WO2009090965A1 - Ionizer - Google Patents

Ionizer Download PDF

Info

Publication number
WO2009090965A1
WO2009090965A1 PCT/JP2009/050398 JP2009050398W WO2009090965A1 WO 2009090965 A1 WO2009090965 A1 WO 2009090965A1 JP 2009050398 W JP2009050398 W JP 2009050398W WO 2009090965 A1 WO2009090965 A1 WO 2009090965A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
conductive
vanadate glass
discharge electrode
ionizer
Prior art date
Application number
PCT/JP2009/050398
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Kobayashi
Takeshi Manabe
Akira Morishige
Original Assignee
Tokai Industry Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008006335A external-priority patent/JP2011065747A/en
Application filed by Tokai Industry Corp. filed Critical Tokai Industry Corp.
Publication of WO2009090965A1 publication Critical patent/WO2009090965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass

Definitions

  • the present invention relates to an ionizer (static eliminating device) for neutralizing the charge of a charged body that is positively or negatively charged, and more particularly to a low dusting ionizer.
  • static electricity is generated in people, facilities, and the like due to factors such as the movement of people in the clean room and the flow of air (wind).
  • a lot of insulators such as plastics are used, which makes the environment more susceptible to static electricity.
  • static electricity is generated, a wafer provided with a circuit is charged and a small amount of fine particles remaining in the clean room are sucked, resulting in deterioration of quality.
  • the circuit on the wafer may be destroyed by the discharge.
  • the manufacturing apparatus or the computer may malfunction due to electromagnetic waves, or the work efficiency of the worker may be reduced due to electric shock.
  • the static electricity generated in the clean room must be removed.
  • the first possible method for removing static electricity is to ground the charged object and remove the static electricity for each object. It is. However, since this method is effective only when the equipment is conductive and fixed, a plurality of independent objects such as wafers and carriers that carry them are transported one after the other. It is difficult to take a way to escape.
  • a clean room ionizer has been conventionally proposed as a device for neutralizing static electricity on an object surface by ionizing air by such corona discharge.
  • This clean room ionizer is composed of a plurality of ionizer electrodes provided on the ceiling of the clean room and a device for applying a voltage to the ionizer electrodes.
  • the ionizer for clean rooms which has such a structure generate
  • an object of the present invention is to provide an ionizer that is suitable for use in a clean room and has little or no dust generation.
  • the present invention (1) is a conductive vanadate glass obtained by melting and quenching after preparing a mixture containing a vanadate, or a conductive vanadate glass that has been further annealed. It is a discharge electrode that is at least partially composed of conductive vanadate glass obtained by the step of immersing in an aqueous liquid medium.
  • the present invention (2) includes at least one discharge electrode (for example, the discharge electrode 3) for generating ions by applying a high voltage to air to ionize,
  • a power supply unit for example, power supply 1 for supplying power to the discharge electrode;
  • an ionizer having The discharge electrode is an ionizer which is the discharge electrode (for example, discharge electrode 3) of the invention (1).
  • conductive glass means that the electric conductivity is at least 1 ⁇ 10 ⁇ 13 S / cm (preferably at least 1 ⁇ 10 ⁇ 9 S / cm, more preferably at least 1 ⁇ 10 ⁇ 7 S / cm. ).
  • Examples of the “conductive glass” include ion conductive glass, electron conductive glass, and mixed conductive glass in which the two types of conductivity coexist.
  • the “ion-conducting glass” is not particularly limited. For example, AgI-Ag 2 O—B 2 O 2 , AgI-Ag 2 O—P 2 O 5 , AgI-Ag 2 O—WO 3 , LiCl—Li 2 Examples thereof include glass containing O—B 2 O 3 or the like.
  • the “electron conducting glass” examples include valence electron hopping conducting glass and band gap conducting glass. Although it does not specifically limit as a valence electron hopping conductive glass, The glass containing a vanadate is mentioned.
  • the band gap conductive glass is not particularly limited, and examples thereof include chalcogenide glasses such as Ge—Te—S, Ge—Te—Se, and Ge—Te—Sb.
  • the “mixed conduction type glass” is not particularly limited, and examples thereof include glass containing vanadate, AgI and AgO 2 (see JP 2004-331416 A) and Li x WO 3 . Among these, glass containing vanadate is particularly preferable because of its high conductivity.
  • discharge needle is not particularly limited as long as it has conductive glass at its tip.
  • a member made only of conductive glass or a composite member having conductive glass only at the tip may be on the surface of another material. It may be a composite member coated with conductive glass.
  • the ionizer according to the present invention there is an effect that dust generation of the discharge electrode itself can be minimized. Furthermore, since the electrical conductivity of the conductive vanadate glass can be appropriately set by the content of vanadate and annealing, there is an effect that the amount of discharged ions can be easily adjusted.
  • the ionizer according to the present invention is composed of at least one discharge electrode for generating ions by applying a high voltage to air, and a power supply unit for supplying power to the discharge electrode.
  • the discharge electrode is obtained by immersing a conductive vanadate glass obtained by melting and quenching after preparing a raw material mixture or a conductive vanadate glass further annealed on the glass in an aqueous liquid medium.
  • a conductive vanadate glass obtained by the step is a conductive vanadate glass obtained by the step.
  • the power source can be applied to any type using either an AC power source or a DC power source.
  • the power source is preferably a high voltage power source.
  • an ionizer provided on the ceiling in the clean room will be described below as an example. That is, as shown in FIG. 1, the main body case 2 is provided on the power source 1 and the ceiling C of the clean room, and the discharge electrode 3 is provided in the main body case 2 so that at least the tip protrudes outside.
  • the discharge electrode 3 is a member obtained by processing a lower end of a rod-shaped conductive glass into a conical shape, and the upper end thereof is connected to the power source 1.
  • the configuration other than the discharge electrode is a conventional technique ⁇ for example, a blower type as disclosed in JP-A-2004-253193 and JP-A-2007-66822, and a bar as disclosed in JP-A-2007-141169.
  • Type, gun type as disclosed in Japanese Patent Application Laid-Open No. 2004-319358 can be applied as it is, and the following description will focus on the discharge electrode.
  • the ionizer according to the present invention is characterized in that a conductive vanadate glass subjected to a predetermined treatment is used as a discharge electrode. That is, the present invention uses a low dust-generating conductive glass in which powder is not deposited on the surface as a discharge electrode by immersing a conductive vanadate glass produced by a normal technique in an aqueous medium. Let it be the essence.
  • the discharge electrode according to the best mode it is preferable to use a discharge needle having a sharp tip, and at least the discharge tip portion of the discharge electrode only needs to be made of the conductive vanadate glass.
  • the partial configuration of the discharge electrode other than the conductive vanadate glass is not particularly limited.
  • rare metals such as tungsten, titanium, and silicon, iron, and the like can be used. Therefore, first, each component constituting the conductive vanadate glass (untreated) before water treatment will be described, and then the properties of the conductive vanadate glass (untreated) will be described. The method for producing the conductive glass (untreated) will be described. Next, a method for producing a low dust-generating conductive vanadate glass and its properties will be described. In the following best mode, water will be described as an example of the aqueous liquid medium, but the present invention is not limited to this.
  • conductive vanadate glass is not particularly limited as long as it is a conductive glass containing vanadate, but is an oxide-based glass composition containing vanadium, barium and iron because it is highly conductive. Is preferred.
  • vanadium is a constituent element for forming the main skeleton of oxide-based glass, and its oxidation number changes to 2, 3, 4, 5, etc., to increase the probability that electrons hop. Can do.
  • barium is a constituent element added to make the glass skeleton of the vanadium oxide having a two-dimensional structure three-dimensional.
  • iron is a component for adjusting electrical conductivity, and the conductivity can be controlled by changing this amount.
  • the vanadium oxide content in the vanadate glass is preferably in the range of 0.1 to 98 mol%, more preferably in the range of 40 to 98 mol%.
  • the content of barium oxide in the vanadate glass is preferably in the range of 1 to 40 mol%.
  • the content of iron oxide in the vanadate glass is preferably in the range of 1 to 20 mol%.
  • the molar ratio (B: V) of barium oxide (B) to vanadium oxide (V) is preferably 5:90 to 35:50.
  • the molar ratio (F: V) of iron oxide (F) to vanadium oxide (V) is preferably 5:90 to 15:50.
  • the conductive vanadate glass may contain rhenium.
  • rhenium is excellent in electrical conductivity (and can further increase the electron hopping effect because the oxidation number can be changed), so that the electrical conductivity of the vanadate glass can be further increased.
  • the glass transition temperature and the crystallization temperature can be set within a predetermined range, the annealing process can be facilitated.
  • the amount in the composition is preferably 1 to 15 mol%.
  • the conductive vanadate glass is composed of other glass components such as calcium oxide, sodium oxide, potassium oxide, barium oxide, boron oxide, strontium oxide, zirconium oxide, silver oxide, silver iodide, lithium oxide, iodine. Lithium iodide, cesium oxide, sodium iodide, indium oxide, tin oxide and the like may be contained.
  • the electrical conductivity of such vanadate glass is in the range of 10 ⁇ 4 to 10 ⁇ 1 S ⁇ cm ⁇ 1 , preferably 10 ⁇ 3 to 10 ⁇ 2 S ⁇ cm ⁇ 1 at a room temperature of 25 ° C. Is preferred. In particular, from the viewpoint of maintaining semiconductor characteristics, it is preferably 10 ⁇ 1 S ⁇ cm ⁇ 1 or less.
  • the electrical conductivity in this specification refers to the volume resistivity measured by the four probe method.
  • a diluted component ⁇ preferably, SiO 2 is added to the composition. (60-70 mol%), P 2 O 3 (10-20 mol%), Al 2 O 3 (2-10 mol%), ZnO (0-2 mol%), Sb 2 O 3 (0-2 mol%) %), TiO 2 (0 to 2 mol%) ⁇ may be added.
  • the conductive vanadate glass is obtained by melting and quenching a mixture containing vanadium oxide, barium oxide and iron oxide (optionally rhenium oxide) to obtain the glass composition, and then the glass transition of the glass composition. Even if it is above the temperature, below the crystallization temperature, or above the crystallization temperature, it can be produced by keeping it at the annealing treatment temperature below the softening point temperature for a predetermined time.
  • the vanadate glass to be used is a conductive vanadate glass obtained by preparing a mixture containing vanadium oxide and then melting and quenching, or a conductive vanadate glass obtained by further annealing the glass. Is immersed in an aqueous liquid medium (for example, water). In general, it is known that when a conductive vanadate glass is immersed in an aqueous liquid medium (for example, water) for a long time, a free layer may be formed on the surface due to a reaction between the glass surface and water or the like. .
  • the “aqueous liquid medium” refers to water (for example, pure water, water containing other components such as sodium chloride) (for example, tap water or seawater), alcohol, for example, ethanol, and a mixed liquid of water and alcohol. Examples thereof include a mixed liquid of ethanol and water.
  • the “low dusting conductive vanadate glass” is different depending on the use when measured by a dusting measuring method according to JIS B 9920: 2002 (for example, using a Sysmex model 110). It refers to a glass having 0 dust of 1 ⁇ m or more (preferably 0 dust of 0.5 ⁇ m or more, more preferably 5 or less of 0.3 ⁇ m or more).
  • the “annealing treatment” is not limited to the glass transition temperature or more and the crystallization temperature or less, but may be the crystallization temperature or more and the softening point temperature or less.
  • the method includes a step of immersing a conductive vanadate glass (untreated) in water.
  • the process according to the best mode may be performed after the glass composition is melted and rapidly cooled in the manufacturing process of the conductive vanadate glass, or may be performed after the annealing treatment. Further, it may be performed after processing into a discharge needle. Among these, it is particularly preferable to perform this step after processing into a discharge needle. By performing this step in this order, a discharge needle having a lower dust generation property can be obtained.
  • a process is performed in which conductive vanadate glass is immersed in water, the water temperature is set to a predetermined temperature, and dust-derived components are dissolved in water for a predetermined time.
  • the water temperature is set to a predetermined temperature
  • dust-derived components are dissolved in water for a predetermined time.
  • the temperature of the aqueous liquid medium is preferably 30 ° C. to the boiling point or less, and in the case of water, the water temperature is preferably 30 to 100 ° C., more preferably 40 to 70 ° C.
  • the “boiling point” means a boiling point measured under normal pressure (1 atm). In the case of a mixed liquid that does not azeotrope, it refers to the boiling point of the lowest component among the components, and further, the mixed liquid that azeotropes. In the case of, it means an azeotropic point.
  • the power source may be alternating current or direct current, and is preferably 1 to 100 mA, more preferably 1 to 20 mA.
  • the treatment is preferably carried out for 1 to 2000 hours, more preferably 1 to 1500 hours.
  • the treatment is preferably performed for 1 to 300 hours, more preferably for 1 to 150 hours.
  • the ultrasonic frequency is preferably 30 kHz to 4 MHz, more preferably 30 kHz to 3 MHz, and further preferably 30 to 80 kHz.
  • the sonication time is preferably 1 to 30 hours, more preferably 1 to 10 hours, and further preferably 1 to 3 hours.
  • yellow powder adheres to the surface of the low dust generation conductive vanadate glass obtained immediately after the treatment, and this is wiped off and the obtained conductive vanadate glass is used.
  • the cavitation effect is due to the fact that the liquid is shaken vigorously by ultrasonic irradiation, and a locally high pressure portion and a low pressure portion are generated. This is a phenomenon in which shock waves are generated when the bubbles are crushed and burst.
  • the shock wave gives an impact to the sample, so that the dust-derived component can be extracted efficiently.
  • the component deposited on the sample surface is prevented from sticking in layers due to the cleaning effect associated with the cavitation effect, and the operation proceeds smoothly.
  • the low dusting conductive vanadate glass thus obtained has a result obtained by the dusting measurement method described later, preferably 0 dust of 1 ⁇ m or more, and more preferably 0.
  • the number of dusts of 0.5 ⁇ m or more is zero, and more preferably, the number of dusts of 0.3 ⁇ m or more is five or less.
  • the electrical conductivity of the low dusting conductive vanadate glass according to the best mode is preferably 10 ⁇ 13 S ⁇ cm ⁇ 1 or more at 25 ° C., and 10 ⁇ 9 S ⁇ cm ⁇ 1 or more. Is more preferable, and 10 ⁇ 7 S ⁇ cm ⁇ 1 or more is more preferable.
  • ⁇ Discharge needle manufacturing method the manufacturing method of the discharge needle which consists of conductive glass which concerns on this best form is explained in full detail.
  • a flat conductive glass mainly composed of vanadate is manufactured.
  • the flat conductive glass is polished by a polishing machine.
  • corundum alundum (alumina), cerium oxide, colloidal silica or the like as the abrasive.
  • corundum has a coarse particle size, and cerium oxide and colloidal silica are fine. Therefore, it is preferable to use the former in the initial stage and the latter in the mirror finishing stage.
  • the ground flat conductive glass is cut into a specified size.
  • the rectangular conductive glass is fixed to a diamond grinder, and is cut into a round bar with diamond while rotating around the long axis.
  • the rotation speed is preferably 1000 to 6000 rpm.
  • the discharge needle can be manufactured by performing the operation of cutting the tip into a conical shape with the same diamond grinder.
  • Production Example 1 (conductive vanadate glass) Mixtures each having a chemical composition adjusted to 15BaO ⁇ 70V 2 O 5 ⁇ 15FeO were prepared. The mixture was transferred to a platinum crucible or the like, heated in an electric furnace at 1000 ° C. for 60 minutes, and melted. This was immediately quenched with ice water (the outer side of the platinum crucible, the bottom was immersed in ice water) to obtain a conductive vanadate glass (electric conductivity: 7 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 ). The glass was annealed at 400 ° C. for 1 hour to produce a conductive vanadate glass (electric conductivity: 7 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 ) subjected to the following low dust generation treatment.
  • the electric conductivity was determined by a four-terminal method for conductive vanadate glass pieces having a thickness of 1 mm or less.
  • an electrode was prepared by fixing lead wires to the glass surface using molten metal indium.
  • the value of electric conductivity ( ⁇ ) is obtained by dividing the value of current density (Acm ⁇ 2 ) by the magnitude of the electric field.
  • the electrical conductivity (S ⁇ cm ⁇ 1 ) is the reciprocal of the specific resistance ( ⁇ ⁇ cm).
  • the dust generation property of the conductive vanadate glass itself was measured using the measuring apparatus 100 shown in FIG.
  • the measuring apparatus 100 includes a space 101 of 10 cm ⁇ 10 cm ⁇ 10 cm, a Y-shaped sample stage 102 made of a thin bar, and a particle counter connection hole 103 installed in the space 101.
  • the particle counter connection hole 103 is connected to an air suction port of the particle counter 200 (Sysmex model 110).
  • the method for measuring dust generation is performed in the following steps (1) to (4). Step (1): Sample A (3 mm ⁇ 3 mm ⁇ 40 mm rectangular parallelepiped shape) is washed with pure water (10 seconds) using absorbent cotton, and then sufficiently dried.
  • Step (2) After the step, the sample A is allowed to stand for 1 day under conditions of humidity 80% and 25 ° C.
  • the number of tests is basically one time, but if a particle having a size of 1 ⁇ m or more cannot be confirmed even once, it is
  • Step (1) Sample A (3 mm ⁇ 3 mm ⁇ 40 mm rectangular parallelepiped shape) is washed with pure water (10 seconds) using absorbent cotton, and then sufficiently dried.
  • Step (2) After the step, the sample A is allowed to stand for 1 day under conditions of humidity 80% and 25 ° C.
  • Step (3) The L * a * b * color system was measured according to JIS Z 8701.
  • Production Example 2 (Low dusting conductive vanadate glass)
  • the conductive vanadate glass obtained in Production Example 1 was immersed in tap water prepared in a sample bottle with a lid, and a low dust generation treatment was performed at room temperature for about two months. As a result, the yellow component was dissolved in water, and the entire water was dyed yellow. Thereafter, the conductive vanadate glass was taken out from the sample bottle, and the surface was washed away cleanly to obtain a low dusting conductive vanadate glass according to Production Example 2. The low dusting conductive vanadate glass was again immersed in tap water, but the yellow component did not elute in the water of the sample bottle for more than 2 months.
  • the electrical conductivity of the low dusting conductive vanadate glass was not different from that of the conductive vanadate glass before treatment (electrical conductivity: 7 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 ).
  • the results of the dust generation test are shown in Table 1.
  • the conductive vanadate glass before the treatment was observed to change in color (changed to yellow) before and after the dust generation test step (2).
  • no color change was observed before and after the step (2) of the dusting test (not changed to yellow).
  • Production Example 3 Low dusting conductive vanadate glass
  • the conductive vanadate glass obtained in Production Example 1 is soaked in water at 15 ° C., heated to 100 ° C., supplied with a current of 5 to 10 V and 1 to 5 mA, and has a low dust generation for 3 to 15 hours. After the treatment, the yellow component adhering to the surface was wiped off and washed away to obtain a low dusting conductive vanadate glass according to Production Example 3 (electric conductivity: 7 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 S ⁇ cm ⁇ 1 ).
  • the component adhering to the surface was C: 36.7, O: 46.7, V: 8.0, N: 1.4, S: 1.8, Fe: 1.8, Ba: 3.6 (atom%).
  • 3 shows the state of the surface of the conductive vanadate glass before the treatment ⁇ FIG. 3 (a) ⁇ and the state of the surface of the low dusting conductive vanadate glass after the treatment ⁇ FIG. 3 (b). ) ⁇ .
  • the conductive vanadate glass before the treatment was observed to change in color (changed to yellow) before and after the dust generation test step (2).
  • the low dusting conductive vanadate glass after the treatment no color change was observed before and after the step (2) of the dusting test (not changed to yellow).
  • Production Example 4 (Low dusting conductive vanadate glass) 300 cc of water was added to a washing machine having a transmission frequency of 40 kHz (Citizen ultrasonic washing machine SW7800), and the conductive vanadate glass produced in Production Example 1 was added thereto, followed by ultrasonic treatment for 5 minutes. As a result, dust was generated in water and turned yellow, and a dust-resistant conductive vanadate glass was obtained (electric conductivity 7 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 ). The results of the dust generation test are shown in Table 1. The conductive vanadate glass before the treatment was observed to change in color (changed to yellow) before and after the dust generation test step (2). On the other hand, in the low dusting conductive vanadate glass after the treatment, no color change was observed before and after the step (2) of the dusting test (not changed to yellow).
  • Production Example 5 (Low dusting conductive vanadate glass) 1,000 cc of water was added to a washing machine (Alex ATL3022) having a transmission frequency of 72 kHz, and the conductive vanadate glass produced in Production Example 1 was added thereto, followed by sonication for 5 minutes. As a result, dust was generated in water and turned yellow, and a dust-resistant conductive vanadate glass was obtained (electric conductivity: 7 ⁇ 10 ⁇ 3 S ⁇ cm ⁇ 1 ). The results of the dust generation test are shown in Table 1. The conductive vanadate glass before the treatment was observed to change in color (changed to yellow) before and after the dust generation test step (2). On the other hand, in the low dusting conductive vanadate glass after the treatment, no color change was observed before and after the step (2) of the dusting test (not changed to yellow).
  • Production Example 6 (Discharge needle)
  • the plate-shaped conductive vanadate glass member according to Production Example 2 was polished using a polishing machine.
  • the smallest was a polishing material having a particle size of 500, and polishing was carried out in steps of 1500 and 2000 (the final number 2000 was mirror-finished with colloidal silica).
  • polishing was implemented by pressing a plate glass, dripping the abrasive
  • the said square-shaped electrically conductive glass was fixed to the diamond grinder, and the front-end
  • the discharge needle manufactured as described above was attached to the clean room ionizer shown in FIG. As a result, as shown in Table 2, it was found that the discharge needle can be suppressed to a dust generation amount of 1/2 or less as compared with other materials.
  • the numerical values in the table are the number of particles of 0.1 ⁇ m or more. In addition, it was confirmed by the charge removal test that the charge was removed satisfactorily.
  • the discharge needle manufactured in Production Example 6 was examined using the discharge characteristics of the discharge needle. The results are shown in Table 3.
  • the evaluation was performed using a static eliminator described in FIG. 1 with a plate monitor (150 mm ⁇ 150 mm 20 pF, charge plate monitor H0601 manufactured by Sicid Electrostatics).
  • the voltage is a voltage (kV) applied to the discharge needle.
  • the application method indicates whether it is alternating current (AC) or direct current (DC), and the numerical value under AC means the frequency of AC.
  • the current ( ⁇ A) is a current that flows during discharge. Decay Time is the time required to neutralize a charged object charged to ⁇ 1000 V to ⁇ 100 V.
  • the ion balance is a range of +/- bias.
  • the temperature (° C.) is the temperature of the atmosphere during the discharge experiment
  • the humidity (%) is the relative humidity of the atmosphere during the discharge.
  • FIG. 1 is a conceptual diagram of a static eliminator according to the present invention.
  • FIG. 2 is a conceptual diagram of the measuring apparatus.
  • FIG. 3 shows the state of the surface of the conductive vanadate glass before the treatment according to the best mode ⁇ FIG. 3A ⁇ and the state of the surface of the low dusting conductive vanadate glass after the treatment ⁇ FIG. 3 It is the figure which showed (b) ⁇ .
  • Power supply 2 Body case 3: Ionizer electrode C: Ceiling

