WO2009096011A1 - Optical wavelength multiplexing transmission apparatus and optical wavelength multiplexing transmission method - Google Patents

Optical wavelength multiplexing transmission apparatus and optical wavelength multiplexing transmission method Download PDF

Info

Publication number
WO2009096011A1
WO2009096011A1 PCT/JP2008/051425 JP2008051425W WO2009096011A1 WO 2009096011 A1 WO2009096011 A1 WO 2009096011A1 JP 2008051425 W JP2008051425 W JP 2008051425W WO 2009096011 A1 WO2009096011 A1 WO 2009096011A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
transmission
optical
optical signal
conversion
Prior art date
Application number
PCT/JP2008/051425
Other languages
French (fr)
Japanese (ja)
Inventor
Masanori Eiro
Mitsuo Yoneda
Tomoyuki Sakata
Yasuhiro Fuchi
Takaaki Itose
Hiroshi Yoshida
Shoji Tominaga
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2008/051425 priority Critical patent/WO2009096011A1/en
Publication of WO2009096011A1 publication Critical patent/WO2009096011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention relates to an optical wavelength division multiplexing transmission apparatus and an optical wavelength division multiplexing transmission method.
  • an optical wavelength for multiplexing and transmitting a plurality of optical signals of different wavelengths on one optical fiber cable for the purpose of increasing the transmission capacity per line of the optical fiber cable.
  • a WDM (Wavelength Division Multiplex) system is used (see, for example, Patent Document 1).
  • An optical wavelength division multiplexing transmission device used in an optical wavelength division multiplexing transmission system includes a plurality of transmission / reception units that convert a wide band wavelength (Wide Band) signal input from an external device such as a router into a narrow band wavelength (Narrow Band) optical signal. And a wavelength multiplexer (multiplexer) that multiplexes (combines) the optical signals input from the transceiver and transmits them to the optical fiber cable, and converts the optical signals input from the optical fiber cable into optical signals for each wavelength. And a wavelength demultiplexer that demultiplexes and outputs to the transmitting / receiving unit.
  • Wide Band wide band wavelength
  • Narrow Band narrow band wavelength
  • the optical wavelength division multiplexing transmission device always transmits and receives optical signals between the same transmitting and receiving units.
  • the wavelength of the optical signal converted by each transmitting / receiving unit is fixed, and the wavelength of the optical signal received by each transmitting / receiving unit is also fixed.
  • the transmission / reception unit that outputs the optical signal having the wavelength ⁇ 1 transmits / receives the optical signal only to / from the transmission / reception unit that receives the optical signal having the wavelength ⁇ 1.
  • the external device connected to the transmission / reception unit that outputs the optical signal having the wavelength ⁇ 1 can transmit data only to the external device connected to the transmission / reception unit that receives the optical signal having the wavelength ⁇ 1. .
  • the conventional optical wavelength multiplex transmission apparatus described above has a problem that it cannot meet such needs. Specifically, when a user uses a conventional optical wavelength division multiplex transmission device, which transmitter / receiver can communicate when a user terminal is newly connected or the network configuration is changed. There is a problem that the network cannot be configured flexibly.
  • the present invention has been made to solve the above-described problems of the prior art, and an optical wavelength division multiplex transmission apparatus and an optical device capable of transmitting an optical signal from a single transmission / reception unit to a plurality of transmission / reception units.
  • An object is to provide a wavelength division multiplexing transmission method.
  • an optical wavelength division multiplex transmission apparatus in one aspect, is a plurality of transmission / reception that converts data input from an external apparatus into an optical signal of a specific wavelength.
  • An optical wavelength division multiplexing transmission apparatus including a device and a wavelength multiplexing unit that multiplexes optical signals received from the plurality of transmission / reception apparatuses, wherein the transmission / reception apparatus transmits a destination of the data based on destination information of the data Conversion wavelength determining means for determining that the wavelength received by the transmitting / receiving apparatus is the wavelength of the data, and signal converting means for converting the data into an optical signal having a wavelength determined by the conversion wavelength determining means (implementing) It corresponds to “E / O conversion unit 17a-1” in Examples 1 and 2.
  • an optical signal can be transmitted from a single transmission / reception device to a plurality of transmission / reception devices.
  • the transmission / reception apparatus transmits an optical signal having the same wavelength as the optical signal transmitted from the other transmission / reception apparatus to the wavelength multiplexing unit. It is a requirement that transmission control means for controlling the timing of transmitting the optical signal to the wavelength multiplexing unit is further provided so as not to transmit to the wavelength multiplexing unit.
  • an optical signal can be transmitted from a single transmission / reception device to a plurality of transmission / reception devices, and the transmission efficiency of the optical wavelength division multiplexing transmission system can be improved.
  • optical wavelength division multiplexing apparatus disclosed in the present application, there is an effect that an optical signal can be transmitted from a single transmission / reception apparatus to a plurality of transmission / reception apparatuses.
  • an optical signal can be transmitted from a single transmission / reception apparatus to a plurality of transmission / reception apparatuses, and the transmission efficiency of the optical wavelength division multiplexing transmission system can be improved. There is an effect.
  • FIG. 1 is a diagram for explaining the outline of the optical wavelength division multiplexing transmission apparatus according to the first embodiment.
  • FIG. 2 is a functional block diagram of the configuration of the optical wavelength division multiplexing apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of the converted wavelength storage unit.
  • FIG. 4 is a diagram for explaining output target wavelength information set in the transmission / reception apparatus.
  • FIG. 5 is a flowchart showing a procedure for determining the conversion wavelength of an optical signal by the transmission / reception apparatus.
  • FIG. 6 is a flowchart showing an optical signal transmission processing procedure by the transmission / reception apparatus.
  • FIG. 7 is a diagram for explaining the outline of the optical wavelength division multiplexing apparatus according to the second embodiment.
  • FIG. 1 is a diagram for explaining the outline of the optical wavelength division multiplexing transmission apparatus according to the first embodiment.
  • FIG. 2 is a functional block diagram of the configuration of the optical wavelength division multiplexing apparatus according to the first embodiment.
  • FIG. 3 is a diagram
  • FIG. 8 is a functional block diagram of the configuration of the optical wavelength division multiplex apparatus according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of the transmitting wavelength management storage unit.
  • FIG. 10 is a flowchart illustrating an optical signal transmission processing procedure by the transmission / reception apparatus.
  • FIG. 11 is a diagram for explaining an overview of processing that does not output optical signals that are likely to interfere with each other.
  • FIG. 12 is a diagram for explaining a conventional optical wavelength division multiplexing transmission system.
  • FIG. 12 is a diagram for explaining a conventional optical wavelength division multiplexing transmission system.
  • the conventional optical wavelength division multiplexing transmission system is configured by connecting an optical wavelength division multiplexing transmission device 100a and an optical wavelength division multiplexing transmission device 100b with an optical fiber cable 30.
  • an example in which an optical signal is transmitted from the optical wavelength division multiplexing apparatus 100a to the optical wavelength division multiplexing apparatus 100b will be described. Therefore, only the configuration necessary for this explanation is shown in the figure, but the optical wavelength division multiplexing apparatuses 100a and 100b originally have the same function and have the same configuration.
  • the optical wavelength multiplexing transmission device 100a includes transmission / reception devices 1a-1 to 1a-n and a wavelength multiplexing unit 21a
  • the optical wavelength multiplexing transmission device 100b includes transmission / reception devices 1b-1 to 1b-n and a wavelength separation unit 24b. And have.
  • the transmission / reception devices 1a-1 to 1a-n of the optical wavelength division multiplex transmission device 100a are connected to an external device (not shown) (for example, a router or a relay device of a switch), and a broadband wavelength signal input from the external device. Is converted into an optical signal having a predetermined narrow-band wavelength and output to the wavelength multiplexing unit 21a.
  • an external device for example, a router or a relay device of a switch
  • the predetermined narrowband wavelength set in advance in the transmission / reception devices 1a-1 to 1a-n differs depending on the transmission / reception devices 1a-1 to 1a-n. Specifically, the transmission / reception device 1a-1 converts a signal input from the external device into an optical signal having a wavelength ⁇ 1, and the transmission / reception device 1a-2 converts the signal input from the external device into an optical signal having a wavelength ⁇ 2. The transmission / reception device 1a-n converts the signal input from the external device into an optical signal having the wavelength ⁇ n.
  • the wavelength multiplexing unit 21a multiplexes the optical signals of wavelengths ⁇ 1 to ⁇ n input from the transmission / reception devices 1a-1 to 1a-n, and transmits the multiplexed optical signals to the wavelength separation unit 24b of the optical wavelength division multiplexing transmission device 100b via the optical fiber cable 30. Send.
  • the wavelength separation unit 24b separates the multiplexed optical signal into optical signals having wavelengths ⁇ 1 to ⁇ n, and outputs the optical signals to the transmission / reception devices 1b-1 to 1b-n. Specifically, the wavelength separation unit 24b outputs the optical signal having the wavelength ⁇ 1 from the separated optical signals to the transmission / reception device 1b-1, and outputs the optical signal having the wavelength ⁇ 2 to the transmission / reception device 1b-2. The optical signal of ⁇ n is output to the transmission / reception device 1b-n.
  • the transmission / reception devices 1b-1 to 1b-n convert the optical signal input from the wavelength demultiplexing unit 24b into a broadband wavelength signal and transmit it to an external device (not shown).
  • the conventional optical wavelength division multiplexing transmission system performs optical signal transmission processing only between specific transmission / reception apparatuses.
  • the signal input from the external device to the transmission / reception device 1a-1 is transmitted only to the transmission / reception device 1b-1. That is, the wavelength ⁇ 1 is a dedicated wavelength for transmitting an optical signal between the transmission / reception device 1a-1 and the transmission / reception device 1b-1.
  • a signal input from the external device to the transmission / reception device 1a-2 is transmitted only to the transmission / reception device 1b-2, and a signal input from the external device to the transmission / reception device 1a-n is transmitted to the transmission / reception device 1b-n. Only sent to.
  • the user terminal device connected to the transmission / reception device 1a-1 is connected to the transmission / reception device 1b-2
  • the user terminal device connected to the transmission / reception device 1b-2 is the data to be transmitted There was a need to deal with it.
  • each transceiver apparatus determines the transmission / reception apparatus of the transmission destination based on the destination information of the signal input from the external apparatus, and the transmission / reception apparatus of the transmission destination receives the signal. Converts to an optical signal of the wavelength to be received.
  • FIG. 1 is a diagram for explaining the outline of the optical wavelength division multiplexing apparatus according to the first embodiment.
  • the figure shows an optical wavelength division multiplexing transmission system including optical wavelength division multiplexing transmission devices 200a and 200b according to the first embodiment.
  • an optical wavelength division multiplexing apparatus 200a includes transmission / reception apparatuses 10a-1 to 10a-n and a wavelength multiplexing unit 21a
  • the optical wavelength division multiplexing transmission apparatus 200b includes a transmission / reception apparatus. 10b-1 to 10b-n and a wavelength separator 24b.
  • External devices are connected to the transmission / reception devices 10a-1 to 10a-n and 10b-1 to 10b-n.
  • an optical signal is input from an external device to the optical wavelength division multiplexing apparatus 200a will be described.
  • an electrical signal may be input to the optical wavelength division multiplexing apparatus 200a.
  • the transmission / reception devices 10a-1 to 10a-n of the optical wavelength division multiplex transmission device 200a convert the optical signal of the wideband wavelength input from the external device into the optical signal of the narrowband wavelength, and the wavelength-converted optical signal The data is output to the multiplexing unit 21a.
  • the transmission / reception devices 10a-1 to 10a-n convert optical signals input from external devices into optical signals having a fixed wavelength. Instead of converting to an optical signal of a plurality of wavelengths.
  • the transmission / reception devices 10a-1 to 10a-n are transmission destination transmission / reception devices (any of the transmission / reception devices 10b-1 to 10b-n) based on the destination information of the optical signal input from the external device. Is determined. Then, the transmission / reception devices 10a-1 to 10a-n convert the optical signal input from the external device into an optical signal having a wavelength received by the transmission / reception device of the transmission destination.
  • the wavelengths of the optical signals output to the wavelength multiplexing unit 21a are assigned to the transmission / reception devices 10a-1 to 10a-n for each predetermined time slot. Then, the transmitting / receiving devices 10a-1 to 10a-n are based on the wavelength information assigned to each time slot (hereinafter, the output target wavelength information assigned to each time slot is referred to as “output target wavelength information”). Then, the optical signal after wavelength conversion is output to the wavelength multiplexing unit 21a.
  • the output target wavelength information is set so that optical signals of the same wavelength are not overlapped and output from each of the transmission / reception devices 10a-1 to 10a-n.
  • the reason why the optical signals with the same wavelength are not overlapped and output is that the wavelength separation unit 24b cannot multiplex the optical signals with the same wavelength.
  • the transmission / reception device 10a-1 transmits an optical signal whose transmission destination is the transmission / reception device 10b-1 from an external device.
  • the input optical signal is converted into an optical signal having a wavelength ⁇ 1
  • the optical signal whose destination is the transmission / reception device 10b-2 is input, and the optical signal is converted into an optical signal having a wavelength ⁇ 2.
  • the wavelength received by the transmission / reception device 10b-1 is ⁇ 1
  • the wavelength received by the transmission / reception device 10b-2 is ⁇ 2
  • the wavelength received by the transmission / reception device 10b-n is ⁇ n.
  • the transmission / reception device 10a-2 receives an optical signal whose transmission destination is the transmission / reception device 10b-2 from an external device, converts the optical signal into an optical signal having a wavelength ⁇ 2, and the transmission destination is the transmission / reception device 10b-. 3 is input, and the optical signal is converted into an optical signal having a wavelength ⁇ 3.
  • the transmission / reception devices 10a-3 to 10a-n convert the optical signal input from the external device into an optical signal having a wavelength received by the transmission / reception device of the transmission destination.
  • the transmitting / receiving apparatus 10a-1 outputs the optical signal having the wavelength ⁇ 1 to the wavelength multiplexing unit 21a during the time slot in which the wavelength to be output is assigned to the wavelength ⁇ 1.
  • the transmission / reception device 10a-2 outputs the optical signal having the wavelength ⁇ 2 to the wavelength multiplexing unit 21a
  • the transmission / reception device 10a-3 outputs the optical signal having the wavelength ⁇ 3 to the wavelength multiplexing unit 21a.
  • 10a-4 outputs an optical signal of wavelength ⁇ 4 to the wavelength multiplexing unit 21a
  • the transmitting / receiving device 10a-n outputs an optical signal of wavelength ⁇ n to the wavelength multiplexing unit 21a.
  • output target wavelength information is set in the transmission / reception devices 10a-1 to 10a-n so that optical signals of the same wavelength are not overlapped and output from the transmission / reception devices 10a-1 to 10a-n.
  • the wavelength multiplexing unit 21a multiplexes the optical signals input from the transmission / reception devices 10a-1 to 10a-n and transmits them to the wavelength separation unit 24b via the optical fiber cable 30.
  • the wavelength demultiplexing unit 24b demultiplexes the multiplexed optical signal and outputs it to the transmitting / receiving devices 10b-1 to 10b-n.
  • the transmission / reception device 10a-1 transmits an optical signal to the transmission / reception device 10b-1 and the transmission / reception device 10b-2. Further, the transmission / reception device 10a-2 transmits an optical signal to the transmission / reception device 10b-2 and the transmission / reception device 10b-3.
  • an optical signal can be transmitted from a single transmission / reception apparatus to a plurality of transmission / reception apparatuses. Therefore, when the optical wavelength division multiplex transmission apparatus 200a or 200b according to the first embodiment is used, the user can flexibly establish a network without being aware of a transmission / reception apparatus that connects an external apparatus or a user terminal apparatus (such as a server or a personal computer). Can be configured.
  • FIG. 2 is a functional block diagram of the configuration of the optical wavelength division multiplexing apparatus 200a according to the first embodiment.
  • an example in which a MAC frame of an optical signal is input from an external apparatus to the optical wavelength division multiplex transmission apparatus 200a will be described, but an IP packet may be input.
  • the optical wavelength multiplexing transmission device 200a includes transmission / reception devices 10a-1 to 10a-n, a wavelength multiplexing unit 21a, an amplification unit 22a, an amplification unit 23a, a wavelength separation unit 24a, a conversion wavelength, And a storage unit 50a.
  • the transmission / reception devices 10a-3 to 10a-n are not shown.
  • the transmission / reception device 10a-1 includes an interface (hereinafter referred to as “I / F”) unit 11a-1, an O / E (Optical / Electrical) conversion unit 12a-1, an idle pattern discard unit 13a-1, a conversion wavelength Determination unit 14a-1, queue 15a-1, transmission control unit 16a-1, E / O conversion unit 17a-1, O / E conversion unit 18a-1, E / O conversion unit 19a-1
  • I / F interface
  • the I / F unit 11a-1 is an interface for connecting an external device and the transmission / reception device 10a-1.
  • the O / E converter 12a-1 converts an optical signal input from an external device via the I / F unit 11a-1 into an electrical signal, and the converted electrical signal is idle. This is a processing unit that outputs to the pattern discarding unit 13a-1.
  • the idle pattern discarding unit 13a-1 is a processing unit that discards an idle pattern when the electrical signal input from the O / E conversion unit 12a-1 includes an idle pattern.
  • the “idle pattern” here refers to a code block called “idle” inserted in an inter frame gap. This idle pattern is often inserted when an optical signal is input from an external device constituting the Ethernet (registered trademark).
  • the conversion wavelength determination unit 14a-1 is a processing unit that determines a wavelength for converting an electrical signal into an optical signal based on destination information of the electrical signal (MAC frame). Specifically, the conversion wavelength determining unit 14a-1 uses the DA (Destination Address: destination MAC address) set in the header of the electrical signal input from the idle pattern discarding unit 13a-1 as a key to convert the conversion wavelength. The converted wavelength is acquired from the storage unit 50a. Then, the conversion wavelength determining unit 14a-1 stores “conversion wavelength data” including the electrical signal input from the idle pattern discarding unit 13a-1 and the conversion wavelength acquired from the conversion wavelength storage unit 50a into the queue 15a-1. Output to.
  • DA Destination Address: destination MAC address
