WO2009095494A1 - Thermal conductivity detector - Google Patents

Thermal conductivity detector Download PDF

Info

Publication number
WO2009095494A1
WO2009095494A1 PCT/EP2009/051106 EP2009051106W WO2009095494A1 WO 2009095494 A1 WO2009095494 A1 WO 2009095494A1 EP 2009051106 W EP2009051106 W EP 2009051106W WO 2009095494 A1 WO2009095494 A1 WO 2009095494A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
thermal conductivity
conductivity detector
channel
silicon
Prior art date
Application number
PCT/EP2009/051106
Other languages
German (de)
French (fr)
Inventor
Udo Gellert
Arno Steckenborn
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2009095494A1 publication Critical patent/WO2009095494A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested

Definitions

  • the invention relates to a heat conductivity detector with an electrically heatable filament, which is mounted in the middle of a channel flow around a fluid and is held at its two ends to two channels crossing the electrically conductive carriers.
  • thermal conductivity detector is known from EP 1381854 Bl.
  • Thermal conductivity detectors are used to detect certain liquid or gaseous substances (fluids) by means of their
  • Substance-typical thermal conductivity and are used in particular in gas chromatography.
  • the substances to be detected are after their chromatographic separation successively passed in a channel at a arranged there and electrically heated filament, depending on the thermal conductivity of the passing substance more or less heat is dissipated from the filament to the channel wall and the filament accordingly cools more or less , By cooling the filament, its electrical resistance changes, which is detected.
  • the filament is usually arranged in a measuring bridge which contains further resistors and a further filament in a further channel through which a reference fluid flows.
  • the detection sensitivity of the thermal conductivity detector is greater the greater the temperature difference between the filament and the channel wall, with high temperatures affect the life of the filament.
  • the sensitivity also depends on the specific electrical resistance of the heating filament, because it gives the total resistance for a given geometry of the heating filament. The greater this total resistance, the greater the detection sensitivity.
  • the filament consists of gold and / or platinum.
  • the service life of the filament is in need of improvement because of the relatively low melting temperature of gold.
  • the filament resistance achievable with gold is low at approx. 15 to 25 ohms and limits the detection sensitivity. To a filament resistance of typically
  • the gold thread must be realized in its dimensions very thin ( ⁇ 0.3 microns) and narrow (typically 6 microns) with a length of 1 mm.
  • filigree dimensions lead to a very small heat capacity and thus a very short response time, but also to a very low robustness.
  • hydrogen sulfide-containing fluids can destroy the gold thread.
  • Platinum has a much higher melting temperature than gold and five times the resistivity with almost the same temperature coefficient of electrical resistance.
  • the advantage of platinum is its chemical inertness, which, however, makes the production in thin-film technology very difficult. Another disadvantage is the catalytic effect of platinum in gas mixtures containing hydrogen and hydrocarbons.
  • the avoidance of these problems takes place in that, in the case of the thermal conductivity detector of the type specified in the introduction, the filament and the supports consist of doped silicon.
  • the melting point of silicon is higher than that of gold, so that very high heating temperatures can be selected without affecting the service life of the filament. Due to the property of silicon becoming intrinsic at high temperatures, the filament is largely protected against overheating.
  • Silicon is more than a thousand times larger than that of gold, so that a high detection sensitivity is achieved.
  • the electrical resistance of the base material can over the doping can be adjusted within wide limits.
  • the doping is chosen so that the resistance is as low as possible in order to provide the thermal conductivity detector with practical operating voltages (well below 100 V) and thus the temperature coefficient of electrical resistance as high as possible. This can be realized in the field of doping of approximately 1-10 15 cm “3 to 1-10 17 cm" 3.
  • the dimensions of the silicon filament must be chosen to be significantly larger in accordance with the higher base resistance, resulting in an overall much more robust structure; typical dimensions are 10 x 10 microns for the cross section of the filament.
  • SOI silicon on insulator
  • the support holding the filament are preferably formed with the interposition of a silicon dioxide layer on a support plate of silicon with a groove contained therein, wherein the channel of the channel and a further groove in one on the support plate resting cover plate is formed.
  • the filament has an oxidized surface of silicon dioxide which is chemically inert to hydrogen sulfide.
  • FIG. 2 shows the same thermal conductivity detector in cross-section (H-II ').
  • a cover plate 3 On a support plate 1 with a channel 2 contained therein is a cover plate 3 with a further groove 4 such that both channels 2 and 4 together form a channel 5 with a circular cross-section here.
  • a filament 6 In the middle of the channel 5 extends in the longitudinal direction of a filament 6, which is held at its two ends to two the channel 5 traversing electrically conductive carriers 7 and 8. The filament 6 is acted upon for heating via the two carriers 7 and 8 with an electric current.
  • the carrier plate 1 is first formed from a silicon substrate, on which an insulating layer 9 of silicon dioxide is applied. On the silicon dioxide layer 9, a layer of doped silicon is then applied, which later forms the carrier 7 and 8 and the filament 6.
  • etching processes by patterning the silicon substrate, the silicon dioxide layer 9 and the layer of doped silicon, the carriers 7 and 8 and the filament 6 are formed and the channel 2 is formed in the carrier plate 1.
  • the carrier 7 and 8 can be dispensed with a stay of the silicon dioxide layer 9 as support for the carrier 7 and 8.
  • the support plate 1 and the cover plate 3 are joined together, wherein formed in them grooves 2 and 4 form the channel 5.
  • the filament 6 receives a hydrogen sulfide-resistant surface of silicon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A thermal conductivity detector comprises an electrically heatable filament, which is disposed in the center of a channel so that fluid can flow around it and, for this purpose, is held on the two ends thereof on two electrically conductive carriers traversing the channel. In order to achieve a long service life and inertness toward chemically corrosive gas mixtures, the filament (6) and the carriers (7, 8) are made of doped silicon.

Description

Beschreibungdescription
Wärmeleitfähigkeitsdetektorthermal conductivity detector
Die Erfindung betrifft einen Wärmeleitfähigkeitsdetektor mit einem elektrisch beheizbaren Heizfaden, der in der Mitte eines Kanals von einem Fluid umströmbar gelagert ist und dazu an seinen beiden Enden an zwei den Kanal durchquerenden elektrisch leitenden Trägern gehalten ist.The invention relates to a heat conductivity detector with an electrically heatable filament, which is mounted in the middle of a channel flow around a fluid and is held at its two ends to two channels crossing the electrically conductive carriers.
Ein derartiger Wärmeleitfähigkeitsdetektor ist aus der EP 1381854 Bl bekannt.Such a thermal conductivity detector is known from EP 1381854 Bl.
Wärmeleitfähigkeitsdetektoren dienen zum Nachweis bestimmter flüssiger oder gasförmiger Stoffe (Fluide) anhand ihrerThermal conductivity detectors are used to detect certain liquid or gaseous substances (fluids) by means of their
Stofftypischen Wärmeleitfähigkeit und werden insbesondere in der Gaschromatographie eingesetzt. Dazu werden die nachzuweisenden Stoffe nach ihrer chromatographischen Trennung nacheinander in einem Kanal an einem dort angeordneten und elektrisch beheizten Heizfaden vorbeigeführt, wobei je nach Wärmeleitfähigkeit des vorbeiströmenden Stoffes mehr oder weniger Wärme von dem Heizfaden auf die Kanalwandung abgeleitet wird und der Heizfaden dementsprechend mehr oder weniger abkühlt. Durch die Abkühlung des Heizfadens ändert sich des- sen elektrischer Widerstand, was detektiert wird. Dazu ist der Heizfaden üblicherweise in einer Messbrücke angeordnet, die weitere Widerstände und einen weiteren Heizfaden in einem von einem Referenzfluid durchströmten weiteren Kanal enthält.Substance-typical thermal conductivity and are used in particular in gas chromatography. For this purpose, the substances to be detected are after their chromatographic separation successively passed in a channel at a arranged there and electrically heated filament, depending on the thermal conductivity of the passing substance more or less heat is dissipated from the filament to the channel wall and the filament accordingly cools more or less , By cooling the filament, its electrical resistance changes, which is detected. For this purpose, the filament is usually arranged in a measuring bridge which contains further resistors and a further filament in a further channel through which a reference fluid flows.
Die Detektionsempfindlichkeit des Wärmeleitfähigkeitsdetektors ist umso größer je größer die Temperaturdifferenz zwischen dem Heizfaden und der Kanalwandung ist, wobei hohe Temperaturen die Standzeit des Heizfadens beeinträchtigen. Die Empfindlichkeit hängt auch von dem spezifischen elektri- sehen Widerstand des Heizfadens ab, weil dadurch bei vorgegebener Geometrie des Heizfadens dessen Gesamtwiderstand gegeben ist. Je größer dieser Gesamtwiderstand ist, umso größer ist auch die Detektionsempfindlichkeit . Schließlich können chemisch aggressive Fluide den Heizfaden angreifen und zersetzen .The detection sensitivity of the thermal conductivity detector is greater the greater the temperature difference between the filament and the channel wall, with high temperatures affect the life of the filament. The sensitivity also depends on the specific electrical resistance of the heating filament, because it gives the total resistance for a given geometry of the heating filament. The greater this total resistance, the greater the detection sensitivity. Finally, you can Chemically aggressive fluids attack the filament and decompose.
Bei dem aus der oben genannten EP 1381854 Bl bekannten Wärme- leitfähigkeitsdetektor besteht der Heizfaden aus Gold und/ oder Platin. Die Standzeit des Heizfadens ist wegen der relativ niedrigen Schmelztemperatur von Gold verbesserungsbedürftig. Der mit Gold realisierbare Heizfadenwiderstand ist mit ca. 15 bis 25 Ohm niedrig und begrenzt die Detektionsempfind- lichkeit. Um einen Heizfadenwiderstand von typischerweiseIn the case of the thermal conductivity detector known from the abovementioned EP 1381854 B1, the filament consists of gold and / or platinum. The service life of the filament is in need of improvement because of the relatively low melting temperature of gold. The filament resistance achievable with gold is low at approx. 15 to 25 ohms and limits the detection sensitivity. To a filament resistance of typically
20 Ohm zu erreichen muss der Goldfaden in seinen Abmessungen sehr dünn (< 0,3 μm) und schmal (typ. 6 μm) bei einer Länge von 1 mm realisiert werden. Solch filigrane Abmessungen führen zu einer sehr kleinen Wärmekapazität und damit einer sehr kurzen Ansprechzeit, aber auch zu einer sehr geringen Robustheit. Nicht zuletzt können Schwefelwasserstoffhaltige Fluide den Goldfaden zerstören. Platin hat eine sehr viel höhere Schmelztemperatur als Gold und den fünffachen spezifischen Widerstand bei fast gleichem Temperaturkoeffizienten des elektrischen Widerstands. Der Vorteil von Platin ist seine chemische Inertheit, wodurch sich allerdings die Herstellung in Dünnfilmtechnologie als sehr schwierig erweist. Ein weiterer Nachteil ist die katalytische Wirkung von Platin in Gasgemischen, die Wasserstoff und Kohlenwasserstoffe enthal- ten.To achieve 20 ohms, the gold thread must be realized in its dimensions very thin (<0.3 microns) and narrow (typically 6 microns) with a length of 1 mm. Such filigree dimensions lead to a very small heat capacity and thus a very short response time, but also to a very low robustness. Last but not least, hydrogen sulfide-containing fluids can destroy the gold thread. Platinum has a much higher melting temperature than gold and five times the resistivity with almost the same temperature coefficient of electrical resistance. The advantage of platinum is its chemical inertness, which, however, makes the production in thin-film technology very difficult. Another disadvantage is the catalytic effect of platinum in gas mixtures containing hydrogen and hydrocarbons.
Gemäß der Erfindung erfolgt die Vermeidung dieser Probleme dadurch, dass bei dem Wärmeleitfähigkeitsdetektor der eingangs angegebenen Art der Heizfaden und die Träger aus do- tiertem Silizium bestehen. Der Schmelzpunkt von Silizium ist höher als der von Gold, so dass sehr hohe Heiztemperaturen gewählt werden können, ohne die Standzeit des Heizfadens zu beeinträchtigen. Durch die Eigenschaft von Silizium bei hohen Temperaturen intrinsisch zu werden, ist der Heizfaden weit- gehend gegen Überhitzung geschützt. Der Kaltwiderstand vonAccording to the invention, the avoidance of these problems takes place in that, in the case of the thermal conductivity detector of the type specified in the introduction, the filament and the supports consist of doped silicon. The melting point of silicon is higher than that of gold, so that very high heating temperatures can be selected without affecting the service life of the filament. Due to the property of silicon becoming intrinsic at high temperatures, the filament is largely protected against overheating. The cold resistance of
Silizium ist um mehr als das tausendfache größer als der von Gold, so dass eine hohe Detektionsempfindlichkeit erreicht wird. Der elektrische Widerstand des Grundmaterials kann über die Dotierung in weiten Bereichen eingestellt werden. Vorzugsweise wird die Dotierung so gewählt, dass der Widerstand möglichst niedrig liegt, um den Wärmeleitfähigkeitsdetektor mit praktischen Betriebsspannungen (deutlich unter 100 V) versorgen zu können und damit der Temperaturkoeffizient des elektrischen Widerstands möglichst hoch ausfällt. Dies ist im Bereich der Dotierung von ca. 1-1015 cm"3 bis 1-1017 cm"3 realisierbar. Die Abmessungen des Siliziumheizfadens müssen entsprechend dem höheren Grundwiderstand deutlich größer gewählt werden, wodurch sich ein insgesamt sehr viel robusterer Aufbau ergibt; typische Abmessungen liegen bei 10 x 10 μm für den Querschnitt des Heizfadens.Silicon is more than a thousand times larger than that of gold, so that a high detection sensitivity is achieved. The electrical resistance of the base material can over the doping can be adjusted within wide limits. Preferably, the doping is chosen so that the resistance is as low as possible in order to provide the thermal conductivity detector with practical operating voltages (well below 100 V) and thus the temperature coefficient of electrical resistance as high as possible. This can be realized in the field of doping of approximately 1-10 15 cm "3 to 1-10 17 cm" 3. The dimensions of the silicon filament must be chosen to be significantly larger in accordance with the higher base resistance, resulting in an overall much more robust structure; typical dimensions are 10 x 10 microns for the cross section of the filament.
Prinzipiell kann der Heizfaden durch Abscheidung von poly- kristallinem Silizium oder aus einkristallinem Silizium, vorzugsweise aus SOI-Wafermaterial (SOI = Silicon on Insula- tor) hergestellt werden. Durch chemische Prozesse an Korngrenzen sind freitragende Heizfäden aus polykristallinem Material mechanisch und elektrisch weniger langzeitstabil .In principle, the filament can be produced by depositing polycrystalline silicon or monocrystalline silicon, preferably from SOI wafer material (SOI = silicon on insulator). By chemical processes at grain boundaries are self-supporting filaments of polycrystalline material mechanically and electrically less long-term stability.
Insbesondere im Hinblick auf eine mikromechanische Herstellung des erfindungsgemäßen Wärmeleitfähigkeitsdetektors sind vorzugsweise die den Heizfaden haltenden Träger unter Zwischenlage einer Siliziumdioxid-Schicht auf einer Trägerplatte aus Silizium mit einer darin enthaltenen Rinne ausgebildet, wobei der Kanal von der Rinne und einer weiteren Rinne in einer auf der Trägerplatte aufliegenden Abdeckplatte gebildet ist .With particular regard to a micromechanical production of the thermal conductivity detector according to the invention, the support holding the filament are preferably formed with the interposition of a silicon dioxide layer on a support plate of silicon with a groove contained therein, wherein the channel of the channel and a further groove in one on the support plate resting cover plate is formed.
Vorzugsweise weist der Heizfaden eine durch Oxidation gebildete Oberfläche aus Siliziumdioxid auf, das sich gegenüber Schwefelwasserstoff chemisch inert verhält.Preferably, the filament has an oxidized surface of silicon dioxide which is chemically inert to hydrogen sulfide.
Im Weiteren wird die Erfindung anhand eines in den Figuren gezeigten Ausführungsbeispiels des erfindungsgemäßen Wärmeleitfähigkeitsdetektors erläutert, wobei Figur 1 den Wärmeleitfähigkeitsdetektor im Längsschnitt (I-I1) undIn the following, the invention will be explained with reference to an embodiment of the thermal conductivity detector according to the invention shown in the figures, wherein Figure 1 shows the heat conductivity detector in longitudinal section (II 1 ) and
Figur 2 denselben Wärmeleitfähigkeitsdetektor im Quer- schnitt (H-II') zeigen.FIG. 2 shows the same thermal conductivity detector in cross-section (H-II ').
Auf einer Trägerplatte 1 mit einer darin enthaltenen Rinne 2 liegt eine Abdeckplatte 3 mit einer weiteren Rinne 4 derart auf, dass beide Rinnen 2 und 4 zusammen einen Kanal 5 mit hier kreisrundem Querschnitt bilden. In der Mitte des Kanals 5 erstreckt sich in dessen Längsrichtung ein Heizfaden 6, der an seinen beiden Enden an zwei den Kanal 5 durchquerenden elektrisch leitenden Trägern 7 und 8 gehalten ist. Der Heizfaden 6 wird zum Aufheizen über die beiden Träger 7 und 8 mit einem elektrischen Strom beaufschlagt.On a support plate 1 with a channel 2 contained therein is a cover plate 3 with a further groove 4 such that both channels 2 and 4 together form a channel 5 with a circular cross-section here. In the middle of the channel 5 extends in the longitudinal direction of a filament 6, which is held at its two ends to two the channel 5 traversing electrically conductive carriers 7 and 8. The filament 6 is acted upon for heating via the two carriers 7 and 8 with an electric current.
Zur mikromechanischen Herstellung des Wärmeleitfähigkeitsdetektors wird zunächst die Trägerplatte 1 aus einem Siliziumsubstrat gebildet, auf dem eine Isolierschicht 9 aus Siliziumdioxid aufgebracht wird. Auf der Siliziumdioxid- Schicht 9 wird anschließend eine Schicht aus dotiertem Silizium aufgebracht, die später die Träger 7 und 8 und den Heizfaden 6 bildet. In Ätzprozessen werden durch Strukturieren des Siliziumsubstrats, der Siliziumdioxid-Schicht 9 und der Schicht aus dotiertem Silizium die Träger 7 und 8 und der Heizfaden 6 gebildet und die Rinne 2 in der Trägerplatte 1 ausgeformt. Bei der Ausbildung der Träger 7 und 8 kann auf ein Verbleiben der Siliziumdioxid-Schicht 9 als Unterstützung für die Träger 7 und 8 verzichtet werden. Schließlich werden die Trägerplatte 1 und die Abdeckplatte 3 zusammengefügt, wobei die in ihnen ausgeformten Rinnen 2 und 4 den Kanal 5 bilden. Durch Oxidieren erhält der Heizfaden 6 eine gegenüber Schwefelwasserstoff resistente Oberfläche aus Siliziumdioxid. For micromechanical production of the thermal conductivity detector, the carrier plate 1 is first formed from a silicon substrate, on which an insulating layer 9 of silicon dioxide is applied. On the silicon dioxide layer 9, a layer of doped silicon is then applied, which later forms the carrier 7 and 8 and the filament 6. In etching processes, by patterning the silicon substrate, the silicon dioxide layer 9 and the layer of doped silicon, the carriers 7 and 8 and the filament 6 are formed and the channel 2 is formed in the carrier plate 1. In the formation of the carrier 7 and 8 can be dispensed with a stay of the silicon dioxide layer 9 as support for the carrier 7 and 8. Finally, the support plate 1 and the cover plate 3 are joined together, wherein formed in them grooves 2 and 4 form the channel 5. By oxidation, the filament 6 receives a hydrogen sulfide-resistant surface of silicon dioxide.

Claims

Patentansprüche claims
1. Wärmeleitfähigkeitsdetektor mit einem elektrisch beheizbaren Heizfaden (6), der in der Mitte eines Kanals (5) von einem Fluid umströmbar gelagert ist und dazu an seinen beiden Enden an zwei den Kanal (5) durchquerenden elektrisch leitenden Trägern (7, 8) gehalten ist, dadurch gekennzeichnet, dass der Heizfaden (6) und die Träger (7, 8) aus dotiertem Silizium bestehen.1. Thermal conductivity detector with an electrically heatable filament (6) which is mounted in the middle of a channel (5) flow around a fluid and held at its two ends to two the channel (5) passing through electrically conductive carriers (7, 8) is, characterized in that the filament (6) and the carrier (7, 8) made of doped silicon.
2. Wärmeleitfähigkeitsdetektor nach Anspruch 1, dadurch gekennzeichnet, dass die den Heizfaden (6) haltenden Träger (7, 8) unter Zwischenlage einer Siliziumdioxid-Schicht (9) auf einer Trägerplatte (1) aus Silizium mit einer darin enthalte- nen Rinne (2) ausgebildet sind, wobei der Kanal (5) von der Rinne (2) und einer weiteren Rinne (4) in einer auf der Trägerplatte (1) aufliegenden Abdeckplatte (3) gebildet ist.2. Thermal conductivity detector according to claim 1, characterized in that the filament (6) holding carrier (7, 8) with the interposition of a silicon dioxide layer (9) on a support plate (1) made of silicon with a groove contained therein (2 ), wherein the channel (5) of the channel (2) and a further channel (4) in a on the support plate (1) resting cover plate (3) is formed.
3. Wärmeleitfähigkeitsdetektor nach Anspruch 1 oder 2, da- durch gekennzeichnet, dass der Heizfaden (6) eine Oberfläche aus Siliziumdioxid aufweist.3. Thermal conductivity detector according to claim 1 or 2, character- ized in that the filament (6) has a surface of silicon dioxide.
4. Wärmeleitfähigkeitsdetektor nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Heizfaden (6) aus einkristal- linem Silizium besteht.4. Thermal conductivity detector according to claim 1, 2 or 3, characterized in that the filament (6) consists of monocrystalline silicon.
5. Wärmeleitfähigkeitsdetektor nach Anspruch 4, dadurch gekennzeichnet, dass der Heizfaden (6) aus einkristallinem Silizium eines SOI-Wafers hergestellt ist.5. Thermal conductivity detector according to claim 4, characterized in that the filament (6) is made of monocrystalline silicon of an SOI wafer.
6. Wärmeleitfähigkeitsdetektor nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Heizfaden 6 aus polykristallinem Silizium besteht. 6. Thermal conductivity detector according to claim 1, 2 or 3, characterized in that the filament 6 consists of polycrystalline silicon.
PCT/EP2009/051106 2008-01-31 2009-01-30 Thermal conductivity detector WO2009095494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008007008.4 2008-01-31
DE200810007008 DE102008007008A1 (en) 2008-01-31 2008-01-31 thermal conductivity detector

Publications (1)

Publication Number Publication Date
WO2009095494A1 true WO2009095494A1 (en) 2009-08-06

Family

ID=40613116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/051106 WO2009095494A1 (en) 2008-01-31 2009-01-30 Thermal conductivity detector

Country Status (2)

Country Link
DE (1) DE102008007008A1 (en)
WO (1) WO2009095494A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064310A1 (en) * 2009-11-25 2011-06-03 Siemens Aktiengesellschaft Method and arrangement for gas chromatographic analysis of a gas sample
DE102009055785B3 (en) * 2009-11-25 2011-09-01 Siemens Aktiengesellschaft Method for gas chromatographic analysis of gas sample, involves generating peak for analyte such as hydrogen sulfide by differentiating chromatogram at location of analyte
EP2933634A1 (en) 2014-04-14 2015-10-21 Siemens Aktiengesellschaft A thermal conductivity detector
EP3096133A1 (en) 2015-05-20 2016-11-23 Siemens Aktiengesellschaft Thermal conductivity detector
EP3096137A1 (en) 2015-05-20 2016-11-23 Siemens Aktiengesellschaft Thermal conductivity detector and detector module
DE102015210548A1 (en) 2015-06-09 2016-12-15 Siemens Aktiengesellschaft detector array
EP3546931A1 (en) 2018-03-28 2019-10-02 Siemens Aktiengesellschaft Thermoresistive gas sensor
EP3671195A1 (en) 2018-12-17 2020-06-24 Siemens Aktiengesellschaft Thermoresistive gas sensor
DE102020134366A1 (en) 2020-12-21 2022-06-23 Infineon Technologies Ag Sensor for measuring a gas property

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594889A (en) * 1984-12-06 1986-06-17 Ford Motor Company Mass airflow sensor
US4682503A (en) * 1986-05-16 1987-07-28 Honeywell Inc. Microscopic size, thermal conductivity type, air or gas absolute pressure sensor
US5883310A (en) * 1994-11-04 1999-03-16 The Regents Of The University Of California Micromachined hot-wire shear stress sensor
WO2005085822A1 (en) * 2004-03-06 2005-09-15 Abb Research Ltd. Method for the production of a thermal conductivity detector
EP1381854B1 (en) * 2001-04-23 2005-12-21 Siemens Aktiengesellschaft Heat conductivity detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594889A (en) * 1984-12-06 1986-06-17 Ford Motor Company Mass airflow sensor
US4682503A (en) * 1986-05-16 1987-07-28 Honeywell Inc. Microscopic size, thermal conductivity type, air or gas absolute pressure sensor
US5883310A (en) * 1994-11-04 1999-03-16 The Regents Of The University Of California Micromachined hot-wire shear stress sensor
EP1381854B1 (en) * 2001-04-23 2005-12-21 Siemens Aktiengesellschaft Heat conductivity detector
WO2005085822A1 (en) * 2004-03-06 2005-09-15 Abb Research Ltd. Method for the production of a thermal conductivity detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EBEFORS T ET AL: "Three dimensional silicon triple-hot-wire anemometer based on polyimide joints", MICRO ELECTRO MECHANICAL SYSTEMS, 1998. MEMS 98. PROCEEDINGS., THE ELE VENTH ANNUAL INTERNATIONAL WORKSHOP ON HEIDELBERG, GERMANY 25-29 JAN. 1998, NEW YORK, NY, USA,IEEE, US, 25 January 1998 (1998-01-25), pages 93 - 98, XP010270234, ISBN: 978-0-7803-4412-9 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064310A1 (en) * 2009-11-25 2011-06-03 Siemens Aktiengesellschaft Method and arrangement for gas chromatographic analysis of a gas sample
DE102009055785B3 (en) * 2009-11-25 2011-09-01 Siemens Aktiengesellschaft Method for gas chromatographic analysis of gas sample, involves generating peak for analyte such as hydrogen sulfide by differentiating chromatogram at location of analyte
US9116160B2 (en) 2009-11-25 2015-08-25 Siemens Aktiengesellschaft Method and arrangement for gas chromatographic analysis of a gas sample
EP2933634A1 (en) 2014-04-14 2015-10-21 Siemens Aktiengesellschaft A thermal conductivity detector
EP3096133A1 (en) 2015-05-20 2016-11-23 Siemens Aktiengesellschaft Thermal conductivity detector
EP3096137A1 (en) 2015-05-20 2016-11-23 Siemens Aktiengesellschaft Thermal conductivity detector and detector module
CN106168596A (en) * 2015-05-20 2016-11-30 西门子公司 Thermal conductivity detector
US10060866B2 (en) 2015-05-20 2018-08-28 Siemens Aktiengesellschaft Thermal conductivity detector and detector module
DE102015210548B4 (en) * 2015-06-09 2017-03-16 Siemens Aktiengesellschaft detector array
US10024830B2 (en) 2015-06-09 2018-07-17 Siemens Aktiengesellschaft Detector arrangement
DE102015210548A1 (en) 2015-06-09 2016-12-15 Siemens Aktiengesellschaft detector array
EP3546931A1 (en) 2018-03-28 2019-10-02 Siemens Aktiengesellschaft Thermoresistive gas sensor
US11181408B2 (en) 2018-03-28 2021-11-23 Siemens Aktiengesellschaft Thermoresistive gas sensor
EP3671195A1 (en) 2018-12-17 2020-06-24 Siemens Aktiengesellschaft Thermoresistive gas sensor
US11561208B2 (en) 2018-12-17 2023-01-24 Siemens Aktiengesellschaft Thermoresistive gas sensor
DE102020134366A1 (en) 2020-12-21 2022-06-23 Infineon Technologies Ag Sensor for measuring a gas property

Also Published As

Publication number Publication date
DE102008007008A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
WO2009095494A1 (en) Thermal conductivity detector
DE2953771C1 (en) Gas detector
DE3019387C2 (en) Thin-film semiconductor gas sensor with a heating element integrated into the sensor structure
EP2912424B1 (en) High-temperature chip with high stability
EP2623968A1 (en) Gas sensor and process for manufacture thereof
DE2826515A1 (en) SOLID SENSOR ELEMENT
DE2926741C2 (en) Field effect transistor and process for its manufacture
EP3546931B1 (en) Thermoresistive gas sensor, flow sensor and thermal conductivity sensor
EP2606002B1 (en) Micromechanical substrate for a diaphragm with a diffusion barrier layer
EP1483571B1 (en) Micro-structured gas sensor with control of gas sensitive properties by application of an electric field
DE10119788C2 (en) thermal conductivity detector
DE102013212735B4 (en) Sensor component for a gas and / or liquid sensor, manufacturing method for a sensor component for a gas and / or liquid sensor and method for detecting at least one substance in a gaseous and / or liquid medium
DE69419570T2 (en) Device and method for detecting a liquid and / or a phase change
EP3096133B1 (en) Thermal conductivity detector
EP2083262A1 (en) Resistive hydrogen sensor
DE102007008381A1 (en) Radiation sensing element, has substrate and laminar sensor structure that is arranged by substrate in level, and lead structure that is arranged between substrate and sensor structure in another level
WO2021078449A1 (en) Sensor comprising a membrane with an opening for measuring the concentration of an analysis fluid
DE19918003A1 (en) Multi-layer electrical temperature sensor
EP0645621A2 (en) Sensor
EP1621882A2 (en) Method and apparatus for detecting combustible gases, in particular hydrogen
DE4318327C2 (en) Gas sensor
DE102016115004A1 (en) Sensor element for determining the moisture content of a gaseous medium
EP3671195A1 (en) Thermoresistive gas sensor
KR20200120381A (en) Hydrogen gas sensor
Yalishev et al. Resistance states dependence of photoluminescence in Ag/ZnO/Pt structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706149

Country of ref document: EP

Kind code of ref document: A1