JP2007009256A - Rare earth metal member, and making method - Google Patents

Rare earth metal member, and making method Download PDF

Info

Publication number
JP2007009256A
JP2007009256A JP2005189811A JP2005189811A JP2007009256A JP 2007009256 A JP2007009256 A JP 2007009256A JP 2005189811 A JP2005189811 A JP 2005189811A JP 2005189811 A JP2005189811 A JP 2005189811A JP 2007009256 A JP2007009256 A JP 2007009256A
Authority
JP
Japan
Prior art keywords
rare earth
earth metal
acid
metal member
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005189811A
Other languages
Japanese (ja)
Other versions
JP4544425B2 (en
Inventor
Toshihiko Tsukatani
敏彦 塚谷
Takao Maeda
孝雄 前田
Tama Nakano
瑞 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005189811A priority Critical patent/JP4544425B2/en
Priority to EP06253129A priority patent/EP1739196B1/en
Priority to DE602006005194T priority patent/DE602006005194D1/en
Priority to KR1020060058401A priority patent/KR101238528B1/en
Priority to TW095123402A priority patent/TWI408256B/en
Priority to US11/476,066 priority patent/US7674427B2/en
Priority to CN200610099687A priority patent/CN100587116C/en
Publication of JP2007009256A publication Critical patent/JP2007009256A/en
Application granted granted Critical
Publication of JP4544425B2 publication Critical patent/JP4544425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth metal member having a high surface purity, a large grain size, minimized grain boundaries, and improved halogen resistance or corrosion resistance by using a rare earth metal containing not more than 100 ppm of at least one metal element other than the rare earth metal, machining the same into a member and cleaning the rare earth metal member after the machining with an organic acid-base capping agent. <P>SOLUTION: The rare earth metal member is composed entirely of a rare earth metal, and contains not more than 100 ppm of at least one metal element other than the rare earth metal in a zone extending from the outermost surface to a depth of 2 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高純度の希土類金属元素からなる部材、特に表面純度が極めて高い希土類金属部材に関し、さらに詳述すると、半導体製造装置、及び液晶製造装置、有機EL製造装置、無機EL製造装置等のフラットパネルディスプレイ製造装置用等として好適に用いられ、ハロゲン系腐食性ガス或いはそのプラズマに対し耐食性を有する、全体が希土類金属で形成された希土類金属部材及びその製造方法に関する。   The present invention relates to a member made of a high-purity rare earth metal element, particularly a rare earth metal member having an extremely high surface purity. More specifically, a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus, an organic EL manufacturing apparatus, an inorganic EL manufacturing apparatus, etc. The present invention relates to a rare earth metal member which is suitably used for a flat panel display manufacturing apparatus and the like and has corrosion resistance to a halogen-based corrosive gas or plasma thereof and is formed entirely of rare earth metal, and a method for manufacturing the same.

ハロゲン系腐食性ガス雰囲気下で用いる半導体製造装置や、液晶製造装置、有機及び無機EL製造装置等のフラットパネルディスプレイ製造装置は、被処理物への不純物汚染を防止するため高純度材料が用いられ、特にその表面の純度が重要である。   Flat panel display manufacturing equipment such as semiconductor manufacturing equipment, liquid crystal manufacturing equipment, organic and inorganic EL manufacturing equipment used in a halogen-based corrosive gas atmosphere uses high-purity materials to prevent impurities from being contaminated. In particular, the purity of the surface is important.

半導体の製造工程においては、ゲートエッチング装置、絶縁膜エッチング装置、レジスト膜アッシング装置、スパッタリング装置、CVD装置等が使用されている。一方、液晶の製造工程においては、薄膜トランジスタを形成するためのエッチング装置等が使用されている。そして、これらの製造装置では微細加工による高集積化等を目的として、プラズマ発生機構を備えた構成がとられている。   In a semiconductor manufacturing process, a gate etching apparatus, an insulating film etching apparatus, a resist film ashing apparatus, a sputtering apparatus, a CVD apparatus, and the like are used. On the other hand, in a liquid crystal manufacturing process, an etching apparatus or the like for forming a thin film transistor is used. These manufacturing apparatuses are configured to have a plasma generation mechanism for the purpose of high integration by microfabrication.

これらの製造工程において、処理ガスとしては、フッ素系、塩素系等のハロゲン系腐食ガスが、その反応性の高さから前述の装置に利用されている。フッ素系ガスとしては、SF6、CF4、CHF3、ClF3、HF、NF3等が、また塩素系ガスとしては、Cl2、BCl3、HCl、CCl4、SiCl4等が挙げられ、これらのガスが導入された雰囲気にマイクロ波や高周波等を導入すると、これらのガスはプラズマ化される。これらのハロゲン系ガス或いはそのプラズマに曝される装置部材には、表面に材料成分以外の金属が極めて少なく、かつ高い耐食性が要求される。 In these manufacturing processes, halogen-based corrosive gases such as fluorine-based and chlorine-based gases are used in the above-described apparatuses because of their high reactivity. Examples of the fluorine-based gas include SF 6 , CF 4 , CHF 3 , ClF 3 , HF, and NF 3 , and examples of the chlorine-based gas include Cl 2 , BCl 3 , HCl, CCl 4 , and SiCl 4 . When microwaves or high frequencies are introduced into the atmosphere into which these gases are introduced, these gases are turned into plasma. The apparatus members exposed to these halogen-based gases or their plasmas are required to have very little metal other than material components on the surface and high corrosion resistance.

このような要求に対して、従来より、ハロゲン系ガス或いはそのプラズマに対する耐食性を付与するための材料として、石英、アルミナ、窒化ケイ素、窒化アルミニウム等のセラミックス、アルマイト処理皮膜、或いは、これらを基材表面に溶射して溶射皮膜を形成したものが使用されている。また、特開2002−241971号公報(特許文献1)には、腐食性ガス下でプラズマに曝される表面領域が周期律表IIIA族の金属層で形成された耐プラズマ性部材が提案されており、その層厚は50〜200μm程度であることが記載されている。   Conventionally, as a material for imparting corrosion resistance to halogen-based gas or plasma thereof, ceramics such as quartz, alumina, silicon nitride, aluminum nitride, alumite-treated film, or these as a base material What sprayed on the surface and formed the sprayed coating is used. Japanese Patent Laid-Open No. 2002-241971 (Patent Document 1) proposes a plasma-resistant member in which a surface region exposed to plasma under corrosive gas is formed of a metal layer of Group IIIA of the periodic table. It is described that the layer thickness is about 50 to 200 μm.

しかしながら、上記セラミックス部材は加工コストが高く、表面にパーティクルが残留するという問題がある。このような部材が腐食性ガス雰囲気下でプラズマに曝されると、その程度差があるものの、徐々に腐食が進行し、表面領域を構成する結晶粒子が離脱するため、いわゆるパーティクル汚染を生じる。すなわち、離脱したパーティクルが、半導体ウエハー、下部電極近傍等に付着し、エッチング精度等に悪影響を与え、半導体の性能や信頼性が損なわれやすいという問題がある。   However, the ceramic member has a problem that the processing cost is high and particles remain on the surface. When such a member is exposed to plasma in a corrosive gas atmosphere, although there is a difference in degree, corrosion proceeds gradually and crystal particles constituting the surface region are detached, so-called particle contamination occurs. That is, the detached particles adhere to the vicinity of the semiconductor wafer, the lower electrode, etc., adversely affect the etching accuracy, and the semiconductor performance and reliability are likely to be impaired.

また、上記セラミックス部材は、電気導電性がない特徴があり、電気導電性を必要とされる高周波アース材等には使用できなかった。そのような特性を要求される部位には、アルミニウムをアルマイト加工したパーツが使用されてきたが、寿命が短く、また、AlFパーティクルを多量に発生させてしまう問題点があった。そのような部位には、近年、より耐ハロゲンプラズマ性が高いY23を溶射した部材が使用されてきている。 Further, the ceramic member has a characteristic that it is not electrically conductive, and cannot be used for a high-frequency grounding material or the like that requires electrical conductivity. In parts where such characteristics are required, aluminum anodized parts have been used, but there are problems in that the lifetime is short and a large amount of AlF particles are generated. In recent years, a member sprayed with Y 2 O 3 having higher halogen plasma resistance has been used for such a part.

しかしながら、近年のプラズマ環境はより高エネルギーになる傾向があり、プラズマのバランスが崩れて部分的にスパークが発生してしまう問題が出てきた。スパークの原因の一つは、導電材の表面に絶縁体が溶射されているためで、溶射で生じている微細な表面凹凸や下地までつながったオープンポアが原因ではないかと考えられている。そこで、表面の凹凸をなるべく小さくすることと、気孔を小さくすることが検討されてきていたが、その対策では十分ではなかった。   However, the plasma environment in recent years has a tendency to become higher energy, and a problem has arisen that the balance of plasma is lost and sparks are partially generated. One of the causes of the spark is that the insulator is sprayed on the surface of the conductive material, and it is considered that fine pores generated by spraying and open pores connected to the ground are the cause. Therefore, it has been studied to make the surface irregularities as small as possible and to reduce the pores, but the countermeasures have not been sufficient.

この課題を解決する手段として、電気導電性のあるパーツをプラズマ環境内にセットし、スパークが発生しないようアースに直流成分を逃がすアイデアがあったが、そのアイデアに耐え得る部材が見出せなかったのが現状である。   As a means to solve this problem, there was an idea to set an electrically conductive part in the plasma environment and let the DC component escape to the ground so as not to generate sparks, but I could not find a member that could withstand that idea. Is the current situation.

特開2002−241971号公報には、上述したように腐食性ガス下でプラズマに曝される表面膜領域が、周期律表IIIA族の金属層で形成された耐プラズマ性部材が提案されているが、その層厚は50〜200μmであり、抵抗値も記載されていない。半導体製造装置では、そのプロセスガスと被処理物との反応により、チャンバー内製造装置部材に付着した反応生成物を除去するために定期的な洗浄が必要である。しかしながら、耐食部材が200μm程度の層状である場合には、反応生成物を取り除くための研磨洗浄時の取り扱いにおいて耐食層が削られ、基材が容易に露出し、繰り返し使用において耐食性を保てないという問題も生じる。   Japanese Patent Laid-Open No. 2002-241971 proposes a plasma-resistant member in which a surface film region exposed to plasma under a corrosive gas is formed of a metal layer of Group IIIA of the periodic table as described above. However, the layer thickness is 50 to 200 μm, and the resistance value is not described. In a semiconductor manufacturing apparatus, periodic cleaning is necessary to remove reaction products adhering to the in-chamber manufacturing apparatus member due to the reaction between the process gas and the object to be processed. However, when the corrosion-resistant member has a layer shape of about 200 μm, the corrosion-resistant layer is scraped during handling during polishing and cleaning to remove the reaction product, the substrate is easily exposed, and the corrosion resistance cannot be maintained over repeated use. The problem also arises.

近年、半導体デバイス等は、微細化と共に大口径化が進められており、いわゆるドライプロセス、特に、エッチングプロセスにおいて、低圧高密度プラズマが使用されつつある。この低圧高密度プラズマを使用する場合、従来のエッチング条件に比べて耐プラズマ性部材に与える影響が大きく、プラズマによるエロージョンと、このエロージョンに起因する部材成分の汚染や、表面不純物による反応生成物に起因した汚染等の問題が顕著になっている。   In recent years, semiconductor devices and the like have been made larger in size with miniaturization, and low-pressure and high-density plasma is being used in so-called dry processes, particularly in etching processes. When this low-pressure high-density plasma is used, it has a large effect on the plasma-resistant member compared to conventional etching conditions, and it causes erosion due to plasma, contamination of member components resulting from this erosion, and reaction products due to surface impurities. Problems such as contamination caused by the problem have become prominent.

さらに、これらの部材の加工時に使用する切断、研削等の金属加工治具により部材表面が汚染され、このような部材をハロゲン性プラズマ雰囲気下で使用すると、パーティクル汚染、エロージョンの原因となっていた。   Furthermore, the surface of the member is contaminated by metal processing jigs such as cutting and grinding used when processing these members. When such a member is used in a halogen plasma atmosphere, it causes particle contamination and erosion. .

特開2002−241971号公報JP 2002-241971 A

本発明は、上記事情に鑑みてなされたもので、部材全体が希土類金属で形成され、ハロゲン系ガス或いはそのプラズマによる曝露に対しても十分に耐え、定期的な洗浄における耐食性能の低下がなく、かつ表面汚染のない耐食性(耐プラズマ性)に優れた希土類金属部材及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the entire member is formed of a rare earth metal, sufficiently withstands exposure to a halogen-based gas or plasma thereof, and does not deteriorate the corrosion resistance in regular cleaning. And it aims at providing the rare earth metal member excellent in corrosion resistance (plasma resistance) without surface contamination, and its manufacturing method.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、全体が希土類金属で形成された希土類金属部材であって、最表面から深さ2μm以内の部分における希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下である希土類金属部材が、緻密で、それ自体が耐食性を示すため表面に耐食層を形成する必要がなく、耐ハロゲン性ガスや、耐ハロゲン性プラズマに優れ、半導体製造装置用、フラットパネルディスプレイ製造装置用等として有用であること、さらに、この部材は、部材自体が耐食性を示すため繰り返し洗浄における損傷により耐食性能が低下することがないことを見出した。また、希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下である希土類金属を用いてインゴットを製造し、加工した後、クエン酸、酒石酸等の有機酸系封鎖剤溶液で洗浄して、加工した希土類金属部材表面から加工汚染を除去することで、ハロゲン系ガスとの反応生成物による被処理物への汚染を防ぐことができ、バルク同等の表面純度をもち、しかも、希土類金属元素からなるため、表面抵抗率が1×10-5〜1×102Ω/□の導電性を有し、半導体製造装置用部材、フラットパネルディスプレイ製造装置用部材等として有用な上記希土類金属部材を提供することができることを見出し、本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the whole is a rare earth metal member formed of a rare earth metal, and a metal other than the rare earth metal element in a portion within a depth of 2 μm from the outermost surface. A rare earth metal member having a content of at least one element of 100 ppm or less is dense and exhibits corrosion resistance itself, so there is no need to form a corrosion resistant layer on the surface, and a halogen resistant gas or halogen resistant plasma. It has been found that it is useful for semiconductor manufacturing equipment, flat panel display manufacturing equipment, etc., and that this member itself exhibits corrosion resistance, so that corrosion resistance performance is not deteriorated by repeated cleaning damage. It was. Moreover, after manufacturing and processing ingots using rare earth metals each containing at least 100 ppm of one or more metal elements other than rare earth metal elements, washing with an organic acid sequestering agent solution such as citric acid or tartaric acid By removing the processing contamination from the surface of the processed rare earth metal member, it is possible to prevent contamination of the object to be processed by the reaction product with the halogen-based gas, having a bulk equivalent surface purity, The rare earth metal having a surface resistivity of 1 × 10 −5 to 1 × 10 2 Ω / □ and being useful as a member for semiconductor manufacturing equipment, a member for flat panel display manufacturing equipment, etc. The present inventors have found that a member can be provided and have made the present invention.

即ち、本発明は、
(1)全体が希土類金属で形成された希土類金属部材であって、最表面から深さ2μm以内の部分における希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下であることを特徴とする希土類金属部材、
(2)希土類金属元素が、Y、Sc、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる1種又は2種以上であることを特徴とする(1)記載の希土類金属部材、
(3)希土類金属元素以外の金属元素が、Na、K、Ca、Mg、Fe、Cr、Cu、Ni、Zn及びAlから選ばれる元素であることを特徴とする(1)又は(2)記載の希土類金属部材、
(4)最表面から深さ300μmまでの部分における上記希土類金属元素以外の金属元素の含有量が、それぞれ100ppm以下であることを特徴とする(1)、(2)又は(3)記載の希土類金属部材、
(5)全体が希土類金属で形成された希土類金属部材であって、希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下であることを特徴とする希土類金属部材、
(6)希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下である希土類金属より得られるインゴットを加工してなることを特徴とする(1)乃至(5)のいずれかに記載の希土類金属部材、
(7)上記部材が希土類金属元素の多結晶体であり、多結晶体を構成する結晶粒の結晶径が3mm以上であることを特徴とする(1)乃至(6)のいずれかに記載の希土類金属部材、
(8)半導体製造装置用又はフラットパネルディスプレイ製造装置用である(1)乃至(7)のいずれかに記載の希土類金属部材、
(9)ハロゲン系ガス又はハロゲン系プラズマ雰囲気下で使用される(8)記載の希土類金属部材、
(10)希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下である希土類金属より得られるインゴットを加工した後、有機酸系封鎖剤溶液で洗浄することを特徴とする(1)乃至(9)のいずれかに記載の希土類金属部材の製造方法、
(11)有機酸系封鎖剤が、クエン酸、クエン酸モノアンモニウム、グルコン酸、グリコール酸、二トリック3酢酸塩、エチレンジアミン4酢酸、ジエチレントリアミノペンタ酢酸、ジヒドロキシエチレングリシン、トリエタノールアミン、ヒドロキシエチレンジアミン4酢酸、L−アスコルビン酸、りんご酸、酒石酸、シュウ酸、没食子酸、グリセリン酸、ヒドロキシ酪酸、グリオキシル酸及びこれらの塩から選ばれることを特徴とする(10)記載の希土類金属部材の製造方法
を提供する。
That is, the present invention
(1) A rare earth metal member formed entirely of a rare earth metal, wherein the content of one or more metal elements other than the rare earth metal element in a portion within 2 μm in depth from the outermost surface is 100 ppm or less, respectively. Rare earth metal member,
(2) The rare earth metal according to (1), wherein the rare earth metal element is one or more selected from Y, Sc, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Element,
(3) The metal element other than the rare earth metal element is an element selected from Na, K, Ca, Mg, Fe, Cr, Cu, Ni, Zn and Al (1) or (2) Rare earth metal members,
(4) The rare earth according to (1), (2) or (3), wherein the content of metal elements other than the rare earth metal element in the portion from the outermost surface to a depth of 300 μm is 100 ppm or less, respectively. Metal parts,
(5) A rare earth metal member formed entirely of rare earth metal, wherein the content of at least one metal element other than the rare earth metal element is 100 ppm or less,
(6) Any one of (1) to (5), wherein an ingot obtained from a rare earth metal having a content of one or more metal elements other than the rare earth metal element is 100 ppm or less, respectively. The rare earth metal member according to the description,
(7) The member according to any one of (1) to (6), wherein the member is a polycrystal of a rare earth metal element, and the crystal diameter of crystal grains constituting the polycrystal is 3 mm or more. Rare earth metal components,
(8) The rare earth metal member according to any one of (1) to (7), which is for a semiconductor manufacturing apparatus or a flat panel display manufacturing apparatus,
(9) The rare earth metal member according to (8), which is used in a halogen-based gas or a halogen-based plasma atmosphere,
(10) An ingot obtained from a rare earth metal having a content of at least one metal element other than the rare earth metal element of 100 ppm or less is processed and then washed with an organic acid sequestering agent solution (1 ) To (9), a method for producing a rare earth metal member according to any one of
(11) Organic acid sequestering agent is citric acid, monoammonium citrate, gluconic acid, glycolic acid, ditric triacetate, ethylenediaminetetraacetic acid, diethylenetriaminopentaacetic acid, dihydroxyethylene glycine, triethanolamine, hydroxyethylenediamine 4 The method for producing a rare earth metal member according to (10), characterized in that it is selected from acetic acid, L-ascorbic acid, malic acid, tartaric acid, oxalic acid, gallic acid, glyceric acid, hydroxybutyric acid, glyoxylic acid, and salts thereof. provide.

希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下である希土類金属を用いて部材を作成し、加工後の希土類金属部材を有機酸系封鎖剤で洗浄することにより、表面が高純度で結晶径が大きく粒界の少ない、耐ハロゲン性(耐食性)に優れた希土類金属部材を提供することができる。   By creating a member using a rare earth metal in which the content of one or more metal elements other than the rare earth metal element is 100 ppm or less, and washing the processed rare earth metal member with an organic acid sequestering agent, the surface becomes It is possible to provide a rare earth metal member having high purity, a large crystal diameter and few grain boundaries, and excellent halogen resistance (corrosion resistance).

本発明の部材は、全体が希土類金属で形成された希土類金属部材であって、最表面から深さ2μm以内の部分における希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下である希土類金属部材である。   The member of the present invention is a rare earth metal member formed entirely of rare earth metal, and the content of one or more metal elements other than the rare earth metal element in the portion within 2 μm depth from the outermost surface is 100 ppm or less, respectively. It is a certain rare earth metal member.

本発明の部材に用いられる希土類金属元素としては、Y、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる希土類金属元素が好ましく、より好ましくはY、Sc、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる希土類金属元素である。これらの希土類金属元素は、1種単独で又は2種以上を組み合わせて用いることができる。   The rare earth metal element used in the member of the present invention is a rare earth metal element selected from Y, Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. And more preferably a rare earth metal element selected from Y, Sc, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. These rare earth metal elements can be used alone or in combination of two or more.

ここで、半導体製造工程等において、製品不良を招く金属元素としては、Na、K、Ca、Mg、Fe、Cr、Cu、Ni、Zn、Al等が挙げられ、特にFe、Cu、Ni、Zn、Crが問題となる。本発明の希土類金属部材に含まれるこれらの希土類金属元素以外の金属元素の含有量は、部材最表面から深さ2μm以内の部分においてそれぞれ100ppm以下であり、好ましくは60ppm以下である。さらにNa、K、Ca、Mg、Cr、Znは、それぞれ10ppm以下であることが好ましい。希土類金属元素以外の金属元素の含有量が100ppmを超えると、半導体製品中の金属汚染が許容量を超えることになる。   Here, in the semiconductor manufacturing process and the like, examples of metal elements that cause product defects include Na, K, Ca, Mg, Fe, Cr, Cu, Ni, Zn, and Al, and in particular, Fe, Cu, Ni, and Zn. Cr is a problem. The content of metal elements other than these rare earth metal elements contained in the rare earth metal member of the present invention is 100 ppm or less, preferably 60 ppm or less, in a portion within a depth of 2 μm from the outermost surface of the member. Further, Na, K, Ca, Mg, Cr, and Zn are each preferably 10 ppm or less. If the content of metal elements other than rare earth metal elements exceeds 100 ppm, metal contamination in the semiconductor product will exceed the allowable amount.

本発明の部材は、部材最表面から深さ300μm以内の部分、特に部材全体の希土類金属元素以外の金属元素含有量が上記範囲内であることが好ましい。部材表面の上記金属元素の含有量が少なくても、部材内部の含有量が多すぎると、上記金属元素が拡散して汚染されるおそれがあるため、部材内部まで金属元素含有量が少ない方が好ましい。   In the member of the present invention, the content of a metal element other than the rare earth metal element in the portion within a depth of 300 μm from the outermost surface of the member, particularly the entire member is preferably within the above range. Even if the content of the metal element on the surface of the member is small, if the content inside the member is too large, the metal element may be diffused and contaminated. preferable.

また、本発明の部材は、希土類金属元素を使用しているため電気導電性に優れ、その表面抵抗率は好ましくは1×10-5〜1×102Ω/□、より好ましくは1×10-5〜1×101Ω/□である。表面抵抗率が大きすぎるとアースが不十分になる等、電気導電性部材の機能を果たさない場合がある。 Moreover, since the member of the present invention uses a rare earth metal element, it has excellent electrical conductivity, and the surface resistivity is preferably 1 × 10 −5 to 1 × 10 2 Ω / □, more preferably 1 × 10. -5 to 1 × 10 1 Ω / □. If the surface resistivity is too large, the function of the electrically conductive member may not be fulfilled, such as insufficient grounding.

次に、本発明の希土類金属部材の製造方法について説明する。
本発明の製造方法は、まず、希土類金属元素以外の上記金属元素の含有量がそれぞれ100ppm以下である希土類金属を溶解し、常法によりインゴットを製造する。希土類金属の溶解方法としては、電子ビーム溶解、アーク溶解、誘導溶解等が挙げられる。その際、溶解して得られた希土類金属インゴット中の酸素含有量は、0.03〜2.0質量%が好ましい。酸素含有量が0.03質量%より少ないとインゴットの硬度が低下しすぎ、本発明部材の機械加工が困難な場合がある。また、2.0質量%を超えると希土類金属の電気導電性が低下してしまう場合がある。
Next, the manufacturing method of the rare earth metal member of this invention is demonstrated.
In the production method of the present invention, first, an ingot is produced by a conventional method by dissolving rare earth metals each containing 100 ppm or less of the above metal elements other than the rare earth metal elements. Examples of the rare earth metal melting method include electron beam melting, arc melting, induction melting and the like. At that time, the oxygen content in the rare earth metal ingot obtained by melting is preferably 0.03 to 2.0 mass%. If the oxygen content is less than 0.03% by mass, the hardness of the ingot will be too low, and machining of the member of the present invention may be difficult. Moreover, when it exceeds 2.0 mass%, the electrical conductivity of a rare earth metal may fall.

次に、上記インゴットを所望の形状に加工する。加工方法としては、旋盤加工、フライス加工、ワイヤーカット放電加工、レーザー切断、ファインブランキング、ダイシング、プレーナー、ウォータージェット等が挙げられる。   Next, the ingot is processed into a desired shape. Examples of the processing method include lathe processing, milling, wire cut electric discharge processing, laser cutting, fine blanking, dicing, planar, water jet and the like.

加工後の部材には、加工面に加工治具による表面汚染が残るので、これらの汚染を除去しなければならない。例えば、フライス加工の工具によるFe、Ni、Cr汚染、ワイヤーカット放電加工によるCu、Zn汚染等が挙げられる。   Since the surface contamination by the processing jig remains on the processed surface of the processed member, it is necessary to remove such contamination. For example, Fe, Ni, Cr contamination by a milling tool, Cu, Zn contamination by wire cut electric discharge machining, and the like can be mentioned.

表面汚染の除去方法としては、研磨、超音波洗浄、鉱酸洗浄、アルカリ洗浄が挙げられるが、研磨は、表面汚染を拡散させ汚染を完全に除去できない。超音波洗浄では、表面に付着しているような汚染は除去できるが、アンカー効果で材料表面に突き刺さっているような汚染、主材に固溶しているような汚染を除去することはできない。鉱酸洗浄では、洗浄中に希土類金属表面に形成される酸化膜に金属元素が取り込まれ完全にこれらの金属元素を除去できない。アルカリ洗浄では、例えば、アンモニアと過酸化水素の混合水溶液で主材と固溶していないCu、Znは除去できるがFe等を除去することができない。洗浄方法について本発明者らが鋭意検討した結果、表面汚染の除去方法としては、有機酸系封鎖剤による洗浄が好ましいことがわかった。   As a method for removing surface contamination, polishing, ultrasonic cleaning, mineral acid cleaning, and alkali cleaning can be mentioned. However, polishing cannot diffuse the surface contamination and completely remove the contamination. The ultrasonic cleaning can remove contamination that adheres to the surface, but it cannot remove contamination that sticks to the surface of the material due to the anchor effect, or contamination that dissolves in the main material. In the mineral acid cleaning, metal elements are taken into the oxide film formed on the surface of the rare earth metal during the cleaning, and these metal elements cannot be completely removed. In alkali cleaning, for example, Cu and Zn that are not dissolved in the main material with a mixed aqueous solution of ammonia and hydrogen peroxide can be removed, but Fe and the like cannot be removed. As a result of intensive studies by the present inventors on the cleaning method, it has been found that cleaning with an organic acid-based blocking agent is preferable as a method for removing surface contamination.

有機酸系封鎖剤としては、クエン酸、クエン酸モノアンモニウム、グルコン酸、グリコール酸、二トリック3酢酸塩、エチレンジアミン4酢酸、ジエチレントリアミノペンタ酢酸、ジヒドロキシエチレングリシン、トリエタノールアミン、ヒドロキシエチレンジアミン4酢酸、L−アスコルビン酸、りんご酸、酒石酸、シュウ酸、没食子酸、グリセリン酸、ヒドロキシ酪酸、グリオキシル酸及びその塩類等が挙げられる。これらの中でも、クエン酸、酒石酸が特に好ましい。   Examples of organic acid blocking agents include citric acid, monoammonium citrate, gluconic acid, glycolic acid, ditric triacetate, ethylenediaminetetraacetic acid, diethylenetriaminopentaacetic acid, dihydroxyethyleneglycine, triethanolamine, hydroxyethylenediaminetetraacetic acid, Examples include L-ascorbic acid, malic acid, tartaric acid, oxalic acid, gallic acid, glyceric acid, hydroxybutyric acid, glyoxylic acid and salts thereof. Among these, citric acid and tartaric acid are particularly preferable.

上記の有機酸系封鎖剤は、0.001〜1mol/L、特に0.05〜0.5mol/Lになるように純水で希釈して用いるのが好ましい。濃度が低すぎると洗浄効果が不十分であり、高すぎると部材を侵食し過ぎたり、洗浄時間の調整が難しくなる場合がある。この溶液中に加工後の部材を浸漬し、表面汚染物質を溶解除去する。このとき、超音波水槽中で浸漬洗浄することにより、より洗浄が促進される。浸漬時間は、汚染の程度によるが30秒〜30分が好ましい。   The organic acid-based blocking agent is preferably diluted with pure water so as to be 0.001 to 1 mol / L, particularly 0.05 to 0.5 mol / L. If the concentration is too low, the cleaning effect is insufficient, and if it is too high, the member may be eroded too much, and it may be difficult to adjust the cleaning time. The processed member is immersed in this solution to dissolve and remove surface contaminants. At this time, cleaning is further promoted by immersion cleaning in an ultrasonic water bath. The immersion time is preferably 30 seconds to 30 minutes depending on the degree of contamination.

浸漬後の部材は、付着成分(汚染物質)を十分に除去するために純水で水洗する。部材表面凹部に入り込んだ付着成分(汚染物質)を十分に除去するため、超音波水槽中で洗浄するのが好ましい。   The member after immersion is washed with pure water in order to sufficiently remove adhered components (contaminants). In order to sufficiently remove the adhering component (contaminant) that has entered the concave portion of the member surface, it is preferable to wash in an ultrasonic water bath.

ところで、希土類金属を溶融してインゴットを製造する際、不純物元素は結晶粒界に凝集される。このため、粒界の多い結晶からなる部材をハロゲンガス雰囲気下で使用すると、ハロゲンガスにより粒界が選択的にエッチングされるので、粒界の少ない金属、すなわち、結晶径の大きな希土類金属部材が好ましい。本発明の製造方法によれば、結晶30個の長軸径を測定し、その平均値を結晶径としたとき、希土類金属以外の金属元素を100ppm以下にすることにより、結晶径が3mm以上の大きさの希土類金属多結晶体部材を得ることができる。これにより、粒界から生じる腐食を防止でき、部材の耐食性を向上させることができる。なお、結晶径の測定方法は、図1に示したように、結晶粒の輪郭をこれに接する2本の平行線で挟んだときの間隔をXとして、Xmax=長軸径とした。また、結晶径測定の際は、粒界を観察しやすくするために水洗した希土類金属部材をナイタール液(硝酸3VOL%+エタノール97VOL%)に5分間程度浸漬し、その後、純水でナイタール液を十分に洗い流した。   By the way, when manufacturing ingots by melting rare earth metals, impurity elements are aggregated at crystal grain boundaries. For this reason, when a member made of a crystal having many grain boundaries is used in a halogen gas atmosphere, the grain boundary is selectively etched by the halogen gas. preferable. According to the production method of the present invention, when the major axis diameter of 30 crystals is measured and the average value is taken as the crystal diameter, the crystal diameter is 3 mm or more by setting the metal element other than the rare earth metal to 100 ppm or less. A rare earth metal polycrystalline member having a size can be obtained. Thereby, the corrosion which arises from a grain boundary can be prevented, and the corrosion resistance of a member can be improved. As shown in FIG. 1, the crystal diameter was measured by setting the interval when the outline of the crystal grain was sandwiched between two parallel lines in contact with X as Xmax = major axis diameter. When measuring the crystal diameter, the washed rare earth metal member is immersed in a nital solution (nitric acid 3 VOL% + ethanol 97 VOL%) for about 5 minutes, and then the nital solution is washed with pure water. Rinse thoroughly.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[実施例1]
希土類以外の金属元素Na、K、Ca、Mg、Fe、Cr、Cu、Ni、Zn及びAlを各々100ppm以下含んでいる粒状金属イットリウムを電子ビーム溶解して、50mm×50mm×200mmのインゴットを作成した。得られたインゴットの酸素含有量を(株)堀場製作所製EMGA−650を用いてIR燃焼法で測定したところ、1.0質量%であった。このインゴットをワイヤーカット放電加工でスライスし、5mm×20mm×20mm、5mm×40mm×100mmのプレートを作成した。加工面は真鍮の汚染により黄銅色となっていた。このプレートを0.25モル/Lのクエン酸水溶液に撹拌下10分間浸漬した。酸洗浄後のプレートを純水で流水洗浄した後、超音波槽中で純水に5分間浸漬し、さらに純水で流水洗浄した。
[Example 1]
Electron beam melting of granular metal yttrium containing 100ppm or less each of metallic elements other than rare earths Na, K, Ca, Mg, Fe, Cr, Cu, Ni, Zn, and Al to produce an ingot of 50 mm x 50 mm x 200 mm did. It was 1.0 mass% when the oxygen content of the obtained ingot was measured by IR combustion method using EMGA-650 by Horiba Ltd. The ingot was sliced by wire-cut electric discharge machining to produce a plate of 5 mm × 20 mm × 20 mm, 5 mm × 40 mm × 100 mm. The machined surface was brass due to brass contamination. This plate was immersed in a 0.25 mol / L citric acid aqueous solution for 10 minutes with stirring. The plate after acid cleaning was washed with pure water and then immersed in pure water for 5 minutes in an ultrasonic bath, and further washed with pure water.

表面洗浄した金属イットリウムプレートをグロー放電質量分析法(測定装置:サーモエレクトロン社製グロー放電質量分析装置モデルVG9000)により深さ分析をした。分析結果を表1に示す。また、表面抵抗率を三菱化学社製抵抗率計ロレスタHPで測定したところ2.178×10-4Ω/□であった。 The depth of the surface-washed metal yttrium plate was analyzed by glow discharge mass spectrometry (measuring device: glow discharge mass spectrometer model VG9000 manufactured by Thermo Electron). The analysis results are shown in Table 1. The surface resistivity was 2.178 × 10 −4 Ω / □ as measured with a resistivity meter Loresta HP manufactured by Mitsubishi Chemical Corporation.

続いて、洗浄後の金属イットリウムプレートをRIE(反応性イオンエッチング)装置を用いてCF4プラズマ中で10時間の暴露試験を行いエッチング速度を測定した。エッチング速度は金属イットリウムプレートの一部をポリイミドテープでマスキングし、マスク有無の部分をレーザー顕微鏡(キーエンス社製,VK−8500)で高度差計測することにより求めた。分析結果を表2に示す。比較として同時に石英のエッチング速度を測定した。
洗浄後の金属イットリウムプレートをナイタール液に5分間浸漬した後水洗し、オリンパス(株)製金属顕微鏡BX60Mで結晶径を測定したところ5.0mmであった。
Subsequently, the cleaned metal yttrium plate was subjected to an exposure test in CF 4 plasma for 10 hours using an RIE (reactive ion etching) apparatus to measure the etching rate. The etching rate was determined by masking a part of the metal yttrium plate with a polyimide tape and measuring the difference in height with a laser microscope (manufactured by Keyence Corporation, VK-8500). The analysis results are shown in Table 2. For comparison, the quartz etching rate was measured at the same time.
The washed metal yttrium plate was immersed in a nital solution for 5 minutes, then washed with water, and the crystal diameter was measured with a metal microscope BX60M manufactured by Olympus Corporation.

[実施例2]
希土類以外の金属元素Na、K、Ca、Mg、Fe、Cr、Cu、Ni、Zn及びAlを各々100ppm以下含んでいる粒状金属ジスプロシウムを用いて実施例1と同様のプレートを作成し、クエン酸水溶液で表面洗浄した。実施例1と同様に行ったグロー放電質量分析結果を表1に示す。また、プラズマエッチング試験の結果を表2に示す。結晶径は5.7mmであった。表面抵抗率を実施例1と同様に測定したところ、2.056×10-4Ω/□であった。
[Example 2]
A plate similar to that in Example 1 was prepared using granular metal dysprosium containing 100 ppm or less of metallic elements other than rare earth elements Na, K, Ca, Mg, Fe, Cr, Cu, Ni, Zn and Al, and citric acid. The surface was washed with an aqueous solution. The results of glow discharge mass spectrometry performed in the same manner as in Example 1 are shown in Table 1. Table 2 shows the results of the plasma etching test. The crystal diameter was 5.7 mm. When the surface resistivity was measured in the same manner as in Example 1, it was 2.056 × 10 −4 Ω / □.

[比較例1]
希土類以外の金属元素Na、K、Ca、Mg、Fe、Cr、Cu、Ni、Zn及びAlを各々100ppm以下含んでいる粒状金属イットリウムを用いて実施例1と同様の方法でプレートを作成し、加工面を炭化ケイ素研磨紙で研磨し、加工汚染を除去し、金属イットリウムプレートを純水で流水洗浄した後、超音波槽中で純水に5分間浸漬し、さらに純水で流水洗浄した。洗浄済み金属イットリウムプレートを実施例1と同様に、グロー放電質量分析法により深さ分析をした。分析結果を表1に示す。
[Comparative Example 1]
A plate is prepared in the same manner as in Example 1 using granular metal yttrium containing 100 ppm or less of each of the metal elements Na, K, Ca, Mg, Fe, Cr, Cu, Ni, Zn and Al other than rare earth, The processed surface was polished with silicon carbide polishing paper to remove processing contamination, and the metal yttrium plate was washed with running pure water, then immersed in pure water for 5 minutes in an ultrasonic bath, and further washed with running pure water. The washed metal yttrium plate was analyzed for depth by glow discharge mass spectrometry in the same manner as in Example 1. The analysis results are shown in Table 1.

Figure 2007009256
Figure 2007009256

Figure 2007009256
Figure 2007009256

結晶径の測定方法を示した図である。It is the figure which showed the measuring method of a crystal diameter.

Claims (11)

全体が希土類金属で形成された希土類金属部材であって、最表面から深さ2μm以内の部分における希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下であることを特徴とする希土類金属部材。   A rare earth metal member formed entirely of rare earth metal, wherein the content of one or more metal elements other than the rare earth metal element in a portion within 2 μm in depth from the outermost surface is 100 ppm or less, respectively. Rare earth metal member. 希土類金属元素が、Y、Sc、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuから選ばれる1種又は2種以上であることを特徴とする請求項1記載の希土類金属部材。   2. The rare earth metal member according to claim 1, wherein the rare earth metal element is one or more selected from Y, Sc, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. 希土類金属元素以外の金属元素が、Na、K、Ca、Mg、Fe、Cr、Cu、Ni、Zn及びAlから選ばれる元素であることを特徴とする請求項1又は2記載の希土類金属部材。   3. The rare earth metal member according to claim 1, wherein the metal element other than the rare earth metal element is an element selected from Na, K, Ca, Mg, Fe, Cr, Cu, Ni, Zn and Al. 最表面から深さ300μmまでの部分における上記希土類金属元素以外の金属元素の含有量が、それぞれ100ppm以下であることを特徴とする請求項1、2又は3記載の希土類金属部材。   4. The rare earth metal member according to claim 1, wherein the content of a metal element other than the rare earth metal element in a portion from the outermost surface to a depth of 300 μm is 100 ppm or less. 全体が希土類金属で形成された希土類金属部材であって、希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下であることを特徴とする希土類金属部材。   A rare earth metal member formed entirely of rare earth metal, wherein the content of one or more metal elements other than the rare earth metal element is 100 ppm or less. 希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下である希土類金属より得られるインゴットを加工してなることを特徴とする請求項1乃至5のいずれか1項記載の希土類金属部材。   The rare earth metal according to any one of claims 1 to 5, wherein an ingot obtained from a rare earth metal having a content of at least one metal element other than the rare earth metal element is 100 ppm or less. Element. 上記部材が希土類金属元素の多結晶体であり、多結晶体を構成する結晶粒の結晶径が3mm以上であることを特徴とする請求項1乃至6のいずれか1項記載の希土類金属部材。   The rare earth metal member according to any one of claims 1 to 6, wherein the member is a polycrystal of a rare earth metal element, and a crystal diameter of crystal grains constituting the polycrystal is 3 mm or more. 半導体製造装置用又はフラットパネルディスプレイ製造装置用である請求項1乃至7のいずれか1項記載の希土類金属部材。   The rare earth metal member according to claim 1, wherein the rare earth metal member is used for a semiconductor manufacturing apparatus or a flat panel display manufacturing apparatus. ハロゲン系ガス又はハロゲン系プラズマ雰囲気下で使用される請求項8記載の希土類金属部材。   The rare earth metal member according to claim 8, which is used in a halogen-based gas or a halogen-based plasma atmosphere. 希土類金属元素以外の金属元素の1種以上の含有量がそれぞれ100ppm以下である希土類金属より得られるインゴットを加工した後、有機酸系封鎖剤溶液で洗浄することを特徴とする請求項1乃至9のいずれか1項記載の希土類金属部材の製造方法。   10. An ingot obtained from a rare earth metal having a content of at least one metal element other than the rare earth metal element of 100 ppm or less is processed, and then washed with an organic acid sequestering agent solution. The manufacturing method of the rare earth metal member of any one of these. 有機酸系封鎖剤が、クエン酸、クエン酸モノアンモニウム、グルコン酸、グリコール酸、二トリック3酢酸塩、エチレンジアミン4酢酸、ジエチレントリアミノペンタ酢酸、ジヒドロキシエチレングリシン、トリエタノールアミン、ヒドロキシエチレンジアミン4酢酸、L−アスコルビン酸、りんご酸、酒石酸、シュウ酸、没食子酸、グリセリン酸、ヒドロキシ酪酸、グリオキシル酸及びこれらの塩から選ばれることを特徴とする請求項10記載の希土類金属部材の製造方法。   Organic acid sequestering agents are citric acid, monoammonium citrate, gluconic acid, glycolic acid, ditric triacetate, ethylenediaminetetraacetic acid, diethylenetriaminopentaacetic acid, dihydroxyethyleneglycine, triethanolamine, hydroxyethylenediaminetetraacetic acid, L 11. The method for producing a rare earth metal member according to claim 10, wherein the method is selected from ascorbic acid, malic acid, tartaric acid, oxalic acid, gallic acid, glyceric acid, hydroxybutyric acid, glyoxylic acid, and salts thereof.
JP2005189811A 2005-06-29 2005-06-29 Rare earth metal member manufacturing method Expired - Fee Related JP4544425B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005189811A JP4544425B2 (en) 2005-06-29 2005-06-29 Rare earth metal member manufacturing method
DE602006005194T DE602006005194D1 (en) 2005-06-29 2006-06-16 Rare earth element with a high purity surface and process for its production
EP06253129A EP1739196B1 (en) 2005-06-29 2006-06-16 Rare earth metal member of high surface purity and making method
TW095123402A TWI408256B (en) 2005-06-29 2006-06-28 Rare earth metal member and manufacturing method thereof
KR1020060058401A KR101238528B1 (en) 2005-06-29 2006-06-28 Rare earth metal member and making method
US11/476,066 US7674427B2 (en) 2005-06-29 2006-06-28 Rare earth metal member and making method
CN200610099687A CN100587116C (en) 2005-06-29 2006-06-29 Rare earth metal member and making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189811A JP4544425B2 (en) 2005-06-29 2005-06-29 Rare earth metal member manufacturing method

Publications (2)

Publication Number Publication Date
JP2007009256A true JP2007009256A (en) 2007-01-18
JP4544425B2 JP4544425B2 (en) 2010-09-15

Family

ID=37597049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189811A Expired - Fee Related JP4544425B2 (en) 2005-06-29 2005-06-29 Rare earth metal member manufacturing method

Country Status (2)

Country Link
JP (1) JP4544425B2 (en)
CN (1) CN100587116C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008000200T5 (en) 2007-01-18 2009-12-03 Hitachi Construction Machinery Co., Ltd. Vibration suppression device for hydraulic working machine and hydraulic working machine
KR101376453B1 (en) 2009-03-31 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Lanthanum target for sputtering
KR101376466B1 (en) * 2009-03-27 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Lanthanum target for sputtering
TWI626261B (en) * 2012-03-30 2018-06-11 可樂麗股份有限公司 Polyvinyl alcohol polymer film and polarizing film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222744B (en) * 2016-08-26 2018-12-07 深圳市威斯康新材料科技有限公司 A kind of rare earth metal monocrystal and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147474A (en) * 2001-11-07 2003-05-21 Shin Etsu Chem Co Ltd Corrosion resistant member and excimer laser oscillator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035071A (en) * 1989-01-11 1989-08-30 航空航天工业部第609研究所 Electric machining valve pocket inner groove technology
US6447937B1 (en) * 1997-02-26 2002-09-10 Kyocera Corporation Ceramic materials resistant to halogen plasma and components using the same
CN100381596C (en) * 2003-03-19 2008-04-16 钢铁研究总院 Method for producing rare-earth metal screw-rod

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147474A (en) * 2001-11-07 2003-05-21 Shin Etsu Chem Co Ltd Corrosion resistant member and excimer laser oscillator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008000200T5 (en) 2007-01-18 2009-12-03 Hitachi Construction Machinery Co., Ltd. Vibration suppression device for hydraulic working machine and hydraulic working machine
KR101376466B1 (en) * 2009-03-27 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Lanthanum target for sputtering
JP5497740B2 (en) * 2009-03-27 2014-05-21 Jx日鉱日石金属株式会社 Lanthanum target for sputtering
KR101376453B1 (en) 2009-03-31 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Lanthanum target for sputtering
JP5456763B2 (en) * 2009-03-31 2014-04-02 Jx日鉱日石金属株式会社 Lanthanum target for sputtering
TWI626261B (en) * 2012-03-30 2018-06-11 可樂麗股份有限公司 Polyvinyl alcohol polymer film and polarizing film

Also Published As

Publication number Publication date
CN1891863A (en) 2007-01-10
JP4544425B2 (en) 2010-09-15
CN100587116C (en) 2010-02-03

Similar Documents

Publication Publication Date Title
KR101344990B1 (en) Conductive, plasma-resistant member
KR101737378B1 (en) Reduction of copper or trace metal contaminants in plasma electrolytic oxidation coatings
JP4668915B2 (en) Cleaning process chamber components
TWI385723B (en) Methods for silicon electrode assembly etch rate and etch uniformity recovery
CN112779488A (en) Yttrium fluoride spray coating, spray material for the same, and corrosion-resistant coating including the spray coating
KR101238528B1 (en) Rare earth metal member and making method
JP2007308794A (en) Conductive, plasma-resistant member
JP4544425B2 (en) Rare earth metal member manufacturing method
KR20170033317A (en) Method for cleaning compound semiconductor and solution for cleaning of compound semiconductor
JP4355201B2 (en) Tungsten metal removing liquid and tungsten metal removing method using the same
CN111742392A (en) Composition for suppressing damage of alumina and method for producing semiconductor substrate using same
KR20180032153A (en) Plasma processing method
JP2023171814A (en) Aqueous composition and cleaning method by use thereof
JP2007009988A (en) Rare earth metal component
EP1083219A1 (en) Cleaning fluid and cleaning method for component of semiconductor-treating apparatus
JP2006210857A (en) Cleaning liquid composition for removal of impurity, and impurity removal method using the composition
CN214099576U (en) Semiconductor component and plasma processing apparatus
JP6486215B2 (en) Plasma processing equipment
JP3497846B2 (en) Cleaning method for ceramic members
JP2008153271A (en) Method of cleaning used jig and cleaning solution composition
JP2008153272A (en) Method of cleaning semiconductor device manufacturing component, and cleaning solution composition
KR101133697B1 (en) Method for manufacturing semiconductor device
JP2002241971A (en) Plasma resistant member
JP4021325B2 (en) Manufacturing method of parts for plasma processing apparatus
JP2001130949A (en) Corrosion-resisting alumina part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

LAPS Cancellation because of no payment of annual fees