WO2009090276A1 - Stand-alone laser-based flight system - Google Patents

Stand-alone laser-based flight system Download PDF

Info

Publication number
WO2009090276A1
WO2009090276A1 PCT/ES2008/000356 ES2008000356W WO2009090276A1 WO 2009090276 A1 WO2009090276 A1 WO 2009090276A1 ES 2008000356 W ES2008000356 W ES 2008000356W WO 2009090276 A1 WO2009090276 A1 WO 2009090276A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
necessary
laser
equipment
aircraft
Prior art date
Application number
PCT/ES2008/000356
Other languages
Spanish (es)
French (fr)
Inventor
Jesús POZO CAMPOS
Koldo BIDAURRAZAGA EREÑO
Galder BENGOA ENDEMAÑO
Original Assignee
Oberon Space, S.L.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oberon Space, S.L.L. filed Critical Oberon Space, S.L.L.
Publication of WO2009090276A1 publication Critical patent/WO2009090276A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1121One-way transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal

Definitions

  • ESA European Space Agency
  • Wireless power transmission can be achieved by microwave or laser.
  • MILAX Mlcrowave Lifted Airplane Experiment
  • the object of the invention is to apply this technology to achieve an autonomous system that flies without the need for any type of energy or antenna other than that emitted by laser from a platform located on the ground.
  • a preferred, but not limited to, application of the autonomous laser flight system object of the invention is the aerospace sector.
  • the autonomous laser flight system according to the invention is characterized in that it consists of a well-differentiated ground equipment and aerial equipment; going: -TO-
  • ground equipment provided with means to feed the aerial equipment in addition to communicating with it, laser transmitting the necessary power and information
  • said aerial equipment provided with means to collect the energy and data from the terrestrial equipment, and in turn the collection of experimental data to send them to the terrestrial equipment.
  • Both the ground equipment and the aerial equipment used include subsystems to achieve the specific purposes proposed; varying, where appropriate, the components of these subsystems for better achievement of the proposed purposes, without altering the essence of the invention.
  • applications of the system object of the invention are, for example and among others:
  • This innovative technology would serve to supply energy and communicate anywhere on earth, even those that are inaccessible due to its geographical location.
  • the minimum number of energy transmitting satellites to cover all the earth would be three. With this number it would be possible to cover the entire globe. Therefore, any user in need of energy or information anywhere in the world would have direct access to it.
  • - Power between satellites The system could provide energy or send information to any satellite that needs it. One might even consider that in the future satellites will not carry solar panels, since they could be supplied by this system.
  • the laser radiation allows the use of lunar research robots to search for ice and, therefore, water in those regions. This is a fundamental condition for humans to live there in the future. But also the search for other riches of the subsoil and the In situ sample analysis are activities of the utmost importance.
  • the system can be very useful when a vehicle is inserted in the planet (Rover).
  • the Rover would also not need any type of energy plant since it could be supplied by the satellite that orbited around that planet (Orbiter), thus also reducing the failure rate in the solar panels, cost and complexity thereof.
  • Space-base telescopes Large modular telescopes in heliocentric orbits and several astronomical units of the Sun offer benefits to astronomers, impossible to achieve within the solar interior system (for example, absence of zodiacal dust, which interferes with infrared exams). Such telescopes could use wireless energy to obtain the necessary energy on board and the care of the station of the modular elements of the telescope.
  • Satellites There could be great military interest since less visible spy satellites can be built. If satellites are not required to carry large solar panels (for example 30 meters), they could be more difficult to discover from the ground or by interceptors.
  • Small commercial satellites could be powered by batteries, periodically recharging from remote sources of energy.
  • Satellite maintenance could be done using robots supplied by lasers.
  • the technology will allow robots to explore enclosures continuously, recharging their batteries when passing in front of the wireless power source.
  • Airplanes can be available continuously in areas where you want to control the traffic and driver infractions.
  • helicopters are used whose hourly expense is huge.
  • the coasts will be swept by drones continuously, controlling the entry of vessels to the port, infractions, or boats.
  • a high precision camera may be included in the system to be able to take aerial photographs of houses, mountains, rivers, etc.
  • Figure 1 schematically represents the autonomous laser flight system object of the invention, with its ground equipment (ST) and aerial equipment (SA) interconnected by laser (L).
  • Figure 2 represents a block diagram with the main components that make up the different subsystems (21), (22), (23), (24), (25) and (26) of the ground equipment (ST).
  • Figure 2a represents the movement (N) in azimuth (A) and elevation (E).
  • Figure 2b represents an example of the mechanical subsystem design (21).
  • Figure 2c represents the way in which the energy affects the receiver of the aerial equipment (SA) to effect the transmission of power and necessary data from the terrestrial equipment (ST).
  • FIGs 2d, 2e, 2f and 2g represent operation diagrams of the control subsystem (22).
  • Figure 2h represents the frequency modulation (FSK).
  • Figure 2i represents the phase modulation (PSK).
  • Figure 2j represents regions 3C1, where the laser beam (L) does not diverge (near field) and part 3C2 where the laser beam (L) diverges (far field).
  • Figure 2k represents the necessary diameter of the receiver with respect to three different wavelengths: 400, 700 and 1000 nm.
  • Figure 21 represents an exemplary embodiment, with low power lasers (Li).
  • FIG 3 represents a block diagram with the main components that make up the different subsystems (31), (32), (33), (34), (35) and (36) of the aerial equipment (SA)
  • Figure 3a schematically represents the block diagram of the control software (321 a).
  • the Ground Equipment (ST) will be responsible for feeding the Air Equipment (SA) using the laser beam (L), in addition to communicating with it.
  • SA Air Equipment
  • L laser beam
  • the structure of the Ground Equipment (ST) is shown in Figure 2 and consists of the following subsystems:
  • the mechanical subsystem (21) of the Ground Equipment (ST) the mechanical parts necessary to build the two-axis follower platform (21 1).
  • the mechanical subsystem (21) will have two degrees of freedom (it can move in two axes), azimuth and elevation, so that it can be oriented in the direction of the Aerial Equipment (SA), provided it is in its field of view and after Let this last report grounded your position and speed.
  • SA Aerial Equipment
  • the movement (N) in azimuth (A) and elevation (E) will be carried out by means of two motors, one for each degree of freedom as shown in Figure 2a.
  • An example of the design of the mechanical subsystem (21) can be that of the structure used in two-axis solar trackers (see figure 2b).
  • Automatic trackers have a central metal mast (21 a) that supports a mobile support (21 b), whose position varies.
  • the preliminary characteristics of the mechanical subsystem (21) for this exemplary embodiment are:
  • the central mast (21 a) and the mobile support (21 b) will withstand the adverse climatic conditions of the geographical area where the Ground Equipment (ST) is installed.
  • SA Aerial Equipment
  • the base where the systems are supported for the transmission of energy and data must be adjustable.
  • control subsystem (22) of the Ground Equipment (ST) will direct the mechanical subsystem (21) towards the Air Equipment (SA).
  • SA Air Equipment
  • the Ground Platform Control Software (221) will orient a laser (L) located in the mobile support (21 b) of the mechanical subsystem (21), so that its energy It affects the receiver of the Aerial Equipment (SA) and thus the transmission of power and necessary data can be carried out (according to the form represented in Figure 2c.
  • L laser
  • SA Aerial Equipment
  • This Control software of the ground platform (221) will have as input the position of the Aerial Equipment (SA) in the reference system of the follower platform itself. Depending on the position of the aircraft, the software will demand the appropriate position instructions to the engines of the Ground Equipment platform (ST) so that they are oriented until the error between the laser direction (L) and the receiver address ( aircraft) be null.
  • SA Aerial Equipment
  • ST Ground Equipment platform
  • the steps to follow to ensure that the mechanical subsystem (21) points to the Aerial Equipment (SA) are the following: one .
  • SA Aerial Equipment
  • the output of the control system will be the torque or intensity that needs to be supplied to the motors to reach the proper position.
  • the control system consists of a PID, where its equation can be expressed as:
  • T -k D engine # ERR "k,” k P ⁇ err
  • T mo t or is the torque that is supplied to the engines ⁇ err is the angle of error between the position of the aircraft and the normal ⁇ , ⁇ err is its derivative, and [ ⁇ err is its integral.
  • control system has been simulated in Simulink to check its proper functioning (see Figure 2d).
  • This control hardware of the ground platform (222) will consist of the following components:
  • the control software of the ground platform (221) will be implemented within a microcontroller.
  • a possible microcontroller to use is the Softect indart-HSC12.
  • the transmission subsystem (24) of the Ground Equipment (ST) will be responsible for transmitting
  • the transmitting laser (L) of the Ground Equipment (ST) is aligned (“hooked") with the photovoltaic panels (receiver) of the Aerial Equipment (SA), the transmission of power and data can begin.
  • the Transmission Software (241) of the Ground Equipment (ST) will be responsible for making the two desired transmissions (power and data).
  • the output light of a laser is usually represented by a continuous beam that has constant energy.
  • the beam can be modulated in a suitable way to transmit information.
  • This modulation can take the form of an amplitude modulation (AM), which alters the force or energy of the beam, or a frequency modulation (FM), which alters the frequency or color of the beam, or a phase modulation that does not alter either the energy or the color of the beam.
  • AM amplitude modulation
  • FM frequency modulation
  • the modulation adds information to the laser beam so that it can be transported by the beam and transmitted to a distant place, where it can be extracted and used.
  • a telephone conversation can be encoded in a modulated laser beam and sent to the other side of the US or, under the sea, to Europe or Asia, where it can be decoded and heard in voice form.
  • Modulation is a process in which a "modulator" changes some attributes of a "carrier signal” of higher frequency in relation to the frequency of the "message signal".
  • the “carrier signal” can be represented by the equation:
  • a change in the signal will produce the corresponding change in amplitude, frequency or phase of the carrier depending on the modulation performed.
  • a transmitter can send this carrier signal through the communication means more efficiently than if we send the message signal alone.
  • a receiver will demodulate the signal obtaining the original message.
  • analog amplitude modulation the amplitude of the carrier changes depending on the amplitude of the message to be transmitted.
  • the signal with the message is mounted above the carrier since the amplitudes of the two vary with time. However, the frequency of the carrier is much greater than the frequency of the message.
  • the digital modulation is very similar to the analog modulation, but instead of changing to continuous values of the amplitude (ASK), frequency (FSK) or phase (PSK) it is changed only to discrete values of these attributes that correspond to the digital codes .
  • ASK amplitude
  • FSK frequency
  • PSK phase
  • OOK On-Off Keying
  • the ASK is a form of modulation whereby the amplitude of the signal is given by the equation
  • this technique is very similar to modulation in AM amplitude.
  • SA Aerial Equipment
  • the Transmission Hardware (242) of the Ground Equipment (ST) is The Transmission Hardware (242) of the Ground Equipment (ST)
  • the Transmission Software (241) sends the power and data to the Aerial Equipment (SA).
  • SA Aerial Equipment
  • the Transmission Hardware (242) will form the following components.
  • An amplitude, frequency or phase modulator to transform the information and send it together with the power transmission.
  • a radio modem and an antenna will be used as a redundant data transmission system with the Air Equipment. It should also be noted that the laser beam does not continue without diverging indefinitely. Even in the case of an ideal laser there is a divergence of the beam.
  • is the angle of divergence
  • L is the distance to the receiver and D is the diameter obtained in the receiver.
  • the angle ⁇ depends on the wavelength ⁇ and the radius of the ray when "lightning" does not diverge.
  • CO2 because the wavelength is not usable by commercial cells, and the diode laser is chosen. In general, they have a useful life of about 15,000 hours and a yield of 35%, superior to other technologies.
  • the receiving subsystem (23) of the Ground Equipment (ST) will be responsible for receiving and demodulating the information coming from the Air Equipment (SA), obtaining the experimental data sent by means of a radio modem.
  • SA Air Equipment
  • the Receiving Software (231) of the Ground Equipment (ST) will be responsible for decoding the information transmitted by the Air Equipment (SA) to obtain the original message.
  • the radio modem signal will be modulated in amplitude, frequency or phase and will have to be decoded to convert it into valid information.
  • the type of demodulation will depend on the modulation chosen to transmit the information from the Aerial Equipment (SA) to the Ground Equipment (ST).
  • the Receiving Hardware (232) of the Ground Equipment (ST) will be responsible for converting the information from the radio modem of the Air Equipment (SA) into electrical signals (voltage, intensity), so that they can be interpreted by the Receiving Software (231) explained in the previous point.
  • the receiving Hardware (232) is very simple, since it will form a radio modem and a conventional antenna that will connect directly to the Microcontroller.
  • photovoltaic cells of different materials it is included in the object of the invention to use photovoltaic cells of different materials to take advantage of the energy transmitted by the earth transmission system, depending on the wavelengths that they can take advantage of.
  • h being the Planck constant
  • c the speed of light
  • the wavelength of the incident photon
  • the option of the concentration cells requires a greater technical development to solve the problems of dissipation, positioning of the small cells, development of the support structure, etc. For example, to achieve a concentration of 100 soles, a density is necessary of power of 1 0 W / cm 2 . If the area occupied by the photovoltaic cells were 0.1 m 2 , an incident power of 1000 W. would be necessary.
  • the user interface subsystem (25) will be the software in charge of allowing the communication between the user and the transmitting and receiving subsystems of the Ground Equipment (ST).
  • the GUI will be designed so that the communication with the user is easy and intuitive, so that the user can transmit the new coordinates of position, speed and attitude to the Air Team (SA), and at the same time view the data received in time real.
  • the GUI is divided into two parts, one will be responsible for transmitting the position, speed and attitude guidance of the new point or trajectory that the Air Team (SA) must follow and another part will be responsible for receiving the position, speed and real attitude as well as the experimental data obtained.
  • the Power Subsystem (26) of the Ground Equipment (ST) will be responsible for power all the Earth Equipment (ST) providing enough energy to power all the subsystems, in addition to supplying the energy necessary to use the laser and thus power the Air Equipment (SA).
  • the power subsystem (26) is a fundamental system that is integrated into the Ground Equipment (ST) but actually feeds both the Ground Equipment (ST) and the Air Equipment (SA).
  • the power subsystem (26) can be the electricity grid itself, power generators, batteries or solar panels. Depending on the necessary power consumption, one system or another will be used.
  • SA Aerial Equipment
  • ST Ground Equipment
  • SA Aerial Equipment
  • SA Air Equipment
  • auxiliary hardware (362) necessary to supply the aircraft, if at any time it could not be radiated by the laser.
  • the Aircraft Mechanical Subsystem (31 1) of the Air Equipment (SA) will be the prototype to be flown and, in this case, will be an aircraft model aircraft.
  • the Aircraft Mechanical Subsystem (31 1) of the Aerial Equipment (SA) will be powered by the energy transmitted by the Earth Equipment (ST) laser, therefore the structure of this set will be covered by solar cells (a priori concentration cells ) that will transform that radiation into electrical energy to provide the necessary power to the electronic systems of
  • SA Aerial Equipment
  • the Control Software (321 a) of the Air Equipment Aircraft (SA) will be in charge of controlling the aircraft by means of the data coming from the Ground Equipment (ST) (trajectory and attitude of reference) and the data coming from the navigation (trajectory and real attitude).
  • ST Ground Equipment
  • ST Trajectory and attitude of reference
  • navigation trajectory and real attitude
  • the control system (3a5) calculates the actions that must be followed by the actuators (3a3) so that the reference path (3a4) can be followed as precisely as possible.
  • the actuators are composed of the control surfaces that guide the aircraft.
  • the Control hardware (322a) of the Aircraft Equipment Aircraft (SA) will be responsible for executing the control signals generated by the Control Software (321 a).
  • the control of the aircraft is done through a series of servos that transmit movement to the aerodynamic surfaces of the model.
  • the following components will therefore be needed:
  • the transmission subsystem (34) of the Aerial Equipment (SA) will be responsible for transmitting the data to the Ground Equipment (ST) via a radio modem.
  • SA Aerial Equipment
  • ST Ground Equipment
  • the Transmission Software (341) of the Air Team (SA) will be responsible for making the desired transmissions.
  • the form of transmission of the data to the Ground Equipment (ST) will be exactly the same as explained in the corresponding section of the Ground Equipment (ST),
  • the data to be transmitted will be the experimental data collected, in addition to the position, speed and attitude data collected by the hardware of the navigation subsystem that will be explained in the corresponding section.
  • the Transmission Hardware (342) of the Aerial Equipment (SA) shall be formed by the physical systems through which the transmission subsystem (34) sends the data to the Ground Equipment (ST).
  • the Data Transmission Hardware (342) will be able to transform the information that is to be sent in the form of radio frequency pulses.
  • the Data Transmission Hardware (342) will form a radio modem.
  • the Receiving Software (331) of the Aerial Equipment (SA) will be responsible for decoding the information transmitted by the Ground Equipment (ST) to obtain the original message.
  • the signal will be modulated in amplitude, frequency or phase, and will have to be decoded to convert it into valid information.
  • the type of demodulation will depend on the modulation chosen to transmit the information from the Ground Equipment (ST) to the Air Equipment (SA).
  • the Receiving Software (331) will be a specific software whose task will be to extract the reference trajectory and attitude and present the new input data to the Control Software (321 a) of the Air Team (SA).
  • the Reception Hardware (332) of the Aerial Equipment (SA) will be in charge of converting the radiation coming from the laser of the Ground Equipment (ST) into electrical signals (voltage, intensity) so that they can be interpreted by the Reception Software ( 331) In addition to using the incident power to power the Aerial Equipment (SA).
  • the Receiving Hardware (332) is very simple and will form solar cells (a priori concentration cells). It is important to note that the solar cells located in the Aerial Equipment (SA) will not only act as power receivers but also as information receivers.
  • radiomodem link (as a redundant device) to ensure that in case the reception with the solar cells did not work correctly, the aircraft continues to contact the ground equipment
  • the Air Equipment (SA) will be fed by placing solar cells attached to the aircraft that will transform the radiation received from the Earth Equipment (ST) into energy to power the Air Equipment (SA).
  • solar cells will have a much greater efficiency when they are irradiated with laser than when they are with solar energy, since in this case it is possible to choose that the laser wavelength is optimal for those cells.
  • An example of the energy generated with respect to the wavelength is that known for GaAs cells, frequently used in space applications.
  • the solar cells will be arranged in the aircraft in such a way that when the night is done the aircraft can be powered entirely by the energy of the laser, and that when it is done by day use both the energy of the sun and that of the laser (being able to reach increase the efficiency of the cells to double).
  • SA Aerial Equipment
  • SA Aerial Equipment
  • the Power Subsystem (36) of the Aerial Equipment (SA) will be a safety system that will be in charge of feeding the aforementioned systems in case due to any misfortune the laser does not fully affect the apparatus.
  • This system will consist of a battery and a power regulator, and can be additionally charged when the aircraft is under solar radiation.

Abstract

The invention relates to a stand-alone laser-based flight system including a land device (ST) and an air device (SA) which are very different from one another. The land device (ST) is provided with means for powering the air device (SA) and for communicating with same in a fully wireless manner, using laser (L) to transmit the necessary power and information. The air device (SA) is provided with means for collecting data and power from the land device (ST) and sending experimental data to the land device (ST).

Description

"SISTEMA AUTÓNOMO DE VUELO CON LÁSER" "AUTONOMOUS FLIGHT WITH LASER SYSTEM"
D E S C R I P C I Ó ND E S C R I P C I Ó N
En el actual estado de Ia técnica ya se conocen sistemas para transferencia de energía sin necesidad de cables; existiendo hoy en día básicamente dos tipos de tecnologías para Ia transferencia de Ia misma:In the current state of the art systems for transferring energy without wires are already known; Today there are basically two types of technologies for the transfer of the same:
- Transmisión por microondas, preferida por los investigadores japoneses.- Microwave transmission, preferred by Japanese researchers.
- Transmisión por láser, preferida por Ia Agencia Espacial Europea (ESA).- Laser transmission, preferred by the European Space Agency (ESA).
También son conocidos, y profusamente utilizados, sistemas para transferencia de señales de telecomunicaciones sin necesidad de cables (alguno de los cuales aparece descrito en, por ejemplo, lasAlso known, and widely used, are systems for transferring telecommunications signals without the need for cables (some of which is described in, for example, the
Patentes EP071 1476, GB2O82995, EP1031242 y EP1232579, entre otras).Patents EP071 1476, GB2O82995, EP1031242 and EP1232579, among others).
Aunque no se han encontrado aplicaciones precedentes que realicen transmisión inalámbrica de potencia y datos simultáneamente, sí se han encontrado evidencias de que se está investigando sobre Ia tecnología. La transmisión inalámbrica de potencia se puede conseguir mediante microondas o bien mediante láser. A continuación se presentan algunas aplicaciones conocidas que se han desarrollado para cada una de ellas y que se pueden incluir dentro del campo de Ia transmisión de potencia y datos.Although no previous applications have been found that perform wireless transmission of power and data simultaneously, evidence has been found that technology is being investigated. Wireless power transmission can be achieved by microwave or laser. Below are some known applications that have been developed for each of them and that can be included within the field of power and data transmission.
• TRANSMISIÓN POR MICROONDAS: - Proyecto "SHARP" (CANADÁ): El Proyecto Sharp fue concebido por primera vez en 1 980. En septiembre de 1 982 el Departamento de Comunicaciones del Gobierno de Canadá aprobó un programa de desarrollo e investigación que utilizaba el concepto de transmisión de energía eléctrica por medio de microondas. El frente de ondas se dirigía desde una antena en tierra, alimentándose una aeronave que era capaz de volar a una altura de 21 Km con un radio de 1 Km.• MICROWAVE TRANSMISSION: - Project "SHARP" (CANADA): The Sharp Project was first conceived in 1 980. In September 1 982 the Department of Communications of the Government of Canada approved a development and research program that used the concept of electric power transmission by microwave. The wave front was directed from an antenna on the ground, feeding an aircraft that was capable of flying at a height of 21 km with a radius of 1 km.
El 17 de septiembre de 1 987, en el Centro de Comunicaciones e Investigaciones, tuvo lugar el primer vuelo del proyecto Sharp con un modelo de 4,5 m de envergadura de ala.On September 17, 1 987, at the Center for Communications and Research, the first flight of the Sharp project took place with a 4.5 m model of wingspan.
El 7 de octubre de 1 987, tuvo lugar Ia primera demostración pública del proyecto Sharp ante el Ministro de Comunicaciones de Canadá y Ia prensa. La Federación Internacional Aeronáutica Io reconoció como el primer vuelo de esta clase.On October 7, 1 987, the first public demonstration of the Sharp project took place before the Canadian Minister of Communications and the press. The International Aeronautical Federation recognized it as the first flight of this class.
- Proyecto "MILAX", Mlcrowave Lifted Airplane Experiment (JAPÓN) : En este proyecto, impulsado por los japoneses, se utilizaba el mismo concepto que en el proyecto SHARP, es decir, Ia transmisión de energía por microondas. El prototipo se presentó en 1 992.- Project "MILAX", Mlcrowave Lifted Airplane Experiment (JAPAN): In this project, driven by the Japanese, the same concept was used as in the SHARP project, that is, microwave energy transmission. The prototype was introduced in 1 992.
• TRANSMISIÓN POR LÁSER:• LASER TRANSMISSION:
- Proyecto "Potencia en el espacio por iluminación desde una estación en Ia tierra", Presentado por Ia NASA en Ia 26a edición de Ia Intersociety Energy.- Project "Power in the space illumination from a ground station Ia" presented by NASA Ia Ia Ia 26 edition of Energy Intersociety.
Conversión Engineering Conference (USA) : Este sistema reducirá Ia masa de los equipos de potencia que se llevan al espacio, debido a que en los periodos de eclipse o de noche lunar las células fotovoltaicas serían iluminadas por un láser desde una estación ubicada en Ia tierra. Este proyecto se encuentra en fase de estudioConversion Engineering Conference (USA): This system will reduce the mass of the power equipment that is taken to space, because in periods of eclipse or lunar night the cells Photovoltaic would be illuminated by a laser from a station located on the ground. This project is under study
- Proyecto "Coded Optical Power System", Technology Service Corporation (USA): En Marzo de 2004 se realizó una demostración en el "Air Forcé Space and Missile Systems Center" de Ia habilidad de propulsión y transmisión de datos mediante láser. El proyecto sigue hoy en día en fase de estudio.- Project "Coded Optical Power System", Technology Service Corporation (USA): In March 2004 a demonstration was carried out in the "Air Force Space and Missile Systems Center" of the ability to propel and transmit data by laser. The project is still under study today.
- Proyecto "SPI ", Solar Power Initiative (Alemania) : Este proyecto fue presentado en Septiembre de 2003 por EADS Space. Se hizo una demostración de alimentación de un pequeño robot mediante un rayo láser. El proyecto sigue hoy en día en fase de estudio.- "SPI" Project, Solar Power Initiative (Germany): This project was presented in September 2003 by EADS Space. There was a demonstration of feeding a small robot using a laser beam. The project is still under study today.
El objeto del invento es el de, aplicando esta tecnología, lograr un sistema autónomo que vuele sin necesidad de ningún tipo de energía ni antena más que Ia emitida por láser desde una plataforma situada en tierra.The object of the invention is to apply this technology to achieve an autonomous system that flies without the need for any type of energy or antenna other than that emitted by laser from a platform located on the ground.
La característica más importante de este sistema es que podrá volar de forma ininterrumpida sin necesidad de aterrizar en tierra para recargar su sistema de alimentación, puesto que el sistema estará totalmente alimentado desde tierra.The most important feature of this system is that you can fly continuously without needing to land on the ground to recharge your power system, since the system will be fully powered from the ground.
Una aplicación preferente, aunque no limitativa, del sistema autónomo de vuelo con láser objeto del invento es el sector aerospacial .A preferred, but not limited to, application of the autonomous laser flight system object of the invention is the aerospace sector.
El sistema autónomo de vuelo con láser según Ia invención, se caracteriza porque consta de un equipo terrestre y un equipo aéreo bien diferenciados; yendo: -A-The autonomous laser flight system according to the invention is characterized in that it consists of a well-differentiated ground equipment and aerial equipment; going: -TO-
a) dicho equipo terrestre provisto de medios para alimentar al equipo aéreo además de comunicarse con él, transmitiendo con láser Ia potencia e información necesarias;a) said ground equipment provided with means to feed the aerial equipment in addition to communicating with it, laser transmitting the necessary power and information;
b) dicho equipo aéreo provisto de medios para recoger Ia energía y datos provenientes del equipo terrestre, y a su vez Ia recogida de datos experimentales para enviarlos al equipo terrestre.b) said aerial equipment provided with means to collect the energy and data from the terrestrial equipment, and in turn the collection of experimental data to send them to the terrestrial equipment.
Tanto el equipo terrestre como el equipo aéreo empleados incluyen subsistemas para lograr los fines concretos propuestos; variando, en su caso, los componentes de estos subsistemas para mejor consecución de los fines propuestos, sin alterar Ia esencia del invento.Both the ground equipment and the aerial equipment used include subsystems to achieve the specific purposes proposed; varying, where appropriate, the components of these subsystems for better achievement of the proposed purposes, without altering the essence of the invention.
El número de aplicaciones de esta tecnología es infinito tanto en el sector Aerospacial como en el sector terrestre.The number of applications of this technology is infinite both in the Aerospace sector and in the land sector.
Aplicaciones preferentes, aunque no limitativas, del sistema objeto del invento son, por ejemplo y entre otras:Preferred, but not limited to, applications of the system object of the invention are, for example and among others:
- Generador Geoestacionario. Esta innovadora tecnología serviría para abastecer de energía y comunicar a cualquier lugar de Ia tierra, incluso a los que resultan inaccesibles debido a su situación geográfica.- Geostationary Generator. This innovative technology would serve to supply energy and communicate anywhere on earth, even those that are inaccessible due to its geographical location.
El número mínimo de satélites transmisores de energía para cubrir toda Ia tierra seria de tres. Con este número sería posible cubrir todo el globo terráqueo. Por Io tanto, cualquier usuario con necesidad de energía o información en cualquier punto del mundo tendría acceso directo a ella. - Alimentación entre satélites: El sistema podría abastecer de energía o mandar información a cualquier satélite que Io necesite. Se podría incluso considerar que en el futuro los satélites no llevarán paneles solares, puesto que podrían ser abastecidos por este sistema.The minimum number of energy transmitting satellites to cover all the earth would be three. With this number it would be possible to cover the entire globe. Therefore, any user in need of energy or information anywhere in the world would have direct access to it. - Power between satellites: The system could provide energy or send information to any satellite that needs it. One might even consider that in the future satellites will not carry solar panels, since they could be supplied by this system.
Esto abarataría mucho el coste de los satélites y sobre todo reduce mucho Ia tasa de fallos en los mismos, puesto que uno de los sistemas más críticos cuando se pone el satélite en órbita es el correcto despliegue de los paneles. Hay que destacar que si el despliegue de los paneles es fallido, Ia misión completa podría fracasar.This would greatly reduce the cost of satellites and, above all, greatly reduce the failure rate in the satellites, since one of the most critical systems when putting the satellite into orbit is the correct deployment of the panels. It should be noted that if the deployment of the panels is unsuccessful, the entire mission could fail.
- Abastecimiento desde Ia Luna. La idea también podría ser Ia de colocar una planta de energía en Ia luna, aunque en este caso Ia energía estaría supeditada a Ia situación de Ia luna con respecto de Ia tierra, y además supondría un enorme coste el lanzamiento de los paneles hasta Ia misma.- Supply from the Moon. The idea could also be to place a power plant on the moon, although in this case the energy would be subject to the situation of the moon with respect to the earth, and in addition it would be an enormous cost to launch the panels to the same .
La razón por Ia que podría ser interesante es que en las regiones polares de Ia Luna, tanto en su hemisferio Norte como en el Sur, los rayos del Sol no llegan a todas las zonas, no siendo posible por consiguiente generar energía eléctrica por medio de células solares en todos los lugares deseables. Esto afecta sobre todo a los cráteres, cuyos bordes impiden que los rayos del Sol lleguen al fondo de su cavidad.The reason why it might be interesting is that in the polar regions of the Moon, both in its northern hemisphere and in the South, the sun's rays do not reach all areas, therefore it is not possible to generate electricity through solar cells in all desirable places. This mostly affects craters, whose edges prevent the sun's rays from reaching the bottom of their cavity.
El uso de Ia transmisión inalámbrica de energía por medio deThe use of wireless energy transmission by means of
Ia radiación láser permite utilizar robots de investigación lunar para buscar hielo y, por Io tanto, agua en esas regiones. Ésta es una condición fundamental para que los humanos puedan vivir allí en el futuro. Pero también Ia búsqueda de otras riquezas del subsuelo y el análisis de las muestras in situ son actividades de máxima importancia.The laser radiation allows the use of lunar research robots to search for ice and, therefore, water in those regions. This is a fundamental condition for humans to live there in the future. But also the search for other riches of the subsoil and the In situ sample analysis are activities of the utmost importance.
El uso de baterías acarrea graves inconvenientes debido a su tamaño y al peso, ya que su transporte a Ia Luna origina costes elevados. Por otra parte, el uso de fuentes de energía atómica en forma de pequeñas centrales nucleares plantea grandes problemas de seguridad. A su vez, Ia teletransmisión de energía por medio de rayos láser permite prolongar Ia duración de las misiones, ya que no es necesario regresar a Ia base para recargar las baterías.The use of batteries causes serious inconveniences due to their size and weight, since their transport to the Moon causes high costs. On the other hand, the use of atomic energy sources in the form of small nuclear power plants poses major security problems. In turn, the teletransmission of energy by means of laser beams allows prolonging the duration of the missions, since it is not necessary to return to the base to recharge the batteries.
- Misiones Interplanetarias: Se puede también considerar Ia posibilidad de utilizar el sistema para misiones interplanetarias (misión a Plutón), donde Ia energía del sol es muy tenue. De esta forma, Ia sonda que se mandara podría ser abastecida por un satélite que se encontrase en una órbita alta de Ia Tierra, enviando Ia potencia necesaria a Ia sonda vía Láser. Además de eso el Láser permitiría una comunicación mucho más rápida que Ia transmisión vía antena.- Interplanetary Missions: You can also consider the possibility of using the system for interplanetary missions (mission to Pluto), where the energy of the sun is very tenuous. In this way, the probe that was sent could be supplied by a satellite that was in a high orbit of the Earth, sending the necessary power to the probe via Laser. In addition to that the Laser would allow a much faster communication than the transmission via antenna.
- Rovers. El sistema puede ser muy útil cuando se inserte un vehículo en el planeta (Rover). En este caso el Rover tampoco necesitaría ningún tipo de planta energética puesto que podría ser abastecido por el satélite que orbitase alrededor de ese planeta (Orbiter), reduciéndose así también Ia tasa de fallo en los paneles solares, coste y complejidad del mismo.- Rovers. The system can be very useful when a vehicle is inserted in the planet (Rover). In this case, the Rover would also not need any type of energy plant since it could be supplied by the satellite that orbited around that planet (Orbiter), thus also reducing the failure rate in the solar panels, cost and complexity thereof.
Puede ser también imaginable trabajar con más de uno de estos vehículos de investigación. Dos o tres de ellos podrían formar un "enjambre". Los vehículos de un enjambre estarían entonces interconectados en una red de energía. Esto significa que cada Rover se abastece al menos con un vecino por medio del láser transmisor de energía.It may also be imaginable to work with more than one of these research vehicles. Two or three of them could form a "swarm." The vehicles in a swarm would then be interconnected in a power grid. This means that every Rover at least one neighbor is supplied by means of the laser energy transmitter.
Telescopios de espacio-base: Grandes telescopios modulares en órbitas heliocéntricas y varias unidades astronómicas del Sol ofrecen beneficios a astrónomos, imposibles de conseguir dentro del sistema interior solar (por ejemplo, ausencia de polvo zodiacal, que interfiere con exámenes de infrarrojos). Tales telescopios podrían usar energía inalámbrica para conseguir Ia energía necesaria a bordo y el cuidado de Ia estación de los elementos modulares del telescopio.Space-base telescopes: Large modular telescopes in heliocentric orbits and several astronomical units of the Sun offer benefits to astronomers, impossible to achieve within the solar interior system (for example, absence of zodiacal dust, which interferes with infrared exams). Such telescopes could use wireless energy to obtain the necessary energy on board and the care of the station of the modular elements of the telescope.
- Sistemas de sensores conectados a una red: Cientos de sensores diminutos recibiendo energía de un satélite "madre" equipado con capacidad de transmisión de energía inalámbrica, pueden permitir revisiones detalladas de regiones interplanetarias y espaciales.- Sensor systems connected to a network: Hundreds of tiny sensors receiving power from a "mother" satellite equipped with wireless power transmission capability, can allow detailed revisions of interplanetary and spatial regions.
- Satélites Militares: Podría existir un gran interés militar puesto que se pueden construir satélites espías menos visibles. Si no se requiere que los satélites lleven grandes paneles solares (por ejemplo de 30 metros), podrían ser más difíciles de descubrir desde Ia tierra o por interceptores.- Military Satellites: There could be great military interest since less visible spy satellites can be built. If satellites are not required to carry large solar panels (for example 30 meters), they could be more difficult to discover from the ground or by interceptors.
- Satélites Comerciales. Pequeños satélites comerciales podrían ser impulsados por baterías, recargándose periódicamente desde remotas fuentes de energía.- Commercial satellites. Small commercial satellites could be powered by batteries, periodically recharging from remote sources of energy.
- Robots de satélites: El mantenimiento de satélites podría hacerse mediante robots abastecidos por rayos láser.- Satellite robots: Satellite maintenance could be done using robots supplied by lasers.
- Lanzamiento de Satélites. Los futuros pequeños satélites se podrán lanzar utilizando energía inalámbrica. Esto reduciría enormemente los gastos de cualquier misión espacial. - Sensores de autónomos: Con esta tecnología se podrán construir sensores totalmente independientes de su fuente de alimentación, pudiendo operar sin cables de forma indefinida. Un ejemplo muy útil puede ser su utilización en los sensores de viento de los aerogeneradores, donde el llevar cables por dentro de las palas puede generar serios problemas en caso de tormentas.- Satellite launch. Future small satellites can be launched using wireless power. This would greatly reduce the expenses of any space mission. - Autonomous sensors: With this technology you can build sensors totally independent of your power supply, being able to operate without wires indefinitely. A very useful example can be its use in wind sensors of wind turbines, where carrying cables inside the blades can generate serious problems in case of storms.
- Robots de vigilancia. La tecnología permitirá tener robots que exploren recintos de forma continuada, recargando sus baterías al pasar frente a Ia fuente de energía inalámbrica.- Surveillance robots. The technology will allow robots to explore enclosures continuously, recharging their batteries when passing in front of the wireless power source.
- Envío de energía y datos a móviles. Actualmente no existe- Sending energy and data to mobiles. Currently does not exist
Ia posibilidad de transferir energía de forma inalámbrica a móviles. Esta capacidad podría eliminar los engorrosos adaptadores de los mismos, puesto que sería un sistema universal que al exponerlo a Ia fuente de energía inalámbrica permitiría su recarga de manera automática. Incluso se podría transferir Ia energía excedente de un móvil a otro.The possibility of transferring energy wirelessly to mobile phones. This capacity could eliminate their cumbersome adapters, since it would be a universal system that, when exposed to the wireless power source, would allow it to be recharged automatically. You could even transfer the excess energy from one mobile to another.
- Recarga de ordenadores portátiles. Al igual que en el caso de los móviles, el usuario podría recargar su ordenador portátil simplemente situándolo en frente de Ia energía inalámbrica.- Recharge laptops. As in the case of mobile phones, the user could recharge his laptop simply by placing it in front of the wireless power.
- Sistemas de Vigilancia: Con este sistema se podrán tener aviones no tripulados encima de nuestras viviendas que adquieran imágenes y datos de cualquier anomalía que suceda en nuestras inmediaciones, recargando Ia aeronave de forma inalámbrica.- Surveillance Systems: With this system you can have drones above our homes that acquire images and data of any anomaly that occurs in our vicinity, recharging the aircraft wirelessly.
- Sistemas para control de Tráfico. Se podrá disponer de aviones de forma continua en zonas donde se quiera controlar el tráfico e infracciones de los conductores. Actualmente se utilizar helicópteros cuyo gasto por hora es enorme.- Traffic control systems. Airplanes can be available continuously in areas where you want to control the traffic and driver infractions. Currently helicopters are used whose hourly expense is huge.
- Sistema para el control de costas. Las costas estarán barridas por aviones no tripulados de forma continua, controlando Ia entrada de embarcaciones al puerto, infracciones, o pateras.- Coastal control system. The coasts will be swept by drones continuously, controlling the entry of vessels to the port, infractions, or boats.
- Sistema para fotografías aéreas. Se podrá incluir una cámara de alta precisión en el sistema para poder realizar fotografías aéreas de casas, montes, ríos, etc..- System for aerial photographs. A high precision camera may be included in the system to be able to take aerial photographs of houses, mountains, rivers, etc.
Para comprender mejor el objeto de Ia presente invención, se representa en los planos una forma preferente de realización práctica, susceptible de cambios accesorios que no desvirtúen su fundamento.To better understand the object of the present invention, a preferred form of practical embodiment is shown in the drawings, susceptible to accessory changes that do not distort its foundation.
La figura 1 representa, de forma esquemática el sistema autónomo de vuelo con láser objeto del invento, con su equipo terrestre (ST) y equipo aéreo (SA) intercomunicados por láser (L).Figure 1 schematically represents the autonomous laser flight system object of the invention, with its ground equipment (ST) and aerial equipment (SA) interconnected by laser (L).
La figura 2 representa un diagrama de bloques con los principales componentes que integran los diferentes subsistemas (21 ), (22), (23), (24), (25) y (26) del equipo terrestre (ST).Figure 2 represents a block diagram with the main components that make up the different subsystems (21), (22), (23), (24), (25) and (26) of the ground equipment (ST).
La figura 2a representa el movimiento (N) en acimut (A) y elevación (E).Figure 2a represents the movement (N) in azimuth (A) and elevation (E).
La figura 2b representa un ejemplo de diseño del subsistema mecánico (21 ) . La figura 2c representa Ia forma en que incide Ia energía sobre el receptor del equipo aéreo (SA) para efectuar Ia transmisión de potencia y datos necesarios desde el equipo terrestre (ST).Figure 2b represents an example of the mechanical subsystem design (21). Figure 2c represents the way in which the energy affects the receiver of the aerial equipment (SA) to effect the transmission of power and necessary data from the terrestrial equipment (ST).
Las figuras 2d, 2e, 2f y 2g representan diagramas de funcionamiento del subsistema de control (22).Figures 2d, 2e, 2f and 2g represent operation diagrams of the control subsystem (22).
La figura 2h representa Ia modulación en frecuencia (FSK).Figure 2h represents the frequency modulation (FSK).
La figura 2i representa Ia modulación de fase (PSK).Figure 2i represents the phase modulation (PSK).
La figura 2j representa las regiones 3C1 , donde el rayo del láser (L) no diverge (campo cercano) y Ia parte 3C2 donde el rayo del láser (L) diverge (campo lejano).Figure 2j represents regions 3C1, where the laser beam (L) does not diverge (near field) and part 3C2 where the laser beam (L) diverges (far field).
La figura 2k representa el diámetro necesario del receptor con respecto de tres diferentes longitudes de onda: 400, 700 y 1000 nm.Figure 2k represents the necessary diameter of the receiver with respect to three different wavelengths: 400, 700 and 1000 nm.
La figura 21 representa un ejemplo de realización, con láseres (Li) de baja potencia.Figure 21 represents an exemplary embodiment, with low power lasers (Li).
La figura 3 representa un diagrama de bloques con los principales componentes que integran los diferentes subsistemas (31 ), (32), (33), (34), (35) y (36) del equipo aéreo (SA)Figure 3 represents a block diagram with the main components that make up the different subsystems (31), (32), (33), (34), (35) and (36) of the aerial equipment (SA)
La figura 3a representa, de forma esquemática, el diagrama de bloques del software de control (321 a).Figure 3a schematically represents the block diagram of the control software (321 a).
Se describe a continuación un ejemplo de realización práctica, no limitativa, del presente invento. El Equipo terrestre (ST) será el encargado de alimentar el Equipo aéreo (SA) mediante el rayo láser (L), además de comunicarse con él. La estructura del Equipo terrestre (ST) se muestra en Ia Figura 2 y consta de los siguientes subsistemas:An example of practical, non-limiting embodiment of the present invention is described below. The Ground Equipment (ST) will be responsible for feeding the Air Equipment (SA) using the laser beam (L), in addition to communicating with it. The structure of the Ground Equipment (ST) is shown in Figure 2 and consists of the following subsystems:
- Subsistema mecánico (21 ), en el que se encontrarán las piezas mecánicas necesarias para construir Ia plataforma seguidora de dos ejes (21 1 ).- Mechanical subsystem (21), in which the mechanical parts necessary to build the two-axis follower platform (21 1) will be found.
- Subsistema de control (22), en el que se encuentran todo el software (221 ) y hardware (222) necesario para controlar el seguidor de dos ejes (21 1 ).- Control subsystem (22), which contains all the software (221) and hardware (222) necessary to control the two-axis tracker (21 1).
- Subsistema de Recepción (23), que consta del hardware (232) y software (231 ) necesario para Ia recepción de toda Ia información proveniente del Equipo aéreo (SA).- Reception Subsystem (23), which consists of the hardware (232) and software (231) necessary for the reception of all information from the Air Team (SA).
- Subsistema de Transmisión (24), que consta del hardware (242) y software (241 ) necesario para transmitir potencia e información al Equipo aéreo (SA) (aeronave).- Transmission Subsystem (24), consisting of the hardware (242) and software (241) necessary to transmit power and information to the Air Team (SA) (aircraft).
- Subsistema de Interfaz de Usuario (25), que consta del software (251 ) necesario para permitir al usuario comunicar de forma fácil e intuitiva Ia posición, velocidad y actitud de referencia al Equipo aéreo (SA). Además permite visualizar los datos provenientes del Equipo aéreo (SA).- User Interface Subsystem (25), which consists of the software (251) necessary to allow the user to easily and intuitively communicate the position, speed and attitude of reference to the Air Team (SA). It also allows to visualize the data coming from the Aerial Equipment (SA).
- Subsistema de Alimentación (26), que proporciona Ia alimentación (261 ) de energía necesaria al Equipo terrestre (ST).- Power Subsystem (26), which provides the power (261) of necessary energy to the Ground Equipment (ST).
Según el ejemplo de realización representado, en el Subsistema Mecánico (21 ) del Equipo terrestre (ST) se encontrarán las piezas mecánicas necesarias para construir Ia plataforma seguidora de dos ejes (21 1 ). El subsistema mecánico (21 ) tendrá dos grados de libertad (podrá moverse en dos ejes), acimut y elevación, así de esta forma podrá orientarse en dirección al Equipo aéreo (SA), siempre que se encuentre en su campo de vista y después de que este último informe a tierra de su posición y velocidad. El movimiento (N) en acimut (A) y elevación (E) se realizará mediante dos motores, uno por cada grado de libertad como se muestra en Ia figura 2a.According to the embodiment shown, in the Mechanical Subsystem (21) of the Ground Equipment (ST) the mechanical parts necessary to build the two-axis follower platform (21 1). The mechanical subsystem (21) will have two degrees of freedom (it can move in two axes), azimuth and elevation, so that it can be oriented in the direction of the Aerial Equipment (SA), provided it is in its field of view and after Let this last report grounded your position and speed. The movement (N) in azimuth (A) and elevation (E) will be carried out by means of two motors, one for each degree of freedom as shown in Figure 2a.
Un ejemplo de diseño del subsistema mecánico (21 ) puede ser el de Ia estructura utilizada en seguidores solares de dos ejes (ver figura 2b). Los seguidores automáticos tienen un mástil metálico central (21 a) que sirve de sostén a un soporte móvil (21 b), cuya posición varía.An example of the design of the mechanical subsystem (21) can be that of the structure used in two-axis solar trackers (see figure 2b). Automatic trackers have a central metal mast (21 a) that supports a mobile support (21 b), whose position varies.
Las características preliminares del subsistema mecánico (21 ) para este ejemplo de realización son:The preliminary characteristics of the mechanical subsystem (21) for this exemplary embodiment are:
- El mástil central (21 a) y el soporte móvil (21 b) soportarán las condiciones climáticas adversas de Ia zona geográfica donde se instale el Equipo terrestre (ST).- The central mast (21 a) and the mobile support (21 b) will withstand the adverse climatic conditions of the geographical area where the Ground Equipment (ST) is installed.
- Deben tener perforaciones que permitan el uso de tornillos para anclar los sistemas necesarios para Ia transmisión de energía y datos con el Equipo aéreo (SA).- They must have perforations that allow the use of screws to anchor the necessary systems for the transmission of energy and data with the Aerial Equipment (SA).
- La base donde se apoyan los sistemas para Ia transmisión de energía y datos deberá ser regulable.- The base where the systems are supported for the transmission of energy and data must be adjustable.
- La estructura, superficie metálica y tortillería tendrán un tratamiento especial para evitar Ia corrosión galvánica y Ia oxidación. - El peso del conjunto total del seguidor deberá estar equilibrado para un mejor funcionamiento.- The structure, metal surface and tortilleria will have a special treatment to avoid galvanic corrosion and oxidation. - The weight of the total follower assembly must be balanced for better operation.
Si bien se está considerando Ia posibilidad de utilizar otros subsistemas mecánicos (21 ) que varíen estas características, sin alterar por ello Ia esencia del invento.Although the possibility of using other mechanical subsystems (21) that vary these characteristics is being considered, without altering the essence of the invention.
Según el ejemplo de realización representado, el subsistema de control (22) del Equipo terrestre (ST) se encargará de orientar el subsistema mecánico (21 ) hacia el Equipo aéreo (SA). En el ejemplo descrito, este subsistema se ha dividido en dos conjuntos que se detallan a continuación.According to the embodiment shown, the control subsystem (22) of the Ground Equipment (ST) will direct the mechanical subsystem (21) towards the Air Equipment (SA). In the example described, this subsystem has been divided into two sets detailed below.
- Software de Control de Ia Plataforma- Platform Control Software
Tal y como se ha descrito en el apartado anterior, el Software de Control de Ia Plataforma en Tierra (221 ) orientará un láser (L) situado en el soporte móvil (21 b) del subsistema mecánico (21 ), de forma que su energía incida sobre el receptor del Equipo aéreo (SA) y así pueda efectuarse Ia transmisión de potencia y datos necesarios (según forma representada en Ia Figura 2c.As described in the previous section, the Ground Platform Control Software (221) will orient a laser (L) located in the mobile support (21 b) of the mechanical subsystem (21), so that its energy It affects the receiver of the Aerial Equipment (SA) and thus the transmission of power and necessary data can be carried out (according to the form represented in Figure 2c.
Este Software de control de Ia plataforma de tierra (221 ) tendrá como entrada Ia posición del Equipo aéreo (SA) en el sistema de referencia de Ia propia plataforma seguidora. Dependiendo de Ia posición de Ia aeronave, el software demandará las consignas de posición adecuadas a los motores de Ia plataforma del Equipo terrestre (ST) para que se orienten hasta que el error entre Ia dirección del láser (L) y Ia dirección del receptor (aeronave) sea nulo.This Control software of the ground platform (221) will have as input the position of the Aerial Equipment (SA) in the reference system of the follower platform itself. Depending on the position of the aircraft, the software will demand the appropriate position instructions to the engines of the Ground Equipment platform (ST) so that they are oriented until the error between the laser direction (L) and the receiver address ( aircraft) be null.
Los pasos a seguir para conseguir que el subsistema mecánico (21 ) apunte al Equipo aéreo (SA) son los siguientes: 1 . Establecer los ángulos de acimut (A) y elevación (E) del seguidor (ver Figura 2a).The steps to follow to ensure that the mechanical subsystem (21) points to the Aerial Equipment (SA) are the following: one . Set the azimuth (A) and elevation (E) angles of the follower (see Figure 2a).
2. Transformar Ia posición del Equipo aéreo (SA) en ejes ligados a Ia plataforma (acimut y elevación).2. Transform the position of the Aerial Equipment (SA) in axes linked to the platform (azimuth and elevation).
3. Calcular el ángulo error entre Ia posición del aeronave b y3. Calculate the error angle between the position of the aircraft b and
Ia normal ñ del seguidor.The normal ñ of the follower.
4. Realizar un control de los motores para que lleguen al acimut y elevación requeridos, haciendo que los ángulos error sean cero.4. Perform a check of the motors so that they reach the required azimuth and elevation, making the error angles zero.
La salida del sistema de control será el par o Ia intensidad que se necesita suministrarle a los motores para llegar a Ia posición adecuada. El sistema de control consta de un PID, donde su ecuación podrá expresarse como:The output of the control system will be the torque or intensity that needs to be supplied to the motors to reach the proper position. The control system consists of a PID, where its equation can be expressed as:
T motor = -k D #err " k, " k P θerr
Figure imgf000016_0001
Donde Tmotor es el par que se Ie suministran a los motores, θerres el ángulo de error entre posición de Ia aeronave b y Ia normal ñ , θerr es su derivada, y [θerr es su integral .
T = -k D engine # ERR "k," k P θ err
Figure imgf000016_0001
Where T mo t or is the torque that is supplied to the engines, θ err is the angle of error between the position of the aircraft and the normal ñ, θ err is its derivative, and [θ err is its integral.
El sistema de control se ha simulado en Simulink para comprobar su buen funcionamiento (ver Figura 2d) .The control system has been simulated in Simulink to check its proper functioning (see Figure 2d).
Con este modelo se comprueba que para una simulación deWith this model it is verified that for a simulation of
1 000 segundos, el sistema consigue un control muy fino. Por supuesto, se varían tanto los ángulos de Acimut como de Elevación a Io largo del tiempo (ver figuras 2e, 2f, 2g) .1 000 seconds, the system achieves very fine control. Of course, both Azimuth and Elevation angles are varied over time (see figures 2e, 2f, 2g).
- Hardware de Control de Ia Plataforma (222) Para poder realizar el control sobre el subsistema mecánico (21 ) es necesario disponer de un Hardware de Control de Ia Plataforma en Tierra (222) que interprete Ia señal de control generada por el Software de control de Ia plataforma de tierra (221 ) y Ia transforme en una señal física (voltaje, intensidad) que provoque Ia orientación mecánica del sistema.- Platform Control Hardware (222) In order to control the mechanical subsystem (21), it is necessary to have a Control Hardware of the Ground Platform (222) that interprets the control signal generated by the Control Software of the ground platform (221) and Ia transform into a physical signal (voltage, intensity) that causes the mechanical orientation of the system.
Este hardware de control de Ia plataforma de tierra (222) constará de los siguientes componentes:This control hardware of the ground platform (222) will consist of the following components:
- Motores para orientar mecánicamente el sistema de dos ejes a Ia posición requerida.- Motors to mechanically orient the two-axis system to the required position.
- Sensores de posicionamiento para conocer Ia posición exacta de los motores en cada instante. Para realizar el control de Ia plataforma seguidora de dos ejes es necesario conocer Ia posición en todo momento de los motores. La posición de los motores se obtendrá utilizando encoders, los cuales se pueden instalar en los ejes de acimut o elevación del subsistema mecánico (21 ) o bien en los propios motores.- Positioning sensors to know the exact position of the motors at every moment. To control the two-axis follower platform, it is necessary to know the position of the motors at all times. The position of the motors will be obtained using encoders, which can be installed on the azimuth or elevation axes of the mechanical subsystem (21) or on the motors themselves.
- Electrónica de Control. Para realizar el control en posición de los motores podría ser necesario un hardware adicional que realice el control de los mismos (por ejemplo, un generador de señales PWM).- Control Electronics. To carry out the control in position of the motors, additional hardware may be necessary to control them (for example, a PWM signal generator).
- Microcontrolador. El Software de control de Ia plataforma de tierra (221 ) estará implementado dentro de un microcontrolador. Un posible microcontrolador a utilizar es el indart-HSC12 de Softect.- Microcontroller. The control software of the ground platform (221) will be implemented within a microcontroller. A possible microcontroller to use is the Softect indart-HSC12.
Según el ejemplo de realización representado, el subsistema de transmisión (24) del Equipo terrestre (ST) se encargará de transmitirAccording to the embodiment shown, the transmission subsystem (24) of the Ground Equipment (ST) will be responsible for transmitting
Ia potencia y de comunicar los datos al Equipo aéreo (SA) mediante un láser (L) de gran potencia. Este subsistema se ha dividido en dos conjuntos que se detallan a continuación.The power and to communicate the data to the Air Team (SA) through a High power laser (L). This subsystem has been divided into two sets that are detailed below.
- Software de Transmisión (241 )- Transmission Software (241)
Una vez que el láser transmisor (L) del Equipo terrestre (ST) se encuentra alineado ("enganchado") con los paneles fotovoltaicos (receptor) del Equipo aéreo (SA) puede comenzar Ia transmisión de potencia y datos.Once the transmitting laser (L) of the Ground Equipment (ST) is aligned ("hooked") with the photovoltaic panels (receiver) of the Aerial Equipment (SA), the transmission of power and data can begin.
El Software de Transmisión (241 ) del Equipo terrestre (ST) será el encargado de realizar las dos transmisiones deseadas (potencia y datos) .The Transmission Software (241) of the Ground Equipment (ST) will be responsible for making the two desired transmissions (power and data).
- Para Ia transmisión de potencia, bastará con colocar un láser con Ia potencia adecuada de salida (Vatios/m2), de tal forma que llegue Ia potencia necesaria a Ia superficie de los paneles fotovoltaicos del Equipo aéreo (SA), teniendo en cuenta las pérdidas y desviaciones que puedan existir por el camino. Durante Ia transmisión de energía, habrá que tener en cuenta las pérdidas producidas por Ia absorción de energía de Ia atmósfera, Ia dispersión de energía producida por los choques entre partículas y otros factores que serán estudiados durante Ia realización del proyecto.- For the transmission of power, it will be enough to place a laser with the adequate output power (Watts / m 2 ), so that the necessary power reaches the surface of the photovoltaic panels of the Aerial Equipment (SA), taking into account losses and deviations that may exist along the way. During the transmission of energy, it will be necessary to take into account the losses produced by the absorption of energy from the atmosphere, the dispersion of energy produced by the collisions between particles and other factors that will be studied during the realization of the project.
- Para Ia transmisión de datos, existen varias posibilidades.- For data transmission, there are several possibilities.
La luz de salida de un láser, conocida como haz del láser, se suele representar con un haz continuo que tiene energía constante. Pero en el caso de las comunicaciones vía láser, el haz se puede modular de una forma adecuada para transmitir información. Esta modulación puede tomar Ia forma de una modulación de amplitud (AM), que altera Ia fuerza o energía del haz, o una modulación de Ia frecuencia (FM), que altera Ia frecuencia o el color del haz, o una modulación de fase que no altera ni Ia energía ni el color del haz.The output light of a laser, known as the laser beam, is usually represented by a continuous beam that has constant energy. But in the case of laser communications, the beam can be modulated in a suitable way to transmit information. This modulation can take the form of an amplitude modulation (AM), which alters the force or energy of the beam, or a frequency modulation (FM), which alters the frequency or color of the beam, or a phase modulation that does not alter either the energy or the color of the beam.
La modulación añade información al haz del láser de manera que puede ser transportada por el haz y trasmitida a un lugar distante, en el cual se puede extraer y usar. Por ejemplo, una conversación telefónica puede ser codificada en un haz láser modulado y ser enviada al otro lado de los E. E. U. U. o, bajo el mar, a Europa o Asia, donde ésta puede ser decodificada y escuchada en forma de voz.The modulation adds information to the laser beam so that it can be transported by the beam and transmitted to a distant place, where it can be extracted and used. For example, a telephone conversation can be encoded in a modulated laser beam and sent to the other side of the US or, under the sea, to Europe or Asia, where it can be decoded and heard in voice form.
La modulación es un proceso en el cual un "modulador" cambia algunos atributos de una "señal portadora" de frecuencia más alta en relación a Ia frecuencia de Ia "señal mensaje".Modulation is a process in which a "modulator" changes some attributes of a "carrier signal" of higher frequency in relation to the frequency of the "message signal".
La "señal portadora" se puede representar por Ia ecuación:
Figure imgf000019_0001
The "carrier signal" can be represented by the equation:
Figure imgf000019_0001
Donde Ac = AMPLITUD h = FRECUENCIA φ = FASEWhere Ac = AMPLITUDE h = FREQUENCY φ = PHASE
Un cambio en Ia señal producirá el cambio correspondiente de amplitud, frecuencia o fase de Ia portadora dependiendo de Ia modulación realizada. En Ia modulación analógica, un transmisor puede enviar esta señal portadora a través del medio de comunicación de manera más eficiente que si enviamos Ia señal mensaje sola. Cuando Ia señal llega a su destino, un receptor demodulará Ia señal obteniendo el mensaje original.A change in the signal will produce the corresponding change in amplitude, frequency or phase of the carrier depending on the modulation performed. In the analog modulation, a transmitter can send this carrier signal through the communication means more efficiently than if we send the message signal alone. When the signal reaches its destination, a receiver will demodulate the signal obtaining the original message.
En Ia modulación analógica de amplitud (AM) Ia amplitud de Ia portadora cambia en función de Ia amplitud del mensaje a transmitir.In the analog amplitude modulation (AM) the amplitude of the carrier changes depending on the amplitude of the message to be transmitted.
La señal con el mensaje se monta por encima de Ia portadora puesto que las amplitudes de las dos varían con el tiempo. Sin embargo la frecuencia de Ia portadora es mucho mayor que Ia frecuencia del mensaje.The signal with the message is mounted above the carrier since the amplitudes of the two vary with time. However, the frequency of the carrier is much greater than the frequency of the message.
La modulación digital es muy parecida a Ia modulación analógica, pero en vez de cambiar a valores continuos de Ia amplitud (ASK), frecuencia (FSK) o fase (PSK) se cambia sólo a valores discretos de estos atributos que corresponden a los códigos digitales. Existen unos cuantos esquemas comunes de modulación digital, cada uno variando separadamente conjunto de parámetros.The digital modulation is very similar to the analog modulation, but instead of changing to continuous values of the amplitude (ASK), frequency (FSK) or phase (PSK) it is changed only to discrete values of these attributes that correspond to the digital codes . There are a few common digital modulation schemes, each varying separately set of parameters.
El modo más simple se llama el "On-Off Keying (OOK)" (Modulación de todo o nada), donde Ia amplitud de Ia portadora corresponde a dos estados digitales. Una amplitud nozero representa un uno digital, mientras que una amplitud de cero un cero digital. Una aplicación del OOK es el código morse.The simplest mode is called "On-Off Keying (OOK)" (Modulation of all or nothing), where the amplitude of the carrier corresponds to two digital states. A nozero amplitude represents a digital one, while an amplitude of zero a digital zero. An application of OOK is the morse code.
El ASK es una forma de modulación mediante Ia cual Ia amplitud de Ia señal está dada por Ia ecuaciónThe ASK is a form of modulation whereby the amplitude of the signal is given by the equation
, Asen(ωot) O ≤ t ≤ T . φ - ( — U - — ; en _ otro _ caso >, Asen (ωot) O ≤ t ≤ T. φ - (- U - -; in _ other _ case>
ASK entonces, puede ser descrito como Ia multiplicación de Ia señal de entrada f(t) =A (válido en sistemas digitales) por Ia señal de Ia portadora. Además, esta técnica es muy similar a Ia modulación en amplitud AM.ASK can then be described as the multiplication of the input signal f (t) = A (valid in digital systems) by the carrier signal. In addition, this technique is very similar to modulation in AM amplitude.
En el caso de Ia modulación de frecuencia (FM) Io que se varía es Ia frecuencia de Ia portadora. La modulación en frecuencia (FSK) se representa en Ia figura 2h, donde se puede observar que una cierta frecuencia representa un valor binario. Por el contrario, en Ia modulación de fase (PSK) Io que se modifica es Ia fase de Ia portadora tal y como se muestra en Ia figura 2i.In the case of frequency modulation (FM) what is varied is the frequency of the carrier. The frequency modulation (FSK) is represented in Figure 2h, where it can be observed that a certain frequency represents a binary value. On the contrary, in the phase modulation (PSK) what is modified is the phase of the carrier as shown in Figure 2i.
La combinación de Ia modulación en fase, amplitud y frecuencia da lugar a diferentes tipos de modulación. A Io largo de este proyecto se estudiará cual de todos ellos es el óptimo para utilizar cuando se transmiten datos y potencia.The combination of the modulation in phase, amplitude and frequency gives rise to different types of modulation. Throughout this project it will be studied which of them is the optimum to use when transmitting data and power.
A modo redundante, Ia comunicación con el Equipo aéreo (SA) se realizará adicionalmente utilizando un radiomodem, codificando Ia información de manera análoga al láser.By way of redundancy, the communication with the Aerial Equipment (SA) will be carried out additionally using a radio modem, encoding the information analogously to the laser.
- Hardware de Transmisión (242)- Transmission Hardware (242)
El Hardware de Transmisión (242) del Equipo terrestre (ST)The Transmission Hardware (242) of the Ground Equipment (ST)
Io formarán los sistemas físicos a través de los cuales el Software de transmisión (241 ) envía Ia potencia y los datos al Equipo aéreo (SA). El Hardware de transmisión (242) Io formarán los siguientes componentes.Io will form the physical systems through which the Transmission Software (241) sends the power and data to the Aerial Equipment (SA). The Transmission Hardware (242) will form the following components.
- Un modulador de amplitud, frecuencia o fase para transformar Ia información y enviarla junto a Ia transmisión de potencia.- An amplitude, frequency or phase modulator to transform the information and send it together with the power transmission.
- Un láser (L) de alta potencia para transmitir Ia energía y datos.- A high power laser (L) to transmit energy and data.
Hay que constatar que se utilizará un radiomodem y una antena como sistema redundante de transmisión de datos con el Equipo aéreo. Hay que constatar también que el rayo en un láser no continúa sin divergir indefinidamente. Incluso en el caso de un láser ideal existe una divergencia del rayo.It should be noted that a radio modem and an antenna will be used as a redundant data transmission system with the Air Equipment. It should also be noted that the laser beam does not continue without diverging indefinitely. Even in the case of an ideal laser there is a divergence of the beam.
Como se muestra en Ia figura 2j existe una región (3c 1 ) donde el rayo no diverge, (campo cercano) y una parte (3c2) donde diverge (campo lejano). Para distancias largas se puede considerar elAs shown in Figure 2j there is a region (3c 1) where the beam does not diverge, (near field) and a part (3c2) where it diverges (far field). For long distances you can consider the
(3c 1 ) despreciable, considerándose que el diámetro que se obtendría en el receptor sería de:(3c 1) negligible, considering that the diameter that would be obtained in the receiver would be:
Z) = 21 tan0Z) = 21 tan0
Donde θ es el ángulo de divergencia, L es Ia distancia al receptor y D es el diámetro que se obtiene en el receptor.Where θ is the angle of divergence, L is the distance to the receiver and D is the diameter obtained in the receiver.
El ángulo θ depende de Ia longitud de onda λ y del radio del rayo cuando no diverge "rrayo". Tal que:The angle θ depends on the wavelength λ and the radius of the ray when "lightning" does not diverge. Such that:
0 =0 = λλ
Tt rrayoTt rrayo
Si consideramos estas ecuaciones tendremos Ia figura 2k utilizando un diámetro del rayo de 0.6 mm y longitudes de onda de 400, 700 y 1000 nm.If we consider these equations we will have the figure 2k using a beam diameter of 0.6 mm and wavelengths of 400, 700 and 1000 nm.
Se puede observar en esta figura 2k que para grandes distancias del receptor, distancias de 500 km, y longitudes de onda de 1000 nm, el efecto puede ser considerable, puesto que el diámetro de Ia energía incidente en el receptor de será de más de 1 km. En el caso del sistema que se propone este efecto no tendrá grandes consecuencias puesto que estamos hablando de distancias pequeñas, pero es conveniente tenerlo en cuenta cuando consideremos Ia transmisión de energía del espacio a tierra.It can be seen in this figure 2k that for large distances of the receiver, distances of 500 km, and wavelengths of 1000 nm, the effect can be considerable, since the diameter of the energy incident in the receiver will be more than 1 km. In the case of the system that proposes this effect it will not have great consequences since we are talking about small distances, but it is convenient to take it into account when considering the transmission of energy from space to earth.
En el diseño de nuestro sistema es necesario también saber Ia cantidad de energía que incide en nuestro receptor (Vatios/m2) Esta energía es muy simple de calcular, puesto que si consideramos que el efecto de Ia atmósfera es despreciable se puede obtener como Ia potencia del láser utilizada entre el Área en el que se reparte Ia energía.In the design of our system it is also necessary to know the amount of energy that affects our receiver (Watts / m 2 ) This energy is very simple to calculate, since if we consider that the effect of the atmosphere is negligible it can be obtained as Ia laser power used between the Area in which the energy is distributed.
De todos los láseres existentes, se van a considerar para el experimento diferentes láseres industriales, ya que son los que se utilizan para las potencias que se prevén necesarias ( > 300 W) y que pueden ser utilizados en un laboratorio de ensayos. Cada uno de ellos trabaja con luz de una longitud de onda determinada, según Ia tabla siguiente:Of all the existing lasers, different industrial lasers will be considered for the experiment, since they are those that are used for the powers that are required (> 300 W) and that can be used in a test laboratory. Each of them works with light of a certain wavelength, according to the following table:
Tecnología de láser Longitud de onda λ (nm)Laser technology Wavelength λ (nm)
Láser de diodos 808-940 Láser de estado sólido 1064 Láser de CO2 10600 De entre las tres opciones, se descarta Ia opción de Láser deDiode laser 808-940 Solid state laser 1064 CO2 laser 10600 Among the three options, the Laser option of
CO2, porque Ia longitud de onda no es aprovechable por las células comerciales, y se escoge el láser de diodos. En general, presentan una vida útil de unas 15.000 horas y un rendimiento del 35%, superior a otras tecnologías.CO2, because the wavelength is not usable by commercial cells, and the diode laser is chosen. In general, they have a useful life of about 15,000 hours and a yield of 35%, superior to other technologies.
Debido a que Ia legislación actual no permite radiaciones de excesiva magnitud por metro cuadrado en lugares abiertos, se ha considerado utilizar en vez de un solo láser (L) de alta potencia, un conjunto numeroso láseres (Li) de baja potencia. Cada unidad láser (Li) no superara por si mismos Ia energía permitida por Ia legislación y por Io tanto será totalmente inocuo para el ser humano. En este proyecto de realización se convergerán los haces en un punto (LP) del espacio para que gracias a Ia suma de las energías se llegue a los niveles requeridos. La convergencia de Ia energía se realizará situando los láseres (Li) de baja potencia con Ia inclinación adecuada en una base (Bi) (ver figura 21)Because the current legislation does not allow radiation of excessive magnitude per square meter in open places, it has been considered to use instead of a single high power laser (L), a numerous set of low power lasers (Li). Each laser unit (Li) will not exceed by itself the energy allowed by the legislation and therefore will be totally harmless to the human being. In this project of realization the beams will converge in a point (LP) of the space so that thanks to the sum of the energies the required levels are reached. The convergence of the energy will be carried out by placing the low power lasers (Li) with the appropriate inclination on a base (Bi) (see figure 21)
Para el ejemplo de realización representado, el subsistema de recepción (23) del Equipo terrestre (ST) será el encargado de recibir y de demodular Ia información proveniente del Equipo aéreo (SA), obteniendo los datos experimentales enviados mediante un radiomodem. Este subsistema (23) se ha dividido en dos conjuntos que se detallan a continuación:For the embodiment shown, the receiving subsystem (23) of the Ground Equipment (ST) will be responsible for receiving and demodulating the information coming from the Air Equipment (SA), obtaining the experimental data sent by means of a radio modem. This subsystem (23) has been divided into two sets detailed below:
El Software de Recepción (231 ) del Equipo terrestre (ST) será el encargado de decodificar Ia información transmitida por el Equipo aéreo (SA) para obtener el mensaje original. Al igual que en el subsistema de transmisión, Ia señal del radio modem vendrá modulada en amplitud, frecuencia o en fase y tendrá que ser decodificada para convertirla en información válida. El tipo de demodulación dependerá de Ia modulación elegida para transmitir Ia información desde el Equipo aéreo (SA) al Equipo terrestre (ST).The Receiving Software (231) of the Ground Equipment (ST) will be responsible for decoding the information transmitted by the Air Equipment (SA) to obtain the original message. As in the transmission subsystem, the radio modem signal will be modulated in amplitude, frequency or phase and will have to be decoded to convert it into valid information. The type of demodulation will depend on the modulation chosen to transmit the information from the Aerial Equipment (SA) to the Ground Equipment (ST).
Una vez que se ha obtenido el mensaje original, los datos serán presentados en el interfaz de usuario para su posterior análisis.Once the original message has been obtained, the data will be presented in the user interface for further analysis.
El Hardware de Recepción (232) del Equipo terrestre (ST) será el encargado de convertir Ia información proveniente del radio modem del Equipo aire (SA) en señales eléctricas (voltaje, intensidad), de tal forma que puedan ser interpretadas por el Software de recepción (231 ) explicado en el punto anterior.The Receiving Hardware (232) of the Ground Equipment (ST) will be responsible for converting the information from the radio modem of the Air Equipment (SA) into electrical signals (voltage, intensity), so that they can be interpreted by the Receiving Software (231) explained in the previous point.
El Hardware de recepción (232) es muy simple, puesto que Io formará un radio modem y una antena convencional que se conectará directamente con el Microcontrolador.The receiving Hardware (232) is very simple, since it will form a radio modem and a conventional antenna that will connect directly to the Microcontroller.
Está incluido en el objeto del invento utilizar células fotovoltaicas de diferentes materiales para aprovechar Ia energía transmitida por el sistema de transmisión de tierra, en función de las longitudes de onda que éstas pueden aprovechar.It is included in the object of the invention to use photovoltaic cells of different materials to take advantage of the energy transmitted by the earth transmission system, depending on the wavelengths that they can take advantage of.
Los materiales más habituales utilizados en Ia tecnología fotovoltaica para Ia fabricación de las células son los detallados en Ia siguiente tabla:The most common materials used in the photovoltaic technology for the manufacture of the cells are those detailed in the following table:
Material Banda prohibida Eg Long. Onda máxima λmá* Material Forbidden band Eg Long. Maximum wave λmá *
Silicio cristalino 1 .12 eV 1 .107 nmCrystalline silicon 1 .12 eV 1 .107 nm
GaAs 1 .424 eV 871 nmGaAs 1,424 eV 871 nm
InP 1.35 eV 918 nmInP 1.35 eV 918 nm
Silicio amorfo 1 .8 eV 689 nmAmorphous Silicon 1 .8 eV 689 nm
CdTe 1 .45-1.5 eV 855 nmCdTe 1 .45-1.5 eV 855 nm
CulnSe2 0.96-1 .04 eV 1 .292 nmCulnSe2 0.96-1 .04 eV 1 .292 nm
CdS 2.42 eV 512 nmCdS 2.42 eV 512 nm
ZnS 3.58 eV 346 nmZnS 3.58 eV 346 nm
ZnO 3.3 eV 375 nmZnO 3.3 eV 375 nm
De todos los fotones incidentes, sólo aquellos que tengan una energía Efoton> Eg del material serán capaces de generar un par electrón-hueco, y por tanto contribuir a Ia generación de Ia corriente eléctrica.Of all the incident photons, only those that have an Efoton energy> E g of the material will be able to generate a pair electron-hollow, and therefore contribute to the generation of the electric current.
h e Efoton = — ^- > Egh and Efoton = - ^ -> Eg
ÁTO
siendo h Ia constante de Planck, c Ia velocidad de Ia luz y λ Ia longitud de onda del fotón incidente.h being the Planck constant, c the speed of light and λ the wavelength of the incident photon.
A Ia vista de los resultados se concluye que mediante una combinación adecuada de láser y célula solar, se puede generar energía eléctrica a partir del rayo incidente de luz del láser. La opción más adecuada, o Ia que ofrece mayor facilidad para Ia adquisición de los materiales es a priori Ia del binomio célula solar de silicio cristalino y láser de diodos.In view of the results, it is concluded that by means of a suitable combination of laser and solar cell, electrical energy can be generated from the incident beam of laser light. The most appropriate option, or the one that offers greater ease for the acquisition of the materials, is a priori Ia of the binomial crystalline silicon solar cell and diode laser.
Dado que las células solares irán montadas en Ia aeronave que se desarrolle para el proyecto demostrador, y que es importante no sobrepasar Ia carga útil del mismo, se ha considerado como idea inicial del experimento utilizar células de silicio de concentración.Since the solar cells will be mounted on the aircraft that is developed for the demonstration project, and that it is important not to exceed the payload of the same, it has been considered as initial idea of the experiment to use silicon concentration cells.
Estas células, en su versión comercial, son de tamaño reducido, no superando el cm2. Además, presentan un rendimiento de conversión más alto que las de silicio cristalino normales (eficiencias de hasta el 27% frente al 15-17%), y permiten concentraciones de luz incidente de hasta 100 soles, equivalentes a 10 W/cm2, frente a los 0, 1 W/cm2 de Ia luz solar.These cells, in their commercial version, are small in size, not exceeding 2 cm. In addition, they have a higher conversion efficiency than normal crystalline silicon (efficiencies of up to 27% versus 15-17%), and allow incident light concentrations of up to 100 soles, equivalent to 10 W / cm 2 , compared to at 0.1 W / cm 2 of sunlight.
Una vez elegida Ia tecnología de transmisión y recepción de Ia energía, se contemplan dos posibles soluciones: 1 . Utilizar células de silicio de concentración (comerciales), y montarlas sobre una estructura que iría alojada en Ia aeronave.Once the energy transmission and reception technology has been chosen, two possible solutions are contemplated: one . Use concentration silicon cells (commercial), and mount them on a structure that would be housed in the aircraft.
2. Utilizar óptica comercial para el láser, logrando Ia concentración de luz deseada.2. Use commercial optics for the laser, achieving the desired light concentration.
La opción de las células de concentración requiere un mayor desarrollo técnico para solucionar los problemas de disipación, posicionamiento de las pequeñas células, desarrollo de Ia estructura de soporte, etc.. Por ejemplo, para conseguir una concentración de 100 soles, es necesaria una densidad de potencia de 1 0 W/cm2. Si el área que ocupan las células fotovoltaicas fuera de 0, 1 m2, sería necesaria una potencia incidente de 1000 W.The option of the concentration cells requires a greater technical development to solve the problems of dissipation, positioning of the small cells, development of the support structure, etc. For example, to achieve a concentration of 100 soles, a density is necessary of power of 1 0 W / cm 2 . If the area occupied by the photovoltaic cells were 0.1 m 2 , an incident power of 1000 W. would be necessary.
Para el ejemplo de realización representado, el subsistema de interfaz de usuario (25) será el software encargado de permitir Ia comunicación entre el usuario y los subsistemas de transmisión y de recepción del Equipo terrestre (ST). El GUI estará diseñado para que Ia comunicación con el usuario sea fácil e intuitiva, de tal forma que el usuario pueda transmitir las nuevas coordenadas de posición, velocidad y de actitud al Equipo aéreo (SA), y a Ia vez ver los datos recibidos en tiempo real.For the exemplary embodiment shown, the user interface subsystem (25) will be the software in charge of allowing the communication between the user and the transmitting and receiving subsystems of the Ground Equipment (ST). The GUI will be designed so that the communication with the user is easy and intuitive, so that the user can transmit the new coordinates of position, speed and attitude to the Air Team (SA), and at the same time view the data received in time real.
El GUI se divide en dos partes, una será Ia encargada de transmitir el guiado de posición, velocidad y de actitud del nuevo punto o trayectoria que debe seguir el Equipo aéreo (SA) y otra parte será Ia encargada de recibir Ia posición, velocidad y actitud real así como los datos experimentales obtenidos.The GUI is divided into two parts, one will be responsible for transmitting the position, speed and attitude guidance of the new point or trajectory that the Air Team (SA) must follow and another part will be responsible for receiving the position, speed and real attitude as well as the experimental data obtained.
Para el ejemplo de realización representado, el Subsistema de Alimentación (26) del Equipo terrestre (ST), será el encargado de alimentar todo el Equipo terrestre (ST) proporcionando Ia energía suficiente como para alimentar a todos los subsistemas, además de suministrar Ia energía necesaria para utilizar el láser y así alimentar el Equipo aéreo (SA).For the embodiment shown, the Power Subsystem (26) of the Ground Equipment (ST) will be responsible for power all the Earth Equipment (ST) providing enough energy to power all the subsystems, in addition to supplying the energy necessary to use the laser and thus power the Air Equipment (SA).
Por Io tanto, el subsistema de alimentación (26) es un sistema fundamental que se encuentra integrado en el Equipo terrestre (ST) pero que realmente alimenta tanto al Equipo terrestre (ST) como al Equipo aéreo (SA).Therefore, the power subsystem (26) is a fundamental system that is integrated into the Ground Equipment (ST) but actually feeds both the Ground Equipment (ST) and the Air Equipment (SA).
El subsistema de alimentación (26) puede ser Ia propia red eléctrica, generadores de energía, baterías o paneles solares. Dependiendo de Ia potencia de consumo necesaria se usará un sistema u otro.The power subsystem (26) can be the electricity grid itself, power generators, batteries or solar panels. Depending on the necessary power consumption, one system or another will be used.
El Equipo aéreo (SA) (aeronave de aeromodelismo) será el encargado de recoger todos los datos experimentales (presión, temperatura, humedad...) y de enviarlos al Equipo terrestre (ST) para ser analizados.The Aerial Equipment (SA) (aircraft model aircraft) will be responsible for collecting all experimental data (pressure, temperature, humidity ...) and sending them to the Ground Equipment (ST) for analysis.
La estructura del Equipo aéreo (SA) representada en Ia siguiente figura 3 consta de los siguientes subsistemas:The structure of the Aerial Equipment (SA) represented in the following figure 3 consists of the following subsystems:
- Subsistema Mecánico (31 ). En este subsistema se encuentra englobado el prototipo a volar (31 1 ).- Mechanical Subsystem (31). In this subsystem is included the prototype to fly (31 1).
- Subsistema de Control (32). En este subsistema se encuentra todo el software (321 ) y hardware (322) necesario para controlar Ia aeronave.- Control Subsystem (32). In this subsystem is all the software (321) and hardware (322) necessary to control the aircraft.
- Subsistema de Recepción (33). En este subsistema se encuentra todo el software (331 ) y el hardware (332) necesario para recibir Ia energía e información proveniente del láser (L) del Equipo terrestre (ST).- Reception Subsystem (33). In this subsystem you will find all the software (331) and the hardware (332) necessary to receive the energy and information from the laser (L) of the Ground Equipment (ST).
- Subsistema de Transmisión (34). En este subsistema se encuentra todo el software (341 ) y el hardware (342) necesario para transmitir los datos experimentales y de navegación al Equipo terrestre (ST).- Transmission Subsystem (34). In this subsystem you will find all the software (341) and hardware (342) necessary to transmit the experimental and navigation data to the Ground Equipment (ST).
- Subsistema de Navegación (35). En este subsistema se encuentra el software de navegación (351 ) y hardware (352) necesario para determinar el vector de estado del Equipo aéreo (SA) (posición, velocidad y actitud).- Navigation Subsystem (35). In this subsystem is the navigation software (351) and hardware (352) necessary to determine the status vector of the Air Equipment (SA) (position, speed and attitude).
- Subsistema de Alimentación (36). En este subsistema se encuentra el hardware (362) auxiliar necesario para abastecer a Ia aeronave, por si en algún momento no pudiera ser radiado por el láser.- Power Subsystem (36). In this subsystem is the auxiliary hardware (362) necessary to supply the aircraft, if at any time it could not be radiated by the laser.
El Subsistema Mecánico Aeronave (31 1 ) del Equipo aéreo (SA) será el prototipo a ser volado y, en este caso, será una aeronave de aeromodelismo. El Subsistema Mecánico Aeronave (31 1 ) del Equipo aéreo (SA) estará propulsado mediante Ia energía que Ie transmite el láser del Equipo terrestre (ST), por Io tanto Ia estructura de este conjunto estará cubierta por células solares (a priori células de concentración) que transformarán esa radiación en energía eléctrica para proporcionar Ia potencia necesaria a los sistemas electrónicos deThe Aircraft Mechanical Subsystem (31 1) of the Air Equipment (SA) will be the prototype to be flown and, in this case, will be an aircraft model aircraft. The Aircraft Mechanical Subsystem (31 1) of the Aerial Equipment (SA) will be powered by the energy transmitted by the Earth Equipment (ST) laser, therefore the structure of this set will be covered by solar cells (a priori concentration cells ) that will transform that radiation into electrical energy to provide the necessary power to the electronic systems of
Ia aeronave.The aircraft
Estas células no sólo servirán para recibir potencia sino también para recibir Ia información enviada desde el Equipo terrestre (ST). Por Io tanto, Ia aeronave tendrá que ser modificado con respecto de una aeronave de aeromodelismo convencional. Para el ejemplo de realización representado, el subsistema de control (32) del Equipo aéreo (SA) se encargará de controlar el subsistema mecánico (31 ) del Equipo aéreo (SA).These cells will not only serve to receive power but also to receive the information sent from the Ground Equipment (ST). Therefore, the aircraft will have to be modified with respect to a conventional aircraft model aircraft. For the embodiment shown, the control subsystem (32) of the Aerial Equipment (SA) will be responsible for controlling the mechanical subsystem (31) of the Aerial Equipment (SA).
El Software de Control (321 a) de Ia Aeronave del Equipo aéreo (SA) se encargará de controlar Ia aeronave mediante los datos procedentes del Equipo terrestre (ST) (trayectoria y actitud de referencia) y los datos provenientes de Ia navegación (trayectoria y actitud reales). El sistema completo de control, en forma esquemática, es el que se ha representado en Ia figura 3a, en Ia que:The Control Software (321 a) of the Air Equipment Aircraft (SA) will be in charge of controlling the aircraft by means of the data coming from the Ground Equipment (ST) (trajectory and attitude of reference) and the data coming from the navigation (trajectory and real attitude). The complete control system, in schematic form, is the one represented in Figure 3a, in which:
- La dinámica (3a 1 ) de Ia Aeronave estará sometida a las fuerzas de:- The dynamics (3a 1) of the Aircraft will be subject to the forces of:
• Aceleración gravitacional• Gravitational Acceleration
• Empuje debido a Ia hélice del motor• Push due to the motor propeller
• Resistencia Aerodinámica• Aerodynamic Resistance
- El guiado (3a6) estará proporcionado desde el Equipo terrestre (ST), enviando a Ia aeronave Ia trayectoria de referencia (3a4) a seguir y Ia orientación necesaria de Ia aeronave.- Guidance (3a6) will be provided from the Ground Team (ST), sending the reference path (3a4) to follow to the aircraft and the necessary orientation of the aircraft.
- La Navegación (3a2) proporciona información real al sistema de donde se encuentra y como esta orientado (3a7) con respecto de un sistema inercial.- Navigation (3a2) provides real information to the system where it is located and how it is oriented (3a7) with respect to an inertial system.
- El sistema de control (3a5) calcula las acciones que se deben seguir por los actuadores (3a3) para que se consiga seguir Ia trayectoria de referencia (3a4) Io más precisamente posible. - Los actuadores están compuestos por las superficies de control que orientan Ia aeronave.- The control system (3a5) calculates the actions that must be followed by the actuators (3a3) so that the reference path (3a4) can be followed as precisely as possible. - The actuators are composed of the control surfaces that guide the aircraft.
El hardware de Control (322a) de Ia Aeronave del Equipo aéreo (SA) se encargará de ejecutar las señales de control generadas por el Software de Control (321 a). El Control de Ia aeronave se hace mediante una serie de servos que transmiten movimiento a las superficies aerodinámicas del modelo. Se necesitarán por tanto los siguientes componentes:The Control hardware (322a) of the Aircraft Equipment Aircraft (SA) will be responsible for executing the control signals generated by the Control Software (321 a). The control of the aircraft is done through a series of servos that transmit movement to the aerodynamic surfaces of the model. The following components will therefore be needed:
- Servos para control de Ia aeronave- Servos for control of the aircraft
- Electrónica necesaria para el control- Electronics needed for control
- Encoders para saber Ia posición de los servos- Encoders to know the position of the servos
- Microcontrolador- Microcontroller
Para el ejemplo de realización representado, el subsistema de transmisión (34) del Equipo aéreo (SA) se encargará de transmitir los datos al Equipo terrestre (ST) mediante un radiomodem. Este subsistema se ha dividido en los dos conjuntos que se detallan a continuación.For the embodiment shown, the transmission subsystem (34) of the Aerial Equipment (SA) will be responsible for transmitting the data to the Ground Equipment (ST) via a radio modem. This subsystem has been divided into the two sets detailed below.
El Software de Transmisión (341 ) del Equipo aéreo (SA) será el encargado de realizar las transmisiones deseadas. La forma de transmisión de los datos al Equipo terrestre (ST) será exactamente Ia misma a Ia explicada en el apartado correspondiente del Equipo terrestre (ST),The Transmission Software (341) of the Air Team (SA) will be responsible for making the desired transmissions. The form of transmission of the data to the Ground Equipment (ST) will be exactly the same as explained in the corresponding section of the Ground Equipment (ST),
Los datos a transmitir serán los datos experimentales recogidos, además de los datos de posición, velocidad y actitud recogidos por el hardware del subsistema de navegación que se explicará en el apartado correspondiente.The data to be transmitted will be the experimental data collected, in addition to the position, speed and attitude data collected by the hardware of the navigation subsystem that will be explained in the corresponding section.
El Hardware de Transmisión (342) del Equipo aéreo (SA) Io formarán los sistemas físicos a través de los cuales el subsistema de transmisión (34) envía los datos al Equipo terrestre (ST).The Transmission Hardware (342) of the Aerial Equipment (SA) shall be formed by the physical systems through which the transmission subsystem (34) sends the data to the Ground Equipment (ST).
El Hardware de transmisión de datos (342) será capaz de transformar Ia información que se quiere enviar en forma de pulsos de radiofrecuencia.The Data Transmission Hardware (342) will be able to transform the information that is to be sent in the form of radio frequency pulses.
El Hardware de transmisión de datos (342) Io formará un radiomodem.The Data Transmission Hardware (342) will form a radio modem.
El Software de Recepción (331 ) del Equipo aéreo (SA) será el encargado de decodificar Ia información transmitida por el Equipo terrestre (ST) para obtener el mensaje original. Al igual que en el subsistema de transmisión, Ia señal vendrá modulada en amplitud, frecuencia o en fase, y tendrá que ser decodificada para convertirla en información válida. El tipo de demodulación dependerá de Ia modulación elegida para transmitir Ia información desde el Equipo terrestre (ST) al Equipo aéreo (SA).The Receiving Software (331) of the Aerial Equipment (SA) will be responsible for decoding the information transmitted by the Ground Equipment (ST) to obtain the original message. As in the transmission subsystem, the signal will be modulated in amplitude, frequency or phase, and will have to be decoded to convert it into valid information. The type of demodulation will depend on the modulation chosen to transmit the information from the Ground Equipment (ST) to the Air Equipment (SA).
El Software de Recepción (331 ) será un software específico cuya labor será Ia de extraer Ia trayectoria y actitud referencia y presentarle al Software de Control (321 a) del Equipo aéreo (SA) los nuevos datos de entrada.The Receiving Software (331) will be a specific software whose task will be to extract the reference trajectory and attitude and present the new input data to the Control Software (321 a) of the Air Team (SA).
El Hardware de Recepción (332) del Equipo aéreo (SA) será el encargado de convertir Ia radiación proveniente del láser del Equipo terrestre (ST) en señales eléctricas (voltaje, intensidad) de tal forma que puedan ser interpretadas por el Software de Recepción (331 ) además de utilizar Ia potencia incidente para alimentar el Equipo aéreo (SA). El Hardware de Recepción (332) es muy simple y Io formarán células solares (a priori células de concentración). Es importante constatar que las células solares situadas en el Equipo aéreo (SA) no sólo actuarán como receptoras de potencia sino también como receptoras de información.The Reception Hardware (332) of the Aerial Equipment (SA) will be in charge of converting the radiation coming from the laser of the Ground Equipment (ST) into electrical signals (voltage, intensity) so that they can be interpreted by the Reception Software ( 331) In addition to using the incident power to power the Aerial Equipment (SA). The Receiving Hardware (332) is very simple and will form solar cells (a priori concentration cells). It is important to note that the solar cells located in the Aerial Equipment (SA) will not only act as power receivers but also as information receivers.
La recepción de datos se realiza también por enlace radiomodem (como aparato redundante) para asegurarse que en caso que el Ia recepción con las células solares no funcionase correctamente, Ia aeronave sigue en contacto con el Equipo terrestreThe reception of data is also carried out by radiomodem link (as a redundant device) to ensure that in case the reception with the solar cells did not work correctly, the aircraft continues to contact the ground equipment
(ST).(ST).
El Equipo aéreo (SA) se alimentará colocando células solares pegadas a Ia aeronave que transformarán Ia radiación recibida desde el Equipo terrestre (ST) en energía para alimentar el Equipo aéreo (SA).The Air Equipment (SA) will be fed by placing solar cells attached to the aircraft that will transform the radiation received from the Earth Equipment (ST) into energy to power the Air Equipment (SA).
Hay también que constatar que las células solares tendrán una eficiencia mucho mayor cuando son irradiadas con láser que cuando Io son con energía solar, puesto que en este caso se puede elegir que Ia longitud de onda del láser sea Ia óptima para esas células. Un ejemplo de Ia energía generada con respecto de Ia longitud de onda es Ia conocida para las células GaAs, frecuentemente utilizadas en aplicaciones espaciales.It should also be noted that solar cells will have a much greater efficiency when they are irradiated with laser than when they are with solar energy, since in this case it is possible to choose that the laser wavelength is optimal for those cells. An example of the energy generated with respect to the wavelength is that known for GaAs cells, frequently used in space applications.
Las células solares se dispondrán en Ia aeronave de tal forma que cuando se haga de noche Ia aeronave pueda estar alimentada totalmente por Ia energía del láser, y que cuando se haga de día utilice tanto Ia energía del sol como Ia del láser (pudiéndose llegar a aumentar Ia eficiencia de las células al doble). Para el ejemplo de realización representado, el Subsistema de Navegación (35) del Equipo aéreo (SA) será el encargado de proporcionar a Ia aeronave Ia posición, velocidad y rotación real con respecto a un sistema inercial. La aeronave necesitará conocer estos datos para poder dirigirse a Ia referencia deseada. Para esto se pueden utilizar diferentes sensores o sistemas.The solar cells will be arranged in the aircraft in such a way that when the night is done the aircraft can be powered entirely by the energy of the laser, and that when it is done by day use both the energy of the sun and that of the laser (being able to reach increase the efficiency of the cells to double). For the exemplary embodiment shown, the Navigation Subsystem (35) of the Aerial Equipment (SA) will be responsible for providing the aircraft with the actual position, speed and rotation with respect to an inertial system. The aircraft will need to know these data to be able to go to the desired reference. For this you can use different sensors or systems.
Se ha comprobado que el Hardware de Navegación (352) que hace que el avión sea Io más autónomo posible es el INS (Inertial Navigatión System), puesto que no sólo proporcionan Ia posición y velocidad del sistema sino que también su actitud. El problema que existe generalmente con estos sistemas es que suele necesitar un sistema adicional (Global Position System GPS) para evitar derivas a Io largo del tiempo. Para el cálculo preciso de Ia altura y de Ia velocidad de Ia aeronave con respecto del viento se han utilizado sensores de presión estática y dinámica respectivamente.It has been proven that the Navigation Hardware (352) that makes the aircraft as autonomous as possible is the INS (Inertial Navigation System), since they not only provide the position and speed of the system but also its attitude. The problem that generally exists with these systems is that they usually need an additional system (Global Position GPS System) to avoid drifts over time. For the precise calculation of the height and the speed of the aircraft with respect to the wind, static and dynamic pressure sensors have been used respectively.
La integración de todos los datos del GPS, INS y sensores de presión estática y dinámica se ha llevado a cabo en el Software de Navegación (351 ) mediante un filtro de Kalman.The integration of all GPS, INS and static and dynamic pressure sensors data has been carried out in the Navigation Software (351) by means of a Kalman filter.
Para el ejemplo de realización representado, el Subsistema de Alimentación (36) del Equipo aéreo (SA) será un sistema de seguridad que se encargará de alimentar los sistemas antes mencionados por si debido a cualquier contratiempo el láser no incide totalmente en el aparato.For the embodiment shown, the Power Subsystem (36) of the Aerial Equipment (SA) will be a safety system that will be in charge of feeding the aforementioned systems in case due to any misfortune the laser does not fully affect the apparatus.
Este sistema constará de una batería y de un regulador de potencia, pudiéndose adicionalmente cargarse cuando Ia aeronave se encuentre bajo Ia radiación solar. This system will consist of a battery and a power regulator, and can be additionally charged when the aircraft is under solar radiation.

Claims

R E I V I N P I C A C I O N E S REIVINPICATIONS
1 .- Sistema autónomo de vuelo con láser, caracterizado porque consta de un equipo terrestre (ST) y un equipo aéreo (SA) bien diferenciados; yendo:1 .- Autonomous laser flight system, characterized in that it consists of a well-differentiated ground equipment (ST) and aerial equipment (SA); going:
a) dicho equipo terrestre (ST) provisto de medios para alimentar al equipo aéreo (SA) además de comunicarse con él de forma totalmente inalámbrica, transmitiendo con láser (L) Ia potencia e información necesarias;a) said ground equipment (ST) provided with means to power the aerial equipment (SA) in addition to communicating with it in a completely wireless manner, transmitting with laser (L) the necessary power and information;
b) dicho equipo aéreo (SA) provisto de medios para recoger los datos y energía del equipo terrestre (ST), y enviar datos experimentales al equipo terrestre (ST).b) said aerial equipment (SA) provided with means to collect the data and energy of the ground equipment (ST), and send experimental data to the ground equipment (ST).
2.- Sistema autónomo de vuelo con láser, según reivindicación 1 , caracterizado porque el equipo terrestre (ST) incluye, al menos:2. Autonomous laser flight system according to claim 1, characterized in that the ground equipment (ST) includes at least:
a) un subsistema mecánico terrestre (21 ) con las piezas mecánicas necesarias para constituir una plataforma seguidora de dos ejes (21 1 );a) a terrestrial mechanical subsystem (21) with the mechanical parts necessary to constitute a two-axis follower platform (21 1);
b) un subsistema de control terrestre (22) con todo el software (221 ) y hardware (222) necesario para controlar dicha plataforma seguidora de dos ejes (21 1 );b) a ground control subsystem (22) with all the software (221) and hardware (222) necessary to control said two-axis follower platform (21 1);
c) un subsistema de recepción terrestre (23); con todo el software (231 ) y hardware (232) necesario para Ia recepción de toda Ia información proveniente de Ia aeronave (SA); d) un subsistema de transmisión terrestre (24), con todo el software (241 ) y hardware (242) necesario para transmitir potencia e información a Ia aeronave (SA);c) a ground reception subsystem (23); with all the software (231) and hardware (232) necessary for the reception of all the information coming from the aircraft (SA); d) a terrestrial transmission subsystem (24), with all the software (241) and hardware (242) necessary to transmit power and information to the aircraft (SA);
e) un subsistema ¡nterfaz terrestre (25), con todo el software (251 ) necesario para permitir al usuario, fácil e intuitivamente, comunicar Ia posición, velocidad y actitud de referencia a Ia aeronave (SA), así como visualizar los datos provenientes de ella;e) a terrestrial terrestrial subsystem (25), with all the software (251) necessary to allow the user, easily and intuitively, to communicate the position, speed and attitude of reference to the aircraft (SA), as well as visualize the data coming from her;
f) un subsistema de alimentación terrestre (26) con, al menos, una fuente de alimentación (261 ) que proporciona Ia energía necesaria para, al menos, un láser (L) que transmite(n) a Ia aeronave (SA) Ia potencia e información necesarias.f) a terrestrial power subsystem (26) with at least one power supply (261) that provides the energy necessary for at least one laser (L) that transmits (n) to the aircraft (SA) the power and necessary information.
3.- Sistema autónomo de vuelo con láser, según reivindicación 1 , caracterizado porque el equipo aéreo (SA) incluye, al menos:3. Autonomous laser flight system according to claim 1, characterized in that the aerial equipment (SA) includes at least:
a) un subsistema mecánico aéreo (31 ) que engloba una aeronave (31 1 )a) an aerial mechanical subsystem (31) that encompasses an aircraft (31 1)
b) un subsistema de control aéreo (32) con todo el software (321 a) y hardware (322a) necesarios para controlar, Ia citada aeronave (31 1 ).b) an air control subsystem (32) with all the software (321 a) and hardware (322a) necessary to control, said aircraft (31 1).
c) un subsistema de recepción aéreo (33), con todo el software (331 ) y hardware (332) necesario para recibir Ia energía e información provenientes del láser (L), con todo el hartware necesario para comunicar Ia nave por si en algún momento no pudiera comunicarse con el láser (L); d) un subsistema de transmisión aéreo (34), con todo el software (341 ) y hardware (342) necesarios para transmitir los datos experimentales y de navegación al equipo terrestre (ST);c) an air reception subsystem (33), with all the software (331) and hardware (332) necessary to receive the energy and information coming from the laser (L), with all the necessary hardware to communicate the ship in case in some moment I could not communicate with the laser (L); d) an air transmission subsystem (34), with all the software (341) and hardware (342) necessary to transmit the experimental and navigation data to the ground equipment (ST);
e) un subsistema de navegación aéreo (35), con todo el hardware (352) y software (351 ) necesario para determinar el vector de estado del equipo aéreo (SA) (posición, velocidad y actitud);e) an air navigation subsystem (35), with all the hardware (352) and software (351) necessary to determine the status vector of the aerial equipment (SA) (position, speed and attitude);
f) un subsistema de alimentación aéreo (36), con todo el hardware (362) necesario para abastecer a Ia aeronave (31 1 ) si en algún momento no pudiera ser radiado directamente desde el láser (L).f) an air supply subsystem (36), with all the hardware (362) necessary to supply the aircraft (31 1) if at any time it could not be radiated directly from the laser (L).
4.- Sistema autónomo de vuelo con láser, según reivindicación 3, caracterizado porque, particularmente, el citado hardware de transmisión de datos es un radiomodem.4. Autonomous laser flight system according to claim 3, characterized in that, in particular, said data transmission hardware is a radio modem.
5.- Sistema autónomo de vuelo con láser, según reivindicación 1 , caracterizado porque, particularmente, el citado equipo aéreo (SA) es un avión de aeromodelismo.5. Autonomous laser flight system according to claim 1, characterized in that, in particular, said aerial equipment (SA) is an aircraft model aircraft.
6.- Sistema autónomo de vuelo con láser, según reivindicación 2, caracterizado porque, particularmente, el subsistema de alimentación terrestre (26) consta de una pluralidad de láseres (Li) de baja potencia dispuestos en una base (Bi) con Ia inclinación adecuada para que sus haces converjan en un punto (LP) del espacio para que Ia suma de energías llegue a los niveles requeridos.6. Autonomous laser flight system, according to claim 2, characterized in that, particularly, the ground feeding subsystem (26) consists of a plurality of low power lasers (Li) arranged in a base (Bi) with the appropriate inclination so that its beams converge in a point (LP) of the space so that the sum of energies reaches the required levels.
7.- Sistema autónomo de vuelo con láser, según reivindicación 3, caracterizado porque el citado hardware de recepción (332) Io forman células solares (particularmente células de concentración), y un sistema auxiliar formado por un radiomodem. 7. Autonomous laser flight system according to claim 3, characterized in that said reception hardware (332) is formed by solar cells (particularly concentration cells), and an auxiliary system formed by a radio modem.
PCT/ES2008/000356 2008-01-16 2008-05-22 Stand-alone laser-based flight system WO2009090276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200800100 2008-01-16
ES200800100A ES2335632B1 (en) 2008-01-16 2008-01-16 AUTONOMOUS FLIGHT SYSTEM WITH LASER.

Publications (1)

Publication Number Publication Date
WO2009090276A1 true WO2009090276A1 (en) 2009-07-23

Family

ID=40885080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000356 WO2009090276A1 (en) 2008-01-16 2008-05-22 Stand-alone laser-based flight system

Country Status (2)

Country Link
ES (1) ES2335632B1 (en)
WO (1) WO2009090276A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586422A (en) * 2018-11-15 2019-04-05 北京宇航系统工程研究所 A kind of using the wireless arrow of laser radio power supply and laser wireless communication interface
GB2599722A (en) * 2020-10-12 2022-04-13 Bae Systems Plc Power/data transfer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260639A (en) * 1992-01-06 1993-11-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for remotely powering a device such as a lunar rover
US20020046763A1 (en) * 2000-10-23 2002-04-25 Jesus Berrios Methods and apparatus for beaming power
JP2008072474A (en) * 2006-09-14 2008-03-27 Osaka Industrial Promotion Organization Laser energy and information supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260639A (en) * 1992-01-06 1993-11-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for remotely powering a device such as a lunar rover
US20020046763A1 (en) * 2000-10-23 2002-04-25 Jesus Berrios Methods and apparatus for beaming power
JP2008072474A (en) * 2006-09-14 2008-03-27 Osaka Industrial Promotion Organization Laser energy and information supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586422A (en) * 2018-11-15 2019-04-05 北京宇航系统工程研究所 A kind of using the wireless arrow of laser radio power supply and laser wireless communication interface
CN109586422B (en) * 2018-11-15 2021-02-09 北京宇航系统工程研究所 Wireless rocket-ground interface adopting laser wireless power supply and laser wireless communication
GB2599722A (en) * 2020-10-12 2022-04-13 Bae Systems Plc Power/data transfer

Also Published As

Publication number Publication date
ES2335632A1 (en) 2010-03-30
ES2335632B1 (en) 2011-01-17

Similar Documents

Publication Publication Date Title
US10924178B2 (en) Geostationary high altitude platform
ES2871080T3 (en) Satellite system and procedure for global coverage
Nugent Jr et al. Laser power beaming for defense and security applications
US8596581B2 (en) Power generating and distribution system and method
US7997532B2 (en) Airborne power station
Kawashima et al. Laser energy transmission for a wireless energy supply to robots
Nakajima et al. ShindaiSat: A visible light communication experimental micro-satellite
Fraas Mirrors in space for low-cost terrestrial solar electric power at night
Ilcev Stratospheric communication platforms as an alternative for space program
Qaraqe et al. Power hotspots in space: Powering cubesats via inter-satellite optical wireless power transfer
Goto et al. The overview of jaxa laser energy transmission R&D activities and the orbital experiments concept on ISS-JEM
ES2335632B1 (en) AUTONOMOUS FLIGHT SYSTEM WITH LASER.
RU2481252C1 (en) Balloon-space power supply system
RU113434U1 (en) WIRELESS POWER TRANSMISSION SYSTEM FOR POWER SUPPLY OF AIRCRAFT
Potter et al. Space solar power satellite alternatives and architectures
Potter et al. Wireless power transmission options for space solar power
Henley et al. Wireless power transmission Options for Space Solar power
RU2733181C1 (en) Balloon-to-space power system (bsps)
Dessanti et al. Visualizing Wireless Transfer of Power: Proposal for A Five-Nation Demonstration by 2020
RU2739220C1 (en) Solar aerostatical-mobile power plants (sampp)
アディティア,バラスカ " Energy Orbit “Wirelessly Powering Satellites using Small Space Solar Power Satellite Constellation
Graves et al. Analysis of Space Ambient Power in the Martian Environment
Potter et al. Orbital reflectors for space solar power demonstration and use in the near term
Gleason Design, construction, and testing of a solar-powered, multirotor, unmanned aerial vehicle
Blohm et al. Space Solar Power with SunSynchronous Orbits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08775384

Country of ref document: EP

Kind code of ref document: A1