  • the conversion wavelength storage unit 50a stores “conversion wavelength” in association with “MAC address”.
  • the MAC address of the conversion wavelength storage unit 50a stores the MAC address of the external device connected to the transmission / reception devices 10b-1 to 10b-n shown in FIG. That is, the MAC address of the external device that is the transmission destination of the optical signal input to the transmission / reception devices 10a-1 to 10a-n is stored.
  • the converted wavelength of the converted wavelength storage unit 50a stores the wavelength after conversion of the optical signal.
  • the conversion wavelength determining unit 14a-1 when “00-00-00-00-00-00-01” is set in the DA of the electrical signal input from the idle pattern discarding unit 13a-1, the conversion wavelength determining unit 14a-1 The conversion wavelength “ ⁇ 1” is acquired from the conversion wavelength storage unit 50a. Then, the conversion wavelength determination unit 14a-1 outputs the conversion wavelength data including the electrical signal input from the O / E conversion unit 12a-1 and the conversion wavelength “ ⁇ 1” to the queue 15a-1.
  • the conversion wavelength storage unit 50a shows an example in which the MAC address of the external device is stored.
  • the IP address of an external device may be memorize
  • stored instead of the MAC address.
  • the queue 15a-1 is a buffer that stores the converted wavelength data input from the converted wavelength determination unit 14a-1. From this queue 15a-1, the converted wavelength data can be acquired regardless of the stored order.
  • the transmission control unit 16a-1 transmits the wavelength conversion data stored in the queue 15a-1 to the E / O conversion unit 17a-1 for each predetermined time slot based on predetermined output target wavelength information. It is a processing part to output.
  • the transmission / reception devices 10a-1 to 10a-n output an optical signal having the wavelength ⁇ 1 in one time slot. Control is performed so that an optical signal having a wavelength ⁇ 2 is output in the next one time slot. Then, in the next time slot in which the optical signal having the wavelength ⁇ n is controlled to be output, the optical signal having the wavelength ⁇ 1 is controlled to be output.
  • one time slot is set to such a degree that at least the maximum frame length (for example, 1500 bytes) of the MAC frame can be sufficiently transmitted.
  • the output target wavelength information is set so that the optical signals of the same wavelength are not overlapped and output from the respective transmitting / receiving apparatuses 10a-1 to 10a-n.
  • FIG. 4 is a diagram for explaining output target wavelength information set in the transmission / reception apparatuses 10a-1 to 10a-n.
  • the transmission / reception device 10a-1 transmits an optical signal of wavelength ⁇ 1
  • the transmission / reception device 10a-2 transmits an optical signal of wavelength ⁇ 2
  • the transmission / reception device 10a-3 transmits light of wavelength ⁇ 3.
  • the transmission target wavelength information is set so that the transmission / reception devices 10a-n transmit optical signals of wavelength ⁇ n.
  • the transmission / reception device 10a-1 transmits an optical signal having a wavelength ⁇ 2
  • the transmission / reception device 10a-2 transmits an optical signal having a wavelength ⁇ 3
  • the transmission / reception device 10a-3 transmits an optical signal having a wavelength ⁇ 4.
  • the output target wavelength information is set so that the devices 10a-n transmit the optical signal having the wavelength ⁇ 1.
  • the transmission control unit 16a-1 Based on the output target wavelength information set in this way, the transmission control unit 16a-1 performs transmission control of wavelength conversion data for each time slot, so that the transmission / reception devices 10a-1 to 10a-n are mutually connected. It is possible to prevent the optical signals having the same wavelength from being output in an overlapping manner.
  • the E / O conversion unit 17a-1 converts the electrical signal included in the wavelength conversion data input from the transmission control unit 16a-1 into an optical signal having a conversion wavelength included in the wavelength conversion data, and performs wavelength conversion. Is a processing unit that outputs the optical signal of 1 to the wavelength multiplexing unit 21a. Specifically, when wavelength conversion data including the conversion wavelength ⁇ 1 is input from the transmission control unit 16a-1, the E / O conversion unit 17a-1 converts the electrical signal included in the wavelength conversion data into an optical signal having the wavelength ⁇ 1. And output to the wavelength multiplexing unit 21a.
  • the O / E converter 18a-1 is a processor that converts the optical signal input from the wavelength separator 24a into an electrical signal.
  • the E / O conversion unit 19a-1 is a processing unit that converts the electrical signal input from the O / E conversion unit 18a-1 into an optical signal having a wideband wavelength. Note that the process in which the transmission / reception device 10a-1 receives an optical signal is not closely related to the characteristics of the optical wavelength division multiplexing transmission device 200a according to the first embodiment, and thus detailed description thereof is omitted.
  • the wavelength multiplexing unit 21a multiplexes the narrowband wavelength optical signals input from the E / O conversion units 17a-1 to 17a-n of the transmission / reception devices 10a-1 to 10a-n and outputs the multiplexed signals to the amplification unit 22a.
  • the amplifying unit 22 a amplifies the optical signal input from the wavelength multiplexing unit 21 a and outputs the amplified optical signal to the optical fiber cable 30.
  • the amplifying unit 23a amplifies the optical level of the optical signal input from the optical fiber cable 30 and outputs the amplified signal to the wavelength separating unit 24a.
  • the wavelength separation unit 24a separates the multiplexed optical signals and outputs the separated optical signals to the transmission / reception devices 10a-1 to 10a-n.
  • FIG. 5 is a flowchart showing a procedure for determining the conversion wavelength of an optical signal by the transmission / reception device 10a-1.
  • step S101 when an optical signal is received from an external device via the I / F unit 11a-1 (Yes in step S101), the O / E conversion unit 12a-1 of the transmission / reception device 10a-1 The signal is converted into an electric signal, and the converted electric signal is output to the idle pattern discarding unit 13a-1 (step S102).
  • the idle pattern discard unit 13a-1 discards the idle pattern when the electrical signal includes the idle pattern (Yes in step S103).
  • the other electrical signal is output to the converted wavelength determining unit 14a-1 (step S104).
  • the idle pattern discarding unit 13a-1 directly converts the electrical signal input from the O / E conversion unit 12a-1 into the converted wavelength determining unit 14a- Output to 1.
  • the conversion wavelength determination unit 14a-1 to which the electrical signal is input from the idle pattern discard unit 13a-1 acquires the conversion wavelength from the conversion wavelength storage unit 50a using the DA set in the electrical signal as a key (step) S105). Then, the conversion wavelength determination unit 14a-1 stores the conversion wavelength data including the electrical signal input from the idle pattern discarding unit 13a-1 and the conversion wavelength acquired from the conversion wavelength storage unit 50a in the queue 15a-1. (Step S106).
  • FIG. 6 is a flowchart showing an optical signal transmission processing procedure performed by the transmission / reception device 10a-1.
  • the transmission control unit 16a-1 of 10a-1 extracts one wavelength conversion data in which the wavelength assigned to the time slot matches the conversion wavelength from the queue 15a-1, and the E / O conversion unit 17a-1 (Step S202).
  • the E / O conversion unit 17a-1 to which the wavelength conversion data is input from the transmission control unit 16a-1 converts the electrical signal included in the wavelength conversion data into an optical signal having a conversion wavelength included in the wavelength conversion data (In step S203, the optical signal after wavelength conversion is output to the wavelength multiplexing unit 21a (step S204).
  • the transmission control unit 16a-1 and the E / O conversion unit 17a-1 repeatedly perform the optical signal transmission process described above.
  • the optical wavelength division multiplex transmission apparatus 200a performs transmission based on the destination information (for example, DA) of the optical signal input from the external apparatus to the transmission / reception apparatuses 10a-1 to 10a-n.
  • the destination transmitter / receiver is identified, the optical signal is converted into an optical signal having a wavelength received by the destination transmitter / receiver, and the optical signals of the same wavelength are not overlapped and output from the transmitter / receivers 10a-1 to 10a-n.
  • an optical signal can be transmitted with respect to several transmitter / receiver from one transmitter / receiver.
  • the transmission control unit 16a-1 switches the wavelength conversion data to be output for each time slot based on the output target wavelength information, so that the same wavelength is transmitted from the transmission / reception devices 10a-1 to 10a-n.
  • the optical signals are not overlapped and output.
  • each transmitting / receiving device may be configured to output an optical signal having a wavelength that is not output by any other transmitting / receiving device. . Therefore, in the second embodiment, an optical wavelength division multiplex transmission apparatus in which each transmission / reception apparatus outputs an optical signal having a wavelength that is not output by all other transmission / reception apparatuses will be described.
  • FIG. 7 is a diagram for explaining the outline of the optical wavelength division multiplexing apparatus 300a according to the second embodiment.
  • the transmission / reception device 40a-1 receives optical signals F1 and F2 from an external device
  • the transmission / reception device 40a-2 receives an optical signal F3 from an external device.
  • the transmission destinations of the optical signals F1, F2, and F3 are the transmission / reception device 40b-1 that receives the wavelength ⁇ 1.
  • the optical signal F1 and the optical signal F3 are input to the transmission / reception devices 40a-1 and 40a-2 in an overlapping manner, so that at this timing, the transmission / reception devices 40a-1 and 40a-2
  • the wavelength multiplexing unit 21a cannot multiplex the wavelength-converted optical signal F1 and the optical signal F3.
  • the transmission / reception device 40a-2 of the optical wavelength division multiplexing transmission device 300a outputs the optical signal F3 at a timing when the transmission / reception device 40a-1 does not output the optical signal having the wavelength ⁇ 1.
  • the transmitting / receiving device 40a-1 does not output the optical signal during the idle pattern after outputting the optical signal F1, and then outputs the optical signal F2.
  • the transmission / reception device 40a-2 outputs the optical signal F3 during the idle pattern in which the transmission / reception device 40a-1 does not output the optical signal having the wavelength ⁇ 1.
  • each of the transmission / reception apparatuses 40a-1 to 40a-n outputs an optical signal having a wavelength that is not output by all the other transmission / reception apparatuses. If there is a timing for outputting an optical signal, it is possible to output an optical signal immediately.
  • the transmission efficiency of the optical wavelength division multiplexing transmission system including 300a can be improved.
  • FIG. 8 is a functional block diagram of the configuration of the optical wavelength division multiplexing apparatus 300a according to the second embodiment.
  • parts having the same functions as the constituent parts shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the optical wavelength division multiplexing apparatus 300a newly includes a transmitting wavelength management storage unit 70a as compared with the optical wavelength division multiplexing apparatus 200a shown in FIG.
  • An example of the transmitting wavelength management storage unit 70a is shown in FIG.
  • the transmitting wavelength management storage unit 70a stores a “transmitting flag” in association with “wavelength”.
  • the wavelength of the transmitting wavelength management storage unit 70a stores wavelengths that can be converted by the transmission / reception devices 40a-1 to 40a-n constituting the optical wavelength division multiplexing transmission device 300a.
  • “ ⁇ 1”, “ ⁇ 2”,..., “ ⁇ n” are stored as wavelengths in the transmission wavelength management storage unit 70a.
  • the transmission flag in the transmission wavelength management storage unit 70a is a flag for identifying whether or not an optical signal having a corresponding wavelength is being transmitted by any of the transmission / reception devices 40a-1 to 40a-n.
  • a transmission flag “0” indicates a state where transmission is not being performed (non-transmission state)
  • a transmission flag “1” indicates a state where transmission is being performed (transmission state).
  • the transmission control unit 20a-1 of the transmission / reception device 40a-1 Based on the information stored in the transmitting wavelength management storage unit 70a, the transmission control unit 20a-1 of the transmission / reception device 40a-1 converts the wavelength conversion data stored in the queue 15a-1 into the E / O conversion unit 17a. Output to -1.
  • the transmission control unit 20a-1 first sets the wavelength conversion data first stored in the queue 15a-1 as a processing target. Then, the transmission control unit 20a-1 acquires the transmitting flag from the transmitting wavelength management storage unit 70a using the conversion wavelength included in the wavelength conversion data to be processed as a key.
  • the transmission control unit 20a-1 transmits the transmission in the transmission wavelength management storage unit 70a corresponding to the conversion wavelength included in the wavelength conversion data to be processed.
  • the medium flag is updated to “1 (transmission state)”
  • the wavelength conversion data to be processed is extracted from the queue 15a-1 and output to the E / O conversion unit 17a-1.
  • the transmission control unit 20a-1 receives the conversion wavelength included in the wavelength conversion data to be processed.
  • the transmitting flag in the transmitting wavelength management storage unit 70a corresponding to is updated to “0 (non-transmitting state)”.
  • the transmission control unit 20a-1 Similar processing is performed using the wavelength conversion data stored in the queue 15a-1 next to the wavelength conversion data to be processed as a processing target.
  • the transmission control unit 20a-1 sequentially performs the same processing for all the wavelength conversion data stored in the queue 15a-1, and once the processing is completed up to the wavelength conversion data stored last, the transmission control unit 20a-1 starts again. The same processing is performed in order from the stored wavelength conversion data.
  • the transmission control unit 20a-1 may set the wavelength conversion data including the same conversion wavelength as the processing target in order, not the order in which the wavelength conversion data to be processed is stored in the queue 15a-1. Specifically, the transmission control unit 20a-1 first sets the wavelength conversion data of the conversion wavelength ⁇ 1 as the processing target, and then sets the wavelength conversion data of the conversion wavelength ⁇ 2 as the processing target, and converts the wavelength conversion data of the conversion wavelength ⁇ n as the processing target. Next, the wavelength conversion data of the conversion wavelength ⁇ 1 is processed again.
  • the transmission control unit 20a-1 sets a transmission flag from the transmission wavelength management storage unit 70a using the wavelength ⁇ 1 as a key. get.
  • the transmission control unit 20a-1 sets the transmission flag of the transmission wavelength management storage unit 70a corresponding to the wavelength ⁇ 1 to “1 (transmission state). 3), the three wavelength conversion data of the conversion wavelength ⁇ 1 are sequentially output to the E / O conversion unit 17a-1.
  • the transmitting flag in the transmitting wavelength management storage unit 70a corresponding to the converted wavelength ⁇ 1 is updated to “0 (non-transmitting state)”. Similarly, wavelength conversion data having conversion wavelengths “ ⁇ 2”, “ ⁇ 3”,.
  • FIG. 10 is a flowchart showing an optical signal transmission processing procedure performed by the transmission / reception device 40a-1. Note that the optical signal conversion wavelength determination processing by the transmission / reception device 40a-1 is the same as the processing shown in FIG.
  • the transmission control unit 20a-1 of the transmission / reception device 40a-1 first sets the wavelength conversion data first stored in the queue 15a-1 as a processing target (step S301).
  • the transmission control unit 20a-1 acquires a transmission flag from the transmission wavelength management storage unit 70a using the conversion wavelength included in the wavelength conversion data to be processed as a key (step S302).
  • the transmission control unit 20a-1 sets the transmission flag in the transmission wavelength management storage unit 70a corresponding to the converted wavelength. It is updated to “1 (transmission state)” (step S304).
  • the transmission control unit 20a-1 extracts the wavelength conversion data to be processed from the queue 15a-1 and outputs it to the E / O conversion unit 17a-1 (step S305).
  • the E / O conversion unit 17a-1 to which the wavelength conversion data is input converts the electrical signal included in the wavelength conversion data into an optical signal having a conversion wavelength included in the wavelength conversion data (step S306), and wavelength conversion The subsequent optical signal is output to the wavelength multiplexing unit 21a (step S307).
  • the transmission control unit 20a-1 receives a normal end response from the E / O conversion unit 17a-1 (Yes at Step S308), the transmission wavelength management corresponding to the conversion wavelength included in the wavelength conversion data to be processed The transmission flag in the storage unit 70a is updated to “0 (non-transmission state)” (step S309).
  • the transmission control unit 20a-1 Next to the target wavelength conversion data, the wavelength conversion data stored in the conversion wavelength determination unit 14a-1 is set as a processing target (step S311).
  • the transmission control unit 20a-1 is stored first in the queue 15a-1. The wavelength conversion data is set as a processing target (step S301).
  • the transmission control unit 20a-1 and the E / O conversion unit 17a-1 perform the same processing as the above-described processing (steps S302 to S309) on the wavelength conversion data to be processed.
  • the transmission / reception apparatuses 40a-1 to 40a-n use the transmitting flag stored in the transmitting wavelength management storage unit 70a. Since all of the transmitter / receivers 40a-1 to 40a-n output optical signals having wavelengths that are not output, one optical transmitter / receiver can transmit optical signals to a plurality of transmitter / receivers. The transmission efficiency of the optical wavelength division multiplex transmission system including the optical wavelength division multiplex transmission apparatus 300a can be improved.
  • the example in which the optical signals having the same wavelength are prevented from overlapping and output from the transmitting / receiving devices 10a-1 to 10a-n or 40a-1 to 40a-n has been described.
  • the optical signals having the same wavelength are not overlapped and output from the transmission / reception devices 10a-1 to 10a-n or 40a-1 to 40a-n, and two or more optical signals that are likely to interfere are not overlapped and output. May be.
  • FIG. 11 is a diagram for explaining an overview of processing that does not output optical signals that are likely to interfere with each other.
  • two or more optical signals having close wavelengths interfere with each other, so that a predetermined interval (for example, 30 to 50 GHz) is provided for the wavelength of each multiplexed optical signal.
  • optical signal interference cannot be completely prevented.
  • the wavelengths ⁇ 1 and ⁇ 2 are likely to interfere with each other, the optical signal F4 converted into the wavelength ⁇ 1 and the optical signal F5 converted into the wavelength ⁇ 2 interfere when multiplexed. There is a fear.
  • the transmission / reception devices 10a-1 to 10a-n perform control so as not to output optical signals having wavelengths that easily interfere with each other.
  • the transmission / reception device 10a-2 delays and outputs the optical signal F5 of wavelength ⁇ 2 so that it does not overlap with the optical signal F4 of wavelength ⁇ 1 output by the transmission / reception device 10a-1. This can be realized by setting output target wavelength information so that wavelengths that are likely to interfere do not overlap.
  • the transmission control unit 20a-1 transmits from the in-transmission wavelength management storage unit 70a the transmission that corresponds to the wavelength that is likely to interfere.
  • the wavelength conversion data is output to the E / O conversion unit 17a-1.
  • the wavelength ⁇ 1 and the wavelength ⁇ 2 are set in the transmission / reception device 40a-1 as wavelengths that are likely to interfere with each other.
  • the transmission control unit 20a-1 corresponds to the transmitting flag corresponding to the wavelength ⁇ 1 and the wavelength ⁇ 2 from the transmitting wavelength management storage unit 70a. Get the sending flag.
  • the transmission control unit 20a-1 then outputs the wavelength conversion data to the E / O conversion unit 17a-1 when all the acquired transmission flags are “0 (non-transmission state)”.

