WO2009092398A1 - Procédé et dispositif de localisation de défaillance permettant de déterminer une valeur d’emplacement de défaillance - Google Patents
Procédé et dispositif de localisation de défaillance permettant de déterminer une valeur d’emplacement de défaillance Download PDFInfo
- Publication number
- WO2009092398A1 WO2009092398A1 PCT/EP2008/000660 EP2008000660W WO2009092398A1 WO 2009092398 A1 WO2009092398 A1 WO 2009092398A1 EP 2008000660 W EP2008000660 W EP 2008000660W WO 2009092398 A1 WO2009092398 A1 WO 2009092398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- values
- fault location
- value
- short circuit
- intermediate impedance
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/088—Aspects of digital computing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/085—Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
Definitions
- the invention relates to a method for determining a fault location value which indicates a fault location of a short circuit occurring in an electrical power supply network, in which current measured values and voltage measured values of a conductor affected by the short circuit are detected after the beginning of the short circuit, from at least some of the detected ones
- the invention also relates to a fault locator for determining a fault location value.
- Electric power grids are usually monitored by means of so-called protection devices on the occurrence of inadmissible operating conditions.
- An impermissible operating state occurs, for example, when a conductor of an electrical power supply network, for example an overhead line or a cable, is affected by a short circuit.
- a short circuit can exist between several conductors as well as between a conductor (or several conductors) on the one hand and earth on the other hand.
- a short circuit can exist between several conductors as well as between a conductor (or several conductors) on the one hand and earth on the other hand.
- a short circuit can exist between several conductors as well as between a conductor (or several conductors) on the one hand and earth on the other hand.
- Short circuit caused by a fallen on an overhead line tree In the event of a short circuit, the faulty conductor must be disconnected immediately from the electrical power supply network in order to prevent damage to components of the power supply system due to high fault currents or the spread of the fault to other parts of the power supply network.
- electrical protection devices In order to detect impermissible states in electrical energy supply networks, electrical protection devices usually record measured values such as current and voltage values of the individual conductors and evaluate these using so-called protection algorithms. If an impermissible operating state is detected, then the respective protective device issues a switching command to one or more power switches in order to separate the faulty conductor section from the rest of the power supply network.
- a fault location value is determined from the result impedance value.
- the error location value can either be given as an absolute length specification of the distance of the fault location from the measuring protective device or, if the length of the overall line is known, also as a percentage of the total line length.
- the accuracy of the fault location value determined with the known method depends strongly on the selection of the data window which contains the measured value pairs of current measured values and
- Object of the present invention is to provide a method and a fault locator of the type mentioned above with still further increased accuracy of fault location.
- this object is achieved by a method of the generic type in which intermediate impedance values are calculated for calculating the result impedance value from the current measured values and the respectively simultaneously measured voltage measured values, and a match factor is assigned to the intermediate impedance values indicates the probability with which the actual fault location can be derived from the respective intermediate impedance value, and the result impedance value is calculated from at least one of those intermediate impedance values to which a high-probability matching factor is assigned.
- the advantage of the method according to the invention is that not only an impedance value is determined from the acquired current measured values and the associated voltage measurement values, which is used to deduce the fault location value, but that a multiplicity of intermediate impedance values are first generated and from one or more For those intermediate impedance values most likely to be deduced at the actual fault location, ultimately the error location value is determined.
- This makes it independent of the selection of suitable measured value pairs of current and voltage measured values, for example by placing a suitable data window, since only after the calculation of the intermediate impedance values is a weighting based on the probability.
- unfavorably selected current and voltage measurement values can no longer lead to inaccurate fault location value determination;
- intermediate impedance values formed from such unfavorably selected current and voltage measurement values are provided with a match factor indicating a low probability and thus are not used to determine the result impedance value.
- the differences between the respective intermediate impedance value and its temporally adjacent intermediate impedance values are determined to determine the respective matching factors, and the respective matching factor is determined from a mathematical combination of the reciprocal differences becomes.
- the respective matching factor is determined by multiplying the reciprocal differences.
- the complex current and voltage vectors required for the calculation of complex intermediate impedance values are usually not determined from instantaneous values of current and voltage measured values, according to a further advantageous embodiment of the method according to the invention it is provided that for determining the respective intermediate impedance values in each case in time associated current measured values and voltage measured values which are located within a data window to be considered are used. From these current and voltage measured values of the individual data windows, it is then possible, for example, to calculate complex current and voltage vectors, which are used to form the intermediate impedance values, via a discrete Fourier transformation (DFT).
- DFT discrete Fourier transformation
- the desired intermediate impedance values result, for example, from quotient formation from the complex voltage vector and the complex current vector.
- the selection of the respective data window does not need to be given increased attention, because only after the determination of the intermediate impedance values from a multiplicity of intermediate impedance values by a correspondingly different assignment of matching factors a determination of the result impedance value takes place.
- overlapping data windows are used to determine temporally successive intermediate impedance values.
- an electric fault locator for determining a fault location value indicating a fault location of a short circuit occurring in an electrical power supply network, which has a data processing device which is set up to carry out a method according to one of the embodiments described above ,
- the electrical fault locator is part of an electrical protection device.
- a data processing device already present in an electrical protective device can also be used to calculate the error location value.
- Figure 1 is a schematic representation of an electrical protection device on a line section of an electrical power supply network
- FIG. 2 shows a complex impedance diagram with registered intermediate impedance values.
- FIG. 1 shows a line section 10 of the length L, at which, at one end 10a, current flows are shown only schematically.
- the line section 10 is shown as a single-phase line section for the sake of simplicity, it can also be a multi-phase, for example three-phase, line section of a correspondingly polyphase power supply network.
- the protective device 12 would be connected in such a case via correspondingly many current transformers IIa and voltage transformers IIb with the individual phases of the line section 10. If the method for error location determination is explained below by means of only one phase, the mode of operation for the other phases for a multiphase energy supply network has to be supplemented accordingly.
- the protective device 12 has a measured value detection device 13, which is connected on the input side to the current transformer IIa and the voltage converter IIb.
- a preprocessing device 14 is connected to the measured value detection device 13, in which, for example, a filtering and / or Fourier transformation of the digital measured values i or ü can be carried out.
- a protective device 15 is connected to the preprocessing device 14 on the one hand, in which the line section 10 can be monitored for impermissible operating states by using so-called protection algorithms. Furthermore, on the output side, a fault locator 16 is connected to the preprocessing device 15.
- the protective device 12 shown in FIG. 1 operates as shown below. Via the current transformer IIa and the voltage transformer IIb, current measurement values i and voltage measurement values u are detected at the line end 10a of the line section 10 by means of the measured value acquisition device 13. In this context, an analog-to-digital conversion of the current and voltage measured values i and u into digital current or voltage measured values i and ü usually takes place. However, if the current and voltage transformers IIa and IIb are already digital converters or are already outside the electrical field
- the digitally converted current and voltage values i and ü are then fed to the preprocessing device 14, where they are e.g. filtering and discrete Fourier transformation.
- successive current and voltage values i and ü, respectively, which lie within a data window are processed with a corresponding algorithm, for example a discrete Fourier transformation (DFT) algorithm, to form a complex current vector i. or voltage vector u to calculate.
- DFT discrete Fourier transformation
- the protective device 15 Based on the current and voltage measurements i or ü or the current and voltage pointer values i. or U can be made by means of the protective device 15 based on the skilled person well-known and therefore not detailed at this point explained protection algorithms, such as a distance protection algorithm, a differential protection algorithm or an overcurrent protection algorithm, a decision on whether the line section 10 is in an allowable or an inadmissible operating state. If an impermissible operating state is detected, which is caused by a short circuit 17 indicated in FIG. 1 by a lightning symbol, the protective device 15 outputs a tripping order A for a circuit breaker not shown in FIG. 1 for the sake of simplicity in order to remove the faulty line section 10 from the electrical power supply network separate. In the case of a multi-phase line section 10, in this case it is also possible to detect the faulty phase in order to only separate it from the electrical power supply network, while the other phases can continue to be operated.
- protection algorithms such as a distance protection algorithm, a differential protection algorithm or an overcurrent protection algorithm,
- FIG. 1 indicates that the fault location of the short circuit 17 is located at a distance d from the one line end 10 a of the electrical line section 10.
- An indication of the fault location of the short circuit 17 is generated by means of the faultor 16.
- the protective device 15 As soon as the protective device 15 detects that there is a short circuit somewhere in the energy supply network, it generates a so-called start signal, from which a start signal S is derived. After that, the protective device checks whether the short circuit is on the line section 10 and, if necessary, outputs a tripping command to the connected circuit breakers.
- the start signal S is supplied to the preprocessing device 14, for example. Deviating from this, the start signal S can also be fed directly to the fault locator 16, the Steps subsequently described for the preprocessing device are then performed by the error locator 16.
- the start signal S causes the preprocessing device 14, the current pointer i continuously determined from the current or voltage values i and ü respectively. and store voltage vector u.
- a sequence of current phasors i_ and voltage phasors u is provided, which describe the course of the current or the voltage on the line section 10, starting with the occurrence of the short circuit and ending with the disconnection of the line section 10.
- the error locator 16 calculates therefrom complex intermediate impedance values z *, for example by the
- the preprocessing device 14 carries out the current or voltage vector calculations on the basis of overlapping, ie sliding, data windows.
- the data windows used for the discrete Fourier transformation for current or voltage pointer calculation are consequently not arranged sequentially but overlap by a specific number of current or voltage measured values i and / or.
- the error locator 16 assigns a match factor K to each intermediate impedance value z *.
- a coincidence factor K indicates the probability with which the calculated intermediate impedance value z * is suitable for determining the actual fault location. Due to measurement errors, external influences, converter inaccuracies and others
- Influencing factors sxnd namely namely the determined from the time of entry of the short circuit intermediate impedance values z * not congruent, but have a certain dispersion.
- the assignment of the matching factor K is intended to prevent a falsified intermediate impedance value z *, for example a so-called outlier, from being used to determine the fault location.
- FIG. 2 shows an impedance diagram in which complex intermediate impedance values z * - indicated by small squares - are plotted. According to the equation
- Each of the complex intermediate impedance values z * has a so-called resistance R, that is to say an ohmic resistance component, and a reactance X, that is to say a capacitance and an inductance.
- tivities generated resistance; j stands for the imaginary number VI.
- the differences to its temporally adjacent intermediate impedance values z * "1 and z * +1 are then determined for each intermediate impedance value z * to determine the matching factors K.
- a first difference with respect to time is obtained for the intermediate impedance value 20 selected by way of example is determined and determines a second difference to the temporally preceding intermediate impedance value 22.
- the reciprocal values of these differences are mathematically linked together, for example by multiplication, and then form the match factor K for the respective intermediate impedance value, in this case the intermediate impedance value 20:
- the matching factor K assigned to this intermediate impedance value 20 will be comparatively small.
- the intermediate impedance value 23 whose distances from its time neighbors, namely the intermediate impedance value 24 and the intermediate impedance value 25, are relatively small compared to the intermediate impedance value 22 are. Therefore, a comparatively large matching factor K is assigned to the intermediate impedance value 23.
- a match factor K is assigned to each intermediate impedance value z *. From one or more intermediate impedance values z * having the highest associated matching factors K, the result impedance value is finally formed. Either the intermediate impedance value z * which has the highest matching factor K, ie the smallest distances to its temporal neighbors, is simply selected for this purpose. To increase the accuracy, however, it is appropriate to consider a certain percentage of all intermediate impedance values z *, for example a quarter of all intermediate impedance values z *, with the highest match factors K or even all recorded intermediate impedance values z * and then by arithmetic or geometric averaging from this to determine a result impedance value.
- the error locator 16 can calculate and output a fault location value F on the basis of the result impedance value determined in this way.
- the error locator 16 uses the reactance X of the result impedance value for this purpose.
- the reactance coating of the line section 10 ie the reactance per unit length of the line section Section 10
- the fault location of the short circuit 17 calculate.
- an indication of the fault location is also possible in percent of the line length.
- a fault location of a short circuit on a line section can be determined with comparatively high accuracy since, to calculate the result impedance value, a current vector and an associated voltage vector are not formed from just one data window in order to determine the result impedance value therefrom but from a plurality of current phasors and associated voltage phasors, intermediate impedance values are calculated, from which the most probable position of the result impedance value is determined by simple calculations. In this way, very accurate fault location values can be calculated, which provide the network operator with high accuracy information about where the short circuit is to be found, so that it can be remedied in a relatively short time.
- the fault locator can also be designed as an independent device.
- the functioning of such an independent error corrector is corresponding to an integrated error locator.
- the start signal S can be transmitted to the fault locator by an additional protection device or can also be generated in it.
- the components of the protective device 12 shown in FIG. 1, in particular the preprocessing device 14, the protective device 15 and the fault locator 16 are not inevitably to be regarded as spatially separated circuit blocks. Rather, they are to be regarded as functional units which, for example, can also be implemented as software running on a corresponding hardware platform.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Locating Faults (AREA)
Abstract
L’invention concerne un procédé permettant de déterminer une valeur d’emplacement de défaillance (F) qui indique un emplacement de défaillance pour un court-circuit (17) survenu dans un réseau d’alimentation en énergie électrique. Après le début du court-circuit, des valeurs de mesure de courant et de tension d’un conducteur concerné par le court-circuit sont collectées, une valeur d’impédance résultante est calculée à partir d’au moins quelques-unes des valeurs de mesure de courant collectées et des valeurs de mesure de tension correspondantes collectées simultanément, puis la valeur d’emplacement de la défaillance (F) est déterminée à partir de la valeur d’impédance résultante. L’invention concerne également un dispositif de localisation de défaillance correspondant (16).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2008/000660 WO2009092398A1 (fr) | 2008-01-24 | 2008-01-24 | Procédé et dispositif de localisation de défaillance permettant de déterminer une valeur d’emplacement de défaillance |
EP08707363A EP2232280A1 (fr) | 2008-01-24 | 2008-01-24 | Procédé et dispositif de localisation de défaillance permettant de déterminer une valeur d'emplacement de défaillance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2008/000660 WO2009092398A1 (fr) | 2008-01-24 | 2008-01-24 | Procédé et dispositif de localisation de défaillance permettant de déterminer une valeur d’emplacement de défaillance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009092398A1 true WO2009092398A1 (fr) | 2009-07-30 |
Family
ID=39731487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/000660 WO2009092398A1 (fr) | 2008-01-24 | 2008-01-24 | Procédé et dispositif de localisation de défaillance permettant de déterminer une valeur d’emplacement de défaillance |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2232280A1 (fr) |
WO (1) | WO2009092398A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014203906A1 (de) * | 2014-03-04 | 2014-10-23 | Siemens Aktiengesellschaft | Verfahren zum Orten eines Kurzschlusses in einem wenigstens einen Leitungsabschnitt umfassenden Stromnetz |
CN105092999A (zh) * | 2014-05-19 | 2015-11-25 | 洛克威尔自动控制技术股份有限公司 | 利用多个指示的电力质量事件定位 |
CN105486985A (zh) * | 2016-01-14 | 2016-04-13 | 国网山东省电力公司青岛供电公司 | 一种电网故障点定位方法及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007032697A1 (fr) * | 2005-09-14 | 2007-03-22 | Abb Sp. Z.O.O. | Procede de localisation des defauts sur les lignes electriques |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1869746A1 (fr) * | 2005-04-15 | 2007-12-26 | Siemens Aktiengesellschaft | Procede et systeme pour augmenter et garantir la selectivite d'un dispositif de commutation dans un groupe de dispositifs de commutation et utilisation dudit systeme lors de la commutation dans des circuits electriques |
-
2008
- 2008-01-24 WO PCT/EP2008/000660 patent/WO2009092398A1/fr active Application Filing
- 2008-01-24 EP EP08707363A patent/EP2232280A1/fr not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007032697A1 (fr) * | 2005-09-14 | 2007-03-22 | Abb Sp. Z.O.O. | Procede de localisation des defauts sur les lignes electriques |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014203906A1 (de) * | 2014-03-04 | 2014-10-23 | Siemens Aktiengesellschaft | Verfahren zum Orten eines Kurzschlusses in einem wenigstens einen Leitungsabschnitt umfassenden Stromnetz |
CN105092999A (zh) * | 2014-05-19 | 2015-11-25 | 洛克威尔自动控制技术股份有限公司 | 利用多个指示的电力质量事件定位 |
CN105486985A (zh) * | 2016-01-14 | 2016-04-13 | 国网山东省电力公司青岛供电公司 | 一种电网故障点定位方法及装置 |
CN105486985B (zh) * | 2016-01-14 | 2018-11-02 | 国网山东省电力公司青岛供电公司 | 一种电网故障点定位方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2232280A1 (fr) | 2010-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60018666T2 (de) | Verfahren zum Berechnen der Entfernung von Fehlerstrom in einem elektrischen Stromversorgungsnetz mit ringformiger Gestaltung | |
DE102004056436B4 (de) | Verfahren und Vorrichtung zur Erkennung von Fehlerstrom-Lichtbögen in elektrischen Stromkreisen | |
EP2449387B1 (fr) | Procédé et dispositif d'observation de l'état d'un réseau | |
EP3198698B1 (fr) | Procédé de protection de différentiel et appareil de protection de différentiel permettant de mettre en oeuvre un procédé de protection de différentiel | |
CN111983510B (zh) | 基于相电压和电流突变量的单相接地故障选相方法及系统 | |
EP3862763B1 (fr) | Procédé de surveillance de la résistance de la terre d'un système électrique | |
DE112018001976T5 (de) | Stückweise schätzung von gegenspannung zur fehlererkennung in elektrischen systemen | |
DE102007017543B4 (de) | Verfahren zur Entfernungsortung von Erdschlüssen | |
EP3108554B1 (fr) | Procédé de protection de différentiel et dispositif de protection de différentiel | |
WO2009000304A1 (fr) | Procédé pour accroître la sensibilité d'un système de protection différentielle | |
DE10307972B4 (de) | Verfahren zur Erkennung und Ortung von niederohmigen und hochohmigen Erdschlüssen in elektrischen Versorgungsnetzen | |
EP2289137A1 (fr) | Ensemble et procédé pour produire un signal d erreur | |
WO2013060382A1 (fr) | Procédé et appareil de protection pour détecter un défaut à la terre dans un réseau d'alimentation en énergie électrique polyphasé, pourvu d'un point neutre compensé ou isolé | |
WO2009092398A1 (fr) | Procédé et dispositif de localisation de défaillance permettant de déterminer une valeur d’emplacement de défaillance | |
EP0665625B1 (fr) | Procédé pour obtenir la valeur d'impédance et pour le traitement dans un dispositif de protection à distance | |
WO2009012799A1 (fr) | Procédé de localisation d'un défaut à la terre selon le principe de la protection de distance et appareil de protection de distance électrique | |
DE102021112016B3 (de) | Verfahren und Vorrichtung zum Ermitteln einer Erdschlussrichtung | |
EP2870487B1 (fr) | Détection d'une direction de défaut dans des réseaux d'alimentation en énergie moyenne tension | |
EP4252014B1 (fr) | Dispositif de surveillance destiné au fonctionnement de réseau de substitution | |
DE4026799A1 (de) | Verfahren zur selektiven erfassung von fehlern der leiter in hoch- und hoechstspannungsnetzen | |
DE102018113627B4 (de) | Verfahren und Vorrichtung zur Fehlerdiagnose in einem eine Ringstruktur aufweisenden elektrischen Netz sowie Computerprogrammprodukt | |
DE102019126438B4 (de) | Kompensationsvorrichtung für Ableitströme | |
AT503598B1 (de) | Verfahren zur entfernungsortung von erdschlüssen | |
DE10146294C1 (de) | Abstimmung einer Erdschlusslöschspule auch während des Erdschlusses | |
EP3913382B1 (fr) | Procédé et dispositif de détermination de la localisation d'un défaut non symétrique à trois pôles sur une ligne d'un réseau d'alimentation électrique triphasé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08707363 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008707363 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |