WO2009093356A1 - タービン翼列エンドウォール - Google Patents

タービン翼列エンドウォール Download PDF

Info

Publication number
WO2009093356A1
WO2009093356A1 PCT/JP2008/067326 JP2008067326W WO2009093356A1 WO 2009093356 A1 WO2009093356 A1 WO 2009093356A1 JP 2008067326 W JP2008067326 W JP 2008067326W WO 2009093356 A1 WO2009093356 A1 WO 2009093356A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
blade
cax
pitch
stationary blade
Prior art date
Application number
PCT/JP2008/067326
Other languages
English (en)
French (fr)
Inventor
Yasuro Sakamoto
Eisaku Ito
Hiroyuki Otomo
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to KR1020127033718A priority Critical patent/KR101258049B1/ko
Priority to KR1020107003151A priority patent/KR101257984B1/ko
Priority to CN2008801032619A priority patent/CN101779003B/zh
Priority to EP08871537.0A priority patent/EP2187000B1/en
Priority to US12/670,962 priority patent/US8469659B2/en
Publication of WO2009093356A1 publication Critical patent/WO2009093356A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved

Definitions

  • the present invention relates to a turbine cascade endwall.
  • a so-called “cross” is formed from the ventral side of one turbine blade toward the back side of the adjacent turbine blade.
  • Flow secondary flow
  • the clearance leaked from the gap (tip clearance) between the tip of the turbine rotor blade and the tip end wall of the turbine rotor blade is located downstream of the turbine rotor blade (not shown).
  • the inflow angle (incident angle) of the working fluid for example, combustion gas
  • a thin solid line in FIG. Is formed and a stagnation point is formed at a position (a position spaced downstream from the front edge of the turbine stationary blade B along the back surface) from the front edge of the turbine stationary blade B to the back side.
  • a pressure gradient (pressure distribution) is generated in the blade height direction (vertical direction in FIG. 15) on the rear surface of the turbine stationary blade B.
  • the tip side of the turbine stationary blade B as shown by a thin solid line in FIG. A flow from the radially outer side (upper side in FIG. 15) to the hub side (radially inner side: the lower side in FIG. 15) is induced, and a strong hoisting (secondary flow at the rear side) occurs on the rear surface of the turbine vane.
  • the solid line arrow in FIG. 15 has shown the flow direction of the working fluid.
  • the present invention has been made in view of the above circumstances, and is capable of suppressing the hoisting generated on the back surface of the turbine stationary blade and reducing the secondary flow loss caused by the hoisting.
  • the purpose is to provide endwalls.
  • the turbine cascade end wall according to the first aspect of the present invention is a turbine cascade end wall located on the tip side of a plurality of turbine stationary blades arranged in an annular shape, and is located upstream of the turbine stationary blade. Is generated in the blade height direction on the rear surface of the turbine stationary blade due to the clearance leakage flow leaking from the gap between the tip of the turbine blade and the tip end wall disposed facing the tip of the turbine blade Pressure gradient relaxation means for relaxing the pressure gradient is provided.
  • the turbine blade cascade endwall according to the second aspect of the present invention is a turbine blade cascade endwall located on the tip side of a plurality of turbine stationary blades arranged in an annular shape, and 0% Cax is axially stationary.
  • the leading edge position of the blade, 100% Cax is the trailing edge position of the turbine stationary blade in the axial direction
  • 0% pitch is the position on the rear surface of the turbine stationary blade
  • 100% pitch is the turbine stationary blade facing the abdominal surface of the turbine stationary blade.
  • a turbine blade cascade endwall is a turbine blade cascade endwall located on the tip side of a plurality of turbine stationary blades arranged in an annular shape, and 0% Cax is axially stationary.
  • the leading edge position of the blade, 100% Cax is the trailing edge position of the turbine stationary blade in the axial direction, 0% pitch is the position on the rear surface of the turbine stationary blade, and 100% pitch is the turbine stationary blade facing the abdominal surface of the turbine stationary blade.
  • a turbine blade cascade endwall is a turbine blade cascade endwall located on the tip side of a plurality of turbine stationary blades arranged in an annular shape, and 0% Cax in the axial direction.
  • the leading edge position of the blade, 100% Cax is the trailing edge position of the turbine stationary blade in the axial direction
  • 0% pitch is the position on the rear surface of the turbine stationary blade
  • 100% pitch is the turbine stationary blade facing the abdominal surface of the turbine stationary blade.
  • the turbine blade cascade endwall according to the first to fourth aspects of the present invention, it is possible to suppress the hoisting generated on the back surface of the turbine stationary blade, and to reduce the secondary flow loss associated with the hoisting. Can be reduced.
  • a turbine according to a fifth aspect of the present invention includes the turbine cascade endwall according to any one of the first to fourth aspects. According to the turbine according to the fifth aspect of the present invention, the turbine blade cascade end that can suppress the hoisting generated on the rear surface of the turbine stationary blade and can reduce the secondary flow loss caused by the hoisting. Since the wall is provided, the performance of the entire turbine can be improved.
  • a turbine blade cascade end wall 10 according to the present embodiment includes one turbine stationary blade B and a turbine stationary blade B disposed adjacent to the turbine stationary blade B. Between the blades B, convex portions (pressure gradient relaxing means) 11 are respectively provided.
  • a solid line drawn on the chip end wall 10 in FIG. 1 indicates a contour line of the convex portion 11.
  • the convex portion 11 is a portion that is gently (smoothly) raised as a whole within a range of approximately ⁇ 30% Cax to + 40% Cax and within a range of approximately 0% pitch to approximately 40% pitch.
  • 0% Cax refers to the position of the leading edge of the turbine stationary blade B in the axial direction
  • 100% Cax refers to the position of the trailing edge of the turbine stationary blade B in the axial direction.
  • -(minus) indicates a position that goes back upstream from the front edge position of the turbine stationary blade B along the axial direction
  • + (plus) indicates that the front edge position of the turbine stationary blade B extends along the axial direction. It means the position that went down to the downstream side.
  • the 0% pitch refers to the position on the rear surface of the turbine stationary blade B
  • the 100% pitch refers to the position on the abdominal surface of the turbine stationary blade B.
  • the apex on the front edge side of the convex portion 11 is formed at a position of approximately 30% pitch at a position of approximately ⁇ 20% Cax, and the first ridge line is approximately along the axial direction from this position (substantially parallel). Extends to -30% Cax. Further, the height (convex amount) of the apex on the front edge side of the convex portion 11 is 10% to 20% of the axial cord length of the turbine stationary blade B (the axial length of the turbine stationary blade B) (in this embodiment). About 10%).
  • the apex on the rear edge side of the convex portion 11 is formed at a position of approximately 10% pitch at a position of approximately + 20% Cax, and the second ridge line extends substantially along the axial direction from this position (substantially in parallel). It extends to approximately + 40% Cax. Further, the height (convex amount) of the apex on the rear edge side of the convex portion 11 is 10% to 20% of the axial cord length of the turbine stationary blade B (the axial length of the turbine stationary blade B) (in this embodiment). About 10%).
  • the center part of the top part of the convex part 11 (namely, area
  • the chip end wall 10 for example, streamlines as shown by a thin solid line in FIG. 2 are formed on the chip end wall 10, and the upstream side of the convex portion 11 (in FIG. 1) Lower side) A stagnation point is formed on the surface, and the stagnation is at a position (a position spaced downstream from the front edge of the turbine stationary blade B along the back surface) from the front edge of the turbine stationary blade B to the back side. No dots are formed. Further, the working fluid flowing along the surface of the tip end wall 10 between the back surface of the turbine stationary blade B and the downstream surface (upper side in FIG. 1) of the convex portion 11 is the rear surface of the turbine stationary blade B and the convex portion 11.
  • the tip end wall 15 shown in FIGS. 4 to 6 is provided between one turbine vane B and the turbine vane B arranged adjacent to the turbine vane B, as in the first embodiment.
  • each has a convex portion 16.
  • the solid line drawn on the chip end wall 15 in FIG. 4 indicates the contour lines of the convex portion 16.
  • the convex portion 16 is generally smooth (smoothly) within a range of approximately ⁇ 30% Cax to + 10% Cax and within a range of approximately 10% pitch to approximately 50% pitch.
  • the apex on the side close to the front edge of the convex portion 16 is formed at a position of about 20% pitch at a position of about ⁇ 10% Cax, and is substantially along the direction orthogonal to the axial direction from this position (substantially parallel).
  • the first ridge line extends to a pitch of about 10%.
  • the height (convex amount) of the apex on the side close to the front edge of the convex portion 16 is 10% to 20% of the axial cord length of the turbine stationary blade B (the axial length of the turbine stationary blade B). In the embodiment, it is about 10%).
  • the apex on the side farther from the front edge of the convex portion 16 is formed at a position of about 40% pitch at a position of about ⁇ 10% Cax, and substantially along the direction perpendicular to the axial direction from this position (substantially). In parallel) the second ridgeline extends to approximately + 50% pitch. Further, the height (convex amount) of the apex on the trailing edge side of the convex portion 16 is 10% to 20% of the axial cord length of the turbine stationary blade B (the axial length of the turbine stationary blade B) (in this embodiment). About 10%).
  • the central portion of the top of the convex portion 16 (that is, the region located between the apex on the side close to the front edge and the apex on the side far from the front edge) is located on the side near the front edge and the side far from the front edge.
  • the curved surface connects the vertices smoothly.
  • the tip end wall 20 includes a recess (pressure gradient relaxation) between one turbine vane B and the turbine vane B disposed adjacent to the turbine vane B. Means) 21.
  • a solid line drawn on the chip end wall 20 in FIG. 7 indicates a contour line of the recess 21.
  • the concave portion 21 is a portion that is gently (smoothly) depressed generally within a range of approximately ⁇ 50% Cax to + 40% Cax and within a range of approximately 0% pitch to approximately 50% pitch.
  • the bottom of the recess 21 is formed at a position of approximately 30% pitch at a position of approximately 0% Cax, and the first valley line is approximately along the axial direction from this position (substantially in parallel). While extending to ⁇ 50% Cax, the second valley line extends from this position substantially along the axial direction (substantially in parallel) to approximately + 40% Cax.
  • the depth of the bottom of the recess 21 (the amount of recess) is 10% to 20% (about 10% in the present embodiment) of the axial cord length of the turbine stationary blade B (the axial length of the turbine stationary blade B). ).
  • the chip end wall 20 for example, streamlines as shown by a thin solid line in FIG. 8 are formed on the chip end wall 20, and the downstream side of the recess 21 (the upper side in FIG. 7).
  • a stagnation point is formed on the surface, and the stagnation point is located at a position (a position spaced downstream from the front edge of the turbine vane B along the back surface) from the front edge of the turbine vane B to the back side. No longer formed.
  • the working fluid flowing along the surface of the tip end wall 20 between the rear surface of the turbine vane B and the downstream surface (upper side in FIG. 7) of the recess 21 is downstream of the rear surface of the turbine stator blade B and the recess 21.
  • the tip end wall 30 according to the present embodiment has a convex portion (pressure gradient) between one turbine vane B and the turbine vane B arranged adjacent to the turbine vane B. (Relieving means) 31 and recesses (pressure gradient relaxing means) 32 are provided.
  • a solid line drawn on the chip end wall 30 in FIG. 10 indicates a contour line of the convex portion 31 and a contour line of the concave portion 32.
  • the convex portion 31 is within a range of approximately ⁇ 30% Cax to + 40% Cax, and within a range of approximately 0% pitch to approximately 40% pitch (in the present embodiment, within a range of approximately 0% pitch to approximately 30% pitch). ) In which the entire portion is gently (smoothly) raised.
  • the apex on the front edge side of the convex portion 31 is formed at a position of approximately 20% pitch at a position of approximately ⁇ 20% Cax, and the first ridge line is approximately along the axial direction from this position (substantially parallel). Extends to -30% Cax.
  • the height (convex amount) of the apex on the front edge side of the convex portion 31 is 10% to 20% of the axial cord length of the turbine stationary blade B (the axial length of the turbine stationary blade B) (in this embodiment). About 10%).
  • the apex on the rear edge side of the convex portion 31 is formed at a position of approximately 10% pitch at a position of approximately + 20% Cax, and the second ridge line extends substantially along the axial direction from this position (substantially in parallel). It extends to approximately + 40% Cax. Further, the height (convex amount) of the apex on the rear edge side of the convex portion 31 is 10% to 20% of the axial cord length of the turbine stationary blade B (the axial length of the turbine stationary blade B) (in the present embodiment). About 10%).
  • the center part of the top part of the convex part 31 (that is, the region located between the apex on the front edge side and the apex on the rear edge side) is a curved surface that smoothly connects the apex on the front edge side and the apex on the rear edge side.
  • the concave portion 32 is a portion that is generally gently (smoothly) depressed within a range of approximately ⁇ 50% Cax to + 40% Cax and within a range of approximately 0% pitch to approximately 50% pitch. It is provided so as to be continuous (connected) to the portion 31. Further, the bottom of the recess 32 is formed at a position of approximately 30% pitch at a position of approximately 0% Cax, and the first valley line is approximately along the axial direction from this position (substantially parallel). While extending to ⁇ 50% Cax, the second valley line extends from this position substantially along the axial direction (substantially in parallel) to approximately + 40% Cax. The depth of the bottom of the recess 32 (the amount of the recess) is 10% to 20% (about 10% in this embodiment) of the axial cord length of the turbine stationary blade B (the axial length of the turbine stationary blade B). ).
  • the chip end wall 30 for example, streamlines as shown by a thin solid line in FIG. 11 are formed on the chip end wall 30, and the downstream side of the recess 32 (the upper side in FIG. 10).
  • a stagnation point is formed from the surface to the upstream surface (lower side in FIG. 10) of the convex portion 31, and a position (from the front edge of the turbine stationary blade B) that wraps around from the front edge of the turbine stationary blade B A stagnation point is not formed at a position spaced downstream along the back surface.
  • the working fluid flowing along the surface of the tip end wall 30 between the rear surface of the turbine vane B and the downstream surface (upper side in FIG.
  • the hoisting generated on the back surface of the turbine stationary blade is suppressed, and the secondary flow loss accompanying this hoisting is reduced.
  • the performance of the entire turbine will be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

 タービン静翼の背面に発生する巻き上がりを抑制することができ、この巻き上がりに伴う二次流れ損失を低減させることができるタービン翼列エンドウォールを提供する。環状に配列された複数のタービン静翼(B)のチップ側に位置するタービン翼列エンドウォール(10)に、前記タービン静翼(B)の上流側に位置するタービン動翼のチップと、このタービン動翼のチップに対向して配置されたチップエンドウォールとの隙間から漏れ出たクリアランス漏れ流れによって、前記タービン静翼(B)の背面において翼高さ方向に発生する圧力勾配を緩和する圧力勾配緩和手段(11)が設けられている。

Description

タービン翼列エンドウォール
 本発明は、タービン翼列エンドウォールに関するものである。
 流体の運動エネルギーを回転運動に変えて動力を得る動力発生装置としてのタービンにおけるタービン翼列エンドウォール上では、一のタービン翼の腹側から隣接するタービン翼の背側に向かって、いわゆる「クロスフロー(二次流れ)」が発生する。
 タービン性能の向上を図るには、このクロスフローを低減させるとともに、このクロスフローに伴って発生する二次流れ損失を低減させる必要がある。
 そこで、このようなクロスフローに伴う二次流れ損失を低減させて、タービン性能の向上を図るものとして、タービン翼列エンドウォール上に、非軸対称に形成された凹凸を有するものが知られている(例えば、特許文献1参照)。
米国特許第6283713号明細書
 ところで、図13に示すような、タービン動翼(図示せず)の下流側に位置して、タービン動翼のチップとタービン動翼のチップエンドウォールとの隙間(チップクリアランス)から漏れ出たクリアランス漏れ流れによって作動流体(例えば、燃焼ガス)の流入角(入射角)が大きく減少するタービン静翼Bのタービン翼列エンドウォール(チップエンドウォール)100上には、例えば、図14中に細い実線で示すような流線が形成され、タービン静翼Bの前縁から背側に回り込んだ位置(タービン静翼Bの前縁から背面に沿って下流側に離間した位置)によどみ点が形成されることとなる。そのため、タービン静翼Bの背面において翼高さ方向(図15において上下方向)に圧力勾配(圧力分布)が生じ、例えば、図15中に細い実線で示すようなタービン静翼Bのチップ側(半径方向外側:図15において上側)からハブ側(半径方向内側:図15において下側)に向かう流れが誘起され、タービン静翼の背面に強い巻き上がり(背面の二次流れ)が発生するとともに、この巻き上がりに伴う二次流れ損失が増大して、タービン性能が低下してしまうといった問題点があった。
 なお、図15中の実線矢印は、作動流体の流れ方向を示している。
 本発明は、上記の事情に鑑みてなされたもので、タービン静翼の背面に発生する巻き上がりを抑制することができ、この巻き上がりに伴う二次流れ損失を低減させることができるタービン翼列エンドウォールを提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を採用した。
 本発明の第1の態様に係るタービン翼列エンドウォールは、環状に配列された複数のタービン静翼のチップ側に位置するタービン翼列エンドウォールであって、前記タービン静翼の上流側に位置するタービン動翼のチップと、このタービン動翼のチップに対向して配置されたチップエンドウォールとの隙間から漏れ出たクリアランス漏れ流れによって、前記タービン静翼の背面において翼高さ方向に発生する圧力勾配を緩和する圧力勾配緩和手段が設けられている。
 本発明の第2の態様に係るタービン翼列エンドウォールは、環状に配列された複数のタービン静翼のチップ側に位置するタービン翼列エンドウォールであって、0%Caxを軸方向におけるタービン静翼の前縁位置、100%Caxを軸方向におけるタービン静翼の後縁位置とし、0%ピッチをタービン静翼の背面における位置、100%ピッチを前記タービン静翼の腹面と対向するタービン静翼の腹面における位置とした場合に、一のタービン静翼と、このタービン静翼に隣接配置された他のタービン静翼との間の、略-50%Cax~+50%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに隆起するとともに、軸方向に略平行に延びる凸部が設けられている
 本発明の第3の態様に係るタービン翼列エンドウォールは、環状に配列された複数のタービン静翼のチップ側に位置するタービン翼列エンドウォールであって、0%Caxを軸方向におけるタービン静翼の前縁位置、100%Caxを軸方向におけるタービン静翼の後縁位置とし、0%ピッチをタービン静翼の背面における位置、100%ピッチを前記タービン静翼の腹面と対向するタービン静翼の腹面における位置とした場合に、一のタービン静翼と、このタービン静翼に隣接配置された他のタービン静翼との間の、略-50%Cax~+50%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに陥没するとともに、軸方向に略平行に延びる凹部が設けられている。
 本発明の第4の態様に係るタービン翼列エンドウォールは、環状に配列された複数のタービン静翼のチップ側に位置するタービン翼列エンドウォールであって、0%Caxを軸方向におけるタービン静翼の前縁位置、100%Caxを軸方向におけるタービン静翼の後縁位置とし、0%ピッチをタービン静翼の背面における位置、100%ピッチを前記タービン静翼の腹面と対向するタービン静翼の腹面における位置とした場合に、一のタービン静翼と、このタービン静翼に隣接配置された他のタービン静翼との間の、略-50%Cax~+50%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに隆起するとともに、軸方向に略平行に延びる凸部が設けられており、一のタービン静翼と、このタービン静翼に隣接配置された他のタービン静翼との間の、略-50%Cax~+50%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに陥没するとともに、軸方向に略平行に延びて前記凸部に連続し前記背面との間に前記凸部を挟むように凹部が設けられている。
 本発明の第1の態様から第4の態様に係るタービン翼列エンドウォールによれば、タービン静翼の背面に発生する巻き上がりを抑制することができ、この巻き上がりに伴う二次流れ損失を低減させることができる。
 本発明の第5の態様に係るタービンは、上記第1の態様から第4の態様のいずれかに係るタービン翼列エンドウォールを備えている。
 本発明の第5の態様に係るタービンによれば、タービン静翼の背面に発生する巻き上がりを抑制することができ、この巻き上がりに伴う二次流れ損失を低減させることができるタービン翼列エンドウォールを具備しているので、タービン全体の性能を向上させることができる。
 本発明によれば、タービン静翼の背面に発生する巻き上がりを抑制することができ、この巻き上がりに伴う二次流れ損失を低減させることができるという効果を有する。
本発明の第1実施形態に係るタービン翼列エンドウォールの要部平面図である。 図1に示すタービン翼列エンドウォールの表面における流線を示す図である。 図1に示すタービン翼列エンドウォールの背面における流線を示す図である。 本発明の第1実施形態に係るタービン翼列エンドウォールと類似するタービン翼列エンドウォールの要部平面図である。 図4に示すタービン翼列エンドウォールの表面における流線を示す図である。 図4に示すタービン翼列エンドウォールの背面における流線を示す図である。 本発明の第2実施形態に係るタービン翼列エンドウォールの要部平面図である。 図7に示すタービン翼列エンドウォールの表面における流線を示す図である。 図7に示すタービン翼列エンドウォールの背面における流線を示す図である。 本発明の第3実施形態に係るタービン翼列エンドウォールの要部平面図である。 図10に示すタービン翼列エンドウォールの表面における流線を示す図である。 図10に示すタービン翼列エンドウォールの背面における流線を示す図である。 従来のタービン翼列エンドウォールの要部平面図である。 図13に示すタービン翼列エンドウォールの表面における流線を示す図である。 図13に示すタービン翼列エンドウォールの背面における流線を示す図である。
 以下、本発明に係るタービン翼列エンドウォールの第1実施形態について、図1から図3を参照しながら説明する。
 図1に示すように、本実施形態に係るタービン翼列エンドウォール(以下、「チップエンドウォール」という)10は、一のタービン静翼Bと、このタービン静翼Bに隣接配置されたタービン静翼Bとの間に、凸部(圧力勾配緩和手段)11をそれぞれ有するものである。なお、図1中のチップエンドウォール10上に描いた実線は、凸部11の等高線を示している。
 凸部11は、略-30%Cax~+40%Caxの範囲内で、かつ、略0%ピッチ~略40%ピッチの範囲内において、全体的になだらかに(滑らかに)隆起した部分である。
 ここで、0%Caxとは、軸方向におけるタービン静翼Bの前縁位置のことを指し、100%Caxとは、軸方向におけるタービン静翼Bの後縁位置のことを指している。また、-(マイナス)はタービン静翼Bの前縁位置から軸方向に沿って上流側に遡った位置のことを指し、+(プラス)はタービン静翼Bの前縁位置から軸方向に沿って下流側に下った位置のことを指している。さらに、0%ピッチとは、タービン静翼Bの背面における位置のことを指し、100%ピッチとは、タービン静翼Bの腹面における位置のことを指している。
 凸部11の前縁側の頂点は、略-20%Caxの位置において略30%ピッチの位置に形成されており、この位置から軸方向に略沿って(略平行に)第1の稜線が略-30%Caxのところまで延びている。また、この凸部11の前縁側の頂点の高さ(凸量)は、タービン静翼Bの軸コード長(タービン静翼Bの軸方向長さ)の10%~20%(本実施形態では約10%)とされている。
 一方、凸部11の後縁側の頂点は、略+20%Caxの位置において略10%ピッチの位置に形成されており、この位置から軸方向に略沿って(略平行に)第2の稜線が略+40%Caxのところまで延びている。また、この凸部11の後縁側の頂点の高さ(凸量)は、タービン静翼Bの軸コード長(タービン静翼Bの軸方向長さ)の10%~20%(本実施形態では約10%)とされている。
 そして、凸部11の頂部中央部(すなわち、前縁側の頂点と後縁側の頂点との間に位置する領域)は、前縁側の頂点と後縁側の頂点とを滑らかにつなぐような湾曲面とされている。
 本実施形態に係るチップエンドウォール10によれば、当該チップエンドウォール10上には、例えば、図2中に細い実線で示すような流線が形成され、凸部11の上流側(図1において下側)表面によどみ点が形成されて、タービン静翼Bの前縁から背側に回り込んだ位置(タービン静翼Bの前縁から背面に沿って下流側に離間した位置)にはよどみ点が形成されなくなる。
 また、タービン静翼Bの背面と凸部11の下流側(図1において上側)表面との間をチップエンドウォール10の表面に沿って流れる作動流体は、タービン静翼Bの背面と凸部11の下流側表面との間を通過する際に加速され、タービン静翼Bの背面に沿って流れることとなる。
 これにより、タービン静翼Bの背面において翼高さ方向(図3において上下方向)に発生する圧力勾配が緩和し、タービン静翼Bの背面上に、例えば、図3中に細い実線で示すような流線を形成させることができ、タービン静翼Bの背面に発生する巻き上がりを抑制することができて、この巻き上がりに伴う二次流れ損失を低減させることができる。
 なお、図3中の実線矢印は、作動流体の流れ方向を示している。
 ここで、図4~図6に示すチップエンドウォール15は、上述した第1実施形態と同様、一のタービン静翼Bと、このタービン静翼Bに隣接配置されたタービン静翼Bとの間に、凸部16をそれぞれ有するものである。なお、図4中のチップエンドウォール15上に描いた実線は、凸部16の等高線を示している。
 図4に示すように、凸部16は、略-30%Cax~+10%Caxの範囲内で、かつ、略10%ピッチ~略50%ピッチの範囲内において、全体的になだらかに(滑らかに)隆起した部分である。
 凸部16の前縁に近い側の頂点は、略-10%Caxの位置において略20%ピッチの位置に形成されており、この位置から軸方向と直交する方向に略沿って(略平行に)第1の稜線が略10%ピッチのところまで延びている。また、この凸部16の前縁に近い側の頂点の高さ(凸量)は、タービン静翼Bの軸コード長(タービン静翼Bの軸方向長さ)の10%~20%(本実施形態では約10%)とされている。
 一方、凸部16の前縁から遠い側の頂点は、略-10%Caxの位置において略40%ピッチの位置に形成されており、この位置から軸方向と直交する方向に略沿って(略平行に)第2の稜線が略+50%ピッチのところまで延びている。また、この凸部16の後縁側の頂点の高さ(凸量)は、タービン静翼Bの軸コード長(タービン静翼Bの軸方向長さ)の10%~20%(本実施形態では約10%)とされている。
 そして、凸部16頂部中央部(すなわち、前縁に近い側の頂点と前縁から遠い側の頂点との間に位置する領域)は、前縁に近い側の頂点と前縁から遠い側の頂点とを滑らかにつなぐような湾曲面とされている。
 しかしながら、このような凸部16を有するチップエンドウォール15では、当該チップエンドウォール15上に、例えば、図5中に細い実線で示すような流線が形成され、タービン静翼Bの前縁から背側に回り込んだ位置(タービン静翼Bの前縁から背面に沿って下流側に離間した位置)によどみ点が形成されることとなる。そのため、チップエンドウォール15では、図13~図15を用いて説明した従来のチップエンドウォール100と同様、タービン静翼Bの背面において翼高さ方向(図6において上下方向)に圧力勾配(圧力分布)が生じ、例えば、図6中に細い実線で示すようなタービン静翼Bのチップ側(半径方向外側:図6において上側)からハブ側(半径方向内側:図6において下側)に向かう流れが誘起され、タービン静翼Bの背面に強い巻き上がり(背面の二次流れ)が発生するとともに、この巻き上がりに伴う二次流れ損失が増大してしまい、上述した第1実施形態で得ることができた作用効果は得ることができなかった。
