WO2009090944A1 - ルールベース管理システム、ルールベース管理方法およびルールベース管理用プログラム - Google Patents
ルールベース管理システム、ルールベース管理方法およびルールベース管理用プログラム Download PDFInfo
- Publication number
- WO2009090944A1 WO2009090944A1 PCT/JP2009/050337 JP2009050337W WO2009090944A1 WO 2009090944 A1 WO2009090944 A1 WO 2009090944A1 JP 2009050337 W JP2009050337 W JP 2009050337W WO 2009090944 A1 WO2009090944 A1 WO 2009090944A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quality information
- rule
- group
- managed
- daily
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
- G06N5/025—Extracting rules from data
Definitions
- the present invention relates to a rule-based management technique for improving the accuracy of monitoring rules.
- this related rule-based monitoring system includes a quality information collection unit 910, a rule storage unit 920, a condition part evaluation unit 930, and an operation execution unit 940.
- the conventional rule-based monitoring system having such a configuration operates as follows.
- condition part that shows the condition that indicates the situation that is considered to be the occurrence of an abnormality
- action part that shows the action of further analyzing the cause and conveying the abnormality to the system administrator in response to the abnormality
- the rule storage unit 920 stores these monitoring rules.
- the quality information collecting unit 910 periodically acquires quality information from the device to be monitored.
- the condition part evaluation unit 930 compares the quality information acquired by the quality information collection unit 910 with the condition parts of all the rules stored in the rule storage unit 920, and the quality information indicates the condition indicated in the condition part. Get all the rules that meet.
- the action execution means 940 executes the action part of the rule extracted by the condition part evaluation means.
- a monitoring rule that operates properly in a certain device / service may not operate properly in another device / service. This is because the usage type, usage frequency, or ability to make access differs depending on the monitored device or service, and as a result, even if the number of accesses causes an abnormality depending on the device, it operates normally on other devices. This is because the threshold for determination varies depending on the device / service.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a rule base management system, a rule base management method, and a rule base management program for improving the accuracy of monitoring rules.
- a first rule-based management system includes a grouping calculation unit that divides a time variation of quality information of devices to be managed into patterns and classifies them into groups.
- a group specifying means for determining which group of individual devices to be managed is classified based on a result of the grouping calculation means;
- a rule extracting means for extracting all the rules corresponding to the identified group.
- the second rule-based management system of the present invention comprises a quality information receiving means for obtaining quality information from a device to be managed, Quality information storage means for storing quality information history for each managed device; Grouping calculation means for classifying the time variation of the quality information of the management target device stored in the quality information storage means into a group, and A group specifying means for determining which group of individual devices to be managed is classified based on a result of the grouping calculation means; A rule extraction means for extracting all the rules corresponding to the identified group; A rule storage means for recording a management rule having an activation condition for quality information in combination with group information targeted by the rule; Condition matching means for extracting a rule that satisfies the quality information received by the quality information receiving means from among the rules extracted by the rule extracting means; And an action execution means for executing the action part of the rule extracted by the condition extraction means.
- the third rule-based management system of the present invention comprises a daily dividing means for dividing the quality information of the device to be managed for each specific period, Dividing the time variation of the quality information divided by the daily dividing means into patterns, and a daily grouping calculating means for dividing into groups, When a new quality information is sent from the managed device, a daily group specifying means for specifying a group that is most similar to the time change of the quality information until immediately before the device, And a rule extracting means for extracting all the rules corresponding to the identified group.
- the fourth rule-based management system of the present invention comprises a quality information receiving means for obtaining quality information from a device to be managed, Quality information storage means for storing quality information history for each managed device; A daily dividing means for dividing the quality information of the device to be managed, which is stored in the quality information storage means, for each specific period; Dividing the time variation of the quality information divided by the daily dividing means into patterns, and a daily grouping calculating means for dividing into groups, When a new quality information is sent from the managed device, a daily group specifying means for specifying a group that is most similar to the time change of the quality information until immediately before the device, A rule extraction means for extracting all the rules corresponding to the identified group; A rule storage means for recording a management rule having an activation condition for quality information in combination with group information targeted by the rule; Condition matching means for extracting a rule that satisfies the quality information received by the quality information receiving means from among the rules extracted by the rule extracting means; And an action execution means for executing the action part of the rule
- the first rule-based management method of the present invention is grouped according to a temporal change pattern of quality information of devices to be managed, Set management rules for each group, When new quality information is sent from a managed device, check the group to which the device belongs. Get the management rules corresponding to that group, Among the management rules, the operation part of the rule in which the new quality information satisfies the condition part of the rule is executed.
- the second rule-based management method of the present invention divides the quality information of the managed device for each specific period, Group by time change pattern for each division, Set rules for each group, When new quality information is sent from the managed device, identify the group that most closely resembles the time change in quality information from the same device, Get the management rules corresponding to that group, Among the management rules, the operation part of the rule in which the new quality information satisfies the condition part of the rule is executed.
- the first rule base management program of the present invention includes a quality information reception process for obtaining quality information from a device to be managed, Quality information storage processing for storing quality information history for each managed device, A grouping calculation process that divides the time variation of the quality information of the managed devices stored in the quality information storage process into patterns and classifies them into groups.
- a group specifying process for determining which group of individual devices to be managed is classified based on the result of the grouping calculation process;
- a rule extraction process that extracts all the rules corresponding to the identified group;
- a rule saving process in which a management rule having a start condition for quality information is recorded in combination with group information targeted by the rule,
- a condition matching process for extracting a rule whose activation condition satisfies the quality information received in the quality information reception process;
- An operation execution process for executing the rules extracted by the condition extraction means is executed by a computer.
- the second rule-based management program of the present invention includes a quality information reception process for obtaining quality information from a device to be managed, A quality information storage process for storing the history of quality information for each managed device, a daily split process for dividing the quality information of the managed device stored in the quality information storage means for each specific period, A daily grouping calculation process that divides the time variation of the quality information divided by the daily division means into patterns and divides it into groups, When a new quality information is sent from the managed device, a daily group identification process that identifies a group that is most similar to the time change of the quality information until immediately before the device, A rule extraction process that extracts all the rules corresponding to the identified group; A rule saving process in which a management rule having a start condition for quality information is recorded in combination with group information targeted by the rule, Among the rules extracted by the rule extraction process, a condition matching process for extracting a rule whose activation condition satisfies the quality information received in the quality information reception process; An operation execution process for executing a rule extracted by the
- the rule-based management system includes a data processing device 100 that operates under program control and a display device 400.
- the data processing apparatus includes quality information receiving means 110, quality information storage means 120, grouping calculation means 130, group specifying means 140, rule execution means 150, and rule correction means 160.
- the grouping calculation unit 130 includes a quality information distance calculation unit 131, a clustering calculation unit 132, and a group information storage unit 133.
- the rule execution means 150 includes a rule extraction means 151, a condition matching means 152, an analysis execution means 153, and a rule storage means 154.
- the quality information receiving unit 110 receives quality information transmitted from the management target device 200.
- the quality information storage unit 120 stores the quality information received by the quality information reception unit 110 together with information for specifying the transmission source management target device and the date and time. When the device and date and time are specified, the quality information at that time is specified. teach.
- the quality information distance calculation unit 131 acquires quality information of a specific period for the two devices from the quality information storage unit 120, and calculates the quality information value and the degree of approximation of the change.
- the clustering calculation unit 132 groups a plurality of management target devices according to the degree of approximation obtained by the quality information distance calculation unit 131, and calculates which management target device belongs to which group.
- the group information storage unit 133 stores the group information of the management target device calculated by the clustering calculation unit 132.
- the group specifying unit 140 uses the group information stored in the group information storing unit 133 to specify to which group the source information management target device 200 of the quality information received by the quality information receiving unit 110 belongs.
- the rule extracting unit 151 acquires the monitoring rule corresponding to the group specified by the group specifying unit 140 from the rule storing unit 154.
- the rule includes an activation condition that sets a condition for whether or not the rule operates on quality information, and a rule operation that is executed when the activation condition is satisfied.
- the condition matching unit 152 extracts a rule whose condition part matches the quality information received by the quality information receiving unit 110 from the rules extracted by the rule extracting unit 151.
- the rule action execution means 153 executes the action defined in the rule action of the rule extracted by the condition matching means 152.
- the rule storage unit 154 stores a rule group corresponding to the group calculated by the grouping calculation unit.
- the quality information receiving unit 110 periodically receives quality information from the management target device 200 (step A01).
- the quality information receiving unit 110 records the received quality information in the quality information storage unit 120 together with information (IP address and the like) for specifying the source management target device and the time (step A02).
- the group specifying unit 140 obtains the group to which the management target device 200 belongs from the group information stored by the group information storing unit 133 (step A03).
- the rule extracting unit 152 acquires all the rules corresponding to the belonging group from the rule storing unit 154 (step A05).
- step A06 the rule extracting unit 152 acquires all the rules corresponding to no affiliated group from the rule storing unit 154 (step A06).
- step A07 With respect to the rule acquired at step A05 or step A06, all the rules whose activation conditions match the quality information received at step A01 are extracted (step A07).
- the rule action executing means 153 executes the action defined in the rule action part of the rule (step A09).
- the clustering calculation means 132 obtains a list of quality information sending management target devices stored in the quality information storage means 120. Then, all combinations are calculated as a set of two (step A10), and for each combination, the quality information of the specified period for the two devices in the set is obtained from the quality information storage means 120, and the quality information
- the distance calculation means 131 calculates the value between the quality information and the degree of behavioral approximation (step A11).
- the clustering calculation unit 132 After the calculation of the degree of approximation is completed for all the sets (step A12), the clustering calculation unit 132 has a high degree of approximation, that is, similar devices belong to the same group, and devices with a low degree of approximation belong to another group.
- the group is calculated as follows (step A13).
- the number of monitoring rules can be minimized. The reason is that, instead of setting a monitoring rule for each individual device, devices having similar quality patterns can be grouped and set in a batch.
- the rule base management system includes a data processing device 100 that operates under program control and a display device 400.
- the data processing apparatus includes quality information receiving means 110, quality information storage means 120, grouping calculation means 130, daily group identification means 141, rule execution means 150, and rule correction means 160.
- the grouping calculation unit 130 includes a daily dividing unit 134, a quality information distance calculating unit 131, a daily clustering calculating unit 135, and a daily group information storage unit 136.
- the rule execution means 150 includes a rule extraction means 151, a condition matching means 152, an analysis execution means 153, and a rule storage means 154.
- the quality information receiving unit 110 receives quality information transmitted from the management target device 200.
- the quality information storage unit 120 stores the quality information received by the quality information reception unit 110 together with information for specifying the transmission source management target device and the date and time. When the device and date and time are specified, the quality information at that time is specified. teach.
- the daily dividing means 134 divides the quality information of one device at a predetermined time interval. For example, the quality information for one week is divided every day.
- the quality information distance calculation means 131 calculates the value between quality data and the degree of approximation of time change divided by the daily dividing means 134.
- the daily clustering calculation unit 135 performs grouping separately for each period divided by the daily division unit 134 according to the degree of approximation calculated by the quality information distance calculation unit 131.
- the daily group information storage unit 136 stores group information and representative values of devices and periods belonging to the group. That is, the group to which the quality information of the extracted period belongs is determined by the representative value of the group and the degree of approximation.
- the daily group specifying unit 141 acquires the quality information of the management target device 200, which is the source of the quality information received by the quality information receiving unit 110, for the same range as the previous time interval divided by the daily dividing unit 134, This is compared with the representative value for each group stored in the daily group information storage unit 136. Identify the most similar group, that is, the most similar group.
- the rule extracting unit 151 acquires a rule corresponding to the group specified by the daily group specifying unit 141 from the rule storing unit 154.
- the rule includes a start condition that sets a condition for whether or not the rule operates for quality information, and a rule action that is executed when the start condition is satisfied.
- the condition matching unit 152 extracts a rule whose condition part matches the quality information received by the quality information receiving unit 110 from the rules extracted by the rule extracting unit 151.
- the rule action executing means 153 executes the action defined in the rule action of the rule extracted by the condition matching means 152.
- the rule storage unit 154 stores a rule group corresponding to the group calculated by the grouping calculation unit.
- step B04 the daily group specifying unit 141 has the same range as the time interval for dividing the quality information of the management target device 200, which is the source of the quality information received by the quality information receiving unit 110, by the daily dividing unit 134.
- the minutes are acquired and compared with the representative value for each group stored in the daily group information storage unit 136. Then, the most similar group, that is, the most similar group is specified.
- the present embodiment described above it is possible to classify the daily patterns of the device into several groups according to the fluctuation of the quality value every specific period, for example, every day, and to set a rule for each classification. Therefore, it is possible to set a rule that matches the quality pattern.
- the configuration is such that the quality pattern at the time of applying the rule is estimated and the rule corresponding to the estimated pattern is applied, it is possible to apply the rule according to the quality pattern at the time of applying the rule.
- the same equipment is often used on Saturdays and Sundays, but one equipment such as few on weekdays.
- the rule is operated by analyzing it so as to be composed of a plurality of patterns, it is operated so as to evaluate which one of the groups constituting the device corresponds to the day.
- the precision of a rule can further be improved by setting a rule finely according to the usage pattern for every day. It is possible to infer which classification the usage status / quality information of the day belongs to from the pattern immediately before the usage status / quality information of the management target, and apply the monitoring rule for each classification.
- a large number of devices connected by an IP network are set as management targets.
- the management target device reports quality information of the device, such as the CPU usage rate, the number of network accesses, the amount of communication, the remaining HDD capacity, and the like.
- a program that implements the present invention operates on the rule base management server.
- Equipment is classified into multiple groups based on each quality information pattern.
- some parameters frequently used for the rule such as the number of accesses, are selected, and a grouping is performed by setting a period for taking out, for example, two weeks.
- the degree of approximation when grouping the sum of squares of differences is used for the values of the quality parameters at the same time. In other words, the smaller the value, the closer the access pattern of the device. Clustering is performed using this value.
- ⁇ Manually provide a threshold for determining how much of the clustered results will be grouped.
- the server A and the server B showing a pattern in which the variation in the number of accesses with respect to time are similar are grouped as the same group 1.
- server C is group 2
- server D is group 3.
- the quality information of the device is collected for a certain period of time and compared with the fluctuation pattern of these three groups. Group.
- the group type and the IP address of the device belonging to the group are stored in the group database.
- a rule is set for this group. For example, consider a rule for detecting that access to a device is impossible by detecting the occurrence of an unnatural drop in the number of accesses.
- the average quality information of the devices belonging to the group is presented to the rule creator as a representative quality pattern of the group. Based on this pattern, the rule creator adjusts the rule threshold and the criterion.
- the number of accesses is 1/10 compared to the immediately preceding time.
- the condition is that there are no consecutive times for several hours.
- the time when there is no access is excluded from the rules.
- the rules created for each group in this way are stored in the rule database by combining the group ID and the rule ID. At this time, a default rule corresponding to a device not included in any group or a newly added device can be set. These are registered in the rule database as rules corresponding to no group ID (see FIG. 9).
- the group database is searched with the IP address of the device, and the group ID to which the device belongs is obtained.
- the group ID of 192.168.120.5 is 1, and the rule condition is immediately before, that is, whether it is 1/10 or less of the number of accesses from 10:00 to 11:00. In this case, since the condition of the rule is satisfied, the rule operates, and an operation of the rule “output an alarm to investigate because access is disabled” is executed.
- the present invention can be applied to a purpose of monitoring a large number of devices connected via a network and automatically detecting when an abnormality occurs. Also, in an environment where multiple services operate on a large number of devices, the status of the service is monitored, whether the service is normally provided to the user, and automatically detected when an abnormality occurs. It can also be applied to applications.
- DESCRIPTION OF SYMBOLS 100 Data processor 110 Quality information receiving means 120 Quality information storage means 130 Grouping calculation means 131 Quality information distance calculation means 132 Clustering calculation means 133 Group information storage means 134 Daily allocation means 135 Daily clustering calculation means 136 Daily allocation group information storage means 140 Group specifying means 141 Daily group specifying means 150 Rule execution means 151 Condition matching means 152 Rule extraction means 153 Operation execution means 154 Rule storage means 160 Rule correction means 200 Monitored device 300 Quality information 400 Display device
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
監視ルールの精度を向上させるルールベース管理システム、ルールベース管理方法およびルールベース管理用プログラムを提供すること。 グループ化計算手段と、グループ特定手段と、ルール実行部とを備え、管理対象機器の過去の品質情報からグループ化計算手段により、品質情報の振る舞いの近似度によって機器をグループ化し、グループごとに監視ルールを用意し、管理対象機器のその時々の品質情報を得ると、その機器が属するグループをグループ特定手段により特定し、そのグループに対応する監視ルールと品質情報から以上の発見分析を行うよう動作する。
Description
本発明は監視ルールの精度を向上させるルールベース管理技術に関する。
関連するルールベース監視システムの一例が、特許文献1に記載されている。図1に示すように、この関連するルールベース監視システムは、品質情報収集手段910と、ルール保存手段920と、条件部評価手段930と、動作実行手段940から構成されている。
このような構成を有する従来のルールベース監視システムはつぎのように動作する。
すなわち、異常の発生とみなされる状況を示す条件を示した条件部と、さらに異常に対応して、さらに原因を分析したり、システム管理者に異常を伝えたりするという動作を示した動作部を含む監視ルールを管理対象の機器の構成、動作や特性に合わせて作成する。異常の種類ごとにこの監視ルールは作成される。
ルール保存手段920は、これらの監視ルールを保存する。品質情報収集手段910は監視対象の機器から品質情報を定期的に取得する。条件部評価手段930は、品質情報収集手段910が取得した品質情報と、ルール保存手段920に収められたすべてのルールの条件部とを比較して、条件部に示された条件を品質情報が満たすルールをすべて取り出す。動作実行手段940は、条件部評価手段が取り出したルールの動作部を実行する。
このように構成することで、異常の発見のための条件を条件部として保持し、異常の発見の管理者への通知や、さらなる原因分析の動作を動作部として持つ管理ルールを予め登録しておくことにより、自動的に管理対象の機器群の状態を監視し、異常が発生したときには、それを自動的に発見し、監視ルールの動作を実行することで異常の対処を管理者に促したり、管理者に異常の詳細な情報を迅速に与えたり、異常の種類によっては、異常を自動的に解消することができる。
特開2005-285040号公報
しかしながら、上述の関連技術では、ある機器/サービスでは適切に動作する監視ルールも、他の機器/サービスでは適切に動作しないということがありうる。なぜなら、監視対象の機器やサービス毎に利用形態や使用頻度、もしくはアクセスを捌ける能力が異なり、その結果、機器によっては異常を起こすアクセス数でも、他の機器においては正常に動作するなど、異常と判別するための閾値が機器/サービスによって異なるためである。
そのため、監視ルールによる異常発見・分析の精度を向上させることが困難であった。
本発明は、以上のような課題を解決するためになされたもので、監視ルールの精度を向上させるルールベース管理システム、ルールベース管理方法およびルールベース管理用プログラムを提供することを目的とする。
本発明の第1のルールベース管理システムは、管理対象の機器の品質情報の時間変動をパターン分けし、グループに分類するグループ化計算手段と、
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算手段の結果に基づいて決定するグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と
を備えたことを特徴とする。
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算手段の結果に基づいて決定するグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と
を備えたことを特徴とする。
また、本発明の第2のルールベース管理システムは、管理対象の機器から品質情報を得る品質情報受信手段と、
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存手段と、
前記品質情報保存手段に保存された管理対象の機器の品質情報の時間変動をパターン分けし、グループに分類するグループ化計算手段と、
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算手段の結果に基づいて決定するグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存手段と、
前記ルール抽出手段によって抽出されたルールのうち、その起動条件が前記品質情報受信手段の受信した品質情報を満たすルールを抽出する条件照合手段と、
前記条件抽出手段により抽出されたルールの動作部を実行する動作実行手段と
を備えたことを特徴とする。
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存手段と、
前記品質情報保存手段に保存された管理対象の機器の品質情報の時間変動をパターン分けし、グループに分類するグループ化計算手段と、
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算手段の結果に基づいて決定するグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存手段と、
前記ルール抽出手段によって抽出されたルールのうち、その起動条件が前記品質情報受信手段の受信した品質情報を満たすルールを抽出する条件照合手段と、
前記条件抽出手段により抽出されたルールの動作部を実行する動作実行手段と
を備えたことを特徴とする。
また、本発明の第3のルールベース管理システムは、管理対象の機器の品質情報を特定の期間ごとに区切る日割り分割手段と、
前記日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算手段と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と
を備えたことを特徴とする。
前記日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算手段と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と
を備えたことを特徴とする。
また、本発明の第4のルールベース管理システムは、管理対象の機器から品質情報を得る品質情報受信手段と、
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存手段と、
前記品質情報保存手段に保存された、管理対象の機器の品質情報を特定の期間ごとに区切る日割り分割手段と、
前記日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算手段と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存手段と、
前記ルール抽出手段によって抽出されたルールのうち、その起動条件が前記品質情報受信手段の受信した品質情報を満たすルールを抽出する条件照合手段と、
条件抽出手段により抽出されたルールの動作部を実行する動作実行手段と
を備えたことを特徴とする。
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存手段と、
前記品質情報保存手段に保存された、管理対象の機器の品質情報を特定の期間ごとに区切る日割り分割手段と、
前記日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算手段と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存手段と、
前記ルール抽出手段によって抽出されたルールのうち、その起動条件が前記品質情報受信手段の受信した品質情報を満たすルールを抽出する条件照合手段と、
条件抽出手段により抽出されたルールの動作部を実行する動作実行手段と
を備えたことを特徴とする。
また、本発明の第1のルールベース管理方法は、管理対象の機器の品質情報の時間変化のパターンによってグループ分けし、
グループごとに管理ルールを設定し、
管理対象の機器から新規に品質情報が送られてきたら、その送りもとの機器が属するグループを調べ、
そのグループに対応する管理ルールを取得し、
その管理ルールの中で、新規の品質情報がルールの条件部を満たしているルールの動作部を実行することを特徴とする。
グループごとに管理ルールを設定し、
管理対象の機器から新規に品質情報が送られてきたら、その送りもとの機器が属するグループを調べ、
そのグループに対応する管理ルールを取得し、
その管理ルールの中で、新規の品質情報がルールの条件部を満たしているルールの動作部を実行することを特徴とする。
また、本発明の第2のルールベース管理方法は、管理対象の機器の品質情報を特定の期間ごとに分割し、
その分割ごとの時間変化のパターンからグループ分けし、
グループごとにルールを設定し、
管理対象の機器から新規に品質情報が送られてきたら、同じ機器からの直前までの品質情報の時間変化と最も似ているグループを特定し、
そのグループに対応する管理ルールを取得し、
その管理ルールの中で、新規の品質情報がルールの条件部を満たしているルールの動作部を実行することを特徴とする。
その分割ごとの時間変化のパターンからグループ分けし、
グループごとにルールを設定し、
管理対象の機器から新規に品質情報が送られてきたら、同じ機器からの直前までの品質情報の時間変化と最も似ているグループを特定し、
そのグループに対応する管理ルールを取得し、
その管理ルールの中で、新規の品質情報がルールの条件部を満たしているルールの動作部を実行することを特徴とする。
また、本発明の第1のルールベース管理用プログラムは、管理対象の機器から品質情報を得る品質情報受信処理と、
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存処理と、
品質情報保存処理で保存された管理対象の機器の品質情報の時間変動をパターンわけし、グループに分類するグループ化計算処理と、
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算処理の結果に基づいて決定するグループ特定処理と、
特定されたグループに対応するルールをすべて抽出するルール抽出処理と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存処理と、
前記ルール抽出処理によって抽出されたルールのうち、その起動条件が前記品質情報受信処理で受信した品質情報を満たすルールを抽出する条件照合処理と、
条件抽出手段により抽出されたルールを実行する動作実行処理と
をコンピュータに実行させることを特徴とする。
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存処理と、
品質情報保存処理で保存された管理対象の機器の品質情報の時間変動をパターンわけし、グループに分類するグループ化計算処理と、
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算処理の結果に基づいて決定するグループ特定処理と、
特定されたグループに対応するルールをすべて抽出するルール抽出処理と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存処理と、
前記ルール抽出処理によって抽出されたルールのうち、その起動条件が前記品質情報受信処理で受信した品質情報を満たすルールを抽出する条件照合処理と、
条件抽出手段により抽出されたルールを実行する動作実行処理と
をコンピュータに実行させることを特徴とする。
また、本発明の第2のルールベース管理用プログラムは、管理対象の機器から品質情報を得る品質情報受信処理と、
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存処理と、品質情報保存手段に保存された、管理対象の機器の品質情報を特定の期間ごとに区切る日割り分割処理と、
日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算処理と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定処理と、
特定されたグループに対応するルールをすべて抽出するルール抽出処理と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存処理と、
前記ルール抽出処理によって抽出されたルールのうち、その起動条件が前記品質情報受信処理で受信した品質情報を満たすルールを抽出する条件照合処理と、
条件抽出処理により抽出されたルールを実行する動作実行処理と
をコンピュータに実行させることを特徴とする。
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存処理と、品質情報保存手段に保存された、管理対象の機器の品質情報を特定の期間ごとに区切る日割り分割処理と、
日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算処理と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定処理と、
特定されたグループに対応するルールをすべて抽出するルール抽出処理と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存処理と、
前記ルール抽出処理によって抽出されたルールのうち、その起動条件が前記品質情報受信処理で受信した品質情報を満たすルールを抽出する条件照合処理と、
条件抽出処理により抽出されたルールを実行する動作実行処理と
をコンピュータに実行させることを特徴とする。
本発明によれば、監視ルールの精度を向上させるルールベース管理システム、ルールベース管理方法およびルールベース管理用プログラムを提供することができる。
次に、発明を実施するための最良の形態について図面を参照して詳細に説明する。
図2を参照すると、本発明の第1の実施の形態のルールベース管理システムは、プログラム制御により動作するデータ処理装置100と、表示装置400から構成されている。データ処理装置は、品質情報受信手段110と、品質情報保存手段120と、グループ化計算手段130と、グループ特定手段140と、ルール実行手段150と、ルール修正手段160とを含む。
図2を参照すると、本発明の第1の実施の形態のルールベース管理システムは、プログラム制御により動作するデータ処理装置100と、表示装置400から構成されている。データ処理装置は、品質情報受信手段110と、品質情報保存手段120と、グループ化計算手段130と、グループ特定手段140と、ルール実行手段150と、ルール修正手段160とを含む。
グループ化計算手段130は、品質情報距離計算手段131と、クラスタリング計算手段132と、グループ情報保存手段133とを含む。
ルール実行手段150は、ルール抽出手段151と、条件照合手段152と、分析実行手段153と、ルール保存手段154とを含む。
これらの手段はそれぞれ概略つぎのように動作する。
品質情報受信手段110は、管理対象機器200から送られてくる品質情報を受け取る。
品質情報受信手段110は、管理対象機器200から送られてくる品質情報を受け取る。
品質情報保存手段120は、品質情報受信手段110が受け取った品質情報を、送り元の管理対象機器を特定する情報と、日時とともに保存し、機器と日時を指定されたときにそのときの品質情報を教える。
品質情報距離計算手段131は、二つの機器について特定の期間の品質情報を品質情報保存手段120から取得し、その品質情報の値とその変化の近似度を計算する。
クラスタリング計算手段132は、複数の管理対象機器を品質情報距離計算手段131によって求められた近似度によってグループ化し、どの管理対象機器がどのグループに属しているのか計算する。
グループ情報保存手段133は、クラスタリング計算手段132によって計算された管理対象機器のグループ情報を保存する。
グループ特定手段140はグループ情報保存手段133に保存されたグループ情報を用いて、品質情報受信手段110が受信した品質情報の送り元管理対象機器200がどのグループに属しているか特定する。
ルール抽出手段151は、グループ特定手段140が特定したグループに対応する監視ルールをルール保存手段154から取得する。ここで、ルールとは品質情報に対してルールが動作するかどうかの条件を設定した起動条件と起動条件を満たした際に実行されるルール動作とを含む。
条件照合手段152は、ルール抽出手段151の抽出したルールのうち、その条件部が品質情報受信手段110が受信した品質情報と合致するものを抽出する。
ルール動作実行手段153は、条件照合手段152が抽出したルールのルール動作に定義された動作を実行する。
ルール保存手段154は、グループ化計算手段で計算されたグループに対応するルール群を保存する。
次に、図2及び図3のフローチャートを参照して本実施の形態の全体の動作について詳細に説明する。
まず、品質情報受信手段110は管理対象機器200から定期的に品質情報を受け取る(ステップA01)。次に、品質情報受信手段110は受信した品質情報を送りもとの管理対象機器を特定するための情報(IPアドレスなど)、および時刻と共に品質情報保存手段120に記録する(ステップA02)。
さらに、グループ特定手段140は、管理対象機器200が所属するグループをグループ情報保存手段133が保存するグループ情報から求める(ステップA03)。
ステップA03で所属グループが見つかった場合、ルール抽出手段152はその所属グループに対応するルールすべてをルール保存手段154から取得する(ステップA05)。
ステップA03で所属グループが見つからなかった場合、ルール抽出手段152は所属グループなしに対応するルールすべてをルール保存手段154から取得する(ステップA06)。
次に、ステップA05もしくはステップA06で取得したルールに対して、その起動条件がステップA01で受信した品質情報と合致するルールをすべて抽出する(ステップA07)。
ステップA07において条件を満たすルールが抽出された場合、ルール動作実行手段153は、そのルールのルール動作部に定義された動作を実行する(ステップA09)。
また、グループ情報を構築する手順としては、まず、充分な品質情報が収集された時点で、クラスタリング計算手段132は品質情報保存手段120に記憶された品質情報の送り元管理対象機器のリストを取得し、二つで一組としてすべての組み合わせを計算し(ステップA10)、それぞれの組み合わせに対して、その組の二つの機器に関する規定期間の品質情報を品質情報保存手段120から取得し、品質情報距離計算手段131が、それら品質情報間の値、振舞いの近似度を計算する(ステップA11)。
すべての組に対して近似度の計算が完了後(ステップA12)、クラスタリング計算手段132は近似度が高い、つまり似ている機器が同じグループに属し、近似度が低い機器が別のグループになるようにグループを計算する(ステップA13)。
最後に、ステップA13で計算したグループとグループに属する機器の情報をグループ情報保存手段133に保存する。
次に、本実施の形態の効果について説明する。
本実施の形態では、予め収集し保存しておいた品質情報の値と時間毎の変化が似ている機器同士をグループ化することで、機器をいくつかの振舞いのパターンに分け、それぞれにルールを設定できるというように構成されているため、振舞いの違いによって適切なルールを設定し、ルールの動作の結果異常の分析や対処の精度を向上させることができる。
本実施の形態では、予め収集し保存しておいた品質情報の値と時間毎の変化が似ている機器同士をグループ化することで、機器をいくつかの振舞いのパターンに分け、それぞれにルールを設定できるというように構成されているため、振舞いの違いによって適切なルールを設定し、ルールの動作の結果異常の分析や対処の精度を向上させることができる。
また、監視ルールの数を最小限に抑えることができる。その理由は、個々の機器ごとに監視ルールを設定するのではなく、似た品質パターンを持つ機器をグループ化して一括して監視ルールを設定することができるためである。
次に、本発明の第2の実施の形態について図面を参照して詳細に説明する。
図4を参照すると、本実施の形態におけるルールベース管理システムは、プログラム制御により動作するデータ処理装置100と、表示装置400から構成されている。データ処理装置は、品質情報受信手段110と、品質情報保存手段120と、グループ化計算手段130と、日割りグループ特定手段141と、ルール実行手段150と、ルール修正手段160とを含む。
図4を参照すると、本実施の形態におけるルールベース管理システムは、プログラム制御により動作するデータ処理装置100と、表示装置400から構成されている。データ処理装置は、品質情報受信手段110と、品質情報保存手段120と、グループ化計算手段130と、日割りグループ特定手段141と、ルール実行手段150と、ルール修正手段160とを含む。
グループ化計算手段130は、日割り分割手段134と、品質情報距離計算手段131と、日割りクラスタリング計算手段135と、日割りグループ情報保存手段136とを含む。
ルール実行手段150は、ルール抽出手段151と、条件照合手段152と、分析実行手段153と、ルール保存手段154とを含む。
これらの手段はそれぞれ概略つぎのように動作する。
品質情報受信手段110は、管理対象機器200から送られてくる品質情報を受け取る。
品質情報受信手段110は、管理対象機器200から送られてくる品質情報を受け取る。
品質情報保存手段120は、品質情報受信手段110が受け取った品質情報を、送り元の管理対象機器を特定する情報と、日時とともに保存し、機器と日時を指定されたときにそのときの品質情報を教える。
日割り分割手段134は、一つの機器の品質情報を決められた時間間隔で分割する。たとえば、一週間分の品質情報を一日ごとに分割する。
品質情報距離計算手段131は、日割り分割手段134によって分けられた、品質データ間の値や時間変化の近似度を計算する。
日割りクラスタリング計算手段135は、品質情報距離計算手段131により計算された近似度によって、日割り分割手段134によって分割された期間ごとに別々にグループ化する。
日割りグループ情報保存手段136は、グループ情報とそのグループに所属する機器・期間の代表値を保存する。つまり、取り出した期間の品質情報がどのグループに属するかは、どのグループの代表値と近似度が高いかによって決定される。
日割りグループ特定手段141は、品質情報受信手段110が受信した品質情報の送り元である管理対象機器200の品質情報を、直前の、日割り分割手段134が分割する時間間隔と同じ範囲分取得し、それを日割りグループ情報保存手段136に保存されたグループごとの代表値と、比較する。最も近似度が高い、つまり最もよく似ているグループを特定する。
ルール抽出手段151は、日割りグループ特定手段141が特定したグループに対応するルールをルール保存手段154から取得する。
ここで、ルールとは品質情報に対してルールが動作するかどうかの条件を設定した起動条件と起動条件を満たした際に実行されるルール動作とを含む。
条件照合手段152は、ルール抽出手段151の抽出したルールのうち、その条件部が品質情報受信手段110が受信した品質情報と合致するものを抽出する。
ルール動作実行手段153は、条件照合手段152が抽出したルールのルール動作に定義された動作を実行する。
ルール保存手段154は、グループ化計算手段で計算されたグループに対応するルール群を保存する。
次に、図4及び図5のフローチャートを参照して本実施の形態の全体の動作について上記の第1の実施の形態と異なる点を説明する。
ステップB04で、日割りグループ特定手段141は、品質情報受信手段110が受信した品質情報の送り元である管理対象機器200の品質情報を、直前の、日割り分割手段134が分割する時間間隔と同じ範囲分取得し、それを日割りグループ情報保存手段136に保存されたグループごとの代表値と、比較する。そして最も近似度が高い、つまり最もよく似ているグループを特定する。
上記の本実施の形態によれば、特定の期間ごと、たとえば一日毎の、品質値の変動によって、機器の日毎のパターンをいくつかに分類し、その分類ごとにルールを設定することができるように構成されているため、品質のパターンにあったルールを設定することができる。
また、ルール適用時の品質のパターンを推測し、推測したパターンに対応するルールを適用するというように構成されているため、ルール適用時の品質パターンにあわせたルールを適用することができる。
すなわち、機器の分類として、品質情報の一日での時間変化に注目し、各日ごとにグループ化することで、同じ機器でも土日はよく利用されるが、平日は少ないなど、一つの機器が複数のパターンから構成されるように分析し、ルールが動作する場合には、その一日が、その機器を構成するグループのうちどれに対応するのか、評価するように動作させる。これにより、日ごとの利用パターンによってルールをきめ細かに設定することで、さらにルールの精度を向上させることができる。管理対象の利用状況・品質情報の直前までのパターンから、その当日の利用状況・品質情報がどの分類に属するか推測し、分類ごとの監視ルールを適用できる。
次に、具体的な実施例を用いて本発明の実施の形態の動作を説明する。
図6に示すように、IPネットワークで接続された多数の機器を管理対象とする。管理対象の機器からは定期的に、その機器の品質情報、たとえばCPUの使用率、ネットワークのアクセス数、通信量、HDDの残量などが報告される。ルールベース管理サーバ上で、本発明を実現したプログラムが動作する。
図6に示すように、IPネットワークで接続された多数の機器を管理対象とする。管理対象の機器からは定期的に、その機器の品質情報、たとえばCPUの使用率、ネットワークのアクセス数、通信量、HDDの残量などが報告される。ルールベース管理サーバ上で、本発明を実現したプログラムが動作する。
機器はそれぞれの品質情報のパターンから複数のグループに分類される。品質情報のうちルールに多用されるいくつかのパラメータ、たとえばアクセス数などを選択し、また取り出す期間、たとえば2週間を設定してグループ化を行う。グループ化する際の近似度は各品質パラメータの同時刻の値に対して、差分の二乗和を用いる。つまりこの値が小さいほど機器のアクセスパターンは近いということになる。この値を用いてクラスタリングする。
クラスタリングした結果のうちどこまでグループ化するかを決定する閾値も人手で与える。図7に示すように、時刻に対してアクセス数の変動が似たパターンを示すサーバAとサーバBを同じグループ1としてまとめる。さらに、サーバCをグループ2、サーバDをグループ3とする。新たな機器が追加された場合にはその機器の品質情報をある程度の期間採取し、この3グループの変動パターンと比較し、違いが閾値内のグループがあればそのグループに属し、なければ新たなグループとする。
図8に示すように、このグループ化計算の結果、グループの種類とそれに属する機器のIPアドレスをグループデータベースに保存する。
さらに、このグループに対してルールを設定する。たとえば、アクセス数の不自然な急減が発生することを検出することで、機器へのアクセスが不可能になっていることを検知するルールを考える。グループに属する機器の品質情報の平均をグループの代表的品質パターンとしてルール作成者に提示する。ルール作成者はこのパターンをもとに、ルールの閾値や判断基準を調整する。
たとえば、常にアクセスが安定して発生するグループに対しては直前の時刻に比べてアクセス数が1/10になっていることを条件とし、アクセスが少ない機器に関しては誤検出を防ぐため、アクセスがない時刻が数時間連続していることを条件とする。特定の時刻にアクセスがなくなる機器に関しては、アクセスのない時刻はルールの動作の対象外とする。このようにグループごとに作成したルールは、グループIDとルールIDを組にしてルールデータベースに保存する。また、このとき、どのグループにも含まれない機器や、新たに追加された機器に対応するデフォルトルールを設置することができる。これらはグループIDなしに対応するルールとしてルールデータベースに登録する(図9参照)。
さらに、各機器からの定期的な品質情報に対して、その機器のIPアドレスでグループデータベースを検索しその機器が所属するグループIDを取得する。
グループIDをキーにしてルールデータベースを検索し、そのグループIDに対応するルールをすべて検索する。
その条件を、送られてきた品質情報と照らし合わせてルールの条件が満たされるかチェックする。例としてIPアドレス192.168.120.5から「アクセス数=3」の品質情報が11:00~12:00のデータとして送られてきたことを考える。
192.168.120.5のグループIDは1であり、ルールの条件は直前、つまり10:00~11:00のアクセス数の1/10以下であるかどうかである。この場合ルールの条件を満たすので、ルールが動作し、「アクセスができなくなっているので調査するようアラームを出す」というルールの動作を実行する。
同様に、IPアドレス192.168.120.182から「アクセス数=3」の品質情報が11:00~12:00のデータとして送られてくると、グループデータベースを引きグループIDは2であるとわかる。グループID=2に対応するルールの条件は品質情報=0の状態が4時間連続であることとなる。そこで、ルールの条件は満たされず、ルールは動作しないとなる。
なお、上述する各実施の形態は、本発明の好適な実施の形態であり、本発明の要旨を逸脱しない範囲内において種々変更実施が可能である。例えば、データ処理装置100、表示装置400の機能を実現するためのプログラムを各装置に読込ませて実行することにより各装置の機能を実現する処理を行ってもよい。さらに、そのプログラムは、コンピュータ読み取り可能な記録媒体であるCD-ROMまたは光磁気ディスクなどを介して、または伝送媒体であるインターネット、電話回線などを介して伝送波により他のコンピュータシステムに伝送されてもよい。
本発明によれば、ネットワークで繋がれた多数の機器を監視し、異常が発生したときに自動的に検知するといった用途に適用できる。また、多数の機器上で複数のサービスが動作する環境下で、サービスの状態を監視し、サービスが正常に利用者に提供されているか監視し、異常が発生したときに自動的に検知するといった用途にも適用可能である。
この出願は、2008年1月17日に出願された日本出願特願2008-008412を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 データ処理装置
110 品質情報受信手段
120 品質情報保存手段
130 グループ化計算手段
131 品質情報距離計算手段
132 クラスタリング計算手段
133 グループ情報保存手段
134 日割り分割手段
135 日割りクラスタリング計算手段
136 日割りグループ情報保存手段
140 グループ特定手段
141 日割りグループ特定手段
150 ルール実行手段
151 条件照合手段
152 ルール抽出手段
153 動作実行手段
154 ルール保存手段
160 ルール修正手段
200 監視対象機器
300 品質情報
400 表示装置
110 品質情報受信手段
120 品質情報保存手段
130 グループ化計算手段
131 品質情報距離計算手段
132 クラスタリング計算手段
133 グループ情報保存手段
134 日割り分割手段
135 日割りクラスタリング計算手段
136 日割りグループ情報保存手段
140 グループ特定手段
141 日割りグループ特定手段
150 ルール実行手段
151 条件照合手段
152 ルール抽出手段
153 動作実行手段
154 ルール保存手段
160 ルール修正手段
200 監視対象機器
300 品質情報
400 表示装置
Claims (8)
- 管理対象の機器の品質情報の時間変動をパターン分けし、グループに分類するグループ化計算手段と、
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算手段の結果に基づいて決定するグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と
を備えたことを特徴とするルールベース管理システム。 - 管理対象の機器から品質情報を得る品質情報受信手段と、
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存手段と、
前記品質情報保存手段に保存された管理対象の機器の品質情報の時間変動をパターン分けし、グループに分類するグループ化計算手段と、
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算手段の結果に基づいて決定するグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存手段と、
前記ルール抽出手段によって抽出されたルールのうち、その起動条件が前記品質情報受信手段の受信した品質情報を満たすルールを抽出する条件照合手段と、
前記条件抽出手段により抽出されたルールの動作部を実行する動作実行手段と
を備えたことを特徴とするルールベース管理システム。 - 管理対象の機器の品質情報を特定の期間ごとに区切る日割り分割手段と、
前記日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算手段と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と
を備えたことを特徴とするルールベース管理システム。 - 管理対象の機器から品質情報を得る品質情報受信手段と、
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存手段と、
前記品質情報保存手段に保存された、管理対象の機器の品質情報を特定の期間ごとに区切る日割り分割手段と、
前記日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算手段と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定手段と、
特定されたグループに対応するルールをすべて抽出するルール抽出手段と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存手段と、
前記ルール抽出手段によって抽出されたルールのうち、その起動条件が前記品質情報受信手段の受信した品質情報を満たすルールを抽出する条件照合手段と、
条件抽出手段により抽出されたルールの動作部を実行する動作実行手段と
を備えたことを特徴とするルールベース管理システム。 - 管理対象の機器の品質情報の時間変化のパターンによってグループ分けし、
グループごとに管理ルールを設定し、
管理対象の機器から新規に品質情報が送られてきたら、その送りもとの機器が属するグループを調べ、
そのグループに対応する管理ルールを取得し、
その管理ルールの中で、新規の品質情報がルールの条件部を満たしているルールの動作部を実行することを特徴とするルールベース管理方法。 - 管理対象の機器の品質情報を特定の期間ごとに分割し、
その分割ごとの時間変化のパターンからグループ分けし、
グループごとにルールを設定し、
管理対象の機器から新規に品質情報が送られてきたら、同じ機器からの直前までの品質情報の時間変化と最も似ているグループを特定し、
そのグループに対応する管理ルールを取得し、
その管理ルールの中で、新規の品質情報がルールの条件部を満たしているルールの動作部を実行することを特徴とするルールベース管理方法。 - 管理対象の機器から品質情報を得る品質情報受信処理と、
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存処理と、
品質情報保存処理で保存された管理対象の機器の品質情報の時間変動をパターンわけし、グループに分類するグループ化計算処理と、
管理対象の個々の機器がどのグループに分類されるか、前記グループ化計算処理の結果に基づいて決定するグループ特定処理と、
特定されたグループに対応するルールをすべて抽出するルール抽出処理と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存処理と、
前記ルール抽出処理によって抽出されたルールのうち、その起動条件が前記品質情報受信処理で受信した品質情報を満たすルールを抽出する条件照合処理と、
条件抽出手段により抽出されたルールを実行する動作実行処理と
をコンピュータに実行させることを特徴とするルールベース管理用プログラム。 - 管理対象の機器から品質情報を得る品質情報受信処理と、
品質情報の履歴を管理対象の機器ごとに保存する品質情報保存処理と、
品質情報保存手段に保存された、管理対象の機器の品質情報を特定の期間ごとに区切る日割り分割処理と、
日割り分割手段で区切った品質情報の時間変をパターン分けし、グループに分割する日割りグループ化計算処理と、
管理対象の機器から新規に品質情報が送られてきたときに、その機器の直前までの品質情報の時間変化と最も似ているグループを特定する日割りグループ特定処理と、
特定されたグループに対応するルールをすべて抽出するルール抽出処理と、
品質情報に対して起動条件を持つ管理ルールを、そのルールが対象とするグループ情報と組で記録したルール保存処理と、
前記ルール抽出処理によって抽出されたルールのうち、その起動条件が前記品質情報受信処理で受信した品質情報を満たすルールを抽出する条件照合処理と、
条件抽出処理により抽出されたルールを実行する動作実行処理と
をコンピュータに実行させることを特徴とするルールベース管理用プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008008412A JP2009169762A (ja) | 2008-01-17 | 2008-01-17 | ルールベース管理システム、ルールベース管理方法およびルールベース管理用プログラム |
JP2008-008412 | 2008-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009090944A1 true WO2009090944A1 (ja) | 2009-07-23 |
Family
ID=40885333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/050337 WO2009090944A1 (ja) | 2008-01-17 | 2009-01-14 | ルールベース管理システム、ルールベース管理方法およびルールベース管理用プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009169762A (ja) |
WO (1) | WO2009090944A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108595300A (zh) * | 2018-03-21 | 2018-09-28 | 北京奇艺世纪科技有限公司 | 一种可配置的监控和报警的方法及装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012169958A (ja) * | 2011-02-16 | 2012-09-06 | Kddi Corp | リアルタイム品質分析装置および方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04293128A (ja) * | 1991-03-20 | 1992-10-16 | Fujitsu Ltd | エキスパートシステム |
JPH07230446A (ja) * | 1993-12-22 | 1995-08-29 | Toshiba Corp | パターン抽出方法及び装置 |
JPH07234861A (ja) * | 1994-02-24 | 1995-09-05 | Toshiba Corp | データ監視システム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006023793A (ja) * | 2004-07-06 | 2006-01-26 | Sony Corp | 情報処理装置,プログラム,プログラム提供サーバ |
-
2008
- 2008-01-17 JP JP2008008412A patent/JP2009169762A/ja active Pending
-
2009
- 2009-01-14 WO PCT/JP2009/050337 patent/WO2009090944A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04293128A (ja) * | 1991-03-20 | 1992-10-16 | Fujitsu Ltd | エキスパートシステム |
JPH07230446A (ja) * | 1993-12-22 | 1995-08-29 | Toshiba Corp | パターン抽出方法及び装置 |
JPH07234861A (ja) * | 1994-02-24 | 1995-09-05 | Toshiba Corp | データ監視システム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108595300A (zh) * | 2018-03-21 | 2018-09-28 | 北京奇艺世纪科技有限公司 | 一种可配置的监控和报警的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2009169762A (ja) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108292296B (zh) | 用于利用复发性模式创建时间序列数据的时段分布图的方法 | |
US11836162B2 (en) | Unsupervised method for classifying seasonal patterns | |
US11232133B2 (en) | System for detecting and characterizing seasons | |
CN111221702B (zh) | 基于日志分析的异常处理方法、系统、终端及介质 | |
US10699211B2 (en) | Supervised method for classifying seasonal patterns | |
EP2487860B1 (en) | Method and system for improving security threats detection in communication networks | |
CN110362612B (zh) | 由电子设备执行的异常数据检测方法、装置和电子设备 | |
US10171335B2 (en) | Analysis of site speed performance anomalies caused by server-side issues | |
US7778715B2 (en) | Methods and systems for a prediction model | |
US20170277727A1 (en) | Identification of distinguishing compound features extracted from real time data streams | |
US10263833B2 (en) | Root cause investigation of site speed performance anomalies | |
US11966319B2 (en) | Identifying anomalies in a data center using composite metrics and/or machine learning | |
US9146927B2 (en) | Data processing apparatus, data processing method, and program | |
US10504026B2 (en) | Statistical detection of site speed performance anomalies | |
CN112800061B (zh) | 一种数据存储方法、装置、服务器及存储介质 | |
CN111782484A (zh) | 一种异常检测方法及装置 | |
US20140115400A1 (en) | Device and method for fault management of smart device | |
CN113901441A (zh) | 一种用户异常请求检测方法、装置、设备及存储介质 | |
CN117785539A (zh) | 日志数据分析方法、装置、计算机设备及存储介质 | |
WO2009090944A1 (ja) | ルールベース管理システム、ルールベース管理方法およびルールベース管理用プログラム | |
CN116797180A (zh) | 投诉预警方法、装置、计算机设备和存储介质 | |
CN115545452B (zh) | 运维方法、运维系统、设备及存储介质 | |
CN115189963A (zh) | 异常行为检测方法、装置、计算机设备及可读存储介质 | |
CN114860543A (zh) | 异常检测方法、装置、设备与计算机可读存储介质 | |
JP7033560B2 (ja) | 分析装置および分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09703050 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09703050 Country of ref document: EP Kind code of ref document: A1 |