Abstract

Disclosed is an ionizer that is suitable for use, for example, in clean rooms and generates little or no dust. The ionizer comprises at least one discharge electrode for applying a high voltage to air to ionize the air and thus to generate ions and a power supply part for supplying electric power to the discharge electrode. The ionizer is characterized in that at least a part of the discharge electrode is formed of an electroconductive vanadate glass obtained by a process in which an electroconductive vanadate glass obtained by preparing a mixture containing a vanadate, then melting the mixture and rapidly cooling the mixture, or an electroconductive vanadate glass obtained by further annealing the glass is immersed in an aqueous liquid medium.

Description

イオナイザーIonizer
 本発明は、正または負に帯電している帯電体の電荷を除電するためのイオナイザー(除電装置)に関し、特に、低発塵性のイオナイザーに関する。 The present invention relates to an ionizer (static eliminating device) for neutralizing the charge of a charged body that is positively or negatively charged, and more particularly to a low dusting ionizer.
 近年の技術開発の進歩により、集積回路はその集積度を著しく高めている。しかし、集積回路の集積度が高まると、回路の線幅が非常に微小になるため、製造過程において外部の影響を受けやすく、歩留まりが悪くなる。とくに、埃などの浮遊微粒子が回路上に付着すると、回路の断線もしくは短絡が発生してしまう。そこで、LSI工場や電子機器組立工場においては、工場全体もしくはその一部をクリーンルームにして、工場内の浮遊微粒子をできるだけ減少させている。ただし、クリーンルーム内は製品の変質を押さえ、微生物の繁殖を防ぐために、低湿度(40~45%RH程度)に保たれているので、静電気が発生しやすい。例えば、クリーンルーム内の人の動き、空気の流れ(風)等の要因により、人、設備等に静電気が発生する。また、発塵を防止し、耐薬品性を高めるために、プラスチック等の絶縁体が数多く使用されているので、さらに静電気が発生しやすい環境になっている。静電気が発生すると、回路を設けたウェーハが帯電してクリーンルーム内に僅かに残った微粒子を吸引してしまうので、品質の劣化を招く。また、放電によってウェーハ上の回路が破壊されることがある。さらに、電磁波によって製造装置やコンピューターの誤動作を招いたり、電撃ショックにより作業者の作業能率が低下するおそれもある。 Due to recent technological development advances, integrated circuits have significantly increased the degree of integration. However, as the degree of integration of an integrated circuit increases, the line width of the circuit becomes very small, which is easily affected by external influences in the manufacturing process, and the yield is deteriorated. In particular, when floating particles such as dust adhere to the circuit, the circuit is disconnected or short-circuited. Therefore, in LSI factories and electronic device assembly factories, the entire factory or a part of the factories is used as a clean room to reduce suspended fine particles in the factory as much as possible. However, static electricity is likely to be generated in the clean room because it is kept at low humidity (about 40-45% RH) in order to suppress product deterioration and prevent the growth of microorganisms. For example, static electricity is generated in people, facilities, and the like due to factors such as the movement of people in the clean room and the flow of air (wind). In addition, in order to prevent dust generation and improve chemical resistance, a lot of insulators such as plastics are used, which makes the environment more susceptible to static electricity. When static electricity is generated, a wafer provided with a circuit is charged and a small amount of fine particles remaining in the clean room are sucked, resulting in deterioration of quality. In addition, the circuit on the wafer may be destroyed by the discharge. Furthermore, there is a possibility that the manufacturing apparatus or the computer may malfunction due to electromagnetic waves, or the work efficiency of the worker may be reduced due to electric shock.
 このような静電気障害を防ぐために、クリーンルーム内に発生する静電気を取り除かなければならないが、静電気を除去する方法としてまず考えられるのが、帯電する物体を接地して、個々の物体ごとに除電する方法である。しかし、この方法は機材が導電性で固定されたものの場合にのみ有効なので、ウェーハやそれを運ぶキャリアのように複数個の独立した物体で、次々に搬送されていくものの場合は、接地によって電荷を逃がす方法をとるのは困難である。 In order to prevent such static electricity failure, the static electricity generated in the clean room must be removed. The first possible method for removing static electricity is to ground the charged object and remove the static electricity for each object. It is. However, since this method is effective only when the equipment is conductive and fixed, a plurality of independent objects such as wafers and carriers that carry them are transported one after the other. It is difficult to take a way to escape.
 そこで、従来から、接地のように個々の物体ごとに除電するのではなく、クリーンルーム内の空気を電離し、イオン化することにより静電気を中和する方法がおこなわれている。この空気イオン化による除電方法は、帯電する物体に接触することなく、広範囲な空間をまとめて除電できるので、クリーンルーム内の除電に適している。空気をイオン化する方法には、コロナ放電、放射線、紫外線等によるものが知られているが、中でもコロナ放電による方法は他の方法に比べて安全で、安価におこなうことができるので、広く利用されている。 Therefore, conventionally, there is a method of neutralizing static electricity by ionizing and ionizing air in a clean room, instead of discharging each individual object like grounding. This static elimination method by air ionization is suitable for static elimination in a clean room because it can neutralize a wide area without contacting a charged object. As methods for ionizing air, those using corona discharge, radiation, ultraviolet rays, and the like are known. Among them, the method using corona discharge is widely used because it is safer and cheaper than other methods. ing.
 このようなコロナ放電により空気のイオン化をおこない、物体表面の静電気を中和する装置として、従来から提案されているのが、クリーンルーム用イオナイザーである。このクリーンルーム用イオナイザーは、クリーンルームの天井に設けられた複数のイオナイザー電極と、このイオナイザー電極に電圧を印加する装置から構成されている。そして、このような構成を有するクリーンルーム用イオナイザーは、イオナイザー電極に高電圧を印加したときに生じるコロナ放電によってイオンを発生させ、このイオンによって静電気を中和させている(特許文献1)。
特開平6-325894号公報
A clean room ionizer has been conventionally proposed as a device for neutralizing static electricity on an object surface by ionizing air by such corona discharge. This clean room ionizer is composed of a plurality of ionizer electrodes provided on the ceiling of the clean room and a device for applying a voltage to the ionizer electrodes. And the ionizer for clean rooms which has such a structure generate | occur | produces ion by the corona discharge which arises when a high voltage is applied to an ionizer electrode, and neutralizes static electricity by this ion (patent document 1).
JP-A-6-325894
 しかしながら、従来のクリーンルーム用イオナイザーは、イオナイザーの電極自体が発塵性を有しており、これにより、クリーンルーム内の空気清浄度が低下する等の問題が発生していた。そこで、本発明は、例えば、クリーンルームでの使用に適した、発塵の少ない又はゼロであるイオナイザーを提供することを目的とする。 However, in the conventional clean room ionizer, the electrode of the ionizer itself has a dust generating property, which causes problems such as a decrease in the cleanliness of the air in the clean room. Accordingly, an object of the present invention is to provide an ionizer that is suitable for use in a clean room and has little or no dust generation.
 本発明(1)は、バナジン酸塩を含む混合物を調製した後に溶融及び急冷して得られる導電性バナジン酸塩ガラス又は当該ガラスに対して更にアニーリング処理を施した導電性バナジン酸塩ガラスを、水系液体媒体中に浸漬する工程により得られる導電性バナジン酸塩ガラスから少なくとも一部が構成されている、放電電極である。 The present invention (1) is a conductive vanadate glass obtained by melting and quenching after preparing a mixture containing a vanadate, or a conductive vanadate glass that has been further annealed. It is a discharge electrode that is at least partially composed of conductive vanadate glass obtained by the step of immersing in an aqueous liquid medium.
 本発明(2)は、空気に高電圧を印加して電離させ、イオンを発生させるための少なくとも一の放電電極(例えば、放電電極3)と、
 前記放電電極に電力を供給するための電源部(例えば、電源1)と、
を有するイオナイザーにおいて、
 前記放電電極が、前記発明(1)の放電電極(例えば、放電電極3)である、イオナイザーである。
The present invention (2) includes at least one discharge electrode (for example, the discharge electrode 3) for generating ions by applying a high voltage to air to ionize,
A power supply unit (for example, power supply 1) for supplying power to the discharge electrode;
In an ionizer having
The discharge electrode is an ionizer which is the discharge electrode (for example, discharge electrode 3) of the invention (1).
 ここで、本明細書における各用語の意味について説明する。まず、「導電性ガラス」とは、電気伝導度が少なくとも1×10-13S/cm(好適には少なくとも1×10-9S/cm、より好適には少なくとも1×10-7S/cm)であるガラスを指す。「導電性ガラス」とは、例えば、イオン伝導ガラス、電子伝導ガラスや、前記二種の伝導性が共存する混合伝導型ガラス等が挙げられる。「イオン伝導ガラス」としては、特に限定されないが、例えば、AgI―AgO―B、AgI-AgO-P、AgI-AgO-WO、LiCl-LiO-B等を含むガラスが挙げられる。「電子伝導ガラス」としては、例えば、荷電子ホッピング伝導ガラス、バンドギャップ伝導ガラス等が挙げられる。荷電子ホッピング伝導ガラスとしては、特に限定されないが、バナジン酸塩を含むガラスが挙げられる。バンドギャップ伝導ガラスとしては、特に限定されないが、Ge-Te-S、Ge-Te-Se、Ge-Te-Sb等のカルコゲナイドガラスが挙げられる。「混合伝導型ガラス」としては、特に限定されないが、バナジン酸塩、AgI及びAgOを含むガラス(特開2004-331416号公報参照)や、LiWOが挙げられる。これらの中でも、導電性が高いという理由から、バナジン酸塩を含むガラスが特に好ましい。「放電針」とは、導電性ガラスをその先端に有する限り特に限定されず、例えば、導電性ガラスのみからなる部材でも、先端にのみ導電性ガラスを有する複合部材でも、別の材料の表面に導電性ガラスを被覆した複合部材であってもよい。 Here, the meaning of each term in this specification is explained. First, “conductive glass” means that the electric conductivity is at least 1 × 10 −13 S / cm (preferably at least 1 × 10 −9 S / cm, more preferably at least 1 × 10 −7 S / cm. ). Examples of the “conductive glass” include ion conductive glass, electron conductive glass, and mixed conductive glass in which the two types of conductivity coexist. The “ion-conducting glass” is not particularly limited. For example, AgI-Ag 2 O—B 2 O 2 , AgI-Ag 2 O—P 2 O 5 , AgI-Ag 2 O—WO 3 , LiCl—Li 2 Examples thereof include glass containing O—B 2 O 3 or the like. Examples of the “electron conducting glass” include valence electron hopping conducting glass and band gap conducting glass. Although it does not specifically limit as a valence electron hopping conductive glass, The glass containing a vanadate is mentioned. The band gap conductive glass is not particularly limited, and examples thereof include chalcogenide glasses such as Ge—Te—S, Ge—Te—Se, and Ge—Te—Sb. The “mixed conduction type glass” is not particularly limited, and examples thereof include glass containing vanadate, AgI and AgO 2 (see JP 2004-331416 A) and Li x WO 3 . Among these, glass containing vanadate is particularly preferable because of its high conductivity. The “discharge needle” is not particularly limited as long as it has conductive glass at its tip. For example, a member made only of conductive glass or a composite member having conductive glass only at the tip may be on the surface of another material. It may be a composite member coated with conductive glass.
 本発明に係るイオナイザーによれば、放電電極自体の発塵を最低限に抑えられるという効果を奏する。更に、導電性バナジン酸塩ガラスは、その導電率をバナジン酸塩の含有量や、アニーリングにより適宜設定できるため、放電するイオン量を容易に調節可能であるという効果を奏する。 According to the ionizer according to the present invention, there is an effect that dust generation of the discharge electrode itself can be minimized. Furthermore, since the electrical conductivity of the conductive vanadate glass can be appropriately set by the content of vanadate and annealing, there is an effect that the amount of discharged ions can be easily adjusted.
 以下、図面を参照しながら、本発明の最良形態を説明する。尚、本発明の技術的範囲は本最良形態に限定されるものではない。また、一つの例について具体的に説明した事項に関しては、そうでないとの特記がある場合を除き、他の例にもそのまま適用されるものと理解すべきである。 Hereinafter, the best mode of the present invention will be described with reference to the drawings. The technical scope of the present invention is not limited to the best mode. In addition, it should be understood that the matters specifically described in one example can be applied to other examples as they are, unless otherwise specified.
イオナイザー
 本発明に係るイオナイザーは、空気に高電圧を印加して電離させ、イオンを発生させるための少なくとも一の放電電極と、前記放電電極に電力を供給するための電源部と、から構成され、前記放電電極が、原料混合物を調製した後に溶融及び急冷して得られる導電性バナジン酸塩ガラス又は当該ガラスに対して更にアニーリング処理を施した導電性バナジン酸塩ガラスを、水系液体媒体中に浸漬する工程により得られる導電性バナジン酸塩ガラスであることを一の特徴とする。尚、電源は、交流電源、直流電源のいずれを利用するタイプであっても適用可能である。更に、電源は高圧電源であることが好ましい。
Ionizer The ionizer according to the present invention is composed of at least one discharge electrode for generating ions by applying a high voltage to air, and a power supply unit for supplying power to the discharge electrode. The discharge electrode is obtained by immersing a conductive vanadate glass obtained by melting and quenching after preparing a raw material mixture or a conductive vanadate glass further annealed on the glass in an aqueous liquid medium. One feature is that it is a conductive vanadate glass obtained by the step. The power source can be applied to any type using either an AC power source or a DC power source. Furthermore, the power source is preferably a high voltage power source.
 本最良形態に係る一の構成例として、クリーンルーム内の天井に設けられるイオナイザーを例にとり以下に説明する。即ち、図1に示すように、電源1と、クリーンルームの天井Cに本体ケース2が設けられ、外部に少なくとも先端が突出するように放電電極3が本体ケース2内に設けられている。放電電極3は、棒状の導電性ガラスの下端を、円錐形に加工した部材で、その上端は電源1に接続されている。尚、放電電極以外の構成は、従来技術{例えば、特開2004-253193号公報、特開2007-66822号公報に示されるようなブロアタイプ、特開2007-141691号公報に示されるようなバータイプ、特開2004-319358号公報に示されるようなガンタイプ}がそのまま適用できるので、以下、放電電極を中心に説明する。 As an example of the configuration according to the best mode, an ionizer provided on the ceiling in the clean room will be described below as an example. That is, as shown in FIG. 1, the main body case 2 is provided on the power source 1 and the ceiling C of the clean room, and the discharge electrode 3 is provided in the main body case 2 so that at least the tip protrudes outside. The discharge electrode 3 is a member obtained by processing a lower end of a rod-shaped conductive glass into a conical shape, and the upper end thereof is connected to the power source 1. The configuration other than the discharge electrode is a conventional technique {for example, a blower type as disclosed in JP-A-2004-253193 and JP-A-2007-66822, and a bar as disclosed in JP-A-2007-141169. Type, gun type as disclosed in Japanese Patent Application Laid-Open No. 2004-319358 can be applied as it is, and the following description will focus on the discharge electrode.
導電性ガラス
 本発明に係るイオナイザーは、放電電極として、所定の処理を施された導電性バナジン酸塩ガラスを用いたことを特徴とする。即ち、本発明は、通常の手法により製造した導電性バナジン酸塩ガラスを水系媒体中に浸漬することにより、粉体が表面に析出しない低発塵性導電性ガラスを放電電極として使用することを本質とする。尚、本最良形態に係る放電電極としては、先端の尖った放電針を使用することが好ましく、少なくとも放電電極の放電先端部分が当該導電性バナジン酸塩ガラスから構成されていればよい。ここで、放電電極の導電性バナジン酸塩ガラス以外の部分構成としては、特に限定されないが、例えば、タングステン、チタン、シリコン等のレアメタルや、鉄等を使用することが可能である。そこで、まずは、水処理前の導電性バナジン酸塩ガラス(未処理)を構成する各成分について説明し、続いて、当該導電性バナジン酸塩ガラス(未処理)の性質を説明し、その次に、当該導電性ガラス(未処理)を製造する方法について説明する。次に、低発塵性導電性バナジン酸塩ガラスの製造方法及びその性質を説明する。以下の最良形態では、水系液体媒体として水を例に採り詳述するがこれに限定されるものではない。
Conductive glass The ionizer according to the present invention is characterized in that a conductive vanadate glass subjected to a predetermined treatment is used as a discharge electrode. That is, the present invention uses a low dust-generating conductive glass in which powder is not deposited on the surface as a discharge electrode by immersing a conductive vanadate glass produced by a normal technique in an aqueous medium. Let it be the essence. As the discharge electrode according to the best mode, it is preferable to use a discharge needle having a sharp tip, and at least the discharge tip portion of the discharge electrode only needs to be made of the conductive vanadate glass. Here, the partial configuration of the discharge electrode other than the conductive vanadate glass is not particularly limited. For example, rare metals such as tungsten, titanium, and silicon, iron, and the like can be used. Therefore, first, each component constituting the conductive vanadate glass (untreated) before water treatment will be described, and then the properties of the conductive vanadate glass (untreated) will be described. The method for producing the conductive glass (untreated) will be described. Next, a method for producing a low dust-generating conductive vanadate glass and its properties will be described. In the following best mode, water will be described as an example of the aqueous liquid medium, but the present invention is not limited to this.
《導電性バナジン酸塩ガラス(未処理)》
 本最良形態に係るイオナイザーの放電電極は、少なくとも一部が、導電性バナジン酸塩ガラスからなる。「導電性バナジン酸塩ガラス」は、バナジン酸塩を含む導電性ガラスである限り特に限定されないが、高導電性であるという理由で、バナジウム、バリウム及び鉄を含む酸化物系ガラス組成物であることが好適である。ここで、まず、バナジウムは、酸化物系ガラスの主骨格を形成させるための構成元素であり、その酸化数が2、3、4、5等に変化して、電子がホッピングする確率を高めることができる。次に、バリウムは、二次元的な構成のバナジウム酸化物のガラス骨格を3次元化するために添加される構成元素である。更に、鉄は、電気伝導度の調整成分であり、この量を変化させることで導電性をコントロールすることができる。
《Conductive vanadate glass (untreated)》
At least a part of the discharge electrode of the ionizer according to the best mode is made of conductive vanadate glass. The “conductive vanadate glass” is not particularly limited as long as it is a conductive glass containing vanadate, but is an oxide-based glass composition containing vanadium, barium and iron because it is highly conductive. Is preferred. Here, first, vanadium is a constituent element for forming the main skeleton of oxide-based glass, and its oxidation number changes to 2, 3, 4, 5, etc., to increase the probability that electrons hop. Can do. Next, barium is a constituent element added to make the glass skeleton of the vanadium oxide having a two-dimensional structure three-dimensional. Furthermore, iron is a component for adjusting electrical conductivity, and the conductivity can be controlled by changing this amount.
 ここで、バナジン酸塩ガラス中の酸化バナジウムの含有量は、0.1~98モル%の範囲とすることが好適であり、40~98モル%の範囲とすることがより好適である。バナジン酸塩ガラス中の酸化バリウムの含有量は、1~40モル%の範囲とすることが好適である。バナジン酸塩ガラス中の酸化鉄の含有量は、1~20モル%の範囲とすることが好適である。更に、酸化バリウム(B)と酸化バナジウム(V)のモル比(B:V)は、好適には5:90~35:50である。また、酸化鉄(F)と酸化バナジウム(V)のモル比(F:V)は、好適には5:90~15:50である。 Here, the vanadium oxide content in the vanadate glass is preferably in the range of 0.1 to 98 mol%, more preferably in the range of 40 to 98 mol%. The content of barium oxide in the vanadate glass is preferably in the range of 1 to 40 mol%. The content of iron oxide in the vanadate glass is preferably in the range of 1 to 20 mol%. Furthermore, the molar ratio (B: V) of barium oxide (B) to vanadium oxide (V) is preferably 5:90 to 35:50. The molar ratio (F: V) of iron oxide (F) to vanadium oxide (V) is preferably 5:90 to 15:50.
 更に、前記導電性バナジン酸塩ガラスは、レニウムを含有していてもよい。ここで、レニウムは、導電性に優れている(更には酸化数が変動しうるので電子ホッピング効果を高めることが可能である)ので、バナジン酸塩ガラスの電気伝導度を更に高めることができる。加えて、ガラス転移温度や結晶化温度を所定範囲に設定できるので、アニーリング処理の容易化も可能となる。尚、レニウムを含有する場合、前記組成物中の量は、1~15モル%であることが好適である。 Furthermore, the conductive vanadate glass may contain rhenium. Here, rhenium is excellent in electrical conductivity (and can further increase the electron hopping effect because the oxidation number can be changed), so that the electrical conductivity of the vanadate glass can be further increased. In addition, since the glass transition temperature and the crystallization temperature can be set within a predetermined range, the annealing process can be facilitated. When rhenium is contained, the amount in the composition is preferably 1 to 15 mol%.
 更に、前記導電性バナジン酸塩ガラスは、他のガラス成分、例えば、酸化カルシウム、酸化ナトリウム、酸化カリウム、酸化バリウム、酸化ホウ素、酸化ストロンチウム、酸化ジルコニウム、酸化銀、ヨウ化銀、酸化リチウム、ヨウ化リチウム、酸化セシウム、ヨウ化ナトリウム、酸化インジウム、酸化錫等を含有してもよい。 Further, the conductive vanadate glass is composed of other glass components such as calcium oxide, sodium oxide, potassium oxide, barium oxide, boron oxide, strontium oxide, zirconium oxide, silver oxide, silver iodide, lithium oxide, iodine. Lithium iodide, cesium oxide, sodium iodide, indium oxide, tin oxide and the like may be contained.
 このようなバナジン酸塩ガラスの電気伝導度は、25℃の室温において、10-4~10-1S・cm-1、好ましくは10-3~10-2S・cm-1の範囲とすることが好適である。特に、半導体特性を維持するという観点からは、10-1S・cm-1以下であることが好適である。ここで、本明細書での電気伝導度は、四端子法により測定された体積抵抗率を指す。 The electrical conductivity of such vanadate glass is in the range of 10 −4 to 10 −1 S · cm −1 , preferably 10 −3 to 10 −2 S · cm −1 at a room temperature of 25 ° C. Is preferred. In particular, from the viewpoint of maintaining semiconductor characteristics, it is preferably 10 −1 S · cm −1 or less. Here, the electrical conductivity in this specification refers to the volume resistivity measured by the four probe method.
 尚、電気伝導度の調整の観点から、導電性ガラスの前記ベース組成物(バナジウム、バリウム及び酸化物系ガラス組成物)を希釈するために、当該組成物に希釈成分{好適には、SiO(60~70モル%)、P(10~20モル%)、Al(2~10モル%)、ZnO(0~2モル%)、Sb(0~2モル%)、TiO(0~2モル%)}を添加してもよい。 In addition, in order to dilute the base composition (vanadium, barium and oxide glass composition) of the conductive glass from the viewpoint of adjusting the electric conductivity, a diluted component {preferably, SiO 2 is added to the composition. (60-70 mol%), P 2 O 3 (10-20 mol%), Al 2 O 3 (2-10 mol%), ZnO (0-2 mol%), Sb 2 O 3 (0-2 mol%) %), TiO 2 (0 to 2 mol%)} may be added.
 ここで、導電性バナジン酸塩ガラスは、酸化バナジウム、酸化バリウム及び酸化鉄(場合により酸化レニウム)を含む混合物を溶融、急冷してそのガラス組成物を得た後、前記ガラス組成物のガラス転移温度以上、結晶化温度以下又は、結晶化温度以上であっても軟化点温度以下のアニーリング処理の温度に所定時間保持させることにより製造可能である。 Here, the conductive vanadate glass is obtained by melting and quenching a mixture containing vanadium oxide, barium oxide and iron oxide (optionally rhenium oxide) to obtain the glass composition, and then the glass transition of the glass composition. Even if it is above the temperature, below the crystallization temperature, or above the crystallization temperature, it can be produced by keeping it at the annealing treatment temperature below the softening point temperature for a predetermined time.
 例えば、酸化バナジウム50~90モル%、酸化バリウム5~35モル%、酸化鉄5~25モル%を含む混合物(場合により、当該混合物100質量%に対して酸化レニウム1~10質量%を添加)を白金るつぼ中等で加熱溶融した後、これを急冷してガラス化し、このガラス化物を所定のアニーリング処理条件で熱処理する。 For example, a mixture containing 50 to 90 mol% of vanadium oxide, 5 to 35 mol% of barium oxide, and 5 to 25 mol% of iron oxide (in some cases, 1 to 10 mass% of rhenium oxide is added to 100 mass% of the mixture) After being heated and melted in a platinum crucible or the like, it is rapidly cooled to be vitrified, and this vitrified product is heat-treated under predetermined annealing conditions.
《低発塵性導電性バナジン酸塩ガラス》
 更に、使用するバナジン酸塩ガラスは、酸化バナジウムを含む混合物を調製した後に溶融及び急冷して得られる導電性バナジン酸塩ガラス又は当該ガラスに対して更にアニーリング処理を施した導電性バナジン酸塩ガラスを、水系液体媒体(例えば水)中に浸漬することにより得られたものである。一般に、導電性バナジン酸塩ガラスを長時間水系液体媒体(例えば水)に浸漬させたとき、ガラス表面と水等との反応により表面上に遊離層を形成する場合があることが知られている。そして、導電性バナジン酸塩ガラスに当該遊離層が形成された場合、導電性ガラスの導電率を著しく低下させることに加え、当該遊離層が粉塵の更なる原因となることが危惧されていた。しかしながら、本発明者らは、当該常識に反して実施したところ、当該バナジン酸塩ガラスの電気伝導度を下げることなく、低粉塵性導電性バナジン酸塩ガラスを得ることができることを確認した。ここで、「水系液体媒体」とは、水、例えば、純水、塩化ナトリウム等の他の成分を含有する水(例えば水道水や海水)、アルコール、例えば、エタノール、水とアルコールとの混合液、例えば、エタノールと水との混合液体、を挙げることができる。また、「低発塵性導電性バナジン酸塩ガラス」は、JIS B 9920:2002に準じた発塵性測定法(例えばシスメックス製モデル110を使用)で測定を行った場合、用途により異なるが、1μm以上の塵が0個であるガラスを指す(好適には、0.5μm以上の塵が0個、更に好適には、0.3μm以上の塵が5個以下)。「アニーリング処理」とは、ガラス転移温度以上結晶化温度以下のみならず、結晶化温度以上であっても軟化点温度以下であればよい。
<Low dusting conductive vanadate glass>
Furthermore, the vanadate glass to be used is a conductive vanadate glass obtained by preparing a mixture containing vanadium oxide and then melting and quenching, or a conductive vanadate glass obtained by further annealing the glass. Is immersed in an aqueous liquid medium (for example, water). In general, it is known that when a conductive vanadate glass is immersed in an aqueous liquid medium (for example, water) for a long time, a free layer may be formed on the surface due to a reaction between the glass surface and water or the like. . And when the said free layer was formed in electroconductive vanadate glass, in addition to reducing the electroconductivity of electroconductive glass remarkably, it was worried that the said free layer may become the cause of further dust. However, the present inventors have confirmed that it is possible to obtain a low dust conductive vanadate glass without lowering the electrical conductivity of the vanadate glass when carried out against the common sense. Here, the “aqueous liquid medium” refers to water (for example, pure water, water containing other components such as sodium chloride) (for example, tap water or seawater), alcohol, for example, ethanol, and a mixed liquid of water and alcohol. Examples thereof include a mixed liquid of ethanol and water. In addition, the “low dusting conductive vanadate glass” is different depending on the use when measured by a dusting measuring method according to JIS B 9920: 2002 (for example, using a Sysmex model 110). It refers to a glass having 0 dust of 1 μm or more (preferably 0 dust of 0.5 μm or more, more preferably 5 or less of 0.3 μm or more). The “annealing treatment” is not limited to the glass transition temperature or more and the crystallization temperature or less, but may be the crystallization temperature or more and the softening point temperature or less.
 ここで、より詳細に当該水系液体媒体処理法を説明すると、当該方法は、導電性バナジン酸塩ガラス(未処理)を水中に浸漬する工程からなる。尚、本最良形態に係る工程は、前記の導電性バナジン酸塩ガラスの製造工程において、ガラス組成物の溶融・急冷後に行ってもよいし、また、前記アニーリング処理後に行ってもよい。更には、放電針に加工した後に行ってもよい。中でも、放電針に加工した後に本工程を行うことが、特に好ましい。本工程を当該順序で行うことにより、より発塵性の低い放電針を得ることができる。 Here, the aqueous liquid medium treatment method will be described in more detail. The method includes a step of immersing a conductive vanadate glass (untreated) in water. The process according to the best mode may be performed after the glass composition is melted and rapidly cooled in the manufacturing process of the conductive vanadate glass, or may be performed after the annealing treatment. Further, it may be performed after processing into a discharge needle. Among these, it is particularly preferable to perform this step after processing into a discharge needle. By performing this step in this order, a discharge needle having a lower dust generation property can be obtained.
 具体的には、水中に導電性バナジン酸塩ガラスを浸して水温を所定温度に設定し、所定時間粉塵由来成分を水中に溶かす処理を実行する。ここで、当該浸漬の際、当該バナジン酸塩ガラスに対して所定の大きさの電気を流すこと、及び/又は、超音波処理を行うことが好適である。これらを組み合わせることにより、粉塵由来成分の抽出を効率的かつ短時間で実行することが出来る。 Specifically, a process is performed in which conductive vanadate glass is immersed in water, the water temperature is set to a predetermined temperature, and dust-derived components are dissolved in water for a predetermined time. Here, at the time of the immersion, it is preferable to apply a predetermined amount of electricity to the vanadate glass and / or perform ultrasonic treatment. By combining these, extraction of dust-derived components can be performed efficiently and in a short time.
 ここで、水系液体媒体の温度は30℃~沸点以下が好適であり、水の場合には、水温は30~100℃が好適であり、40~70℃でより好適である。尚、「沸点」とは、常圧下(1atm)で測定された沸点のことを意味し、共沸しない混合液体の場合、成分のうち最も低い成分の沸点を指し、更に、共沸する混合液体の場合には、共沸点を意味する。また、電気を流す場合には、電源は、交流であっても、直流であってもよく、1~100mAが好適であり、1~20mAでより好適である。また、水中で電流を流さず工程を行う場合には、好適には1~2000時間、更に好適には1~1500時間の処理を行うのがよい。また、電流を流しながら当該処理を行う場合には、好適には1~300時間、より好適には1~150時間、処理を行うのがよい。また、超音波処理をしながら行う場合、超音波の周波数は、30kHz~4MHzで好適であり、30kHz~3MHzでより好適であり、30~80kHzで更に好適である。また超音波処理の時間は、1~30時間で好適であり、1~10時間でより好適であり、1~3時間で更に好適である。 Here, the temperature of the aqueous liquid medium is preferably 30 ° C. to the boiling point or less, and in the case of water, the water temperature is preferably 30 to 100 ° C., more preferably 40 to 70 ° C. The “boiling point” means a boiling point measured under normal pressure (1 atm). In the case of a mixed liquid that does not azeotrope, it refers to the boiling point of the lowest component among the components, and further, the mixed liquid that azeotropes. In the case of, it means an azeotropic point. In the case of supplying electricity, the power source may be alternating current or direct current, and is preferably 1 to 100 mA, more preferably 1 to 20 mA. Further, in the case where the process is carried out without passing an electric current in water, the treatment is preferably carried out for 1 to 2000 hours, more preferably 1 to 1500 hours. In the case where the treatment is performed while a current is applied, the treatment is preferably performed for 1 to 300 hours, more preferably for 1 to 150 hours. When performing ultrasonic treatment, the ultrasonic frequency is preferably 30 kHz to 4 MHz, more preferably 30 kHz to 3 MHz, and further preferably 30 to 80 kHz. The sonication time is preferably 1 to 30 hours, more preferably 1 to 10 hours, and further preferably 1 to 3 hours.
 尚、当該処理直後に得られる低発塵性導電性バナジン酸塩ガラスの表面には、黄色の粉が付着しており、これをふき取り、得られた導電性バナジン酸塩ガラスを使用する。 In addition, yellow powder adheres to the surface of the low dust generation conductive vanadate glass obtained immediately after the treatment, and this is wiped off and the obtained conductive vanadate glass is used.
 超音波処理を行った場合、超音波によるキャビテーション効果を得ることが出来る。当該キャビテーション効果は、超音波照射により、液体が激しく揺さぶられて局所的に圧力が高い部分と低い部分が発生し、これにより圧力が低い部分で液体中に小さな真空の気泡(キャビテーション)が生じ、当該気泡が押しつぶされ破裂することにより衝撃波が生じる現象である。当該キャビテーション効果を利用して低発塵性処理を行うことにより、当該衝撃波が、試料に対して衝撃を与えるため、発塵由来成分の抽出を効率的に行うことができる。更に、試料表面に析出した成分がキャビテーション効果に伴う洗浄効果により層状に張り付くことを防止し、円滑に操作が進められる。 When ultrasonic treatment is performed, a cavitation effect by ultrasonic waves can be obtained. The cavitation effect is due to the fact that the liquid is shaken vigorously by ultrasonic irradiation, and a locally high pressure portion and a low pressure portion are generated. This is a phenomenon in which shock waves are generated when the bubbles are crushed and burst. By performing the low dust generation treatment using the cavitation effect, the shock wave gives an impact to the sample, so that the dust-derived component can be extracted efficiently. Furthermore, the component deposited on the sample surface is prevented from sticking in layers due to the cleaning effect associated with the cavitation effect, and the operation proceeds smoothly.
 このようにして得られる低発塵性導電性バナジン酸塩ガラスは、後述の発塵性測定法により得られる結果が、好適には、1μm以上の塵が0個であり、より好適には0.5μm以上の塵が0個であり、更に好適には、0.3μm以上の塵が5個以下である。加えて、本最良形態に係る低発塵性導電性バナジン酸塩ガラスの電気伝導度は、25℃において10-13S・cm-1以上が好適であり、10-9S・cm-1以上がより好適であり、10-7S・cm-1以上が更に好適である。 The low dusting conductive vanadate glass thus obtained has a result obtained by the dusting measurement method described later, preferably 0 dust of 1 μm or more, and more preferably 0. The number of dusts of 0.5 μm or more is zero, and more preferably, the number of dusts of 0.3 μm or more is five or less. In addition, the electrical conductivity of the low dusting conductive vanadate glass according to the best mode is preferably 10 −13 S · cm −1 or more at 25 ° C., and 10 −9 S · cm −1 or more. Is more preferable, and 10 −7 S · cm −1 or more is more preferable.
《放電針の製造方法》
 次に、本最良形態に係る導電性ガラスからなる放電針の製造方法を詳述する。まず、バナジン酸塩を主成分とした平板状の導電ガラスを製造する。次に、研磨機により当該平板状の導電ガラスを研磨する。この際、研磨剤としては、コランダムやアランダム(アルミナ)、酸化セリウム、コロイダルシリカ等を使用することが好適である。特に、コランダムは粒径が粗く、酸化セリウムやコロイダルシリカは細かいので、前者は初期段階で後者は鏡面仕上げの段階で使用することが好適である。次に、研磨した平板状の導電ガラスを規定サイズに切断する。そして、当該角状の導電ガラスをダイヤモンド研磨機に固定し、長軸回りに回転させながらダイヤモンドで丸棒に削っていく。この際、回転数は1000~6000rpmとすることが好適である。その後、先端部を円錐状に削る操作を同じダイヤモンド研磨機で行うことにより、放電針を製造することができる。
<< Discharge needle manufacturing method >>
Next, the manufacturing method of the discharge needle which consists of conductive glass which concerns on this best form is explained in full detail. First, a flat conductive glass mainly composed of vanadate is manufactured. Next, the flat conductive glass is polished by a polishing machine. At this time, it is preferable to use corundum, alundum (alumina), cerium oxide, colloidal silica or the like as the abrasive. In particular, corundum has a coarse particle size, and cerium oxide and colloidal silica are fine. Therefore, it is preferable to use the former in the initial stage and the latter in the mirror finishing stage. Next, the ground flat conductive glass is cut into a specified size. Then, the rectangular conductive glass is fixed to a diamond grinder, and is cut into a round bar with diamond while rotating around the long axis. At this time, the rotation speed is preferably 1000 to 6000 rpm. Then, the discharge needle can be manufactured by performing the operation of cutting the tip into a conical shape with the same diamond grinder.
 以上のような構成を有する本実施例の作用は以下の通りである。すなわち、電源1から放電電極3に電圧を印加する。すると、放電電極3からコロナ放電が発生し、放電電極周囲の空気がイオン化される。このイオン化された空気が帯電した物質に照射することによって、帯電物質が除電される。 The operation of this embodiment having the above-described configuration is as follows. That is, a voltage is applied from the power source 1 to the discharge electrode 3. Then, corona discharge is generated from the discharge electrode 3, and the air around the discharge electrode is ionized. The ionized air irradiates the charged substance, whereby the charged substance is neutralized.
製造例1(導電性バナジン酸塩ガラス)
 その化学組成が15BaO・70V・15FeOにそれぞれ調整された混合物を作成し、この混合物を白金るつぼ等に移し電気炉中1000℃で60分間加熱し、溶融した。これを直ちに氷水で急冷する(白金るつぼの外側、底部を氷水に浸ける)ことにより、導電性バナジン酸塩ガラス(電気伝導度:7×10-3S・cm-1)を得た。当該ガラスを400℃で1時間アニーリング処理して、以下の低発塵性処理に付される導電性バナジン酸塩ガラス(電気伝導度:7×10-3S・cm-1)を製造した。
Production Example 1 (conductive vanadate glass)
Mixtures each having a chemical composition adjusted to 15BaO · 70V 2 O 5 · 15FeO were prepared. The mixture was transferred to a platinum crucible or the like, heated in an electric furnace at 1000 ° C. for 60 minutes, and melted. This was immediately quenched with ice water (the outer side of the platinum crucible, the bottom was immersed in ice water) to obtain a conductive vanadate glass (electric conductivity: 7 × 10 −3 S · cm −1 ). The glass was annealed at 400 ° C. for 1 hour to produce a conductive vanadate glass (electric conductivity: 7 × 10 −3 S · cm −1 ) subjected to the following low dust generation treatment.
電気伝導度の測定方法
 電気伝導度は、厚さが1ミリメートル以下の導電性バナジン酸塩ガラス片を四端子法により求めた。ここでは、溶融した金属インジウムを用いて、ガラス表面にリード線を固定させたものを電極とした。電気伝導度(σ)の値は、電流密度(Acm-2)の値を電場の大きさで割ったものである。
Acm-2÷Vcm-1=A/Vcm-1=S/cm-1=S・cm-1
尚、電気伝導度(S・cm-1)は、比抵抗(Ω・cm)の逆数である。
Measuring method of electric conductivity The electric conductivity was determined by a four-terminal method for conductive vanadate glass pieces having a thickness of 1 mm or less. Here, an electrode was prepared by fixing lead wires to the glass surface using molten metal indium. The value of electric conductivity (σ) is obtained by dividing the value of current density (Acm −2 ) by the magnitude of the electric field.
Acm −2 ÷ Vcm −1 = A / Vcm −1 = S / cm −1 = S · cm −1
The electrical conductivity (S · cm −1 ) is the reciprocal of the specific resistance (Ω · cm).
発塵性の測定方法
 導電性バナジン酸塩ガラス自体の発塵性は、図2に示した測定装置100を用いて測定した。測定装置100は、10cm×10cm×10cmの空間101と、当該空間101内に設置された、細い棒からなるY字状の試料ステージ102と、パーティクルカウンター接続用孔103とを有する。前記パーティクルカウンター接続用孔103は、パーティクルカウンター200(シスメックス製モデル110)の空気吸引口に接続されている。
 発塵性の測定方法は、以下の工程(1)~(4)で実施する。
工程(1):脱脂綿を用いて試料A(3mm×3mm×40mmの直方体形状)を純水で洗浄(10秒)した後、十分に乾燥させる。
工程(2):前記工程の後、試料Aを湿度80%及び25℃の条件下で、1日間放置する。
工程(3):温度50℃、湿度0%の条件下で、1時間放置する。
工程(4):空間100内を充分にクリーンな状態(JIS B 9920:2002におけるクラス1)にして、前記工程により得られた試料Aをステージ102に置き、更に、パーティクルカウンター接続用孔103と試料Aが1cmの距離となるように設置した後に、毎分2.83リットルの速度で空間100内の空気をパーティクルカウンターに吸引し、JIS B 9920:2002における粒子の個数測定方法に準じて、0.1~0.2μm、0.2~0.3μm、0.3~0.5μm、0.5μm~1.0μm、1.0μm以上で分割測定を実施する。
 尚、試験回数は基本的には1回であるが、複数回実施した際に1回でも1μm以上の粒子が確認できなかった場合には、「低発塵性」と認定することとする。
Method for Measuring Dust Generation The dust generation property of the conductive vanadate glass itself was measured using the measuring apparatus 100 shown in FIG. The measuring apparatus 100 includes a space 101 of 10 cm × 10 cm × 10 cm, a Y-shaped sample stage 102 made of a thin bar, and a particle counter connection hole 103 installed in the space 101. The particle counter connection hole 103 is connected to an air suction port of the particle counter 200 (Sysmex model 110).
The method for measuring dust generation is performed in the following steps (1) to (4).
Step (1): Sample A (3 mm × 3 mm × 40 mm rectangular parallelepiped shape) is washed with pure water (10 seconds) using absorbent cotton, and then sufficiently dried.
Step (2): After the step, the sample A is allowed to stand for 1 day under conditions of humidity 80% and 25 ° C.
Step (3): Leave at a temperature of 50 ° C. and a humidity of 0% for 1 hour.
Step (4): The space 100 is made sufficiently clean (class 1 in JIS B 9920: 2002), the sample A obtained by the above step is placed on the stage 102, and the particle counter connection hole 103 and After the sample A is placed at a distance of 1 cm, the air in the space 100 is sucked into the particle counter at a speed of 2.83 liters per minute, and in accordance with the method for measuring the number of particles in JIS B 9920: 2002, Division measurement is performed at 0.1 to 0.2 μm, 0.2 to 0.3 μm, 0.3 to 0.5 μm, 0.5 μm to 1.0 μm, 1.0 μm or more.
The number of tests is basically one time, but if a particle having a size of 1 μm or more cannot be confirmed even once, it is recognized as “low dust generation”.
黄変性の測定方法
 黄変性の測定方法は、以下の工程(1)~(3)で実施する。
工程(1):脱脂綿を用いて試料A(3mm×3mm×40mmの直方体形状)を純水で洗浄(10秒)した後、十分に乾燥させる。
工程(2):前記工程の後、試料Aを湿度80%及び25℃の条件下で、1日間放置する。
工程(3):JIS Z 8701に従ってL表色系を測定した。
Yellowing Measurement Method Yellowing measurement method is carried out in the following steps (1) to (3).
Step (1): Sample A (3 mm × 3 mm × 40 mm rectangular parallelepiped shape) is washed with pure water (10 seconds) using absorbent cotton, and then sufficiently dried.
Step (2): After the step, the sample A is allowed to stand for 1 day under conditions of humidity 80% and 25 ° C.
Step (3): The L * a * b * color system was measured according to JIS Z 8701.
製造例2(低発塵性導電性バナジン酸塩ガラス)
 製造例1により得られた導電性バナジン酸塩ガラスを、蓋付サンプル瓶に用意した水道水の中に浸して、室温で約二ヶ月間、低発塵性処理を行った。その結果、黄色い成分が水中に溶け出し、水全体が黄色に染まった。その後、サンプル瓶から導電性バナジン酸塩ガラスを取り出し、表面をきれいに洗い流し、製造例2に係る低発塵性導電性バナジン酸塩ガラスを得た。当該低発塵性導電性バナジン酸塩ガラスを再度、水道水に浸したが、その後2ヶ月間以上サンプル瓶の水に黄色い成分は溶出しなかった。尚、当該低発塵性導電性バナジン酸塩ガラスの電気伝導度は、処理前の導電性バナジン酸塩ガラスと変化は無かった(電気伝導度:7×10-3S・cm-1)。また、発塵試験の結果は表1に示す。尚、当該処理前の導電性バナジン酸塩ガラスは、前記発塵性試験の工程(2)の前後で、色の変化が観測された(黄色に変化した)。一方、当該処理後の低発塵性導電性バナジン酸塩ガラスは、前記発塵試験の工程(2)の前後で色の変化は観測されなかった(黄色に変化しなかった)。
Production Example 2 (Low dusting conductive vanadate glass)
The conductive vanadate glass obtained in Production Example 1 was immersed in tap water prepared in a sample bottle with a lid, and a low dust generation treatment was performed at room temperature for about two months. As a result, the yellow component was dissolved in water, and the entire water was dyed yellow. Thereafter, the conductive vanadate glass was taken out from the sample bottle, and the surface was washed away cleanly to obtain a low dusting conductive vanadate glass according to Production Example 2. The low dusting conductive vanadate glass was again immersed in tap water, but the yellow component did not elute in the water of the sample bottle for more than 2 months. The electrical conductivity of the low dusting conductive vanadate glass was not different from that of the conductive vanadate glass before treatment (electrical conductivity: 7 × 10 −3 S · cm −1 ). The results of the dust generation test are shown in Table 1. The conductive vanadate glass before the treatment was observed to change in color (changed to yellow) before and after the dust generation test step (2). On the other hand, in the low dusting conductive vanadate glass after the treatment, no color change was observed before and after the step (2) of the dusting test (not changed to yellow).
製造例3(低発塵性導電性バナジン酸塩ガラス)
 製造例1により得られた導電性バナジン酸塩ガラスを、15℃の水中に浸け、100℃まで昇温し、5~10V、1~5mAの電流を流し、3~15時間、低発塵性処理を行った後、表面に付着した黄色い成分を拭き取った上できれいに洗い流し、製造例3に係る低発塵性導電性バナジン酸塩ガラスを得た(電気伝導度:7×10-3~1×10-2S・cm-1)。尚、低発塵・耐黄変性導電性バナジン酸塩ガラス表面に付着した黄色い成分の分析をXPSにて行った結果、表面に付着した成分は、C:36.7、O:46.7、V:8.0、N:1.4、S:1.8、Fe:1.8、Ba:3.6(atom%)であった。また、図3は、当該処理前の導電性バナジン酸塩ガラスの表面の様子{図3(a)}と、処理後の低発塵性導電性バナジン酸塩ガラス表面の様子{図3(b)}を示した図である。尚、当該処理前の導電性バナジン酸塩ガラスは、前記発塵性試験の工程(2)の前後で、色の変化が観測された(黄色に変化した)。一方、当該処理後の低発塵性導電性バナジン酸塩ガラスは、前記発塵試験の工程(2)の前後で色の変化は観測されなかった(黄色に変化しなかった)。
Production Example 3 (Low dusting conductive vanadate glass)
The conductive vanadate glass obtained in Production Example 1 is soaked in water at 15 ° C., heated to 100 ° C., supplied with a current of 5 to 10 V and 1 to 5 mA, and has a low dust generation for 3 to 15 hours. After the treatment, the yellow component adhering to the surface was wiped off and washed away to obtain a low dusting conductive vanadate glass according to Production Example 3 (electric conductivity: 7 × 10 −3 to 1 × 10 −2 S · cm −1 ). In addition, as a result of analyzing the yellow component adhering to the low dust generation / yellowing resistance conductive vanadate glass surface by XPS, the component adhering to the surface was C: 36.7, O: 46.7, V: 8.0, N: 1.4, S: 1.8, Fe: 1.8, Ba: 3.6 (atom%). 3 shows the state of the surface of the conductive vanadate glass before the treatment {FIG. 3 (a)} and the state of the surface of the low dusting conductive vanadate glass after the treatment {FIG. 3 (b). )}. The conductive vanadate glass before the treatment was observed to change in color (changed to yellow) before and after the dust generation test step (2). On the other hand, in the low dusting conductive vanadate glass after the treatment, no color change was observed before and after the step (2) of the dusting test (not changed to yellow).
製造例4(低発塵性導電性バナジン酸塩ガラス)
 発信周波数40kHzの洗浄機(シチズン製超音波洗浄機 SW7800)に対して、300ccの水を加え、製造例1により製造した導電性バナジン酸塩ガラスを入れ、5分間、超音波処理を行った。その結果、水中内に発塵し黄色に変色し、耐発塵性導電性バナジン酸塩ガラスが得られた(電気伝導度7×10-3S・cm-1)。また、発塵試験の結果は表1に示す。尚、当該処理前の導電性バナジン酸塩ガラスは、前記発塵性試験の工程(2)の前後で、色の変化が観測された(黄色に変化した)。一方、当該処理後の低発塵性導電性バナジン酸塩ガラスは、前記発塵試験の工程(2)の前後で色の変化は観測されなかった(黄色に変化しなかった)。
Production Example 4 (Low dusting conductive vanadate glass)
300 cc of water was added to a washing machine having a transmission frequency of 40 kHz (Citizen ultrasonic washing machine SW7800), and the conductive vanadate glass produced in Production Example 1 was added thereto, followed by ultrasonic treatment for 5 minutes. As a result, dust was generated in water and turned yellow, and a dust-resistant conductive vanadate glass was obtained (electric conductivity 7 × 10 −3 S · cm −1 ). The results of the dust generation test are shown in Table 1. The conductive vanadate glass before the treatment was observed to change in color (changed to yellow) before and after the dust generation test step (2). On the other hand, in the low dusting conductive vanadate glass after the treatment, no color change was observed before and after the step (2) of the dusting test (not changed to yellow).
製造例5(低発塵性導電性バナジン酸塩ガラス)
 発信周波数72KHzの洗浄機(Alex社 ATSL3022)に対して、1,000ccの水を加え、製造例1により製造した導電性バナジン酸塩ガラスを入れ、5分間、超音波処理を行った。その結果、水中内に発塵し黄色に変色し、耐発塵性導電性バナジン酸塩ガラスが得られた(電気伝導度:7×10-3S・cm-1)。また、発塵試験の結果は表1に示す。尚、当該処理前の導電性バナジン酸塩ガラスは、前記発塵性試験の工程(2)の前後で、色の変化が観測された(黄色に変化した)。一方、当該処理後の低発塵性導電性バナジン酸塩ガラスは、前記発塵試験の工程(2)の前後で色の変化は観測されなかった(黄色に変化しなかった)。
Production Example 5 (Low dusting conductive vanadate glass)
1,000 cc of water was added to a washing machine (Alex ATL3022) having a transmission frequency of 72 kHz, and the conductive vanadate glass produced in Production Example 1 was added thereto, followed by sonication for 5 minutes. As a result, dust was generated in water and turned yellow, and a dust-resistant conductive vanadate glass was obtained (electric conductivity: 7 × 10 −3 S · cm −1 ). The results of the dust generation test are shown in Table 1. The conductive vanadate glass before the treatment was observed to change in color (changed to yellow) before and after the dust generation test step (2). On the other hand, in the low dusting conductive vanadate glass after the treatment, no color change was observed before and after the step (2) of the dusting test (not changed to yellow).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
製造例6(放電針)
 製造例2に係る板状の導電性バナジン酸塩ガラス部材を、研磨機を用いて平板状の当該導電ガラスを研磨した。この際、最小は500番の粒径の研磨材を使用し、1500番、2000番と段階的に研磨を行った(最終の2000番はコロイダルシリカでの鏡面加工)。尚、当該研磨は、回転しているラップ盤の上に研磨剤を水で分散させた状態で滴下しながら板ガラスを押しつけて実施した(両面)。この際、時間は各々30分行い、平面度が~±2μmの精度を得るまで鏡面加工を行った。そして、45mm×2.5mm×2.5mmにダイアモンドカッターで切断した後、当該角状の導電ガラスをダイヤモンド研磨機に固定し、先端が円錐状の放電針を作成した。
Production Example 6 (Discharge needle)
The plate-shaped conductive vanadate glass member according to Production Example 2 was polished using a polishing machine. At this time, the smallest was a polishing material having a particle size of 500, and polishing was carried out in steps of 1500 and 2000 (the final number 2000 was mirror-finished with colloidal silica). In addition, the said grinding | polishing was implemented by pressing a plate glass, dripping the abrasive | polishing agent in the state disperse | distributed with water on the rotating lapping machine (both sides). At this time, each time was 30 minutes, and mirror finishing was performed until the flatness obtained an accuracy of ˜ ± 2 μm. And after cutting | disconnecting with a diamond cutter to 45 mm x 2.5 mm x 2.5 mm, the said square-shaped electrically conductive glass was fixed to the diamond grinder, and the front-end | tip conical discharge needle was created.
 上記のように製造した放電針を、図1に示したクリーンルーム用イオナイザーに取り付けた後、発塵検査及び除電検査を実施した。その結果、表2に示すように、放電針として他の材料と比較し、1/2以下の発塵量に抑制できることが判明した。尚、表中の数値は、0.1μm以上の粒子の数である。また、除電検査により、良好に除電されることを確認した。
Figure JPOXMLDOC01-appb-T000002
The discharge needle manufactured as described above was attached to the clean room ionizer shown in FIG. As a result, as shown in Table 2, it was found that the discharge needle can be suppressed to a dust generation amount of 1/2 or less as compared with other materials. The numerical values in the table are the number of particles of 0.1 μm or more. In addition, it was confirmed by the charge removal test that the charge was removed satisfactorily.
Figure JPOXMLDOC01-appb-T000002
 続いて、製造例6において製造した放電針を用いて、当該放電針の放電特性の検討を行った。その結果を表3に示した。ここでは、図1に記載された除電装置を用いて、プレートモニター(150mm×150mm 20pF、シシド静電気社製チャージプレートモニターH0601)により、評価を行った。電圧は放電針に対して印加した電圧(kV)である。印加方式は、交流(AC)であるか直流(DC)であるかを示し、ACの下の数値はACの周波数を意味する。また、電流(μA)は、放電の際に流れる電流である。Decay Timeは、±1000Vに帯電させた帯電物を±100Vまで除電するのに要する時間である。また、イオンバランスは、+・-の偏り分のレンジである。また温度(℃)は、放電実験の際の雰囲気の温度であり、湿度(%)は放電の際の雰囲気の相対湿度である。これにより、本最良形態に係る放電針は、交流であっても直流であっても、良好な除電時間を示し、且つ、良好なイオンバランスを示すため、イオナイザーとして使用可能であることがわかった。
Figure JPOXMLDOC01-appb-T000003
Subsequently, using the discharge needle manufactured in Production Example 6, the discharge characteristics of the discharge needle were examined. The results are shown in Table 3. Here, the evaluation was performed using a static eliminator described in FIG. 1 with a plate monitor (150 mm × 150 mm 20 pF, charge plate monitor H0601 manufactured by Sicid Electrostatics). The voltage is a voltage (kV) applied to the discharge needle. The application method indicates whether it is alternating current (AC) or direct current (DC), and the numerical value under AC means the frequency of AC. The current (μA) is a current that flows during discharge. Decay Time is the time required to neutralize a charged object charged to ± 1000 V to ± 100 V. The ion balance is a range of +/- bias. The temperature (° C.) is the temperature of the atmosphere during the discharge experiment, and the humidity (%) is the relative humidity of the atmosphere during the discharge. As a result, it was found that the discharge needle according to the best mode can be used as an ionizer because it exhibits good static elimination time and good ion balance regardless of whether it is alternating current or direct current. .
Figure JPOXMLDOC01-appb-T000003
図1は、本発明に係る除電装置の概念図である。FIG. 1 is a conceptual diagram of a static eliminator according to the present invention. 図2は、測定装置の概念図である。FIG. 2 is a conceptual diagram of the measuring apparatus. 図3は、本最良形態に係る処理前の導電性バナジン酸塩ガラスの表面の様子{図3(a)}と、処理後の低発塵性導電性バナジン酸塩ガラス表面の様子{図3(b)}を示した図である。FIG. 3 shows the state of the surface of the conductive vanadate glass before the treatment according to the best mode {FIG. 3A} and the state of the surface of the low dusting conductive vanadate glass after the treatment {FIG. 3 It is the figure which showed (b)}.
符号の説明Explanation of symbols
1:電源
2:本体ケース
3:イオナイザー電極
C:天井
1: Power supply 2: Body case 3: Ionizer electrode C: Ceiling

Claims (2)

  1.  バナジン酸塩を含む混合物を調製した後に溶融及び急冷して得られる導電性バナジン酸塩ガラス又は当該ガラスに対して更にアニーリング処理を施した導電性バナジン酸塩ガラスを、水系液体媒体中に浸漬する工程により得られる導電性バナジン酸塩ガラスから少なくとも一部が構成されている、放電電極。 A conductive vanadate glass obtained by melting and quenching after preparing a mixture containing vanadate or a conductive vanadate glass that has been further annealed is immersed in an aqueous liquid medium. A discharge electrode, at least part of which is composed of a conductive vanadate glass obtained by the process.
  2.  空気に高電圧を印加して電離させ、イオンを発生させるための少なくとも一の放電電極と、
     前記放電電極に電力を供給するための電源部と、
    を有するイオナイザーにおいて、
     前記放電電極が、請求項1記載の放電電極である、イオナイザー。
    At least one discharge electrode for generating ions by applying high voltage to air to ionize;
    A power supply for supplying power to the discharge electrode;
    In an ionizer having
    An ionizer, wherein the discharge electrode is the discharge electrode according to claim 1.
PCT/JP2009/050398 2008-01-15 2009-01-14 Ionizer WO2009090965A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-006335 2008-01-15
JP2008006335A JP2011065747A (en) 2008-01-15 2008-01-15 Static eliminator
TW97130541 2008-08-11
TW97130541A TW200931748A (en) 2008-01-15 2008-08-11 Ionizer

Publications (1)

Publication Number Publication Date
WO2009090965A1 true WO2009090965A1 (en) 2009-07-23

Family

ID=40885354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050398 WO2009090965A1 (en) 2008-01-15 2009-01-14 Ionizer

Country Status (1)

Country Link
WO (1) WO2009090965A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074576A (en) * 1996-09-02 1998-03-17 Kazuo Okano Discharge electrode for ion generating apparatus
JP2001217095A (en) * 2000-02-01 2001-08-10 Taiheiyo Cement Corp Electrostatic charge eliminating device
JP2003034548A (en) * 2001-07-18 2003-02-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Vanadate glass and its manufacturing method
JP2004002181A (en) * 2002-04-24 2004-01-08 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Conductive vanadate glass and manufacture method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074576A (en) * 1996-09-02 1998-03-17 Kazuo Okano Discharge electrode for ion generating apparatus
JP2001217095A (en) * 2000-02-01 2001-08-10 Taiheiyo Cement Corp Electrostatic charge eliminating device
JP2003034548A (en) * 2001-07-18 2003-02-07 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Vanadate glass and its manufacturing method
JP2004002181A (en) * 2002-04-24 2004-01-08 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Conductive vanadate glass and manufacture method thereof

Similar Documents

Publication Publication Date Title
JP3983949B2 (en) Polishing cerium oxide slurry, its production method and polishing method
JP2930702B2 (en) Air ionization system
JPWO2013084934A1 (en) Method and apparatus for processing solid oxide
KR20060119807A (en) Nitride based compound semiconductor, cleaning method and manufacturing method of the same, and substrate
JP2001189199A (en) Ion generator and charge neutralizing device
Prasad et al. Generation of pad debris during oxide CMP process and its role in scratch formation
JP2017100933A (en) Glass substrate and glass plate packaging body
JP3537843B2 (en) Clean room ionizer
JP2011065747A (en) Static eliminator
EP3617144A1 (en) Method for manufacturing polycrystalline silicon fragment and method for managing surface metal concentration of polycrystalline silicon fragment
WO2009090965A1 (en) Ionizer
CN106840744A (en) A kind of preparation method of mild steel EBSD sample for analysis
JP4377960B2 (en) Method for producing low dusting conductive vanadate glass
TWI515782B (en) Silicon wafer grinding method and abrasive
JP2007009256A (en) Rare earth metal member, and making method
JPH10279349A (en) Alumina ceramic excellent in plasma resistance
JP3271389B2 (en) How to use electrostatic chuck
JP4166883B2 (en) Electrolytic cleaning method for sintered silicon carbide
JP2008153343A (en) Substrate processing method and device
TW201833635A (en) Glass substrate for display and method for manufacturing glass substrate for display provides a glass substrate for stripping the electrified display
TW201815718A (en) Method for manufacturing glass substrate
JP5572195B2 (en) Glass substrate and glass substrate manufacturing method
JP3803525B2 (en) Static neutralizer
TWI613041B (en) Method for manufacturing glass substrate
JP2006244747A (en) Substrate for display panel, and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09702225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09702225

Country of ref document: EP

Kind code of ref document: A1