Abstract

The object of the invention is to provide an optical wavelength multiplexing transmission apparatus which can transmit an optical signal from one transmission/reception unit to a plurality of transmission/reception units. To achieve the object, the optical wavelength multiplexing transmission apparatus of the present invention identifies the destination transceiver according to destination information on the optical signal inputted into the transceivers (10a-1 to 10a-n) from an external apparatus, converts the optical signal into the optical signal having the wavelength that the destination transceiver receives, and outputs the optical signal having the optical wavelength after the wavelength conversion to a wavelength multiplexing unit (21a) so that the optical signals having the same wavelength are transmitted from the transceivers (10a-1 to 10a-n) without superimposition.

Description

光波長多重伝送装置および光波長多重伝送方法Optical wavelength division multiplexing transmission apparatus and optical wavelength division multiplexing transmission method
 本発明は、光波長多重伝送装置および光波長多重伝送方法に関する。 The present invention relates to an optical wavelength division multiplexing transmission apparatus and an optical wavelength division multiplexing transmission method.
 従来、光通信ネットワークを構築する場合に、光ファイバケーブル1回線あたりの伝送容量を増大させることを目的として、1本の光ファイバケーブルに複数の異なる波長の光信号を多重して送信する光波長多重伝送(WDM:Wavelength Division Multiplex)システムを用いることが多い(例えば、特許文献1を参照)。 Conventionally, when constructing an optical communication network, an optical wavelength for multiplexing and transmitting a plurality of optical signals of different wavelengths on one optical fiber cable for the purpose of increasing the transmission capacity per line of the optical fiber cable. In many cases, a WDM (Wavelength Division Multiplex) system is used (see, for example, Patent Document 1).
 光波長多重伝送システムに用いられる光波長多重伝送装置は、ルータ等の外部装置から入力された広帯域波長(Wide Band)の信号を狭帯域波長(Narrow Band)の光信号に変換する複数の送受信部と、送受信部から入力された光信号を多重(合成)して光ファイバケーブルに送信する波長多重部(Multiplexer:合成器)と、光ファイバケーブルから入力された光信号を波長毎の光信号に分離(分波)して送受信部へ出力する波長分離部(Demultiplexer:分波器)とを含む。 An optical wavelength division multiplexing transmission device used in an optical wavelength division multiplexing transmission system includes a plurality of transmission / reception units that convert a wide band wavelength (Wide Band) signal input from an external device such as a router into a narrow band wavelength (Narrow Band) optical signal. And a wavelength multiplexer (multiplexer) that multiplexes (combines) the optical signals input from the transceiver and transmits them to the optical fiber cable, and converts the optical signals input from the optical fiber cable into optical signals for each wavelength. And a wavelength demultiplexer that demultiplexes and outputs to the transmitting / receiving unit.
 このような構成の下、光波長多重伝送装置は、常に同一の送受信部間で光信号の送受信を行う。具体的には、各送受信部が変換する光信号の波長は固定されており、各送受信部が受信する光信号の波長も固定されている。例えば、波長λ1の光信号を出力する送受信部は、波長λ1の光信号を受信する送受信部との間のみで光信号の送受信を行う。言い換えれば、波長λ1の光信号を出力する送受信部に接続されている外部装置は、波長λ1の光信号を受信する送受信部に接続されている外部装置に対してのみデータを送信することができる。 Under such a configuration, the optical wavelength division multiplexing transmission device always transmits and receives optical signals between the same transmitting and receiving units. Specifically, the wavelength of the optical signal converted by each transmitting / receiving unit is fixed, and the wavelength of the optical signal received by each transmitting / receiving unit is also fixed. For example, the transmission / reception unit that outputs the optical signal having the wavelength λ1 transmits / receives the optical signal only to / from the transmission / reception unit that receives the optical signal having the wavelength λ1. In other words, the external device connected to the transmission / reception unit that outputs the optical signal having the wavelength λ1 can transmit data only to the external device connected to the transmission / reception unit that receives the optical signal having the wavelength λ1. .
特開2003-324456号公報JP 2003-324456 A
 ところで、近年、1台の送受信部から複数の送受信部に対してデータを送信したいというニーズが高まりつつある。これは、近年、ネットワーク構成が多様化、複雑化してきており、複数の外部装置間でデータの授受を行うことが多くなっていることに伴って、特定の送受信部に接続される外部装置間でのみデータを送受信するとは限らなくなっているからである。 Incidentally, in recent years, there is an increasing need to transmit data from a single transmission / reception unit to a plurality of transmission / reception units. This is because the network configuration has become diversified and complicated in recent years, and data is exchanged between a plurality of external devices, and therefore, between external devices connected to a specific transmitting / receiving unit. This is because it is no longer possible to send and receive data only with the.
 しかしながら、上述した従来の光波長多重伝送装置では、このようなニーズに応えることができないという問題があった。具体的には、利用者が従来の光波長多重伝送装置を利用すると、ユーザ端末を新たに接続する場合や、ネットワーク構成が変更になった場合などに、どの送受信部間が通信可能であるのかを意識しなければならず、フレキシブルにネットワークを構成することができないという問題があった。 However, the conventional optical wavelength multiplex transmission apparatus described above has a problem that it cannot meet such needs. Specifically, when a user uses a conventional optical wavelength division multiplex transmission device, which transmitter / receiver can communicate when a user terminal is newly connected or the network configuration is changed. There is a problem that the network cannot be configured flexibly.
 本発明は、上述した従来技術による問題点を解消するためになされたものであり、1台の送受信部から複数の送受信部に対して光信号を送信することができる光波長多重伝送装置および光波長多重伝送方法を提供することを目的とする。 The present invention has been made to solve the above-described problems of the prior art, and an optical wavelength division multiplex transmission apparatus and an optical device capable of transmitting an optical signal from a single transmission / reception unit to a plurality of transmission / reception units. An object is to provide a wavelength division multiplexing transmission method.
 上述した課題を解決し、目的を達成するために、本願に開示する光波長多重伝送装置は、一つの態様において、外部装置から入力されたデータを特定の波長の光信号に変換する複数の送受信装置と、該複数の送受信装置から受信した光信号を多重する波長多重部とを含む光波長多重伝送装置であって、前記送受信装置は、前記データの宛先情報に基づいて、該データの送信先の送受信装置が受信する波長を、該データの波長とすることを決定する変換波長決定手段と、前記データを、前記変換波長決定手段によって決定された波長の光信号に変換する信号変換手段(実施例1および2における「E/O変換部17a-1」に相当する)とを備えたことを要件とする。 In order to solve the above-described problems and achieve the object, an optical wavelength division multiplex transmission apparatus disclosed in the present application, in one aspect, is a plurality of transmission / reception that converts data input from an external apparatus into an optical signal of a specific wavelength. An optical wavelength division multiplexing transmission apparatus including a device and a wavelength multiplexing unit that multiplexes optical signals received from the plurality of transmission / reception apparatuses, wherein the transmission / reception apparatus transmits a destination of the data based on destination information of the data Conversion wavelength determining means for determining that the wavelength received by the transmitting / receiving apparatus is the wavelength of the data, and signal converting means for converting the data into an optical signal having a wavelength determined by the conversion wavelength determining means (implementing) It corresponds to “E / O conversion unit 17a-1” in Examples 1 and 2.
 この態様によれば、1台の送受信装置から複数の送受信装置に対して光信号を送信することができる。 According to this aspect, an optical signal can be transmitted from a single transmission / reception device to a plurality of transmission / reception devices.
 また、本願に開示する光波長多重伝送装置は、さらに、他の態様において、前記送受信装置は、他の送受信装置が前記波長多重部へ送信している光信号と同一の波長の光信号を前記波長多重部へ送信しないように、該光信号を波長多重部へ送信するタイミングを制御する送信制御手段をさらに備えたことを要件とする。 Further, in another aspect of the optical wavelength division multiplex transmission apparatus disclosed in the present application, the transmission / reception apparatus transmits an optical signal having the same wavelength as the optical signal transmitted from the other transmission / reception apparatus to the wavelength multiplexing unit. It is a requirement that transmission control means for controlling the timing of transmitting the optical signal to the wavelength multiplexing unit is further provided so as not to transmit to the wavelength multiplexing unit.
 この態様によれば、1台の送受信装置から複数の送受信装置に対して光信号を送信できるうえに、光波長多重伝送システムの伝送効率を向上させることができる。 According to this aspect, an optical signal can be transmitted from a single transmission / reception device to a plurality of transmission / reception devices, and the transmission efficiency of the optical wavelength division multiplexing transmission system can be improved.
 なお、本願に開示する光波長多重伝送装置の構成要素、表現または構成要素の任意の組合せを、方法、装置、システム、コンピュータプログラム、記録媒体、データ構造などに適用したものも、他の態様として有効である。 In addition, a configuration in which a component, expression, or any combination of components of the optical wavelength division multiplex transmission device disclosed in the present application is applied to a method, a device, a system, a computer program, a recording medium, a data structure, etc. It is valid.
 本願に開示した光波長多重伝送装置によれば、1台の送受信装置から複数の送受信装置に対して光信号を送信することができるという効果を奏する。 According to the optical wavelength division multiplexing apparatus disclosed in the present application, there is an effect that an optical signal can be transmitted from a single transmission / reception apparatus to a plurality of transmission / reception apparatuses.
 また、本願に開示した光波長多重伝送装置によれば、1台の送受信装置から複数の送受信装置に対して光信号を送信できるうえに、光波長多重伝送システムの伝送効率を向上させることができるという効果を奏する。 Further, according to the optical wavelength division multiplexing transmission apparatus disclosed in the present application, an optical signal can be transmitted from a single transmission / reception apparatus to a plurality of transmission / reception apparatuses, and the transmission efficiency of the optical wavelength division multiplexing transmission system can be improved. There is an effect.
図1は、実施例1に係る光波長多重伝送装置の概要を説明するための図である。FIG. 1 is a diagram for explaining the outline of the optical wavelength division multiplexing transmission apparatus according to the first embodiment. 図2は、実施例1に係る光波長多重伝送装置の構成を示す機能ブロック図である。FIG. 2 is a functional block diagram of the configuration of the optical wavelength division multiplexing apparatus according to the first embodiment. 図3は、変換波長記憶部の一例を示す図である。FIG. 3 is a diagram illustrating an example of the converted wavelength storage unit. 図4は、送受信装置に設定される出力対象波長情報を説明するための図である。FIG. 4 is a diagram for explaining output target wavelength information set in the transmission / reception apparatus. 図5は、送受信装置による光信号の変換波長決定処理手順を示すフローチャートである。FIG. 5 is a flowchart showing a procedure for determining the conversion wavelength of an optical signal by the transmission / reception apparatus. 図6は、送受信装置による光信号送信処理手順を示すフローチャートである。FIG. 6 is a flowchart showing an optical signal transmission processing procedure by the transmission / reception apparatus. 図7は、実施例2に係る光波長多重伝送装置の概要を説明するための図である。FIG. 7 is a diagram for explaining the outline of the optical wavelength division multiplexing apparatus according to the second embodiment. 図8は、実施例2に係る光波長多重伝送装置の構成を示す機能ブロック図である。FIG. 8 is a functional block diagram of the configuration of the optical wavelength division multiplex apparatus according to the second embodiment. 図9は、送信中波長管理記憶部の一例を示す図である。FIG. 9 is a diagram illustrating an example of the transmitting wavelength management storage unit. 図10は、送受信装置による光信号送信処理手順を示すフローチャートである。FIG. 10 is a flowchart illustrating an optical signal transmission processing procedure by the transmission / reception apparatus. 図11は、干渉しやすい光信号を重ねて出力しない処理の概要を説明するための図である。FIG. 11 is a diagram for explaining an overview of processing that does not output optical signals that are likely to interfere with each other. 図12は、従来の光波長多重伝送システムを説明するための図である。FIG. 12 is a diagram for explaining a conventional optical wavelength division multiplexing transmission system.
符号の説明Explanation of symbols
 1a-1~1a-n、1b-1~1b-n 送受信装置
 10a-1~10a-n、10b-1~10b-n 送受信装置
 11a-1~11a-n、11b-1~11b-n I/F部
 12a-1~12a-n、12b-1~12b-n O/E変換部
 13a-1~13a-n、13b-1~13b-n アイドルパターン破棄部
 14a-1~14a-n、14b-1~14b-n 変換波長決定部
 15a-1~15a-n、15b-1~15b-n キュー
 16a-1~16a-n、16b-1~16b-n 送信制御部
 17a-1~17a-n、17b-1~17b-n E/O変換部
 18a-1~18a-n、18b-1~18b-n O/E変換部
 19a-1~19a-n、19b-1~19b-n E/O変換部
 20a-1~20a-n、20b-1~20b-n 送信制御部
 21a、21b 波長多重部
 22a、22b 増幅部
 23a、23b 増幅部
 24a、24b 波長分離部
 30 光ファイバケーブル
 40a-1~40a-n 送受信装置
 50a 変換波長記憶部
 70a 送信中波長管理記憶部
 100a、100b 光波長多重伝送装置
 200a、200b 光波長多重伝送装置
 300a 光波長多重伝送装置
1a-1 to 1a-n, 1b-1 to 1b-n transceiver 10a-1 to 10a-n, 10b-1 to 10b-n transceiver 11a-1 to 11a-n, 11b-1 to 11b-n I / F section 12a-1 to 12a-n, 12b-1 to 12b-n O / E conversion sections 13a-1 to 13a-n, 13b-1 to 13b-n idle pattern discard sections 14a-1 to 14a-n, 14b-1 to 14b-n Conversion wavelength determination unit 15a-1 to 15a-n, 15b-1 to 15b-n Queue 16a-1 to 16a-n, 16b-1 to 16b-n Transmission control unit 17a-1 to 17a -N, 17b-1 to 17b-n E / O converters 18a-1 to 18a-n, 18b-1 to 18b-n O / E converters 19a-1 to 19a-n, 19b-1 to 19b-n E / O converters 20a-1 to 20a-n, 2 0b-1 to 20b-n Transmission control unit 21a, 21b Wavelength multiplexing unit 22a, 22b Amplification unit 23a, 23b Amplification unit 24a, 24b Wavelength separation unit 30 Optical fiber cable 40a-1 to 40a-n Transmission / reception device 50a Conversion wavelength storage unit 70a Transmitting wavelength management storage unit 100a, 100b Optical wavelength division multiplexing apparatus 200a, 200b Optical wavelength division multiplexing apparatus 300a Optical wavelength division multiplexing apparatus
 以下に、本発明にかかる光波長多重伝送装置および光波長多重伝送方法の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, embodiments of an optical wavelength division multiplexing transmission apparatus and an optical wavelength division multiplexing method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
 まず、実施例1に係る光波長多重伝送装置の特徴を明らかにするために、従来の光波長多重伝送システムについて説明する。図12は、従来の光波長多重伝送システムを説明するための図である。 First, in order to clarify the characteristics of the optical wavelength division multiplexing transmission apparatus according to the first embodiment, a conventional optical wavelength division multiplexing transmission system will be described. FIG. 12 is a diagram for explaining a conventional optical wavelength division multiplexing transmission system.
 同図に示すように、従来の光波長多重伝送システムは、光波長多重伝送装置100aと光波長多重伝送装置100bとを光ファイバケーブル30で接続して構成される。なお、ここでは、光波長多重伝送装置100aから光波長多重伝送装置100bへ光信号が伝送される例について説明する。したがって、同図では、かかる説明をするために必要な構成のみを図示するが、本来は、光波長多重伝送装置100aおよび100bは同様の機能を有し、同様の構成となる。 As shown in the figure, the conventional optical wavelength division multiplexing transmission system is configured by connecting an optical wavelength division multiplexing transmission device 100a and an optical wavelength division multiplexing transmission device 100b with an optical fiber cable 30. Here, an example in which an optical signal is transmitted from the optical wavelength division multiplexing apparatus 100a to the optical wavelength division multiplexing apparatus 100b will be described. Therefore, only the configuration necessary for this explanation is shown in the figure, but the optical wavelength division multiplexing apparatuses 100a and 100b originally have the same function and have the same configuration.
 光波長多重伝送装置100aは、送受信装置1a-1~1a-nと波長多重部21aとを有し、光波長多重伝送装置100bは、送受信装置1b-1~1b-nと、波長分離部24bとを有する。 The optical wavelength multiplexing transmission device 100a includes transmission / reception devices 1a-1 to 1a-n and a wavelength multiplexing unit 21a, and the optical wavelength multiplexing transmission device 100b includes transmission / reception devices 1b-1 to 1b-n and a wavelength separation unit 24b. And have.
 光波長多重伝送装置100aの送受信装置1a-1~1a-nは、図示しない外部装置(例えば、ルータやスイッチの中継装置等)が接続されており、かかる外部装置から入力された広帯域波長の信号を、予め設定されている所定の狭帯域波長の光信号に変換して波長多重部21aへ出力する。 The transmission / reception devices 1a-1 to 1a-n of the optical wavelength division multiplex transmission device 100a are connected to an external device (not shown) (for example, a router or a relay device of a switch), and a broadband wavelength signal input from the external device. Is converted into an optical signal having a predetermined narrow-band wavelength and output to the wavelength multiplexing unit 21a.
 送受信装置1a-1~1a-nに予め設定されている所定の狭帯域波長は、送受信装置1a-1~1a-nによって異なる。具体的には、送受信装置1a-1は、外部装置から入力された信号を波長λ1の光信号に変換し、送受信装置1a-2は、外部装置から入力された信号を波長λ2の光信号に変換し、送受信装置1a-nは、外部装置から入力された信号を波長λnの光信号に変換する。 The predetermined narrowband wavelength set in advance in the transmission / reception devices 1a-1 to 1a-n differs depending on the transmission / reception devices 1a-1 to 1a-n. Specifically, the transmission / reception device 1a-1 converts a signal input from the external device into an optical signal having a wavelength λ1, and the transmission / reception device 1a-2 converts the signal input from the external device into an optical signal having a wavelength λ2. The transmission / reception device 1a-n converts the signal input from the external device into an optical signal having the wavelength λn.
 波長多重部21aは、送受信装置1a-1~1a-nから入力された波長λ1~λnの光信号を多重して、光ファイバケーブル30を介して光波長多重伝送装置100bの波長分離部24bへ送信する。 The wavelength multiplexing unit 21a multiplexes the optical signals of wavelengths λ1 to λn input from the transmission / reception devices 1a-1 to 1a-n, and transmits the multiplexed optical signals to the wavelength separation unit 24b of the optical wavelength division multiplexing transmission device 100b via the optical fiber cable 30. Send.
 波長分離部24bは、多重された光信号を波長λ1~λnの光信号に分離して、送受信装置1b-1~1b-nへ出力する。具体的には、波長分離部24bは、分離した光信号の中から、波長λ1の光信号を送受信装置1b-1へ出力し、波長λ2の光信号を送受信装置1b-2へ出力し、波長λnの光信号を送受信装置1b-nへ出力する。送受信装置1b-1~1b-nは、波長分離部24bから入力された光信号を、広帯域波長の信号に変換して、図示しない外部装置へ送信する。 The wavelength separation unit 24b separates the multiplexed optical signal into optical signals having wavelengths λ1 to λn, and outputs the optical signals to the transmission / reception devices 1b-1 to 1b-n. Specifically, the wavelength separation unit 24b outputs the optical signal having the wavelength λ1 from the separated optical signals to the transmission / reception device 1b-1, and outputs the optical signal having the wavelength λ2 to the transmission / reception device 1b-2. The optical signal of λn is output to the transmission / reception device 1b-n. The transmission / reception devices 1b-1 to 1b-n convert the optical signal input from the wavelength demultiplexing unit 24b into a broadband wavelength signal and transmit it to an external device (not shown).
 このように、従来の光波長多重伝送システムは、特定の送受信装置間でのみ光信号の伝送処理を行う。図12に示した従来の光波長多重伝送システムでは、外部装置から送受信装置1a-1に入力された信号は、送受信装置1b-1に対してのみ送信される。すなわち、波長λ1は、送受信装置1a-1と送受信装置1b-1との間で光信号を伝送するための専用波長となる。同様に、外部装置から送受信装置1a-2に入力された信号は、送受信装置1b-2に対してのみ送信され、外部装置から送受信装置1a-nに入力された信号は、送受信装置1b-nに対してのみ送信される。 As described above, the conventional optical wavelength division multiplexing transmission system performs optical signal transmission processing only between specific transmission / reception apparatuses. In the conventional optical wavelength division multiplexing transmission system shown in FIG. 12, the signal input from the external device to the transmission / reception device 1a-1 is transmitted only to the transmission / reception device 1b-1. That is, the wavelength λ1 is a dedicated wavelength for transmitting an optical signal between the transmission / reception device 1a-1 and the transmission / reception device 1b-1. Similarly, a signal input from the external device to the transmission / reception device 1a-2 is transmitted only to the transmission / reception device 1b-2, and a signal input from the external device to the transmission / reception device 1a-n is transmitted to the transmission / reception device 1b-n. Only sent to.
 したがって、近年、1台の送受信装置から複数の送受信装置に対してデータを送信したいというニーズが高まりつつある中で、従来の光波長多重伝送装置では、このようなニーズに応えることはできなかった。 Therefore, in recent years, there is an increasing need to transmit data from a single transmission / reception device to a plurality of transmission / reception devices, and conventional optical wavelength division multiplexing transmission devices cannot meet such needs. .
 例えば、図12に示した例において、送受信装置1a-1に接続されてネットワークを構成するユーザ端末装置(サーバやパーソナルコンピュータ等)から、送受信装置1b-2に接続されてネットワークを構成するユーザ端末装置へデータを送信する場合、送受信装置1a-1に接続されているユーザ端末装置を送受信装置1b-2に接続する対処や、送信したいデータを送受信装置1b-2に接続されているユーザ端末装置に転送する対処などが必要だった。 For example, in the example shown in FIG. 12, a user terminal connected to the transmission / reception device 1a-1 to form a network from a user terminal device (server, personal computer, etc.) connected to the transmission / reception device 1b-2 to form a network When transmitting data to a device, the user terminal device connected to the transmission / reception device 1a-1 is connected to the transmission / reception device 1b-2, and the user terminal device connected to the transmission / reception device 1b-2 is the data to be transmitted There was a need to deal with it.
 次に、実施例1に係る光波長多重伝送装置の概要を説明する。実施例1に係る光波長多重伝送装置は、各送受信機装置が、外部装置から入力された信号の宛先情報に基づいて、送信先の送受信装置を判別し、かかる信号を送信先の送受信装置が受信する波長の光信号に変換する。 Next, an outline of the optical wavelength division multiplex transmission apparatus according to the first embodiment will be described. In the optical wavelength division multiplexing transmission apparatus according to the first embodiment, each transceiver apparatus determines the transmission / reception apparatus of the transmission destination based on the destination information of the signal input from the external apparatus, and the transmission / reception apparatus of the transmission destination receives the signal. Converts to an optical signal of the wavelength to be received.
 図1は、実施例1に係る光波長多重伝送装置の概要を説明するための図である。同図には、実施例1に係る光波長多重伝送装置200aおよび200bを含む光波長多重伝送システムを示す。 FIG. 1 is a diagram for explaining the outline of the optical wavelength division multiplexing apparatus according to the first embodiment. The figure shows an optical wavelength division multiplexing transmission system including optical wavelength division multiplexing transmission devices 200a and 200b according to the first embodiment.
 なお、ここでは、光波長多重伝送装置200aから光波長多重伝送装置200bへ光信号が伝送される例について説明する。したがって、図1では、かかる説明をするために必要な構成のみを図示するが、本来は、光波長多重伝送装置200aおよび200bは同様の機能を有し、同様の構成となる。 Here, an example in which an optical signal is transmitted from the optical wavelength division multiplexing transmission apparatus 200a to the optical wavelength division multiplexing transmission apparatus 200b will be described. Accordingly, in FIG. 1, only the configuration necessary for such an explanation is shown, but originally, the optical wavelength multiplex transmission apparatuses 200a and 200b have the same function and have the same configuration.
 同図に示すように、実施例1に係る光波長多重伝送装置200aは、送受信装置10a-1~10a-nと、波長多重部21aとを有し、光波長多重伝送装置200bは、送受信装置10b-1~10b-nと、波長分離部24bとを有する。送受信装置10a-1~10a-nおよび10b-1~10b-nには、図示しない外部装置が接続されている。なお、以下では、外部装置から光波長多重伝送装置200aに光信号が入力される例について説明するが、光波長多重伝送装置200aには電気信号が入力されてもよい。 As shown in the figure, an optical wavelength division multiplexing apparatus 200a according to the first embodiment includes transmission / reception apparatuses 10a-1 to 10a-n and a wavelength multiplexing unit 21a, and the optical wavelength division multiplexing transmission apparatus 200b includes a transmission / reception apparatus. 10b-1 to 10b-n and a wavelength separator 24b. External devices (not shown) are connected to the transmission / reception devices 10a-1 to 10a-n and 10b-1 to 10b-n. In the following, an example in which an optical signal is input from an external device to the optical wavelength division multiplexing apparatus 200a will be described. However, an electrical signal may be input to the optical wavelength division multiplexing apparatus 200a.
 光波長多重伝送装置200aの送受信装置10a-1~10a-nは、外部装置から入力された広帯域波長の光信号を、狭帯域波長の光信号に変換して、波長変換後の光信号を波長多重部21aへ出力する。この送受信装置10a-1~10a-nは、図12に示した従来の送受信装置1a-1~1a-nと異なり、外部装置から入力された光信号を、固定の波長の光信号に変換するのではなく複数の波長の光信号に変換する。 The transmission / reception devices 10a-1 to 10a-n of the optical wavelength division multiplex transmission device 200a convert the optical signal of the wideband wavelength input from the external device into the optical signal of the narrowband wavelength, and the wavelength-converted optical signal The data is output to the multiplexing unit 21a. Unlike the conventional transmission / reception devices 1a-1 to 1a-n shown in FIG. 12, the transmission / reception devices 10a-1 to 10a-n convert optical signals input from external devices into optical signals having a fixed wavelength. Instead of converting to an optical signal of a plurality of wavelengths.
 具体的には、送受信装置10a-1~10a-nは、外部装置から入力された光信号の宛先情報に基づいて、送信先の送受信装置(送受信装置10b-1~10b-nのいずれか)を判別する。そして、送受信装置10a-1~10a-nは、外部装置から入力された光信号を、送信先の送受信装置が受信する波長の光信号に変換する。 Specifically, the transmission / reception devices 10a-1 to 10a-n are transmission destination transmission / reception devices (any of the transmission / reception devices 10b-1 to 10b-n) based on the destination information of the optical signal input from the external device. Is determined. Then, the transmission / reception devices 10a-1 to 10a-n convert the optical signal input from the external device into an optical signal having a wavelength received by the transmission / reception device of the transmission destination.
 また、送受信装置10a-1~10a-nには、所定のタイムスロットごとに、波長多重部21aへ出力する光信号の波長が割り当てられる。そして、送受信装置10a-1~10a-nは、タイムスロットごとに割り当てられた波長の情報(以下、タイムスロットごとに割り当てられた出力対象の波長の情報を「出力対象波長情報」という)に基づいて、波長変換後の光信号を波長多重部21aへ出力する。 Further, the wavelengths of the optical signals output to the wavelength multiplexing unit 21a are assigned to the transmission / reception devices 10a-1 to 10a-n for each predetermined time slot. Then, the transmitting / receiving devices 10a-1 to 10a-n are based on the wavelength information assigned to each time slot (hereinafter, the output target wavelength information assigned to each time slot is referred to as “output target wavelength information”). Then, the optical signal after wavelength conversion is output to the wavelength multiplexing unit 21a.
 なお、出力対象波長情報は、各々の送受信装置10a-1~10a-nから同一の波長の光信号が重なって出力されないように設定される。同一の波長の光信号が重なって出力されないようにする理由は、波長分離部24bが同一の波長の光信号を多重することができないからである。 Note that the output target wavelength information is set so that optical signals of the same wavelength are not overlapped and output from each of the transmission / reception devices 10a-1 to 10a-n. The reason why the optical signals with the same wavelength are not overlapped and output is that the wavelength separation unit 24b cannot multiplex the optical signals with the same wavelength.
 上述した送受信装置10a-1~10a-nの処理について、図1に示した例を用いて説明すると、送受信装置10a-1は、外部装置から送信先が送受信装置10b-1である光信号を入力され、かかる光信号を波長λ1の光信号に変換し、また、送信先が送受信装置10b-2である光信号を入力され、かかる光信号を波長λ2の光信号に変換している。なお、送受信装置10b-1が受信する波長はλ1であり、送受信装置10b-2が受信する波長はλ2であり、送受信装置10b-nが受信する波長はλnであるとする。 The processing of the above-described transmission / reception devices 10a-1 to 10a-n will be described using the example shown in FIG. 1. The transmission / reception device 10a-1 transmits an optical signal whose transmission destination is the transmission / reception device 10b-1 from an external device. The input optical signal is converted into an optical signal having a wavelength λ1, and the optical signal whose destination is the transmission / reception device 10b-2 is input, and the optical signal is converted into an optical signal having a wavelength λ2. It is assumed that the wavelength received by the transmission / reception device 10b-1 is λ1, the wavelength received by the transmission / reception device 10b-2 is λ2, and the wavelength received by the transmission / reception device 10b-n is λn.
 また、送受信装置10a-2は、外部装置から送信先が送受信装置10b-2である光信号を入力され、かかる光信号を波長λ2の光信号に変換し、また、送信先が送受信装置10b-3である光信号を入力され、かかる光信号を波長λ3の光信号に変換している。同様に、送受信装置10a-3~10a-nは、外部装置から入力された光信号を、送信先の送受信装置が受信する波長の光信号に変換している。 The transmission / reception device 10a-2 receives an optical signal whose transmission destination is the transmission / reception device 10b-2 from an external device, converts the optical signal into an optical signal having a wavelength λ2, and the transmission destination is the transmission / reception device 10b-. 3 is input, and the optical signal is converted into an optical signal having a wavelength λ3. Similarly, the transmission / reception devices 10a-3 to 10a-n convert the optical signal input from the external device into an optical signal having a wavelength received by the transmission / reception device of the transmission destination.
 そして、送受信装置10a-1は、出力対象の波長が波長λ1に割り当てられているタイムスロット中に、波長λ1の光信号を波長多重部21aへ出力している。このタイムスロット中に、送受信装置10a-2は、波長λ2の光信号を波長多重部21aへ出力し、送受信装置10a-3は、波長λ3の光信号を波長多重部21aへ出力し、送受信装置10a-4は、波長λ4の光信号を波長多重部21aへ出力し、送受信装置10a-nは、波長λnの光信号を波長多重部21aへ出力している。このように、送受信装置10a-1~10a-nから同一の波長の光信号が重なって出力されないように、送受信装置10a-1~10a-nには出力対象波長情報が設定されている。 The transmitting / receiving apparatus 10a-1 outputs the optical signal having the wavelength λ1 to the wavelength multiplexing unit 21a during the time slot in which the wavelength to be output is assigned to the wavelength λ1. During this time slot, the transmission / reception device 10a-2 outputs the optical signal having the wavelength λ2 to the wavelength multiplexing unit 21a, and the transmission / reception device 10a-3 outputs the optical signal having the wavelength λ3 to the wavelength multiplexing unit 21a. 10a-4 outputs an optical signal of wavelength λ4 to the wavelength multiplexing unit 21a, and the transmitting / receiving device 10a-n outputs an optical signal of wavelength λn to the wavelength multiplexing unit 21a. In this way, output target wavelength information is set in the transmission / reception devices 10a-1 to 10a-n so that optical signals of the same wavelength are not overlapped and output from the transmission / reception devices 10a-1 to 10a-n.
 波長多重部21aは、送受信装置10a-1~10a-nから入力された光信号を多重して光ファイバケーブル30を介して波長分離部24bへ送信する。波長分離部24bは、多重された光信号を分離して、送受信装置10b-1~10b-nへ出力する。 The wavelength multiplexing unit 21a multiplexes the optical signals input from the transmission / reception devices 10a-1 to 10a-n and transmits them to the wavelength separation unit 24b via the optical fiber cable 30. The wavelength demultiplexing unit 24b demultiplexes the multiplexed optical signal and outputs it to the transmitting / receiving devices 10b-1 to 10b-n.
 すなわち、図1に示した例では、送受信装置10a-1は、光信号を送受信装置10b-1および送受信装置10b-2へ送信している。また、送受信装置10a-2は、光信号を送受信装置10b-2および送受信装置10b-3へ送信している。 That is, in the example shown in FIG. 1, the transmission / reception device 10a-1 transmits an optical signal to the transmission / reception device 10b-1 and the transmission / reception device 10b-2. Further, the transmission / reception device 10a-2 transmits an optical signal to the transmission / reception device 10b-2 and the transmission / reception device 10b-3.
 このように、実施例1に係る光波長多重伝送装置200aでは、1台の送受信装置から複数の送受信装置に対して光信号を送信することができる。したがって、実施例1に係る光波長多重伝送装置200aまたは200bを用いると、利用者は、外部装置やユーザ端末装置(サーバやパーソナルコンピュータ等)を接続する送受信装置を意識することなくフレキシブルにネットワークを構成することができる。 Thus, in the optical wavelength division multiplex transmission apparatus 200a according to the first embodiment, an optical signal can be transmitted from a single transmission / reception apparatus to a plurality of transmission / reception apparatuses. Therefore, when the optical wavelength division multiplex transmission apparatus 200a or 200b according to the first embodiment is used, the user can flexibly establish a network without being aware of a transmission / reception apparatus that connects an external apparatus or a user terminal apparatus (such as a server or a personal computer). Can be configured.
 次に、実施例1に係る光波長多重伝送装置200aの構成について説明する。図2は、実施例1に係る光波長多重伝送装置200aの構成を示す機能ブロック図である。なお、以下では、外部装置から光波長多重伝送装置200aに光信号のMACフレームが入力される例について説明するが、IPパケットが入力されてもよい。 Next, the configuration of the optical wavelength division multiplexing apparatus 200a according to the first embodiment will be described. FIG. 2 is a functional block diagram of the configuration of the optical wavelength division multiplexing apparatus 200a according to the first embodiment. In the following, an example in which a MAC frame of an optical signal is input from an external apparatus to the optical wavelength division multiplex transmission apparatus 200a will be described, but an IP packet may be input.
 同図に示すように、光波長多重伝送装置200aは、送受信装置10a-1~10a-nと、波長多重部21aと、増幅部22aと、増幅部23aと、波長分離部24aと、変換波長記憶部50aとを有する。なお、同図では、送受信装置10a-3~10a-nの図示を省略している。 As shown in the figure, the optical wavelength multiplexing transmission device 200a includes transmission / reception devices 10a-1 to 10a-n, a wavelength multiplexing unit 21a, an amplification unit 22a, an amplification unit 23a, a wavelength separation unit 24a, a conversion wavelength, And a storage unit 50a. In the figure, the transmission / reception devices 10a-3 to 10a-n are not shown.
 送受信装置10a-1は、インタフェース(以下、「I/F」という)部11a-1と、O/E(Optical/Electrical)変換部12a-1と、アイドルパターン破棄部13a-1と、変換波長決定部14a-1と、キュー15a-1と、送信制御部16a-1と、E/O変換部17a-1と、O/E変換部18a-1と、E/O変換部19a-1とを有する。なお、送受信装置10a-2~10a-nは、送受信装置10a-1と同様の機能を有するため、ここでは、主に送受信装置10a-1が有する各機能部について説明する。 The transmission / reception device 10a-1 includes an interface (hereinafter referred to as “I / F”) unit 11a-1, an O / E (Optical / Electrical) conversion unit 12a-1, an idle pattern discard unit 13a-1, a conversion wavelength Determination unit 14a-1, queue 15a-1, transmission control unit 16a-1, E / O conversion unit 17a-1, O / E conversion unit 18a-1, E / O conversion unit 19a-1 Have Since the transmission / reception devices 10a-2 to 10a-n have the same functions as the transmission / reception device 10a-1, the functional units of the transmission / reception device 10a-1 will be mainly described here.
 I/F部11a-1は、外部装置と送受信装置10a-1とを接続するためのインタフェースである。O/E変換部12a-1は、I/F部11a-1を介して、外部装置から入力された光(Optical)信号を、電気(Electrical)信号に変換し、変換後の電気信号をアイドルパターン破棄部13a-1へ出力する処理部である。 The I / F unit 11a-1 is an interface for connecting an external device and the transmission / reception device 10a-1. The O / E converter 12a-1 converts an optical signal input from an external device via the I / F unit 11a-1 into an electrical signal, and the converted electrical signal is idle. This is a processing unit that outputs to the pattern discarding unit 13a-1.
 アイドルパターン破棄部13a-1は、O/E変換部12a-1から入力された電気信号にアイドルパターンが含まれている場合、アイドルパターンを破棄する処理部である。ここで言う「アイドルパターン」とは、インターフレームギャップ(Inter Frame Gap)に挿入される「アイドル」と呼ばれる符号ブロックを示す。このアイドルパターンは、イーサネット(登録商標)を構成する外部装置から光信号を入力される場合に挿入されていることが多い。 The idle pattern discarding unit 13a-1 is a processing unit that discards an idle pattern when the electrical signal input from the O / E conversion unit 12a-1 includes an idle pattern. The “idle pattern” here refers to a code block called “idle” inserted in an inter frame gap. This idle pattern is often inserted when an optical signal is input from an external device constituting the Ethernet (registered trademark).
 このように、アイドルパターンを削除することで、利用者が実際に送信したい光信号のみを送信でき、光波長多重伝送装置200aを含む光波長多重伝送システムの伝送効率を向上させることができる。 Thus, by deleting the idle pattern, only the optical signal that the user actually wants to transmit can be transmitted, and the transmission efficiency of the optical wavelength multiplexing transmission system including the optical wavelength multiplexing transmission apparatus 200a can be improved.
 変換波長決定部14a-1は、電気信号(MACフレーム)の宛先情報に基づいて、かかる電気信号を光信号に変換する際の波長を決定する処理部である。具体的には、変換波長決定部14a-1は、アイドルパターン破棄部13a-1から入力された電気信号のヘッダに設定されているDA(Destination Address:宛先MACアドレス)をキーにして、変換波長記憶部50aから変換後の波長を取得する。そして、変換波長決定部14a-1は、アイドルパターン破棄部13a-1から入力された電気信号と、変換波長記憶部50aから取得した変換波長とを含む「変換波長データ」を、キュー15a-1へ出力する。 The conversion wavelength determination unit 14a-1 is a processing unit that determines a wavelength for converting an electrical signal into an optical signal based on destination information of the electrical signal (MAC frame). Specifically, the conversion wavelength determining unit 14a-1 uses the DA (Destination Address: destination MAC address) set in the header of the electrical signal input from the idle pattern discarding unit 13a-1 as a key to convert the conversion wavelength. The converted wavelength is acquired from the storage unit 50a. Then, the conversion wavelength determining unit 14a-1 stores “conversion wavelength data” including the electrical signal input from the idle pattern discarding unit 13a-1 and the conversion wavelength acquired from the conversion wavelength storage unit 50a into the queue 15a-1. Output to.
 変換波長記憶部50aの一例を図3に示す。同図に示すように、変換波長記憶部50aは、「MACアドレス」に対応付けて、「変換波長」を記憶する。変換波長記憶部50aのMACアドレスは、図1に示した送受信装置10b-1~10b-nに接続されている外部装置のMACアドレスを記憶する。すなわち、送受信装置10a-1~10a-nに入力される光信号の送信先となる外部装置のMACアドレスを記憶する。 An example of the converted wavelength storage unit 50a is shown in FIG. As shown in the figure, the conversion wavelength storage unit 50a stores “conversion wavelength” in association with “MAC address”. The MAC address of the conversion wavelength storage unit 50a stores the MAC address of the external device connected to the transmission / reception devices 10b-1 to 10b-n shown in FIG. That is, the MAC address of the external device that is the transmission destination of the optical signal input to the transmission / reception devices 10a-1 to 10a-n is stored.
 また、変換波長記憶部50aの変換波長は、光信号の変換後の波長を記憶する。同図の例では、アイドルパターン破棄部13a-1から入力された電気信号のDAに「00-00-00-00-00-01」が設定されている場合、変換波長決定部14a-1は、変換波長記憶部50aから、変換波長「λ1」を取得する。そして、変換波長決定部14a-1は、O/E変換部12a-1から入力された電気信号と変換波長「λ1」とを含む変換波長データをキュー15a-1へ出力する。 Further, the converted wavelength of the converted wavelength storage unit 50a stores the wavelength after conversion of the optical signal. In the example shown in the figure, when “00-00-00-00-00-01” is set in the DA of the electrical signal input from the idle pattern discarding unit 13a-1, the conversion wavelength determining unit 14a-1 The conversion wavelength “λ1” is acquired from the conversion wavelength storage unit 50a. Then, the conversion wavelength determination unit 14a-1 outputs the conversion wavelength data including the electrical signal input from the O / E conversion unit 12a-1 and the conversion wavelength “λ1” to the queue 15a-1.
 なお、同図では、変換波長記憶部50aが外部装置のMACアドレスを記憶する例を示したが、送受信装置10a-1~10a-nにIPパケットが入力される場合は、MACアドレスでなく、外部装置のIPアドレスを記憶するように構成してもよい。 In the figure, the conversion wavelength storage unit 50a shows an example in which the MAC address of the external device is stored. However, when an IP packet is input to the transmission / reception devices 10a-1 to 10a-n, instead of the MAC address, You may comprise so that the IP address of an external device may be memorize | stored.
 キュー15a-1は、変換波長決定部14a-1から入力された変換波長データを格納するバッファである。このキュー15a-1からは、格納した順番に関係なく変換波長データを取得できる。 The queue 15a-1 is a buffer that stores the converted wavelength data input from the converted wavelength determination unit 14a-1. From this queue 15a-1, the converted wavelength data can be acquired regardless of the stored order.
 送信制御部16a-1は、予め定められている出力対象波長情報に基づいて、所定のタイムスロットごとに、キュー15a-1に格納されている波長変換データをE/O変換部17a-1へ出力する処理部である。 The transmission control unit 16a-1 transmits the wavelength conversion data stored in the queue 15a-1 to the E / O conversion unit 17a-1 for each predetermined time slot based on predetermined output target wavelength information. It is a processing part to output.
 具体的には、出力対象波長情報が「λ1、λ2、・・、λn」である場合、送受信装置10a-1~10a-nは、ある1タイムスロットで波長λ1の光信号を出力するように制御し、次の1タイムスロットでは波長λ2の光信号を出力するように制御する。そして、波長λnの光信号を出力するように制御した次のタイムスロットでは、波長λ1の光信号を出力するように制御する。 Specifically, when the output target wavelength information is “λ1, λ2,..., Λn”, the transmission / reception devices 10a-1 to 10a-n output an optical signal having the wavelength λ1 in one time slot. Control is performed so that an optical signal having a wavelength λ2 is output in the next one time slot. Then, in the next time slot in which the optical signal having the wavelength λn is controlled to be output, the optical signal having the wavelength λ1 is controlled to be output.
 なお、1タイムスロットは、少なくとも、MACフレームの最大フレーム長(例えば、1500バイト)を十分に送信できる程度に設定される。また、上述したように、出力対象波長情報は、各々の送受信装置10a-1~10a-nから同一の波長の光信号が重なって出力されないように設定される。 Note that one time slot is set to such a degree that at least the maximum frame length (for example, 1500 bytes) of the MAC frame can be sufficiently transmitted. Further, as described above, the output target wavelength information is set so that the optical signals of the same wavelength are not overlapped and output from the respective transmitting / receiving apparatuses 10a-1 to 10a-n.
 ここで、図4を用いて、送受信装置10a-1~10a-nに設定される出力対象波長情報について説明する。図4は、送受信装置10a-1~10a-nに設定される出力対象波長情報を説明するための図である。同図に示した例では、送受信装置10a-1が波長λ1の光信号を送信するときは、送受信装置10a-2は波長λ2の光信号を送信し、送受信装置10a-3は波長λ3の光信号を送信し、送受信装置10a-nは波長λnの光信号を送信するように出力対象波長情報が設定されている。 Here, the output target wavelength information set in the transmission / reception devices 10a-1 to 10a-n will be described with reference to FIG. FIG. 4 is a diagram for explaining output target wavelength information set in the transmission / reception apparatuses 10a-1 to 10a-n. In the example shown in the figure, when the transmission / reception device 10a-1 transmits an optical signal of wavelength λ1, the transmission / reception device 10a-2 transmits an optical signal of wavelength λ2, and the transmission / reception device 10a-3 transmits light of wavelength λ3. The transmission target wavelength information is set so that the transmission / reception devices 10a-n transmit optical signals of wavelength λn.
 また、送受信装置10a-1が波長λ2の光信号を送信するときは、送受信装置10a-2は波長λ3の光信号を送信し、送受信装置10a-3は波長λ4の光信号を送信し、送受信装置10a-nは波長λ1の光信号を送信するように出力対象波長情報が設定されている。 When the transmission / reception device 10a-1 transmits an optical signal having a wavelength λ2, the transmission / reception device 10a-2 transmits an optical signal having a wavelength λ3, and the transmission / reception device 10a-3 transmits an optical signal having a wavelength λ4. The output target wavelength information is set so that the devices 10a-n transmit the optical signal having the wavelength λ1.
 このように設定されている出力対象波長情報に基づいて、送信制御部16a-1が、タイムスロットごとに波長変換データの送信制御を行うことで、送受信装置10a-1~10a-nは、互いに、同一波長の光信号を重ねて出力してしまうことを防止できる。 Based on the output target wavelength information set in this way, the transmission control unit 16a-1 performs transmission control of wavelength conversion data for each time slot, so that the transmission / reception devices 10a-1 to 10a-n are mutually connected. It is possible to prevent the optical signals having the same wavelength from being output in an overlapping manner.
 E/O変換部17a-1は、送信制御部16a-1から入力された波長変換データに含まれる電気信号を、かかる波長変換データに含まれる変換波長の光信号に変換して、波長変換後の光信号を波長多重部21aへ出力する処理部である。具体的には、E/O変換部17a-1は、送信制御部16a-1から変換波長λ1を含む波長変換データを入力された場合、波長変換データに含まれる電気信号を波長λ1の光信号に変換して、波長多重部21aへ出力する。 The E / O conversion unit 17a-1 converts the electrical signal included in the wavelength conversion data input from the transmission control unit 16a-1 into an optical signal having a conversion wavelength included in the wavelength conversion data, and performs wavelength conversion. Is a processing unit that outputs the optical signal of 1 to the wavelength multiplexing unit 21a. Specifically, when wavelength conversion data including the conversion wavelength λ1 is input from the transmission control unit 16a-1, the E / O conversion unit 17a-1 converts the electrical signal included in the wavelength conversion data into an optical signal having the wavelength λ1. And output to the wavelength multiplexing unit 21a.
 O/E変換部18a-1は、波長分離部24aから入力された光信号を電気信号に変換する処理部である。また、E/O変換部19a-1は、O/E変換部18a-1から入力された電気信号を広帯域波長の光信号に変換する処理部である。なお、送受信装置10a-1が光信号を受信する処理は、実施例1に係る光波長多重伝送装置200aの特徴と密接に関係しないため、詳細な説明を省略する。 The O / E converter 18a-1 is a processor that converts the optical signal input from the wavelength separator 24a into an electrical signal. The E / O conversion unit 19a-1 is a processing unit that converts the electrical signal input from the O / E conversion unit 18a-1 into an optical signal having a wideband wavelength. Note that the process in which the transmission / reception device 10a-1 receives an optical signal is not closely related to the characteristics of the optical wavelength division multiplexing transmission device 200a according to the first embodiment, and thus detailed description thereof is omitted.
 波長多重部21aは、送受信装置10a-1~10a-nのE/O変換部17a-1~17a-nから入力された狭帯域波長の光信号を多重して増幅部22aへ出力する。増幅部22aは、波長多重部21aから入力された光信号を増幅して光ファイバケーブル30へ出力する。 The wavelength multiplexing unit 21a multiplexes the narrowband wavelength optical signals input from the E / O conversion units 17a-1 to 17a-n of the transmission / reception devices 10a-1 to 10a-n and outputs the multiplexed signals to the amplification unit 22a. The amplifying unit 22 a amplifies the optical signal input from the wavelength multiplexing unit 21 a and outputs the amplified optical signal to the optical fiber cable 30.
 増幅部23aは、光ファイバケーブル30から入力された光信号の光レベルを増幅して波長分離部24aへ出力する。波長分離部24aは、多重された光信号を分離して、分離した光信号を送受信装置10a-1~10a-nへ出力する。 The amplifying unit 23a amplifies the optical level of the optical signal input from the optical fiber cable 30 and outputs the amplified signal to the wavelength separating unit 24a. The wavelength separation unit 24a separates the multiplexed optical signals and outputs the separated optical signals to the transmission / reception devices 10a-1 to 10a-n.
 次に、送受信装置10a-1による光信号の変換波長決定処理について説明する。図5は、送受信装置10a-1による光信号の変換波長決定処理手順を示すフローチャートである。 Next, an optical signal conversion wavelength determination process by the transmission / reception device 10a-1 will be described. FIG. 5 is a flowchart showing a procedure for determining the conversion wavelength of an optical signal by the transmission / reception device 10a-1.
 同図に示すように、I/F部11a-1を介して、外部装置から光信号を受信すると(ステップS101肯定)、送受信装置10a-1のO/E変換部12a-1は、かかる光信号を電気信号に変換して、変換した電気信号をアイドルパターン破棄部13a-1へ出力する(ステップS102)。 As shown in the figure, when an optical signal is received from an external device via the I / F unit 11a-1 (Yes in step S101), the O / E conversion unit 12a-1 of the transmission / reception device 10a-1 The signal is converted into an electric signal, and the converted electric signal is output to the idle pattern discarding unit 13a-1 (step S102).
 O/E変換部12a-1から電気信号を入力されたアイドルパターン破棄部13a-1は、電気信号にアイドルパターンが含まれている場合(ステップS103肯定)、アイドルパターンを破棄して、アイドルパターン以外の電気信号を変換波長決定部14a-1へ出力する(ステップS104)。一方、電気信号にアイドルパターンが含まれていない場合(ステップS103否定)、アイドルパターン破棄部13a-1は、O/E変換部12a-1から入力された電気信号をそのまま変換波長決定部14a-1へ出力する。 When the electrical signal is input from the O / E conversion unit 12a-1, the idle pattern discard unit 13a-1 discards the idle pattern when the electrical signal includes the idle pattern (Yes in step S103). The other electrical signal is output to the converted wavelength determining unit 14a-1 (step S104). On the other hand, when the idle signal is not included in the electrical signal (No at Step S103), the idle pattern discarding unit 13a-1 directly converts the electrical signal input from the O / E conversion unit 12a-1 into the converted wavelength determining unit 14a- Output to 1.
 アイドルパターン破棄部13a-1から電気信号を入力された変換波長決定部14a-1は、かかる電気信号に設定されているDAをキーにして、変換波長記憶部50aから変換波長を取得する(ステップS105)。そして、変換波長決定部14a-1は、アイドルパターン破棄部13a-1から入力された電気信号と、変換波長記憶部50aから取得した変換波長とを含む変換波長データを、キュー15a-1に格納する(ステップS106)。 The conversion wavelength determination unit 14a-1 to which the electrical signal is input from the idle pattern discard unit 13a-1 acquires the conversion wavelength from the conversion wavelength storage unit 50a using the DA set in the electrical signal as a key (step) S105). Then, the conversion wavelength determination unit 14a-1 stores the conversion wavelength data including the electrical signal input from the idle pattern discarding unit 13a-1 and the conversion wavelength acquired from the conversion wavelength storage unit 50a in the queue 15a-1. (Step S106).
 次に、送受信装置10a-1による光信号送信処理について説明する。図6は、送受信装置10a-1による光信号送信処理手順を示すフローチャートである。 Next, optical signal transmission processing by the transmission / reception device 10a-1 will be described. FIG. 6 is a flowchart showing an optical signal transmission processing procedure performed by the transmission / reception device 10a-1.
 同図に示すように、現在のタイムスロットに割り当てられている出力対象の波長と、変換波長とが一致する波長変換データがキュー15a-1に格納されている場合(ステップS201肯定)、送受信装置10a-1の送信制御部16a-1は、キュー15a-1から、タイムスロットに割り当てられている波長と変換波長とが一致する波長変換データを1つ取り出して、E/O変換部17a-1へ出力する(ステップS202)。 As shown in the figure, when wavelength conversion data in which the wavelength to be output assigned to the current time slot matches the conversion wavelength is stored in the queue 15a-1 (Yes in step S201), the transmission / reception device The transmission control unit 16a-1 of 10a-1 extracts one wavelength conversion data in which the wavelength assigned to the time slot matches the conversion wavelength from the queue 15a-1, and the E / O conversion unit 17a-1 (Step S202).
 送信制御部16a-1から波長変換データを入力されたE/O変換部17a-1は、波長変換データに含まれる電気信号を、波長変換データに含まれる変換波長の光信号に変換して(ステップS203)、波長変換後の光信号を波長多重部21aへ出力する(ステップS204)。 The E / O conversion unit 17a-1 to which the wavelength conversion data is input from the transmission control unit 16a-1 converts the electrical signal included in the wavelength conversion data into an optical signal having a conversion wavelength included in the wavelength conversion data ( In step S203, the optical signal after wavelength conversion is output to the wavelength multiplexing unit 21a (step S204).
 送信制御部16a-1およびE/O変換部17a-1は、上述した光信号送信処理を繰り返し行う。 The transmission control unit 16a-1 and the E / O conversion unit 17a-1 repeatedly perform the optical signal transmission process described above.
 上述してきたように、実施例1に係る光波長多重伝送装置200aは、外部装置から送受信装置10a-1~10a-nに入力された光信号の宛先情報(例えば、DA)に基づいて、送信先の送受信装置を判別し、かかる光信号を送信先の送受信装置が受信する波長の光信号に変換して、送受信装置10a-1~10a-nから同一の波長の光信号が重なって出力されないように、波長変換後の光波長を波長多重部21aへ出力する構成としたので、1台の送受信装置から複数の送受信装置に対して光信号を送信することができる。 As described above, the optical wavelength division multiplex transmission apparatus 200a according to the first embodiment performs transmission based on the destination information (for example, DA) of the optical signal input from the external apparatus to the transmission / reception apparatuses 10a-1 to 10a-n. The destination transmitter / receiver is identified, the optical signal is converted into an optical signal having a wavelength received by the destination transmitter / receiver, and the optical signals of the same wavelength are not overlapped and output from the transmitter / receivers 10a-1 to 10a-n. Thus, since it was set as the structure which outputs the optical wavelength after wavelength conversion to the wavelength multiplexing part 21a, an optical signal can be transmitted with respect to several transmitter / receiver from one transmitter / receiver.
 ところで、上記実施例1では、送信制御部16a-1が、出力対象波長情報に基づいてタイムスロットごとに出力する波長変換データを切り替えることで、送受信装置10a-1~10a-nから同一の波長の光信号が重なって出力されてしまうことを防止する例を示したが、各送受信装置が、他のすべての送受信装置が出力していない波長の光信号を出力するように構成してもよい。そこで、実施例2では、各送受信装置が、他のすべての送受信装置が出力していない波長の光信号を出力する光波長多重伝送装置について説明する。 In the first embodiment, the transmission control unit 16a-1 switches the wavelength conversion data to be output for each time slot based on the output target wavelength information, so that the same wavelength is transmitted from the transmission / reception devices 10a-1 to 10a-n. In the above example, the optical signals are not overlapped and output. However, each transmitting / receiving device may be configured to output an optical signal having a wavelength that is not output by any other transmitting / receiving device. . Therefore, in the second embodiment, an optical wavelength division multiplex transmission apparatus in which each transmission / reception apparatus outputs an optical signal having a wavelength that is not output by all other transmission / reception apparatuses will be described.
 まず、実施例2に係る光波長多重伝送装置300aの概要を説明する。図7は、実施例2に係る光波長多重伝送装置300aの概要を説明するための図である。同図に示すように、送受信装置40a-1は、外部装置から光信号F1およびF2を入力され、送受信装置40a-2は、外部装置から光信号F3を入力されている。ここで、光信号F1、F2およびF3の送信先は、波長λ1を受信する送受信装置40b-1であるとする。 First, an outline of the optical wavelength division multiplexing apparatus 300a according to the second embodiment will be described. FIG. 7 is a diagram for explaining the outline of the optical wavelength division multiplexing apparatus 300a according to the second embodiment. As shown in the figure, the transmission / reception device 40a-1 receives optical signals F1 and F2 from an external device, and the transmission / reception device 40a-2 receives an optical signal F3 from an external device. Here, it is assumed that the transmission destinations of the optical signals F1, F2, and F3 are the transmission / reception device 40b-1 that receives the wavelength λ1.
 かかる場合、同図に示すように、光信号F1と光信号F3は、重なって送受信装置40a-1および40a-2へ入力されているため、このタイミングで送受信装置40a-1および40a-2が、光信号F1と光信号F3を波長λ1の光信号に変換して波長多重部21aへ出力すると、波長多重部21aは、波長変換後の光信号F1と光信号F3とを多重することができない。 In such a case, as shown in the figure, the optical signal F1 and the optical signal F3 are input to the transmission / reception devices 40a-1 and 40a-2 in an overlapping manner, so that at this timing, the transmission / reception devices 40a-1 and 40a-2 When the optical signal F1 and the optical signal F3 are converted into an optical signal having the wavelength λ1 and output to the wavelength multiplexing unit 21a, the wavelength multiplexing unit 21a cannot multiplex the wavelength-converted optical signal F1 and the optical signal F3. .
 そこで、実施例2に係る光波長多重伝送装置300aの送受信装置40a-2は、送受信装置40a-1が波長λ1の光信号を出力していないタイミングで光信号F3を出力する。同図に示した例では、送受信装置40a-1は、光信号F1を出力した後に、アイドルパターンの間は光信号を出力せず、その後、光信号F2を出力する。送受信装置40a-2は、送受信装置40a-1が波長λ1の光信号を出力していないアイドルパターンの間に、光信号F3を出力する。なお、同図の例では、送受信装置40a-2が光信号F3を出力しているときに、送受信装置40a-3~40a-nは波長λ1の光信号を出力していないものとする。 Therefore, the transmission / reception device 40a-2 of the optical wavelength division multiplexing transmission device 300a according to the second embodiment outputs the optical signal F3 at a timing when the transmission / reception device 40a-1 does not output the optical signal having the wavelength λ1. In the example shown in the figure, the transmitting / receiving device 40a-1 does not output the optical signal during the idle pattern after outputting the optical signal F1, and then outputs the optical signal F2. The transmission / reception device 40a-2 outputs the optical signal F3 during the idle pattern in which the transmission / reception device 40a-1 does not output the optical signal having the wavelength λ1. In the example shown in the figure, it is assumed that the transmitting / receiving devices 40a-3 to 40a-n do not output the optical signal having the wavelength λ1 when the transmitting / receiving device 40a-2 outputs the optical signal F3.
 このように、実施例2に係る光波長多重伝送装置300aでは、各々の送受信装置40a-1~40a-nが、他のすべての送受信装置が出力していない波長の光信号を出力するので、光信号を出力するタイミングがあれば、即座に光信号を出力することができ、その結果、1台の送受信装置から複数の送受信装置に対して光信号を送信できるうえに、光波長多重伝送装置300aを含む光波長多重伝送システムの伝送効率を向上させることができる。 As described above, in the optical wavelength division multiplex transmission apparatus 300a according to the second embodiment, each of the transmission / reception apparatuses 40a-1 to 40a-n outputs an optical signal having a wavelength that is not output by all the other transmission / reception apparatuses. If there is a timing for outputting an optical signal, it is possible to output an optical signal immediately. The transmission efficiency of the optical wavelength division multiplexing transmission system including 300a can be improved.
 次に、実施例2に係る光波長多重伝送装置300aの構成について説明する。図8は、実施例2に係る光波長多重伝送装置300aの構成を示す機能ブロック図である。なお、ここでは、図2に示した構成部位と同様の機能を有する部位には同一符号を付すこととして、その詳細な説明を省略する。 Next, the configuration of the optical wavelength division multiplexing apparatus 300a according to the second embodiment will be described. FIG. 8 is a functional block diagram of the configuration of the optical wavelength division multiplexing apparatus 300a according to the second embodiment. Here, parts having the same functions as the constituent parts shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 同図に示すように、光波長多重伝送装置300aは、図2に示した光波長多重伝送装置200aと比較して、送信中波長管理記憶部70aを新たに有する。送信中波長管理記憶部70aの一例を図9に示す。同図に示すように、送信中波長管理記憶部70aは、「波長」に対応付けて、「送信中フラグ」を記憶する。 As shown in the figure, the optical wavelength division multiplexing apparatus 300a newly includes a transmitting wavelength management storage unit 70a as compared with the optical wavelength division multiplexing apparatus 200a shown in FIG. An example of the transmitting wavelength management storage unit 70a is shown in FIG. As shown in the figure, the transmitting wavelength management storage unit 70a stores a “transmitting flag” in association with “wavelength”.
 送信中波長管理記憶部70aの波長は、光波長多重伝送装置300aを構成する送受信装置40a-1~40a-nが変換可能な波長を記憶する。同図に示した例では、送信中波長管理記憶部70aの波長は、「λ1」、「λ2」、・・、「λn」を記憶する。 The wavelength of the transmitting wavelength management storage unit 70a stores wavelengths that can be converted by the transmission / reception devices 40a-1 to 40a-n constituting the optical wavelength division multiplexing transmission device 300a. In the example shown in the figure, “λ1”, “λ2”,..., “Λn” are stored as wavelengths in the transmission wavelength management storage unit 70a.
 また、送信中波長管理記憶部70aの送信中フラグは、対応する波長の光信号が、送受信装置40a-1~40a-nのいずれかによって、送信中であるか否かを識別するためのフラグを記憶する。同図では、送信中フラグ「0」は、送信中でない状態(非送信中状態)を示し、送信中フラグ「1」は、送信中である状態(送信中状態)を示す。 The transmission flag in the transmission wavelength management storage unit 70a is a flag for identifying whether or not an optical signal having a corresponding wavelength is being transmitted by any of the transmission / reception devices 40a-1 to 40a-n. Remember. In the figure, a transmission flag “0” indicates a state where transmission is not being performed (non-transmission state), and a transmission flag “1” indicates a state where transmission is being performed (transmission state).
 送受信装置40a-1の送信制御部20a-1は、送信中波長管理記憶部70aに記憶されている情報に基づいて、キュー15a-1に格納されている波長変換データをE/O変換部17a-1へ出力する。 Based on the information stored in the transmitting wavelength management storage unit 70a, the transmission control unit 20a-1 of the transmission / reception device 40a-1 converts the wavelength conversion data stored in the queue 15a-1 into the E / O conversion unit 17a. Output to -1.
 具体的には、送信制御部20a-1は、まず、キュー15a-1に最初に格納されている波長変換データを処理対象とする。そして、送信制御部20a-1は、処理対象の波長変換データに含まれる変換波長をキーにして、送信中波長管理記憶部70aから送信中フラグを取得する。 Specifically, the transmission control unit 20a-1 first sets the wavelength conversion data first stored in the queue 15a-1 as a processing target. Then, the transmission control unit 20a-1 acquires the transmitting flag from the transmitting wavelength management storage unit 70a using the conversion wavelength included in the wavelength conversion data to be processed as a key.
 取得した送信中フラグが「0(非送信中状態)」である場合、送信制御部20a-1は、処理対象の波長変換データに含まれる変換波長に対応する送信中波長管理記憶部70aの送信中フラグを「1(送信中状態)」に更新した後、処理対象の波長変換データをキュー15a-1から取り出してE/O変換部17a-1へ出力する。 When the acquired transmission flag is “0 (non-transmission state)”, the transmission control unit 20a-1 transmits the transmission in the transmission wavelength management storage unit 70a corresponding to the conversion wavelength included in the wavelength conversion data to be processed. After the medium flag is updated to “1 (transmission state)”, the wavelength conversion data to be processed is extracted from the queue 15a-1 and output to the E / O conversion unit 17a-1.
 その後、送信制御部20a-1は、E/O変換部17a-1から光信号を波長多重部21aへ出力したことを示す正常終了応答を受け付けると、処理対象の波長変換データに含まれる変換波長に対応する送信中波長管理記憶部70aの送信中フラグを「0(非送信中状態)」に更新する。 Thereafter, when receiving a normal end response indicating that the optical signal is output from the E / O conversion unit 17a-1 to the wavelength multiplexing unit 21a, the transmission control unit 20a-1 receives the conversion wavelength included in the wavelength conversion data to be processed. The transmitting flag in the transmitting wavelength management storage unit 70a corresponding to is updated to “0 (non-transmitting state)”.
 送信中波長管理記憶部70aから取得した送信中フラグが「1(送信中状態)」である場合、または、処理対象の波長変換データの送信処理が終了した場合、送信制御部20a-1は、処理対象の波長変換データの次にキュー15a-1に格納されている波長変換データを処理対象として、同様の処理を行う。送信制御部20a-1は、キュー15a-1に格納されているすべての波長変換データについて順番に同様の処理を行い、最後に格納されている波長変換データまで処理が終了したら、再度、最初に格納されている波長変換データから順番に同様の処理を行う。 When the transmission flag acquired from the transmission wavelength management storage unit 70a is “1 (transmission state)”, or when the transmission processing of the wavelength conversion data to be processed ends, the transmission control unit 20a-1 Similar processing is performed using the wavelength conversion data stored in the queue 15a-1 next to the wavelength conversion data to be processed as a processing target. The transmission control unit 20a-1 sequentially performs the same processing for all the wavelength conversion data stored in the queue 15a-1, and once the processing is completed up to the wavelength conversion data stored last, the transmission control unit 20a-1 starts again. The same processing is performed in order from the stored wavelength conversion data.
 なお、送信制御部20a-1は、処理対象とする波長変換データをキュー15a-1に格納されている順番ではなく、同一の変換波長を含む波長変換データを順番に処理対象としてもよい。具体的には、送信制御部20a-1は、まず、変換波長λ1の波長変換データを処理対象とし、続いて、変換波長λ2の波長変換データを処理対象とし、変換波長λnの波長変換データを処理対象とし、その次は、再度、変換波長λ1の波長変換データを処理対象とする。 Note that the transmission control unit 20a-1 may set the wavelength conversion data including the same conversion wavelength as the processing target in order, not the order in which the wavelength conversion data to be processed is stored in the queue 15a-1. Specifically, the transmission control unit 20a-1 first sets the wavelength conversion data of the conversion wavelength λ1 as the processing target, and then sets the wavelength conversion data of the conversion wavelength λ2 as the processing target, and converts the wavelength conversion data of the conversion wavelength λn as the processing target. Next, the wavelength conversion data of the conversion wavelength λ1 is processed again.
 例えば、キュー15a-1に、変換波長λ1の波長変換データが3つ格納されている場合、送信制御部20a-1は、波長λ1をキーにして送信中波長管理記憶部70aから送信中フラグを取得する。取得した送信中フラグが「0(非送信中状態)」である場合、送信制御部20a-1は、波長λ1に対応する送信中波長管理記憶部70aの送信中フラグを「1(送信中状態)」に更新した後、変換波長λ1の3つの波長変換データを順にE/O変換部17a-1へ出力する。そして、E/O変換部17a-1から正常終了応答を受け付けると、変換波長λ1に対応する送信中波長管理記憶部70aの送信中フラグを「0(非送信中状態)」に更新する。同様にして、変換波長が「λ2」、「λ3」、・・、「λn」の波長変換データについて順に処理を行う。 For example, when three pieces of wavelength conversion data of the conversion wavelength λ1 are stored in the queue 15a-1, the transmission control unit 20a-1 sets a transmission flag from the transmission wavelength management storage unit 70a using the wavelength λ1 as a key. get. When the acquired transmission flag is “0 (non-transmission state)”, the transmission control unit 20a-1 sets the transmission flag of the transmission wavelength management storage unit 70a corresponding to the wavelength λ1 to “1 (transmission state). 3), the three wavelength conversion data of the conversion wavelength λ1 are sequentially output to the E / O conversion unit 17a-1. When a normal end response is received from the E / O conversion unit 17a-1, the transmitting flag in the transmitting wavelength management storage unit 70a corresponding to the converted wavelength λ1 is updated to “0 (non-transmitting state)”. Similarly, wavelength conversion data having conversion wavelengths “λ2”, “λ3”,.
 次に、送受信装置40a-1による光信号送信処理について説明する。図10は、送受信装置40a-1による光信号送信処理手順を示すフローチャートである。なお、送受信装置40a-1による光信号の変換波長決定処理は、図5に示した処理と同様である。 Next, optical signal transmission processing by the transmission / reception device 40a-1 will be described. FIG. 10 is a flowchart showing an optical signal transmission processing procedure performed by the transmission / reception device 40a-1. Note that the optical signal conversion wavelength determination processing by the transmission / reception device 40a-1 is the same as the processing shown in FIG.
 同図に示すように、送受信装置40a-1の送信制御部20a-1は、まず、キュー15a-1に最初に格納されている波長変換データを処理対象とする(ステップS301)。 As shown in the figure, the transmission control unit 20a-1 of the transmission / reception device 40a-1 first sets the wavelength conversion data first stored in the queue 15a-1 as a processing target (step S301).
 そして、送信制御部20a-1は、処理対象の波長変換データに含まれる変換波長をキーにして、送信中波長管理記憶部70aから送信中フラグを取得する(ステップS302)。取得した送信中フラグが「0(非送信中状態)」である場合(ステップS303肯定)、送信制御部20a-1は、かかる変換波長に対応する送信中波長管理記憶部70aの送信中フラグを「1(送信中状態)」に更新する(ステップS304)。 Then, the transmission control unit 20a-1 acquires a transmission flag from the transmission wavelength management storage unit 70a using the conversion wavelength included in the wavelength conversion data to be processed as a key (step S302). When the acquired transmission flag is “0 (non-transmission state)” (Yes at Step S303), the transmission control unit 20a-1 sets the transmission flag in the transmission wavelength management storage unit 70a corresponding to the converted wavelength. It is updated to “1 (transmission state)” (step S304).
 送信中フラグを更新後、送信制御部20a-1は、処理対象の波長変換データをキュー15a-1から取り出してE/O変換部17a-1へ出力する(ステップS305)。かかる波長変換データを入力されたE/O変換部17a-1は、波長変換データに含まれる電気信号を、波長変換データに含まれる変換波長の光信号に変換して(ステップS306)、波長変換後の光信号を波長多重部21aへ出力する(ステップS307)。 After updating the transmission flag, the transmission control unit 20a-1 extracts the wavelength conversion data to be processed from the queue 15a-1 and outputs it to the E / O conversion unit 17a-1 (step S305). The E / O conversion unit 17a-1 to which the wavelength conversion data is input converts the electrical signal included in the wavelength conversion data into an optical signal having a conversion wavelength included in the wavelength conversion data (step S306), and wavelength conversion The subsequent optical signal is output to the wavelength multiplexing unit 21a (step S307).
 そして、送信制御部20a-1は、E/O変換部17a-1から正常終了応答を受け付けた場合(ステップS308肯定)、処理対象の波長変換データに含まれる変換波長に対応する送信中波長管理記憶部70aの送信中フラグを「0(非送信中状態)」に更新する(ステップS309)。 When the transmission control unit 20a-1 receives a normal end response from the E / O conversion unit 17a-1 (Yes at Step S308), the transmission wavelength management corresponding to the conversion wavelength included in the wavelength conversion data to be processed The transmission flag in the storage unit 70a is updated to “0 (non-transmission state)” (step S309).
 送信中波長管理記憶部70aから取得した送信中フラグが「1(送信中状態)」である場合(ステップS303否定)、または、処理対象の波長変換データについて変換波長送信処理が終了した場合(ステップS309)、送信制御部20a-1は、処理対象の波長変換データがキュー15a-1の最後に格納されている波長変換データでなければ(ステップS310否定)、送信制御部20a-1は、処理対象の波長変換データの次に変換波長決定部14a-1に格納されている波長変換データを処理対象とする(ステップS311)。一方、処理対象の波長変換データがキュー15a-1の最後に格納されている波長変換データである場合(ステップS310肯定)、送信制御部20a-1は、キュー15a-1に最初に格納された波長変換データを処理対象とする(ステップS301)。 When the transmission flag acquired from the transmission wavelength management storage unit 70a is “1 (transmission state)” (No at Step S303), or when the converted wavelength transmission processing is completed for the wavelength conversion data to be processed (Step S303). S309), if the wavelength conversion data to be processed is not the wavelength conversion data stored at the end of the queue 15a-1 (No at step S310), the transmission control unit 20a-1 Next to the target wavelength conversion data, the wavelength conversion data stored in the conversion wavelength determination unit 14a-1 is set as a processing target (step S311). On the other hand, when the wavelength conversion data to be processed is the wavelength conversion data stored at the end of the queue 15a-1 (Yes at Step S310), the transmission control unit 20a-1 is stored first in the queue 15a-1. The wavelength conversion data is set as a processing target (step S301).
 そして、送信制御部20a-1およびE/O変換部17a-1は、処理対象とした波長変換データについて、上述した処理(ステップS302~ステップS309)と同様の処理を行う。 Then, the transmission control unit 20a-1 and the E / O conversion unit 17a-1 perform the same processing as the above-described processing (steps S302 to S309) on the wavelength conversion data to be processed.
 上述してきたように、実施例2に係る光波長多重伝送装置300aは、送受信装置40a-1~40a-nが、送信中波長管理記憶部70aに記憶されている送信中フラグを用いて、他のすべての送受信装置40a-1~40a-nが出力していない波長の光信号を出力するように構成したので、1台の送受信装置から複数の送受信装置に対して光信号を送信できるうえに、光波長多重伝送装置300aを含む光波長多重伝送システムの伝送効率を向上させることができる。 As described above, in the optical wavelength division multiplex transmission apparatus 300a according to the second embodiment, the transmission / reception apparatuses 40a-1 to 40a-n use the transmitting flag stored in the transmitting wavelength management storage unit 70a. Since all of the transmitter / receivers 40a-1 to 40a-n output optical signals having wavelengths that are not output, one optical transmitter / receiver can transmit optical signals to a plurality of transmitter / receivers. The transmission efficiency of the optical wavelength division multiplex transmission system including the optical wavelength division multiplex transmission apparatus 300a can be improved.
 なお、上記実施例1および2では、送受信装置10a-1~10a-nまたは40a-1~40a-nから同一の波長の光信号が重なって出力されてしまうことを防止する例を示したが、送受信装置10a-1~10a-nまたは40a-1~40a-nから同一の波長の光信号が重なって出力されないようにするとともに、干渉しやすい2以上の光信号が重なって出力されないようにしてもよい。 In the first and second embodiments, the example in which the optical signals having the same wavelength are prevented from overlapping and output from the transmitting / receiving devices 10a-1 to 10a-n or 40a-1 to 40a-n has been described. The optical signals having the same wavelength are not overlapped and output from the transmission / reception devices 10a-1 to 10a-n or 40a-1 to 40a-n, and two or more optical signals that are likely to interfere are not overlapped and output. May be.
 図11を用いて、具体的に説明する。図11は、干渉しやすい光信号を重ねて出力しない処理の概要を説明するための図である。一般的に、光波長多重伝送装置では、波長の近い2以上の光信号は相互に干渉するため、多重する各々の光信号の波長について所定の間隔(例えば、30~50GHz)を空けている。 This will be specifically described with reference to FIG. FIG. 11 is a diagram for explaining an overview of processing that does not output optical signals that are likely to interfere with each other. In general, in an optical wavelength division multiplexing apparatus, two or more optical signals having close wavelengths interfere with each other, so that a predetermined interval (for example, 30 to 50 GHz) is provided for the wavelength of each multiplexed optical signal.
 しかしながら、光信号の干渉を完全に防止することはできない。例えば、図11に示した例において、波長λ1と波長λ2とが干渉しやすいとすると、波長λ1に変換された光信号F4および波長λ2に変換された光信号F5は、多重されると干渉するおそれがある。 However, optical signal interference cannot be completely prevented. For example, in the example shown in FIG. 11, if the wavelengths λ1 and λ2 are likely to interfere with each other, the optical signal F4 converted into the wavelength λ1 and the optical signal F5 converted into the wavelength λ2 interfere when multiplexed. There is a fear.
 そこで、送受信装置10a-1~10a-nは、干渉しやすい波長の光信号を重ねて出力しないように制御する。図11に示した例では、送受信装置10a-2は、送受信装置10a-1が出力する波長λ1の光信号F4と重ねて出力しないように、波長λ2の光信号F5を遅らせて出力する。これは、干渉しやすい波長について重ねて出力しないように出力対象波長情報を設定することにより実現できる。 Therefore, the transmission / reception devices 10a-1 to 10a-n perform control so as not to output optical signals having wavelengths that easily interfere with each other. In the example shown in FIG. 11, the transmission / reception device 10a-2 delays and outputs the optical signal F5 of wavelength λ2 so that it does not overlap with the optical signal F4 of wavelength λ1 output by the transmission / reception device 10a-1. This can be realized by setting output target wavelength information so that wavelengths that are likely to interfere do not overlap.
 また、上記実施例2に係る光波長多重伝送装置300aに、干渉しやすい光信号を重ねて出力しない処理を適用することもできる。具体的には、送受信装置40a-1~40a-nに干渉しやすい波長の組合せを所定の記憶部に設定しておく。そして、送信制御部20a-1は、処理対象の波長変換データに含まれる変換波長が干渉しやすい光信号に含まれる場合、送信中波長管理記憶部70aから、干渉しやすい波長に対応する送信中フラグをすべて取得して、取得した送信中フラグがすべて「0(非送信中状態)」である場合に、波長変換データを、E/O変換部17a-1へ出力する。これにより、送受信装置40a-1~40a-nは、干渉しやすい波長の光信号を重ねて出力しないように制御することができる。 Also, it is possible to apply a process in which optical signals that are likely to interfere with each other are not overlapped and output to the optical wavelength division multiplexing apparatus 300a according to the second embodiment. Specifically, a combination of wavelengths that easily interfere with the transmission / reception devices 40a-1 to 40a-n is set in a predetermined storage unit. When the converted wavelength included in the wavelength conversion data to be processed is included in the optical signal that is likely to interfere, the transmission control unit 20a-1 transmits from the in-transmission wavelength management storage unit 70a the transmission that corresponds to the wavelength that is likely to interfere. When all the flags are acquired and the acquired transmission flags are all “0 (non-transmission state)”, the wavelength conversion data is output to the E / O conversion unit 17a-1. Thus, the transmission / reception devices 40a-1 to 40a-n can be controlled so as not to output optical signals having wavelengths that easily interfere with each other.
 例えば、送受信装置40a-1に、干渉しやすい波長として、波長λ1と波長λ2とが設定されているとする。このとき、処理対象の波長変換データの変換波長が波長λ1である場合、送信制御部20a-1は、送信中波長管理記憶部70aから、波長λ1に対応する送信中フラグと、波長λ2に対応する送信中フラグとを取得する。そして、送信制御部20a-1は、取得した送信中フラグがすべて「0(非送信中状態)」である場合に、波長変換データを、E/O変換部17a-1へ出力する。 For example, it is assumed that the wavelength λ1 and the wavelength λ2 are set in the transmission / reception device 40a-1 as wavelengths that are likely to interfere with each other. At this time, when the conversion wavelength of the wavelength conversion data to be processed is the wavelength λ1, the transmission control unit 20a-1 corresponds to the transmitting flag corresponding to the wavelength λ1 and the wavelength λ2 from the transmitting wavelength management storage unit 70a. Get the sending flag. The transmission control unit 20a-1 then outputs the wavelength conversion data to the E / O conversion unit 17a-1 when all the acquired transmission flags are “0 (non-transmission state)”.

Claims (14)

  1.  外部装置から入力されたデータを特定の波長の光信号に変換する複数の送受信装置と、該複数の送受信装置から受信した光信号を多重する波長多重部とを含む光波長多重伝送装置であって、
     前記送受信装置は、
     前記データの宛先情報に基づいて、該データの送信先の送受信装置が受信する波長を、該データの波長とすることを決定する変換波長決定手段と、
     前記データを、前記変換波長決定手段によって決定された波長の光信号に変換する信号変換手段と
     を備えたことを特徴とする光波長多重伝送装置。
    An optical wavelength division multiplex transmission apparatus including a plurality of transmission / reception devices that convert data input from an external device into optical signals of a specific wavelength, and a wavelength multiplexing unit that multiplexes optical signals received from the plurality of transmission / reception devices. ,
    The transmission / reception device includes:
    Conversion wavelength determination means for determining, based on the data destination information, a wavelength received by the transmission / reception apparatus of the data transmission destination as the wavelength of the data;
    An optical wavelength division multiplex transmission device comprising: signal conversion means for converting the data into an optical signal having a wavelength determined by the conversion wavelength determination means.
  2.  前記送受信装置は、他の送受信装置が前記波長多重部へ送信している光信号と同一の波長の光信号を前記波長多重部へ送信しないように、該光信号を波長多重部へ送信するタイミングを制御する送信制御手段をさらに備えたことを特徴とする請求項1に記載の光波長多重伝送装置。 The transmission / reception apparatus transmits the optical signal to the wavelength multiplexing unit so that the optical signal having the same wavelength as the optical signal transmitted to the wavelength multiplexing unit by the other transmission / reception apparatus is not transmitted to the wavelength multiplexing unit. 2. The optical wavelength division multiplexing apparatus according to claim 1, further comprising transmission control means for controlling the transmission.
  3.  前記送信制御手段は、タイムスロットごとに割り当てられた出力対象の波長の情報である出力対象波長情報に基づいて、前記光信号を波長多重部へ送信することを特徴とする請求項2に記載の光波長多重伝送装置。 The said transmission control means transmits the said optical signal to a wavelength multiplexing part based on the output object wavelength information which is the information of the wavelength of the output object allocated for every time slot. Optical wavelength division multiplexing transmission equipment.
  4.  前記信号変換手段によって変換される波長に対応付けて、該波長の光信号が前記波長多重部へ送信中であるか否かを示す送信中フラグを記憶する送信中波長管理記憶手段をさらに備え、
     前記送信制御手段は、前記送信中波長管理記憶手段から、前記変換波長決定手段によって決定された波長に対応する使用中フラグを取得して、取得した送信中フラグが送信中でないことを示す非送信中状態である場合に、該送信中フラグを送信中であることを示す送信中状態に更新し、該光信号を波長多重部へ送信した後に、該送信中フラグを非送信中状態に更新することを特徴とする請求項2に記載の光波長多重伝送装置。
    Corresponding to the wavelength to be converted by the signal converting means, further comprising a transmitting wavelength management storage means for storing a transmitting flag indicating whether or not an optical signal of the wavelength is being transmitted to the wavelength multiplexing unit,
    The transmission control means acquires a busy flag corresponding to the wavelength determined by the converted wavelength determining means from the transmitting wavelength management storage means, and indicates that the acquired transmitting flag is not being transmitted. When in the middle state, the transmission flag is updated to a transmission state indicating that transmission is in progress, and after the optical signal is transmitted to the wavelength multiplexing unit, the transmission flag is updated to a non-transmission state. The optical wavelength division multiplexing apparatus according to claim 2.
  5.  前記送信制御手段は、他の送受信装置が前記波長多重部へ送信している光信号と干渉する可能性のある波長の光信号を波長多重部へ送信しないように制御することを特徴とする請求項2~4のいずれか一つに記載の光波長多重伝送装置。 The transmission control means performs control so that an optical signal having a wavelength that may interfere with an optical signal transmitted from another transmitting / receiving apparatus to the wavelength multiplexing unit is not transmitted to the wavelength multiplexing unit. Item 5. The optical wavelength division multiplexing transmission device according to any one of Items 2 to 4.
  6.  前記送受信装置は、前記データに含まれるアイドルパターンを破棄するアイドルパターン破棄手段をさらに備えたことを特徴とする請求項1~4のいずれか一つに記載の光波長多重伝送装置。 5. The optical wavelength division multiplex transmission apparatus according to claim 1, wherein the transmission / reception apparatus further includes an idle pattern discarding unit that discards an idle pattern included in the data.
  7.  前記宛先情報に対応付けて、前記データを光信号に変換する際の波長を記憶する変換波長記憶手段をさらに備え、
     前記変換波長決定手段は、前記変換波長記憶手段から前記データの宛先情報に対応する波長を取得し、取得した波長を該データの波長に決定することを特徴とする請求項1に記載の光波長多重伝送装置。
    In correspondence with the destination information, further comprising conversion wavelength storage means for storing a wavelength when converting the data into an optical signal,
    2. The optical wavelength according to claim 1, wherein the conversion wavelength determination unit acquires a wavelength corresponding to the destination information of the data from the conversion wavelength storage unit, and determines the acquired wavelength as the wavelength of the data. Multiplex transmission equipment.
  8.  外部装置から入力されたデータを特定の波長の光信号に変換する複数の送受信装置と、該複数の送受信装置から受信した光信号を多重する波長多重部とを含む光波長多重伝送装置における光波長多重伝送方法であって、
     前記送受信装置は、
     前記データの宛先情報に基づいて、該データの送信先の送受信装置が受信する波長を、該データの波長とすることを決定する変換波長決定工程と、
     前記データを、前記変換波長決定工程によって決定された波長の光信号に変換する信号変換工程と
     を含んだことを特徴とする光波長多重伝送方法。
    Optical wavelength in an optical wavelength division multiplex transmission device including a plurality of transmission / reception devices that convert data input from an external device into optical signals of a specific wavelength and a wavelength multiplexing unit that multiplexes optical signals received from the plurality of transmission / reception devices A multiplex transmission method,
    The transmission / reception device includes:
    A conversion wavelength determination step for determining, based on the destination information of the data, a wavelength received by the transmission / reception device of the data transmission destination as the wavelength of the data;
    A signal conversion step of converting the data into an optical signal having a wavelength determined by the conversion wavelength determination step.
  9.  前記送受信装置は、他の送受信装置が前記波長多重部へ送信している光信号と同一の波長の光信号を前記波長多重部へ送信しないように、該光信号を波長多重部へ送信するタイミングを制御する送信制御工程をさらに含むことを特徴とする請求項8に記載の光波長多重伝送方法。 The transmission / reception apparatus transmits the optical signal to the wavelength multiplexing unit so that the optical signal having the same wavelength as the optical signal transmitted to the wavelength multiplexing unit by the other transmission / reception apparatus is not transmitted to the wavelength multiplexing unit. 9. The optical wavelength division multiplexing transmission method according to claim 8, further comprising a transmission control step for controlling the transmission.
  10.  前記送信制御工程は、タイムスロットごとに割り当てられた出力対象の波長の情報である出力対象波長情報に基づいて、前記光信号を波長多重部へ送信することを特徴とする請求項9に記載の光波長多重伝送方法。 The said transmission control process transmits the said optical signal to a wavelength multiplexing part based on the output object wavelength information which is the information of the wavelength of the output object allocated for every time slot. Optical wavelength division multiplexing method.
  11.  前記送信制御工程は、前記信号変換工程によって変換される波長に対応付けて、該波長の光信号が前記波長多重部へ送信中であるか否かを示す送信中フラグを記憶する送信中波長管理記憶手段から、前記変換波長決定工程によって決定された波長に対応する使用中フラグを取得して、取得した送信中フラグが送信中でないことを示す非送信中状態である場合に、該送信中フラグを送信中であることを示す送信中状態に更新し、該光信号を波長多重部へ送信した後に、該送信中フラグを非送信中状態に更新することを特徴とする請求項9に記載の光波長多重伝送方法。 The transmission control step stores a transmission-in-progress wavelength management that stores a transmission-in-progress flag indicating whether or not an optical signal of the wavelength is being transmitted to the wavelength multiplexing unit in association with the wavelength converted by the signal conversion step. When the in-use flag corresponding to the wavelength determined by the conversion wavelength determination step is acquired from the storage means and the acquired transmission flag is in a non-transmission state indicating that the transmission is not in progress, the transmission flag The transmission flag is updated to a non-transmitting state after the optical signal is transmitted to the wavelength multiplexing unit, and the transmission flag is updated to a non-transmitting state. Optical wavelength division multiplexing method.
  12.  前記送信制御工程は、他の送受信装置が前記波長多重部へ送信している光信号と干渉する可能性のある波長の光信号を波長多重部へ送信しないように制御することを特徴とする請求項9~11のいずれか一つに記載の光波長多重伝送方法。 The transmission control step performs control so that an optical signal having a wavelength that may interfere with an optical signal transmitted from another transmitting / receiving apparatus to the wavelength multiplexing unit is not transmitted to the wavelength multiplexing unit. Item 12. The optical wavelength division multiplexing transmission method according to any one of Items 9 to 11.
  13.  前記送受信装置は、前記データに含まれるアイドルパターンを破棄するアイドルパターン破棄工程をさらに備えたことを特徴とする請求項8~11のいずれか一つに記載の光波長多重伝送方法。 12. The optical wavelength division multiplexing transmission method according to claim 8, wherein the transmission / reception apparatus further includes an idle pattern discarding step of discarding an idle pattern included in the data.
  14.  前記変換波長決定工程は、前記宛先情報に対応付けて前記データを光信号に変換する際の波長を記憶する変換波長記憶手段から、外部装置から入力されたデータの宛先情報に対応する波長を取得し、取得した波長を該データの波長に決定することを特徴とする請求項8に記載の光波長多重伝送方法。 The conversion wavelength determining step obtains a wavelength corresponding to destination information of data input from an external device from a conversion wavelength storage unit that stores a wavelength when the data is converted into an optical signal in association with the destination information. 9. The optical wavelength division multiplex transmission method according to claim 8, wherein the acquired wavelength is determined as the wavelength of the data.
PCT/JP2008/051425 2008-01-30 2008-01-30 Optical wavelength multiplexing transmission apparatus and optical wavelength multiplexing transmission method WO2009096011A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051425 WO2009096011A1 (en) 2008-01-30 2008-01-30 Optical wavelength multiplexing transmission apparatus and optical wavelength multiplexing transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/051425 WO2009096011A1 (en) 2008-01-30 2008-01-30 Optical wavelength multiplexing transmission apparatus and optical wavelength multiplexing transmission method

Publications (1)

Publication Number Publication Date
WO2009096011A1 true WO2009096011A1 (en) 2009-08-06

Family

ID=40912380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051425 WO2009096011A1 (en) 2008-01-30 2008-01-30 Optical wavelength multiplexing transmission apparatus and optical wavelength multiplexing transmission method

Country Status (1)

Country Link
WO (1) WO2009096011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017536750A (en) * 2014-10-14 2017-12-07 ザ アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティー オブ アリゾナThe Arizona Board of Regents on behalf of The University of Arizona Multi-wavelength balanced optical transmission network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819012A (en) * 1994-06-27 1996-01-19 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplex type optical packet switch module and optical packet switch circuit network
JPH0955758A (en) * 1995-06-06 1997-02-25 Canon Inc Network system, node device, and transmission control method
JPH0969835A (en) * 1995-08-31 1997-03-11 Nec Corp Shaping device
JP2000261502A (en) * 1999-03-10 2000-09-22 Nippon Telegr & Teleph Corp <Ntt> Optical packet signal transfer system
JP2001045069A (en) * 1999-07-29 2001-02-16 Nippon Telegr & Teleph Corp <Ntt> Giga bit/ethernet (registered trademark) signal multiplex transmitter
JP2002300189A (en) * 2001-04-03 2002-10-11 Nippon Telegr & Teleph Corp <Ntt> Wavelength use state update method and link information update method, program for performing the methods and recording medium with the program recorded thereon, and node unit used for the methods
JP2005184512A (en) * 2003-12-19 2005-07-07 Fujitsu Ltd Frame delay generator unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819012A (en) * 1994-06-27 1996-01-19 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplex type optical packet switch module and optical packet switch circuit network
JPH0955758A (en) * 1995-06-06 1997-02-25 Canon Inc Network system, node device, and transmission control method
JPH0969835A (en) * 1995-08-31 1997-03-11 Nec Corp Shaping device
JP2000261502A (en) * 1999-03-10 2000-09-22 Nippon Telegr & Teleph Corp <Ntt> Optical packet signal transfer system
JP2001045069A (en) * 1999-07-29 2001-02-16 Nippon Telegr & Teleph Corp <Ntt> Giga bit/ethernet (registered trademark) signal multiplex transmitter
JP2002300189A (en) * 2001-04-03 2002-10-11 Nippon Telegr & Teleph Corp <Ntt> Wavelength use state update method and link information update method, program for performing the methods and recording medium with the program recorded thereon, and node unit used for the methods
JP2005184512A (en) * 2003-12-19 2005-07-07 Fujitsu Ltd Frame delay generator unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017536750A (en) * 2014-10-14 2017-12-07 ザ アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティー オブ アリゾナThe Arizona Board of Regents on behalf of The University of Arizona Multi-wavelength balanced optical transmission network

Similar Documents

Publication Publication Date Title
JP2888272B2 (en) Optical network and transit nodes
EP0629058B1 (en) Optical wavelength selection control system in optical networks
JP2001511621A (en) Method and apparatus for transmitting data by wavelength multiplexing in an optical ring network
US10855393B2 (en) Transmitting device and transmission system
JP4376263B2 (en) Optical wavelength multiplexing system
JP3549716B2 (en) Optical ADM device
JPWO2012073419A1 (en) Wavelength division multiplexing optical transmission system, transmitter, and receiver
US11336386B2 (en) Submarine branching apparatus, optical submarine cable system, and optical communication method
US20090297151A1 (en) Optical transmitting apparatus and optical transmitting and receiving apparatus
US11349571B2 (en) Optical transponder
KR100960110B1 (en) Optical Backhaul Network for Wireless Broadband Service
EP2852081B1 (en) Optical ring network
WO2009096011A1 (en) Optical wavelength multiplexing transmission apparatus and optical wavelength multiplexing transmission method
JP5053121B2 (en) Optical transceiver on the optical terminal side (OSU)
JP7343821B2 (en) Optical communication system and optical signal processing method
US20240056212A1 (en) Optical transmission device and optical communication system
US20050129403A1 (en) Method and system for communicating optical traffic at a node
JP2008092194A (en) Light wavelength assignment method and optical communication system
JP4488813B2 (en) Method and system for managing directly connected optical elements
JP2009218920A (en) Communication system and communication method
WO2004114554A1 (en) Route determining method in optical signal transmission system
JP2004104543A (en) Optical network system, its transmission controlling method and node device used for the same
JP6022975B2 (en) Optical network control device, communication device, and control method
US20230155675A1 (en) Failure detection device, failure detection method, and failure-detection-program recording medium
US20230353912A1 (en) Optical branching/coupling device and method for controlling same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08704188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP