WO2009096112A1 - タグペプチド及びその利用 - Google Patents

タグペプチド及びその利用 Download PDF

Info

Publication number
WO2009096112A1
WO2009096112A1 PCT/JP2008/073069 JP2008073069W WO2009096112A1 WO 2009096112 A1 WO2009096112 A1 WO 2009096112A1 JP 2008073069 W JP2008073069 W JP 2008073069W WO 2009096112 A1 WO2009096112 A1 WO 2009096112A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
tag peptide
protein
fusion protein
tag
Prior art date
Application number
PCT/JP2008/073069
Other languages
English (en)
French (fr)
Inventor
Junichi Takagi
Original Assignee
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University filed Critical Osaka University
Priority to US12/864,343 priority Critical patent/US8975384B2/en
Priority to CN200880126098.8A priority patent/CN101970456B/zh
Priority to JP2009551407A priority patent/JP5257997B2/ja
Priority to EP08871991.9A priority patent/EP2239267B1/en
Publication of WO2009096112A1 publication Critical patent/WO2009096112A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1016Tetrapeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/961Chemistry: molecular biology and microbiology including a step of forming, releasing, or exposing the antigen or forming the hapten-immunogenic carrier complex or the antigen per se
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/975Kit

Definitions

  • the present invention relates to a tag peptide and use thereof, and more specifically, a tag peptide that can be used for purifying, detecting or quantifying a protein, a tag peptide fusion protein to which the tag peptide is bound, and a polypeptide encoding the tag peptide.
  • the present invention relates to a nucleotide and a recombinant vector containing the polynucleotide, and an antibody against the tag peptide and a protein purification method, detection method, quantification method, and kit using the antibody.
  • Affinity chromatography is one of the most powerful means of protein purification.
  • a peptide containing histidine of 6 to 10 residues is added to the N-terminal or C-terminal of the protein, and the interaction between the histidine tag and a metal such as nickel is used.
  • Methods for separating and purifying proteins are known.
  • methods utilizing the interaction between a tag peptide (peptide tag) and an antibody thereto are known (for example, Non-Patent Document 1 and Non-Patent Document 2).
  • the former method using a histidine tag has low specificity between nickel and a histidine tag, and adsorbs proteins other than proteins to which the target histidine tag is added, compounds other than proteins, and the like. Therefore, there is a problem that high-purity protein cannot be obtained by one-step purification.
  • FLAG registered trademark
  • Sigma is widely used as a protein detection and purification system that utilizes the interaction between the latter tag peptide and an antibody thereto.
  • This technique uses a FLAG peptide and an antibody against it (M1 antibody, M2 antibody, etc.), and is considered to have the highest specificity at present.
  • M1 antibody, M2 antibody, etc. an antibody against it
  • FLAG registered trademark
  • the present invention provides a novel tag peptide that can be used in a system capable of purifying a protein expressed from a cloned gene with high purity and low cost by an easy operation, and a tag peptide fusion protein to which the tag peptide is bound.
  • the purpose is to provide.
  • Another object of the present invention is to provide a polynucleotide encoding the tag peptide, a recombinant vector containing the polynucleotide, and an antibody against the tag peptide.
  • the protein purification method, protein detection method and protein quantification method, and protein expression, purification, detection or quantification that can be carried out inexpensively and simply using the interaction of the tag peptide and the antibody thereto. It aims at providing the kit for doing.
  • the present inventor has intensively studied an affinity tag system that uses a tag peptide and an anti-peptide antibody that recognizes the tag peptide.
  • an antibody hereinafter referred to as “P20.1 antibody”
  • P20.1 antibody an antibody prepared by using a peptide consisting of a sequence corresponding to the N-terminal 20 residues of human thrombin receptor PAR4 (SEQ ID NO: 2: hereinafter also referred to as “P4 peptide”) as an antigen.
  • P4 peptide human thrombin receptor PAR4
  • the P20.1 antibody has detected 6 residues (Gly-Tyr-Pro-Gly-Gln-Val: SEQ ID NO: 1) on the C-terminal side of the 20 N-terminal residues of the human thrombin receptor PAR4. It was found that the 2nd tyrosine, 4th glycine and 5th glutamine from the N-terminal side among these 6 residues are indispensable for the interaction with the antibody. Furthermore, it was found that the affinity between the tag peptide and the P20.1 antibody is increased by repeating this 6-residue sequence (hereinafter also referred to as “P4 sequence”) multiple times in the tag peptide. It was conceived that a protein expressed from a cloned gene can be purified with high purity in one step by using a tag peptide having a sequence and a P20.1 antibody.
  • hydrophilic organic solvents used as eluents are less expensive than conventional eluents (for example, FLAG (registered trademark) eluents, etc.), thus reducing the cost of protein purification. Found that is possible.
  • the “eluting substance” means a substance having an action of dissociating the antibody and the tag peptide.
  • the present invention relates to the following (1) to (16).
  • N represents an integer of 2 to 6).
  • the amino acid sequence represented by the formula (II) is represented by the following formula (III); (Gly-Tyr-Pro-Gly-Gln-Val)) m (III) (Wherein m represents an integer of 3 to 5), and the tag peptide according to the above (2).
  • a recombinant vector comprising the polynucleotide according to (6).
  • An antibody against the tag peptide according to any one of (1) to (4). (9) The antibody according to (8), which has a heavy chain variable region having the amino acid sequence represented by SEQ ID NO: 3 and a light chain variable region having the amino acid sequence represented by SEQ ID NO: 5.
  • the antibody according to (8) above which is a single-chain antibody having the amino acid sequence represented by SEQ ID NO: 7.
  • a protein purification method comprising the following steps (i) to (iii): (I) a step of preparing a mixture containing the tag peptide fusion protein according to (5) above and a substance other than the tag peptide fusion protein (ii) the mixture obtained in the step (i) above, (8) A step of causing the antibody according to any one of (11) to act to form a conjugate of the tag peptide fusion protein and the antibody (iii) The conjugate obtained in the step (ii) (13) The method for purifying a protein according to (12) above, wherein the elution substance is allowed to act to release the tag peptide fusion protein from the antibody. (13) The elution substance is a hydrophilic organic solvent.
  • a method for detecting or quantifying a protein comprising the following steps (i) to (iii): (I) A step of preparing a sample containing the tag peptide fusion protein according to (5) (ii) A sample obtained in the step (i) is added to any of the above (8) to (11) (Iii) a step of detecting or quantifying the binding product obtained in the step (ii) (15) mouse-mouse, wherein the antibody described above is allowed to act to form a binding product between the tag peptide fusion protein and the antibody; Hybridoma P20.1 (FERM BP-11061). (16) A kit for expressing, purifying, detecting or quantifying a protein, the recombinant vector according to (7) or the antibody according to any of (8) to (11) Including kit.
  • the tag peptide fusion protein to which the tag peptide is bound can be purified with high purity by an easy operation using the interaction between the tag peptide and the antibody against the tag peptide. Therefore, according to the present invention, even an unskilled person can easily purify an unstable and trace amount of recombinant protein expressed from a cloned gene.
  • the eluent used for purification in the present invention is relatively inexpensive and the antibody can be used repeatedly, the cost of protein purification can be reduced.
  • the tag peptide and an antibody against the tag peptide are used, the tag peptide fusion protein to which the tag peptide is bound can be efficiently detected and / or quantified.
  • FIG. 6 is a diagram schematically showing a tag peptide fusion protein (P4-Fn) in which P4 peptide sequences of various lengths are added to the N-terminal or C-terminal of the 9th to 10th Fn3 domain part (Fn9-10) of human fibronectin. is there. It is the figure which showed typically the vector which expresses the fusion protein of the human growth factor (hGH) which added P4 arrangement
  • hGH human growth factor
  • sequence human fibrinogen gamma chain C domain
  • BAS biotinylation sequence
  • ⁇ C fibrinogen ⁇ chain fragment
  • FIG. 2 is a view showing a part of a DNA sequence encoding a tag peptide fusion protein (hGH-BAS- ⁇ C-P4) added with a P4 sequence and a part of the amino acid sequence of the protein.
  • FIG. 2 is a view showing a part of a DNA sequence encoding a tag peptide fusion protein (hGH-BAS- ⁇ C-P4 ⁇ 3) to which a P4 sequence has been added and a part of the amino acid sequence of the protein.
  • FIG. 1 is a view showing a part of a DNA sequence encoding a tag peptide fusion protein (hGH-BAS- ⁇ C-P4 ⁇ 3) to which a P4 sequence has been added and a part of the amino acid sequence of the protein.
  • FIG. 2 is a view showing a part of a DNA sequence encoding a tag peptide fusion protein (hGH-BAS- ⁇ C-P4 ⁇ 5) to which a P4 sequence is added and a part of the amino acid sequence of the protein. It is a figure which shows the result of having investigated the reactivity of the fusion protein of P4 peptide or its partial peptide, and Fn with respect to a monoclonal antibody (P20.1 antibody) by ELISA method.
  • FIG. 10 shows the DNA / amino acid sequence of the heavy chain variable region of the P20.1 antibody Fab fragment.
  • FIG. 10 shows the DNA / amino acid sequence of the light chain variable region of the P20.1 antibody Fab fragment. It is the schematic diagram (left) of the crystal
  • FIG. 4 is an enlarged view of an X-ray crystallographic analysis diagram in the vicinity of the binding site between a P4 (C8) peptide and a Fab fragment of P20.1 antibody. It is the figure which showed the DNA / amino acid sequence of the single chain Fv fragment (scFV) of P20.1 antibody.
  • scFV single chain Fv fragment
  • FIG. 2 shows a part of a DNA sequence encoding an F-spondin- (P4 sequence ⁇ 3) fusion protein and a part of the amino acid sequence of the fusion protein.
  • FIG. 6 is a diagram showing the results of kinetic analysis by surface plasmon resonance of a tag peptide / fibronectin fusion protein to which a tag sequence in which 4 residues (YPGQ) are repeated 1 to 5 times is added. It is the figure which showed typically the expression construct of the tag peptide fusion protein which added the (P4 arrangement
  • FIG. 9 shows the results of repeated purification of GFPuv protein using P20.1 antibody-Sepharose.
  • the tag peptide of the present invention has the following formula (I): X 1 -Tyr-X 2 -Gly-Gln-X 3 (I) (In formula, X ⁇ 1 >, X ⁇ 2 > and X ⁇ 3 > are the same or different and represent arbitrary amino acid residues.), What is necessary is just to have the amino acid sequence represented.
  • the tag peptide of the present invention has the following formula (II); (X 1 -Tyr-X 2 -Gly-Gln-X 3 ) n (II) (Wherein, X 1 , X 2 and X 3 are the same or different and each represents an arbitrary amino acid residue, n represents an integer of 2 to 6) Good.
  • the tag peptide of the present invention has an amino acid sequence represented by the above formula (I) (hereinafter also referred to as “sequence (I)”), and has the following formula (IV): (Tyr-X 2 -Gly-Gln) (IV) It is preferable that the amino acid sequence represented by (wherein X 2 represents an arbitrary amino acid residue) has two or more amino acid sequences.
  • sequence (IV) in a tag peptide in which the sequence (I) is repeated twice, the amino acid sequence represented by the formula (IV) (hereinafter also referred to as “sequence (IV)”) has two amino acid residues (X 3 and X 3 1 ) It exists in two places on both sides.
  • sequence tag peptide (IV) was repeated 3 times, X 1 is sequence X 3 is Tyr at Gln (I) are included once.
  • the tag peptide which has 2 or more places of sequence (IV) should just have sequence (IV) in at least 2 places in the tag peptide which has sequence (I) at least once,
  • positioning are not limited.
  • X 1 is not particularly limited, but for example, glycine is preferable.
  • X 2 is preferably an amino acid or proline having a small side chain such as serine, valine, cysteine, alanine, threonine, glutamic acid, glycine, or aspartic acid, and more preferably proline.
  • X 3 is preferably a hydrophobic amino acid. Examples include valine, leucine, isoleucine, alanine, phenylalanine, tyrosine, tryptophan, proline, and methionine, and valine is particularly preferable.
  • a particularly preferred sequence is Gly-Tyr-Pro-Gly-Gln-Val (SEQ ID NO: 1).
  • the amino acid constituting the tag peptide in the present invention is an L-amino acid.
  • the tag peptide of the present invention may consist only of the sequence (I) or may contain amino acid residues other than the sequence (I) and the sequence (I). Preferably, it has 2 or more places of sequence (I), More preferably, it has an amino acid sequence which repeated sequence (I) twice or more. When the arrangement (I) has two or more places, the number of times is not limited. Moreover, also when it has an amino acid sequence which repeated sequence (I) twice or more, the repetition frequency is not limited.
  • the tag peptide of the present invention has been confirmed to have improved affinity with the antibody against the tag peptide as the number of repetitions of the sequence (I) increases.
  • the upper limit of the number of amino acid residues of the tag peptide of the present invention is not particularly limited, but is preferably 50 residues or less, more preferably 40 residues or less, and even more preferably 30 residues or less from the viewpoint of practicality.
  • the tag peptide of the present invention includes the following repeating units; A tag peptide having an amino acid sequence in which Gly-Tyr-Pro-Gly-Gln-Val (SEQ ID NO: 1; also referred to as “P4 sequence”) is repeated 3 to 5 times, Or the following repeating unit; A tag peptide having an amino acid sequence obtained by repeating Tyr-Pro-Gly-Gln (SEQ ID NO: 18) 3 to 5 times is particularly preferable.
  • the tag peptide of the present invention can be combined with an arbitrary protein by genetic engineering to form a fusion protein of the tag peptide and an arbitrary protein.
  • the tag peptide may be bound to either the N-terminus or C-terminus of the protein.
  • a tag peptide fusion protein in which such a tag peptide is bound to its N-terminus and C-terminus can be purified in one step with high purity using an antibody that specifically binds to the tag peptide of the present invention.
  • detection, quantification and the like can be performed using the antibody.
  • the tag peptide of the present invention can be chemically bound to any substance. Such a substance chemically bound with the tag peptide of the present invention can be purified simply and with high purity using the specific binding with the tag peptide of the present invention, and can be detected, quantified and the like.
  • the partner substance to which the tag peptide of the present invention is chemically bound is not limited, and examples thereof include proteins, nucleic acids, saccharides, organic polymers, metals and the like.
  • the tag peptide fusion protein of the present invention is a fusion protein of the tag peptide of the present invention described above (hereinafter also simply referred to as “tag peptide”) and an arbitrary protein, and the tag peptide of the present invention is converted to an arbitrary protein. Anything that exists in a combined state may be used.
  • the tag peptide may be bound to either the N-terminus or C-terminus of the protein.
  • a tag peptide fusion protein in which such a tag peptide is bound to its N-terminus or C-terminus is purified with high purity in one step using an antibody that specifically binds to the tag peptide.
  • the tag peptide fusion protein of the present invention can be produced by a known gene recombination technique. Below, the outline is demonstrated.
  • a polynucleotide encoding the tag peptide of the present invention is synthesized by a known method. Examples of the polynucleotide include DNA and RNA, with DNA being preferred.
  • DNA can be synthesized by a DNA synthesizer. Further, DNA may be synthesized after being divided into several parts and then ligated.
  • the DNA sequence of the tag peptide can be of many types due to the degeneracy of the genetic code, but is not particularly limited as long as the peptide expressed from the DNA has the amino acid sequence of the tag peptide of the present invention.
  • the DNA encoding the P4 sequence for example, the DNA sequence described in SEQ ID NO: 9 can be used.
  • An example of a DNA encoding a tag peptide consisting of an amino acid sequence obtained by repeating the P4 sequence three times is shown in SEQ ID NO: 11
  • an example of a DNA encoding a tag peptide consisting of an amino acid sequence obtained by repeating the P4 sequence five times is given in SEQ ID NO: 13. Each is shown.
  • the DNA encoding the target protein is linked to the 3 'end or 5' end of the DNA encoding the synthesized tag peptide.
  • DNA encoding a tag peptide is used as a primer at the 3 ′ end or 5 ′ end of the DNA.
  • a gene linked to a gene can be obtained as a PCR product.
  • a spacer peptide may be inserted between the tag peptide and the target protein.
  • the spacer peptide may be any peptide as long as it does not bind to or associate with an antibody against the tag peptide of the present invention described later and does not interfere with the interaction between the tag peptide and the antibody. Examples thereof include peptides having a protease cleavage sequence.
  • the DNA containing the DNA encoding the obtained tag peptide and protein is appropriately inserted into an expression vector.
  • known expression vectors bacteria-derived, yeast-derived, virus-derived, etc.
  • the promoter contained in the expression vector may be an appropriate promoter corresponding to the host used for expression.
  • an expression vector containing an enhancer, a splicing signal, a poly A addition signal, a selection marker, a replication origin, and the like can be used.
  • the expression vector thus obtained is introduced into a host cell.
  • the host cell is not particularly limited, and microorganisms such as Escherichia coli and yeast; animal cells and the like can be used.
  • Preferred host cells are animal cells.
  • the method for introducing the expression vector into the host cell may be appropriately selected from known transformations according to the host cell.
  • the obtained recombinant microorganism or cell is cultured in an appropriate medium to express the fusion protein to which the tag peptide is bound.
  • the fusion protein to which the tag peptide is bound can be purified in one step from the recombinant microorganism or cell, or in the culture solution using the antibody described below.
  • the polynucleotide encoding the tag peptide of the present invention described in the above method for producing a tag peptide fusion protein and a recombinant vector containing the polynucleotide are also included in the present invention.
  • the recombinant vector of the present invention is not limited to a recombinant vector capable of expressing a fusion protein (tag peptide fusion protein) of a tag peptide and a target protein, and includes a polynucleotide encoding the tag peptide of the present invention. I just need it.
  • the present invention provides an antibody against the tag peptide of the present invention.
  • the antibody of the present invention is not particularly limited as long as it recognizes the tag peptide of the present invention and interacts specifically.
  • an antibody that recognizes the second tyrosine, the fourth glycine and the fifth glutamine from the N-terminus of the sequence (I) and interacts with the tag peptide of the present invention can be mentioned.
  • the tyrosine of the sequence (I) in the tag peptide of the present invention interacts with the tryptophan in the antibody by a hydrophobic interaction
  • the glycine of the sequence (I) The ⁇ carbon interacts with the Trp50 of the H chain in the antibody by hydrophobic interaction
  • the nitrogen atom and oxygen atom of the glutamine of the sequence (I) are the carbonyl oxygen and amide nitrogen atoms of the main chain in the antibody H chain.
  • FIG. 16 shows an X-ray crystal structure analysis diagram of a peptide-antibody binding site showing an example of a specific configuration of amino acid residues in such peptide-antibody interaction.
  • the antibody include antibodies obtained by immunizing mammals such as mice and rabbits using a peptide corresponding to the N-terminal 20 residues of human thrombin receptor PAR4 as an antigen, and more specifically, (A) an antibody having a heavy chain variable region having the amino acid sequence represented by SEQ ID NO: 3 and a light chain variable region having the amino acid sequence represented by SEQ ID NO: 5, or (b) an amino acid sequence represented by SEQ ID NO: 7
  • a single chain antibody having having
  • mouse-mouse hybridoma P20.1 accession number FERM BP-11061
  • National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center (1-1 1-1 Higashi, Tsukuba, Ibaraki, Japan)
  • the antibody (b) is a single chain antibody obtained using the variable region of the antibody (a).
  • the single chain antibody (b) is preferably used as a dimer to tetramer by a gene recombination technique or the like.
  • the antibody (a) can be produced, for example, using mouse-mouse hybridoma P20.1 (FERM BP-11061) as described in the Examples described later.
  • a mouse-mouse hybridoma P20.1 (FERM BP-11061) that produces the antibody of the present invention is also one aspect of the present invention.
  • the antibodies (a) and (b) can be produced by a gene recombination technique.
  • a DNA encoding the amino acid sequence represented by SEQ ID NO: 4 SEQ ID NO: 3
  • a DNA encoding the amino acid sequence represented by SEQ ID NO: 6 SEQ ID NO: 5
  • DNA encoding the amino acid sequence represented by SEQ ID NO: 8 (SEQ ID NO: 7) is first synthesized. These DNAs are inserted into an appropriate expression vector, and the vector is introduced into a host cell to express the protein. Next, the antibody (a) or (b) can be obtained by separating and purifying the expressed protein.
  • the present invention provides a protein purification method using the antibody of the present invention.
  • the protein purification method of the present invention may be any method including the following steps (i) to (iii).
  • (I) Step of preparing a mixture containing the tag peptide fusion protein of the present invention and a substance other than the tag peptide fusion protein (ii)
  • the antibody of the present invention is added to the mixture obtained in the step (i) A step of forming a conjugate of the tag peptide fusion protein and the antibody by acting (iii) a step of releasing the tag peptide fusion protein from the antibody by acting an eluent on the conjugate obtained in the step (ii) Since the antibody of the invention specifically interacts with the tag peptide in the tag peptide fusion protein of the present invention, the use of the antibody can purify the tag peptide fusion protein of the present invention in a single step with high purity. it can.
  • the method for preparing the mixture in the step (i) is not particularly limited.
  • a tag peptide fusion protein to which a target tag peptide is bound is present in a cell
  • the cultured recombinant microorganism or cell is dissolved or pulverized by a known method, and the tag peptide fusion protein and the tag A mixture (cell lysate) containing a substance other than the peptide fusion protein is obtained.
  • the tag peptide fusion protein is obtained as an insoluble fraction such as inclusion bodies
  • the protein solubilization step, the solubilized protein folding (unwinding) step, etc. are appropriately performed before the step (ii). May be.
  • the culture supernatant is collected and used as a mixture in the step (ii).
  • the cell lysate and culture supernatant are centrifuged to remove solid components, and the pH is adjusted to neutral (7 to 8) as necessary.
  • concentration of the target protein in these mixtures is 0.2 microgram / mL or more.
  • an immobilized antibody in which the antibody of the present invention is immobilized on a carrier is not particularly limited as long as the effect of the present invention is exhibited, and a known carrier can be used.
  • a known carrier can be used.
  • Sepharose GE Healthcare
  • Affigel BIO-RAD
  • the method for immobilizing the antibody on the carrier is not particularly limited, and may be appropriately selected depending on the type of carrier.
  • Sepharose the antibody is dialyzed with a coupling buffer, and then CNBr-activated Sepharose (GE Healthcare) and the antibody are mixed at room temperature for about 1 to 2 hours to prepare a Sepharose-immobilized antibody. can do.
  • both a column method in which the above-described immobilized antibody is packed in a column and a batch method in which the immobilized antibody is mixed with a sample and bound in a suspended state can be used.
  • the immobilized antibody is packed into a column, and the mixture prepared in step (i) is allowed to flow through the column to cause the antibody of the present invention to act on the tag peptide.
  • a tag peptide and an antibody couple
  • about 100 ⁇ L of the immobilized antibody per 10 mL of the sample solution is added and gently mixed to form a conjugate of the tag peptide fusion protein and the antibody, and then packed into the column.
  • the eluting substance is allowed to act on the conjugate obtained in step (ii) to release the tag peptide fusion protein from the antibody. That is, the antibody and the tag peptide are dissociated by allowing the eluting substance to act on the bound substance, and the tag peptide fusion protein bound to the immobilized antibody via the tag peptide is released from the antibody.
  • the eluting substance may be any substance that has an action of dissociating the bond between the tag peptide of the present invention and the antibody of the present invention. Examples of such a substance include hydrophilic organic solvents such as polyol and the tag peptide of the present invention.
  • the eluent can be appropriately selected according to the type of the target protein, etc., but a hydrophilic organic solvent is preferred. Of these, propylene glycol and dimethyl sulfoxide are particularly preferable. Ethylene glycol can also be used.
  • a method for allowing the eluent to act on the conjugate of the tag peptide fusion protein and the antibody a method in which the eluent is mixed with water or an appropriate buffer to form an eluent and the eluent is passed through the column is preferable.
  • the tag peptide fusion protein released from the antibody by the eluent in the eluent is eluted from the column together with the eluent. What is necessary is just to select water or a buffer solution according to the kind of protein.
  • the content of the eluting substance in the eluent is appropriately changed depending on the target tag peptide fusion protein or the kind of the eluting substance.
  • a hydrophilic organic solvent used as an eluent, the total volume of water or a buffer solution and the hydrophilic organic solvent is 100, and the hydrophilic organic solvent is about 40% (v / v) or more.
  • the volume ratio of water or buffer solution to hydrophilic organic solvent is preferably about 60:40 to 40:60.
  • the concentration of the tag peptide is about 0.1 to 1 mg / mL in water or a buffer solution.
  • the tag peptide used as the eluting substance is not limited as long as it is a tag peptide of the present invention, but preferably includes the sequence (I).
  • the tag peptide of the present invention can be produced by a known peptide synthesis method.
  • a salt may be added to the eluent to stabilize the obtained tag peptide fusion protein.
  • the type of salt may be selected depending on the type of protein and the like, and is not particularly limited.
  • the salt concentration may be adjusted as appropriate according to the type of protein, and is not particularly limited.
  • the immobilized antibody after purification of the tag peptide fusion protein can be used repeatedly by washing with an eluent containing an eluent.
  • the protein purification method of the present invention may further include (iv) a step of cleaving the tag peptide from the tag peptide fusion protein after the steps (i) to (iii).
  • a spacer peptide having a protease cleavage sequence is inserted between the tag peptide and the target protein, a protease that recognizes the protease cleavage sequence is allowed to act on the purified fusion protein under appropriate conditions.
  • the target protein to which no peptide is bound can be obtained.
  • the tag peptide and the antibody specifically interact with each other, and the interaction is easily dissociated by an eluent such as a hydrophilic organic solvent.
  • an eluent such as a hydrophilic organic solvent.
  • Proteins can be purified with high purity in one step.
  • a hydrophilic organic solvent or the like is used as an eluent, the target fusion protein and antibody can be purified without being denatured. Therefore, according to the present invention, a sufficient amount of high-quality recombinant protein for X-ray crystal structure analysis can be obtained by one-step purification operation. In order to crystallize, it is necessary to prepare a highly purified, chemically uniform protein with 100% biological activity on the order of milligrams. Suitable for the preparation of proteins.
  • the immobilized antibody can be repeatedly used for purification.
  • the present inventor has repeatedly used the immobilized antibody obtained by immobilizing the P20.1 antibody on Sepharose for purification of the tag peptide fusion protein (GFPuv-P4 ⁇ 3 fusion protein) of the present invention, and examined the influence thereof. As a result, it was confirmed that the yield was only slightly reduced even after repeated use 21 times (see [10] in the Examples).
  • the hydrophilic organic solvent used as an eluent is relatively inexpensive, the protein can be purified at low cost and simply by using the protein purification method of the present invention.
  • the present invention provides a protein detection or quantification method using the antibody of the present invention.
  • the method for detecting or quantifying the protein of the present invention may be any method including the following steps (i) to (iii).
  • (I) A step of preparing a sample containing the tag peptide fusion protein of the present invention
  • (ii) The antibody of the present invention is allowed to act on the sample obtained in the step (i) to produce a tag peptide fusion protein and an antibody.
  • Step of forming a conjugate (iii) Step of detecting or quantifying the conjugate obtained in the step (ii)
  • the antibody of the present invention specifically interacts with the tag peptide in the tag peptide fusion protein of the present invention.
  • the fusion protein to which the tag peptide is bound can be detected or quantified.
  • the method for detecting or quantifying the protein of the present invention can be applied to various immunological techniques such as Western blotting, sandwich ELISA, flow cytometry, immunoprecipitation, and immunohistochemistry.
  • the method for preparing the sample in the step (i) is not particularly limited. For example, by lysing or crushing cells expressing the target tag peptide fusion protein, A sample containing the peptide fusion protein can be prepared.
  • the method for detecting or quantifying the above will be described below by taking as an example the case of performing sandwich ELISA or Western blotting.
  • the tag peptide fusion protein can be detected or quantified using the antibody of the present invention as a detection antibody or a capture antibody.
  • the antibody of the present invention is modified or labeled in advance by some means.
  • the modification or labeling means is not particularly limited, and examples thereof include biotinylation, enzyme labeling such as peroxidase, fluorescent dye labeling such as fluorescein, and labeling with a radioisotope such as 125I.
  • an antibody that specifically interacts with a protein portion other than the tag peptide in the fusion protein is prepared, and this antibody is immobilized on a microtiter plate.
  • the sample obtained in the step (i) is flowed over the antibody solid-phased in (2), and the tag peptide fusion protein is captured by the antibody.
  • the antibody of the present invention is allowed to act on the captured tag peptide fusion protein to form a conjugate of the tag peptide fusion protein and the antibody of the present invention.
  • the operation (6) is then performed.
  • enzyme-labeled streptavidin is allowed to act on the formed conjugate to bind biotin in the antibody and streptavidin.
  • Add enzyme color or luminescent substrate for example, ABTS for peroxidase. Since the substrate is decomposed by the enzyme and a color reaction product is obtained, the bound product of the tag peptide fusion protein and the antibody can be detected by measuring the absorbance of the sample.
  • the absorbance is quantitatively correlated with the amount of the tag peptide fusion protein in the sample
  • the bound product of the fusion protein and the antibody can be quantified.
  • the detection sensitivity can be increased by using a substrate sensitizer together with the chromogenic substrate.
  • A-2) When the antibody of the present invention is used as a capture antibody (1)
  • the antibody of the present invention is immobilized on a microplate or the like.
  • (2) The sample obtained in the step (i) is added to the immobilized antibody, and the protein is captured by the antibody to form a conjugate of the fusion protein and the antibody.
  • (3) An antibody that specifically interacts with a protein portion other than the tag peptide in the fusion protein is allowed to act on the formed conjugate, and the conjugate formed in (2) is bound to this antibody.
  • an antibody (enzyme-labeled antibody: secondary antibody) that reacts specifically with the antibody added in (3) is further acted on.
  • An enzyme substrate usually a chromogenic or luminescent substrate is added to detect the product of the enzyme reaction.
  • the tag peptide fusion protein of the present invention and the antibody of the present invention can be applied to fluorescent antibody methods, immunoprecipitation methods, detection reagent development, cell imaging, sensor development, and the like.
  • kits for protein expression, purification, detection or quantification The present invention provides kits for protein expression, purification, detection or quantification.
  • the kit of this invention should just contain the recombinant vector of this invention, or the antibody of this invention.
  • protein expression, purification, detection or quantification can be easily performed.
  • the expression kit essentially includes the recombinant vector of the present invention, and the purification, detection or quantification kit necessarily includes the antibody of the present invention. It is preferable that the kit contains both the recombinant vector of the present invention and the antibody of the present invention.
  • the recombinant vector included in the kit is provided in a form that allows the user of the kit to produce an expression vector of a tag peptide fusion protein in which the tag peptide of the present invention and the protein of interest are combined by incorporating DNA encoding the protein of interest. It is preferable. A user can easily express a desired tag peptide fusion protein by introducing the prepared expression vector into an appropriate host cell and culturing the host cell.
  • the antibody contained in the kit is in a state of being immobilized on an appropriate carrier (in the case of a purification kit), in an appropriate label (enzyme label, radioactive label, fluorescent label, etc.) or modified (biotinylated, etc.) And kits for quantitative determination) are preferred.
  • the method for purifying, detecting or quantifying the protein using this kit may be the same as the method for purifying the protein of the present invention and the method for detecting or quantifying the protein of the present invention.
  • the kit may contain components such as a secondary antibody, a reaction buffer, a substrate, and instructions for use.
  • the tag system of the present invention is excellent in the following points.
  • the recognition sequence is short, and there is no charged amino acid that causes non-specific adsorption.
  • the interaction between the target tag sequence and its antibody has an affinity that allows one-step purification of the protein.
  • the interaction of (II) is dissociated under conditions that do not affect the protein (for example, 40% ethylene glycol), high-quality antigen purification and repeated use of the column are possible at the same time. is there.
  • IV Since the atomic resolution three-dimensional structure of the complex of the antibody and the tag peptide has been acquired, further modification and improvement are possible.
  • (V) It can be applied to immunoblotting, fluorescent antibody method, immunoprecipitation method, etc., and has high applicability not only for protein purification but also for development of detection reagents, cell imaging, sensor development, etc.
  • (III) is not found at all in protein purification systems using antibodies that have been commercially available and mass-produced so far.
  • Anti-PAR4 peptide antibody was prepared by a conventional method as follows. (1-1) Peptide synthesis and immunization with peptide A peptide (SEQ ID NO: 2) having the following sequence corresponding to the N-terminal 20 residues of human thrombin receptor PAR4 was synthesized by the Fmoc solid phase method. NH 2 -GGDDSTPSILPAPRGYPGQVC-COOH
  • the peptide purified by reverse phase HPLC was bound to a carrier protein keyhole limpet hemocyanin (KLH) via a cysteine (Cys) residue, and this was used as an immunogen.
  • KLH keyhole limpet hemocyanin
  • Cys cysteine residue
  • Balb / c mice were immunized with the above peptide-KLH complex together with an adjuvant, and the antibody titer was measured by ELISA. As a result, a high antibody titer was obtained by immunization of 25 ⁇ g ⁇ 5 times. Spleen cells of this mouse were subjected to fusion.
  • mouse-mouse hybridoma P20.1 (Accession number FERM BP-11061 was established as an independent administrative agency, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, 1-chome East, Tsukuba, Ibaraki, Japan. No. 1 No. 1 Central No. 6 (zip code 305-8666)) has been deposited internationally (date of deposit: December 11, 2007).
  • the Fab fragment of the P20.1 antibody was prepared using PUNCE Immunopure Fab preparation kit. That is, P20.1 antibody (IgG) purified by immobilized papain was digested at 37 ° C. for 16 hours, and the digest was subjected to protein A sepharose, and the unbound product was further purified by gel filtration.
  • P20.1 antibody IgG
  • FIG. 2 (a) shows a vector for expressing a fusion protein of human growth factor (hGH) to which a P4 sequence is added and human fibrinogen ⁇ chain C domain in animal cells.
  • FIG. 2 (b) shows a construct in which the P4 sequence (6 residues) is repeated 1, 3 or 5 times after the biotinylation sequence (BAS) and fibrinogen ⁇ chain fragment ( ⁇ C) connected to the hGH minigene. Indicates.
  • a part of the DNA sequence encoding the tag peptide fusion protein (hGH-BAS- ⁇ C-P4) added with the P4 sequence is shown in SEQ ID NO: 15 and FIG.
  • the DNA sequence represented by SEQ ID NO: 15 is the 2101st to 3120th base sequences of the DNA 5424 bases encoding hGH-BAS- ⁇ C-P4.
  • the underlined part represents the sequence of hGH.
  • a portion to which a shadow is applied is a His tag array. Italic type represents a linker moiety.
  • the thick underlined portion is a TEV protease site.
  • a broken line part is a BAS arrangement.
  • Bold is the P4 tag part.
  • the amino acid sequence boxed is the P4 sequence.
  • Others are fibrinogen ⁇ C moieties.
  • a DNA sequence encoding a tag peptide consisting of an amino acid sequence (P4 ⁇ 3) obtained by repeating the P4 sequence three times is encoded by SEQ ID NO: 11, and a tag peptide consisting of an amino acid sequence (P4 ⁇ 5) obtained by repeating the P4 sequence five times is encoded.
  • the DNA sequence is shown in SEQ ID NO: 13, respectively.
  • a part of the DNA sequence of the construct added with DNA encoding the P4 ⁇ 3 sequence is shown in FIG.
  • FIG. 4 (a) A part of the DNA sequence of the construct added with DNA encoding the P4 ⁇ 5 sequence is shown in FIG.
  • the 1st to 3000th base parts and the 3181st to 5460th base parts are omitted from 5460 bases.
  • the 1st to 3000th base parts and the 3181st to 5696th base parts of 5496 bases are omitted.
  • the bold type is the P4 tag portion
  • the amino acid sequence enclosed in the box is the P4 sequence
  • the others are the fibrinogen ⁇ C portion.
  • the prepared plasmid was transfected into human fibroblast cell line HEK293T, and the cells were cultured in a DMEM medium containing 10% fetal bovine serum.
  • Human growth factor / human fibrinogen / tag peptide fusion protein was purified from the obtained culture supernatant by Ni-NTA agarose (Qiagen) chromatography.
  • Ni-NTA agarose Qiagen
  • mouse anti-hGH monoclonal antibody HGH-B American Type Culture Collection
  • antiserum against biotinylated sequence (BAS) were used.
  • FIG. 5 shows the results of ELISA of five types of tag peptide fusion proteins in which P4 peptide is fused to the N-terminus of Fn. From this result, it was found that only the 6-residue portion (GYPGQV: P4 sequence (SEQ ID NO: 1)) on the C-terminal side of the P4 peptide is sufficient for recognition. Moreover, the result of having investigated similarly about the variant which changed these 6 residues into Ala one by one is shown in FIG. In FIG.
  • the control is uncoated, and WT is the value of the well coated with P4 (20) -Fn.
  • G, Y, P, G, Q and V represent modified fusion proteins in which each of these amino acids is substituted with alanine.
  • Y2, G4 and Q5 are essential, but it was found that the reactivity remained even when G1, P3 or V6 was changed to Ala.
  • FIG. 10 shows an outline of the phage display method. It randomized 7 amino acids at the N-terminus of the gIII coat protein of M13 phage (but of which Tyr2 and Gln5 is fixed) so as to insert the library performs construction of phagemids shown in FIG. 11, live with 10 7 diversity A rally was made.
  • the P20.1 antibody generally has high affinity for the following peptide sequences.
  • X1-Tyr2-Pro3-Gly4-Gln5-X6 (In the above peptide sequence, X1 represents an arbitrary amino acid residue.
  • Pro3 may be an amino acid having a small side chain such as S, V, C, A, T, E, G, D, and X6 is hydrophobic. Any sex amino acid can be used.)
  • the increase was ligated with pDrive Cloning Vector (QIAGEN PCR Cloning Kit) to transform E. coli DH5a. This was plated on LB plates (added with ampicillin, X-gal and IPTG) to obtain colonies.
  • pDrive Cloning Vector QIAGEN PCR Cloning Kit
  • the DNA sequence of the obtained DNA clone was determined for the variable region using the primers used for RT-PCR. In addition, an internal primer was designed based on the sequence, and the constant region was also sequentially determined.
  • the resulting DNA / amino acid sequences are shown in SEQ ID NOs: 3 and 5 and FIGS.
  • SEQ ID NO: 3 and FIG. 13 are DNA / amino acid sequences of the heavy chain variable region of the P20.1 antibody Fab fragment
  • SEQ ID NOs: 5 and 14 are DNA / amino acid sequences of the light chain variable region.
  • the three-dimensional structure was determined using the molecular replacement method.
  • Monoclonal1Antibody 2D12.5 Fab Complexed with Gd-DOTA (PDB ID: 1NC4) having the same IgG1 as the P20.1 antibody and having a light chain of ⁇ was used.
  • PDB ID: 1NC4 Monoclonal1Antibody 2D12.5 Fab Complexed with Gd-DOTA
  • the primary structure of the P20.1 antibody determined in 5-1 was used.
  • automatic modeling is performed with ARP / wARP.
  • ARP / wARP As a result, a model of 736 residues out of 884 residues is constructed, and the side chain of 650 residues among them is constructed. I was able to assign the structure.
  • the model was fitted to the improved map, and the structure was refined. The statistical values are as shown in Table 3.
  • FIG. 16 shows the overall structure of one of the two complexes and a close-up of the antigen recognition site. From the clarified three-dimensional structure, the reason for the specificity of the recognition peptide sequence (requirement of Tyr2, Gly4, Gln5) became very clear.
  • scFv is obtained as inclusion bodies, it was dissolved from the insoluble fraction with guanidine hydrochloride, purified with Ni-NTA resin, and then unwound by step dialysis. About 2 mg of scFv was obtained from 1 L culture.
  • FIG. 20 (a) shows the result of the fusion protein having a tag in which the P4 sequence is repeated once.
  • FIG. 20 (b) shows the result of the fusion protein having a tag in which the P4 sequence is repeated three times.
  • the results of the fusion protein having the tag are shown in FIG. 20 (c), respectively.
  • Those having the P4 sequence only once had very weak affinity for the P20.1 antibody, but those duplicated multiple times increased more than 4-fold with maximum binding ability. It was observed.
  • P4 ⁇ 3 FIG. 20 (b)
  • P4 ⁇ 5 shows a further increase in binding ability, and this effect depends on the number of repetitions of the P4 sequence (6 residues). It became clear.
  • biotinylated P20.1 antibody (5 ⁇ g / mL) was reacted at room temperature for 30 minutes, washed three times, added with peroxidase-labeled streptavidin (Zymed), and allowed to stand at room temperature for 15 minutes, and peroxidase substrate (ABTS) ) And the absorbance at 405 nm was measured. The results are shown in FIG. As shown in FIG.
  • the beads were sedimented by centrifugation, and the hGH- ⁇ C-P4 fusion protein in the supernatant was quantified by sandwich ELISA (hGH antibody capture + anti-BAS serum detection system independent of reactivity to P20.1 antibody). (After pull down). The standard was separately purified with Ni-NTA agarose, and a calibration curve was written to estimate the fusion protein concentration before and after pulling down the P20.1 antibody. The results are shown in Table 4. As is apparent from Table 4, it was found that a binding efficiency of about 80% was obtained by repeating the P4 sequence 3-5 times.
  • Results are shown in FIG. Note that the above numbers are the lane numbers in FIG. Ni is an eluate from Ni-NTA beads.
  • the bound tagged fusion protein was not only eluted at a peptide concentration of 0.1 mg / mL or more, but was also completely eluted by a combination of propylene glycol and sodium chloride.
  • Some elution conditions often used in affinity chromatography with monoclonal antibodies (acidic conditions at pH 2.2, chaotropic ions such as high concentrations of iodide ions) do not elute at all, but basic conditions at pH 11.5 The elution was also partial.
  • the fusion protein to which the tag peptide was bound eluted under mild conditions.
  • the eluate from the P20.1 antibody beads is free of any impurities, and extremely high-purity purification is achieved in one step. I understood.
  • F-spondin a protein responsible for axon guidance in the fetal brain, is fused with a P4 ⁇ 3 tag sequence and purified by P20.1 antibody sepharose Went.
  • the P4 ⁇ 3 sequence (18 residues) was connected to the signal sequence of mouse nitrogen, and the 146 amino acid part of the N-terminal domain of F-spondin was sandwiched between the TEV protease cleavage sequence (7 residues). Fused.
  • SEQ ID NO: 16 and FIG. 24 show the nucleotide sequences of positions 901 to 1560 in the DNA sequence 6045 bases encoding the prepared F-spondin recombinant protein.
  • nucleotide sequences 1 to 900 and 1561 to 6045 are omitted.
  • the amino acid sequence of the recombinant protein encoded by the DNA sequence of SEQ ID NO: 16 is shown in SEQ ID NOS: 16 and 17 and FIG. 24, respectively.
  • the DNA base sequence encoding F-spondin is described in, for example, Miyamoto et al. Arch. Biochem. Biophys. 390 (1), 93-100, 2001.
  • transient expression of the tag peptide / F-spondin fusion protein by HEK293T cells was performed, and after 1 week, 400 mL of culture supernatant was obtained. This was adsorbed to 2 mL of P20.1 antibody-Sepharose, washed with TBS, eluted with a buffer containing 40% propylene glycol and 1M NaCl, and subjected to SDS gel electrophoresis. The results are shown in FIG. In FIG. 25, lane 1: marker, lane 2: expression culture supernatant, lanes 3 and 4: wash fraction, lanes 5 to 8: elution fraction. As is clear from FIG.
  • FIG. 26 shows an enlarged photograph of purified F-spondin crystals.
  • X-ray crystal diffraction experiments were performed at the beam line AR-NW12A of the High Energy Laboratory, and data with a resolution of 1.85 mm were obtained.
  • FIG. 27 a very clear electron density map was obtained, and the model construction, which normally takes one day to several weeks, was completed in only one hour.
  • FIG. 28 shows an expression construct in which a (P4 sequence ⁇ 3) tag is fused to the N-terminus of Reelin.
  • the tag peptide, tag peptide fusion protein, and antibody against the tag peptide of the present invention are useful as those that can be used in a system that can purify a recombinant protein with high purity and low cost by an easy operation.
  • the protein purification method of the present invention is useful as a method for purifying a recombinant protein with high purity and low cost by an easy operation.
  • the method for detecting or quantifying the protein of the present invention is useful as a method capable of efficiently detecting or quantifying a recombinant protein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、式(I);X1-Tyr-X2-Gly-Gln-X3(式中、X1、X2及びX3は、同一又は異なって、任意のアミノ酸残基を表す。)で表わされるアミノ酸配列を有するタグペプチド、該タグペプチドに対する抗体を提供する。本発明のタグペプチド及び抗体を組み合わせて用いることにより、クローニングされた遺伝子から発現されるタンパク質を、容易な操作で高純度に、しかも安価に精製可能なシステムを構築することができる。

Description

タグペプチド及びその利用
 本発明は、タグペプチド及びその利用に関し、より詳細には、タンパク質を精製、検出又は定量するために利用可能なタグペプチド、該タグペプチドが結合したタグペプチド融合タンパク質、該タグペプチドをコードするポリヌクレオチド及び該ポリヌクレオチドを含む組換えベクター、並びに、該タグペプチドに対する抗体及び該抗体を用いるタンパク質の精製方法、検出方法、定量方法、キットに関する。
 ライフサイエンス分野において、遺伝子組換え技術を用いたタンパク質の生産は、基礎研究、応用研究及び製品開発のすべての分野で行われている。しかしながら、生産されたタンパク質を高純度で単離及び精製するための技術は限られている。
 アフィニティー(親和性)クロマトグラフィーは、最も強力なタンパク質の精製手段の1つである。このようなクロマトグラフィーとしては、タンパク質のN末端又はC末端に6~10残基のヒスチジンを含むペプチド(ヒスチジンタグ)を付加し、このヒスチジンタグとニッケルなどの金属との相互作用を利用してタンパク質を分離精製する方法が知られている。また、タグペプチド(ペプチドタグ)とそれに対する抗体の相互作用を利用する方法が知られている(例えば、非特許文献1及び非特許文献2)。
 しかしながら、前者のヒスチジンタグを用いる方法は、ニッケルとヒスチジンタグとの特異性が低く、目的とするヒスチジンタグが付加されたタンパク質以外のタンパク質や、タンパク質以外の化合物等も吸着する。従って、一段階の精製で高純度のタンパク質を得ることができないという問題点があった。
 後者のタグペプチドとそれに対する抗体の相互作用を利用するタンパク質の検出及び精製システムとして、シグマ社から販売されているFLAG(登録商標)が広く利用されている。この技術は、FLAGペプチドとこれに対する抗体(M1抗体、M2抗体等)を使用するものであり、現在最も特異性に優れていると考えられる。しかしながら、FLAG(登録商標)は高価であるため、コスト的な面からその使用が制限される場合がある。
 また、従来のタグペプチドとそれに対する抗体とを用いる方法では、抗原(タグペプチド)-抗体の相互作用が強固であるため、抗体と結合した抗原を免疫アフィニティーカラムから溶出させることは容易ではない。このため、タンパク質のアフィニティー精製方法において、通常抗原の溶出には、強酸性(例えばpH3)又は強アルカリ性(例えばpH10)の溶液、タンパク質の変性剤(高濃度の尿素又は塩酸グアニジン)等の溶離液が用いられる。しかしながら、これらの溶離液は、目的とするタンパク質を変性させ、又はその安定性を低下させるものであり、特にマルチサブユニットの酵素等の収率が非常に低くなるという問題があった。さらに、このような溶離液を用いると、精製用カラムに使用されている抗体も劣化しやすく、繰り返し使用することができないという問題点があった。FLAG(登録商標)についても、精製等に用いるM1抗体及びM2抗体は繰り返し使用すると抗原との特異性が低下するため、繰り返し使用が限られている。
 従って、現在のところ、安価に、しかも容易な操作で純度の高いタンパク質を単離及び精製することができ、さらに繰り返し使用することができるタンパク質の精製システムは開発されていない。
Protein Expression and Purification 41 (2005)98-105 "Advance in Epitope Tagging Strategies", Genetic Engineering & Biotechnology News, April 1, 2007
 本発明は、クローニングされた遺伝子から発現されるタンパク質を、容易な操作で高純度に、しかも安価に精製できるシステムに使用可能な新規なタグペプチド、及びこのタグペプチドが結合したタグペプチド融合タンパク質を提供することを目的とする。また、このタグペプチドをコードするポリヌクレオチド、このポリヌクレオチドを含む組換えベクター、このタグペプチドに対する抗体を提供することを目的とする。さらに、このタグペプチド及びそれに対する抗体の相互作用を利用する、安価に簡便に実施可能なタンパク質の精製方法、タンパク質の検出方法及びタンパク質の定量方法、並びにタンパク質を発現、精製、検出、もしくは、定量するためのキットを提供することを目的とする。
 本発明者は、タグペプチドと、該タグペプチドを認識する抗ペプチド抗体とを利用するアフィニティータグシステムについて鋭意研究した。その結果、ヒトトロンビン受容体PAR4のN末端20残基に相当する配列(配列番号2:以下、「P4ペプチド」ともいう)からなるペプチドを抗原として作製した抗体(以下、「P20.1抗体」ともいう)と該抗体の認識配列を有するペプチドとを、タンパク質のアフィニティー精製システムに応用できることを見出した。さらに研究を進め、P20.1抗体が、ヒトトロンビン受容体PAR4のN末端20残基のうちのC末端側の6残基(Gly-Tyr-Pro-Gly-Gln-Val:配列番号1)を認識していること、該6残基の中でもN末端側から2番目のチロシン、4番目のグリシン及び5番目のグルタミンが抗体との相互作用に不可欠であることを見出した。さらに、タグペプチドにおいてこの6残基の配列(以下、「P4配列」ともいう)を複数回繰り返すことにより、タグペプチドとP20.1抗体との親和性が増大することを見出し、このような重複配列を有するタグペプチドとP20.1抗体とを用いると、クローニングされた遺伝子から発現されるタンパク質を1段階で高純度に精製することができることに想到した。
 また、アフィニティー精製の条件をさらに検討したところ、このような重複配列を有するタグペプチドとP20.1抗体との相互作用は、ポリオール等の親水性の有機溶媒により容易に解離できることを見出した。
 従来の抗原抗体相互作用を利用するアフィニティー精製システムでは、溶離液に強酸性又は強アルカリ性溶媒等を用いる必要があったが、本発明の精製システムでは、溶離物質にポリオール等の親水性の有機溶媒を使用できることから、穏やかな条件下でタンパク質を精製可能である。従って、目的とするタンパク質を変性等させることなく精製可能であり、しかも抗体の劣化が起こりにくいため、精製システムを繰り返し利用することができるという利点を有する。また、溶離物質として用いられる親水性の有機溶媒は、従来の溶離液(例えば、FLAG(登録商標)の溶離液等)と比較して安価であるため、タンパク質の精製にかかるコストを削減することが可能であることを見出した。なお、本明細書中、「溶離物質」とは、抗体とタグペプチドとを解離させる作用を有する物質を意味する。
 さらに、このような重複配列を有するタグペプチドと抗体とを用いると、X線結晶構造解析のための高品質な組換えタンパク質を、一段階の精製操作で十分量得ることができることを見出した。タンパク質の結晶化のためには極めて精製度の高い、化学的に均一な、しかも生物活性を100%保ったタンパク質をミリグラムオーダーで調製する必要があるが、本発明の技術は、X線結晶構造解析のためのタンパク質の調製に好適なものである。
 さらに、このような重複配列を有するタグペプチド及び抗体を、タンパク質の検出や定量に利用することができることを見出した。本発明者はさらに研究を重ね、本発明を完成させるに至った。
 すなわち、本発明は以下の(1)~(16)に関する。
(1)下記式(I);
-Tyr-X-Gly-Gln-X   (I)
(式中、X、X及びXは、同一又は異なって、任意のアミノ酸残基を表す。)で表わされるアミノ酸配列を有するタグペプチド。
(2)下記式(II);
(X-Tyr-X-Gly-Gln-X)n   (II)
(式中、X、X及びXは、同一又は異なって、任意のアミノ酸残基を表す。nは、2~6の整数を表す)で表わされるアミノ酸配列を有するタグペプチド。
(3)式(II)で表わされるアミノ酸配列が、下記式(III);
(Gly-Tyr-Pro-Gly-Gln-Val))m   (III)
(式中、mは、3~5の整数を表す)である前記(2)に記載のタグペプチド。
(4)下記式(IV);
(Tyr-X-Gly-Gln)   (IV)
(式中、Xは任意のアミノ酸残基を表す。)で表わされるアミノ酸配列を2箇所以上有する前記(1)に記載のタグペプチド。
(5)前記(1)~(4)のいずれかに記載のタグペプチドが結合したタグペプチド融合タンパク質。
(6)前記(1)~(4)のいずれかに記載のタグペプチドをコードするポリヌクレオチド。
(7)前記(6)に記載のポリヌクレオチドを含む組換えベクター。
(8)前記(1)~(4)のいずれかに記載のタグペプチドに対する抗体。
(9)配列番号3で表わされるアミノ酸配列を有する重鎖可変部及び配列番号5で表わされるアミノ酸配列を有する軽鎖可変部を有する前記(8)に記載の抗体。
(10)配列番号7で表わされるアミノ酸配列を有する1本鎖抗体である前記(8)に記載の抗体。
(11)マウス-マウス ハイブリドーマP20.1(FERM BP-11061)により産生されるモノクローナル抗体である前記(9)に記載の抗体。
(12)下記(i)~(iii)の工程を含む、タンパク質の精製方法。
(i)前記(5)に記載のタグペプチド融合タンパク質と、該タグペプチド融合タンパク質以外の物質とを含有する混合物を調製する工程
(ii)前記(i)の工程で得られた混合物に、前記(8)~(11)のいずれかに記載の抗体を作用させて前記タグペプチド融合タンパク質と該抗体との結合物を形成させる工程
(iii)前記(ii)の工程で得られた結合物に溶離物質を作用させて前記タグペプチド融合タンパク質を抗体から遊離させる工程
(13)溶離物質が親水性の有機溶媒である前記(12)に記載のタンパク質の精製方法。
(14)下記(i)~(iii)の工程を含む、タンパク質を検出又は定量する方法。
(i)前記(5)に記載のタグペプチド融合タンパク質を含有する試料を調製する工程
(ii)前記(i)の工程で得られた試料に、前記(8)~(11)のいずれかに記載の抗体を作用させて前記タグペプチド融合タンパク質と該抗体との結合物を形成させる工程
(iii)前記(ii)の工程で得られた結合物を検出又は定量する工程
(15)マウス-マウス ハイブリドーマP20.1(FERM BP-11061)。
(16)タンパク質を発現、精製、検出、もしくは、定量するためのキットであって、前記(7)に記載の組換えベクター、又は、前記(8)~(11)のいずれかに記載の抗体を含むキット。
 本発明によれば、タグペプチドとタグペプチドに対する抗体の相互作用を利用して、タグペプチドが結合しているタグペプチド融合タンパク質を容易な操作で高純度に精製することができる。従って、本発明によれば、未熟練者であってもクローニングされた遺伝子から発現される不安定かつ微量な組換えタンパク質の精製を容易に行うことができる。また、本発明において精製に用いる溶離物質は比較的安価であり、さらに抗体を繰り返し使用できることから、タンパク質精製のコストを削減できる。さらに、上記タグペプチドとそれに対する抗体を用いると、タグペプチドが結合したタグペプチド融合タンパク質を効率よく検出及び/又は定量することができる。
ヒトフィブロネクチンの第9-第10Fn3ドメイン部分(Fn9-10)のN末端又はC末端に種々の長さのP4ペプチド配列を付加したタグペプチド融合タンパク質(P4-Fn)を模式的に示した図である。 P4配列を付加したヒト成長因子(hGH)とヒトフィブリノーゲンγ鎖Cドメインとの融合タンパク質を動物細胞で発現するベクターを模式的に示した図である。 hGHのミニジーンにつなげたビオチン化配列(BAS)とフィブリノーゲンγ鎖フラグメント(γC)の後に、P4配列(6残基)が1、3又は5回繰り返されているコンストラクトを模式的に示した図である。 P4配列を付加したタグペプチド融合タンパク質(hGH-BAS-γC-P4)をコードするDNA配列の一部及び該タンパク質のアミノ酸配列の一部を示した図である。 P4配列を付加したタグペプチド融合タンパク質(hGH-BAS-γC-P4×3)をコードするDNA配列の一部及び該タンパク質のアミノ酸配列の一部を示した図である。 P4配列を付加したタグペプチド融合タンパク質(hGH-BAS-γC-P4×5)をコードするDNA配列の一部及び該タンパク質のアミノ酸配列の一部を示した図である。 モノクローナル抗体(P20.1抗体)に対するP4ペプチド又はその部分ペプチドとFnとの融合タンパク質の反応性を、ELISA法によって調べた結果を示す図である。 P4配列(6残基)中のアミノ酸残基をアラニンに置換した改変配列をもつタグペプチド/Fn融合タンパク質(Ala mutant)のP20.1抗体に対する反応性を、ELISA法によって調べた結果を示す図である。 P20.1抗体のP4(20)-Fnに対する親和性を、ビアコアによる表面プラズモン共鳴解析により解析した結果を示す図である。 市販の抗Flag抗体M2のFlag-Fnに対する親和性を、ビアコアによる表面プラズモン共鳴解析により解析した結果を示す図である。 P4(C8)ペプチドの部分ペプチドによって、P20.1抗体とP4(20)-Fnとの結合が競合的に解離すること示す実験結果である。 P20.1抗体を用いたウェスタンブロッティングによって、P4ペプチド融合タンパク質(P4(20)-Fn)を検出した結果を示す図である。 ファージディスプレイ法の概略を示す模式図である。 ファージディスプレイライブラリの作製のために構築したファージミドを模式的に示した図である。 P20.1抗体によって認識されるペプチド配列の配列パターンを調べた結果を示す図である。 P20.1抗体 Fabフラグメントの重鎖可変部のDNA/アミノ酸配列を示した図である。 P20.1抗体 Fabフラグメントの軽鎖可変部のDNA/アミノ酸配列を示した図である。 P20.1抗体のFabフラグメントとP4(C8)ペプチドとの複合体の結晶の模式図(左)及び結晶の拡大写真である。 P4(C8)ペプチドとP20.1抗体のFabフラグメントとの結合部付近のX線結晶解析図の拡大図である。 P20.1抗体の一本鎖Fvフラグメント(scFV)のDNA/アミノ酸配列を示した図である。 scFv四量体を発現するコンストラクトの模式図である。 P20.1抗体のFabフラグメントのペプチド結合能を、P4(20)-Fnを固定化したセンサーチップを用いたビアコア試験により調べた結果を示す図である。 scFvのペプチド結合能を、P4(20)-Fnを固定化したセンサーチップを用いたビアコア試験により調べた結果を示す図である。 scFv四量体のペプチド結合能を、P4(20)-Fnを固定化したセンサーチップを用いたビアコア試験により調べた結果を示す図である。 P4配列を1回繰り返したタグをもつタグペプチド融合タンパク質の抗体との親和性を測定した結果を示す図である。 P4配列を3回繰り返したタグをもつタグペプチド融合タンパク質の抗体との親和性を測定した結果を示す図である。 P4配列を5回繰り返したタグをもつタグペプチド融合タンパク質の抗体との親和性を測定した結果を示す図である。 P20.1抗体を検出抗体として用いたサンドイッチELISAにより、P4配列又はその重複配列を検出した結果を示す図である。 P20.1抗体をキャプチャー抗体として用いたサンドイッチELISAにより、P4配列又はその重複配列を検出した結果を示す図である。 P20.1抗体固定化ビーズからの、(P4配列×3)融合タンパク質の溶出条件を検討した結果を示す図である。 P20.1抗体固定化ビーズからの、(P4配列×3)融合タンパク質の溶出条件を検討した結果を示す図である。 F-spondin-(P4配列×3)融合タンパク質をコードするDNA配列の一部及び該融合タンパク質のアミノ酸配列の一部を示した図である。 本発明の抗体を固定化したビーズを用いて精製したF-spondinをSDSゲル電気泳動により分析した結果を示す図である。 精製F-spondinの結晶の拡大写真である。 分解能1.45Åで得られたF-spondinの電子密度図(部分)である。 リーリンのN末端に(P4配列×3)タグを融合した発現コンストラクトを模式的に示した図である。 P20.1抗体カラムで精製したリーリンタンパク質をSDSゲル電気泳動、及びウェスタンブロッティングにより分析した結果を示す図である。 4残基(YPGQ)を繰り返したタグ配列を付加したタグペプチド/フィブロネクチン融合タンパク質の発現コンストラクトを模式的に示した図である。 4残基(YPGQ)を繰り返したタグ配列を付加したタグペプチド/フィブロネクチン融合タンパク質の電気泳動結果を示す図である。 4残基(YPGQ)を1~5回繰り返したタグ配列を付加したタグペプチド/フィブロネクチン融合タンパク質の表面プラズモン共鳴によるキネティクス解析結果を示した図である。 蛍光タンパク質GFPuvのN末端に(P4配列×3)タグを付加したタグペプチド融合タンパク質の発現コンストラクトを模式的に示した図である。 P20.1抗体-セファロースを用いたGFPuvタンパク質の繰り返し精製の結果を示した図である。
〔タグペプチド〕
 本発明のタグペプチドは、下記式(I);
-Tyr-X-Gly-Gln-X   (I)
(式中、X、X及びXは、同一又は異なって、任意のアミノ酸残基を表す。)で表わされるアミノ酸配列を有するものであればよい。
 また、本発明のタグペプチドは、下記式(II);
(X-Tyr-X-Gly-Gln-X)n   (II)
(式中、X、X及びXは、同一又は異なって、任意のアミノ酸残基を表す。nは、2~6の整数を表す)で表わされるアミノ酸配列を有するものであってもよい。
 さらに、本発明のタグペプチドは、上記式(I)で表わされるアミノ酸配列(以下「配列(I)」ともいう)を有し、かつ下記式(IV);
(Tyr-X-Gly-Gln)   (IV)
(式中、Xは任意のアミノ酸残基を表す。)で表わされるアミノ酸配列を2箇所以上有すことが好ましい。
 例えば、配列(I)が2回繰り返されたタグペプチドでは、式(IV)で表わされるアミノ酸配列(以下、「配列(IV)」ともいう)は、2個のアミノ酸残基(XとX)を挟んで2箇所に存在する。一方、配列(IV)が3回繰り返されたタグペプチドには、XがGlnでXがTyrである配列(I)が1回含まれる。なお、配列(IV)を2箇所以上有するタグペプチドは、配列(I)を少なくとも1回有するタグペプチドにおいて配列(IV)が少なくとも2箇所に存在すればよく、その間隔や配置は限定されない。
 配列(I)において、Xは特に限定されないが、例えば、グリシンが好ましい。Xとしては、セリン、バリン、システイン、アラニン、トレオニン、グルタミン酸、グリシン、アスパラギン酸等の小さい側鎖を有するアミノ酸やプロリンが好ましく、プロリンがより好ましい。Xとしては、疎水性アミノ酸が好ましい。例えば、バリン、ロイシン、イソロイシン、アラニン、フェニルアラニン、チロシン、トリプトファン、プロリン、メチオニンが挙げられ、中でもバリンが好ましい。特に好ましい配列は、Gly-Tyr-Pro-Gly-Gln-Val(配列番号1)である。なお、本発明におけるタグペプチドを構成するアミノ酸は、L-アミノ酸である。
 本発明のタグペプチドは、配列(I)のみからなるものでもよく、配列(I)と配列(I)以外のアミノ酸残基を含むものでもよい。好ましくは、配列(I)を2箇所以上有するものであり、より好ましくは、配列(I)を2回以上繰り返したアミノ酸配列を有するものである。配列(I)を2箇所以上有する場合、その回数は限定されない。また、配列(I)を2回以上繰り返したアミノ酸配列を有する場合も、その繰り返し回数は限定されない。本発明のタグペプチドは、配列(I)が繰り返し回数が増加するにつれて、該タグペプチドに対する抗体との親和性が向上することが確認されている。本発明のタグペプチドのアミノ酸残基数の上限は特に限定されないが、実用性の点から50残基以下が好ましく、より好ましくは40残基以下、さらに好ましくは30残基以下である。
 本発明のタグペプチドとしては、下記繰り返し単位;
Gly-Tyr-Pro-Gly-Gln-Val(配列番号1;「P4配列」ともいう)を3~5回繰りかえしたアミノ酸配列を有するタグペプチド、
又は下記繰り返し単位;
Tyr-Pro-Gly-Gln(配列番号18)を3~5回繰りかえしたアミノ酸配列を有するタグペプチドが特に好ましい。
 本発明のタグペプチドは、遺伝子工学的に任意のタンパク質と結合させてタグペプチドと任意のタンパク質との融合タンパク質とすることができる。この場合、タグペプチドをタンパク質のN末端及びC末端のいずれに結合していてもよい。このようなタグペプチドがそのN末端及びC末端に結合したタグペプチド融合タンパク質は、本発明のタグペプチドと特異的に結合する抗体を用いて1段階で高純度に精製することができる。また、該抗体を用いて検出、定量等することができる。
 本発明のタグペプチドは、任意の物質に化学的に結合させることができる。このような本発明のタグペプチドが化学結合した物質は、本発明のタグペプチドと特異的に結合するを用いて簡便かつ高純度に精製することができ、また検出、定量等することができる。本発明のタグペプチドを化学的に結合させる相手の物質は限定されないが、例えば、タンパク質、核酸、糖類、有機高分子、金属などが挙げられる。
〔タグペプチド融合タンパク質〕
 本発明のタグペプチド融合タンパク質は、上記で説明した本発明のタグペプチド(以下、単に「タグペプチド」ともいう)と任意のタンパク質との融合タンパク質であり、本発明のタグペプチドが任意のタンパク質に結合した状態で存在するものであればよい。本発明のタグペプチド融合タンパク質において、タグペプチドはタンパク質のN末端及びC末端のいずれに結合していてもよい。このようなタグペプチドがそのN末端又はC末端に結合したタグペプチド融合タンパク質は、該タグペプチドと特異的に結合する抗体を用いて1段階で高純度に精製される。
 本発明のタグペプチド融合タンパク質は、公知の遺伝子組換え技術により製造することができる。以下に、その概略を説明する。
 まず、本発明のタグペプチドをコードするポチヌクレオチドを、公知の方法により合成する。ポリヌクレオチドとしては、DNA、RNAが挙げられるが、DNAが好ましい。ポリヌクレオチドがDNAの場合には、DNA合成機によりDNAを合成することができる。また、DNAは、いくつかの部分に分けて合成した後、それらを連結してもよい。タグペプチドのDNA配列は、遺伝子暗号の縮重により多くの種類がありうるが、DNAから発現されるペプチドが本発明のタグペプチドのアミノ酸配列を有することになる限り、特に限定されない。P4配列をコードするDNAとして、例えば、配列番号9に記載のDNA配列を使用することができる。P4配列を3回繰りかえしたアミノ酸配列からなるタグペプチドをコードするDNAの一例を配列番号11に、P4配列を5回繰りかえしたアミノ酸配列からなるタグペプチドをコードするDNAの一例を配列番号13に、それぞれ示す。
 合成したタグペプチドをコードするDNAの3’末端又は5’末端に、目的とするタンパク質をコードするDNAを連結する。あるいは、目的とするタンパク質のDNAをPCR等の手法によって得る際に、DNAの3’末端又は5’末端のプライマーにタグペプチドをコードするDNAを使用すると、タグペプチドをコードするDNAが目的タンパク質の遺伝子に連結された遺伝子を、PCR産物として得ることができる。
 本発明のタグペプチド融合タンパク質においては、タグペプチドと目的とするタンパク質との間に、スペーサーペプチドが挿入されていてもよい。スペーサーペプチドは、後述する本発明のタグペプチドに対する抗体に結合又は会合しないものであり、かつタグペプチドと該抗体との相互作用の障害とならないものであればどのようなペプチドでもよい。例えば、プロテアーゼ切断配列を有するペプチド等が挙げられる。スペーサーペプチドを挿入する場合には、タグペプチドをコードするDNAと目的タンパク質をコードするDNAとの間にスペーサーペプチドをコードするDNAを連結したDNAを作製する。
 上記のようにDNAを合成した後、得られたタグペプチド及びタンパク質をコードするDNAを含んだDNAを発現ベクターに適宜挿入する。ベクターとしては、公知の発現ベクター(細菌由来、酵母由来、ウイルス由来など)を好適に用いることができ、特に限定されない。発現ベクターに含まれるプロモーターは、発現に用いる宿主に対応して適切なプロモーターであればよい。発現ベクターにはこれ以外に、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、複製オリジンなどを含有しているものを用いることができる。このように得られた発現ベクターを宿主細胞に導入する。宿主細胞としては特に限定されず、大腸菌、酵母等の微生物;動物細胞等を用いることができる。好ましい宿主細胞は、動物細胞である。発現ベクターを宿主細胞に導入する方法は、公知の形質転換の中から宿主細胞に応じて適宜選択して用いればよい。得られた組換え微生物又は細胞を適当な培地で培養し、タグペプチドが結合した融合タンパク質を発現させる。タグペプチドが結合した融合タンパク質は、組換え微生物若しくは細胞中、又は培養液中から、後述する抗体を用いて一段階で精製され得る。
 上記タグペプチド融合タンパク質の製造方法において説明した本発明のタグペプチドをコードするポリヌクレオチド及び該ポリヌクレオチドを含む組換えベクターも本発明に含まれる。なお、本発明の組換えベクターはタグペプチドと目的のタンパク質との融合タンパク質(タグペプチド融合タンパク質)を発現可能な組み換えベクターに限定されず、本発明のタグペプチドをコードするポリヌクレオチドを含むものであればよい。
〔抗体〕
 本発明は、上記本発明のタグペプチドに対する抗体を提供する。本発明の抗体は、本発明のタグペプチドを認識し、特異的に相互作用する抗体であれば特に限定されない。例えば、配列(I)のN末端から2番目のチロシン、4番目のグリシン及び5番目のグルタミンを認識し、上記本発明のタグペプチドと相互作用する抗体が挙げられる。このような抗体としては、抗体の抗原結合部において、本発明のタグペプチド中の配列(I)のチロシンと抗体中のトリプトファンとが疎水性相互作用により相互作用し、配列(I)のグリシンのα炭素が抗体中のH鎖のTrp50と疎水性相互作用により相互作用し、かつ配列(I)のグルタミンの窒素原子と酸素原子とが、抗体H鎖中の主鎖のカルボニル酸素及びアミド窒素原子とそれぞれ水素結合することにより、タグペプチドと抗体とが相互作用する抗体が挙げられる。このようなペプチド-抗体の相互作用におけるアミノ酸残基の具体的な立体配置の一例を示したペプチド-抗体結合部位のX線結晶構造解析図を、図16に示す。
 上記抗体の具体例として、ヒトトロンビン受容体PAR4のN末端20残基に相当するペプチドを抗原として、マウス、ウサギ等の哺乳動物を免疫することにより得られる抗体が挙げられ、より具体的には、(a)配列番号3で表わされるアミノ酸配列を有する重鎖可変部及び配列番号5で表わされるアミノ酸配列を有する軽鎖可変部を有する抗体、又は、(b)配列番号7で表わされるアミノ酸配列を有する1本鎖抗体が好適に挙げられる。また、(a)の抗体として、マウス-マウス ハイブリドーマP20.1(受託番号FERM BP-11061として、独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つくば市東1丁目1番1号 中央第6(郵便番号305-8566))に国際寄託済み。受託日:2007年12月11日)により産生されるモノクローナル抗体が挙げられる。さらに、該モノクローナル抗体をパパインで消化することにより得られるFabフラグメントも、(a)の抗体に含まれる。(b)の抗体は、(a)の抗体の可変部領域を利用して得られる1本鎖抗体である。(b)の1本鎖抗体は、遺伝子組換え技術等により2~4量体として使用するのが好ましい。
 上記(a)の抗体は、例えば、後述する実施例に記載するように、マウス-マウス ハイブリドーマP20.1(FERM BP-11061)を用いて製造することができる。なお、本発明の抗体を産生するマウス-マウス ハイブリドーマP20.1(FERM BP-11061)も、本発明の1つである。
 また、上記(a)及び(b)の抗体は、遺伝子組換え技術によって製造することができる。遺伝子組換え技術により(a)の抗体を製造する場合には、まず、配列番号4で表わされるアミノ酸配列をコードするDNA(配列番号3)及び配列番号6で表わされるアミノ酸配列をコードするDNA(配列番号5)を合成する。また、遺伝子組換え技術により(b)の抗体を製造する場合には、まず、配列番号8で表わされるアミノ酸配列をコードするDNA(配列番号7)を合成する。これらのDNAを適当な発現ベクターに挿入し、該ベクターを宿主細胞に導入してタンパク質を発現させる。次に、発現したタンパク質を分離及び精製することによって、上記(a)又は(b)の抗体を得ることができる。
〔タンパク質の精製方法〕
 本発明は、上記本発明の抗体を用いたタンパク質の精製方法を提供する。本発明のタンパク質の精製方法は、以下の(i)~(iii)の工程を含む方法であればよい。
(i)本発明のタグペプチド融合タンパク質と、該タグペプチド融合タンパク質以外の物質とを含有する混合物を調製する工程
(ii)前記(i)の工程で得られた混合物に、本発明の抗体を作用させてタグペプチド融合タンパク質と抗体との結合物を形成させる工程
(iii)前記(ii)の工程で得られた結合物に溶離物質を作用させてタグペプチド融合タンパク質を抗体から遊離させる工程
 本発明の抗体は、本発明のタグペプチド融合タンパク質中のタグペプチドと特異的に相互作用することから、該抗体を用いると、本発明のタグペプチド融合タンパク質を一段階で高純度に精製することができる。
 (i)の工程において混合物を調製する方法は、特に限定されない。例えば、目的とするタグペプチドが結合したタグペプチド融合タンパク質が細胞中に存在する場合には、培養した組換え微生物又は細胞を公知の方法によって溶解又は粉砕等して、タグペプチド融合タンパク質と該タグペプチド融合タンパク質以外の物質とを含む混合物(細胞溶解液)を得る。タグペプチド融合タンパク質が封入体等の不溶性画分として得られる場合には、(ii)の工程を行う前に、タンパク質の可溶化工程、可溶化したタンパク質の折りたたみ(巻き戻し)工程等を適宜行ってもよい。タグペプチド融合タンパク質が細胞外、すなわち培地中に分泌される場合には、培養液の上清を採取し、これを混合物として(ii)の工程に用いる。細胞溶解液や培養液上清は遠心分離して固形成分を除去し、必要に応じてpHを中性(7~8)に合わせるが、その他に塩などを添加する必要は特にない。また、これら混合物中の目的タンパク質の濃度は0.2μg/mL以上であることが好ましい。
 (ii)の工程では、本発明の抗体を担体に固定化した固定化抗体を用いることが好ましい。抗体を固定する担体としては、本発明の効果を奏することになる限り特に限定されず、公知の担体を用いることができる。例えば、セファロース(GEヘルスケア社)、アフィゲル(BIO-RAD社)等が好適である。抗体を担体に固定する方法は、担体の種類等に応じて適宜選択すればよく、特に限定されない。例えば、セファロースを用いる場合には、抗体をカップリングバッファーで透析し、次いでCNBr活性化セファロース(GEヘルスケア)と抗体とを室温で約1~2時間混合することにより、セファロース固定化抗体を作製することができる。
 本発明のタンパク質の精製方法においては、上記固定化抗体をカラムに充填して使用するカラム法、試料と混合して懸濁状態で結合させるバッチ法をともに利用できる。前者の場合には、固定化抗体をカラムに充填し、カラムに工程(i)で調製した混合物を流して本発明の抗体をタグペプチドに作用させる。これにより、タグペプチドと抗体とが結合し、タグペプチド融合タンパク質と抗体との結合物が形成される。後者の場合は、試料溶液10mLあたり100μL程度の固定化抗体を加えて穏やかに混和し、タグペプチド融合タンパク質と抗体との結合物を形成させてからカラムに充填する。
 次いで、工程(iii)において、(ii)の工程で得られた結合物に溶離物質を作用させてタグペプチド融合タンパク質を抗体から遊離させる。すなわち、結合物に溶離物質を作用させることにより抗体とタグペプチドとを解離させ、タグペプチドを介して固定化抗体に結合したタグペプチド融合タンパク質を、抗体から遊離させる。
 溶離物質としては、本発明のタグペプチドと本発明の抗体との結合を解離させる作用を有する物質であればよい。このような物質として、ポリオールなどの親水性の有機溶媒、本発明のタグペプチドが挙げられる。本発明のタンパク質の精製方法においては、目的とするタンパク質の種類等に応じて溶離物質を適宜選択することができるが、親水性の有機溶媒が好ましい。中でも、プロピレングリコールとジメチルスルフォキシドが特に好ましい。またエチレングリコールも使用可能である。
 タグペプチド融合タンパク質と抗体との結合物に溶離物質を作用させる方法としては、溶離物質を水又は適当な緩衝液と混合して溶離液とし、該溶離液をカラムに流す方法が好ましい。この場合、溶離液中の溶離物質により抗体から遊離したタグペプチド融合タンパク質は、溶離液とともにカラムから溶出する。水又は緩衝液は、タンパク質の種類に応じて選択すればよい。
 溶離液中の溶離物質の含有量は、目的とするタグペプチド融合タンパク質又は溶離物質の種類等により適宜変更するのが好ましい。例えば、溶離物質として親水性の有機溶媒を用いる場合には、水又は緩衝液と親水性の有機溶媒との合計体積を100として、親水性の有機溶媒を約40%(v/v)以上で混合することが好ましく、水又は緩衝液と親水性の有機溶媒とを体積比(水又は緩衝液:親水性の有機溶媒)を約60:40~40:60とすることが好ましい。
 タグペプチドを溶離物質とする場合には、水又は緩衝液中にタグペプチド濃度が約0.1~1mg/mLとなるように溶離液を調製することが好ましい。溶離物質とするタグペプチドとしては、本発明のタグペプチドであれば限定されないが、配列(I)を含むものが好ましい。本発明のタグペプチドは、公知のペプチド合成法によって製造することができる。
 溶離液には、得られるタグペプチド融合タンパク質を安定化させるために塩を添加してもよい。塩の種類は、タンパク質の種類等により選択すればよく、特に限定されない。塩の濃度も、タンパク質の種類に応じて適宜調整すればよく、特に限定されない。
 タグペプチド融合タンパク質を精製した後の固定化抗体は、溶離物質を含む溶離液で洗浄することにより、繰り返し使用することが可能である。
 本発明のタンパク質の精製方法は、(i)~(iii)の工程の後に、さらに(iv)タグペプチド融合タンパク質からタグペプチドを切断する工程を含んでいてもよい。例えば、タグペプチドと目的タンパク質との間にプロテアーゼ切断配列を有するスペーサーペプチドを挿入した場合には、精製後の融合タンパク質に該プロテアーゼ切断配列を認識するプロテアーゼを適当な条件で作用させることにより、タグペプチドが結合していない目的タンパク質を得ることができる。
 本発明のタンパク質の精製方法においては、タグペプチドと抗体とが特異的に相互作用し、該相互作用は親水性の有機溶媒等の溶離物質により容易に解離することから、タグペプチドが結合した融合タンパク質を一段階で高純度に精製することができる。また、溶離物質に親水性の有機溶媒等を用いることから、目的とする融合タンパク質及び抗体を変性させることなく精製することができる。従って、本発明によれば、X線結晶構造解析のための高品質な組換えタンパク質を、一段階の精製操作で十分量得ることができる。結晶化のためには極めて精製度の高い、化学的に均一な、しかも生物活性を100%保ったタンパク質をミリグラムオーダーで調製する必要があるが、本発明の技術は、X線結晶構造解析のためのタンパク質の調製に好適である。
 また、本発明のタンパク質の精製方法においては、固定化抗体を繰り返し精製に用いることができる。実際に、本発明者は、P20.1抗体をセファロースに固定化した固定化抗体を、本発明のタグペプチド融合タンパク質(GFPuv-P4×3融合タンパク質)の精製に繰り返し使用してその影響を検討したところ、21回繰り返して使用してもその収量はわずかに低下するに過ぎないことを確認している(実施例の〔10〕参照)。しかも溶離物質として用いる親水性の有機溶媒は比較的安価であるため、本発明のタンパク質の精製方法を用いれば、タンパク質を安価に、かつ簡便に精製することが可能となる。
〔タンパク質を検出又は定量する方法〕
 本発明は、上記本発明の抗体を用いたタンパク質の検出又は定量方法を提供する。本発明のタンパク質を検出又は定量する方法は、以下の(i)~(iii)の工程を含む方法であればよい。
(i)本発明のタグペプチド融合タンパク質を含有する試料を調製する工程
(ii)前記(i)の工程で得られた試料に、本発明の抗体を作用させてタグペプチド融合タンパク質と抗体との結合物を形成させる工程
(iii)前記(ii)の工程で得られた結合物を検出又は定量する工程
 本発明の抗体は、本発明のタグペプチド融合タンパク質中のタグペプチドと特異的に相互作用することから、該抗体を用いると、タグペプチドが結合した融合タンパク質を検出又は定量することができる。
 本発明のタンパク質を検出又は定量する方法は、ウェスタンブロッティング、サンドイッチELISA、フローサイトメトリー、免疫沈降、免疫組織化学等の各種免疫学的手法に適用することができる。
 本発明のタンパク質を検出又は定量する方法において、(i)の工程における試料の調製方法は特に限定されず、例えば、目的とするタグペプチド融合タンパク質を発現した細胞を溶解又は粉砕することにより、タグペプチド融合タンパク質を含有する試料を調製することができる。
 (i)の工程で得られた試料に、(ii)の工程において本発明の抗体を作用させてタグペプチド融合タンパク質と抗体との結合物を形成させる方法、及び(iii)の工程において結合物を検出又は定量する方法について、サンドイッチELISA又はウェスタンブロッティングを行う場合を例に挙げて以下に説明する。
(A)サンドイッチELISA
 サンドイッチELISAにおいては、本発明の抗体を検出抗体は又はキャプチャー抗体として用いて、タグペプチド融合タンパク質を検出又は定量することができる。
(A-1)本発明の抗体を検出抗体とする場合
(1)予め本発明の抗体を何らかの手段により修飾又は標識しておく。修飾又は標識手段は特に限定されず、例えば、ビオチン化、ペルオキシダーゼ等の酵素標識、フルオレセインなどの蛍光色素標識、125Iなどの放射性同位元素による標識などが挙げられる。
(2)本発明の抗体とは別に、融合タンパク質中のタグペプチド以外のタンパク質部分と特異的に相互作用する抗体を用意し、この抗体をマイクロタイタープレートに固相化する。
(3)(2)で固相化した抗体上に、(i)の工程で得られた試料を流し、タグペプチド融合タンパク質を抗体にキャプチャー(捕獲)させる。
(4)次いで、キャプチャーされたタグペプチド融合タンパク質に、本発明の抗体を作用させてタグペプチド融合タンパク質と本発明の抗体との結合物を形成させる。本発明の抗体を酵素標識して用いた場合には、次に(6)の操作を行う。
(5)本発明の抗体をビオチン化して用いた場合には、形成された結合物に酵素標識したストレプトアビジンを作用させ、抗体中のビオチンとストレプトアビジンとを結合させる。
(6)酵素の発色又は発光基質(例えば、ペルオキシダーゼであればABTS)を加える。酵素により基質が分解されて発色反応産物が得られるため、試料の吸光度を測定することによりタグペプチド融合タンパク質と抗体との結合物を検出することができる。また、吸光度は試料中のタグペプチド融合タンパク質量に定量的に相関することから、融合タンパク質と抗体との結合物を定量することができる。更に、この場合に発色基質とともに基質増感剤を併用することにより、検出感度を上げることが可能である。
(A-2)本発明の抗体をキャプチャー抗体とする場合
(1)本発明の抗体をマイクロプレート等に固相化する。
(2)固相化した抗体に、(i)の工程で得られた試料を加えて抗体にタンパク質をキャプチャーさせ、融合タンパク質と抗体との結合物を形成させる。
(3)形成された結合物に、融合タンパク質中のタグペプチド以外のタンパク質部分と特異的に相互作用する抗体を作用させ、(2)で形成された結合物とこの抗体とを結合させる。
(4)(3)で作用させた抗体が酵素で標識されていない場合には、(3)で加えた抗体と特異的に反応する抗体(酵素標識抗体:二次抗体)を更に作用させる。
(5)酵素の基質(通常、発色又は発光基質)を加え、酵素反応の生成物を検出する。
(B)ウェスタンブロッティング
 ウェスタンブロッティングにおいては、以下の方法により、結合物を検出する。
(1)(i)の工程で得られた試料をSDS電気泳動に供し、タグペプチド融合タンパク質を分離して、ニトロセルロース膜又はPDVF膜に転写する。
(2)膜上の融合タンパク質に、本発明の抗体を作用させて結合物を形成させる。本発明の抗体を酵素標識して用いた場合には、次に(4)の操作を行う。
(3)(2)で作用させた本発明の抗体を酵素で標識していない場合には、(2)で加えた抗体と特異的に反応する抗体(酵素標識抗体:二次抗体)を更に作用させる。
(4)酵素の基質(通常、発色又は発光基質)を加え、酵素反応の生成物を検出する。
 本発明のタグペプチド融合タンパク質及び本発明の抗体は、蛍光抗体法、免疫沈降法等や、検出試薬の開発、細胞イメージング、センサー開発等にも応用可能である。
〔キット〕
 本発明は、タンパク質の発現、精製、検出又は定量のためのキットを提供する。本発明のキットは、本発明の組換えベクター又は本発明の抗体を含むものであればよい。本発明のキットを用いることにより、タンパク質の発現、精製、検出又は定量を簡便に行うことができる。発現用キットには本発明の組換えベクターが必須に含まれ、精製、検出又は定量用キットには、本発明の抗体が必須に含まれる。本発明の組換えベクター及び本発明の抗体の両方を含むキットとすることが好ましい。
 キットに含まれる組換えベクターは、キットのユーザーが目的のタンパク質をコードするDNAを組み込むことにより本発明のタグペプチドと目的のタンパク質が結合したタグペプチド融合タンパク質の発現ベクターが作製できる形態で提供されることが好ましい。ユーザーは、作製した発現ベクターを適当な宿主細胞に導入して宿主細胞を培養することにより、所望のタグペプチド融合タンパク質を簡便に発現させることができる。
 キットに含まれる抗体は、適当な担体に固定化された状態(精製用キットの場合)、適当な標識(酵素標識、放射性標識、蛍光標識等)や修飾(ビオチン化等)された状態(検出用キット、定量用キットの場合)が好ましい。本キットを用いてタンパク質を精製、検出又は定量する方法は、上記本発明のタンパク質の精製方法、及び本発明のタンパク質を検出又は定量する方法に従えばよい。
 なお、キットには、本発明の組換えベクター又は本発明の抗体以外に、二次抗体、反応用緩衝液、基質、使用説明書等の構成を含んでいてもよい。
〔本発明の優位性〕
 本発明のタグシステムは、以下の点で優れている。
(I)認識配列が短く、しかも非特異的吸着の原因となる荷電性のアミノ酸がない。
(II)標的となるタグ配列と、その抗体(P20.1抗体)との相互作用は、タンパク質の1段階精製が可能な親和性を有する。
(III)(II)の相互作用は、タンパク質に影響を与えない条件(例えば、40%エチレングリコール等)で解離するものであるので、高品質な抗原精製とカラムの繰り返し使用とが同時に可能である。
(IV)抗体とタグペプチドとの複合体の原子分解能立体構造を取得しているので、さらなる改変及び改良が可能である。
(V)免疫ブロッティング、蛍光抗体法、免疫沈降法等にも応用可能であり、タンパク質の精製だけでなく、検出試薬の開発、細胞イメージング、センサー開発等の応用可能性が高い。
 上記(I)~(V)の中でも、(III)は、これまで市販及び量産されてきた抗体を用いるタンパク質精製システムには全く見られないものである。
〔実施例〕
 次に本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。
〔1〕モノクローナル抗体作製
 抗PAR4ペプチド抗体は定法により以下のように作製した。
(1-1)ペプチド合成、及びペプチドによる免疫
 ヒトトロンビン受容体PAR4のN末端20残基に相当する以下の配列のペプチド(配列番号2)をFmoc固相法により合成した。
NH-GGDDSTPSILPAPRGYPGQVC-COOH
 逆相HPLCにより精製した上記ペプチドを、システイン(Cys)残基を介してキャリアータンパク質であるkeyhole limpet hemocyanin(KLH)に結合させ、これを免疫原とした。
 上記ペプチド-KLH複合体を、アジュバントとともにBalb/cマウスに免疫し、ELISA法にて抗体価を測定したところ、25μg×5回の免疫で高い抗体価が得られた。このマウスの脾臓細胞を融合に供した。
(1-2)細胞融合、ハイブリドーマ樹立
 上記マウス脾臓細胞よりB細胞を採取し、これとマウスミエローマ細胞(SP2/0株)とをポリエチレングリコール法にて融合したのち、HAT選択培地にて培養した。
 コロニーを生じたウェルの上清をELISA法にてスクリーニングし、陽性の強かったものを二次スクリーニングにまわした。二次スクリーニングでは、抗原として後に述べる融合タンパク質(PAR4-Fn)を使用した。その結果、反応性の高い一つのクローンを得た。同クローンを限界希釈法によりクローニングし、最終的にマウス-マウス ハイブリドーマP20.1(受託番号FERM BP-11061として、独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つくば市東1丁目1番1号 中央第6(郵便番号305-8566))に国際寄託済み。受託日:2007年12月11日)を樹立した。
(1-3)抗体の精製、Fabフラグメント、及びセファロース固定化抗体の調製
(1)抗体の精製
 1-2で樹立したマウス-マウス ハイブリドーマP20.1(FERM BP-11061)を、10%のウシ胎児血清を含むRPMI1640培地にて培養した。この培養上清からプロテインAセファロースを用いてP20.1抗体を精製した。精製抗体のアイソタイプはIgG1、軽鎖はλであった。
(2)Fabフラグメント
 P20.1抗体のFabフラグメントは、PIERCE社のImmunopure Fab preparation kitを用いて調製した。すなわち、固定化されたパパインによって精製したP20.1抗体(IgG)を37℃で、16時間消化し、消化物をプロテインAセファロースにかけて未結合物をさらにゲルろ過によって精製した。
(3)セファロース固定化抗体の調製
 精製したP20.1抗体(約30mg)をカップリングバッファー(0.1M NaHCO3、0.3M NaCl、pH 8.3)で透析した。次いで、この精製したP20.1抗体と、1mM塩酸で洗ったCNBr-activated Sepharose 4B(GEヘルスケア)とを室温で1時間混合することにより、セファロース固定化抗体を作製した。未反応の活性基を0.1Mトリス(Tris)によってブロックし、0.1M Gly-HCl、pH2.2で非特異的に結合した抗体を除去した。未結合の抗体の定量結果から、セファロースレジン1mLあたり約2mgのP20.1抗体を固定化することができたことが分かった。
〔2〕タグペプチド融合タンパク質の作製
(2-1)タグペプチド/フィブロネクチン融合タンパク質の作製
 ヒトフィブロネクチンの第9-第10Fn3ドメイン部分の185残基を発現するコンストラクトを用い、そのN末端又はC末端に種々の長さのP4ペプチド配列(PAR4のN末端20残基の一部又は全部)を付加した6種類のタグペプチド融合タンパク質を作製した(図1の上から6種類)。インサートはextension PCRにて調製し、これを発現ベクターpET11c(Novagen)のNdeI-BamHIサイトに挿入した。また、P4ペプチド配列のC末端側6残基のアミノ酸をアラニンに置換した変異体(Ala変異体)のコンストラクト(図1の下から6種類)を、Quick Change Mutagenesis kit (Stratagen)を用いて作製した。
 上記各コンストラクトを大腸菌BL21(DE3)株に形質転換し、定法に従って発現誘導を行った。生成したタグペプチド融合タンパク質を、大腸菌可溶化物から陰イオン交換クロマトグラフィーによって精製した。
(2-2)ヒト成長因子/ヒトフィブリノーゲン/タグペプチド融合タンパク質の作製
 ヒト成長因子(hGH)とヒトフィブリノーゲンγ鎖Cドメインとの融合タンパク質を動物細胞で発現するベクターはすでに報告されている(Xiao et al. Nature 432, 59-67, 2004)。この融合タンパク質のコンストラクトのC末端に、P4ペプチド由来の6残基ペプチド(GYPGQV:P4配列(配列番号1))を1回、3回又は5回繰り返したペプチドをコードするDNAを付加したものをextension PCRで作製した。図2(a)に、P4配列を付加したヒト成長因子(hGH)とヒトフィブリノーゲンγ鎖Cドメインとの融合タンパク質を動物細胞で発現するベクターを示す。図2(b)には、hGHのミニジーンにつなげたビオチン化配列(BAS)とフィブリノーゲンγ鎖フラグメント(γC)の後に、P4配列(6残基)が1、3又は5回繰り返されているコンストラクトを示す。
 P4配列を付加したタグペプチド融合タンパク質(hGH-BAS-γC-P4)をコードするDNA配列の一部を配列番号15及び図3に示す。なお、配列番号15に示す塩基配列では、P4配列を付加したタグペプチド融合タンパク質(hGH-BAS-γC-P4)をコードする全DNA5424塩基のうち、1~2100番目の塩基及び3121~5424番目の塩基は省略している。つまり、配列番号15で表わされるDNA配列は、hGH-BAS-γC-P4をコードするDNA5424塩基のうちの2101~3120番目の塩基配列である。図3中、下線部は、hGHの配列を表す。シャドウ(影)をかけた箇所は、Hisタグ配列である。斜字体は、リンカー部分を表す。太い下線部は、TEVプロテアーゼサイトである。破線部は、BAS配列である。太字は、P4タグ部分である。箱で囲んだアミノ酸配列は、P4配列である。その他は、フィブリノーゲンγC部分である。
 P4配列を3回繰りかえしたアミノ酸配列(P4×3)からなるタグペプチドをコードするDNA配列を配列番号11に、P4配列を5回繰りかえしたアミノ酸配列(P4×5)からなるタグペプチドをコードするDNA配列を配列番号13に、それぞれ示す。P4×3配列をコードするDNAを付加したコンストラクトのDNA配列の一部を図4(a)に示す。P4×5配列をコードするDNAを付加したコンストラクトのDNA配列の一部を図4(b)に示す。図4(a)に示す塩基配列では、5460塩基のうち、1~3000番目の塩基部分及び3181~5460番目の塩基部分は省略されている。図4(b)に示す塩基配列では、5496塩基のうち、1~3000番目の塩基部分及び3181~5496番目の塩基部分は省略されている。図4(a)及び図4(b)において、太字は、P4タグ部分、箱で囲んだアミノ酸配列はP4配列、その他はフィブリノーゲンγC部分である。
 作製したプラスミドをヒト線維芽細胞株HEK293Tにトランスフェクションし、この細胞を10%のウシ胎児血清を含むDMEM培地にて培養した。得られた培養上清からNi-NTAアガロース(Qiagen)クロマトグラフィーによってヒト成長因子/ヒトフィブリノーゲン/タグペプチド融合タンパク質を精製した。このタグペプチド融合タンパク質の検出には、マウス抗hGHモノクローナル抗体HGH-B(American Type Culture Collection)及びビオチン化配列(BAS)に対する抗血清(ウサギ)を用いた。
〔3〕モノクローナルP20.1抗体の性状解析
(3-1)エピトープの解析
 P20.1抗体によって認識される必要最小のペプチド配列を、2-1で作製した各種のP4-Fnタンパク質に対するELISA法にて調べた。プロトコールは以下のとおりである。
(1)10μg/mLに希釈したP4-Fn(又はその変異体)溶液50μLを96wellプレートに加えて静置した(4℃、16時間)
(2)アスピレーターで吸引し、1%BSA in Tris-buffered saline (TBS; 20mM Tris-HCl, 150mM NaCl, pH7.5)を200μL/well加えて室温で1時間静置した。
(3)2-5μg/mLのP20.1抗体を50μL加えて室温で1時間静置した。
(4)200μL/wellのTBSで3回洗浄した。
(5)ペルオキシダーゼ標識抗マウスIgG(1/1000希釈)を50μL加えて室温で30分静置した。
(6)200μL/wellのTBSで4回洗浄した。
(7)ペルオキシダーゼ発色基質(ABTS)を100μL/wellで加え、室温で5~10分静置後、各well中の溶液の405nmの吸光度を測定した。
 ELISAの結果、P4ペプチドはFnのN末端に融合させてもC末端に融合させてもP20.1抗体によって認識されることが分かった。P4ペプチドをFnのN末端に融合させた5種類のタグペプチド融合タンパク質のELISAの結果を図5に示す。この結果から、認識にはP4ペプチドのC末端側の6残基の部分(GYPGQV:P4配列(配列番号1))だけで十分であることが分かった。また、この6残基を1つずつAlaに変えた変異体について同様に調べた結果を図6に示す。図6中、コントロールは、コーティングなし、WTはP4(20)-Fnをコートしたウェルの値を、それぞれ表わす。G、Y、P、G、Q及びVは、これらの各アミノ酸をそれぞれアラニンに置換した改変融合タンパク質を表す。図6から明らかなように、Y2、G4及びQ5は必須であるが、G1、P3又はV6はAlaに変えても反応性が残っていることが分かった。
(3-2)P20.1抗体の結合親和性
 P20.1抗体のP4ペプチド配列への結合における親和性を調べるため、ビアコアによる表面プラズモン共鳴解析を行った。2-1で精製したP4(20)-Fn(図1参照)をビオチン化し、ストレプトアビジン固定化センサーチップで捕捉した後、精製P20.1抗体を種々の濃度で流した。結果を図7及び表1に示す。P20.1抗体は、P4(20)-Fnに対して見かけ上の解離平衡定数約3.4nMという親和性を示した。市販のFlag抗体であるM2と、タグとしてFlag(DYKDDDDV(配列番号19))を使用したFlag(DYKDDDDV(配列番号19))-Fnとの親和性を同様に解析すると、解離平衡定数2.7nMという値が得られた。
Figure JPOXMLDOC01-appb-T000001
(3-3)ペプチドによる競合的解離
 P20.1抗体の結合が過剰の遊離ペプチドによって解離できるかどうかを調べるため、P4(20)-Fnタンパク質を用いる3-1のELISA実験において最後の洗浄の際に種々の濃度のP4(C8)ペプチド(PRGYPGQV(配列番号20)の8残基ペプチド、Fmoc法で合成)を含む緩衝液中で30分反応させた。図8に示した結果から、0.1mg/mLの濃度のペプチドによって、ほぼ完全に解離が引き起こされることがわかった。
(3-4)P20.1抗体のウェスタンブロッティングへの応用
 2-1で精製したP4(20)-Fn(0.12-0.87pmol/lane)をSDS電気泳動で分離し、PDVF膜に転写後、1μg/mLのP20.1抗体と反応させ、続いてペルオキシダーゼ標識抗マウスIgGとケミルミネッセンス基質によって検出した。結果を図9に示す。図9から明らかなように、P20.1抗体は約0.2pmolのP4ペプチド融合タンパク質をウェスタンブロッティングで検出できることがわかった。
〔4〕P20.1抗体によって認識されるペプチド配列のランダムスクリーニング
(4-1)ファージディスプレイライブラリの作製
 P20.1抗体によって認識されるペプチド配列をさらに大規模に探索するため、ファージディスプレイ法を用いた。図10にファージディスプレイ法の概略を示す。M13ファージのgIIIコートタンパク質のN末端にランダム化した7アミノ酸(ただしそのうちTyr2とGln5は固定)のライブラリーを挿入するべく、図11に示すファージミドの構築を行い、10の多様性を持つライブラリーを作製した。
(4-2)P20.1抗体反応性クローンの選択
 P20.1抗体を固定化した磁気ビーズパニングにより、多数の結合クローンを得た。これらのクローンの可変部の配列をDNAシークエンシングにより解読し、図12に示すような配列パターンを得た。この結果から、N末端から2番目のチロシン(Tyr2ともいう)、4番目のグリシン(Gly4ともいう)及び5番目のグルタミン(Gln5ともいう)の要求性とともにN末端から3番目のプロリン(Pro3ともいう)の高い選択性が示されたが、6番目の部位は疎水性アミノ酸なら許容されること、そして1及び7番目のアミノ酸残基には特に強い選択性のないことがわかった。すなわちP20.1抗体は、一般に下記ペプチド配列に親和性が高いことがわかった。
X1-Tyr2-Pro3-Gly4-Gln5-X6
(上記ペプチド配列中、X1は、任意のアミノ酸残基を表す。Pro3はS、V、C、A、T、E、G、D等の小さい側鎖をもつアミノ酸でも可であり、X6は疎水性アミノ酸であれば可である。)
〔5〕P20.1抗体のFabフラグメント-ペプチド複合体のX線結晶解析
(5-1)P20.1抗体の可変部のアミノ酸配列決定
ハイブリドーマからDNAクローニング
 構造決定に必要なP20.1抗体 Fabフラグメントの正確なアミノ酸配列を決定するため、マウス-マウス ハイブリドーマP20.1(FERM BP-11061)から、Total RNA Isolation System(Promega)を用いて全RNAを抽出し、22.7ng/μLの濃度で100μLを得た。これをテンプレートに用い、Mouse Ig-Primer Set(Novagen)を用いてRT-PCRを行った。その産物の中で、増えたものをpDrive Cloning Vector(QIAGEN PCR Cloning Kit)とライゲーションし、大腸菌DH5aを形質転換した。これをLBプレート(アンピシリン、X-gal及びIPTG添加)に播き、コロニーを得た。
 得られたDNAクローンについて、可変部についてはRT-PCRに使用したプライマーを用いてDNA配列を決定した。また、その配列を基に内部プライマーを設計し、定常部についても順次配列決定を行った。その結果得られたDNA/アミノ酸配列を配列表の配列番号3及び5、並びに図13及び14に示す。配列番号3及び図13は、P20.1抗体Fabフラグメントの重鎖可変部のDNA/アミノ酸配列であり、配列番号5及び図14は、軽鎖可変部のDNA/アミノ酸配列である。
(5-2)複合体の結晶化
 1-3で調製したP20.1抗体のFabフラグメント28μL(10mg/mL in 5mM Tris、50mM NaCl、pH7.4)と4μLのP4(C8)ペプチド溶液(10mg/mL)とを混合して一晩静置した。結晶化は Emerald Biostructures社のWizard I、IIキットを用い、ハンギングドロップ法により合計96条件での結晶化を試みた。その結果、20%(w/v)PEG3000を含む100mM酢酸緩衝液(pH4.5)の条件で柱状の結晶が見られたため、その周辺でPEG3000の濃度を振って最適な条件を模索し、最終的に23%PEGに決定した。得られたタンパク質の結晶を図15に示す。図15において、左の円内は、P20.1抗体のFabフラグメントとP4(C8)ペプチドとの複合体の結晶の模式図であり、右が結晶の拡大写真である。
(5-3)構造決定
 5-2で得た結晶を用い、放射光施設Spring-8のビームラインBL-44XUを用いて1.8Åの分解能でX線結晶構造解析を行った。データの統計値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 得られたデータを元に、分子置換法を用いて立体構造の決定を行った。分子置換法のテンプレートとしては、P20.1抗体と同じIgG1で軽鎖がλであるMonoclonal Antibody 2D12.5 Fab Complexed with Gd-DOTA (PDB ID:1NC4)を用いた。その結果、単位格子中の2分子のFabの配置を決めることができた。
 位相の改良と構造の精密化のために、5-1で決定したP20.1抗体の一次構造を利用した。この一次構造のデータと分子置換法の解を用いて、ARP/wARPで自動モデリングを行い、結果として、884残基中の736残基のモデルを構築し、さらにそのうちの650残基の側鎖の構造もアサインすることができた。改良されたマップに対して、モデルのフィッティングを行い、構造の精密化を行った。統計値は表3の通りである。
Figure JPOXMLDOC01-appb-T000003
 電子密度を観察した結果、非対称単位中の2分子のFab双方にペプチドが結合していることが分かった。どちらも信頼性の高いモデルが組めたのは、P4(C8)ペプチドのうち、C末側のGYPGQV(P4配列、配列番号1)に対応する部分であった。2つの複合体のうち一方の全体構造と抗原認識部位のクローズアップを図16に示す。明らかになった立体構造から、認識ペプチド配列の特異性(Tyr2、Gly4、Gln5の要求性)の理由が極めて明らかになった。
 本発明の抗体によるペプチド抗原(本発明のタグペプチド)認識の構造化学的基盤が原子座標により特定されたことは、タンパク質工学的手法によって以下の2つのことを可能にする機会が与えられたことになる。
(A)認識能力をそのままに保ったままで抗体に他の性質を賦与する。
(B)現在のものより特異性や親和性を望ましいものに改変する。
具体的には、タグ認識に関与しないアミノ酸残基を改変して特異的な標識を可能にしたり、コアとなる上記の認識部分の外側に存在する抗体側、ペプチド側のアミノ酸残基を改変して新たな相補性を導入し、より強く結合する抗体やより長い特定のペプチドを優先的に結合する抗体を創出することが可能である。
〔6〕P20.1抗体由来scFvの作製
(6-1)コンストラクトの作製、発現及び精製
 マウス-マウス ハイブリドーマP20.1(FERM BP-11061)由来のP20.1抗体だけでなく、簡便に組換え発現及び精製のできる試薬として利用するため、同抗体の一本鎖Fvフラグメント(scFv)を作製した。5-1で同定したP20.1抗体の可変部のアミノ酸配列を利用して配列番号7及び図17に示すような配列の発現コンストラクトを構築し、pET11cベクター及び大腸菌BL21株を用いてscFvを発現させた。scFvは封入体として得られるため、不溶性分画から塩酸グアニジンによって溶解させ、Ni-NTAレジンにより精製した後、段階透析によって巻き戻しを行った。1L培養液から約2mgのscFvを得た。
 scFvは一価のため結合力が弱い。そこでscFvの下流にストレプトアビジンを融合した組換えタンパク質を作製し、ストレプトアビジンが四量体化する性質を利用して実質的な親和性の向上を図った。図18に示すコンストラクトを用いてscFvのときと同様にタンパク質の発現及び精製を行い、4量体のscFv(tetra-scFv)を得た。
(6-2)scFvの活性
 調製したscFv抗体及びtetra-scFv抗体のペプチド結合能を、P4(20)-Fn固定化センサーチップを用いたビアコア試験により調べた。比較のために、Fabフラグメントについても同様にビアコア試験に供した。Fabフラグメント、scFv抗体、及びtetra-scFv抗体の結果を、それぞれ図19(a)、(b)及び(c)に示す。図19(a)、(b)及び(c)から明らかなように、scFv抗体はFabフラグメントとほぼ同様な結合活性を示し、scFvであるにも関わらず抗原結合能の低下はないことが確認された。また、tetra-scFv抗体は、ほとんど解離が見られず、もとのIgG分子(P20.1抗体)をも遙かに凌駕する強い結合能を獲得した。
〔7〕P4配列(GYPGQV(配列番号1))重複によるP20.1抗体の実効親和性の向上
(7-1)表面プラズモン共鳴によるキネティクス解析
 P20.1抗体に対する実効親和性の向上を目指し、P4配列を1、3又は5回繰り返した重複配列タグ(それぞれP4×1、P4×3、及びP4×5と呼ぶ)をもつタグペプチド融合タンパク質を作製した(2-2参照)。これらを、P20.1抗体を固定化したセンサーチップ上に流速20μL/分で流し、ビアコアX-100(GEヘルスケア社)でキネティクス解析を行った。P4配列を1回繰り返したタグをもつ融合タンパク質の結果を図20(a)に、P4配列を3回繰り返したタグをもつ融合タンパク質の結果を図20(b)に、P4配列を5回繰り返したタグをもつ融合タンパク質の結果を図20(c)に、それぞれ示す。P4配列を1回しか持たないもの(図20(a))はP20.1抗体に対して極めて弱い親和性しか持たなかったが、複数回重複させたものは最大結合能で4倍以上の増大が見られた。P4×3(図20(b))に対して、P4×5(図20(c))はさらなる結合能の増大が見られ、この効果がP4配列(6残基)の繰り返し回数に依存することが明らかとなった。
(7-2)サンドイッチELISA系の構築
7-2-1:P20.1抗体を検出抗体として用いる場合
 抗hGHモノクローナル抗体HGH-Bをマイクロタイタープレートに固相化し、ブロッキング後、P4×1、P4×3、又はP4×5が結合しているhGH-γC-P4融合タンパク質(図3及び図4並びに配列番号15を参照)を一過性発現した細胞の上清を種々の希釈率で加えて融合タンパク質を4℃で一晩キャプチャーさせた。洗浄後、ビオチン化したP20.1抗体(5μg/mL)を室温で30分反応させ、3回洗浄後にペルオキシダーゼ標識ストレプトアビジン(Zymed)を加えてさらに室温で15分静置し、ペルオキシダーゼ基質(ABTS)を加えて405nmの吸光度を測定した。結果を図21に示す。図21に示したように、P4配列(6アミノ酸)1回だけでは1/3希釈以上の濃度の上清で弱いシグナルが認められるに留まったのに対し、P4×3(18アミノ酸)又はP4×5(30アミノ酸)の重複配列を融合したタンパク質では1/30希釈以上の上清で濃度依存的なシグナルが認められた。
7-2-2:P20.1抗体をキャプチャー抗体として用いる場合
 P20.1抗体を10μg/mLでマイクロタイタープレートに固相化し、ブロッキング後7-2-1と同様にhGH-γC-P4融合タンパク質をキャプチャーした。検出にはBAS配列に対するウサギ抗血清(1:100希釈)とペルオキシダーゼ標識抗ウサギIgG二次抗体とを用いた。結果を図22に示す。図22に示したように、このケースでもP4配列を繰り返したタグ付加によって十分な検出感度が得られた。
(7-3)P20.1抗体固定化ビーズを用いたタグペプチド融合タンパク質のプルダウン効率
 P4×1、P4×3、又はP4×5をもつ3種類のhGH-γC-P4融合タンパク質をHEK293T細胞で発現させ、その上清の該融合タンパク質濃度をサンドイッチELISA(P20.1抗体への反応性に依存しない、hGH抗体キャプチャー+抗BAS血清検出システムを使用)にて定量した(プルダウン前)。さらに、この上清1mLに対して20μLのP20.1抗体-セファロース(ビーズ状)を加えて4℃、1時間反応させた。遠心によりビーズを沈降させ、上清中のhGH-γC-P4融合タンパク質をサンドイッチELISA(P20.1抗体への反応性に依存しない、hGH抗体キャプチャー+抗BAS血清検出システムを使用)にて定量した(プルダウン後)。標準物は別にNi-NTAアガロースにて精製したものを使用し、検量線を書いてP20.1抗体プルダウン前後の融合タンパク質濃度を見積もった。結果を表4に示す。表4から明らかなように、P4配列の3~5回の繰り返しによって80%程度の結合効率が得られることがわかった。
Figure JPOXMLDOC01-appb-T000004
〔8〕P20.1抗体固定化ビーズを用いたP4重複配列タグ付きタンパク質の精製
(8-1)溶出条件
 P4×3タグ付きhGH融合タンパク質を発現する細胞の培養上清8mLに、100μLのP20.1抗体-セファロース(0.2mg P20.1抗体相当、ビーズ状)を混和し、4℃で3時間反応させた。反応後のビーズを3mLのTris-buffered saline (TBS、20mM Tris-HCl、150mM NaCl、pH 7.5)で洗浄した後、以下に示すような溶離液を300μL加え、室温で10分混和した。溶出物を濃縮後、それぞれの等量をSDSゲル電気泳動で分析した。比較のためにNi-NTAビーズとの結合を同じ条件で行い、イミダゾールで溶出したものも同時に分析した。
番号 溶離液
(1)0.1mg/mL P4(C8)ペプチド in TBS
(2)1mg/mL P4(C8) ペプチド in TBS
(3)0.1M グリシン-塩酸、pH2.2
(4)50mM トリエタノールアミン(in TBS)、pH11.5
(5)2M ヨウ化カリウム(in TBS)
(6)40%(v/v)プロピレングリコール+1M 塩化ナトリウムin TBS
(7)40%(v/v)プロピレングリコール+1M ヨウ化カリウムin TBS
(8)TBS
 結果を図23(a)に示す。なお、上記番号は、図23(a)のレーン番号である。また、NiはNi-NTAビーズからの溶出物である。図23(a)に示したように、結合したタグ付き融合タンパク質は0.1mg/mL以上のペプチド濃度で溶出するだけでなく、プロピレングリコールと塩化ナトリウムとの組み合わせによっても完全に溶出した。モノクローナル抗体を用いたアフィニティークロマトグラフィーでしばしば用いられるいくつかの溶離条件(pH2.2の酸性条件、高濃度の沃化物イオンのようなカオトロピックイオン)では全く溶出せず、pH11.5の塩基性条件での溶出も部分的であった。従って、タグペプチドが結合した融合タンパク質は、穏やかな条件で溶出することが分かった。また、Ni-NTAビーズからの溶出物(右端のレーンNi)と比べると、P20.1抗体ビーズからの溶出物には不純物が一切なく、1段階で極めて高純度の精製が達成されていることがわかった。
 さらに、以下の溶離液を用いて同様の実験を行った。
番号 溶離液
(1)TBS
(2)0.5mg/mL P4(C8) ペプチド in TBS
(3)20%(v/v)プロピレングリコール in TBS
(4)30%(v/v)プロピレングリコール in TBS
(5)40%(v/v)プロピレングリコール in TBS
(6)60%(v/v)プロピレングリコール in TBS
(7)40%(v/v)エチレングリコール in TBS
(8)40%(v/v)DMSO in TBS
 結果を図23(b)に示す。なお、上記番号は、図23(b)のレーン番号である。図23(b)に示した結果から、プロピレングリコールの濃度は40%以上が好ましく、また高濃度のNaClは必要ないことも明らかとなった。
(8-2)結晶化品質のF-spondin組換えタンパク質の精製
 胎児期の脳における軸索ガイダンスをつかさどるタンパク質であるF-spondinをP4×3タグ配列と融合し、P20.1抗体セファロースによる精製を行った。発現コンストラクトは、マウスナイトジェン(nidogen)のシグナル配列にP4×3配列(18残基)をつなぎ、TEVプロテアーゼ切断配列(7残基)をはさんでF-spondinのN末端ドメイン146アミノ酸部分を融合した。作製したF-spondin組換えタンパク質をコードするDNA配列6045塩基中の、901~1560番目の塩基配列を配列番号16及び図24に示す。配列番号16及び図24においては、1~900及び1561~6045番目の塩基配列は省略されている。また、配列番号16のDNA配列がコードする組換えタンパク質のアミノ酸配列を配列番号16及び17並びに図24に、それぞれ示す。なお、F-spondinをコードするDNA塩基配列は、例えば、Miyamoto et al. Arch. Biochem. Biophys. 390(1), 93-100, 2001等に記載されている。
 上記のコンストラクトを用いてHEK293T細胞によるタグペプチド/F-spondin融合タンパク質の一過性発現を行い、1週間後に400mLの培養上清を得た。これを2mLのP20.1抗体-セファロースに吸着させ、TBSで洗浄したのち、40%プロピレングリコール及び1M NaClを含む緩衝液で溶出させ、SDSゲル電気泳動に供した。結果を図25に示す。図25において、レーン1:マーカー、レーン2:発現培養上清、レーン3及び4:洗浄分画、レーン5~8:溶出分画である。図25から明らかなように、P20.1抗体-セファロースに吸着させ、40%プロピレングリコール及び1M NaClを含む緩衝液で溶出させることにより、タグペプチド/F-spondin融合タンパク質のみが特異的に溶出した。
 精製したF-spondinタンパク質を濃縮後に結晶化スクリーニングにかけたところ、0.1M Tris pH8.5、0.2M trimethylamine n-oxide dihydrate、20% PEG2000という条件で良好な単結晶が得られた。図26に精製F-spondinの結晶の拡大写真を示す。これを用いて高エネルギー研究所のビームラインAR-NW12AにてX線結晶回折実験を行い、1.85Å分解能のデータを取得した。図27に示すように、極めて明瞭な電子密度マップが得られ、通常1日~数週間かかるモデル構築はわずか1時間で終了した。未知であったF-spondinのN末端ドメインの立体構造が明らかになったとともに、P20.1抗体とP4×3タグの組み合わせを用いた高品質タンパク質精製が非常に優れたものであることを証明した。
(8-3)巨大タンパク質リーリンの精製
 リーリンはほ乳類の脳の発生に必須な巨大細胞外タンパク質であり、分子量400kDa以上という巨大さと不安定さの故にこれまで世界的にも精製に成功した例はない。このリーリンのN末端にP4×3タグを融合した発現コンストラクトを作製した。図28に、リーリンのN末端に(P4配列×3)タグを融合した発現コンストラクトを示す。
 図28のコンストラクトを用いてHEK923T細胞によってタグペプチド/リーリン融合タンパク質の一過性発現を行い、800mLの培養上清を得た。F-spondinのときと同様にP20.1抗体-セファロースを用いて精製し、最終的に約30μgのタンパク質を得た。得られたタンパク質をSDSゲル電気泳動及びウェスタンブロッティングにより分析した結果を図29に示す。図29中、Rは還元条件を表し、NRは非還元条件を表す。図29から明らかなように、SDSゲル電気泳動において、非還元条件では分子量1000万以上の巨大な多量体として存在することが確認され、還元条件下では430及び330kDaの主要なバンドと170kDa以下のいくつかのフラグメントが観察された。抗リーリン抗体とP20.1抗体とを用いたウェスタンブロッティングの結果、これらは全て全長リーリン、あるいはその部分分解フラグメントであることが示され、95%以上の純度をもつ組換えリーリンタンパク質を1段階で精製できることがわかった。
〔9〕YPGQ(配列番号18)の4残基を繰り返したタグ配列の有効性
(9-1)タグペプチド/フィブロネクチン融合タンパク質の作製
 P20.1抗体による認識の最小単位であるYPGQ(配列番号18)の4残基を繰り返したタグ配列を付加したタグペプチド/フィブロネクチン融合タンパク質を作製した。具体的には、図30に示すように、コンストラクトをHis-X(n)-Fn(ただしnは繰り返しの回数)と命名し、繰り返し回数1~5回の種類のコンストラクトを作製した。これらのコンストラクトを大腸菌BL21(DE3)株に形質転換し、定法に従って発現誘導を行った。生成したタグペプチド/フィブロネクチン融合タンパク質をNi-NTAアガロースを用いて精製した。図31に精製したタンパク質の電気泳動像を示す。
(9-2)表面プラズモン共鳴によるキネティクス解析
 9-1により得られたYPGQ(配列番号18)の4残基配列を1,2,3,4,5回繰り返した重複配列タグ(X(1)、X(2)、X(3)、X(4)及びX(5)と呼ぶ)をもつタグペプチド/フィブロネクチン融合タンパク質を、P20.1抗体を固定化したセンサーチップ上に流速20μL/minで流し、ビアコア2000(GEヘルスケア社)でキネティクス解析を行った。結果を図32に示す。図32からわかるように、P4配列(6残基)を繰り返したときと同様に、4残基配列の繰り返しによっても結合能の増大が認められた。特に、5回繰り返したX(5)タグにおいてはP4×3よりも高い親和性(解離定数10nM)を示すことが明らかとなった。
〔10〕P20.1抗体-セファロースの繰り返し使用の影響
(10-1)タグペプチド/GFPuv融合タンパク質の作製
 蛍光タンパク質GFPuvのN末端にP4×3タグ配列を付加したタグペプチド/GFPuv融合タンパク質の発現コンストラクトを作製した(図33参照)。インサートはextension PCRにて調製し、発現ベクターpET16b(Novagen)のNcoI-BamHIサイトに挿入した。このコンストラクトを大腸菌BL21(DE3)株に形質転換し、定法に従って発現誘導を行ったのち、大腸菌可溶化物を調製した。
(10-2)P20.1抗体-セファロースを用いたタグペプチド/GFPuv融合タンパク質の繰り返し精製
 10-1で調製したタグペプチド/GFPuv融合タンパク質を含む大腸菌可溶化物0.25mLを、0.5mLのP20.1抗体-セファロースにアプライし、4℃で20分静置した後、2mLのTris-buffered saline (TBS, 20mM Tris-HCl, 150mM NaCl, pH 7.5)で洗浄した。続いて、2.5mLの溶出液(40% (v/v) propylene glycol/TBS)で溶出し、さらに5mLのTBSで洗浄した。この一連の精製サイクルを、21回行った。それぞれの溶出画分に含まれるGFPuvの量を、励起波長390nm/蛍光波長510nmの蛍光値を測定することで見積もった。
 結果を図34に示す。図34から明らかなように、結合して溶出されるタグペプチド/GFPuv融合タンパク質の量は溶出/再生のサイクルでほとんど変化せず、21回のサイクルの後でもその収量は最大でも10%程度低下したにすぎなかった。このことは、溶出の後になんらかの変性条件でレジンを再生させる必要のある多くの市販のシステムに比べ、プロピレングリコールによる溶出を用いる本システムが、長期/多数回使用を可能にする極めて経済的なものであることを示している。
 なお、本発明は上述した各実施形態及び実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考として援用される。
産業上の利用の可能性
 本発明のタグペプチド、タグペプチド融合タンパク質及びタグペプチドに対する抗体は、組換えタンパク質を、容易な操作で高純度に、しかも安価に精製できるシステムに使用できるものとして有用である。また、本発明のタンパク質の精製方法は、組換えタンパク質を容易な操作で高純度に、しかも安価に精製できる方法として有用である。本発明のタンパク質を検出又は定量する方法は、組換えタンパク質を効率よく検出又は定量することができる方法として有用である。

Claims (16)

  1.  下記式(I);
    -Tyr-X-Gly-Gln-X   (I)
    (式中、X、X及びXは、同一又は異なって、任意のアミノ酸残基を表す。)で表わされるアミノ酸配列を有するタグペプチド。
  2.  下記式(II);
    (X-Tyr-X-Gly-Gln-X)n   (II)
    (式中、X、X及びXは、同一又は異なって、任意のアミノ酸残基を表す。nは、2~6の整数を表す)で表わされるアミノ酸配列を有するタグペプチド。
  3.  式(II)で表わされるアミノ酸配列が、下記式(III);
    (Gly-Tyr-Pro-Gly-Gln-Val))m   (III)
    (式中、mは、3~5の整数を表す)である請求項2に記載のタグペプチド。
  4.  下記式(IV);
    (Tyr-X-Gly-Gln)   (IV)
    (式中、Xは任意のアミノ酸残基を表す。)で表わされるアミノ酸配列を2箇所以上有する請求項1に記載のタグペプチド。
  5.  請求項1~4のいずれかに記載のタグペプチドが結合したタグペプチド融合タンパク質。
  6.  請求項1~4のいずれかに記載のタグペプチドをコードするポリヌクレオチド。
  7.  請求項6に記載のポリヌクレオチドを含む組換えベクター。
  8.  請求項1~4のいずれかに記載のタグペプチドに対する抗体。
  9.  配列番号3で表わされるアミノ酸配列を有する重鎖可変部及び配列番号5で表わされるアミノ酸配列を有する軽鎖可変部を有する請求項8に記載の抗体。
  10.  配列番号7で表わされるアミノ酸配列を有する1本鎖抗体である請求項8に記載の抗体。
  11.  マウス-マウス ハイブリドーマP20.1(FERM BP-11061)により産生されるモノクローナル抗体である請求項9に記載の抗体。
  12.  下記(i)~(iii)の工程を含む、タンパク質の精製方法。
    (i)請求項5に記載のタグペプチド融合タンパク質と、該タグペプチド融合タンパク質以外の物質とを含有する混合物を調製する工程
    (ii)前記(i)の工程で得られた混合物に、請求項8~11のいずれかに記載の抗体を作用させて前記タグペプチド融合タンパク質と該抗体との結合物を形成させる工程
    (iii)前記(ii)の工程で得られた結合物に溶離物質を作用させて前記タグペプチド融合タンパク質を抗体から遊離させる工程
  13.  溶離物質が親水性の有機溶媒である請求項12に記載のタンパク質の精製方法。
  14.  下記(i)~(iii)の工程を含む、タンパク質を検出又は定量する方法。
    (i)請求項5に記載のタグペプチド融合タンパク質を含有する試料を調製する工程
    (ii)前記(i)の工程で得られた試料に、請求項8~11のいずれかに記載の抗体を作用させて前記タグペプチド融合タンパク質と該抗体との結合物を形成させる工程
    (iii)前記(ii)の工程で得られた結合物を検出又は定量する工程
  15.  マウス-マウス ハイブリドーマP20.1(FERM BP-11061)。
  16.  タンパク質を発現、精製、検出、もしくは、定量するためのキットであって、請求項7に記載の組換えベクター、又は、請求項8~11のいずれかに記載の抗体を含むキット。
PCT/JP2008/073069 2008-01-31 2008-12-18 タグペプチド及びその利用 WO2009096112A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/864,343 US8975384B2 (en) 2008-01-31 2008-12-18 Tag peptide and use thereof
CN200880126098.8A CN101970456B (zh) 2008-01-31 2008-12-18 标签肽及其应用
JP2009551407A JP5257997B2 (ja) 2008-01-31 2008-12-18 タグペプチド及びその利用
EP08871991.9A EP2239267B1 (en) 2008-01-31 2008-12-18 Tag peptide and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-020804 2008-01-31
JP2008020804 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096112A1 true WO2009096112A1 (ja) 2009-08-06