 本発明に係るチップエンドウォールの第2実施形態を図7~図9に基づいて説明する。
 図7に示すように、本実施形態に係るチップエンドウォール20は、一のタービン静翼Bと、このタービン静翼Bに隣接配置されたタービン静翼Bとの間に、凹部(圧力勾配緩和手段)21をそれぞれ有するものである。なお、図7中のチップエンドウォール20上に描いた実線は、凹部21の等深線を示している。
 凹部21は、略-50%Cax~+40%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに(滑らかに)陥没した部分である。
 また、この凹部21の底点は、略0%Caxの位置において略30%ピッチの位置に形成されており、この位置から軸方向に略沿って(略平行に)第1の谷線が略-50%Caxのところまで延びているとともに、この位置から軸方向に略沿って(略平行に)第2の谷線が略+40%Caxのところまで延びている。そして、この凹部21の底点の深さ(凹量)は、タービン静翼Bの軸コード長(タービン静翼Bの軸方向長さ)の10%~20%(本実施形態では約10%)とされている。
 本実施形態に係るチップエンドウォール20によれば、当該チップエンドウォール20上には、例えば、図8中に細い実線で示すような流線が形成され、凹部21の下流側(図7において上側)表面によどみ点が形成されて、タービン静翼Bの前縁から背側に回り込んだ位置(タービン静翼Bの前縁から背面に沿って下流側に離間した位置)にはよどみ点が形成されなくなる。
 また、タービン静翼Bの背面と凹部21の下流側(図7において上側)表面との間をチップエンドウォール20の表面に沿って流れる作動流体は、タービン静翼Bの背面と凹部21の下流側表面との間を通過する際に凹部21内に流れ込むとともに加速され、タービン静翼Bの背面に沿って流れることとなる。
 これにより、タービン静翼Bの背面において翼高さ方向(図9において上下方向)に発生する圧力勾配が緩和し、タービン静翼Bの背面上に、例えば、図9中に細い実線で示すような流線を形成させることができ、タービン静翼Bの背面に発生する巻き上がりを抑制することができて、この巻き上がりに伴う二次流れ損失を低減させることができる。
 なお、図9中の実線矢印は、作動流体の流れ方向を示している。
 本発明に係るチップエンドウォールの第3実施形態を図10~図12に基づいて説明する。
 図10に示すように、本実施形態に係るチップエンドウォール30は、一のタービン静翼Bと、このタービン静翼Bに隣接配置されたタービン静翼Bとの間に、凸部(圧力勾配緩和手段)31と、凹部(圧力勾配緩和手段)32とをそれぞれ有するものである。なお、図10中のチップエンドウォール30上に描いた実線は、凸部31の等高線および凹部32の等深線を示している。
 凸部31は、略-30%Cax~+40%Caxの範囲内で、かつ、略0%ピッチ~略40%ピッチの範囲内(本実施形態では略0%ピッチ~略30%ピッチの範囲内)において、全体的になだらかに(滑らかに)隆起した部分である。
 凸部31の前縁側の頂点は、略-20%Caxの位置において略20%ピッチの位置に形成されており、この位置から軸方向に略沿って(略平行に)第1の稜線が略-30%Caxのところまで延びている。また、この凸部31の前縁側の頂点の高さ(凸量)は、タービン静翼Bの軸コード長(タービン静翼Bの軸方向長さ)の10%~20%(本実施形態では約10%)とされている。
 一方、凸部31の後縁側の頂点は、略+20%Caxの位置において略10%ピッチの位置に形成されており、この位置から軸方向に略沿って(略平行に)第2の稜線が略+40%Caxのところまで延びている。また、この凸部31の後縁側の頂点の高さ(凸量)は、タービン静翼Bの軸コード長(タービン静翼Bの軸方向長さ)の10%~20%(本実施形態では約10%)とされている。
 そして、凸部31の頂部中央部(すなわち、前縁側の頂点と後縁側の頂点との間に位置する領域)は、前縁側の頂点と後縁側の頂点とを滑らかにつなぐような湾曲面とされている。
 凹部32は、略-50%Cax~+40%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに(滑らかに)陥没した部分であり、凸部31に連続するようにして(つながるようにして)設けられている。
 また、この凹部32の底点は、略0%Caxの位置において略30%ピッチの位置に形成されており、この位置から軸方向に略沿って(略平行に)第1の谷線が略-50%Caxのところまで延びているとともに、この位置から軸方向に略沿って(略平行に)第2の谷線が略+40%Caxのところまで延びている。そして、この凹部32の底点の深さ(凹量)は、タービン静翼Bの軸コード長(タービン静翼Bの軸方向長さ)の10%~20%(本実施形態では約10%)とされている。
 本実施形態に係るチップエンドウォール30によれば、当該チップエンドウォール30上には、例えば、図11中に細い実線で示すような流線が形成され、凹部32の下流側(図10において上側)表面から凸部31の上流側(図10において下側)の表面にかけてよどみ点が形成されて、タービン静翼Bの前縁から背側に回り込んだ位置(タービン静翼Bの前縁から背面に沿って下流側に離間した位置)にはよどみ点が形成されなくなる。
 また、タービン静翼Bの背面と凸部31の下流側(図1において上側)表面との間をチップエンドウォール30の表面に沿って流れる作動流体は、タービン静翼Bの背面と凸部31の下流側表面との間を通過する際に加速され、タービン静翼Bの背面に沿って流れることとなる。
 これにより、タービン静翼Bの背面において翼高さ方向(図12において上下方向)に発生する圧力勾配が緩和し、タービン静翼Bの背面上に、例えば、図12中に細い実線で示すような流線を形成させることができ、タービン静翼Bの背面に発生する巻き上がりを抑制することができて、この巻き上がりに伴う二次流れ損失を低減させることができる。
 なお、図12中の実線矢印は、作動流体の流れ方向を示している。
 また、上述した実施形態に係るチップエンドウォールを具備したタービンによれば、タービン静翼の背面に発生する巻き上がりが抑制され、この巻き上がりに伴う二次流れ損失が低減することとなるので、タービン全体の性能が向上することとなる。
 本発明は上述した実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で適宜必要に応じて変形実施、変更実施、および組合せ実施可能である。

Claims (5)

  1.  環状に配列された複数のタービン静翼のチップ側に位置するタービン翼列エンドウォールであって、
     前記タービン静翼の上流側に位置するタービン動翼のチップと、このタービン動翼のチップに対向して配置されたチップエンドウォールとの隙間から漏れ出たクリアランス漏れ流れによって、前記タービン静翼の背面において翼高さ方向に発生する圧力勾配を緩和する圧力勾配緩和手段が設けられていることを特徴とするタービン翼列エンドウォール。
  2.  環状に配列された複数のタービン静翼のチップ側に位置するタービン翼列エンドウォールであって、
     0%Caxを軸方向におけるタービン静翼の前縁位置、100%Caxを軸方向におけるタービン静翼の後縁位置とし、0%ピッチをタービン静翼の背面における位置、100%ピッチを前記タービン静翼の腹面と対向するタービン静翼の腹面における位置とした場合に、
     一のタービン静翼と、このタービン静翼に隣接配置された他のタービン静翼との間の、略-50%Cax~+50%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに隆起するとともに、軸方向に略平行に延びる凸部が設けられていることを特徴とするタービン翼列エンドウォール。
  3.  環状に配列された複数のタービン静翼のチップ側に位置するタービン翼列エンドウォールであって、
     0%Caxを軸方向におけるタービン静翼の前縁位置、100%Caxを軸方向におけるタービン静翼の後縁位置とし、0%ピッチをタービン静翼の背面における位置、100%ピッチを前記タービン静翼の腹面と対向するタービン静翼の腹面における位置とした場合に、
     一のタービン静翼と、このタービン静翼に隣接配置された他のタービン静翼との間の、略-50%Cax~+50%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに陥没するとともに、軸方向に略平行に延びる凹部が設けられていることを特徴とするタービン翼列エンドウォール。
  4.  環状に配列された複数のタービン静翼のチップ側に位置するタービン翼列エンドウォールであって、
     0%Caxを軸方向におけるタービン静翼の前縁位置、100%Caxを軸方向におけるタービン静翼の後縁位置とし、0%ピッチをタービン静翼の背面における位置、100%ピッチを前記タービン静翼の腹面と対向するタービン静翼の腹面における位置とした場合に、
     一のタービン静翼と、このタービン静翼に隣接配置された他のタービン静翼との間の、略-50%Cax~+50%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに隆起するとともに、軸方向に略平行に延びる凸部が設けられており、
     一のタービン静翼と、このタービン静翼に隣接配置された他のタービン静翼との間の、略-50%Cax~+50%Caxの範囲内で、かつ、略0%ピッチ~略50%ピッチの範囲内において、全体的になだらかに陥没するとともに、軸方向に略平行に延びて前記凸部に連続し前記背面との間に前記凸部を挟むように凹部が設けられていることを特徴とするタービン翼列エンドウォール。
  5. 請求項1から4のいずれか1項に記載のタービン翼列エンドウォールを備えてなることを特徴とするタービン。
PCT/JP2008/067326 2008-01-21 2008-09-25 タービン翼列エンドウォール WO2009093356A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127033718A KR101258049B1 (ko) 2008-01-21 2008-09-25 터빈 익열 끝벽
KR1020107003151A KR101257984B1 (ko) 2008-01-21 2008-09-25 터빈 익열 끝벽
CN2008801032619A CN101779003B (zh) 2008-01-21 2008-09-25 涡轮叶栅端壁
EP08871537.0A EP2187000B1 (en) 2008-01-21 2008-09-25 Turbine blade-cascade end wall
US12/670,962 US8469659B2 (en) 2008-01-21 2008-09-25 Turbine blade cascade endwall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008010921A JP4929193B2 (ja) 2008-01-21 2008-01-21 タービン翼列エンドウォール
JP2008-010921 2008-01-21

Publications (1)

Publication Number Publication Date
WO2009093356A1 true WO2009093356A1 (ja) 2009-07-30

Family

ID=40900872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067326 WO2009093356A1 (ja) 2008-01-21 2008-09-25 タービン翼列エンドウォール

Country Status (6)

Country Link
US (1) US8469659B2 (ja)
EP (1) EP2187000B1 (ja)
JP (1) JP4929193B2 (ja)
KR (2) KR101258049B1 (ja)
CN (1) CN101779003B (ja)
WO (1) WO2009093356A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041619A1 (ja) * 2012-09-12 2014-03-20 株式会社 日立製作所 ガスタービン
CN105134659A (zh) * 2015-08-25 2015-12-09 浙江理工大学 基于能量梯度理论的离心压缩机弯道改进方法
CN112610283A (zh) * 2020-12-17 2021-04-06 哈尔滨工业大学 一种采用端壁分区造型设计的涡轮叶栅

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2248996B1 (en) * 2009-05-04 2014-01-01 Alstom Technology Ltd Gas turbine
WO2012090269A1 (ja) * 2010-12-27 2012-07-05 三菱重工業株式会社 翼体および回転機械
EP2487329B1 (de) * 2011-02-08 2013-11-27 MTU Aero Engines GmbH Schaufelkanal mit Seitenwandkonturierung und zugehörige Strömungsmaschine
JP2012233406A (ja) * 2011-04-28 2012-11-29 Hitachi Ltd ガスタービン静翼
JP5842382B2 (ja) 2011-05-13 2016-01-13 株式会社Ihi ガスタービンエンジン
US9103213B2 (en) 2012-02-29 2015-08-11 General Electric Company Scalloped surface turbine stage with purge trough
US9267386B2 (en) 2012-06-29 2016-02-23 United Technologies Corporation Fairing assembly
EP2787172B1 (de) 2012-08-02 2016-06-29 MTU Aero Engines GmbH Schaufelgitter mit Seitenwandkonturierung und Strömungsmaschine
US10344601B2 (en) 2012-08-17 2019-07-09 United Technologies Corporation Contoured flowpath surface
DE102013224050B3 (de) * 2013-08-23 2014-11-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Axialverdichter
US9670784B2 (en) 2013-10-23 2017-06-06 General Electric Company Turbine bucket base having serpentine cooling passage with leading edge cooling
US9347320B2 (en) 2013-10-23 2016-05-24 General Electric Company Turbine bucket profile yielding improved throat
US9797258B2 (en) 2013-10-23 2017-10-24 General Electric Company Turbine bucket including cooling passage with turn
US9376927B2 (en) * 2013-10-23 2016-06-28 General Electric Company Turbine nozzle having non-axisymmetric endwall contour (EWC)
US9638041B2 (en) 2013-10-23 2017-05-02 General Electric Company Turbine bucket having non-axisymmetric base contour
US9528379B2 (en) 2013-10-23 2016-12-27 General Electric Company Turbine bucket having serpentine core
US9551226B2 (en) 2013-10-23 2017-01-24 General Electric Company Turbine bucket with endwall contour and airfoil profile
CN105443162B (zh) * 2014-09-26 2017-04-19 中航商用航空发动机有限责任公司 发动机过渡段以及航空发动机
GB201418948D0 (en) 2014-10-24 2014-12-10 Rolls Royce Plc Row of aerofoil members
US10107108B2 (en) 2015-04-29 2018-10-23 General Electric Company Rotor blade having a flared tip
CN105114186B (zh) * 2015-08-04 2017-03-29 西北工业大学 一种用于预旋冷却系统的叶孔式预旋喷嘴
US10196908B2 (en) 2016-02-09 2019-02-05 General Electric Company Turbine bucket having part-span connector and profile
US10156149B2 (en) 2016-02-09 2018-12-18 General Electric Company Turbine nozzle having fillet, pinbank, throat region and profile
US10221710B2 (en) 2016-02-09 2019-03-05 General Electric Company Turbine nozzle having non-axisymmetric endwall contour (EWC) and profile
US10161255B2 (en) * 2016-02-09 2018-12-25 General Electric Company Turbine nozzle having non-axisymmetric endwall contour (EWC)
US10001014B2 (en) 2016-02-09 2018-06-19 General Electric Company Turbine bucket profile
US10190421B2 (en) 2016-02-09 2019-01-29 General Electric Company Turbine bucket having tip shroud fillet, tip shroud cross-drilled apertures and profile
US10190417B2 (en) 2016-02-09 2019-01-29 General Electric Company Turbine bucket having non-axisymmetric endwall contour and profile
US10125623B2 (en) 2016-02-09 2018-11-13 General Electric Company Turbine nozzle profile
FR3081185B1 (fr) * 2018-05-17 2020-09-11 Safran Aircraft Engines Element de stator de turbomachine
CN113153447B (zh) * 2021-04-25 2023-08-01 西安交通大学 一种强化涡轮静叶端壁泄漏流冷却的预旋结构
US11415012B1 (en) * 2021-09-03 2022-08-16 Pratt & Whitney Canada Corp. Tandem stator with depressions in gaspath wall
US11639666B2 (en) * 2021-09-03 2023-05-02 Pratt & Whitney Canada Corp. Stator with depressions in gaspath wall adjacent leading edges
CN114562339B (zh) * 2022-01-27 2024-01-16 西北工业大学 一种用于涡轮端壁带凸起的泄漏槽气膜冷却结构及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065304A (ja) * 1999-08-05 2001-03-13 United Technol Corp <Utc> ガスタービンエンジンのコアガス流路内のコアガス流の半径方向の移動を抑制するための装置および方法
US6283713B1 (en) 1998-10-30 2001-09-04 Rolls-Royce Plc Bladed ducting for turbomachinery
JP2005133697A (ja) * 2003-10-31 2005-05-26 Toshiba Corp タービン翼列装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447907A (en) * 1977-09-26 1979-04-16 Hitachi Ltd Blading structure for axial-flow fluid machine
GB9417406D0 (en) * 1994-08-30 1994-10-19 Gec Alsthom Ltd Turbine blade
CN2288271Y (zh) * 1997-05-13 1998-08-19 北京全三维动力工程有限公司 一种冲动式涡轮机弯扭静叶栅
JPH11190203A (ja) 1997-12-25 1999-07-13 Mitsubishi Heavy Ind Ltd 軸流タービン翼列
US6669445B2 (en) * 2002-03-07 2003-12-30 United Technologies Corporation Endwall shape for use in turbomachinery
US6969232B2 (en) 2002-10-23 2005-11-29 United Technologies Corporation Flow directing device
JP2006291889A (ja) * 2005-04-13 2006-10-26 Mitsubishi Heavy Ind Ltd タービン翼列エンドウォール
JP4616781B2 (ja) 2006-03-16 2011-01-19 三菱重工業株式会社 タービン翼列エンドウォール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283713B1 (en) 1998-10-30 2001-09-04 Rolls-Royce Plc Bladed ducting for turbomachinery
JP2001065304A (ja) * 1999-08-05 2001-03-13 United Technol Corp <Utc> ガスタービンエンジンのコアガス流路内のコアガス流の半径方向の移動を抑制するための装置および方法
JP2005133697A (ja) * 2003-10-31 2005-05-26 Toshiba Corp タービン翼列装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2187000A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041619A1 (ja) * 2012-09-12 2014-03-20 株式会社 日立製作所 ガスタービン
JP5906319B2 (ja) * 2012-09-12 2016-04-20 三菱日立パワーシステムズ株式会社 ガスタービン
US10012087B2 (en) 2012-09-12 2018-07-03 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine including a contoured end wall section of a rotor blade
CN105134659A (zh) * 2015-08-25 2015-12-09 浙江理工大学 基于能量梯度理论的离心压缩机弯道改进方法
CN112610283A (zh) * 2020-12-17 2021-04-06 哈尔滨工业大学 一种采用端壁分区造型设计的涡轮叶栅
CN112610283B (zh) * 2020-12-17 2023-01-06 哈尔滨工业大学 一种采用端壁分区造型设计的涡轮叶栅

Also Published As

Publication number Publication date
KR20100031645A (ko) 2010-03-23
CN101779003A (zh) 2010-07-14
KR20130008648A (ko) 2013-01-22
US8469659B2 (en) 2013-06-25
EP2187000B1 (en) 2016-02-24
CN101779003B (zh) 2013-03-27
JP2009174330A (ja) 2009-08-06
KR101258049B1 (ko) 2013-04-24
US20100196154A1 (en) 2010-08-05
EP2187000A4 (en) 2014-01-08
EP2187000A1 (en) 2010-05-19
KR101257984B1 (ko) 2013-04-24
JP4929193B2 (ja) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4929193B2 (ja) タービン翼列エンドウォール
JP5946707B2 (ja) 軸流タービン動翼
JP5291355B2 (ja) タービン翼列エンドウォール
JP4616781B2 (ja) タービン翼列エンドウォール
EP2492440B1 (en) Turbine nozzle blade and steam turbine equipment using same
JP5777531B2 (ja) 軸流ターボ機械用のエーロフォイル羽根
JP5964263B2 (ja) 軸流タービンの動翼列、および軸流タービン
JP2006291889A (ja) タービン翼列エンドウォール
EP2789799A1 (en) Turbine rotor blade
US8777564B2 (en) Hybrid flow blade design
JP6518526B2 (ja) 軸流タービン
JP4869099B2 (ja) ノズル翼および軸流タービン
US11220909B2 (en) Turbine rotor blade row, turbine stage, and axial-flow turbine
JP2006322462A (ja) ガスタービン
JP5490178B2 (ja) タービン翼列エンドウォール
WO2017195782A1 (ja) タービン静翼及びこれを備えたタービン
JP5721760B2 (ja) タービン翼列エンドウォール
KR20130056907A (ko) 날개체 및 회전 기계

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880103261.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12670962

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008871537

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107003151

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE