoscope
WO2023021669A1 (en) * 2021-08-19 2023-02-23 オリンパス株式会社 Imaging module, endoscope and imaging module manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020229A (en) * 2003-06-25 2005-01-20 Konica Minolta Opto Inc Imaging unit
JP2005039152A (en) * 2003-07-18 2005-02-10 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor device
JP2005101711A (en) * 2003-09-22 2005-04-14 Renesas Technology Corp Solid state imaging device and its manufacturing method
JP2005352314A (en) * 2004-06-11 2005-12-22 Canon Inc Imaging device and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020229A (en) * 2003-06-25 2005-01-20 Konica Minolta Opto Inc Imaging unit
JP2005039152A (en) * 2003-07-18 2005-02-10 Shinko Electric Ind Co Ltd Method of manufacturing semiconductor device
JP2005101711A (en) * 2003-09-22 2005-04-14 Renesas Technology Corp Solid state imaging device and its manufacturing method
JP2005352314A (en) * 2004-06-11 2005-12-22 Canon Inc Imaging device and electronic apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130315A (en) * 2009-12-21 2011-06-30 Ricoh Co Ltd Imaging apparatus, on-vehicle imaging apparatus, and method for manufacturing imaging apparatus
EP2477052A1 (en) * 2011-01-18 2012-07-18 Samsung Electro-Mechanics Co., Ltd. Lens module and method of manufacturing the same
CN102608725A (en) * 2011-01-18 2012-07-25 三星电机株式会社 Lens module and method of manufacturing the same
JP2013007969A (en) * 2011-06-27 2013-01-10 Sharp Corp Imaging lens, lens array, imaging lens producing method, and imaging module
WO2020180428A1 (en) * 2019-03-05 2020-09-10 Microsoft Technology Licensing, Llc Lens system and imaging apparatus
CN111665604A (en) * 2019-03-05 2020-09-15 微软技术许可有限责任公司 Lens system and imaging device
CN111665604B (en) * 2019-03-05 2022-09-06 微软技术许可有限责任公司 Lens system and imaging device
WO2020208750A1 (en) * 2019-04-10 2020-10-15 オリンパス株式会社 Method for manufacturing imaging device, imaging device, and endoscope
US20210382294A1 (en) * 2019-04-10 2021-12-09 Olympus Corporation Image pickup apparatus manufacturing method, image pickup apparatus, and endoscope
WO2023021669A1 (en) * 2021-08-19 2023-02-23 オリンパス株式会社 Imaging module, endoscope and imaging module manufacturing method

Similar Documents

Publication Publication Date Title
WO2009096460A1 (en) Imaging device, portable terminal, imaging device manufacturing method and portable terminal manufacturing method
JP4446773B2 (en) Imaging device
US7965454B2 (en) Imaging lens and small-size image pickup apparatus using the same
JP2005352314A (en) Imaging device and electronic apparatus
WO2006109638A1 (en) Solid-state image pickup element and method for manufacturing same
WO2005020328A1 (en) Solid-state imaging device and imaging device provided with this solid-state imaging device and production method for microlens array of solid-state imaging device
JP2018060161A (en) Filter assembly and camera module having the same
JPWO2007043509A1 (en) Imaging device
WO2001065839A1 (en) Small-sized image pickup module
JP2009003073A (en) Camera module, pedestal mount, and imaging apparatus
CN101304037A (en) Image capture device module, manufacturing method thereof and electronic information device
US7630016B2 (en) Imaging device having transparent unit and electronic apparatus
WO2011102056A1 (en) Image-capturing lens unit
JP2008262027A (en) Mounting structure for multiple lenses, camera module and electronic apparatus
JPWO2009016949A1 (en) Imaging device
JP2008141364A (en) Camera module, seat mounting, and imaging apparatus
JP2002329851A (en) Image pickup module, its manufacturing method, and image pickup equipment having the same
JP2005109092A (en) Solid state imaging device and imaging apparatus having same
JP2009251366A (en) Method for manufacturing imaging lens, imaging lens, and imaging apparatus
JP2013153361A (en) Camera module
JP2008139593A (en) Camera module and imaging apparatus
US20100045846A1 (en) Image pickup device, method of manufacturing the same, and mobile terminal device
JP2009025698A (en) Imaging device
WO2014162847A1 (en) Combined lens and imaging device
JP2007295141A (en) Imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP