WO2009092260A1 - 实现语音呼叫连续性的方法、互联功能实体及终端设备 - Google Patents

实现语音呼叫连续性的方法、互联功能实体及终端设备 Download PDF

Info

Publication number
WO2009092260A1
WO2009092260A1 PCT/CN2008/073668 CN2008073668W WO2009092260A1 WO 2009092260 A1 WO2009092260 A1 WO 2009092260A1 CN 2008073668 W CN2008073668 W CN 2008073668W WO 2009092260 A1 WO2009092260 A1 WO 2009092260A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
user
voice
handover
switching
Prior art date
Application number
PCT/CN2008/073668
Other languages
English (en)
French (fr)
Inventor
Xiaobo Wu
Xiaoqin Duan
Jian Zhang
Qingyu Li
Wei Guo
Wenruo Zhu
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009092260A1 publication Critical patent/WO2009092260A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method for implementing voice call continuity, an interconnected functional entity, and a terminal device. Background technique
  • the Universal Mobile Telecommunications System is a third-generation mobile communication system using WCDMA air interface technology.
  • the UMTS system is also commonly referred to as a WCDMA communication system.
  • the UMTS system adopts a structure similar to that of the second generation mobile communication system, including a Radio Access Network (RAN) and a Core Network (CN).
  • the wireless access network is used to handle all wireless related functions, and the CN handles functions such as user location management and service management in the UMTS system, and implements switching and routing functions with the external network.
  • the CN is logically divided into a Circuit Switched Domain (CS) and a Packet Switched Domain (PS).
  • CS Circuit Switched Domain
  • PS Packet Switched Domain
  • the UTRAN Universal Terrestrial Radio Access Network
  • the CN and the User Equipment (UE) together form the entire UMTS system.
  • the UE is a user equipment, that is, a terminal; EUTRAN is an evolved radio access network, in which an evolved Node B, called ENB, and possibly other nodes, we replace these nodes with ENB.
  • the MME Mobility Management Entity
  • the Serving SAE Gateway has a user plane function, transmits UE data, and has an S1-U interface with the radio access network.
  • the MME and the serving gateway are combined like a traditional SGSN (Serving GPRS Support Node).
  • PDN SAE Gateway PDN (Packet Data Network) gateway, similar to the traditional GGSN (Gateway GPRS Support Node, Gateway GPRS), has an SGi interface with the external data network, and has functions such as policy enforcement and packet filtering.
  • the Policy Control and Charging Rules Function (PCRF) is a policy control and charging rule function entity that performs policy-related control functions.
  • the S3 interface is an interface between the MME and the SGSN of the 2G/3G, which is based on the GTP protocol
  • S4 is an interface between the serving gateway and the SGSN.
  • the serving gateway and the PDN gateway may be on the same physical node or on different physical nodes.
  • the MME and the serving gateway may also be the same physical node or separate physical nodes.
  • SAE/LTE is defined as a pure packet switching system, which means that voice services can only be transmitted on the bearer switched bearer in this system.
  • voice service data is generally controlled by the IMS, so voice services in SAE/LTE are generally referred to as VoIP voice services.
  • VoIP voice services For traditional voice services, they are generally carried on CS TDM (Time Division Multiplexing).
  • CS TDM Time Division Multiplexing
  • this network topology poses a problem: When the UE moves from the 2G/3G CS network into the SAE/LTE network hotspot coverage, the voice on the 2G/3G CS network needs to be The IMS-based voice service is transferred to SAE/LTE, that is, voice continuity is maintained.
  • Voice Call Continuity generally refers to the voice of a UE when it moves between a network that supports Voice Over IP (VoIP) services and a network that does not support VoIP services.
  • VoIP Voice Over IP
  • the service must be continuous, and the voice service of the VoIP carried in the source system is smoothly switched to the target system CS domain, and vice versa.
  • FIG. 2 is a schematic diagram of a conventional scheme for implementing voice call continuity by using Dual Radio (Dual Radio), which is capable of receiving two types of wireless signals at the same time point between 3GPP and Non-3GPP.
  • Dual Radio Dual Radio
  • the CS voice call is anchored to the VCC AS (Voice Call Continuity Application Server, VCC Application Server).
  • VCC AS Voice Call Continuity Application Server
  • UE A initiates an IMS voice call through the WLAN network and anchors the IMS voice call to the VCC AS.
  • the CS signaling and voice bearer between UE A and VCC AS are replaced by IMS signaling between UE A and VCC AS and its attached VoIP bearer.
  • the voice call continuity from the CS network to the IMS network is realized.
  • the embodiments of the present invention provide a method for implementing voice call continuity, a method for implementing CS and PS service continuity, a method for a user to perceive a boundary area between a CS network and an IP network, an interconnection function entity, and a terminal device, which can be Receiver voice call continuity switching enables voice call continuity from the CS network to the IP network.
  • a method for implementing voice call continuity from a CS network to an IP network according to an embodiment of the present invention, the method includes:
  • the user accesses the IP network through the interconnection function entity; the interconnection function entity associates the CS voice session of the user based on the voice bearer of the IP network to the CS voice session of the user
  • the core network is hosted.
  • another method for implementing voice call continuity includes:
  • the user accesses the IP network through an interconnection function entity; the user initiates a voice call continuity handover; and the interconnection function entity initiates handover based on the IP network,
  • the CS voice session of the user in the CS network is switched to be in the IP network.
  • the embodiment of the present invention provides a method for implementing CS and PS service continuity, and the method includes:
  • the user When the user is in a network supporting CS and PS, the user accesses the IP network through the interconnection function entity;
  • the user initiates a voice call continuity handover and a PS service handover, and the interconnection function entity initiates handover based on the IP network, and switches the CS voice session of the user in the CS network to the IP network.
  • the embodiment of the present invention provides a method for a user to perceive a boundary area between a CS network and an IP network, and the method includes:
  • the user When the user receives the network identification information of the IP network from the base station controller of the CS network, determining that the user enters a boundary area between the CS network and the IP network; Or, when the user receives the indication information for indicating that the user enters the boundary area of the CS network and the IP network from the base station controller of the CS network, determining that the user enters the CS network and The boundary area of the IP network.
  • an embodiment of the present invention provides an interconnection function entity, where the interconnection function entity includes: an access unit, configured to access the user to an IP network when the user is in the CS network; The CS voice session of the user based on the voice bearer of the IP network is associated with the core network bearer of the CS voice session of the user.
  • the embodiment of the present invention provides another interconnection function entity, where the interconnection function entity includes: an access unit, configured to: when the user is in the CS network, access the user to the IP network; and the switching unit is configured to receive The user initiated voice call continuity switching request, triggering and performing handover based on the IP network and call continuity handover, and switching the CS voice session of the user in the CS network to the IMS in the IP network Voice conversation.
  • the interconnection function entity includes: an access unit, configured to: when the user is in the CS network, access the user to the IP network; and the switching unit is configured to receive The user initiated voice call continuity switching request, triggering and performing handover based on the IP network and call continuity handover, and switching the CS voice session of the user in the CS network to the IMS in the IP network Voice conversation.
  • the embodiment of the present invention provides another interconnection function entity, where the interconnection function entity includes: an access unit, configured to access the user to the IP network when the user is in a network supporting CS and PS;
  • a switching unit configured to receive the user-initiated voice call continuity switching request and a PS service switching request, trigger and perform handover based on the IP network, and call continuity switching and PS service switching, and the user is in the
  • the CS voice session of the CS network is switched to an IMS voice session on the IP network and the PS service of the user on the CS network is switched to the PS service of the user on the IP network.
  • an embodiment of the present invention provides a terminal device, where the terminal device includes:
  • a registration support unit configured to establish a logical channel with the interconnected functional entity to register with the target system by the interconnected functional entity
  • a switching unit configured to initiate a single receiver voice call continuity switch after the registration support unit completes registration by the interconnection function entity in the target system, and switch the voice session of the terminal in the source system to The voice session of the target system.
  • the user equipment in the embodiment of the present invention sends signaling (for example, registration, service signaling) of the target system through the interconnection function entity, thereby simulating the behavior of the user equipment in the target system, and realizing the continuity switching by the single receiver voice call.
  • signaling for example, registration, service signaling
  • FIG. 1 is a schematic diagram of an embodiment of a system architecture of a system architecture evolution network
  • FIG. 2 is a schematic diagram of a conventional scheme for implementing voice call continuity using Dual Radio
  • FIG. 3 is a schematic diagram of an embodiment of a network architecture including an interconnected functional entity
  • FIG. 4 is a schematic diagram of a network architecture for establishing a USSD channel directly connected to an HLR;
  • FIG. 5 is a schematic diagram of a network architecture for establishing a USSD channel directly connected to an MSC;
  • FIG. 6 is a schematic structural view of an embodiment of the IWF of FIG. 3;
  • FIG. 7 is a schematic structural view of another embodiment of the IWF of FIG. 3;
  • FIG. 8 is a schematic structural view of another embodiment of the IWF of FIG. 3;
  • Figure 8.a is a schematic structural diagram of an embodiment of the UE in Figure 3;
  • FIG. 9 is a flow chart showing an embodiment of a method for implementing voice call continuity of the present invention based on the interconnected functional entity shown in FIG. 6; 10 is a flow chart showing an embodiment of a method for implementing voice call continuity according to the present invention of the interconnection function entity shown in FIG. 7;
  • FIG. 11 is a flow chart showing an embodiment of a method for implementing voice call continuity of the present invention based on the interconnected functional entity shown in FIG. 8;
  • FIG. 12 to FIG. 15 are schematic diagrams showing a method for implementing voice call continuity from a source system CS domain voice call to a target system IMS domain voice call in a network architecture where the source system is 2G (GSM) and the target system is SAE/LTE;
  • FIG. 16 is from SAE.
  • Figure 17 shows the source system is 2G or 3G (supports dual transmission mode, that is, the source system supports both CS and IP services), and the target system implements CS domain voice call from the source system to the target system under the SAE/LTE network architecture.
  • FIG. 18 to FIG. 19 are partial schematic diagrams showing a method for realizing voice call continuity in a network architecture of a SAE/LTE system in which the source system of the Bi-casting (bi-cast) is 2G (the dual transmission mode is not supported);
  • Figure 21 source system is 2G (supports dual transmission mode, that is, the source system supports both CS services and IP services) or 3G, and the target system implements CS domain voice calls from the source system to the target system IMS under the network architecture of SAE/LTE.
  • Figure 22 shows the source system is 2G (supports dual transmission mode, that is, the source system supports both CS services and IP services) or 3G, and the target system is SAE/LTE network architecture to implement voice call from the target system IMS domain to the source system.
  • FIG 3 is a schematic diagram of a network architecture including an Interworking Function (IFF).
  • the network includes a source system, a target system, and an interconnected functional entity.
  • the source system may be a GSM system, a WCDMA system, an LTE system, a WIMAX system, a 3GPP2 system, or the like;
  • the target system may be a 3GPP2 DO system, a 3GPP2 1XRTT system, a UMB system, a SAE/LTE system, or a WIMAX system.
  • the UE establishes a logical channel UP and an interface to the IWF based on the source system.
  • the UE sends signaling of the target system (for example, registration, service signaling) through the UP interface, thereby simulating the behavior of the UE in the target system.
  • the UP, the interface may be based on the IP bearer system of the source system, or may be based on the signaling hierarchy message of the source system (for example, based on GSM USSD message, 2G/3G short message, 2G/3G/LTE NAS (None Access Stratum, The non-access stratum message) control message.
  • the UE when the source system is the GSM system, the UE establishes a logical channel UP interface to the IWF based on the USSD channel of the source system GSM, and further implements the UP established by the UE through the USSD channel.
  • the interface sends signaling (eg, registration, service signaling) of the target system (3GPP2 DO system, 3GPP2 1XRTT system, UWB system, SAE/LTE system, WIMAX system, etc.) to simulate the behavior of the UE in the target system.
  • UE and IWF Directly adopt USSD-based ICCP (IMS Control Channel Protocol IMS Control Channel Protocol) similar to ICS (IMS Centralized System IMS Centralized Control System).
  • USSD Unstructured Supplementary Service Data
  • GSM Global System for Mobile Communications
  • USSD is a new type of interactive session data service based on GSM mobile communication network. It is another new value-added service launched on the GSM mobile communication network after short message service.
  • USSD is a new interactive data service based on the GSM network.
  • the USSD system adopts an interactive session mode that provides a transparent channel for connection and is an ideal carrier for session-based services. It has fast response, strong interaction capability, and high reliability. Features that support most common GSM phones at the same time.
  • FIG. 4 is a schematic diagram of the network architecture for establishing the USSD channel directly with the HLR. As shown in FIG. 4, when the USSD center is connected to the HLR, the USSD center sends a USSD message to the HLR to which the MS belongs, and the HLR forwards the message to the MSC where the MS is located, thereby serving the USSD covered by the HLR. The user provides the USSD service.
  • FIG. 5 is a schematic diagram of a network architecture for establishing a USSD channel directly connected to an MSC. As shown in Figure 5, when the USSD center is connected to the MSC, the USSD center sends a USSD message to the MSC where the MS is located to implement automatic roaming of the USSD users on the entire network (the MSC where the MS is located must support the USSD function).
  • the USSD center sends a USSD message to the MSC where the MS is located to implement automatic roaming of the USSD users on the entire network (the MSC where the MS is located must support the USSD function).
  • the USSD message When the MS is sent, the USSD message will be forwarded to the USSD center via the MSC, and then forwarded to the corresponding service processing module by the USSD center for processing.
  • the USSD center acts as the MSC's Ussd Handler (USSD Processing Center).
  • the UE and the IWF perform the compression function through the UP and interface negotiation.
  • the IWF can be connected to the AAA (Australian Authorization Accounting Server) server through the Radius/Diameter.
  • AAA Australian Authorization Accounting Server
  • the IWF has a 3GPP DO access side entity function
  • the IWF and PDSN interfaces are A10/A11
  • the IWF and PCF interfaces are A8/A9/(A14)/(A20).
  • the target system is a 3GPP2 1XRTT network
  • the IWF has a 3GPP2 1XRTT access side entity function
  • the interface between the IWF and the 1XRTT MSC is A1.
  • the IWF contains the UMB network access side entity function
  • the IWF and AGW interfaces are U1
  • the IWF and SRNC interfaces are U2
  • the IWF and eBS interfaces are U1.
  • the target When the system is a SAE/LTE network, the IWF includes the SAE/LTE network access side eNodeB function
  • the IWF and MME interfaces are SI-MME
  • the IWF and Serving GW interfaces are Sl-U. If the IWF contains an SGSN/MME functional entity, the IWF and MME have an S3/S 10 interface accordingly. Or the interface between the IWF and the MME is S3.
  • the IWF When switching from the SAE/LTE network to the 2G/3G network, all the switching messages pass through the IWF, and the IWF is always on the path of the S3 interface. When switching from a 2G/3G network to a SAE/LTE network, all switching messages pass through the IWF, IWF—on the path of the S3 interface.
  • the target system is a WIMAX network
  • the IWF contains the WIMAX network access side BS function
  • the IWF and ASN-GW interfaces are R4/R6.
  • the IWF as a logical function entity can be carried on an actual physical device (for example, a device such as MSC/SGSN/MME/ASN-GW;).
  • FIG. 6 is a schematic structural diagram of an embodiment of the IWF in FIG. 3.
  • the IWF in this embodiment includes an access unit 40 and an association unit 50.
  • the access unit 40 includes receiving The unit 401, the proxy unit 402, the bearer establishing unit 403, and the access subunit 404.
  • the access subunit 404 includes a determining unit 4041 and a switching unit 4042, where
  • the receiving unit 401 is configured to receive a signaling message (such as a registration request, a service request, and the like) sent by the UE, where the signaling message is a logical channel established between the UE and the IWF (for example, when the source system For the GSM network, when the target system is SAE/LTE, the UE and the IWF are sent to the IWF based on the USSD channel;
  • a signaling message such as a registration request, a service request, and the like
  • the proxy unit 402 is configured to proxy, according to the signaling message received by the receiving unit 401, the user to register and negotiate voice bearer data of the IP network to the IP network;
  • the bearer establishing unit 403 is configured to establish a voice bearer with the IP network according to the negotiation result of the proxy unit 402. After the IWF establishes a voice bearer with the IP network, the UE can access the IWF to perform an IP network. Transmission of signaling.
  • the determining unit 4041 is configured to determine whether a language from the CS network to the IP network needs to be performed In a specific implementation, when the mobile switching center in the CS network detects that a voice handover from the CS network to the IP network is required, the interconnection function entity is notified; or in the CS network.
  • the user notifying the interconnected functional entity through the unstructured supplementary data service logical channel; or The user notifying the interconnected functional entity of the measurement information of the IP network through the unstructured supplementary data service logical channel, and determining, by the interconnected functional entity, whether to perform from the CS network to the IP network Voice switching; the determining unit 4041 performs measurement on the target system according to the notification message sent by the mobile switching center or the notification message sent by the base station controller, or according to the information sent by the terminal, to determine whether the Voice switching of the CS network to the IP network.
  • the switching unit 4042 is configured to: when the determining unit determines that a voice handover from the CS network to the IP network is required, triggering and performing handover based on the IP network, where the interconnection function entity is The voice bearer is switched to the corresponding bearer network device of the IP network.
  • the IWF may trigger a corresponding inter-eNB handover (if the target LTE cell belongs to a different MME, trigger an inter-MME handover), and the interconnection function is The voice bearer on the entity is switched to the actual bearer device eNB and MME of the target SAE/LTE network.
  • the association unit 50 is configured to associate the CS voice session of the user based on the voice bearer of the IP network to a core network bearer of the CS voice session of the user.
  • the association unit 50 may associate the CS voice session on the eNB and the MME based on the SAE/LTE network to the CS voice session of the user in the CS network.
  • the core network is hosted.
  • the UE is successfully switched to the access bearer based on the CS network based on the access bearer of the CS network, and then when the UE initiates the voice call continuity switch, the CS voice of the user can be The session is switched to an IMS voice session on the IP network.
  • FIG. 7 is a schematic structural diagram of another embodiment of the IWF in FIG. 3.
  • the IWF of this embodiment includes an access unit 51 and a switching unit 52, and further the access unit 51 includes a receiving unit 510 and a proxy unit 511, the switching unit 52 includes a second receiving unit 520, a storage unit 521, a first switching unit 522, and a second switching unit 523, further the first switching unit 522 includes a determining unit 5220 and a first switching subunit 5221, wherein
  • the first receiving unit 510 is configured to receive a signaling message sent by the user, where the signaling message is sent to the interconnecting functional entity by using a logical channel established between the user and the interconnecting functional entity; 511.
  • the user is configured to register with the IP network and register with the IMS network according to the signaling message received by the first receiving unit. After receiving the voice call continuity handover request initiated by the user;
  • the storage unit 521 is configured to buffer request signaling of the voice call continuity handover received by the second receiving unit 520;
  • the determining unit 5220 is configured to determine whether a voice switching from the CS network to the IP network is required, and the determining unit 5220 has the same function as the determining unit 4041 in the previous embodiment, and the description is not repeated herein;
  • the first switching subunit 5221 is configured to switch the voice bearer on the interconnected functional entity to a corresponding bearer network device of the IP network in the triggering and performing the handover based on the IP network.
  • FIG. 8 is a schematic structural diagram of another embodiment of the IWF in FIG. 3. As shown in FIG. 8, the IWF of this embodiment includes an access unit 53, a switching unit 54, and a synchronization control unit 55, where
  • the access unit 53 is configured to access the user to the IP network when the user is in the network supporting the CS and the PS.
  • the PS service of the UE needs to be The CS service simultaneously switches to the IP network.
  • the switching unit 54 is configured to receive the voice call continuity handover request and the PS service handover request initiated by the user, trigger and perform handover based on the IP network, and call continuity handover and PS service handover, where the user is The CS voice session of the CS network is switched to an IMS voice session on the IP network and the PS service of the user on the CS network is switched to the PS service of the user on the IP network.
  • the synchronization control unit 55 is configured to control the synchronous handover of the voice call continuity handover and the PS service handover.
  • FIG. 8.a is a schematic structural diagram of an embodiment of the UE in FIG. 3.
  • the UE in this embodiment includes a sensing unit 600, a registration supporting unit 601, and a switching unit 602, where
  • the sensing unit 600 is configured to: when the terminal is located in the source system, and receives network identification information of the target system or receives indication information for indicating that the user enters a boundary area of the source system and the target system Determining that the terminal user enters a boundary area between the source system and the target system, and updates the stored domain identifier information to the received network identifier information or indication information.
  • UE A may pass the following It is perceived as entering the LTE and 2G boundary areas.
  • the UE When the UE receives network information (eg, LTE cell list, LTE frequency point information) of the neighboring LTE network from the BSC of the 2G network, thereby determining that it enters the LTE-2G boundary area; 2) in the LTE-2G boundary area A specific indication is configured on the BSC and sent by the BSC to the UE in the area.
  • the UE may be sent to the UE through the BSC broadcast channel, or the terminal may be notified by using an RRC message (for example, a Cell Update Confirm cell update confirmation message, a Handover to UTRAN Command to UTRAN handover command, a Physical Channel Reconfiguration physical channel replay message, Radio Bearer Reconfiguration Wireless?
  • RRC message for example, a Cell Update Confirm cell update confirmation message, a Handover to UTRAN Command to UTRAN handover command, a Physical Channel Reconfiguration physical channel replay message, Radio Bearer Reconfiguration Wireless?
  • the corresponding terminal sends the corresponding indication information.
  • UE A can also sense that the UE leaves the LTE and 2G border areas and re-enters the 2G network coverage in a similar manner.
  • the specific sensing manner may include: 1) when the UE enters the 2G network (ie, the non-LTE-2G border area) from the LTE-2G/3G border area, the BSC only accepts the 2G network information (for example, the 2G cell list), thereby determining It has left the LTE-2G/3G border area.
  • a specific indication is configured on the BSC of the LTE-2G border area, and the UE sent by the BSC to the area or a specific indication is configured in the non-LTE-2G border area BSC.
  • the UE may be sent to the UE through the BSC broadcast channel, or notified by the RRC message (eg, Cell Update Confirm, Cell Update Confirm message, Handover to UTRAN Command to UTRAN handover command, Physical Channel Reconfiguration, physical channel reconfiguration message, Radio Bearer) Reconfiguration radio bearer message, Radio Bearer Release wireless 7-load release message, Radio Bearer Setup radio bearer setup message, RRC Connection Setup radio link control connection setup message, Transport Channel Reconfiguration transport channel reconfiguration message, Measurement Control, etc.
  • RRC message eg, Cell Update Confirm, Cell Update Confirm message, Handover to UTRAN Command to UTRAN handover command, Physical Channel Reconfiguration, physical channel reconfiguration message, Radio Bearer
  • the terminal sends the corresponding indication information.
  • the specific indication is configured only on the BSC of the LTE-2G border area.
  • the UE enters the non-LTE-2G border area from the LTE-2G border area, when the UE does not receive the corresponding domain indication, the UE senses that it has entered the non-LTE. -2G boundary area.
  • the registration support unit 601 is configured to establish a logical channel with the interconnection function entity to register with the target system by using the interconnection function entity.
  • the UE establishes a logical channel UP and an interface to the IWF based on the source system.
  • the UE sends the signaling of the target system (for example, registration, service signaling) through the UP interface, thereby simulating the behavior of the UE in the target system.
  • the UP, the interface may be based on the IP bearer system of the source system, or may be based on the signaling hierarchy message of the source system (for example, based on GSM USSD message, 2G/3G short message, 2G/3G/LTE NAS (None Access Stratum, The non-access stratum message) control message.
  • the UE when the source system is the GSM system, the UE establishes a logical channel UP to the IWF based on the USSD channel of the source system GSM, thereby implementing the UP established by the UE through the USSD channel.
  • the interface sends signaling (eg, registration, service signaling) of the target system (3GPP2 DO system, 3GPP2 1XRTT system, UWB system, SAE/LTE system, WIMAX system, etc.) to simulate the behavior of the UE in the target system.
  • UE and IWF Directly adopt USSD-based ICCP (IMS Control Channel Protocol IMS Control Channel Protocol) similar to ICS (IMS Centralized System IMS Centralized Control System).
  • the switching unit 602 is configured to: when the sensing unit 600 senses that the terminal user enters a boundary area of the source system and the target system, and in the registration supporting unit, the target system by using the interconnecting functional entity After the registration is completed, a single receiver voice call continuity handover is initiated, and the voice session of the terminal in the source system is switched to the voice session of the target system.
  • FIG. 9 is a schematic flowchart of a method for implementing voice call continuity according to the present invention, which is shown in FIG. 6.
  • the method in this embodiment includes:
  • Step S100 Establish a logical channel between the user and the interconnected functional entity.
  • the UE establishes a logical channel UP and an interface to the IWF based on the source system.
  • the UE sends the signaling of the target system (for example, registration, service signaling) through the UP interface, thereby simulating the behavior of the UE in the target system.
  • the UP, the interface may be based on the IP bearer system of the source system, or may be based on signaling layer messages of the source system (eg, based on GSM USSD messages, 2G/3G short messages, 2G/3G/LTE NAS control messages).
  • Step S101 The user interacts with the interconnected functional entity based on the logical channel, and registers the voice bearer data of the IP network by using the interconnected functional entity to register with the IP network.
  • step S102 the user or the interconnection function entity triggers the IP network to establish a voice bearer according to the negotiation result.
  • the IWF accesses the network device of the target network virtual target network (BSC). Or MME), the cell of the target network under the source network IWF service is a pseudo cell of the CS network.
  • BSC target network virtual target network
  • MME Mobility Management Entity
  • Step S103 The interconnection function entity determines whether voice switching from the CS network to the IP network is required, and after determining that the handover is required, step S104 is performed; otherwise, it ends.
  • the interconnection function entity may determine that a voice handover from the CS network to the IP network needs to be performed, for example, when the mobile switching center in the CS network detects that the CS network needs to be performed from the CS network.
  • Notifying the interconnection function entity when the voice switching of the IP network or notifying the user when the base station controller in the CS network detects that a voice handover from the CS network to the IP network is required
  • the user notifying the interconnection function entity by using the unstructured supplementary data service logical channel; or the user notifying the measurement function of the IP network through the unstructured supplementary data service logical channel Entity, determining, by the interconnecting functional entity, whether a voice switch from the CS network to the IP network is required;
  • Step S104 the interconnection function entity triggers and performs handover based on the IP network, and switches the voice bearer on the interconnection function entity to a corresponding bearer network device of the IP network; for example, when the source system is a GSM network
  • the IWF may trigger a corresponding inter-eNB handover (if the target LTE cell belongs to a different MME, trigger an inter-MME handover), and switch the voice bearer on the interconnection function entity to the target.
  • Step S105 the user accesses the IP network. For example, when the inter-eNB switch is completed, The user-based IWF-based voice bearer is transferred to the real eNB of the IP network. At this time, the user accesses the eNB and completes access to the IP network.
  • Step S106 The interconnection function entity associates the CS voice session of the user based on the voice bearer of the IP network to a core network bearer of the CS voice session of the user.
  • the association unit 50 may associate the CS voice session on the eNB and the MME based on the SAE/LTE network to the CS voice session of the user on the CS network.
  • the core network 7 is given.
  • Step S107 The user initiates a voice call continuity switch, and switches the CS voice session of the user to an IMS voice session in the IP network.
  • the interconnection function entity after the user or the interconnection function entity triggers the IP network to establish a voice bearer according to the negotiation result, the interconnection function entity notifies the bearer resource provided by the IP network to the user.
  • the user specifically, the interconnect function entity may send the bearer resource information to the user by using the logical channel; or the interconnect function entity may use the bearer resource information by using a mobile switching center and a base station controller Sent to the user.
  • FIG. 10 is a schematic flowchart of a method for implementing voice call continuity according to the present invention. Establishing a logical channel between the user and the interconnected functional entity;
  • Step S111 the user interacts with the interconnected functional entity based on the logical channel, registers with the IP network through the interconnected functional entity, and registers with the IMS network;
  • Step S112 The user initiates a voice call continuity switch.
  • Step S113 the interconnection function entity caches a signal that the user initiates a voice call continuity handover
  • Step S114 the interconnection function entity determines whether it is required to perform from the CS network to the IP network.
  • the voice is switched, and after it is determined that the handover is required, step S115 is performed; otherwise, it is ended.
  • the interconnection function entity may determine that a voice handover from the CS network to the IP network needs to be performed, for example, when the mobile switching center in the CS network detects that the CS network needs to be performed from the CS network.
  • Notifying the interconnection function entity when the voice switching of the IP network or notifying the user when the base station controller in the CS network detects that a voice handover from the CS network to the IP network is required
  • the user notifying the interconnection function entity by using the unstructured supplementary data service logical channel; or the user notifying the measurement function of the IP network through the unstructured supplementary data service logical channel Entity, determining, by the interconnecting functional entity, whether a voice switch from the CS network to the IP network is required;
  • Step S115 the interconnection function entity triggers switching based on the IP network, and switches the voice bearer on the interconnection function entity to the corresponding bearer network device of the IP network;
  • Step S116 the interconnection function entity triggers subsequent voice call continuity switching according to the buffered voice call continuity switching signaling, and switches the CS voice session of the user in the CS network to the IMS voice session of the IP network.
  • Step S117 The user accesses the IP network.
  • FIG. 11 is a schematic flowchart of an embodiment of a method for implementing voice call continuity based on the interconnecting functional entity shown in FIG. 8.
  • the method in this embodiment includes: Step S120, The user accesses the IP network through the interconnected functional entity;
  • Step S121 the user initiates a voice call continuity handover and a PS service handover, and the interconnection function entity initiates handover based on the IP network, and switches the CS voice session of the user in the CS network to be in the The IMS voice session of the IP network and the PS service of the user in the CS network are switched to the PS service of the user in the IP network.
  • the interconnection function entity controls the voice call continuity switching. Synchronous switching with the PS service.
  • Step S122 the user accesses the IP network.
  • FIG. 12 to FIG. 15 are schematic diagrams showing a method for implementing voice call continuity from a source system CS domain voice call to a target system IMS domain voice call in a network architecture with a source system of 2G (GSM) and a target system of SAE/LTE.
  • GSM 2G
  • SAE/LTE target system of SAE/LTE
  • the UE When the source system is a GSM network, the UE establishes a logical channel UP to the IWF based on the USSD channel of the source system GSM (the HLR is directly connected in the figure), and when the target system is a SAE/LTE network, the IWF contains The SAE/LTE network access side eNB (ie, BSC/eNodeB) function, the IWF and MME (Mobility Management Entity, mobility management entity) interface is S1-MME, and the IWF and SAE GW interfaces are Sl-U.
  • the specific process for implementing the voice call continuity from the source system CS domain voice call to the target system IMS domain voice call based on the network architecture is as follows:
  • UE A initiates a voice session through the 2G CS network. If the CS voice call needs to be handed over to an IMS network based IMS session, the voice call is anchored at the VCC AS.
  • the UE senses that it enters the LTE and 2G border areas, the UE establishes a logical channel UP, interface to the IWF based on the USSD channel of the source system. The UE is attached to the LTE domain through the IWF. Then, the LTE registration is performed based on the UP' interface, and the voice bearer data of the LTE network is negotiated, and the LTE network is triggered by the UE or the IWF to establish a voice bearer according to the negotiation result.
  • the UE establishes a logical channel UP to the IWF based on the USSD channel of the source system, and implements the step of the UE to attach to the LTE domain through the IWF in advance to any time after the UE A is powered on.
  • UE A can sense that it enters the LTE and 2G boundary areas in the following manners.
  • the UE When the UE receives network information (eg, LTE cell list, LTE frequency point information) of the neighboring LTE network from the BSC of the 2G network, thereby determining that it enters the LTE-2G boundary area; 2) in the LTE-2G boundary area A specific indication is configured on the BSC and sent by the BSC to the UE in the area.
  • the UE may be sent to the UE through a BSC broadcast channel, or notified by a RRC message (for example, a Cell Update Confirm cell).
  • UE A can also sense that the UE leaves the LTE and 2G border areas and re-enters the 2G network coverage in a similar manner.
  • the specific sensing methods may include: 1) When the UE is from
  • 2G network information e.g., 2G cell list
  • 2G cell list e.g., 2G cell list
  • the BSC sends the UE to the area or configures a specific indication in the non-LTE-2G border area BSC.
  • the UE may be sent to the UE through the BSC broadcast channel, or notify the terminal by using an RRC message (for example, a Cell Update Confirm cell update acknowledgement message, a Handover to UTRAN Command to UTRAN handover command, a Physical Channel Reconfiguration physical channel replay message, Radio Bearer Reconfiguration Wireless 7
  • the message sends the corresponding indication information to the terminal.
  • the specific indication is configured only on the BSC of the LTE-2G border area. When the UE enters the non-LTE-2G border area from the LTE-2G border area, when the UE does not receive the corresponding domain indication, the UE senses that it has entered the non-LTE. -2G boundary area.
  • the IWF first determines the need to trigger 2G->LTE handover in the following ways: 1) Configure the corresponding configuration in the VMSC (visited mobile service center), and switch the 2G->LTE The message is forwarded to the IWF.
  • the LTE cell is treated as a pseudo 2G cell by the IWF (having the function of the target system BSC), and the LTE cell related routing information is configured on the BSC/MSC of the serving UE, so that the MSC will 2G- > LTE handover message (eg, inter-BSC handover message, if the IWF-BSC and the currently serving BSC of the UE belong to different MSCs, triggering an inter-MSC handover) can be sent to the IWF.
  • the MSC will 2G- > LTE handover message (eg, inter-BSC handover message, if the IWF-BSC and the currently serving BSC of the UE belong to different MSCs, triggering an inter-MSC handover) can be sent to the IWF.
  • LTE handover message eg, inter-BSC handover message, if the IWF-BSC and the currently serving BSC of the UE belong to different MSCs, triggering an inter-MSC handover
  • UE A continues to move from the 2G/3G network to the LTE network, triggering 2G to LTE handover, and the BSC discovery of the serving UE A needs to be handed over to the SAE/LTE network, notifying the UE A (including the target LTE cell ID), and the UE A is UP.
  • the interface notifies the IWF.
  • UE A sends a measurement report containing LTE related information to the IWF, and the IWF decides whether to switch to the target system SAE/LTE.
  • the UE can report the corresponding measurement report at the same time.
  • the measurement report may or may not include LTE related information.
  • the IWF triggers the handover based on the IP network. As shown in FIG.
  • the IWF triggers the voice bearer between the IWF and the S AE GW to switch to the actual eNB and the S AE GW.
  • the IWF determines the target LTE cell.
  • the corresponding inter-eNB handover is triggered (if the target LTE cell belongs to a different MME, the inter-MME handover is triggered), and the voice bearer on the interconnected functional entity is switched to the target eNB and the MME of the negotiated SAE/LTE network.
  • the target eNB reserves radio resources, and associates the voice bearer of the UE in the IP network to the core network bearer of the CS voice session of the UE.
  • the IWF may also notify the UE A of the target LTE cell information and the target eNB information.
  • the IWF may notify the UE A by using any one of the following two methods: 1) The IWF sends the corresponding radio resource information of the target eNB to the UE through the UP interface. 2) The IWF encapsulates the corresponding radio resource information of the target eNB in an inter-BSC or inter-MSC handover response message, and sends the message to the UE A through the VMSC and the BSC.
  • the UE A accesses the LTE target cell, and the IWF associates the CS voice bearer of the UE in the SAE/LTE network to the core network bearer of the CS voice session of the UE, that is, FIG. 8 middle
  • the SAE/LTE bearer is associated to the CS media plane.
  • the interface will be transferred from the source-based 2G system to the target system SAE/LTE network.
  • the transferred UP, the interface can be based on the IP network of the SAE/LTE system, or based on SAE/ NAS message for LTE network.
  • the access of the UE A based on the 2G network is transferred to the access based on the target system SAE/LTE network.
  • the IWF includes the MGW function, which converts 2G CS-based speech coding and IP-based speech coding.
  • the IP bearer between the IWF and the UE A is an IP tunnel (IP logical channel), and the voice data transmitted between the IWF and the UE A is encoded as 2G CS-based voice coding.
  • the UE if the UE decides to switch to the IMS service platform, the UE triggers the Rel-7 VCC DT process (the domain conversion process of the Rel-7 Voice Call Continuity Domain Transfer VCC version 7) to transfer the voice described in FIG. 8 to The IMS service platform, thereby completing voice switching from CS->LTE.
  • the SAE/LTE bearer shown at this time is released, UP, the interface can be released, and can continue to be maintained.
  • the UE decides whether to switch to the IMS service platform according to its own or network policy. Specifically, when the UE A leaves the 2G-LTE border area and enters the LTE network, the UE initiates the VCC process.
  • the decision conditions include the following two types: The eNodeB only accepts LTE network information (e.g., LTE cell list, LTE frequency point information), thereby judging that it has left the LTE-2G/3G border area.
  • a specific indication is configured on the eNodeB of the LTE-2G border area, and is sent by the eNodeB to the UE of the area, or a specific indication is configured in the non-LTE-2G border area eNodeB.
  • the eNodeB broadcast channel may be sent to the UE, or the terminal may be notified by using an RRC message (for example, a Cell Update Confirm cell update confirmation message, a Handover to UTRAN Command to UTRAN handover command, a Physical Channel Reconfiguration physical channel replay message, Radio Bearer Reconfiguration radio bearer message, Radio Bearer Release radio release message, Radio Bearer Setup radio bearer setup message, RRC Connection Setup radio link control connection
  • RRC message for example, a Cell Update Confirm cell update confirmation message, a Handover to UTRAN Command to UTRAN handover command, a Physical Channel Reconfiguration physical channel replay message, Radio Bearer Reconfiguration radio bearer message, Radio Bearer Release radio release message, Radio Bearer Setup radio bearer setup message,
  • the specific indication is configured only on the eNodeB of the LTE-2G border area.
  • the UE enters the non-LTE-2G border area from the LTE-2G border area, when the UE does not receive the corresponding domain indication, the UE senses that it has entered the non-LTE. -2G boundary area.
  • the user may also return to the source system 2G network.
  • the UE decides to switch back to the state shown in FIG. 14, if the UE and the UE If the interface between the IWFs does not exist, the UE triggers the UP and the interface re-establishes the process.
  • the UE and the IWF negotiate bearer parameters. According to the negotiated bearer parameters, the IWF triggers the SAE/LTE dedicated bearer setup process through the Rx interface or the UE A initiates the SAE/LTE bearer setup process.
  • the Rel-7 VCC DT process (the domain conversion process of the Rel-7 Voice Call Continuity Domain Transfer VCC version 7) is triggered to convert the IMS voice service into the voice service described in FIG. 14, and further, the inter-BSC or inter may be triggered.
  • the MSC handover will transition to the state based on FIG. 12 based on the state described in FIG.
  • the UE may decide whether to switch the IMS service according to its own or the policy of the network.
  • the processing of the user plane of the voice service by the IWF is similar to the related steps in Figure 14.
  • the flow described above with respect to Figure 16 is equally applicable to initiating an IMS initial voice session at SAE/LTE.
  • the establishment of the USSD logical channel in the above process, the SAE/LTE registration process through the USSD logical channel, the negotiation of the bearer parameters through the USSD logical channel, and the bearer establishment process in the SAE/LTE may occur in any one of the UE after the 2G network is powered on.
  • the stage not limited to the embodiment described above, is to give a possible USSD logical channel path without limiting the path of the USSD (eg, the USSD logical channel may be directly from the VMSC to the IWF).
  • the UE when the UE enters the 2G-LTE border area, the UE establishes a USSD logical channel, registers with the USSD logical channel in SAE/LTE, negotiates bearer parameters through the USSD logical channel, and establishes a SAE/LTE bearer, and then waits for 2G->LTE handover opportunity. 's arrival Special
  • the static mobile phone policy or the corresponding network policy may be configured to instruct the UE to perform some or all operations based on the USSD logical channel after the GSM is powered on.
  • the target system as a WIMAX network, a 3GPP2 HRPD network, a 3GPP2 UMB network, and a 3GPP2 1XRTT network.
  • Figure 17 shows the source system is 2G or 3G (supports dual transmission mode, that is, the source system supports both CS services and IP services), and the target system implements CS domain voice calls from the source system to the target system under the network architecture of SAE/LTE.
  • a partial schematic diagram of a method for VoIP domain voice call continuity Referring to FIG. 17, the flow in the network architecture is similar to the embodiment shown in FIG. 12 to FIG. 15, and the differences are as follows:
  • the UP interface can be based on a 2G PS network or a 2G NAS layer message; for a 3G network, the UP interface can be based on a 3G PS network or a 3G NAS layer message.
  • the SAE GW selected by the UE A in the target system SAE/LTE attachment process by the IWF is different from the SAE GW selected by the UE A through the 2G/3G network attachment process.
  • the IWF contains the MME or SGSN functional entity, and configures corresponding data in the BSC/SGSN of the serving UE to send the 2G/3G to LTE PS handover request to the IWF, and the IWF switches according to 2G/3G to LTE PS and 2G/.
  • the synchronization bit in the 3G to LTE CS handover synchronizes the 2G/3G to LTE PS handover request and the 2G/3G to LTE CS handover request, requiring the SAE/LTE target system to reserve the corresponding resources.
  • the IWF generates a PS handover response message of 2G/3G to LTE and a CS handover response message of 2G/3G to LTE, and adds a synchronization indication bit in the response message, and then passes the SGSN/VMSC/BSC serving the UE. Forward to the UE.
  • the IWF can also send a corresponding handover response to the UE through the UP' interface.
  • UE A When the target system is a WIMAX network, UE A establishes a bearer for non-voice services on the target WIMAX network through the UP, interface, and IWF.
  • the IWF is responsible for triggering and controlling the 2G/3G->WIMAX handover process (package). Including voice bearers and non-voice bearers).
  • the process is equally applicable to the target system being a 3GPP2 HRPD network, a 3GPP2 UMB network.
  • Figure 18 is a partial schematic diagram of a method for implementing voice call continuity under the network architecture of the S AE/LTE system in which the source system of the Bi-casting (bi-cast) is 2G (does not support dual transmission mode).
  • the UE A initiates a voice session through the 2G CS network, and the voice call is anchored in the VCC ASo.
  • the UE A senses that it enters the border area of the LTE network and the 2G network, the UE A is attached to the LTE domain through the IWF.
  • the attach procedure is similar to the embodiment shown in Figures 12 to 15, and then UE A completes the IMS registration procedure on the IMS network through the UP, interface, IWF, and SAE/LTE networks.
  • UE A triggers the Rel-7 VCC DT process to establish a new IMS service control and IMS user plane.
  • the Rel-7 VCC DT process is completed, the CS control plane and the CS user plane based on the 2G CS voice service are still maintained, and the VCC MGW enables bi-casting, that is, the VCC MGW simultaneously to the IMS user plane and the CS.
  • the user plane simultaneously transmits voice data.
  • the 2G to LTE handover is triggered and the IWF is notified (the method of notifying the IWF is similar to the embodiment shown in Figures 6 to 9).
  • the IWF triggers the handover of the LTE network, that is, the inter-eNB/inter-MME handover procedure in the IWF triggering diagram, so that the voice bearer of the IWF to the SAE GW is switched to the voice bearer of the eNB to the SAE GW, that is, the voice bearer switching on the IWF
  • UE A accesses the target network LTE.
  • step S1300 UE A continues to move from the 2G/3G network to the LTE network, triggers handover of 2G to LTE, and notifies the IWF (method of notifying the IWF and the embodiment shown in FIG. 12 to FIG. 15) similar).
  • the IWF notifies the UE A to perform the Rel-7 VCC DT procedure, and establishes a new IMS service control and IMS user plane (ie, the establishment process of the SAE/LTE voice dedicated bearer).
  • the IWF triggers an inter-eNB or inter-MME handover to the target SAE/LTE, and the flow is the same as the embodiment shown in FIG. 12 to FIG.
  • the specific process is as follows: When the IWF receives the inter-eNB or inter-MME handover response message, the IWF temporarily caches the corresponding message.
  • the IWF After receiving the Rel-7 VCC DT procedure completion message (for example, the ACK message sent by the UE to the VCC AS), the IWF forwards the inter-eNB or the inter-MME handover response message to the UE (the specific process and shown in FIG. 12 to FIG. 15) The embodiment is similar), the UE accesses the target SAE/LTE network according to the received handover command.
  • the Rel-7 VCC DT procedure completion message for example, the ACK message sent by the UE to the VCC AS
  • the IWF After receiving the Rel-7 VCC DT procedure completion message (for example, the ACK message sent by the UE to the VCC AS), the IWF forwards the inter-eNB or the inter-MME handover response message to the UE (the specific process and shown in FIG. 12 to FIG. 15) The embodiment is similar), the UE accesses the target SAE/LTE network according to the received handover command.
  • the UE waits for the Rel-7 VCC DT process to complete before starting to access the target system (for example, the ACK message sent by the UE to the VCC AS).
  • UE A continues to move from the 2G/3G network to the LTE network.
  • UE A triggers the Rel-7 VCC DT process, and UE A sends an invite (VDI) message, where VDI is VCC. Domain Transfer URI, VCC domain conversion unified mark.
  • the IWF temporarily caches the corresponding invite (VDI) message, at which point the call control timer on the UE is set to not time out without receiving a call response (such as 180 Ring/200 OK).
  • the IWF perceives the 2G to LTE handover procedure (the method of notifying the IWF is similar to the embodiment shown in Figs. 12 to 15).
  • the IWF immediately executes the Rel-7 VCC DT procedure to establish a new IMS service control and IMS user plane (ie, the establishment process for SAE/LTE voice-specific 7-load). And the IWF triggers the inter-eNB or inter-MME handover of the IWF to the target SAE/LTE, and the flow is the same as the embodiment shown in FIG. 12 to FIG.
  • the specific process is as follows:
  • the IWF When the IWF receives the inter-eNB or inter-MME handover response message, the IWF temporarily caches the corresponding message.
  • the IWF After receiving the Rel-7 VCC DT procedure completion message (for example, the ACK message sent by the UE to the VCC AS), the IWF forwards the inter-eNB or the inter-MME handover response message to the UE (the specific flow and FIG. 6 to FIG. 9 are shown). The embodiment is similar), the UE accesses the target SAE/LTE network according to the received handover command.
  • the Rel-7 VCC DT procedure completion message for example, the ACK message sent by the UE to the VCC AS
  • the IWF After receiving the Rel-7 VCC DT procedure completion message (for example, the ACK message sent by the UE to the VCC AS), the IWF forwards the inter-eNB or the inter-MME handover response message to the UE (the specific flow and FIG. 6 to FIG. 9 are shown). The embodiment is similar), the UE accesses the target SAE/LTE network according to the received handover command.
  • Target system for example, an ACK message sent by the UE to the VCC AS.
  • the IWF changes due to the change of the location area, UE A sends a message to the old IWF to instruct it to release invite (VDI), and UE A re-send invite (VDI) to the new IWF.
  • VDI release invite
  • VDI re-send invite
  • the above process is also suitable for the LTE-to-CS handover scenario, that is, UE A uses the IMS network to run voice services on the LTE network.
  • UE A uses the IMS network to run voice services on the LTE network.
  • UE A triggers Rel-7 VCC through the IWF in the 2G CS network registration process.
  • the DT process establishes a new CS service control and CS user plane, and the specific process is similar to the CS to LTE handover process in this embodiment.
  • the target system as a WIMAX network, a 3GPP2 HRPD network, a 3GPP2 UMB network, and a 3GPP2 1XRTT network.
  • the source system based on Bi-casting is 2G (supports dual transmission mode), and the method for implementing voice call continuity under the network architecture of the SAE/LTE target system can be configured by the source BSC, and 2G is generated.
  • the source BSC sends a handover request only to the source SGSN, and the source SGSN performs a corresponding configuration to send the 2G->LTE PS handover request to the IWF-MME/SGSN.
  • the IWF triggers an inter-MME handover or an inter-eNodeB handover (the handover message includes
  • FIG. 20 is a partial flow diagram of another embodiment of a method for implementing voice contact callability in a network architecture where the source system is 2G and the target system is SAE/LTE.
  • a USSD logical channel is established, and the IMS voice is initiated through the USSD logical channel in the SAE/LTE registration process, through the USSD logical channel IMS registration process, and through the USSD logical channel. Call process.
  • the IWF allocates the CS routing number and transmits it to UE A through the UP' interface.
  • the UE A initiates a CS voice call process according to the CS routing number (called The number is the CS routing number).
  • the 2G CS network analyzes the CS routing number to the IWF to establish a CS bearer from UE A to IWF.
  • the IWF is responsible for associating the CS bearers from UE A to the IWF and the IP bearers from the SAE GW to the IWF-eNB. Subsequent 2G->LTE handover procedures and SR-VCC procedures are similar to the embodiments shown in Figures 12 through 15, and will not be described in detail herein.
  • the embodiment is applicable to a source system being a 3G network
  • the target system is a WIMAX network, a 3GPP2 HRPD network, a 3GPP2 UMB network, and a 3GPP2 1XRTT network.
  • Figure 21 shows the source system is 2G (supports dual transmission mode, that is, the source system supports both CS services and IP services) or 3G, and the target system is SAE/LTE network architecture to implement voice call from the source system CS domain to the target system.
  • a specific flowchart of an embodiment of a method for VoIP domain voice call continuity as shown in FIG. 21, the method in this embodiment specifically includes:
  • Step SI SR-VCC preparation phase
  • the SR-VCC field here is similar to the LTE-2G boundary area in the embodiment shown in Figs. 12 to 15. Specifically, the following process is performed during the SR-VCC phase:
  • step S10 the UE initiates a voice session over the 2G CS network, the voice call being anchored at the VCC AS (not shown).
  • step S11 when UE A senses to enter the LTE and 2G border areas, the UE attaches in the LTE domain through the IWF, and the process and method are similar to the embodiment shown in FIG. 12 to FIG. 15, and then UE A passes UP, interface, IWF, and SAE.
  • the /LTE network completes the IMS registration process on the IMS network.
  • step S12 the UE initiates Invite (VDI), and the IWF caches Invite (VDI).
  • Step S2 the domain conversion area: In other words, the UE is in the domain conversion area. Specifically, the following process is performed in the domain conversion area:
  • the BSC in the 2G network determines whether to trigger the handover procedure of 2G to LTE.
  • the IWF sends the buffered Invite (VDI) immediately after receiving the handover request.
  • VDI buffered Invite
  • step S28 the LTE network establishes a voice bearer.
  • step S29 the IWF sends a handover request to the LTE network. If the 2G network supports the DTM and there is an active PS service at this time, then the 2G network BSC determines to trigger the DTM handover. Since the IWF is in the S3 signaling path between the SGSN and the MME, the PS handover message needs to pass through the IWF. If the IWF first accepts the 2G->LTE PS handover request sent by the 2G SGSN, the IWF first checks whether the 2G->LTE PS handover request has a CS indication bit.
  • the IWF senses that the handover is a DTM handover, and the IWF waits for a 2G->LTE CS handover request, thereby synchronizing and generating a unified inter-eNodeB handover request.
  • the IWF immediately sends the buffer Invite (VDI) to the CSCF (Call Session Call Function), which triggers the domain conversion process and the LTE network dedicated bearer establishment process.
  • VDI buffer Invite
  • CSCF Call Session Call Function
  • the IWF first accepts the 2G->LTE CS handover request sent by the 2G MSC, the IWF first checks if the 2G->LTE CS handover request has a PS indication bit. If there is a PS indication bit, the IWF senses that the handover is a DTM handover, and the IWF waits for a 2G->LTE PS handover request, thereby synchronizing and generating a unified inter-eNodeB handover request. At this time, the IWF immediately sends the buffer Invite (VDI) to the CSCF (Call Session Call Function), thereby triggering the domain conversion process and the LTE network dedicated bearer establishment process. When the UE receives the 2G->LTE PS handover request, the IWF performs a subsequent handover procedure.
  • VDI buffer Invite
  • CSCF Call Session Call Function
  • step S210 the DTF (Domain Transfer Function Domain Conversion Module) processes the domain conversion process.
  • the IWF receives the handover request response sent back by the target LTE network.
  • the IWF sends a handover response to the MSC. If it is a DTM handover, the IWF will receive the handover response from the LTE network into a 2G->LTE PS HO response and a 2G->LTE CS HO response, which are respectively sent to the SGSN and the MSC.
  • step S213-215 the MSC sends a corresponding handover command to the UE, and the UE accesses the target LTE network.
  • the UE When the UE's CS call ends or the UE is in a non-SR-VCC domain, the UE is in the SR-VCC preparation phase. Specifically, the SR-VCC preparation phase release phase performs the following operations:
  • step S31 the UE sends a Cancel message to the IWF, and the IWF deletes the corresponding UE status.
  • This embodiment is also applicable to the target network being a WIMAX network, a 3GPP2 HRPD network, a 3GPP2 UMB network, and a 3GPP2 1XRTT network.
  • the DTM handover procedure of this embodiment applies to all embodiments, as well as to 3G networks.
  • Figure 22 shows the source system is 2G (supports dual transmission mode, that is, the source system supports both CS services and IP services) or 3G, and the target system is SAE/LTE network architecture to implement voice call from the target system IMS domain to the source system.
  • the SR-VCC preparation phase When the UE has an active IMS call and is in the SR-VCC domain, the UE is in the SR-VCC preparation phase.
  • the SR-VCC field here is similar to the LTE-2G boundary area in Embodiment 1. Specifically, the SR-VCC preparation phase performs the following process:
  • step S61 the UE initiates a voice session through the SAE/LTE network, and the voice call is anchored at VCC.
  • step S62 when UE A senses to enter the LTE and 2G border areas, the UE registers in the CS domain through the IWF.
  • the related 24.008 message is transmitted between the UE and the IWF through the NAS (Non Access Stratum non-access stratum message), and the process and method thereof are similar to Embodiment 1.
  • the UE initiates Setup (VDN), and the IWF caches Setup (VDN).
  • the UE may send a CM Service Request (Confirm Mode Service Request message) to the MSC after the registration, so as to trigger a subsequent authentication negotiation process.
  • the IWF caches the CM Service Request sent by the UE.
  • the MSC does not receive the Setup message for a long time, the MM (Mobility Management Mobility Management) timer expires, so that the MSC triggers an abnormal process and notifies the IWF to release the corresponding resource.
  • the IWF still saves the SR-VCC related state of the UE, the IWF resends the CM Service Request message or notifies the UE to resend the CM Service Request message.
  • the UE periodically sends the CM Service Request according to its configuration, so that the MM state of the MSC does not time out.
  • Step S7 the domain conversion area:
  • the UE When the UE has an active IMD call and is in the SR-VCC domain and an LTE->2G/3G handover occurs at this time, the UE is in the domain transition area. Specifically, the domain conversion area performs the following process:
  • step S71-S73 the LTE network eNodeB determines to trigger the LTE->2G/3G handover procedure.
  • step S74 the IWF immediately sends the cache setup (VDN) to the CS core network after receiving the handover request.
  • VDN cache setup
  • step S75-S76 the RAB (Radio Access Bearer) assignment procedure.
  • step S77 the IWF sends a handover request to the 2G/3G network, determines that the IMS voice service and the non-voice service are included, and determines to trigger the DTM handover. Because the IWF is in the S3 signaling path between the SGSN and the MME, Therefore, the PS switching message needs to pass through the IWF, and the IWF synchronizes the entire process, and the process is similar to the embodiment of FIG.
  • steps S78-S710 the domain conversion process is triggered.
  • step S711 the DTF (Domain Transfer Function) processes the domain conversion process. If the VCC AS triggers a dual broadcast in order to reduce the service interruption time, the process is similar to that shown in Figure 18.
  • the IWF receives the handover command.
  • step S713 the IWF forwards the handover response to ⁇ .
  • the MSC sends a corresponding handover command to the UE, and the UE accesses the target LTE network.
  • the MSC sends the message to the UE through the 2G/3G network.
  • Step S8 SR-VCC preparation phase release:
  • the UE When the UE's CS call ends or the UE is in a non-SR-VCC domain, the UE is in the SR-VCC preparation phase. Specifically, the SR-VCC preparation phase release phase performs the following operations:
  • step S81 the UE sends a DISCONNECT message to the IWF, and the IWF deletes the corresponding UE status.
  • the user equipment in the embodiment of the present invention sends signaling (for example, registration, service signaling) of the target system through the interconnection function entity, thereby simulating the behavior of the user equipment in the target system, and realizing the continuity switching by the single receiver voice call.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

实现语音呼叫连续性的方法、 互联功能实体及终端设备
本申请要求于 2007 年 12 月 29 日提交中国专利局、 申请号为 200710033047.8、 发明名称为 "实现语音呼叫连续性的方法、 互联功能实体及终 端设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及移动通信领域, 尤其涉及一种实现语音呼叫连续性的方法、 互 联功能实体及终端设备。 背景技术
通用移动通信系统 ( Universal Mobile Telecommunications System , UMTS ) 是采用 WCDMA空中接口技术的第三代移动通信系统,通常也把 UMTS系统称 为 WCDMA通信系统。 UMTS系统采用了与第二代移动通信系统类似的结构, 包括无线接入网络 ( Radio Access Network , RAN ) 和核心网络 ( Core Network, CN )。 其中无线接入网络用于处理所有与无线有关的功能, 而 CN处 理 UMTS系统内用户位置管理、 业务管理等功能, 并实现与外部网络的交换和 路由功能。 CN从逻辑上分为电路交换域(Circuit Switched Domain, CS )和分 组交换 i或 ( Packet Switched Domain, PS )。 UTRAN(Universal Terrestrial Radio Access Network通用地面无线接入网)、 CN与用户设备( User Equipment, UE ) 一起构成了整个 UMTS 系统。
为了提高系统性能, 目前国际正在进行一项系统架构演进 ( System Architecture Evolution, SAE ) 的项目。 该系统的架构如图 1所示。 图 1中, UE 为用户设备, 即终端; EUTRAN为演进的无线接入网, 其中有演进的 Node B, 称为 ENB , 可能还有其他节点, 我们以 ENB来代替这些节点。 MME ( Mobility Management Entity )为移动性管理实体, 具有控制面功能, 如与 UE的控制面消 息处理,移动性管理(记录 UE位置信息),寻呼、认证等。 Serving SAE Gateway, 服务网关, 具有用户面功能, 传递 UE的数据, 与无线接入网存在 S1-U接口。 MME和服务网关合起来类似传统的 SGSN ( Serving GPRS Support Node,服务 GPRS支持节点)。 PDN SAE Gateway, PDN ( Packet Data Network,分组数据网) 网关, 类似传统的 GGSN ( Gateway GPRS Support Node, 网关 GPRS ), 与外部 数据网络存在 SGi接口,具有策略执行、包过滤等功能。 PCRF(Policy Control and Charging Rules Function)是策略控制与计费规则功能实体, 执行策略相关控制功 能。 S3接口是 MME与 2G/3G的 SGSN之间的接口, 其基于 GTP协议, S4是 服务网关与 SGSN的接口。 服务网关与 PDN网关可能处于同一个物理节点也可 能处于不同物理节点。 MME和服务网关也可能是同一个物理节点或分离的物理 节点。 当上面的逻辑实体处于同一个节点, 则其之间的接口信令转为内部节点 消息。
SAE/LTE被定义为一个纯的包交换系统, 这就表明在该系统中语音业务只 能在包交换的承载上传输。 在 SAE/LTE系统中, 语音业务数据一般由 IMS来控 制,所以在 SAE/LTE中语音业务一般被称作 VoIP语音业务。而对于传统的语音 业务, 一般都是承载在 CS TDM ( Time Division Multiplexing, 时分复用 )上。 SAE/LTE在初始阶段的部署是热点覆盖,而 GSM/UMTS网络在某种程度上可看 作一种全覆盖。 显然这种网络拓朴结构带来一个问题: 当 UE从 2G/3G CS网络 移动进入 SAE/LTE网络热点覆盖范围时, 承载 2G/3G CS网络上语音需要被无 缝地转移到 SAE/LTE的基于 IMS的语音业务, 即保持语音连续性。
语音呼叫连续性 (Voice Call Continuity, VCC)—般是指, 当 UE在支持 VoIP ( Voice Over IP, 用 IP传输语音)业务的网络和不支持 VoIP业务的网络之间移动 时, 该 UE的语音业务必须要保持连续, 即将承载在源系统的 VoIP的语音业务平 滑切换到目标系统 CS域, 反之亦然。 图 2是现有的采用 Dual Radio( Dual Radio— 般是指在 3GPP和 Non-3GPP之间, UE在同一时间点能够同时接受两种无线信号) 实现语音呼叫连续性的方案原理示意图。
如图 2所示, 如果 UE A在 CS域发起语音呼叫, 此 CS语音呼叫被锚定在 VCC AS(Voice Call Continuity Application Server , VCC应用服务器)。 当 UE A将要移动 出 CS网络而进入 WLAN网络覆盖, UE A通过 WLAN网络发起一个 IMS语音呼叫 并将该 IMS语音呼叫也锚定在 VCC AS上。 当该 IMS语音呼叫建立起来后, UE A 和 VCC AS之间的 CS信令和语音承载被 UE A和 VCC AS之间的 IMS信令以及其附 属的 VoIP承载所代替。 实现了从 CS网络到 IMS网络的语音呼叫连续性, 但是, 该方案只适用于 Wi-Fi网络和 GERAN之间在 Dual Radio条件下语音连续性问题。 随着 SAE/LTE, WIMAX等无线宽带技术出现,有必要考虑从 SAE/LTE、 WIMAX 和蜂窝网络之间的在 Single Radio ( Single Radio一般指在 3GPP内部, UE在一个 时间点只能接受一种 3GPP无线信号 )情况下的无缝切换的解决方案。 发明内容
鉴于此, 本发明实施例提供了实现语音呼叫连续性的方法、 实现 CS和 PS 业务连续性的方法、 用户感知 CS网络与 IP网络的边界区域的方法、 互联功能 实体及终端设备, 可通过单接收机语音呼叫连续性切换实现从 CS网络到 IP网 络的语音呼叫连续性。 本发明实施例提供的一种实现从 CS网络到 IP网络的语音呼叫连续性的方 法, 该方法包括:
当用户处于 CS网络时, 所述用户通过互联功能实体接入 IP网络; 所述互联功能实体将所述用户基于所述 IP网络的语音承载的 CS语音会话 关联到所述用户的 CS语音会话的核心网承载上。
相应的, 本发明实施例提供的另一种实现语音呼叫连续性的方法, 该方法 包括:
当用户处于所述 CS网络时, 所述用户通过互联功能实体接入所述 IP网络; 所述用户发起语音呼叫连续性切换及所述互联功能实体发起基于所述 IP网 络的切换, 将所述用户在所述 CS网络的 CS语音会话切换为在所述 IP网络的
IMS语音会话。
想应的, 本发明实施例提供了一种实现 CS和 PS业务连续性的方法, 该方 法包括:
当用户处于支持 CS和 PS的网络时,所述用户通过互联功能实体接入 IP网 络;
所述用户发起语音呼叫连续性切换及 PS业务切换, 以及所述互联功能实体 发起基于所述 IP网络的切换,将所述用户在所述 CS网络的 CS语音会话切换为 在所述 IP网络的 IMS语音会话以及将所述用户在所述 CS网络的 PS业务切换 为所述用户在所述 IP网络的 PS业务。
相应的, 本发明实施例提供了一种用户感知 CS网络与 IP网络的边界区域 的方法, 该方法包括:
当所述用户从所述 CS网络的基站控制器接收到所述 IP网络的网络标识信 息时, 判定为所述用户进入所述 CS网络与所述 IP网络的边界区域; 或, 当所述用户从所述 CS网络的基站控制器接收到用于指示所述用户进入 所述 CS网络与所述 IP网络的边界区域的指示信息时, 判定为所述用户进入 CS 网络与所述 IP网络的边界区域。
相应的, 本发明实施例提供了一种互联功能实体, 该互联功能实体包括: 接入单元, 用于当用户处于 CS网络时, 将所述用户接入 IP网络; 关联单元, 用于将所述用户基于所述 IP网络的语音承载的 CS语音会话关 联到所述用户的 CS语音会话的核心网承载上。
相应的, 本发明实施例提供了另一种互联功能实体, 该互联功能实体包括: 接入单元, 用于当用户处于 CS网络时, 将所述用户接入 IP网络; 切换单元, 用于接收所述用户发起的语音呼叫连续性切换请求, 触发并执 行基于所述 IP网络的切换以及呼叫连续性切换, 将所述用户在所述 CS网络的 CS语音会话切换为在所述 IP网络的 IMS语音会话。
相应的, 本发明实施例提供了另一种互联功能实体, 该互联功能实体包括: 接入单元, 用于当用户处于支持 CS和 PS的网络时, 将所述用户接入 IP网 络;
切换单元, 用于接收所述用户发起的语音呼叫连续性切换请求及 PS业务切 换请求, 触发并执行基于所述 IP网络的切换以及呼叫连续性切换以及 PS业务 切换, 将所述用户在所述 CS网络的 CS语音会话切换为在所述 IP网络的 IMS 语音会话以及将所述用户在所述 CS网络的 PS业务切换为所述用户在所述 IP网 络的 PS业务。
相应的, 本发明实施例提供了一种终端设备, 该终端设备包括:
注册支撑单元, 用于与互联功能实体建立逻辑通道, 以通过所述互联功能 实体在所述目标系统注册; 切换单元, 用于在所述注册支撑单元通过所述互联功能实体在所述目标系 统完成注册后, 发起单接收机语音呼叫连续性切换, 将所述终端在所述源系统 的语音会话切换为所述目标系统的语音会话。
本发明实施例的用户设备通过互联功能实体发送目标系统的信令 (例如注 册、 业务信令), 从而模拟所述用户设备在目标系统的行为, 实现了通过单接收 机语音呼叫连续性切换实现从 CS网络到 IP网络的语音呼叫连续性的目的。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是系统架构演进网络的系统架构的一种实施例示意图;
图 2是现有的采用 Dual Radio实现语音呼叫连续性的方案原理示意图; 图 3是包括有互联功能实体的网络架构的一种实施例示意图;
图 4是与 HLR直连建立 USSD通道的网络架构示意图;
图 5是与 MSC直连建立 USSD通道的网络架构示意图;
图 6是图 3中的 IWF的一个实施例结构组成示意图;
图 7是图 3中的 IWF的另一个实施例结构组成示意图;
图 8是图 3中的 IWF的另一个实施例结构组成示意图;
图 8.a是图 3中的 UE的一个实施例结构组成示意图;
图 9是基于图 6所示的互联功能实体的本发明的实现语音呼叫连续性的方 法的一个实施例流程示意图; 图 10是基于图 7所示的互联功能实体的本发明的实现语音呼叫连续性的方 法的一个实施例流程示意图;
图 11是基于图 8所示的互联功能实体的本发明的实现语音呼叫连续性的方 法的一个实施例流程示意图;
图 12至图 15是源系统为 2G(GSM), 目标系统为 SAE/LTE的网络架构下实 现从源系统 CS域语音呼叫到目标系统 IMS域语音呼叫连续性的方法示意图; 图 16是从 SAE/LTE系统回到 2G网络的 IMS域语音呼叫到 CS域语音呼叫 连续性的方法部分示意图;
图 17是源系统为 2G或 3G (支持双传输模式, 即源系统既支持 CS业务, 又 支持 IP业务),目标系统为 SAE/LTE的网络架构下实现从源系统 CS域语音呼叫 到目标系统 IMS域语音呼叫连续性的方法的部分示意图;
图 18至图 19 于 Bi-casting (双播)的源系统为 2G (不支持双传输模式), 目标系统为 SAE/LTE的网络架构下实现语音呼叫连续性的方法的部分示意图; 图 20是源系统为 2G, 目标系统为 SAE/LTE的网络架构下实现语音呼叫连 续性的方法的另一实施例的部分流程示意图;
图 21源系统为 2G (支持双传输模式, 即源系统既支持 CS业务, 又支持 IP 业务)或 3G, 目标系统为 SAE/LTE的网络架构下实现从源系统 CS域语音呼叫 到目标系统 IMS域语音呼叫连续性的方法的具体流程示意图;
图 22是源系统为 2G (支持双传输模式, 即源系统既支持 CS业务, 又支持 IP业务)或 3G, 目标系统为 SAE/LTE的网络架构下实现从目标系统 IMS域语音 呼叫到源系统 CS域语音呼叫连续性的方法的具体流程示意图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 作进一步地详细描述。
图 3是一种包括有互联功能实体( Interworking Function , IWF ) 的网络架 构示意图。 如图 3 所示, 该网络包括源系统、 目标系统以及互联功能实体。 具 体实现中, 所述源系统可以为 GSM系统、 WCDMA系统、 LTE系统、 WIMAX 系统以及 3GPP2系统等; 所述目标系统可为 3GPP2 DO系统、 3GPP2 1XRTT系 统、 UMB系统、 SAE/LTE系统、 WIMAX系统等; 具体实现中, UE基于源系 统建立到 IWF的逻辑通道 UP,接口。 UE通过 UP,接口发送目标系统的信令 (例 如注册、 业务信令), 从而模拟 UE在目标系统的行为。
具体实现中, UP,接口可以基于源系统的 IP承载系统, 也可以基于源系统 的信令层次消息 (例如基于 GSM USSD消息、 2G/3G短消息、 2G/3G/LTE NAS ( None Access Stratum, 非接入层消息)控制消息。 如图 3所示, 当源系统为 GSM系统时, UE基于源系统 GSM 的 USSD通道建立到 IWF的逻辑通道 UP, 接口。 进而实现 UE通过 USSD通道建立的 UP,接口发送目标系统( 3GPP2 DO 系统、 3GPP2 1XRTT系统、 UWB系统、 SAE/LTE系统、 WIMAX系统等系统) 的信令 (例如注册、 业务信令), 模拟 UE在目标系统的行为。 UE和 IWF直接采 用类似 ICS(IMS Centralized System IMS 集中控制系统)的基于 USSD 的 ICCP(IMS Control Channel Protocol IMS控制通道协议)。
USSD ( Unstructured Supplementary Service Data非结构 4匕补充数据业务) 是一种基于 GSM移动通信网络的新型交互会话数据业务,是继短消息业务后在 GSM移动通信网络上推出的又一新型增值业务。 USSD是一种基于 GSM 网络 的新型交互式数据业务。 USSD 系统采用的是面向连接, 提供透明通道的交互式 会话方式, 是会话类业务的理想载体, 具有响应速度快、 交互能力强、 可靠性高 的特点, 同时支持大多数普通 GSM手机。 USSD发起的形式: #SC*SI#, 其中, SC即业务码, 由 0-9的数字组成, SI为业务信息, 可以为任意内容。 前面的 # 为前导符 (Leader Char),可由(*,#)的 1-3位组合而成,后面的 #为结束符 (Close Char) 比如 *125#。 其架构有两种方式: 与 HLR直连方式以及与 MSC直连的方式, 图 4是与 HLR直连建立 USSD通道的网络架构示意图。 如图 4所示, 在 USSD中 心与 HLR对接的情形下, USSD中心下发时将向 MS所归属的 HLR发送 USSD 消息, 由 HLR转发给该 MS所在的 MSC , 从而为本 HLR所覆盖的 USSD用户 提供 USSD服务; MS上发时 USSD消息经由 MSC到达 HLR, 然后 HLR将其 传到 USSD 中心, 由 USSD中心转发 USSD消息给相应的业务处理模块 (比如 UssdServer, Ussd服务器)进行处理。 图 5是与 MSC直连建立 USSD通道的网 络架构示意图。 如图 5所示, 在 USSD中心与 MSC对接的情形下, USSD中心 下发时将向 MS所在的 MSC发送 USSD消息, 实现全网 USSD用户的自动漫游 ( MS所在的 MSC须支持 USSD功能); MS上发时 USSD消息将经由 MSC到 达 USSD中心, 由 USSD中心转发给相应的业务处理模块进行处理,此时 USSD 中心作为 MSC的 Ussd Handler(USSD处理中心)。 另外, 具体实现中, 为了提高 UP,接口传输信令的速度, UE和 IWF通过 UP,接口协商启用压缩功能。
具体实现中, IWF 可通过 Radius/Diameter 和 AAA ( Autentication Authorization Accounting, 认证授权计费服务器)服务器相连。 当目标系统为 3GPP2 DO网络时, IWF含有 3GPP DO接入侧实体功能, IWF和 PDSN的接口 为 A10/A11 , IWF和 PCF接口为 A8/A9/(A14)/(A20)。当目标系统为 3GPP2 1XRTT 网络时, IWF含有 3GPP2 1XRTT接入侧实体功能, IWF和 1XRTT MSC的接口 为 A1。 当目标系统为 UMB网络时, IWF含有 UMB网络接入侧实体功能, IWF 和 AGW接口为 Ul , IWF和 SRNC接口为 U2, IWF和 eBS接口为 Ul。 当目标 系统为 SAE/LTE网络时, IWF含有 SAE/LTE网络接入侧 eNodeB功能, IWF和 MME接口为 SI -MME, IWF和 Serving GW接口为 Sl-U。 如果 IWF含有 SGSN/MME功能实体, 相应地, IWF和 MME拥有 S3/S 10接口。 或者 IWF和 MME之间的接口为 S3,, 当从 SAE/LTE网络到 2G/3G网络切换,所有的切换消 息都通过 IWF, IWF一直在 S3接口的路径上。 当从 2G/3G网络到 SAE/LTE网 络切换时, 所有的切换消息都通过 IWF, IWF—直在 S3接口的路径上。 当目标 系统为 WIMAX网络时, IWF含有 WIMAX网络接入侧 BS功能, IWF和 ASN-GW 接口为 R4/R6。 并且, 作为逻辑功能实体的 IWF, 可承载在实际的物理设备上 (比如, MSC/SGSN/MME/ASN-GW等设备上;)。
具体的, 图 6是图 3中的 IWF的一个实施例结构组成示意图,如图 6所示, 本实施例的 IWF包括接入单元 40和关联单元 50, 进一步, 所述接入单元 40包 括接收单元 401、 代理单元 402、 承载建立单元 403以及接入子单元 404, 进一 步, 所述接入子单元 404包括判定单元 4041和切换单元 4042, 其中,
所述接收单元 401用于接收所述 UE发送的信令消息(比如, 注册请求, 业 务请求等), 所述信令消息通过所述 UE与该 IWF间建立的逻辑通道(比如, 当 源系统为 GSM网络, 目标系统为 SAE/LTE时, UE与 IWF间基于 USSD通道 ) 发送给该 IWF;
所述代理单元 402用于根据所述接收单元 401接收到的信令消息代理所述 用户向所述 IP网络注册及协商所述 IP网络的语音承载数据;
所述承载建立单元 403用于根据所述代理单元 402的协商结果, 与所述 IP 网络建立语音承载; 当所述 IWF与 IP网络建立语音承载后, UE 即可接入所述 IWF进行 IP网络信令的传输。
所述判定单元 4041用于判定是否需进行从所述 CS网络到所述 IP网络的语 音切换; 具体实现中, 当所述 CS网络中的移动交换中心检测到需进行从所述 CS 网络到所述 IP 网络的语音切换时, 通知所述互联功能实体; 或当所述 CS 网络中的基站控制器检测到需进行从所述 CS 网络到所述 IP 网络的语音切换 时, 通知所述用户, 所述用户通过所述非结构化补充数据业务逻辑通道通知所 述互联功能实体;或所述用户将所述 IP网络的测量信息通过所述非结构化补充 数据业务逻辑通道通知所述互联功能实体, 由所述互联功能实体确定是否需进 行从所述 CS网络到所述 IP网络的语音切换; 该判定单元 4041则根据所述移 动交换中心发送的通知消息、 或者所述基站控制器发送的通知消息, 或者根据 终端发送的信息对目标系统进行测量, 以确定是否需进行从所述 CS网络到所 述 IP网络的语音切换。
所述切换单元 4042用于当所述判定单元判定确定需进行从所述 CS网络到 所述 IP网络的语音切换时, 触发并执行基于所述 IP网络的切换, 将所述互联功 能实体上的语音承载切换到所述 IP网络的相应承载网络设备上。 比如, 当源系 统为 GSM网络, 目标系统为 SAE/LTE网络时, IWF可触发相应的 inter-eNB切 换 (如果目标 LTE小区属于不同的 MME, 则触发 inter-MME切换), 将所述互联 功能实体上的语音承载切换到目标 SAE/LTE网络的实际承载设备 eNB和 MME 上。
所述关联单元 50用于将所述用户基于所述 IP网络的语音承载的 CS语音会 话关联到所述用户的 CS语音会话的核心网承载上。 比如, 当源系统为 GSM网 络, 目标系统为 SAE/LTE网络时, 关联单元 50可将 UE基于 SAE/LTE网络的 eNB和 MME上的 CS语音会话关联到所述用户的 CS语音会话在 CS网络的核 心网承载上。 至此, 已成功将 UE基于 CS网络的接入承载切换为基于 IP网络 的接入承载, 后续当 UE发起语音呼叫连续性切换, 即可将所述用户的 CS语音 会话切换为在所述 IP网络的 IMS语音会话。
相应的, 图 7是图 3中的 IWF的另一个实施例结构组成示意图, 如图 7所 示, 本实施例的 IWF包括接入单元 51和切换单元 52, 进一步所述接入单元 51 包括第一接收单元 510和代理单元 511 ,所述切换单元 52包括第二接收单元 520、 存储单元 521、 第一切换单元 522以及第二切换单元 523, 进一步所述第一切换 单元 522包括判定单元 5220和第一切换子单元 5221 , 其中,
所述第一接收单元 510, 用于接收所述用户发送的信令消息, 所述信令消息 通过所述用户与该互联功能实体间建立的逻辑通道发送给该互联功能实体; 所述代理单元 511 用于根据所述第一接收单元接收到的信令消息代理所述 用户向所述 IP网络注册及向 IMS网络注册。 册后, 接收所述用户发起的语音呼叫连续性切换请求;
所述存储单元 521用于緩存所述第二接收单元 520接收到的所述语音呼叫 连续性切换的请求信令;
所述判定单元 5220用于判定是否需进行从所述 CS网络到所述 IP网络的语 音切换, 该判定单元 5220与上个实施例中的判定单元 4041功能相同, 在此不 重复叙述;
所述第一切换子单元 5221用于在所述触发并执行基于所述 IP网络的切换, 将所述互联功能实体上的语音承载切换到所述 IP网络的相应承载网络设备上。
第二切换单元 523用于根据所述存储单元 521存储的呼叫连续性切换请求 信令触发并执行后续的语音呼叫连续性切换, 将所述用户在所述 CS网络的 CS 语音会话切换为在所述 IP网络的 IMS语音会话。 后续只要用户接入所述 IP网 络即可通过 IMS进行语音会话。 相应的, 图 8是图 3中的 IWF的另一个实施例结构组成示意图, 如图 8所 示, 本实施例的 IWF包括接入单元 53、 切换单元 54以及同步控制单元 55, 其 中,
所述接入单元 53用于当用户处于支持 CS和 PS的网络时,将所述用户接入 IP网络; 具体实现中, 当 UE同时有 PS业务和 CS业务, 那么需要将 UE的 PS 业务和 CS业务同时切换到 IP网络。
所述切换单元 54用于接收所述用户发起的语音呼叫连续性切换请求及 PS 业务切换请求,触发并执行基于所述 IP网络的切换以及呼叫连续性切换以及 PS 业务切换, 将所述用户在所述 CS网络的 CS语音会话切换为在所述 IP网络的 IMS语音会话以及将所述用户在所述 CS网络的 PS业务切换为所述用户在所述 IP网络的 PS业务。
所述同步控制单元 55用于控制所述语音呼叫连续性切换和 PS业务切换的 同步切换。
相应的, 图 8.a是图 3中的 UE的一个实施例结构组成示意图, 如图 8.a所 示, 本实施例的 UE包括感知单元 600、 注册支撑单元 601以及切换单元 602, 其中,
所述感知单元 600用于当所述终端位于源系统, 并接收到目标系统的网络 标识信息或接收到用于指示所述用户进入所述源系统与所述目标系统的边界区 域的指示信息时, 判定所述终端用户进入所述源系统与所述目标系统的边界区 域, 并将存储的域标识信息更新为所述接收到网络标识信息或指示信息; 具体 实现中, UE A可通过以下几种方式感知其进入 LTE和 2G边界区域。 1) 当 UE 从 2G网络的 BSC接收到相邻 LTE网络的网络信息 (例如 LTE小区列表, LTE 频点信息)时, 从而判定其进入 LTE-2G边界区域; 2)在 LTE-2G边界区域的 BSC上配置特定的指示, 并由 BSC发送给该区域的 UE。 具体实现中, 可通过 BSC广播信道发送给 UE,或者通过 RRC消息通知终端(例如 Cell Update Confirm 小区更新确认消息、 Handover to UTRAN Command到 UTRAN的切换命令、 Physical Channel Reconfiguration 物理信道重酉己消 息、 、 Radio Bearer Reconfiguration无线? 载重配消息、 Radio Bearer Release无线 载释放消息、 Radio Bearer Setup无线 载建立消息、 RRC Connection Setup 无线链路控制连 接建立消息、 Transport Channel Reconfiguration传输信道重配消息、 Measurement Control等消息)等向终端发送相应的指示信息。 同样, UE A也可以通过类似的 方式感知 UE离开 LTE和 2G边界区域, 重新进入 2G网络覆盖范围。 具体的感 知方式可包括: 1) 当 UE从 LTE-2G/3G边界区域进入 2G网络 (即非 LTE-2G边 界区域)时,从 BSC仅仅接受到 2G网络信息 (例如 2G小区列表),从而判断其已 离开 LTE-2G/3G边界区域。 2) 在 LTE-2G边界区域的 BSC上配置特定的指示, 并由 BSC发送给该区域的 UE或者在非 LTE-2G边界区域 BSC配置特定的指示。 具体实现中,可通过 BSC广播信道发送给 UE,或者通过 RRC消息通知终端(例 如 Cell Update Confirm 小区更新确认消息、 Handover to UTRAN Command到 UTRAN的切换命令、 Physical Channel Reconfiguration 物理信道重配消息、 Radio Bearer Reconfiguration无线 载重配消息、 Radio Bearer Release无线 7 载释放消 息、 Radio Bearer Setup无线 载建立消息、 RRC Connection Setup 无线链路控 制连接建立消息、 Transport Channel Reconfiguration 传输信道重配消息、 Measurement Control等消息)等向终端发送相应的指示信息。或者仅仅在 LTE-2G 边界区域的 BSC上配置特定的指示, 当 UE从 LTE-2G边界区域进入非 LTE-2G 边界区域, 当 UE没有接受到相应的域指示, 则 UE感知其已经进入非 LTE-2G 边界区域。 所述注册支撑单元 601 用于与互联功能实体建立逻辑通道, 以通过所述互 联功能实体在所述目标系统注册;具体实现中, UE基于源系统建立到 IWF的逻 辑通道 UP,接口。 UE通过 UP,接口发送目标系统的信令 (例如注册、 业务信令), 从而模拟 UE在目标系统的行为。 具体实现中, UP,接口可以基于源系统的 IP 承载系统,也可以基于源系统的信令层次消息 (例如基于 GSM USSD消息、 2G/3G 短消息、 2G/3G/LTE NAS ( None Access Stratum, 非接入层消息 )控制消息。 如 图 3所示, 当源系统为 GSM系统时, UE基于源系统 GSM 的 USSD通道建立 到 IWF的逻辑通道 UP,接口。 进而实现 UE通过 USSD通道建立的 UP,接口发 送目标系统( 3GPP2 DO系统、 3GPP2 1XRTT系统、 UWB系统、 SAE/LTE系统、 WIMAX系统等系统) 的信令 (例如注册、 业务信令), 模拟 UE在目标系统的行 为。 UE和 IWF直接采用类似 ICS(IMS Centralized System IMS集中控制系统)的 基于 USSD的 ICCP(IMS Control Channel Protocol IMS控制通道协议)。
所述切换单元 602用于当所述感知单元 600感知到所述终端用户进入所述 源系统与所述目标系统的边界区域并在所述注册支撑单元通过所述互联功能实 体在所述目标系统完成注册后, 发起单接收机语音呼叫连续性切换, 将所述终 端在所述源系统的语音会话切换为所述目标系统的语音会话。
相应的, 图 9是基于图 6所示的互联功能实体的本发明的实现语音呼叫连 续性的方法的一个实施例流程示意图, 如图 9所示, 本实施例的方法包括:
步骤 S100, 建立用户到所述互联功能实体间的逻辑通道; 具体实现中, UE 基于源系统建立到 IWF的逻辑通道 UP,接口。 UE通过 UP,接口发送目标系统的 信令 (例如注册、 业务信令),从而模拟 UE在目标系统的行为。 具体实现中, UP, 接口可以基于源系统的 IP承载系统,也可以基于源系统的信令层次消息 (例如基 于 GSM USSD消息、 2G/3G短消息、 2G/3G/LTE NAS控制消息。 步骤 S101 , 所述用户基于所述逻辑通道与所述互联功能实体交互, 通过所 述互联功能实体在所述 IP网络注册, 协商所述 IP网络的语音承载数据;
步骤 S102,所述用户或所述互联功能实体触发所述 IP网络根据所述协商结 果建立语音承载; 具体实现中, 当通过 IWF建立语音承载后, IWF对于目标网 络虚拟目标网络的网络设备 ( BSC或 MME ), 对于源网络 IWF服务下的目标网 络的小区为 CS网络的伪小区。
步骤 S103, 互联功能实体判定是否需进行从所述 CS网络到所述 IP网络的 语音切换, 并在判定确定需要切换后, 执行步骤 S104; 否则, 结束。 具体实现 中, 互联功能实体可通过如下方式确定需要进行从所述 CS网络到所述 IP网络 的语音切换, 比如, 当所述 CS网络中的移动交换中心检测到需进行从所述 CS 网络到所述 IP网络的语音切换时, 通知所述互联功能实体; 或当所述 CS网络 中的基站控制器检测到需进行从所述 CS网络到所述 IP网络的语音切换时,通 知所述用户, 所述用户通过所述非结构化补充数据业务逻辑通道通知所述互联 功能实体;或所述用户将所述 IP网络的测量信息通过所述非结构化补充数据业 务逻辑通道通知所述互联功能实体, 由所述互联功能实体确定是否需进行从所 述 CS网络到所述 IP网络的语音切换;
步骤 S104, 所述互联功能实体触发并执行基于所述 IP网络的切换, 将所述 互联功能实体上的语音承载切换到所述 IP网络的相应承载网络设备上; 比如, 当源系统为 GSM 网络, 目标系统为 SAE/LTE 网络时, IWF 可触发相应的 inter-eNB切换 (如果目标 LTE小区属于不同的 MME, 则触发 inter-MME切换), 将所述互联功能实体上的语音承载切换到目标 SAE/LTE 网络的实际承载设备 eNB和 MME上。
步骤 S105, 所述用户接入所述 IP网络。 比如, 当完成 inter-eNB切换后, 用户基于 IWF的语音承载转移到所述 IP网络的真实 eNB上, 此时, 用户接入 所述 eNB及完成到所述 IP网络的接入。
步骤 S106, 所述互联功能实体将所述用户基于所述 IP 网络的语音承载的 CS语音会话关联到所述用户的 CS语音会话的核心网承载上。 比如, 当源系统 为 GSM网络,目标系统为 SAE/LTE网络时,关联单元 50可将 UE基于 SAE/LTE 网络的 eNB和 MME上的 CS语音会话关联到所述用户的 CS语音会话在 CS网 给的核心网 7 载上。
步骤 S107, 所述用户发起语音呼叫连续性切换, 将所述用户的 CS语音会 话切换为在所述 IP网络的 IMS语音会话。
当然在具体实现中, 当所述用户或所述互联功能实体触发所述 IP网络根据 所述协商结果建立语音承载之后, 所述互联功能实体将所述 IP网络向所述用户 提供的承载资源通知所述用户, 具体的, 所述互联功能实体可通过所述逻辑通 道将所述承载资源信息发送给所述用户; 或所述互联功能实体通过移动交换中 心和基站控制器将所述承载资源信息发送给所述用户。
想应的, 图 10是基于图 7所示的互联功能实体的本发明的实现语音呼叫连 续性的方法的一个实施例流程示意图, 如图 10所示, 本实施例的方法包括: 步骤 S110, 建立所述用户到所述互联功能实体间逻辑通道;
步骤 S111 , 所述用户基于所述逻辑通道与所述互联功能实体交互, 通过所 述互联功能实体在所述 IP网络注册及在 IMS网络注册;
步骤 S112, 所述用户发起语音呼叫连续性切换;
步骤 S113, 所述互联功能实体緩存所述用户发起语音呼叫连续性切换的信 令;
步骤 S114, 互联功能实体判定是否需进行从所述 CS网络到所述 IP网络的 语音切换, 并在判定确定需要切换后, 执行步骤 S115; 否则, 结束。 具体实现 中, 互联功能实体可通过如下方式确定需要进行从所述 CS网络到所述 IP网络 的语音切换, 比如, 当所述 CS网络中的移动交换中心检测到需进行从所述 CS 网络到所述 IP网络的语音切换时, 通知所述互联功能实体; 或当所述 CS网络 中的基站控制器检测到需进行从所述 CS网络到所述 IP网络的语音切换时,通 知所述用户, 所述用户通过所述非结构化补充数据业务逻辑通道通知所述互联 功能实体;或所述用户将所述 IP网络的测量信息通过所述非结构化补充数据业 务逻辑通道通知所述互联功能实体, 由所述互联功能实体确定是否需进行从所 述 CS网络到所述 IP网络的语音切换;
步骤 S115, 所述互联功能实体触发基于所述 IP网络的切换, 将所述互联功 能实体上的语音承载切换到所述 IP网络的相应承载网络设备上;
步骤 S116, 所述互联功能实体根据緩存的语音呼叫连续性切换信令触发后 续的语音呼叫连续性切换, 将所述用户在所述 CS网络的 CS语音会话切换为所 述 IP网络的 IMS语音会话。
步骤 S117, 所述用户接入所述 IP网络。
相应的, 图 11是基于图 8所示的互联功能实体的本发明的实现语音呼叫连 续性的方法的一个实施例流程示意图, 如图 11所示, 本实施例的方法包括: 步骤 S120, 所述用户通过互联功能实体接入 IP网络;
步骤 S121 , 所述用户发起语音呼叫连续性切换及 PS业务切换, 以及所述 互联功能实体发起基于所述 IP 网络的切换, 将所述用户在所述 CS 网络的 CS 语音会话切换为在所述 IP网络的 IMS语音会话以及将所述用户在所述 CS网络 的 PS业务切换为所述用户在所述 IP网络的 PS业务; 具体实现中, 所述互联功 能实体控制所述语音呼叫连续性切换和所述 PS业务的同步切换。 步骤 S122, 所述用户接入所述 IP网络。
下面以具体实施例为例, 对本发明实施例进行更加详细的说明。
图 12至图 15是源系统为 2G(GSM), 目标系统为 SAE/LTE的网络架构下实 现从源系统 CS域语音呼叫到目标系统 IMS域语音呼叫连续性的方法示意图, 参考图 12至图 15,当源系统为 GSM网络时, UE基于源系统 GSM 的 USSD 通 道 (图中采用 HLR直连的方式)建立到 IWF的逻辑通道 UP,接口, 当目标系统为 SAE/LTE网络时, IWF含有 SAE/LTE网络接入侧 eNB (即 BSC/eNodeB )功能, IWF和 MME ( Mobility Management Entity, 移动性管理实体)接口为 S1-MME, IWF和 SAE GW接口为 Sl-U。 基于该网络架构实现从源系统 CS域语音呼叫到 目标系统 IMS域语音呼叫连续性的方法具体流程如下:
如图 12所示, UE A通过 2G CS网络发起语音会话。 如果需要将该 CS语音呼 叫切换到基于 IMS网络的 IMS会话, 则该语音呼叫被锚定在 VCC AS。 当 UE A感 知其进入 LTE和 2G边界区域, UE基于源系统的 USSD通道建立到 IWF的逻辑通道 UP,接口。实现 UE通过 IWF在 LTE域附着。然后基于所述 UP '接口进行 LTE注册, 协商所述 LET网络的语音承载数据,并由所述 UE或所述 IWF触发所述 LTE网络根 据所述协商结果建立语音承载(此时建立的语音承载为 IWF到 SAE GW间的语音 承载) 。 具体实现中, UE基于源系统的 USSD通道建立到 IWF的逻辑通道 UP,接 口, 实现 UE通过 IWF在 LTE域的附着的步骤可提前到 UE A开机后的任意时刻。 具体实现中, UE A可通过以下几种方式感知其进入 LTE和 2G边界区域。 1) 当 UE从 2G网络的 BSC接收到相邻 LTE网络的网络信息 (例如 LTE小区列表, LTE频 点信息)时, 从而判定其进入 LTE-2G边界区域; 2)在 LTE-2G边界区域的 BSC 上配置特定的指示, 并由 BSC发送给该区域的 UE。 具体实现中, 可通过 BSC广 播信道发送给 UE, 或者通过 RRC消息通知终端 (例如 Cell Update Confirm 小区 更新确认消息、 Handover to UTRAN Command到 UTRAN的切换命令、 Physical Channel Reconfiguration 物理信道重酉己消息、、 Radio Bearer Reconfiguration无线 载重配消息、 Radio Bearer Release无线 载释放消息、 Radio Bearer Setup无线 载建立消息、 RRC Connection Setup 无线链路控制连接建立消息、 Transport Channel Reconfiguration传输信道重配消息、 Measurement Control等消息 )等向终 端发送相应的指示信息。 同样, UE A也可以通过类似的方式感知 UE离开 LTE和 2G边界区域, 重新进入 2G网络覆盖范围。 具体的感知方式可包括: 1) 当 UE从
2G网络信息 (例如 2G小区列表), 从而判断其已离开 LTE-2G/3G边界区域。 2) 在 LTE-2G边界区域的 BSC上配置特定的指示, 并由 BSC发送给该区域的 UE或者在 非 LTE-2G边界区域 BSC配置特定的指示。 具体实现中, 可通过 BSC广播信道发 送给 UE, 或者通过 RRC消息通知终端 (例如 Cell Update Confirm 小区更新确认 消息、 Handover to UTRAN Command到 UTRAN的切换命令、 Physical Channel Reconfiguration物理信道重酉己消息、、 Radio Bearer Reconfiguration无线 7|载重酉己 消息、 Radio Bearer Release无线 载释放消息、 Radio Bearer Setup无线 载建立 消息、 RRC Connection Setup 无线链路控制连接建立消息、 Transport Channel Reconfiguration传输信道重配消息、 Measurement Control等消息)等向终端发送 相应的指示信息。 或者仅仅在 LTE-2G边界区域的 BSC上配置特定的指示, 当 UE 从 LTE-2G边界区域进入非 LTE-2G边界区域, 当 UE没有接受到相应的域指示, 则 UE感知其已经进入非 LTE-2G边界区域。
如图 13所示, 当 UE A继续从 2G网络往 LTE网络移动,则触发 2G到 LTE切换。 IWF首先通过以下几种方式确定需触发 2G->LTE切换: 1 )在 VMSC(visited mobile service center, 拜访位置移动交换中心)做相应的配置, 将 2G->LTE切换 消息转发到 IWF。 具体说来, 从 2G网络来看, LTE小区被当成由 IWF (具有目标 系统 BSC的功能)服务伪 2G小区, 并且在服务 UE的 BSC/MSC上配置 LTE小区相 关路由信息, 使得 MSC将 2G->LTE的切换消息(例如 inter-BSC切换消息, 如果 IWF-BSC和 UE当前服务的 BSC属于不同 MSC, 则触发 inter-MSC切换)能被发送 到 IWF。 2) UE A继续从 2G/3G网络往 LTE网络移动, 触发 2G到 LTE切换, 服务 UE A的 BSC发现需要切换到 SAE/LTE网络, 通知 UE A (包含目标 LTE小区 ID), UE A通过 UP,接口通知 IWF。 3)UE A将含有 LTE相关信息的测量报告发送给 IWF, 由 IWF决定是否要切换到目标系统 SAE/LTE。 对于 UE A当前服务的 BSC 系统, UE可以同时上报相应的测量报告。 该测量报告可以包括 LTE相关信息, 也可以不包括 LTE相关信息。 接着 IWF触发基于所述 IP网络的切换(如图 7所示, IWF触发 IWF到 S AE GW间的语音承载切换到实际的 eNB与 S AE GW间的语音承 载, IWF根据决定的目标 LTE小区,触发相应的 inter-eNB切换 (如果目标 LTE小区 属于不同的 MME, 则触发 inter-MME切换), 将所述互联功能实体上的语音承载 切换到协商好的 SAE/LTE网络的目标 eNB和 MME, 目标 eNB预留无线资源) , 并将所述 UE在所述 IP网络的语音承载关联到所述 UE的 CS语音会话的核心网承 载上。并将 UE在所述 IP网络的语音承载关联到所述 UE的 CS语音会话的核心网承 载上)。具体实现中 IWF还可将目标 LTE小区信息,以及目标 eNB信息通知 UE A。 具体实现中, IWF可通过如下两种方式中任一种通知 UE A, 1)IWF将目标 eNB 的相应的无线资源信息通过 UP,接口发送给 UE。 2)IWF将目标 eNB的相应的无线 资源信息封装在 inter-BSC或者 inter-MSC切换响应消息, 通过 VMSC和 BSC发送 给 UE A。
如图 14所示, UE A接入 LTE目标小区, 所述 IWF将所述 UE在所述 SAE/LTE 网络的 CS语音承载关联到所述 UE的 CS语音会话的核心网承载上, 即将图 8中的 SAE/LTE承载关联到 CS媒体平面。 UE A和 IWF之间 UP,接口将从基于源系统 2G 系统转移到目标系统 SAE/LTE网络, 具体实现中, 转移后的 UP,接口可以基于 SAE/LTE系统的 IP网络,也可以基于 SAE/LTE网络的 NAS消息。此时,将 UE A基 于 2G网络的接入转移到基于目标系统 SAE/LTE网络的接入。 此时, IWF包含有 MGW功能, 转换基于 2G CS的语音编码和基于 IP的语音编码。 或者 IWF和 UE A 之间的 IP承载为 IP tunnel(IP逻辑通道), IWF和 UE A之间传输的语音数据的编码 为基于 2G CS的语音编码。
如图 15所示, 如果 UE决定切换到 IMS业务平台, 则 UE触发 Rel-7 VCC DT过 程 (Rel-7 Voice Call Continuity Domain Transfer VCC版本 7的域转换过程)将图 8所 述的语音转移到 IMS业务平台, 从而完成从 CS->LTE的语音切换。 此时所示的 SAE/LTE承载被释放, UP,接口可被释放, 也可继续保持。 这里 UE根据其自身 或者网络的策略决定是否切换到 IMS业务平台。 具体说来, 当 UE A离开 2G-LTE 边界区域, 进入 LTE网络内部, UE发起上述 VCC过程。 判决条件包括以下两种: eNodeB仅仅接受到 LTE网络信息 (例如 LTE小区列表, LTE频点信息), 从而判断 其已离开 LTE-2G/3G边界区域。
2)在 LTE-2G边界区域的 eNodeB上配置特定的指示, 并由 eNodeB发送给该 区域的 UE, 或者在非 LTE-2G边界区域 eNodeB配置特定的指示。 具体实现中, 可通过 eNodeB广播信道发送给 UE, 或者通过 RRC消息通知终端 (例如 Cell Update Confirm 小区更新确认消息、 Handover to UTRAN Command到 UTRAN的 切换命令、 Physical Channel Reconfiguration物理信道重酉己消息、、 Radio Bearer Reconfiguration无线 载重配消息、 Radio Bearer Release无线 载释放消息、 Radio Bearer Setup无线 载建立消息、 RRC Connection Setup 无线链路控制连接 建立消息、、 Transport Channel Reconfiguration传输信道重酉己消息、、 Measurement Control等消息)等向终端发送相应的指示信息。 或者仅仅在 LTE-2G边界区域的 eNodeB上配置特定的指示, 当 UE从 LTE-2G边界区域进入非 LTE-2G边界区域, 当 UE没有接受到相应的域指示, 则 UE感知其已经进入非 LTE-2G边界区域。
当然, 在具体实现中, 当用户移入目标系统 SAE/LTE后, 也可能重新回到 源系统 2G网络, 如图 16所示, 如果 UE决定重新切换到图 14所示状态, 此时如果 UE和 IWF之间的 UP,接口不存在, 则 UE触发 UP,接口重新建立过程。 紧接着, UE和 IWF协商承载参数。根据协商好的承载参数, IWF通过 Rx接口触发 SAE/LTE 专用承载建立过程或者 UE A发起 SAE/LTE承载建立过程。接着,触发 Rel-7 VCC DT过程 (Rel-7 Voice Call Continuity Domain Transfer VCC版本 7的域转换过程)将 IMS语音业务转换成到图 14所述的语音业务, 进一步, 可触发 inter-BSC或者 inter-MSC切换将基于图 14所述的状态转换到基于图 12的状态。
这里, UE可以根据其自身或者网络的策略决定是否切换 IMS业务。 IWF对语音 业务的用户面的处理类似图 14中的相关步骤。 另外, 上述对图 16描述的流程同 样适用于在 SAE/LTE发起一个 IMS初始语音会话。
另外, 上述流程中 USSD逻辑通道的建立、 通过 USSD逻辑通道在 SAE/LTE 注册过程、 通过 USSD逻辑通道协商承载参数以及在 SAE/LTE的承载建立过程可 以发生在 UE在 2G网络开机后的任何一个阶段, 而不局限于上述的实施例中的时 是给出一种可能 USSD逻辑通道路径, 并没有限制 USSD的路径 (例如 USSD逻辑 通道可能直接从 VMSC到 IWF)。 例如当 UE进入 2G-LTE边界区域时, UE建立 USSD逻辑通道, 通过 USSD逻辑通道在 SAE/LTE注册、 通过 USSD逻辑通道协商 承载参数以及建立好 SAE/LTE承载, 然后等待 2G->LTE切换时机的到来。 特别 地, 为了缩小整个 CS->LTE的切换时间, 可静态手机策略或者配置相应的网络 策略指示 UE在 GSM开机后, 执行基于 USSD逻辑通道的部分或者全部操作。
本实施例同样适用于目标系统为 WIMAX网络、 3GPP2 HRPD网络、 3GPP2 UMB网络以及 3GPP2 1XRTT网络。
图 17是源系统为 2G或 3G (支持双传输模式, 即源系统既支持 CS业务, 又支 持 IP业务), 目标系统为 SAE/LTE的网络架构下实现从源系统 CS域语音呼叫到目 标系统 IMS域语音呼叫连续性的方法的部分示意图, 参考图 17, 该网络架构下的 流程和图 12至图 15所示的实施例类似, 不同点在于以下几点:
如图 17所示, 1 )对于 2G网络, UP,接口可以基于 2G PS网络或者 2G NAS层 消息;对于 3G网络, UP,接口可以基于 3G PS网络或者 3G NAS层消息。其中 UE A 通过 IWF在目标系统 SAE/LTE附着过程中所 选择的 SAE GW与 UE A通过 2G/3G 网络附着过程中所选择的 SAE GW不同。
2)如果 UE同时有 PS业务和 CS业务, 那么需要将 UE的 PS业务和 CS业务同时 切换到 SAE/LTE网络。 此时, IWF含有 MME或者 SGSN功能实体, 并且在服务 UE的 BSC/SGSN配置相应的数据以便将 2G/3G到 LTE PS切换请求发送给 IWF, IWF根据 2G/3G到 LTE的 PS切换和 2G/3G 到 LTE的 CS切换中的同步位来同步 2G/3G到 LTE 的 PS切换请求和 2G/3G 到 LTE 的 CS切换请求, 要求 SAE/LTE目 标系统预留相应的资源。 同时, IWF生成 2G/3G到 LTE 的 PS切换响应消息和 2G/3G到 LTE的 CS切换响应消息, 并在所述的响应消息中添加同步指示位, 然 后通过服务该 UE的 SGSN/VMSC/BSC转发给 UE。 这里, IWF也可通过 UP'接口 发送相应的切换响应给 UE。
当目标系统为 WIMAX网络时, UE A通过 UP,接口、 IWF在目标 WIMAX网 络建立非语音业务的承载, 由 IWF负责触发和控制 2G/3G->WIMAX切换过程(包 括语音承载和非语音承载)。 所述过程同样适用于目标系统为 3GPP2 HRPD网络、 3GPP2 UMB网络。
图 18至图 于 Bi-casting (双播) 的源系统为 2G (不支持双传输模式), 目标系统为 S AE/LTE的网络架构下实现语音呼叫连续性的方法的部分示意图。
如图 18所示, UE A通过 2G CS网络发起语音会话, 该语音呼叫被锚定在 VCC ASo 当 UE A感知其进入 LTE网络和 2G网络的边界区域, UE A通过 IWF在 LTE域附着,其附着过程类似图 12至图 15所示的实施例,然后 UE A通过 UP,接口、 IWF以及 SAE/LTE网络在 IMS网络完成 IMS注册过程。
进一步, UE A在完成 IMS注册过程之后, 触发 Rel-7 VCC DT过程, 建立新 的 IMS业务控制和 IMS用户平面。 当 Rel-7 VCC DT过程完成后, 基于 2G CS语音 业务的 CS控制平面和 CS用户平面仍然被保持, 同时, VCC MGW启用双播 (Bi-casting), 即 VCC MGW同时向 IMS用户平面和 CS用户平面同时发送语音数 据。当 UE A从 2G/3G网络往 LTE网络移动时,触发 2G到 LTE切换并且通知 IWF (通 知 IWF的方法和图 6至图 9所示的实施例类似)。 IWF触发基于 LTE网络的切换, 即 IWF触发图中的 inter-eNB/inter-MME切换流程, 从而将 IWF到 SAE GW的语音承 载切换到 eNB到 SAE GW的语音承载,即将 IWF上的语音承载切换到 LTE网络上, UE A接入目标网络 LTE。
或者, 如图 19所示, 在步骤 S1300, UE A继续从 2G/3G网络往 LTE网络移动, 触发 2G到 LTE的切换并且通知 IWF (通知 IWF的方法和图 12至图 15所示的实施例 类似)。 IWF通知 UE A执行 Rel-7 VCC DT过程, 建立新的 IMS业务控制和 IMS用 户平面(即 SAE/LTE语音专用承载的建立过程)。当 IMS用户平面建立成功后,IWF 触发到目标 SAE/LTE的 inter-eNB或者 inter-MME切换, 其流程和图 12至图 15所示 的实施例相同。 其具体过程如下所示: 当 IWF接收到 inter-eNB或者 inter-MME切换响应消息, IWF暂时緩存相应的 消息。
当接收到 Rel-7 VCC DT过程完成消息 (例如 UE发送给 VCC AS的 ACK消息) 后, IWF才转发 inter-eNB或者 inter-MME切换响应消息给 UE (具体流程和图 12至 图 15所示的实施例类似), UE根据接收到的切换命令接入到目标 SAE/LTE网络。
或者 UE在接收到切换命令后, UE等待 Rel-7 VCC DT过程完成后才开始接入 目标系统 (例如 UE发送给 VCC AS的 ACK消息)。
或者, 如图 18所示, UE A继续从 2G/3G网络往 LTE网络移动, UE A在完成 注册过程之后, 触发 Rel-7 VCC DT过程, UE A发送 invite(VDI)消息, 其中 VDI 为 VCC Domain Transfer URI , VCC域转换统一标示。 IWF暂时緩存相应的 invite(VDI)消息, 此时 UE上的呼叫控制定时器被设置成在没有接受到呼叫响应 (比如 180 Ring/200 OK)也不超时。 当 2G到LTE的切换被触发,并且 IWF感知该 2G 到 LTE的切换过程 (通知 IWF的方法和图 12至图 15所示的实施例类似)。 IWF立即 执行 Rel-7 VCC DT过程, 建立新的 IMS业务控制和 IMS用户平面(即 SAE/LTE语 音专用 7 载的建立过程)。 并且 IWF触发 IWF触发到目标 SAE/LTE的 inter-eNB或 者 inter-MME切换, 其流程和图 12至图 15所示的实施例相同。 其具体过程如下所 示:
当 IWF接收到 inter-eNB或者 inter-MME切换响应消息, IWF暂时緩存相应的 消息。
当接收到 Rel-7 VCC DT过程完成消息 (例如 UE发送给 VCC AS的 ACK消息) 后, IWF才转发 inter-eNB或者 inter-MME切换响应消息给 UE (具体流程和图 6至图 9所示的实施例类似), UE根据接收到的切换命令接入到目标 SAE/LTE网络。
或者 UE在接收到切换命令后, UE等待 Rel-7 VCC DT过程完成后才开始接入 目标系统 (例如 UE发送给 VCC AS的 ACK消息)。
当 UE A在移动的过程, 由于位置区域发生变化而引发 IWF的变化, 则 UE A 发送消息给老 IWF指示其释放 invite(VDI), 并且 UE A重新发送 invite(VDI)到新 IWF„
上述过程也适合 LTE到 CS的切换情形, 即 UE A在 LTE网络使用 IMS网络运 行语音业务, 当 UE A进入 LTE和 2G边境区域, UE A通过 IWF在 2G CS网络注册 过程, 触发 Rel-7 VCC DT过程, 建立新的 CS业务控制和 CS用户平面, 其具体流 程类似于本实施例中 CS到 LTE的切换过程。
本实施例同样适用于目标系统为 WIMAX网络、 3GPP2 HRPD网络、 3GPP2 UMB网络以及 3GPP2 1XRTT网络。
进一步, 基于 Bi-casting (双播) 的源系统为 2G (支持双传输模式), 目标系 统为 SAE/LTE的网络架构下实现语音呼叫连续性的方法可通过在源 BSC做配置, 发生 2G到 LTE的切换时, 源 BSC只向源 SGSN发送切换请求, 源 SGSN做相应的 配置将 2G->LTE PS切换请求发送给 IWF-MME/SGSN。 IWF在收到 2G->LTE PS 切换消息后, 触发 inter-MME切换或者 inter-eNodeB切换 (该切换消息包括
2G->LTE PS切换的非语音类上下文和 2G->LTE CS切换的语音类上下文)。 其后 续流程与图 18所示的实施例类似, 在此, 不再详细叙述。
进一步, 图 20是源系统为 2G, 目标系统为 SAE/LTE的网络架构下实现语音 联系呼叫性的方法的另一实施例的部分流程示意图。 如图 20所示, 当 UE A开机 后或者 UE A需要发起语音会话, 建立 USSD逻辑通道, 通过 USSD逻辑通道在 SAE/LTE注册过程、通过 USSD逻辑通道 IMS注册过程、通过 USSD逻辑通道发起 IMS语音呼叫过程。 在发起 IMS语音呼叫过程中, IWF分配 CS路由号码, 并通过 UP'接口传送给 UE A。 UE A根据所述 CS路由号码, 发起 CS语音呼叫过程 (被叫 号码为所述 CS路由号码)。 2G CS网络分析所述 CS路由号码到 IWF, 从而建立从 UE A到 IWF的 CS承载。 IWF负责关联从 UE A到 IWF的 CS承载和从 SAE GW到 IWF-eNB的 IP承载。 后续的 2G->LTE切换流程和 SR-VCC过程类似于图 12至图 15 所示的实施例, 在此不再详细叙述。
同样本实施例适用于源系统为 3G网络, 目标系统为 WIMAX网络、 3GPP2 HRPD网络、 3GPP2 UMB网络以及 3GPP2 1XRTT网络。
图 21是源系统为 2G (支持双传输模式, 即源系统既支持 CS业务, 又支持 IP业务)或 3G, 目标系统为 SAE/LTE的网络架构下实现从源系统 CS域语音呼 叫到目标系统 IMS域语音呼叫连续性的方法的一个实施例的具体流程示意图; 如图 21所示, 本实施例的方法具体包括:
步骤 SI , SR-VCC 准备阶段:
当 UE有一个活动的 CS呼叫并且处于 SR-VCC域, UE处于 SR-VCC准备阶段。 这里的 SR-VCC域类似于图 12至图 15所示的实施例中的 LTE-2G边界区域。 具体 说来, 在 SR-VCC阶段执行下述流程:
在步骤 S10, UE通过 2G CS网络发起语音会话, 该语音呼叫被锚定在 VCC AS (图中未画出 ) 。
在步骤 S11 ,当 UE A感知进入 LTE和 2G边界区域,UE通过 IWF在 LTE域附着, 其过程和方法类似图 12至图 15所示的实施例, 然后 UE A通过 UP,接口、 IWF以及 SAE/LTE网络在 IMS网络完成 IMS注册过程。
在步骤 S 12 , UE发起 Invite(VDI) , IWF将 Invite(VDI)緩存。
步骤 S2, 域转换区域: 换, UE处于域转换区域。 具体说来, 在域转换区域执行下述流程: 在步骤 S21-S23, 2G网络中的 BSC判断,决定是否触发 2G到 LTE的切换流程。 在步骤 S24-S27, IWF在接收到切换请求后, 立刻将緩存的 Invite(VDI)发送
CSCF(Call Session Call Function , 呼叫会话控制模块), 从而触发域转换过程和
LTE网络专用承载建立过程。
在步骤 S28, LTE网络建立语音承载。
在步骤 S29, IWF向 LTE网络发送切换请求.如果 2G网络支持 DTM并且此时有 活动的 PS业务, 则此时 2G网络 BSC判断, 决定触发 DTM切换。 因为 IWF在 SGSN 和 MME之间 S3信令路径中, 所以 PS切换消息都需要经过 IWF。 如果 IWF先接受 2G SGSN发送过来的 2G->LTE PS切换请求, 则 IWF首先检查该 2G->LTE PS切换 请求是否有 CS指示位。 如果有 CS指示位, 则 IWF感知此切换为 DTM切换, IWF 等待 2G->LTE CS切换请求,从而同步和生成统一的 inter-eNodeB切换请求。此时 IWF立刻将緩存 Invite(VDI)发送 CSCF(Call Session Call Function呼叫会话控制 模块), 从而触发域转换过程和 LTE网络专用承载建立过程。 当 UE接受到 2G->LTE CS切换请求, IWF执行后续切换流程。 如果 IWF先接受 2G MSC发送过 来的 2G->LTE CS切换请求, 则 IWF首先检查该 2G->LTE CS切换请求是否有 PS 指示位。如果有 PS指示位,则 IWF感知此切换为 DTM切换, IWF等待 2G->LTE PS 切换请求, 从而同步和生成统一的 inter-eNodeB切换请求。 此时 IWF立刻将緩存 Invite(VDI)发送 CSCF(Call Session Call Function呼叫会话控制模块), 从而触发 域转换过程和 LTE网络专用承载建立过程。 当 UE接受到 2G->LTE PS切换请求, IWF执行后续切换流程。
在步骤 S210, DTF(Domain Transfer Function域转换模块)处理域转换流程。 在步骤 S211 , IWF收到目标 LTE网络发送回来的切换请求响应。 在步骤 S212, IWF发送切换响应给 MSC。 如果是 DTM切换, 则 IWF将从 LTE 网络接受到切换响应分成 2G->LTE PS HO响应和 2G->LTE CS HO响应, 分别发 送给 SGSN和 MSC。
在步骤 S213-215, MSC发送相应的切换命令给 UE, UE接入目标 LTE网络。 步骤 S3, SR-VCC 准备阶段释放:
当 UE的 CS呼叫结束或者 UE处于非 SR-VCC域, UE处于 SR-VCC 准备阶段释 放。 具体说来, SR-VCC 准备阶段释放阶段执行下述操作:
在步骤 S31 , UE发送 Cancel消息给 IWF, IWF删除相应的 UE状态。
本实施例同样适用于目标网络为 WIMAX网络、 3GPP2 HRPD网络、 3GPP2 UMB网络以及 3GPP2 1XRTT网络。该实施例有关 DTM切换流程适用于所有实施 例, 同样也适用 3G网络。
图 22是源系统为 2G (支持双传输模式, 即源系统既支持 CS业务, 又支持 IP业务)或 3G, 目标系统为 SAE/LTE的网络架构下实现从目标系统 IMS域语音 呼叫到源系统 CS域语音呼叫连续性的方法的一个实施例的具体流程示意图;如 图 22所示, 本实施例的方法包括:
步骤 S6, SR-VCC 准备阶段:
当 UE有一个活动的 IMS呼叫并且处于 SR-VCC域, UE处于 SR-VCC准备阶段。 这里的 SR-VCC域类似于实施例 1中的 LTE-2G边界区域。 具体说来, SR-VCC 准 备阶段执行下述流程:
在步骤 S61 , UE通过 SAE/LTE网络发起语音会话,该语音呼叫被锚定在 VCC
AS。
在步骤 S62, 当 UE A感知进入 LTE和 2G边界区域, UE通过 IWF在 CS域注册, UE和 IWF之间通过 NAS(Non Access Stratum非接入层消息)传输相关的 24.008消 息, 其过程和方法类似实施例 1。
在步骤 S63, UE发起 Setup(VDN), IWF将 Setup(VDN)緩存。
具体实现中, UE在注册后之后就可发送 CM Service Request(Confirm Mode Service Request,确认模式业务请求消息)给 MSC,从而触发后续的鉴权的协商过 程。 此时 IWF緩存 UE发送的 CM Service Request。 当 MSC长时间没有收到 Setup 消息, MSC的 MM(Mobility Management移动性管理)定时器超时, 从而 MSC触 发异常流程, 通知 IWF释放相应的资源时。 如果 IWF依然保存 UE的 SR-VCC相关 状态, 则 IWF重新发送 CM Service Request 消息, 或者通知 UE重新发送 CM Service Request消息。 或者对于 SR-VCC的 UE, UE根据自身的配置, 周期性发送 CM Service Request, 从而保证 MSC的 MM状态不会超时。
步骤 S7, 域转换区域:
当 UE有一个活动的 IMD呼叫并且处于 SR-VCC域并且此时发生 LTE->2G/3G 切换, UE处于域转换区域。 具体说来, 域转换区域执行下述流程:
在步骤 S71-S73, LTE网络 eNodeB判断, 决定触发 LTE->2G/3G切换流程。 在步骤 S74, IWF在接受到切换请求后, 立刻将緩存 Setup(VDN)发送给 CS核 心网。
在步骤 S75-S76, RAB(Radio Access Bearer, 无线接入承载)指派过程。 。 [如 果为了减少业务中断时间, IWF通过 Rx接口触发语音专用承载建立, 其过程类 似于图 12所示。 ]
在步骤 S77, IWF向 2G/3G网络发送切换请求, 判断包含 IMS语音业务和非 语音业务, 决定触发 DTM切换。 因为 IWF在 SGSN和 MME之间 S3信令路径中, 所以 PS切换消息都需要经过 IWF, IWF同步整个流程, 其过程类似于图 15的实施 例。
在步骤 S78-S710, 触发域转换过程。
在步骤 S711 , DTF(Domain Transfer Function , 域转换模块)处理域转换流程。 如果为了减少业务中断时间, VCC AS触发双播, 其过程类似于图 18所示。
在步骤 S712, IWF收到切换命令。
在步骤 S713, IWF转发切换响应给 ΜΜΕ。
在步骤 S714-S716, MSC发送相应的切换命令给 UE, UE接入目标 LTE网络。 在步骤 S717 , 如果 Connect消息没有通过 LTE网络发送给 UE, 则 MSC通过 2G/3G网络发送该消息给 UE。
步骤 S8, SR-VCC 准备阶段释放:
当 UE的 CS呼叫结束或者 UE处于非 SR-VCC域, UE处于 SR-VCC 准备阶段释 放。 具体说来, SR-VCC 准备阶段释放阶段执行下述操作:
在步骤 S81 , UE发送 DISCONNECT消息给 IWF, IWF删除相应的 UE状态。 本发明实施例的用户设备通过互联功能实体发送目标系统的信令 (例如注 册、 业务信令), 从而模拟所述用户设备在目标系统的行为, 实现了通过单接收 机语音呼叫连续性切换实现从 CS网络到 IP网络的语音呼叫连续性的目的。
以上所揭露的仅为本发明较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种实现语音呼叫连续性的方法, 其特征在于, 包括:
当用户处于 CS网络时, 所述用户通过互联功能实体接入 IP网络; 所述互联功能实体将所述用户基于所述 IP网络的语音承载的 CS语音会话 关联到所述用户的 CS语音会话的核心网承载上。
2、 如权利要求 1所述的实现语音呼叫连续性的方法, 其特征在于, 所述互 联功能实体将所述用户基于所述 IP网络的语音承载的 CS语音会话关联到所述 用户的 CS语音会话的核心网承载上之后, 还包括:
所述用户发起语音呼叫连续性切换, 将所述用户在所述 IP网络的 CS语音 会话切换为在所述 IP网络的 IMS语音会话。
3、 如权利要求 1所述的实现语音呼叫连续性的方法, 其特征在于, 所述的 当用户处于 CS网络时, 所述用户通过互联功能实体接入 IP网络的步骤包括: 所述用户建立到所述互联功能实体的逻辑通道;
所述用户基于所述逻辑通道与所述互联功能实体交互, 通过所述互联功能 实体在所述 IP网络注册及协商所述 IP网络的语音承载数据;
所述互联功能实体根据所述协商结果, 与所述 IP网络建立语音承载; 所述用户通过所述互联功能实体接入所述 IP网络。
4、 如权利要求 3所述的实现语音呼叫连续性的方法, 其特征在于, 所述的 逻辑通道为非结构化补充数据业务通道、 短消息通道或非接入层消息通道。
5、 如权利要求 3所述的实现语音呼叫连续性的方法, 其特征在于, 所述用 户通过所述互联功能实体接入所述 IP网络的步骤具体包括:
当所述 CS 网络中的移动交换中心检测到需进行从所述 CS 网络到所述 IP 网络的语音切换时, 通知所述互联功能实体;
或, 当所述 CS网络中的基站控制器检测到需进行从所述 CS网络到所述 IP 网络的语音切换时, 通知所述用户, 所述用户通过非结构化补充数据业务逻辑 通道通知所述互联功能实体;
或, 所述用户将所述 IP网络的测量信息通过所述非结构化补充数据业务逻 辑通道通知所述互联功能实体, 由所述互联功能实体确定是否需进行从所述 CS 网络到所述 IP网络的语音切换;
当所述互联功能实体根据所述移动交换中心的通知消息、 或根据所述基站 控制器的通知消息,或 ^据所述测量信息,确定需进行从所述 CS网络到所述 IP 网络的语音切换后, 所述互联功能实体触发并执行基于所述 IP网络的切换, 将 所述互联功能实体上的语音承载切换到所述 IP网络的相应承载网络设备上。
6、 如权利要求 3所述的实现语音呼叫连续性的方法, 其特征在于, 所述互 联功能实体根据所述协商结果, 与所述 IP网络建立语音承载之后还包括:
所述互联功能实体通过所述逻辑通道将所述语音承载资源信息发送给所述 用户;
或所述互联功能实体通过移动交换中心和基站控制器将所述语音承载资源 信息发送给所述用户。
7、 如权利要求 1所述的实现语音呼叫连续性的方法, 其特征在于, 所述互 联功能实体将所述用户在所述 IP网络的语音承载的 CS语音会话关联到所述用 户的 CS语音会话的核心网承载上的步骤之后, 还包括:
将所述用户与所述互联功能实体间基于所述 CS 网络的逻辑通道切换为基 于所述 IP网络的逻辑通道。
8、 如权利要求 1所述的实现语音呼叫连续性的方法, 其特征在于, 所述当 用户处于 CS网络时, 所述用户通过互联功能实体接入 IP网络包括: 当所述用户处于所述 CS网络与所述 IP网络的边界区域时, 所述用户通过 互联功能实体接入所述 IP网络。
9、 一种实现语音呼叫连续性的方法, 其特征在于, 包括:
当用户处于所述 CS网络时, 所述用户通过互联功能实体接入所述 IP网络; 所述用户发起语音呼叫连续性切换及所述互联功能实体发起基于所述 IP网 络的切换, 将所述用户在所述 CS网络的 CS语音会话切换为在所述 IP网络的
IMS语音会话。
10、 如权利要求 9所述的实现语音呼叫连续性的方法, 其特征在于, 当用 户处于所述 CS网络时,所述用户通过互联功能实体接入所述 IP网络的步骤包括: 建立所述用户到所述互联功能实体间逻辑通道;
所述用户基于所述逻辑通道与所述互联功能实体交互, 通过所述互联功能 实体在所述 IP网络注册;
所述用户通过所述互联功能实体在所述 IP网络的 IMS网络注册。
11、 如权利要求 10所述的实现语音呼叫连续性的方法, 其特征在于, 所述 的逻辑通道为非结构化补充数据业务通道、 短消息通道或非接入层消息通道。
12、 如权利要求 9所述的实现语音呼叫连续性的方法, 其特征在于, 所述 用户发起语音呼叫连续性切换及所述互联功能实体发起基于所述 IP网络的切换, 将所述用户在所述 CS网络的 CS语音会话切换为在所述 IP网络的 IMS语音会话 的步骤包括:
所述用户发起语音呼叫连续性切换;
所述互联功能实体緩存所述用户发起语音呼叫连续性切换的信令; 当所述互联功能实体确定需进行从所述 CS网络到所述 IP网络的语音切换 后, 触发基于所述 IP网络的切换, 将所述互联功能实体上的语音承载切换到所 述 IP网络的相应承载网络设备上;
所述互联功能实体根据緩存的语音呼叫连续性切换信令触发后续的语音呼 叫连续性切换,将所述用户在所述 CS网络的 CS语音会话切换为所述 IP网络的 IMS语音会话。
13、 如权利要求 12所述的实现语音呼叫连续性的方法, 其特征在于, 所述 互联功能实体确定需进行从所述 CS网络到所述 IP网络的语音切换后, 触发基 于所述 IP网络的切换,将所述互联功能实体上的语音承载切换到所述 IP网络的 承载网络设备上的步骤包括:
当所述 CS 网络中的移动交换中心检测到需进行从所述 CS 网络到所述 IP 网络的语音切换时, 通知所述互联功能实体;
或, 当所述 CS网络中的基站控制器检测到需进行从所述 CS网络到所述 IP 网络的语音切换时, 通知所述用户, 所述用户通过所述非结构化补充数据业务 逻辑通道通知所述互联功能实体;
或, 所述用户将所述 IP网络的测量信息通过所述非结构化补充数据业务逻 辑通道通知所述互联功能实体, 由所述互联功能实体确定是否需进行从所述 CS 网络到所述 IP网络的语音切换;
当所述互联功能实体根据所述移动交换中心的通知消息、 或根据所述基站 控制器的通知消息,或 ^据所述测量信息,确定需进行从所述 CS网络到所述 IP 网络的语音切换后, 所述互联功能实体触发并执行基于所述 IP网络的切换, 将 所述互联功能实体上的语音承载切换到所述 IP网络的相应承载网络设备上。
14、 如权利要求 9所述的实现语音呼叫连续性的方法, 其特征在于, 所述 当用户处于 CS网络时, 所述用户通过互联功能实体接入 IP网络包括: 当所述用户处于所述 CS网络与所述 IP网络的边界区域时, 所述用户通过 互联功能实体接入所述 IP网络。
15、 一种实现 CS和 PS业务连续性的方法, 其特征在于, 包括:
当用户处于支持 CS和 PS的网络时,所述用户通过互联功能实体接入 IP网 络;
所述用户发起语音呼叫连续性切换及 PS业务切换, 以及所述互联功能实体 发起基于所述 IP网络的切换,将所述用户在所述 CS网络的 CS语音会话切换为 在所述 IP网络的 IMS语音会话以及将所述用户在所述 CS网络的 PS业务切换 为所述用户在所述 IP网络的 PS业务。
16、 如权利要求 15所述的实现 CS和 PS业务连续性的方法, 其特征在于, 所述互联功能实体发起基于所述 IP网络的切换, 将所述用户在所述 CS网络的 CS语音会话切换为在所述 IP网络的 IMS语音会话以及将所述用户在所述 CS 网络的 PS业务切换为所述用户在所述 IP网络的 PS业务包括:
所述互联功能实体发起基于所述 IP网络的切换,同步将所述用户在所述 CS 网络的 CS语音会话切换为在所述 IP网络的 IMS语音会话以及将所述用户在所 述 CS网络的 PS业务切换为所述用户在所述 IP网络的 PS业务。
17、 如权利要求 16所述的实现 CS和 PS业务连续性的方法, 其特征在于, 所述当用户处于支持 CS和 PS的网络时, 所述用户通过互联功能实体接入
IP网络包括:
当所述用户处于所述支持 CS和 PS的网络与所述 IP网络的边界区域时,所 述用户通过互联功能实体接入 IP网络。
18、 一种用户感知 CS网络与 IP网络的边界区域的方法, 其特征在于, 包 括: 当所述用户从所述 CS网络的基站控制器接收到所述 IP网络的网络标识信 息时, 判定为所述用户进入所述 CS网络与所述 IP网络的边界区域;
或, 当所述用户从所述 CS网络的基站控制器接收到用于指示所述用户进入 所述 CS网络与所述 IP网络的边界区域的指示信息时, 判定为所述用户进入 CS 网络与所述 IP网络的边界区域。
19、如权利要求 18所述的用户感知其进入所述 CS网络与所述 IP网络的边 界区域的方法, 其特征在于, 所述基站控制将所述指示所述用户进入所述 CS网 络与所述 IP网络的边界区域的指示信息发送给所述用户的方式为:
通过广播消息发送;
或者通过 RRC消息发送。
20、如权利要求 18所述的用户感知其进入所述 CS网络与所述 IP网络的边 界区域的方法, 其特征在于所述的网络标识信息包括所述第二网络的邻小区列 表、 所述第二网络的网络频点信息中至少一种。
21、 一种互联功能实体, 其特征在于, 包括:
接入单元, 用于当用户处于 CS网络时, 将所述用户接入 IP网络; 关联单元, 用于将所述用户基于所述 IP网络的语音承载的 CS语音会话关 联到所述用户的 CS语音会话的核心网承载上。
22、如权利要求 21所述的互联功能实体, 其特征在于, 所述接入单元包括: 接收单元, 用于接收所述用户发送的信令消息, 所述信令消息通过所述用 户与该互联功能实体间建立的逻辑通道发送给该互联功能实体;
代理单元, 用于根据所述接收单元接收到的信令消息, 代理所述用户向所 述 IP网络注册及协商所述 IP网络的语音承载数据;
承载建立单元, 用于根据所述代理单元的协商结果, 与所述 IP网络建立语 音承载;
接入子单元, 用于将所述用户接入所述 IP网络。
23、 如权利要求 22所述的互联功能实体, 其特征在于, 所述的接入子单元 包括:
判定单元, 用于判定是否需进行从所述 CS网络到所述 IP网络的语音切换; 切换单元, 用于当所述判定单元判定确定需进行从所述 CS 网络到所述 IP 网络的语音切换时, 触发并执行基于所述 IP网络的切换, 将所述互联功能实体 上的语音承载切换到所述 IP网络的相应承载网络设备上。
24、 一种互联功能实体, 其特征在于, 包括:
接入单元, 用于当用户处于 CS网络时, 将所述用户接入 IP网络; 切换单元, 用于接收所述用户发起的语音呼叫连续性切换请求, 触发并执 行基于所述 IP网络的切换以及呼叫连续性切换, 将所述用户在所述 CS网络的
CS语音会话切换为在所述 IP网络的 IMS语音会话。
25、 如权利要求 24所述的互联功能实体, 其特征在于, 所述的接入单元包 括:
第一接收单元, 用于接收所述用户发送的信令消息, 所述信令消息通过所 述用户与该互联功能实体间建立的逻辑通道发送给该互联功能实体;
代理单元, 用于根据所述第一接收单元接收到的信令消息代理所述用户向 所述 IP网络注册及向 IMS网络注册。
26、如权利要求 24所述的互联功能实体, 其特征在于, 所述切换单元包括: 第二接收单元, 用于接收所述用户发起的语音呼叫连续性切换请求; 存储单元, 用于緩存所述第二接收单元接收到的所述语音呼叫连续性切换 的请求信令; 第一切换单元, 用于触发并执行基于所述 IP网络的切换, 将所述互联功能 实体上的语音承载切换到所述 IP网络的相应承载网络设备上;
第二切换单元, 用于根据所述存储单元存储的呼叫连续性切换请求信令触 发并执行后续的语音呼叫连续性切换, 将所述用户在所述 CS网络的 CS语音会 话切换为在所述 IP网络的 IMS语音会话。
27、 如权利要求 26所述的互联功能实体, 其特征在于, 所述第一切换单元 包括:
判定单元, 用于判定是否需进行从所述 CS网络到所述 IP网络的语音切换; 第一切换子单元,用于当所述判定单元判定确定需进行从所述 CS网络到所 述 IP网络的语音切换时, 触发并执行基于所述 IP网络的切换, 将所述互联功能 实体上的语音承载切换到所述 IP网络的相应承载网络设备上。
28、 一种互联功能实体, 其特征在于, 包括:
接入单元, 用于当用户处于支持 CS和 PS的网络时, 将所述用户接入 IP网 络;
切换单元, 用于接收所述用户发起的语音呼叫连续性切换请求及 PS业务切 换请求, 触发并执行基于所述 IP网络的切换以及呼叫连续性切换以及 PS业务 切换, 将所述用户在所述 CS网络的 CS语音会话切换为在所述 IP网络的 IMS 语音会话以及将所述用户在所述 CS网络的 PS业务切换为所述用户在所述 IP网 络的 PS业务。
29、 如权利要求 28所述的互联功能实体, 其特征在于, 还包括:
同步控制单元, 用于控制所述语音呼叫连续性切换和 PS业务切换的同步切 换。
30、 一种终端设备, 其特征在于, 包括: 注册支撑单元, 用于与互联功能实体建立逻辑通道, 以通过所述互联功能 实体在所述目标系统注册;
切换单元, 用于在所述注册支撑单元通过所述互联功能实体在所述目标系 统完成注册后, 发起单接收机语音呼叫连续性切换, 将所述终端在所述源系统 的语音会话切换为所述目标系统的语音会话。
31、 如权利要求 30所述的终端设备, 其特征在于, 还包括:
感知单元, 用于当所述终端位于源系统, 并接收到目标系统的网络标识信 息或接收到用于指示所述用户进入所述源系统与所述目标系统的边界区域的指 示信息时, 判定所述终端用户进入所述源系统与所述目标系统的边界区域, 并 将存储的域标识信息更新为所述接收到网络标识信息或指示信息。
32、 如权利要求 30或 31所述的终端设备, 其特征在于, 所述注册支持单 元为非结构化逻辑通道支撑单元, 用于与互联功能实体建立非结构化补充数据 业务逻辑通道, 以通过所述互联功能实体在所述目标系统注册。
PCT/CN2008/073668 2007-12-29 2008-12-24 实现语音呼叫连续性的方法、互联功能实体及终端设备 WO2009092260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100330478A CN101472316B (zh) 2007-12-29 2007-12-29 实现语音呼叫连续性的方法及互联功能实体
CN200710033047.8 2007-12-29

Publications (1)

Publication Number Publication Date
WO2009092260A1 true WO2009092260A1 (zh) 2009-07-30

Family

ID=40829360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073668 WO2009092260A1 (zh) 2007-12-29 2008-12-24 实现语音呼叫连续性的方法、互联功能实体及终端设备

Country Status (2)

Country Link
CN (1) CN101472316B (zh)
WO (1) WO2009092260A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9078173B2 (en) 2010-04-30 2015-07-07 Huawei Technologies Co., Ltd. Method for handover from circuit switched domain to packet switched domain, device, and communications system
CN113810419A (zh) * 2016-11-09 2021-12-17 联发科技股份有限公司 增强多媒体呼叫控制的方法及其基站和用户设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2981112B1 (en) * 2010-01-08 2019-05-08 Interdigital Patent Holdings, Inc. Method and apparatus for broadcasting support of selected internet protocol traffic offload
WO2013004510A1 (en) * 2011-07-05 2013-01-10 Telefonaktiebolaget L M Ericsson (Publ) Method and device for handling handover of a communications service
CN104754662B (zh) * 2011-09-09 2018-06-26 中国移动通信集团设计院有限公司 一种业务处理的系统、方法及装置
CN103079179A (zh) * 2012-12-28 2013-05-01 华为技术有限公司 一种传输消息的方法及装置
JP6918742B2 (ja) * 2018-05-11 2021-08-11 シャープ株式会社 UE(User Equipment)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097837A1 (en) * 2005-03-17 2006-09-21 Nortel Networks Limited Circuit-switched and multimedia subsystem voice continuity
WO2006138736A2 (en) * 2005-06-15 2006-12-28 Azaire Networks Inc. Voice call continuity application server between ip-can and cs networks
CN101083833A (zh) * 2006-06-02 2007-12-05 华为技术有限公司 在不同通信网络间实现无缝切换的终端及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097837A1 (en) * 2005-03-17 2006-09-21 Nortel Networks Limited Circuit-switched and multimedia subsystem voice continuity
WO2006138736A2 (en) * 2005-06-15 2006-12-28 Azaire Networks Inc. Voice call continuity application server between ip-can and cs networks
CN101083833A (zh) * 2006-06-02 2007-12-05 华为技术有限公司 在不同通信网络间实现无缝切换的终端及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Voice Call Continuity between CS and IMS Study; (Release 7)", 3GPP TR 23.806 V7.0.0, 15 December 2005 (2005-12-15) *
"Technical Specification Group Core Network and Terminals; Voice Call Continuity between Circuit Switched (CS) and IP Multimedia Core Network (CN) (IMS) subsystem; stage3 (Release 7)", 3RD GENERATION PARTNERSHIP PROJECT 3GPP TS 24.206 V7.4.0, 14 December 2007 (2007-12-14) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9078173B2 (en) 2010-04-30 2015-07-07 Huawei Technologies Co., Ltd. Method for handover from circuit switched domain to packet switched domain, device, and communications system
CN113810419A (zh) * 2016-11-09 2021-12-17 联发科技股份有限公司 增强多媒体呼叫控制的方法及其基站和用户设备
CN113810419B (zh) * 2016-11-09 2023-09-19 联发科技股份有限公司 增强多媒体呼叫控制的方法及其基站和用户设备

Also Published As

Publication number Publication date
CN101472316A (zh) 2009-07-01
CN101472316B (zh) 2012-06-06

Similar Documents

Publication Publication Date Title
CN101483896B (zh) 切换到cs网络、测量cs网络、实现cs业务的方法及设备
USRE46440E1 (en) Communication system, mobility management network element and method for processing resource
KR101001509B1 (ko) 레거시 인터페이스를 이용한 시스템 간 핸드오버
KR101609431B1 (ko) Gprs/geran으로부터 lte eutran으로의 핸드오프를 지원하기 위한 방법 및 장치
EP2560437B1 (en) Process method, device and system for reverse single radio voice call continuity
EP2289264B1 (en) Handover of non-voice bearers in packet-switched and cicuit-switched networks
JP5536954B2 (ja) 回路交換ドメインからパケット交換ドメインへのハンドオーバー方法、装置、および通信システム
JP6184406B2 (ja) Utlanからlteへの(rsrvcc)ハンドオーバ
US8989139B2 (en) Generic access network and method for implementing services by using generic access network
US20100260105A1 (en) Domain transfer service continuity provision to a mobile terminal
WO2011006440A1 (zh) 一种切换方法和装置
WO2009024082A1 (fr) Procédé de transfert et procédé de relocalisation de terminal
CN101370261B (zh) 从cs域向ps域切换的资源准备方法及通信设备
WO2009062440A1 (fr) Procédé, appareil et système pour réaliser un transfert de réseau optimisé
KR20140132747A (ko) 공유 네트워크 노드를 위한 회선 교환 호 폴백(csfb) 서비스 향상 방법 및 장치
WO2009092260A1 (zh) 实现语音呼叫连续性的方法、互联功能实体及终端设备
WO2011085668A1 (zh) 切换控制方法和相关设备及系统
CN101686540A (zh) 位置业务处理方法、装置及系统
WO2009062392A1 (fr) Procédé de transfert de système, système de communication et entité pcrf
WO2010069272A1 (zh) 一种网络切换的资源处理方法及装置
WO2011110001A1 (zh) 承载建立方法、系统和网关设备
CN101978727B (zh) 单接收机语音连续切换及其数据传输的方法、装置和系统
WO2009149656A1 (zh) 一种实现业务切换的方法、装置及系统
US20130267231A1 (en) Mobile device, communication controller, and handover control method
WO2009089751A1 (fr) Procédé et dispositif permettant à un terminal d'accéder à un système cible depuis un système source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871481

Country of ref document: EP

Kind code of ref document: A1