Family

ID=40912471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073069 WO2009096112A1 (ja) 2008-01-31 2008-12-18 タグペプチド及びその利用

Country Status (5)

Country Link
US (1) US8975384B2 (ja)
EP (1) EP2239267B1 (ja)
JP (1) JP5257997B2 (ja)
CN (1) CN101970456B (ja)
WO (1) WO2009096112A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140331A (ja) * 2010-12-28 2012-07-26 Tosoh Corp タグペプチド
US8481310B2 (en) 2009-04-22 2013-07-09 Osaka University Tag peptide having a protease recognition sequence and use thereof
KR101342974B1 (ko) 2012-11-06 2013-12-18 명지대학교 산학협력단 신규 펩티드 태그 및 이의 용도
EP3581584A1 (en) 2014-12-24 2019-12-18 Osaka University Method for producing wnt protein and method for storing wnt protein

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110036035A (zh) 2016-11-09 2019-07-19 富士胶片和光纯药株式会社 片段抗体及使用该片段抗体的蛋白质的结晶化方法
EP3916009B1 (en) * 2020-05-26 2023-06-28 Sartorius Lab Instruments GmbH & Co. KG Recombinant proteins based on fibrinogen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050415A2 (en) * 1998-04-01 1999-10-07 Zymogenetics, Inc. Protease-activated receptor par4 (zchemr2)
WO2005121178A2 (en) * 2004-06-08 2005-12-22 Wisconsin Alumni Research Foundation Immunoaffinity chromatography polyol-responsive monoclonal antibodies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837268A (en) * 1991-10-16 1998-11-17 University Of Saskatchewan GnRH-leukotoxin chimeras
GB9414580D0 (en) 1994-07-19 1994-09-07 Cancer Res Campaign Tech Materials and methods relating to the diagnosis of synovial sarcomas
CA2321142A1 (en) 1998-02-27 1999-09-02 Regents Of The University Of California Protease-activated receptor 4 and uses thereof
CN101004417B (zh) 2007-01-11 2011-08-24 福建农林大学 基于单链抗体的脱氧雪腐镰刀菌烯醇检测方法及其试剂盒

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050415A2 (en) * 1998-04-01 1999-10-07 Zymogenetics, Inc. Protease-activated receptor par4 (zchemr2)
WO2005121178A2 (en) * 2004-06-08 2005-12-22 Wisconsin Alumni Research Foundation Immunoaffinity chromatography polyol-responsive monoclonal antibodies

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Advance in Epitope Tagging Strategies", GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 1 April 2007 (2007-04-01)
DUELLMAN, S.J. ET AL.: "An epitope tag derived from human transcription factor IIB that reacts with a polyol-responsive monoclonal antibody", PROTEIN EXPRESS. PURIF., vol. 35, 2004, pages 147 - 155, XP004497034 *
KAHN, M.L. ET AL.: "Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin", J. CLIN. INVEST., vol. 103, no. 6, 1999, pages 879 - 887, XP002567151 *
MIYAMOTO ET AL., ARCH. BIOCHEM. BIOPHYS., vol. 390, no. 1, 2001, pages 93 - 100
NOGI, T. ET AL.: "Development of affinity-tag system using anti-GPCR monoclonal antibody 20.1: II. X-ray crystallographic analysis of Fab-epitope complex", PROTEIN SCIENCE SOCIETY OF JAPAN NENKAI PROGRAM - YOSHISHU, vol. 7, 2007, pages 109, XP008142160 *
NOGI, T. ET AL.: "Novel affinity tag system using structurally defined antibody-tag interaction: application to single-step protein purification", PROTEIN SCIENCE, vol. 17, no. 12, December 2008 (2008-12-01), pages 2120 - 2126, XP008137451 *
PROTEIN EXPRESSION AND PURIFICATION, vol. 41, 2005, pages 98 - 105
SANGAWA, T. ET AL.: "A murine monoclonal antibody that binds N-terminal extracellular segment of human protease-activated receptor-4", HYBRIDOMA, vol. 27, no. 5, October 2008 (2008-10-01), pages 331 - 335, XP008137449 *
SANGAWA, T. ET AL.: "Development of affinity- tag system using anti-GPCR monoclonal antibody 20.1: I. Establishment of antibody and epitope analysis", PROTEIN SCIENCE SOCIETY OF JAPAN NENKAI PROGRAM. YOSHISHU, vol. 7, 2007, pages 109, XP008138991 *
See also references of EP2239267A4 *
TABATA, S. ET AL.: "Development of affinity-tag system using anti-GPCR monoclonal antibody 20.1: III. Screening of high-affinity peptide sequence", PROTEIN SCIENCE SOCIETY OF JAPAN NENKAI PROGRAM. YOSHISHU, vol. 7, 2007, pages 110 *
THOMPSON, N.E. ET AL.: "Development of an epitope tag for the gentle purification of proteins by immunoaffinity chromatography: application to epitope-tagged green fluorescent protein", ANAL. BIOCHEM., vol. 323, 2003, pages 171 - 179, XP004476335 *
XIAO ET AL., NATURE, vol. 432, 2004, pages 59 - 67
XU, W-F. ET AL.: "Cloning and characterization of human protease-activated receptor 4", PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 6642 - 6646, XP002185202 *
ZHANG, L. ET AL.: "Multiple tandem epitope tagging for enhanced detection of protein expresed in mamalian cels", MOL. BIOTECH., vol. 19, 2001, pages 313 - 321, XP008137447 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481310B2 (en) 2009-04-22 2013-07-09 Osaka University Tag peptide having a protease recognition sequence and use thereof
JP2012140331A (ja) * 2010-12-28 2012-07-26 Tosoh Corp タグペプチド
KR101342974B1 (ko) 2012-11-06 2013-12-18 명지대학교 산학협력단 신규 펩티드 태그 및 이의 용도
EP3581584A1 (en) 2014-12-24 2019-12-18 Osaka University Method for producing wnt protein and method for storing wnt protein

Also Published As

Publication number Publication date
EP2239267A1 (en) 2010-10-13
JP5257997B2 (ja) 2013-08-07
EP2239267B1 (en) 2016-10-12
US20110039331A1 (en) 2011-02-17
EP2239267A4 (en) 2014-01-01
JPWO2009096112A1 (ja) 2011-05-26
US8975384B2 (en) 2015-03-10
CN101970456A (zh) 2011-02-09
CN101970456B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
Burgess et al. Advances in gentle immunoaffinity chromatography
JP5257997B2 (ja) タグペプチド及びその利用
US11098081B2 (en) Epitope tag and method for detection and/or purification of tagged polypeptides
WO2015067768A1 (en) High-affinity monoclonal anti-strep-tag antibody
CN113195516A (zh) 由特异性结合物识别的表位标签
Nogi et al. Novel affinity tag system using structurally defined antibody‐tag interaction: application to single‐step protein purification
US8481310B2 (en) Tag peptide having a protease recognition sequence and use thereof
WO2006080396A1 (ja) 組換え蛋白質の定量法
Matos et al. A purification platform for antibodies and derived fragments using a de novo designed affinity adsorbent
Tabata et al. An anti-peptide monoclonal antibody recognizing the tobacco etch virus protease-cleavage sequence and its application to a tandem tagging system
WO2005121178A2 (en) Immunoaffinity chromatography polyol-responsive monoclonal antibodies
WO2005086595A2 (ja) テロメアタンパク質trf2dna結合ドメイン変異体タンパク質、テロメアdna変異体及びtrf2dna結合ドメインと二重らせんdnaとの複合体構造の利用
JP2023178881A (ja) ナノディスクに対する高親和性抗mspモノクローナル抗体
JP2023178884A (ja) 膜タンパク質のC末端に付加したHis-tagに対する高親和性モノクローナル抗体
EP4337679A2 (en) Mertk peptides and uses thereof
US10793619B2 (en) Preparation and selection of cells for producing bispecific antibodies
CN117836308A (zh) 用于选择特异性结合剂的手段和方法
Hafner-Bratkovič et al. The POM monoclonals: A comprehensive set of antibodies to non-overlapping prion protein epitopes
Polymenidou et al. The POM Monoclonals: A Comprehensive Set of Antibodies to Non-Overlapping
JP2012157353A (ja) 抗トリガーファクターモノクローナル抗体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126098.8

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009551407

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008871991

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008871991

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12864343

Country of ref document: US