WO2009088094A1 - Mould release film - Google Patents

Mould release film Download PDF

Info

Publication number
WO2009088094A1
WO2009088094A1 PCT/JP2009/050495 JP2009050495W WO2009088094A1 WO 2009088094 A1 WO2009088094 A1 WO 2009088094A1 JP 2009050495 W JP2009050495 W JP 2009050495W WO 2009088094 A1 WO2009088094 A1 WO 2009088094A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
release film
release
mass
less
Prior art date
Application number
PCT/JP2009/050495
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Watanabe
Original Assignee
Teijin Dupont Films Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008096078A external-priority patent/JP2009184339A/en
Priority claimed from JP2008124633A external-priority patent/JP5378703B2/en
Priority claimed from JP2008237824A external-priority patent/JP5689579B2/en
Application filed by Teijin Dupont Films Japan Limited filed Critical Teijin Dupont Films Japan Limited
Priority to CN200980102135.6A priority Critical patent/CN101909875B/en
Publication of WO2009088094A1 publication Critical patent/WO2009088094A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • the present invention relates to a release film. More specifically, the present invention relates to a release film that can sufficiently satisfy the performance required as a release film used in the production of ceramic sheets. Background art
  • a release film based on a polyester film is used as a carrier film for manufacturing ceramic sheets (green sheets) used for manufacturing various ceramic electronic parts such as multilayer ceramic capacitors and ceramic substrates.
  • a ceramic sheet used for manufacturing a multilayer ceramic capacitor is obtained by applying a ceramic slurry in which a ceramic powder and a binder agent are dispersed in a solvent on a carrier film by a reverse roll method or the like, and heating the solvent. After forming a ceramic layer by drying and removing, a metal film serving as an internal electrode is formed on the ceramic layer by vapor deposition or printing to create a metal film / ceramic layer no-carrier film composite, and a powerful composite It is manufactured by peeling off the carrier film.
  • the multilayer ceramic capacitor is obtained by laminating the metal film ceramic layer composite produced as described above in a desired size, and after hot pressing, cutting into a rectangular shape to obtain a chip-shaped multilayer body. It can be obtained by firing a chip-like laminate and forming external electrodes on a predetermined surface of the fired body.
  • Patent Document 1 it has been proposed to reduce the thermal deformation of the carrier film during the production of the ceramic sheet and reduce the thickness variation of the produced ceramic sheet.
  • Patent Document 1 if the release film has an absolute value of a dimensional change rate under a stress of 1.47 MPa at 120, which is 0.3% or less in both the longitudinal direction and the width direction, heating is performed. It is described that since the thermal deformation at the time of treatment becomes very small, it is possible to suppress the uneven thickness of the ceramic paste obtained.
  • the ceramic sheet is dried without being gripped in the width direction, usually at a temperature around 100.degree.
  • the carrier film used in the production of the ceramic sheet shrinks with little tension in the width direction when the ceramic is dried. Therefore, as described in Patent Document 1, using only a release film having a low thermal shrinkage rate in the longitudinal direction and the width direction in a state where tension is applied, all the processes up to drying of the ceramic are performed. Even the shrinkage unevenness of the carrier film in the process could not be resolved, and there still remained a problem that the manufactured ceramic sheet had thickness unevenness and the internal electrodes were displaced during lamination.
  • the ceramic sheet when the ceramic sheet is thin, if the surface roughness of the carrier film is high, defects due to the occurrence of pinholes, or breakage of the ceramic sheet when the ceramic sheet is peeled off, can reduce productivity. cause. In other words, when the ceramic sheet is thin, even fine surface defects such as scratches and foreign matter on the surface of the carrier film, which were not a problem in the past, are manifested as causes of pinhole defects in the obtained ceramic sheet. End up.
  • the carrier film for manufacturing ceramic sheets has an even higher level of dimensional stability and a higher level of surface roughness. Is required.
  • the peeling charge tends to increase. For example, if the coating speed of the ceramic slurry is increased to improve productivity, sparks are generated in the process of unwinding the carrier film. The problem is that it is more likely to occur, which in turn makes a fire more likely.
  • the ceramic sheet is peeled off from the carrier film, the ceramic sheet is charged, and when the ceramic sheet is laminated in the subsequent process, the internal electrode is displaced due to the charging. Therefore, as a carrier film having a smoother surface, it is strongly required to suppress peeling electrification.
  • the carrier film as described above is generally used in the form of being wound in a roll shape, but since it has a release layer on the surface, it is slippery and is wound during winding or transporting of the roll. Problems such as misalignment are likely to occur. Therefore, conventionally, when winding the carrier film as described above in a roll shape, it is common to employ a condition that the roll hardness is high so that no winding deviation occurs. However, if the roll hardness is too high, the carrier film easily follows the roll shape, and the carrier film is stretched due to a fine roll shape defect, resulting in poor flatness.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-343663 Disclosure of Invention
  • the object of the present invention has been made in view of such a conventional technique, and has an appropriate dimensional change rate under heating tension when producing a ceramic sheet, and heat shrinkage when drying the ceramic slurry.
  • An object of the present invention is to provide a release film that is excellent in balance and can sufficiently satisfy the performance required as a release film used in the manufacture of ceramics.
  • the present invention is a release film having a release layer on at least one surface of a polyester film,
  • Elongation rate in the longitudinal direction at 100 (S MD ) when a tension of 0.2 MPa or more and 4.0 MPa or less is applied in the longitudinal direction of the release film.
  • the elongation rate (S TD ) in the direction perpendicular to the longitudinal direction at 100 when a tension of 0.0 IMP a is applied in the direction perpendicular to the longitudinal direction satisfies the following formula (2):
  • the thermal expansion rate (HS TD ) in the direction perpendicular to the longitudinal direction at 100 under no load of the release film satisfies the following formula (4),
  • the release film of the present invention preferably has a maximum height (Rmax) measured with a contact-type three-dimensional surface roughness meter on the surface of the release layer in the range of 100 nm to 600 nm.
  • the maximum height (Rma X) measured with a contact-type three-dimensional surface roughness meter on the surface of the release layer and the surface not having the release layer is preferably 100 nm or more and 600 nm or less, respectively.
  • the release layer preferably contains a surfactant in an amount of 0.5% by mass or more and 10% by mass or less based on the weight of the release layer. Further, it is preferable that the vertical thickness unevenness is 3.0% or less, and the horizontal thickness unevenness is 3.0% or less.
  • the release layer is preferably formed by applying a release layer forming composition to a polyester film stretched in one direction.
  • the release film of the present invention is preferably used for producing a ceramic sheet.
  • it is preferably used for producing a ceramic capacitor.
  • the present invention includes a film roll obtained by winding the release film into a roll, wherein the roll surface layer has a Vickers hardness (Hv) of 0 or more and 450 or less.
  • the present invention includes a method of using a film having the characteristics of the above formulas (1) to (5) as a release film for a ceramic sheet.
  • the machine axis direction in film formation may be referred to as a longitudinal direction or a longitudinal direction.
  • a direction perpendicular to the longitudinal direction may be referred to as a width direction or a lateral direction.
  • the release film of the present invention is a release film having a release layer on at least one surface of a polyester film, having a specific elongation under a specific load, It has a specific thermal elongation under no load.
  • the physical properties and structure of the release film of the present invention will be described below.
  • the release film of the present invention has a longitudinal elongation ratio at 100 (S MD ) i when the tension of 0.2 MPa or more and 4.0 MPa or less is applied in the longitudinal direction of the release film (S MD ) i Meet.
  • Ceramic layer release film composites are usually transported under tension at temperatures around 100 ° C. Therefore, by selecting 100 as the temperature condition, it is possible to judge the situation more in line with the actual process.
  • X is the tension (MP a) applied to the film unit area, and X is a value of 0.2 MPa or more and 4. OMP a or less.
  • the contraction stress in the longitudinal direction of the film increases with respect to the transport tension of the ceramic layer / release film composite, As a result, it shrinks unevenly in the longitudinal direction, causing uneven thickness of the ceramic sheet.
  • the elongation ratio (S MD ) in the longitudinal direction is larger than the value on the right side of the above formula (1), the contraction stress in the longitudinal direction of the film is small relative to the transport tension of the ceramic layer / release film composite. The flatness of the film deteriorates, causing uneven thickness of the ceramic sheet.
  • the release film of the present invention has a longitudinal elongation ratio at 100 (S) when a tension of 0.3 MPa or more and 2.5 MPa or less is applied in the longitudinal direction of the release film. MD ) force An embodiment that satisfies the above formula (1) is more preferable.
  • the elongation rate in the longitudinal direction (S MD ) and the elongation rate in the width direction (S TD ), which will be described later, are obtained by the following equations.
  • M. Is the length in the longitudinal or width direction of the film before the start of heating, and M is the same direction of the film when it reaches 10 O: Indicates the length. That is, when the elongation rate (S MD ) and the elongation rate (S TD ) are negative, the film is contracted, and when it is positive, the film is stretched.
  • the elongation (S TD ) in the width direction at 100 when a tension of 0. 1 MPa is applied in the width direction of the release film satisfies the following formula (2).
  • the elongation ratio (S TD ) is determined from the length in the width direction of the film before and after the heat treatment according to the above formula.
  • the shrinkage in the width direction of the film is large in the transport process of the ceramic layer Z release film composite, and the thickness variation of the ceramic sheet is reduced. It will cause.
  • the elongation in the width direction (S TD ) is greater than –0.2%, if the elongation (S TD ) is greater than the force SO (the film stretches), the ceramic layer Z release film composite During the transportation of the body, the flatness of the film is lost due to the stretching in the width direction of the film, causing thick spots on the ceramic sheet.
  • the balance between the shrinkage of the ceramic layer and the elongation of the release film is poor, causing problems such as partial peeling of the ceramic layer and floating.
  • the elongation ratio (S TD ) is more than 0.2% and less than 0%, the balance between the shrinkage of the ceramic layer and the shrinkage of the release film is poor, and the ceramic layer partially peels from the release film. Problems such as floating.
  • the longitudinal direction of 100 under no load thermal elongation (HS MD) force the following formula satisfies the (3), at the same time, in the width direction that put on at 100 under no load Thermal elongation rate (HS TD ) force
  • the following formula (4) is satisfied, and the longitudinal direction
  • the thermal expansion rate (HS MD ) and the thermal expansion rate in the width direction (HS TD ) satisfy the following formula (5).
  • the thermal expansion rate in the longitudinal direction (HS MD ) and the thermal expansion rate in the width direction (HS TD ) are obtained by the following formulas.
  • L. Is the length in the longitudinal or width direction of the film before heat treatment, and L is the length in the same direction of the film after heat treatment. That is, when the thermal elongation rate (HS MD ) and thermal elongation rate (HS TD ) are negative, it indicates that the film is contracted, and when it is positive, it indicates that the film is stretched.
  • the release film of the present invention preferably has a maximum height (Rmax) of 100 nm or more and 600 nm or less measured with a contact-type three-dimensional surface roughness meter on the surface of the release layer.
  • the maximum height (Rmax) is more preferably not less than 200 nm and not more than 550 nm, particularly preferably not less than 300 nm and not more than 500 nm.
  • Maximum height (Rma X) conforms to JIS standard (B 0601—2001: Surface roughness—Definition and display, B0651—2001: Contact surface roughness measuring instrument) and uses a 3D surface roughness meter. This is the maximum height of the part where the reference length is extracted from the roughness curve.
  • the maximum height (Rmax) is the maximum height of the contour curve (maximum height of profile), which is the sum of the maximum value of the peak height of the contour curve and the maximum value of the valley depth at the reference length.
  • B 065 1 200 1
  • the (stylus instrument) is a measuring instrument that can measure the deviation of the contour shape of the surface as the stylus moves on the surface, calculate the parameters, and record the contour curve.
  • the maximum height (Rmax) indicates the maximum protrusion height and is an indicator of pinhole defects in ceramic sheets. Specifically, when the maximum height (Rmax) of the release layer surface exceeds 60 Onm, the thickness of the ceramic sheet formed in the part where the maximum height (Rmax) exceeds 600 nm is reduced. As a result, pinhole defects are likely to occur. On the other hand, when Rma X on the surface of the release layer is less than 100 nm, the slipping property cannot be obtained and the winding property is deteriorated and the productivity tends to be deteriorated.
  • the maximum height (Rmax) of the surface of the release layer of the release film of the present invention is in the above numerical range, the surface smoothness and slipperiness are excellent, so that the uneven shape of the resulting ceramic sea ridge is suppressed.
  • a ceramic sheet with suppressed thickness unevenness can be obtained.
  • a capacitor in which the displacement of the internal electrodes is further suppressed can be obtained.
  • the release film of the present invention has a maximum height (Rmax) of 100 nm measured with a contact-type three-dimensional surface roughness meter on the surface on the side having no release layer simultaneously with the release layer surface.
  • the thickness is preferably 600 nm or more.
  • the maximum height (Rmax) is more preferably from 200 nm to 550 nm, particularly preferably from 300 nm to 500 nm.
  • the maximum height (Rmax) indicates the maximum protrusion height on the surface having no release layer, and is an index of the pinhole defect of the ceramic sheet. Specifically, if the maximum height (Rmax) of the surface that does not have a release layer exceeds 600 nm, the maximum height (Rmax) will be reduced when the ceramic slurry is applied and wound up after drying. The part exceeding 600 nm is pressed against the ceramic sheet. A concave portion is formed on the surface of the groove, and the concave portion becomes thin. As a result, pinhole defects are likely to occur. Even if these do not lead to a pinhole defect, an extremely thin portion is formed in the ceramic sheet, which becomes a defect of the ceramic capacitor.
  • the surface smoothness is more excellent. Therefore, the uneven surface shape of the obtained ceramic sheet can be further suppressed, and a ceramic sheet in which thickness unevenness is further suppressed can be obtained. As a result, when a ceramic capacitor is manufactured using the obtained ceramic sheet, the displacement of the internal electrodes can be further suppressed. Moreover, pinhole generation in the ceramic sheet can be suppressed. Furthermore, the peelability of the ceramic sea cocoon is good.
  • the maximum height (Rmax) can be achieved by adjusting the conditions for filtering the molten polymer, the mode of particles contained in the polyester film, and the like.
  • the release film of the present invention preferably has a vertical thickness unevenness of 3.0% or less.
  • the release film of the present invention has a lateral thickness unevenness of 3.0% or less. It is preferable.
  • the longitudinal thickness unevenness and the lateral thickness unevenness are simultaneously in the above numerical range.
  • the thickness unevenness of the obtained ceramic sheet can be further suppressed.
  • the vertical thickness unevenness is preferably 2.9% or less, more preferably 2.5% or less, and particularly preferably 2.0% or less.
  • the thickness unevenness in the lateral direction is preferably 2.8% or less, more preferably 2.6% or less, and particularly preferably 2.5% or less.
  • the thickness unevenness in the longitudinal direction can be adjusted by the longitudinal draw ratio. It is also important to adjust the auxiliary heating temperature and stretching temperature in the longitudinal stretching process.
  • the thickness variation in the transverse direction can be adjusted by the longitudinal draw ratio and the transverse draw ratio. It is also important to adjust the auxiliary heating temperature and stretching temperature in the transverse stretching process.
  • the method for producing the release film of the present invention having the above physical properties will be described below.
  • the release film of the present invention is produced by an unstretched polyester film forming process, a primary stretching process, an in-line coating process, a secondary stretching process, and a heat setting process described below.
  • a polyester raw material described later is extruded to obtain an unstretched polyester film.
  • an unstretched polyester film is obtained by cooling and solidifying the molten sheet extruded from the die with a cooling roll using an extruder.
  • a non-woven filter having an average opening of stainless steel fine wires with a wire diameter of 15 zm or less of 10 // m or more and 30 zm or less, preferably It is preferable to filter the molten polymer using a non-woven type film having a diameter of 10 m or more and 20 atm or less.
  • the maximum height (Rm ax) of the release layer surface and the surface on the side without the release layer of the release film can be reduced to 100 °. It can be in the numerical range between nm and 60 nm.
  • the molten polymer is filtered using a filter with an average opening of 10 // m or more and 5 or less, preferably 15 zm or more and 30 m or less, immediately before the die base.
  • a filter with an average opening of 10 // m or more and 5 or less, preferably 15 zm or more and 30 m or less, immediately before the die base.
  • the heat-degraded product of the polyester can be further removed, and the maximum height (Rmax) value can be set to a more preferable numerical range.
  • an electrostatic application adhesion method and a Z or liquid application adhesion method are preferably employed.
  • the unstretched polyester film obtained by the above-described unstretched polyester film forming step is stretched in the longitudinal direction (hereinafter, sometimes referred to as longitudinal stretching). Get a film.
  • preheating under (Tg-10) and above (Tg-2) under the following temperature conditions has a uniform thickness and a desired longitudinal elongation ratio. (S MD) and preferred in order to obtain the release Fi Lum having thermal expansion rate (HS MD).
  • Tg represents the glass transition temperature (unit: in) of the unstretched polyester film.
  • an unstretched polyester film that has been preheated arbitrarily is (Tg + 2) or more and (Tg + 40) at the following temperature conditions: 3.3 to 4.0 times in the longitudinal direction Stretch in the following range.
  • the thermal expansion rate HS MD in the longitudinal direction tends to be a positive value, that is, the film tends to be stretched, which is not preferable.
  • the draw ratio is larger than 4.0 times, the longitudinal elongation rate (S MD ;. Tends to be too small), which is not preferable.
  • the longitudinal thermal elongation rate (HS MD ) is small. It is not preferable because the stretching ratio is 3.3 times or more and 4.0 times or less, and the elongation ratio (S MD ) and thermal elongation ratio (HS MD ) in the longitudinal direction are set within the desired numerical range. It is also important to do.
  • Thickness unevenness can be reduced to 3.0% or less. If the draw ratio in the longitudinal direction is too low, the thickness unevenness in the longitudinal direction tends to deteriorate. From such a viewpoint, the lower limit of the draw ratio in the longitudinal direction is more preferably 3.8 times or more. On the other hand, the longitudinal extension If the draw ratio is too high, in the longitudinal uniaxially stretched polyester film obtained in the longitudinal stretching step, the thickness unevenness in the transverse direction tends to deteriorate, and a partially oriented crystallized portion is formed. It tends to be difficult to improve the lateral thickness unevenness of the mold film.
  • a release layer forming composition (hereinafter sometimes referred to as a coating agent) is applied inline to at least one surface of the uniaxially stretched polyester film in the longitudinal direction.
  • a polyester film having a coating film is obtained. That is, the release layer is formed by applying the release layer forming composition to a polyester film stretched in one direction.
  • an aqueous coating liquid containing an aqueous thermosetting silicone resin composition described later As the coating agent used in the in-line coating process, it is preferable to use an aqueous coating liquid containing an aqueous thermosetting silicone resin composition described later.
  • the coating method is not particularly limited, and any known coating technique can be used as a coating method for aqueous emulsion.
  • the coating can be applied on the longitudinally uniaxially stretched polyester film obtained in the primary stretching process by methods such as roller coating, spray coating, gravure coating, reverse gravure coating, or slot coating. .
  • the release film of the present invention is characterized in that the coating agent is applied in-line.
  • the coating agent is applied in-line, the second axis is then stretched, and the heat treatment is performed to complete the heat treatment for the release film. And after that, there is no heat off-line.
  • the physical properties set as the target values for the release film production in particular, the longitudinal elongation rate (S MD ), the transverse elongation rate (S TD ), and the longitudinal thermal elongation rate (HS MD) ), It can be used for actual use while maintaining the thermal expansion rate (HS TD ) in the width direction.
  • the target value of the physical properties in producing the release film becomes the final physical property of the release film, so that the dimensional stability is improved. It becomes an excellent release film.
  • the solvent contained in the coating agent is removed by drying, and the resin that becomes the release layer is removed. It is necessary to go through a curing step. In the process of curing the resin to be the release layer, it is necessary to apply a temperature around 1550, so the release film with the release layer formed off-line is both in the longitudinal and width directions of the release film. However, the elongation rate is increased, and the film is undesirably stretched in the conveying process of the ceramic layer Z release film composite.
  • the heat applied in the preheating, second-axis stretching, and heat setting steps after coating Only to remove the solvent from the coating film and harden the resin contained in the coating.
  • the release film of the present invention is characterized in that the coating agent is applied to a uniaxially stretched polyester film in-line.
  • the adhesiveness of a mold release layer and a polyester film can be made higher.
  • the solid content concentration of the coating is preferably 0.5% by mass or more and 30% by mass or less, more preferably 1% by mass or more and 15% by mass or less, and particularly preferably 1.5% by mass or more and 10% by mass or less. preferable.
  • the solid content concentration of the coating is less than 0.5% by mass, when the coating is applied to the surface of the polyester film, the coating tends to be repelled on the surface of the polyester film and cannot be applied uniformly. It is in. On the other hand, if it exceeds 30% by mass, the resulting release layer may become cloudy, or the coating may be easily gelled, or the cost may be low and the effect may be reduced. There is.
  • the polyester film having the coating film obtained by the in-line coating process is stretched in the width direction (hereinafter, sometimes referred to as lateral stretching), whereby a biaxially stretched polyester film is obtained. obtain. -At this time, prior to the secondary stretching process, (Tg + 10) X: or more (Tg + 30): If auxiliary heating is performed under the following temperature conditions, the solvent contained in the coating will be sufficiently dried. It is preferable because it can be uniformly stretched in the subsequent secondary stretching step.
  • the draw ratio in the width direction is in the above numerical range, the thickness unevenness in the transverse direction is excellent.
  • the draw ratio in the width direction is too low, the thickness unevenness in the transverse direction tends to deteriorate.
  • the draw ratio in the width direction is too high, the film tends to break during production.
  • the draw ratio in the width direction is more preferably 3.5 times or more and 4.5 times or less, further preferably 3.9 times or more and 4.3 times or less, and particularly preferably 4.0 times or more 4 Less than 2 times.
  • the surface draw ratio (longitudinal draw ratio X transverse draw ratio) is preferably 15 or more, and thickness spots in the machine direction and the transverse direction can be improved.
  • the surface draw ratio is more preferably 16 or more.
  • the relationship between the stretching ratio in the primary stretching step in the present invention (hereinafter sometimes referred to as the longitudinal stretching ratio) and the stretching ratio in the secondary stretching step (hereinafter sometimes referred to as the lateral stretching ratio).
  • the longitudinal draw ratio is preferably equal to or less than the transverse draw ratio. If the relationship of longitudinal stretch ratio ⁇ lateral stretch ratio, the longitudinal stretch ratio (S MD ), the lateral stretch ratio (S TD ), and the longitudinal thermal stretch ratio (HS MD ), the lateral thermal stretch It becomes easy to control the rate (HS T D ) to a desired value.
  • a release film is obtained by heat setting the biaxially stretched polyester film obtained in the secondary stretching step.
  • the temperature condition for heat setting depends on the type of polyester that makes up the polyester film. Although it is more different, in general, it is preferable that the temperature is (T g +70) or more and (Tm) in the following temperature range.
  • the polyester when the polyester is polyethylene terephthalate, it is preferably heat-set in a temperature range of 1800 to 235.
  • the polyester when the polyester is polyethylene-2,6-naphthalate, it is preferably heat-set in a temperature range of 1 85 to 2 40.
  • desired elongation rates (S MD and S TD ) and thermal elongation rates (HS MD and HS TD ) can be obtained.
  • Tm represents the melting point (in units) of polyester.
  • heat fixation is not performed in only one zone, but is preferably performed in stages divided into a plurality of zones.
  • the temperature is controlled in three or more zones.
  • the first zone should be between 1800 and 210
  • the second zone should be higher than the first zone, and the maximum temperature among the three zones.
  • the third zone is preferably set to a temperature lower than that of the second zone, and is set to 1 80 or more and 2 0 or less. In this way, the second zone is set to the maximum temperature, and the third zone is set to a lower temperature and heat-fixed, so that the flatness of the obtained release film is kept good and the thickness variation of the ceramic sheet is reduced. Can do.
  • the heat setting time is not particularly limited, and for example, it is preferably about 1 second or more and 60 seconds or less.
  • the film is relaxed by reducing the rail width by about 2% to 5% in the last zone of the heat setting process. It is preferable to do.
  • the release film of the present invention may optionally be provided with a cooling step after the heat setting step.
  • a cooling step By providing a cooling step, the flatness of the obtained release film can be kept good, and the thickness unevenness of the ceramic sheet can be reduced.
  • the cooling temperature is preferably (T g ⁇ 30) t: or more and (T g +20) in the following range. In the same manner as in the heat setting process, a plurality of zones are used. It is preferable to carry out separately. If the cooling temperature is lower than the above range, heat 1
  • Both elongation ratios may be too small.
  • the cooling temperature is higher than the above numerical range, even in the vicinity of the center line in the longitudinal direction of the film, even if the physical properties are uniform in each direction, a phenomenon occurs in which the oblique orientation becomes stronger at the side edges in the longitudinal direction. Therefore, it is not preferable.
  • the phenomenon that the side edge in the longitudinal direction is obliquely oriented can occur on the lower limit side of the preferred range of the heat setting temperature, but the degree is relatively small.
  • Polymers It may be a homopolyester or a copolyester.
  • the polyester film used in the present invention is made of a homopolyester
  • those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
  • the aromatic dicarboxylic acid to be used include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
  • the aliphatic glycol used include ethylene glycol, diethylene glycol, 1,4-cyclohexane dimethanol, and the like.
  • Typical examples of the homopolyester of the polyester film used in the present invention include polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and the like.
  • the polyester forming the polyester film used in the present invention is a copolymerized polyester
  • 20 mol% or less of a dicarboxylic acid and Z or glycol as the third component are copolymerized with respect to the total acid component. It is preferable to be a copolymer.
  • dicarboxylic acid that is a monomer component of the copolyester
  • dicarboxylic acid examples include isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, P-oxybenzoic acid, etc.) ) And the like, and one or more of these can be used.
  • glycols that are monomer components of the copolymerized polyester include ethylene glycol, polyethylene glycol, propylene glycol, butanediol, 1,4-cyclohexane. Examples thereof include xanthanimethanol and neopentyl glycol, and one or more of these can be used.
  • polyester film used in the present invention As a material of the polyester film used in the present invention, among these,
  • Tg of polyethylene terephthalate is around 78 and low, so when using polyethylene terephthalate film as a carrier film for manufacturing ceramic sheets processed at around 100 ° C. In particular, dimensional stability during the process was a particular problem. On the other hand, since the release film of the present invention is excellent in dimensional stability, the performance as a release film can be sufficiently exerted even when used at a temperature far exceeding Tg. .
  • particles mainly for the purpose of imparting slipperiness when used as a film.
  • the type of particles to be blended is not particularly limited as long as it can impart lubricity, and specifically, for example, silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate. And particles of magnesium phosphate, kaolin, aluminum oxide, titanium oxide, and the like.
  • heat-resistant organic particles such as those described in Japanese Patent Publication No. 5-9-5 2 16 and Japanese Patent Application Laid-Open No. 59-2 1 7 75 5 may be used.
  • Other examples of the heat-resistant organic particles include particles made of silicone resin, thermosetting urea resin, thermosetting phenol resin, thermosetting epoxy resin, benzoguanamine resin, and the like.
  • precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed during the production process of the polyester.
  • the shape of the particles for imparting the slipperiness as described above is not particularly limited, and any of a spherical shape, a lump shape, a rod shape, a flat shape, and the like may be used. Also its hardness, ratio The weight, color, etc. are not particularly limited. Furthermore, two or more kinds of these particles can be used in combination as required.
  • the average particle size of the particles is preferably from 0.1 zzm to 1 zzm, and more preferably from 0.2 / m to 0.5 / zm.
  • the average particle size is less than 0.1 m, the particles tend to aggregate and dispersibility may be insufficient.
  • it exceeds l zm the surface roughness of the resulting polyester film becomes too rough, and the release film has a maximum release layer surface height (Rmax) and no release layer. It is difficult to make the maximum height (Rm ax) of the side surface 10 0 nm or more and 60 0 nm or less.
  • the content of the particles to be blended for imparting slidability is preferably from 0.1 to 2% by mass, preferably from 0.1 to 1% by mass in the polyester film. Is more preferable. If the content of the particles is less than 0.01% by mass, the slipperiness of the film tends to be insufficient. On the other hand, if it exceeds 2% by mass, the smoothness of the film surface tends to be insufficient.
  • the method for incorporating the particles in the polyester film is not particularly limited, and conventionally known methods can be employed. For example, in any stage of producing polyester, it is preferable to add particles to be mixed, or to mix the particles after completion of the transesterification reaction, and then proceed to the polycondensation reaction. . Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a dried particle and a polyester raw material using a kneading extruder It can also be performed by a method of blending and the like.
  • the structure of the polyester film in the present invention is not particularly limited, and may be a single layer structure or a laminated structure. Further, in the case of a laminated structure, other than the two-layer or three-layer structure, a multilayer having four layers or more may be used as long as the gist of the present invention is not exceeded.
  • the laminated structure is not particularly limited, and examples thereof include laminated structures such as A / B, A / B / A, AZBZC, and -A / B / A '. it can.
  • A, B, and C each represent a layer made of the above-described polyester, and may be the same or different.
  • a ' represents a layer of polyester, which is especially similar in structure to A.
  • the total thickness of the polyester film in the present invention is not particularly limited, but preferably 9 // m or more and 50 m or less, more preferably 15 m or more and 38 m or less, particularly preferably 25 zm or more. 3 1 / m or less.
  • the release layer in the present invention is stable as an emulsion, it is preferably formed mainly from a silicone resin composition. What is a silicone resin composition?
  • a main agent composed of a polysiloxane having at least two unsaturated groups or hydroxyl groups in one molecule, and a hydrogen having at least two hydrogen atoms directly bonded to a silicon atom in one molecule. It contains a cross-linking agent made of polysiloxane as a constituent component.
  • an aqueous coating liquid (coating agent) containing such a silicone resin composition is applied to form a coating film, and the coating film is cured to form a release layer.
  • the silicone resin composition in the present invention is preferably an aqueous silicone resin composition. Since the aqueous silicone resin composition is excellent in stability when it is emulsified, the stability of the coating material can be increased as a result.
  • surfactant options there are a wide range of surfactant options to be described later. For example, a surfactant containing more hydroxyl groups can be used, and the effect of improving the antistatic property of peeling can be increased.
  • a surfactant containing more hydroxyl groups can be used, and the effect of improving the antistatic property of peeling can be increased.
  • examples of the method for curing the silicone resin composition include thermal curing, ultraviolet curing, electron beam curing, etc., among which thermal curing is preferable. That is, as the silicone resin composition, A thermosetting silicone resin composition is preferred.
  • a polyester film having a coating film is obtained in the in-line coating process, and heat treatment is performed in the subsequent heat setting process. Is made. If the silicone resin composition is a thermosetting silicone resin composition, the crosslinking reaction can be accelerated by heat treatment in the heat setting step, and the curing of the silicone resin composition can be sufficiently progressed. A release layer having excellent properties such as excellent properties can be obtained.
  • an aqueous thermosetting silicone resin composition is particularly preferable.
  • “mainly” means that 75% by mass or more is formed from the silicone resin composition with respect to the weight of the release layer.
  • Silicone resin compositions include addition polymerization types (when the main agent is made of polysiloxane having at least two unsaturated groups in one molecule) and condensation types (the main agent has at least two hydroxyl groups in one molecule).
  • the coating material contains platinum as a catalyst
  • the coating material contains tin as a catalyst. Is preferred.
  • the addition polymerization type is preferable from the viewpoint of excellent peeling properties.
  • the crosslinking agent those recommended by the manufacturer of the main agent used at the same time can be preferably used.
  • V 20 crosslinker system comprising polysiloxane, platinum catalyst, and methylhydrogen polysiloxane.
  • PC-105 silicone resin composition of PCL (Phone-Pou 1 en c Inc., Roc Hill, South Carolina).
  • PC_95 catalyst component consisting of methyl vinyl polysiloxane and platinum polysiloxane It consists of methyl hydrogen polysiloxane.
  • thermosetting silicone resin compositions can be used as a coating agent with the solid content concentration adjusted as appropriate by adding deionized water or the like.
  • the release layer in the present invention preferably contains a silane coupling agent.
  • a silane coupling agent either a polyester resin or a silicone resin composition, or an organic silicon low molecular weight compound having a reactive group bonded to both, is preferable, and as such a reactive group, a methoxy group, an ethoxy group, Organic low molecular weight compounds having at least one kind such as silanol group, vinyl group, epoxy group, (meth) acrylic group, amino group, mercapto group, chloro group, hydroxyl group, strong lpoxyl group preferable.
  • the content of the silane coupling agent is preferably 0.1% by mass or more and 20% by mass, more preferably 1% by mass or more and 10% by mass or less, with respect to the solid content weight of the release layer. % Or more and 7% by mass or less is particularly preferable. By making the content within the above numerical range, the adhesion of the release layer can be enhanced.
  • the release layer in the present invention preferably contains 0.5% by mass or more and 10% by mass or less surfactant based on the solid content weight of the release layer.
  • the release layer contains the surfactant in an amount in the above numerical range, the release charge when unwinding the roll release film and the release when peeling the ceramic sheet from the release film Charging can be suppressed.
  • the coating agent by adding a surfactant, the wettability of the coating agent on the surface of the polyester film is improved. As a result, local repellency defects of the coating agent are suppressed, and a uniform coating film is formed. obtain As much as possible, it can suppress the pinhole defect generated when peeling the ceramic sheet.
  • the content of the surfactant is more preferably 1.0% by mass or more and 7.0% by mass or less, and particularly preferably 2.0% by mass, based on the total dry weight of the release layer. More than 5.0% by mass.
  • the content is less than 0.5% by mass, the peeling charge becomes high.
  • the wettability of the coating tends to be insufficient with respect to the polyester film surface.
  • it exceeds 10% by mass the peeling force on the ceramic sheet tends to be heavy peeling, which is not preferable.
  • surfactants examples include ionic surfactants (anionic surfactants, cationic surfactants, zwitterionic surfactants), and nonionic surfactants (nonionic surfactants). Can do. Of these, nonionic surfactants are preferred. When an ionic surfactant such as an anionic surfactant, a cationic surfactant, or an amphoteric surfactant is used, a silicone resin composition for these surfactants to form a release layer As a result, the silicone resin composition may not be sufficiently cured.
  • Nonionic surfactants include polyoxyethylene, polyhydric alcohol fatty acid ester, polyhydric alcohol alkyl ether, nitrogen-containing surfactants, nonionic silicone surfactants, nonionic surfactants, and the like. Examples thereof include fluorine-based surfactants.
  • Polyoxyethylene surfactants include poly (oxyethylene) alkyl ether, poly (oxyethylene) alkylphenyl ether, poly (oxyethylene) poly (oxypropylene) alkyl ether, poly (oxyethylene) fatty acid ester, poly (oxyethylene) )
  • Examples include sorbin fatty acid esters.
  • poly (oxyethylene) alkyl ether polyoxyethylene lauryl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, etc. having 12 or more carbon atoms
  • Preferred examples include poly (oxyethylene) alkyl ethers having an alkyl group. . Such an alkyl group may be linear or branched.
  • polyhydric alcohol fatty acid ester type surfactant examples include propylene dallicol fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester.
  • polyvalent alcohol alkyl ether type surfactant examples include alkyl polyglycoxide.
  • nitrogen-containing surfactant examples include alkyl ether amides and alkyl amine oxides.
  • silicone surfactant examples include polyether-modified silicone and polyglycerin-modified silicone.
  • structure of such modified silicone includes: side chain modified type, both end modified type (ABA type), one end modified type (AB type), both end side chain modified type, linear block type (AB n type), Although it is classified as a branched type, it may be of any structure.
  • polyoxyethylene surfactants and silicone surfactants are preferred as the surfactant in the present invention. These are less likely to be a catalyst poison of the silicone resin composition, and can exhibit sufficient wettability. Particularly preferred is a silicone-based surfactant, which is less likely to be a catalyst poison, can have a more excellent release property, and can further enhance the effect of improving the antistatic properties of peeling.
  • the thickness of the release layer (that is, the thickness after drying) in the present invention is not particularly limited, but is preferably 20 nm or more and 90 nm or less. In general, if it is less than 20 nm, it is difficult to exert the effect as a release layer such as a light peeling force. On the other hand, if it exceeds 90 nm, the effect obtained for the cost is reduced.
  • the release film of the present invention can be used as a separator for sheet forming films such as resin sheets and ceramic sheets, or adhesive films for labels, medical use, office supplies and the like.
  • the release film of the present invention sufficiently satisfies the performance required for the release film during the production of the ceramic sheet. It can be suitably used as a carrier film.
  • a ceramic sheet is produced by using the release film of the present invention, a thin ceramic sheet can be obtained with high precision, and the obtained thin ceramic sheet can be multilayered with internal electrodes as the size and capacity increase. Therefore, it can be suitably used for multilayer ceramic capacitors that are required to be made.
  • the prepared ceramic slurry may be applied to the surface of the release layer of the release film of the present invention, and the solvent contained in the ceramic slurry may be removed by drying.
  • the method for applying the ceramic slurry is not particularly limited, and a conventionally known application method can be used.
  • a ceramic slurry in which ceramic powder and a binder agent are dispersed in a solvent can be applied by a reverse roll method, and the solvent can be removed by heat drying.
  • a binder agent to be used For example, a polyvinyl butyral etc. can be used.
  • the solvent to be used is not particularly limited, and for example, ethanol, toluene and the like can be used.
  • the film roll of the present invention is obtained by winding the release film obtained above in a roll shape.
  • the release film roll may be a parent roll obtained directly by the above-described release film manufacturing process, or a slit roll obtained by slitting the parent roll to the width and length required by the customer. Also good.
  • the film roll of the present invention has a Vickers hardness (H v) of a roll surface layer of 0 or more and 45 or less.
  • H v Vickers hardness
  • Vickers force is a diamond square indenter with a diagonal angle of 1 to 36 degrees, and the load when a pyramid-shaped dent is attached to the test surface is divided by the surface area obtained from the diagonal length of the permanent dent. The quotient is calculated by the following formula.
  • the upper limit of the pickers hardness (Hv) of the roll surface layer is preferably 430 or less, more preferably 420 or less, and particularly preferably 410 or less.
  • the lower limit of the pickers hardness (HV) of the roll surface layer is preferably 340 or more, more preferably 360 or more, and particularly preferably 380 or more.
  • the picker hardness (Hv) of the roll surface as described above can be achieved by adjusting the winding conditions such as the winding tension and the nipping pressure when winding the release film.
  • the initial tension must be 49 NZm or less as the winding tension.
  • the Vickers hardness (Hv) of the roll surface layer can be made 450 or less. Further, the amount of air taken in during winding becomes an appropriate amount, and the influence of film thickness unevenness can be reduced, that is, winding tightening can be suppressed, and flatness is excellent. Moreover, winding deviation can be suppressed.
  • the initial tension is too high, the Vickers hardness (Hv) of the roll surface layer tends to be too high.
  • the amount of air entrained during winding tends to decrease, and the flatness tends to be poor.
  • the upper limit of the initial tension is preferably 48 NZm or less, more preferably 47 N / m or less.
  • the initial tension is preferably 3 O NZm or more.
  • the initial tension means a tension when the release film as a product is substantially wound in a roll shape, and does not necessarily indicate a tension immediately after starting to roll on the core. That is, in general, for the purpose of reducing the influence of foreign matter, scratches, etc.
  • the take-up tension from several meters to several tens of meters is particularly high immediately after starting to be wound around the core.
  • it does not indicate the winding tension in such a part.
  • it is necessary to provide a tension taper to make the final tension lower than the initial tension.
  • the ratio of final tension to initial tension (tensile taper ratio) must be 80% or less.
  • the upper limit of the tension taper rate is preferably 70% or less, and more preferably 60% or less.
  • the tension taper rate is low.
  • the lower limit of the tension taper rate is preferably 30% or more.
  • the winding tension increases from the initial tension to the final tension as long as the winding tension does not exceed 49 N / m, but in the main part of the roll, A mode in which the winding tension is gradually decreased continuously is preferable, and a mode in which the winding tension is gradually decreased at a constant rate is preferable.
  • the tension taper as described above, the internal stress in the winding direction can always be 0 or more in the roll, and there is a problem such as lateral crease defects (T bars) Can be suppressed.
  • the main part of the roll means a part 5 mm or more outside the core surface layer and 5 mm or more inside the roll surface layer in the roll radial direction.
  • the final tension is less than 39 NZm It is necessary to.
  • the Vickers hardness (H v) of the roll surface layer can be made 4500 or less.
  • the upper limit of the final tension is preferably 3 8 NZm or less, and more preferably 3 O NZm or less.
  • the lower limit of the final tension is preferably 1 O NZm or more, more preferably 1 S NZm or more.
  • the initial nip pressure needs to be 20 O NZm or less.
  • the picker hardness (Hv) of the roll surface layer can be reduced to 4500 or less.
  • the amount of air entrained during winding becomes an appropriate amount, which can reduce the influence of uneven thickness of the film, that is, it can suppress the tightening of the film, and is excellent in flatness.
  • winding deviation can be suppressed.
  • the initial nip pressure is too high, the Vickers hardness (H v) of the roll surface layer tends to be too high.
  • the amount of air entrained during winding tends to decrease, and the flatness tends to be poor.
  • the upper limit of the initial nip pressure is preferably 1 8 O NZm or less, more preferably 1600 NZm or less, and particularly preferably 1 2 O NZm or less.
  • the lower limit of the initial nip pressure is preferably 50 NZm or more, more preferably 80 NZm or more.
  • the nip pressure taper does not have to be attached, but it is possible to generate wrinkles and pin pulls and roll rolls by applying a two-up pressure taper with a two-up pressure taper ratio of 10% to 10%. End face shift can be suppressed.
  • the final nip pressure should be 2 2 O NZm or less, but if the final nip pressure is too high, the Vickers hardness (H v) of the roll surface layer will be It tends to be too high.
  • the upper limit of the final nip pressure is preferably 17 ONZm or less, more preferably 150 NZm or less, and particularly preferably 14 ONZm or less.
  • the lower limit of the final nip pressure is preferably 5 ONZm or more, more preferably 70 N / m or more, and particularly preferably 90 NZm or more.
  • M is the length in the longitudinal or width direction of the film before heat treatment, and M is the length in the same direction of the film after heat treatment. That is, when the elongation rate (S MD ) and the elongation rate (S TD ) are negative, the film is contracted, and when it is positive, the film is stretched.
  • L is the length in the longitudinal direction or width direction of the film before heat treatment
  • L is the length in the same direction of the film after heat treatment. That is, when the thermal elongation rate (HS MD ) and the thermal elongation rate (HS TD ) are negative, the film is contracted, and when it is positive, the film is expanded. (5) Evaluation of surface smoothness of ceramic sheet (Practical property substitution evaluation)
  • a release film roll having a width of 450 mm and a length of 2,000 m was prepared.
  • a ceramic rally having the following composition is applied to the surface of the release layer of such a release film at a film transport speed of 6 OmZ using Daiko Yui, and the thickness after drying becomes 5 zm.
  • a ceramic layer was formed, and a ceramic layer release film composite having a length of 1,900 m was obtained and wound into a roll.
  • the ceramic layer release film composite obtained from Conditions 1 and 2 the ceramic layer was peeled from the release film to obtain a ceramic sheet.
  • the surface of the obtained ceramic sheet (measurement area: lm 2 ) is observed on both sides using a scanning laser microscope (made by Lasertec), and the surface smoothness is evaluated according to the following evaluation criteria. did.
  • Plasticizer dioctyl phthalate
  • X 6 craters (recesses) with a depth of 0.5 im or more m 2 or more
  • a ceramic layer Z release film composite was obtained in the same manner as in (5) (Condition 2) above.
  • a patterned Ni electrode printed layer having a thickness of 3 m after drying was formed as a metal film by screen printing.
  • the obtained metal film / ceramic layer / release film composite was cut into a size of 30 Omm ⁇ 30 Omm to obtain a single-wafer sample.
  • the metal film Z ceramic layer composite was peeled from the release film at a peeling speed of 2 Om, and the peel charge amount in the peeling was measured.
  • Concentrated potential measuring device manufactured by Kasuga Electric Co., Ltd., trade name: electrostatic potential measuring device SV-10 is installed at a distance of 5 cm from the surface of the ceramic layer of the peeled metal film / ceramic layer composite.
  • the peel charge amount was measured in an atmosphere of temperature: 22 and humidity: 44% RH.
  • the measurement was carried out on 100 single-wafer samples, and the average value was taken as the peel charge amount (unit: kV) of the ceramic sheet.
  • the evaluation was performed according to the following evaluation criteria.
  • the metal film Z ceramic layer composite after cutting and peeling, obtained by the same method as in (7) above, is laminated into 10 layers using a swinging machine that detects the position with a CCD camera. Got. About the obtained laminated body, the amount of deviation of each layer was measured using a microscope with reference to the first metal film ceramic layer composite. The obtained value was defined as a positional deviation (unit: / m). The evaluation was conducted according to the following evaluation criteria. Lamination was performed immediately after the release film was peeled off.
  • Misalignment is less than 200 Atm (a level where there is no practical problem)
  • Winding deviation is lmm or less (level that can be used suitably without any problem) ⁇ : Winding deviation exceeds 1 mm and 2 mm or less (level that can be used without problems) ⁇ : Winding deviation exceeds 2 mm and 3 mm or less (slightly There is a problem with the level that can be used)
  • Thickness unevenness (%) ((maximum thickness minus minimum thickness) Z film thickness) X I 00 (14) Ceramic sheet thickness unevenness
  • the thickness was measured using Micromechiichi (trade name “K_402 B”, manufactured by Anritsu Corporation) Next, the ceramic layer at the location where the thickness was measured was completely peeled off, the thickness was measured again at the same location, and the difference between them was determined as the thickness of the ceramic sheet. This operation was carried out for 10 points in the vertical direction at 10 lm intervals, 10 points in the vertical direction, and 10 rows in the horizontal direction at 10 cm intervals in total, 100 points in total.
  • the ceramic sheet thickness (unit: / m).
  • the maximum thickness was the maximum thickness (unit: minimum thickness was the minimum thickness (unit: / m), and thickness spots (unit:%) were determined from the following formula.
  • Thickness unevenness (%) ((maximum thickness minus minimum thickness) Z ceramic sheet thickness) XI 00 Evaluation was carried out according to the following evaluation criteria.
  • Thickness unevenness is 2.0% or less (excellent thickness unevenness, no problem in practical use)
  • Thickness unevenness exceeds 2.0% and 3.0% or less (excellent thickness unevenness, practically no problem)
  • Manganese oxalate 'tetrahydrate as a transesterification catalyst was added to a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol so that the amount of mangan element in the resulting polyester was 80 ppm.
  • the transesterification was carried out while gradually raising the internal temperature from 150. When the transesterification reached 95%, 0.01 part of phosphorous acid was added as a stabilizer, and after sufficient stirring, 0.03 part of antimony trioxide was added.
  • the polyethylene terephthalate composition obtained above was dried for 5 hours until the water content of the polymer at 170 was 0.05% by mass. Continuing with the bow I, the dried polyethylene terephthalate composition was fed to the extruder and melted at a melting temperature of 28.degree. To 30.000, using a steel wire filter with an average opening of 11.1 .mu..eta. After high-precision filtration, an unstretched polyester film having a thickness of 4500 m was obtained by using an extrusion die and rapidly cooling the cooling drum by electrostatic contact.
  • the resulting unstretched polyester film is preheated at 75, and subsequently stretched 3.6 times in the longitudinal direction at a film temperature of 105 between low-speed and high-speed rolls, and then rapidly cooled.
  • a stretched polyester film was obtained in the longitudinal direction (longitudinal direction).
  • a polyester film having a coating film was obtained by applying the coating agent prepared above to the obtained longitudinally stretched polyester film so that the thickness after drying was 40 nm.
  • a polyester film having the obtained coating film was supplied to the stainless steel, and after preheating for 2 seconds each in two zones at 1 0 5 and 1 15, 1 2 0, 1 3 0, 1 4 5: In 4 zones of 1 5 5, stretched uniformly so that the stretching ratio (transverse stretching ratio) in the direction perpendicular to the longitudinal direction (width direction) is 4.1 times in total for 2 seconds each.
  • a biaxially stretched polyester film was obtained.
  • the obtained biaxially stretched polyester film was heat-fixed at 2 1 0, 2 2 5 and 3 zones of 1 9 5 for 2 seconds each for a total of 6 seconds, and the final heat fix of 1 95 5 In the zone, a release film having a total thickness of 31 m was obtained by performing 2. ⁇ % relaxation treatment in the direction (width direction) perpendicular to the longitudinal direction. Gain Various measurements and evaluations were performed using the obtained release film. The results are shown in Table 1.
  • a toluene solution solid content concentration: 3% by mass
  • an addition-type silicone compound Toshiba Silicone, trade name: TPR-6 7 2 1
  • a Pt catalyst Toshiba Silicone, trade name: CM 6700
  • the biaxially stretched polyester film mouth having no release layer obtained above was unwound, and the biaxially stretched polyester film unwound in the center in the direction (width direction) perpendicular to the longitudinal direction, Apply the release agent coating solution adjusted as described above to a coating amount (wet) of 6 g Zm 2 and use an air levitation conveyor type drying device in which the distance between the lower and upper air flow outlets is 38 cm.
  • the release tension is 2,100 kPa
  • the drying temperature is 160
  • the release layer is formed by drying for 16 seconds.
  • the weight of the release layer after drying and curing is 0.2 g.
  • a release film of Zm 2 was obtained. Table 1 shows the results of various measurements and evaluations using the obtained release film.
  • a release film was obtained in the same manner as in Example 1 except that in the primary stretching step, the stretching ratio in the longitudinal direction (longitudinal direction) was 3.0.
  • Table 1 shows the results of various measurements and evaluations using the obtained release film.
  • the stretching ratio in the longitudinal direction (longitudinal direction) in the primary stretching process is 4.8 times
  • secondary stretching A release film was obtained in the same manner as in Example 1 except that the draw ratio in the direction perpendicular to the longitudinal direction (width direction) was 3.0. Table 1 shows the results of various measurements and evaluations using the obtained release film.
  • Example 2 In the same manner as in Example 1, a polyethylene terephthalate composition having an intrinsic viscosity of 0.65 (35, in orthoclonal phenol) was obtained.
  • silicone emulsion 400E manufactured by Wacker Silicones, silicone: methylpolysiloxane having vinyl group, crosslinking agent added
  • silicone emulsion 400E silicone: methylpolysiloxane having vinyl group, crosslinking agent added
  • V 72 made by Wacker Si 1 icones, methyl hydrogen poly Siloxane emulsion, which reacts with double bonds in methylsiloxane, solid content concentration 50% by mass
  • silane coupling agent manufactured by Shin-Etsu Silicon Co., Ltd., trade name: KBM— 403
  • 0.15 part of polyoxyethylene oleyl ether trade name: Emulgen 404
  • Silane coupling agent 5.0% by mass
  • the polyethylene terephthalate composition obtained above was dried at 170 for 5 hours until the water content of the polyethylene terephthalate composition was 0.05% by mass or less. Subsequently, the dried polyethylene terephthalate composition was supplied to the extruder, melted at a melting temperature of 280 to 300, and filtered with high precision using a steel wire filter with an average opening of 11 im. By extruding the molten sheet into a molten sheet and quenching the molten sheet with a cooling drum by electrostatic contact method, a thickness of 45 An unstretched polyester film of 0 m was obtained.
  • a polyester film having a coating film is applied to the obtained longitudinally uniaxially stretched polyester film by applying the coating agent prepared above so that the thickness of the release layer in the obtained release film is 40 nm. Got.
  • the coating was applied to the surface that did not contact the cooling drum in the unstretched polyester film forming process.
  • the obtained biaxially stretched polyester film was cut in the same manner as in Example 1 to obtain a release film having a total thickness of 31 1 m.
  • Various measurements and evaluations were performed using the obtained release film. The results are shown in Table 2.
  • a release film was obtained in the same manner as in Example 3 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
  • nonionic silicone surfactant polyoxyethylene methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd.) Name: E MA LEXSS-5 0 5 1) (S 2 component) was used.
  • the solid content concentration of the coating material was 6.0% by mass.
  • the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows. Main agent: 85.4% by mass
  • Silane power pulling agent 5.1% by mass
  • the transverse draw ratio was 4.5 times.
  • the amount of relaxation in the relaxation treatment was 4.0%.
  • a release film was obtained in the same manner as in Example 4 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
  • Silane power pulling agent 5.0% by mass
  • a release film was obtained in the same manner as in Example 4 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
  • a nonionic silicone surfactant Lioxyethylene methylpolysiloxane copolymer (Nippon Emulsion Co., Ltd.)
  • Silane power pulling agent 4.9% by mass
  • a release film was obtained in the same manner as in Example 4 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
  • a surfactant 0.6 part of a nonionic silicone surfactant, polyoxyethylene.'methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd., trade name: EMALEX SS-5051) (S Two components) were used.
  • the solid content concentration of the coating was 6.5% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
  • Silane power pulling agent 4.7% by mass
  • a release film was obtained in the same manner as in Example 4 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
  • the solid content concentration of the coating was 5.9% by mass. .
  • the solid content ratio of each component in the release layer 100% by mass obtained from this coating composition is as follows.
  • Silane coupling agent 5.2% by mass
  • the longitudinal draw ratio was 3.0 times.
  • a release film was obtained in the same manner as in Comparative Example 4 except that the conditions in the following steps were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
  • the longitudinal draw ratio was 4.8 times.
  • the transverse draw ratio was 3.0 times.
  • a biaxially stretched polyester film having no release layer was obtained in the same manner as in Example 3 except that the coating agent was not applied.
  • an addition polymerization type silicone resin composition (manufactured by Toshiba Silicone Co., Ltd., trade name: TPR-6721) in a toluene solution (solid content concentration: 3% by mass), Pt catalyst (manufactured by Toshiba Silicone Co., Ltd.) Product name: CM 670) was added so as to be 1 part by mass with respect to 100 parts by mass of the solid content of the addition polymerization type silicone resin composition to prepare a release agent coating liquid.
  • This release agent coating liquid does not contain a surfactant.
  • the roll of the biaxially stretched polyester film without the release layer obtained above is unwound and unrolled biaxially.
  • Example 2 In the same manner as in Example 1, a polyethylene terephthalate composition having an intrinsic viscosity of 0.65 (35: in orthoclonal phenol) was obtained.
  • a coating agent was obtained in the same manner as in Example 3.
  • the solid content concentration of the coating material was 6.0% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
  • Silane power pulling agent 5.0% by mass
  • a polyester film having a coating film is applied to the obtained longitudinally uniaxially stretched polyester film by applying the coating agent prepared above so that the thickness of the release layer in the obtained release film is 40 nm. Got.
  • the coating was applied to the surface that did not contact the cooling drum in the unstretched polyester film forming process.
  • a release film having a total thickness of 31 m was obtained in the same manner as in Example 1 except for the obtained biaxially stretched polyester film.
  • Table 3 shows the results of various measurements and evaluations using the obtained release film as the release film before slitting.
  • the winding conditions are as follows: initial tension 4 7 N m, tension taper ratio 60% (—constant), nip pressure 15 ON / m, nip pressure taper ratio 100%, speed 1 8 O mZ, 4 A release film roll having a width of 5 O mm and a length of 2,00 m was obtained. Table 3 shows the results of various measurements and evaluations on the obtained release film roll.
  • Table 3 shows the results of various measurements and evaluations using the release film obtained here as the release film after slitting.
  • a release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 8 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
  • the solid content of the coating was 5.9% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
  • Silane pulling agent 5.2% by mass
  • the transverse draw ratio was 4.5 times.
  • a release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 9 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
  • a surfactant 0.06 part of a nonionic silicone surfactant polyoxyethylene / methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd., trade name: EMALEX S S-50 ⁇ 1) ( S 2 component) was used.
  • the solid content concentration of the coating material was 6.0% by mass.
  • the solid content ratio of each component in the release layer 100% by mass obtained from this coating agent is as follows.
  • Silane power pulling agent 5.1% by mass
  • a release film before the slit, a release film roll, and a release film after the slit were obtained in the same manner as in Example 10 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
  • the amount of surfactant (S 2 component) added was 0.15 parts.
  • the solid content concentration of the coating was 6.0% by mass.
  • the solid content ratio of each component in the release layer 100% by mass obtained from this coating agent is as follows.
  • Silane coupling agent 5.0% by mass
  • Table 3 shows the winding conditions in the slitting process.
  • a release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 11 except that the winding conditions in the slitting process were as shown in Table 3.
  • Table 3 shows the results of various measurements and evaluations using these.
  • a release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 10, except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
  • the amount of surfactant (S 2 component) added was 0.3 parts.
  • the solid content concentration of the coating material was 6.2% by mass. Further, the solid content ratio of each component in the release layer (100% by mass) obtained from the coating composition is as follows.
  • Silane power pulling agent 4.9% by mass
  • a release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 10, except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
  • the amount of surfactant (S 2 component) added was 0.6 parts.
  • the solid content concentration of the coating material was 6.5% by mass. Further, the solid content ratio of each component in the release layer (100% by mass) obtained from the coating composition is as follows.
  • Silane power pulling agent 4.7% by mass
  • Surfactant 9.4% by mass
  • a release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 9 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
  • the longitudinal draw ratio was 3.0 times.
  • a release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 9 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
  • the longitudinal draw ratio was 4.8 times.
  • the transverse draw ratio was 3.0 times.
  • a biaxially stretched polyester film having no release layer was obtained in the same manner as in Example 8 except that the coating agent was not applied.
  • a Pt catalyst manufactured by Toshiba Silicone Co., Ltd., trade name
  • a toluene solution solid content concentration: 3% by mass
  • an addition polymerization type silicone resin composition Toshiba Silicone Co., Ltd., trade name: TPR-6672.
  • CM 670 was added at 1 part by mass with respect to 100 parts by mass of the solid content of the addition polymerization type silicone resin composition to prepare a release agent coating solution.
  • This release agent coating liquid does not contain a surfactant.
  • the roll of the biaxially stretched polyester film having no release layer obtained above was unwound, and the release agent prepared above was placed in the center in the width direction of the unrolled biaxially stretched polyester film.
  • Apply the agent coating solution to a coating amount (wet) of 6 gZm 2, and use an air levitation transport dryer with a space of 38 cm between the lower and upper air flow outlets.
  • Ot Drying time: A release layer was formed by drying in 16 seconds, and a release film having a weight after drying and curing of the release layer of 0.2 g Zm 2 was obtained.
  • Table 3 shows the results of various measurements and evaluations using the release film obtained here as the release film before slitting.
  • the release agent coating solution was applied to the surface that did not contact the cooling drum in the unstretched polyester film forming step.
  • Table 3 shows the results of various measurements and evaluations using these.
  • a release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 11 except that the scraping conditions in the slitting process were as shown in Table 3.
  • Table 3 shows the results of various measurements and evaluations using these.
  • Example 2 In the same manner as in Example 1, a polyethylene terephthalate composition having an intrinsic viscosity of 0.65 (35, in orthoclonal phenol) was obtained.
  • a coating agent was obtained in the same manner as in Example 3.
  • the solid content concentration of the coating material was 6.0% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
  • Silane coupling agent 5.0% by mass
  • the polyethylene terephthalate composition obtained above was dried at 170 for 5 hours until the water content of the polyethylene terephthalate composition was 0.05% by mass or less. Subsequently, the dried polyethylene terephthalate composition is fed to an extruder, melted at a melting temperature of 28 to 300, and high using a steel wire filter with an average opening of 11 / m. After precision filtration, the sheet was extruded from a die to form a molten sheet, and the molten sheet was contacted and rapidly cooled to a cooling drum by an electrostatic contact method to obtain an unstretched polyester film having a thickness of about 4880 m.
  • the obtained unstretched polyester film was preheated at 75, and then stretched 3.8 times in the longitudinal direction at a film temperature of 105 between low-speed and high-speed rolls, and then rapidly cooled. A longitudinally uniaxially stretched polyester film was obtained.
  • a polyester film having a coating film is applied to the obtained longitudinally uniaxially stretched polyester film by applying the coating agent prepared above so that the thickness of the release layer in the obtained release film is 40 nm.
  • Got. Application of paint was applied to the surface that did not contact the cooling drum in the unstretched polyester film forming process.
  • the obtained biaxially stretched polyester film was cut in the same manner as in Example 1 to obtain a release film having a total thickness of 31 xm.
  • Various measurements and evaluations were performed using the obtained release film. The results are shown in Table 4.
  • a release film having a total thickness of 31 / m was obtained in the same manner as in Example 18 except that the conditions in each step were as follows. Various measurements and evaluations were performed using the obtained release film. The results are shown in Table 4. '
  • a surfactant 0.06 part of a nonionic silicone surfactant polyoxyethylene / methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd., trade name) instead of polyoxyethylene glycol ether EMALEX S S-5051) (S 2 component) was used.
  • the solid content concentration of the coating was 6.0% by mass.
  • the solid content ratio of each component in the release layer 100% by mass obtained from this coating agent is as follows.
  • Silane power pulling agent 5.0% by mass
  • the longitudinal draw ratio was 4.0 times.
  • the release film of the present invention has an appropriate dimensional change rate under the heating tension at the time of producing a ceramic sheet, and has an excellent heat shrinkage balance when the ceramic slurry is dried. That is, the performance required for a release film used in the production of a ceramic sheet is sufficiently satisfied. Therefore, when the release film of the present invention is used as a carrier film for producing a ceramic sheet, the thickness of the resulting ceramic sheet is excellent because the heat shrink balance of the carrier film is excellent not only in the conveying process but also in the drying process. Spots can be highly suppressed.
  • the release film having a preferred embodiment in the present invention is excellent in surface smoothness, pinhole generation in the obtained ceramic sheet can be suppressed. Therefore, according to the release film having a preferred embodiment of the present invention, the productivity of the ceramic sheet and the ceramic capacitor can be improved.
  • the release film having a preferred embodiment of the present invention can highly suppress peeling charge generated in the step of unwinding the carrier film and the step of peeling the ceramic sheet from the carrier film.
  • the ceramic capacitor is manufactured using the ceramic sheet manufactured using the release film of the present invention, the displacement of the internal electrode of the obtained capacitor can be highly suppressed.
  • the film roll of the present invention can provide a release film having excellent flatness.
  • a ceramic capacitor is manufactured using a ceramic sheet manufactured using such a release film, a ceramic capacitor having a uniform capacity can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a mould release film which has a suitable rate of dimensional change under thermal tension when a ceramic sheet is produced, and which also has an excellent thermal contraction balance when ceramic slurry is dried, the performance of the film being sufficient to satisfy the requirements as a mould release film which is used in the production of ceramic sheets. The film has a specific rate of elongation under a specific load, and a specific rate of thermal elongation in the absence of a load.

Description

明 細 書 離型フィルム 技術分野  Meiji Seiki Release Film Technical Field
本発明は離型フィルムに関する。 さらに詳しくは、 セラミックシート製造の際 に用いられる離型フィルムとして求められる性能を十分に満足することのできる 離型フィルムに関する。 背景技術  The present invention relates to a release film. More specifically, the present invention relates to a release film that can sufficiently satisfy the performance required as a release film used in the production of ceramic sheets. Background art
ポリエステルフィルムを基材とする離型フィルムは、 積層セラミックコンデン サー、 セラミック基板等の各種セラミック電子部品製造時に使用するセラミック シート (グリーンシート) 等を製造する際のキャリアフィルムとして用いられて いる。  A release film based on a polyester film is used as a carrier film for manufacturing ceramic sheets (green sheets) used for manufacturing various ceramic electronic parts such as multilayer ceramic capacitors and ceramic substrates.
積層セラミックコンデンサーを製造する際に使用するセラミックシートは、 例 えば、 キャリアフィルムの上に、 セラミック粉体とバインダー剤等を溶媒に分散 させたセラミックスラリーをリバースロール法等により塗布し、 溶媒を加熱乾燥 除去してセラミック層を形成した後、 当該セラミック層上に内部電極となる金属 膜を蒸着あるいは印刷等により形成し、 金属膜/セラミック層ノキャリアフィル ム複合体を作成し、 力 る複合体からキャリアフィルムを剥離除去することによ り製造される。  For example, a ceramic sheet used for manufacturing a multilayer ceramic capacitor is obtained by applying a ceramic slurry in which a ceramic powder and a binder agent are dispersed in a solvent on a carrier film by a reverse roll method or the like, and heating the solvent. After forming a ceramic layer by drying and removing, a metal film serving as an internal electrode is formed on the ceramic layer by vapor deposition or printing to create a metal film / ceramic layer no-carrier film composite, and a powerful composite It is manufactured by peeling off the carrier film.
積層セラミツクコンデンサ一は、 上記のようにして製造した金属膜 セラミツ ク層複合体を、 所望の寸法で積層し、 熱プレス後、 矩形状に切断することにより チップ状の積層体を得て、 このチップ状の積層体を焼成し、 焼成体の所定の表面 に外部電極を形成することにより得ることができる。  The multilayer ceramic capacitor is obtained by laminating the metal film ceramic layer composite produced as described above in a desired size, and after hot pressing, cutting into a rectangular shape to obtain a chip-shaped multilayer body. It can be obtained by firing a chip-like laminate and forming external electrodes on a predetermined surface of the fired body.
ところで、 近年、 積層セラミックコンデンサ一等のコンデンサ一の分野におい ては、 小型化 ·大容量化に伴う回路部品の高密度化が要求されている。 したがつ て、 使用するセラミックシートの厚みも益々薄膜化し、 内部電極をさらに多層化 する必要が生じている。 By the way, in recent years, in the field of capacitors such as monolithic ceramic capacitors, there has been a demand for higher density circuit components due to downsizing and larger capacity. Therefore, the thickness of the ceramic sheet to be used is made thinner and the internal electrodes are further multilayered. There is a need to do that.
しかしながら、 セラミックシートの厚みを薄くしたり、 積層枚数を増やしたり すると、 セラミックシートのわずかな厚み斑ですら、 内部電極の位置ずれを引き 起こす原因となってしまう。  However, if the thickness of the ceramic sheet is reduced or the number of stacked layers is increased, even a slight unevenness in the thickness of the ceramic sheet will cause the displacement of the internal electrodes.
そこで、 セラミックシート製造時のキャリアフィルムの熱変形を小さくし、 製 造されるセラミックシートの厚み斑を低減させることが提案されている (特許文 献 1参照)。 特許文献 1には、 1 2 0でにおける 1 . 4 7 M P a応力下での寸法 変化率の絶対値が、 長手方向および幅方向共に 0 . 3 %以下である離型フィルム であれば、 加熱処理時の熱変形が非常に小さくなるため、 得られるセラミツクシ 一卜の厚み斑を抑制できることが記載されている。  Thus, it has been proposed to reduce the thermal deformation of the carrier film during the production of the ceramic sheet and reduce the thickness variation of the produced ceramic sheet (see Patent Document 1). In Patent Document 1, if the release film has an absolute value of a dimensional change rate under a stress of 1.47 MPa at 120, which is 0.3% or less in both the longitudinal direction and the width direction, heating is performed. It is described that since the thermal deformation at the time of treatment becomes very small, it is possible to suppress the uneven thickness of the ceramic paste obtained.
しかしながら、 セラミックシートは、 通常 1 0 0 付近の温度下で、 幅方向に は把持されることなく乾燥される。 このため、 セラミックシート製造の際に用い られるキャリアフィルムは、 セラミック乾燥時には、 幅方向への張力がほとんど かからない状態で収縮する。 したがって、 特許文献 1に記載されたように、 張力 がかかった状態における長手方向と幅方向のそれぞれの熱収縮率が低い離型フィ ルムを用いたのみでは、 セラミックの乾燥に至るまでの全ての工程におけるキヤ リアフィルムの収縮斑までは解消することはできず、 いまだなお、 製造されるセ ラミックシートには厚み斑が発生し、 積層時に内部電極の位置ずれが起こる問題 が残されていた。  However, the ceramic sheet is dried without being gripped in the width direction, usually at a temperature around 100.degree. For this reason, the carrier film used in the production of the ceramic sheet shrinks with little tension in the width direction when the ceramic is dried. Therefore, as described in Patent Document 1, using only a release film having a low thermal shrinkage rate in the longitudinal direction and the width direction in a state where tension is applied, all the processes up to drying of the ceramic are performed. Even the shrinkage unevenness of the carrier film in the process could not be resolved, and there still remained a problem that the manufactured ceramic sheet had thickness unevenness and the internal electrodes were displaced during lamination.
また、 セラミックシートの厚みが薄い場合には、 キャリアフィルムの表面粗度 が高いと、 ピンホールの発生による不良、 あるいは、 セラミヅクシート剥離時に セラミックシートの破断等を生じさせ、 生産性の低下を引き起こす。 すなわち、 セラミックシートが薄い場合には、 従来は問題とならなかった程度のキャリアフ イルム表面のキズゃ異物等の微細な表面欠点ですら、 得られるセラミックシート のピンホール欠点等の原因として顕在化してしまう。  In addition, when the ceramic sheet is thin, if the surface roughness of the carrier film is high, defects due to the occurrence of pinholes, or breakage of the ceramic sheet when the ceramic sheet is peeled off, can reduce productivity. cause. In other words, when the ceramic sheet is thin, even fine surface defects such as scratches and foreign matter on the surface of the carrier film, which were not a problem in the past, are manifested as causes of pinhole defects in the obtained ceramic sheet. End up.
したがって、 昨今のコンデンサー分野の小型化 '大容量化に伴って、 セラミツ クシ一トを製造するためのキヤリアフィルムには、 さらに高い精度の寸法安定性 、 および、 さらに高いレベルの表面凹凸の平滑化が要求されている。 一方で、 キャリアフィルムの表面を平滑にすると、 剥離帯電が高くなる傾向に あり、'例えば、 生産性向上のためにセラミックスラリ一の塗工速度を上げると、 キャリアフィルムを巻き出す工程においてスパークが発生しやすくなり、 それに より火災が発生しやすくなるという問題が生じる。 また、 キャリアフィルムから セラミックシートを剥離する際にセラミックシートが帯電してしまい、 続く工程 において当該セラミックシートを積層する際には、 かかる帯電によって内部電極 の位置ずれが生じてしまう。 そのため、 より平滑な表面を有するキャリアフィル ムとしては、 剥離帯電を抑制することが強く要求されている。 Therefore, with the recent miniaturization of the capacitor field and the increase in capacity, the carrier film for manufacturing ceramic sheets has an even higher level of dimensional stability and a higher level of surface roughness. Is required. On the other hand, if the surface of the carrier film is smoothed, the peeling charge tends to increase. For example, if the coating speed of the ceramic slurry is increased to improve productivity, sparks are generated in the process of unwinding the carrier film. The problem is that it is more likely to occur, which in turn makes a fire more likely. In addition, when the ceramic sheet is peeled off from the carrier film, the ceramic sheet is charged, and when the ceramic sheet is laminated in the subsequent process, the internal electrode is displaced due to the charging. Therefore, as a carrier film having a smoother surface, it is strongly required to suppress peeling electrification.
特に厚みの薄い (1 m以下) セラミックシートの製造においては、 上記のよ うな高精度の寸法安定性、 および高レベルの平滑化 (所謂表面粗さ) のみならず 、 フィルムの平坦性 (フラットネスとも言う) をより高度に制御することが重要 である。 すなわち、 キャリアフィルムの平坦性が悪い場合は、 その上に塗布した セラミックスラリ一の塗布厚み斑が不良となり、 それによつてセラミックシート の厚み斑が不良となり、 積層セラミックコンデンサ一においては容量が不均一な ものとなってしまう。  Especially in the production of thin ceramic sheets (less than 1 m), not only the high-precision dimensional stability and high-level smoothing (so-called surface roughness) as described above, but also the flatness of the film (flatness) It is important to control the level of the above. In other words, when the flatness of the carrier film is poor, the uneven coating thickness of the ceramic slurry applied on the carrier film becomes poor, resulting in poor thickness unevenness of the ceramic sheet, and the capacitance is not uniform in the multilayer ceramic capacitor. It will become something.
ところで、 上記のようなキャリアフィルムは、 一般的にはロール状に巻き取ら れた形態で用いられるが、 表面に離型層を有するため、 滑りやすく、 ロールの巻 き取り中あるいは運搬中等に巻きずれ等の問題が生じやすい。 そのため、 従来、 上記のようなキャリアフィルムをロール状に巻き取る際には、 巻きずれが生じな いよう、 ロール硬度が高くなるような条件を採用するのが一般的である。 しかし ながら、 ロール硬度が高すぎると、 キャリアフィルムがロール形状に追従しやす くなり、 微細なロール形状の不具合によりキャリアフィルムが伸びてしまい、 平 坦性に劣るものとなってしまう。  By the way, the carrier film as described above is generally used in the form of being wound in a roll shape, but since it has a release layer on the surface, it is slippery and is wound during winding or transporting of the roll. Problems such as misalignment are likely to occur. Therefore, conventionally, when winding the carrier film as described above in a roll shape, it is common to employ a condition that the roll hardness is high so that no winding deviation occurs. However, if the roll hardness is too high, the carrier film easily follows the roll shape, and the carrier film is stretched due to a fine roll shape defect, resulting in poor flatness.
また、 特に厚みの薄い (1 z m以下) セラミックシートの製造においては、 フ イルムの厚み斑をより高度に制御することが重要である。 すなわち、 キャリアフ ィルムの厚み斑が悪い場合は、 その上に塗布したセラミックスラリ一の塗布厚み 斑が不良となり、 それによつてセラミックシートの厚み斑が不良となり、 積層セ ラミックコンデンサーにおいては容量が不均一なものとなってしまう。 (特許文献 1) 特開 2000— 343663号公報 発明の開示 In addition, it is important to control film thickness unevenness to a higher degree, especially in the manufacture of thin ceramic sheets (less than 1 zm). That is, if the carrier film has poor thickness unevenness, the coating thickness unevenness of the ceramic slurry applied thereon becomes poor, resulting in poor thickness unevenness of the ceramic sheet, and the capacity of the multilayer ceramic capacitor is not good. It will be uniform. (Patent Document 1) Japanese Unexamined Patent Publication No. 2000-343663 Disclosure of Invention
本発明の目的は、 このような従来技術に鑑みてなされたものであり、 セラミツ クシートを製造する際の加熱張力下における適正な寸法変化率を有し、 セラミツ クスラリ一を乾燥する際の熱収縮バランスにも優れ、 セラミツクシ一卜製造の際 に用いられる離型フィルムとして求められる性能を十分に満足することのできる 離型フィルムを提供することにある。  The object of the present invention has been made in view of such a conventional technique, and has an appropriate dimensional change rate under heating tension when producing a ceramic sheet, and heat shrinkage when drying the ceramic slurry. An object of the present invention is to provide a release film that is excellent in balance and can sufficiently satisfy the performance required as a release film used in the manufacture of ceramics.
本発明者は、 上記課題を解決すべく鋭意検討を行った。 その結果、 特定の荷重 下において特定の伸長率を有し、 無荷重下において特定の熱伸長率を有する離型 フィルムが、 セラミックシートを製造する際に用いられる離型フィルムに求めら れる性能を満足することができることを見出し、 本発明を完成するに至った。 すなわち本発明は、 ポリエステルフィルムの少なくとも一方の面に離型層を有 する離型フィルムであって、 '  The present inventor has intensively studied to solve the above problems. As a result, a release film having a specific elongation under a specific load and having a specific thermal elongation under no load has the performance required for a release film used in manufacturing a ceramic sheet. The inventors have found that they can be satisfied and have completed the present invention. That is, the present invention is a release film having a release layer on at least one surface of a polyester film,
離型フィルムの長手方向に 0. 2 MP a以上 4. 0 MP a以下の張力を加えた 場合の 100 における長手方向の伸長率 (SMD) カ^ 下記式 (1) を満たし 離型フィルムの長手方向に垂直な方向に 0. 0 IMP aの張力を加えた場合の 100 における長手方向に垂直な方向の伸長率 (STD) が、 下記式 (2) を 満たし、 Elongation rate in the longitudinal direction at 100 (S MD ) when a tension of 0.2 MPa or more and 4.0 MPa or less is applied in the longitudinal direction of the release film. The elongation rate (S TD ) in the direction perpendicular to the longitudinal direction at 100 when a tension of 0.0 IMP a is applied in the direction perpendicular to the longitudinal direction satisfies the following formula (2):
離型フィルムの無荷重下での 100でにおける長手方向の熱伸長率 (HSMD ) が、 下記式 (3) を満たし、 The longitudinal thermal expansion rate (HS MD ) at 100 under no load of the release film satisfies the following formula (3),
離型フィルムの無荷重下での 100 における長手方向に垂直な方向の熱伸長 率 (HSTD) が、 下記式 (4) を満たし、 The thermal expansion rate (HS TD ) in the direction perpendicular to the longitudinal direction at 100 under no load of the release film satisfies the following formula (4),
長手方向の熱伸長率 (HSMD) と前記長手方向に垂直な方向の熱伸長率 (H STD) と力 下記式 (5) を満たす離型フィルムである。 A release film satisfying the following formula (5): the thermal elongation rate in the longitudinal direction (HS MD ), the thermal elongation rate in the direction perpendicular to the longitudinal direction (HS TD ), and the force.
0. 0961X - 0. 45≤SMD≤0. 0961X—0. 25 (1) (式 (1) 中、 Xは、 フィルム単位面積にかかる張力 (MP a) であり、 Xは 0 2MPa以上 4. OMP a以下の値を示す。) 0. 0961X-0. 45≤S MD ≤0. 0961X—0. 25 (1) (In formula (1), X is the tension (MP a) applied to the film unit area, and X is 0. 2MPa or more 4. Shows a value of OMPa or less. )
一 0. 6≤STD≤- 0. 2 (2) 0. 6≤S TD ≤- 0. 2 (2)
一 0. 4≤HSMD≤-0. 1 (3) 0. 4≤HS MD ≤-0. 1 (3)
一 0. 6≤HSTD≤— 0. 2 (4) 0. 6≤HS TD ≤— 0. 2 (4)
I"1 ° MD ° TD (5) I " 1 ° MD ° TD (5)
さらに本発明の離型フィルムは、 離型層表面の接触式三次元表面粗さ計で測定 した最大高さ (Rmax) が、 100 nm以上 600 nm以下の範囲であること が好ましい。 また離型層表面および離型層を有さない側の表面の、 接触式三次元 表面粗さ計で測定した最大高さ (Rma X) 、 それぞれ 100 nm以上 600 nm以下であることが好ましい。 また離型層が、 離型層の重量に対して 0. 5質 量%以上 10質量%以下の界面活性剤を含有することが好ましい。 また縦方向の 厚み斑が 3. 0%以下、 横方向の厚み斑が 3. 0%以下であることが好ましい。 また離型層は、 一方向に延伸したポリエステルフィルムに離型層形成組成物を塗 布することにより形成されること力好ましい。  Furthermore, the release film of the present invention preferably has a maximum height (Rmax) measured with a contact-type three-dimensional surface roughness meter on the surface of the release layer in the range of 100 nm to 600 nm. In addition, the maximum height (Rma X) measured with a contact-type three-dimensional surface roughness meter on the surface of the release layer and the surface not having the release layer is preferably 100 nm or more and 600 nm or less, respectively. The release layer preferably contains a surfactant in an amount of 0.5% by mass or more and 10% by mass or less based on the weight of the release layer. Further, it is preferable that the vertical thickness unevenness is 3.0% or less, and the horizontal thickness unevenness is 3.0% or less. The release layer is preferably formed by applying a release layer forming composition to a polyester film stretched in one direction.
本発明の離型フィルムは、 セラミックシート製造用であることが好ましい。 特 にセラミックコンデンサー製造用であることが好ましい。  The release film of the present invention is preferably used for producing a ceramic sheet. In particular, it is preferably used for producing a ceramic capacitor.
本発明は、 上記離型フィルムをロール状に巻き取ったフィルムロールであって 、 ロール表層のビッカース硬度 (Hv) が 0以上 450以下であるフィルムロー ルを包含する。 本発明は、 上記式 (1) 〜 (5) の特性を具備するフィルムをセ ラミックシート用の離型フィルムとして用いる方法を包含する。 発明を実施するための最良の形態  The present invention includes a film roll obtained by winding the release film into a roll, wherein the roll surface layer has a Vickers hardness (Hv) of 0 or more and 450 or less. The present invention includes a method of using a film having the characteristics of the above formulas (1) to (5) as a release film for a ceramic sheet. BEST MODE FOR CARRYING OUT THE INVENTION
本発明においては、 フィルム製膜における機械軸方向を長手方向または縦方向 と呼称する場合がある。 また、 長手方向に垂直な方向を幅方向または横方向と呼 称する場合がある。  In the present invention, the machine axis direction in film formation may be referred to as a longitudinal direction or a longitudinal direction. In addition, a direction perpendicular to the longitudinal direction may be referred to as a width direction or a lateral direction.
ぐ離型フィルム〉 Release film>
本発明の離型フィルムは、 ポリエステルフィルムの少なくとも一方の面に離型 層を有する離型フィルムであって、 特定の荷重下において特定の伸長率を有し、 無荷重下において特定の熱伸長率を有するものである。 以下に、 本発明の離型フ イルムの物性および構成について説明する。 The release film of the present invention is a release film having a release layer on at least one surface of a polyester film, having a specific elongation under a specific load, It has a specific thermal elongation under no load. The physical properties and structure of the release film of the present invention will be described below.
[長手方向の伸長率 (SMD)] [Elongation ratio (S MD )]
本発明の離型フィルムは、 離型フィルムの長手方向に 0. 2MPa以上 4. 0 MP a以下の張力を加えた場合の 100でにおける長手方向の伸長率 (SMD) i 下記式 (1) を満たす。 セラミック層 離型フィルム複合体は、 通常、 10 0で付近の温度下で張力がかかった状態で搬送される。 したがって、 温度条件と して 100でを選択することにより、 より実際の工程に即した状況判断が可能と なる。 The release film of the present invention has a longitudinal elongation ratio at 100 (S MD ) i when the tension of 0.2 MPa or more and 4.0 MPa or less is applied in the longitudinal direction of the release film (S MD ) i Meet. Ceramic layer release film composites are usually transported under tension at temperatures around 100 ° C. Therefore, by selecting 100 as the temperature condition, it is possible to judge the situation more in line with the actual process.
0. 0961 X- 0. 45≤SMD≤0. 0961 X- 0. 25 (1)0. 0961 X- 0. 45≤S MD ≤0. 0961 X- 0.25 (1)
(式 (1) 中、 Xは、 フィルム単位面積にかかる張力 (MP a) であり、 Xは 0 . 2MPa以上 4. OMP a以下の値を示す。) (In formula (1), X is the tension (MP a) applied to the film unit area, and X is a value of 0.2 MPa or more and 4. OMP a or less.)
長手方向の伸長率 (SMD) が上記式 (1) の左辺の値より小さい場合は、 セ ラミック層/離型フィルム複合体の搬送張力に対してフィルムの長手方向の収縮 応力が大きくなり、 その結果、 長手方向に不均一に収縮し、 セラミックシートの 厚み斑を引き起こしてしまう。 他方、 長手方向の伸長率 (SMD) が上記式 (1 ) の右辺の値より大きい場合は、 セラミック層/離型フィルム複合体の搬送張力 に対してフィルムの長手方向の収縮応力が小さいため、 フィルムの平坦性が悪く なり、 セラミックシートの厚み斑を引き起こしてしまう。 長手方向の伸長率 (S MD) が上記式 (1) を満足する範囲にあれば、 セラミック層 離型フィルム複 合体の搬送張力に対して、 長手方向の収縮応力が適正なバランスを有し、 得られ るセラミックシートの長手方向の厚み斑を抑制することができる。 このような観 点から、 本発明の離型フィルムは、 離型フィルムの長手方向に 0. 3 MP a以上 2. 5MP a以下の張力を加えた場合の 100でにおける長手方向の伸長率 (S MD) 力 上記式 (1) を満たす態様がさらに好ましい。 If the elongation in the longitudinal direction (S MD ) is smaller than the value on the left side of the above formula (1), the contraction stress in the longitudinal direction of the film increases with respect to the transport tension of the ceramic layer / release film composite, As a result, it shrinks unevenly in the longitudinal direction, causing uneven thickness of the ceramic sheet. On the other hand, if the elongation ratio (S MD ) in the longitudinal direction is larger than the value on the right side of the above formula (1), the contraction stress in the longitudinal direction of the film is small relative to the transport tension of the ceramic layer / release film composite. The flatness of the film deteriorates, causing uneven thickness of the ceramic sheet. If the elongation in the longitudinal direction (S MD ) is within the range that satisfies the above formula (1), the contraction stress in the longitudinal direction has an appropriate balance with respect to the conveying tension of the ceramic layer release film composite, The thickness variation in the longitudinal direction of the obtained ceramic sheet can be suppressed. From this point of view, the release film of the present invention has a longitudinal elongation ratio at 100 (S) when a tension of 0.3 MPa or more and 2.5 MPa or less is applied in the longitudinal direction of the release film. MD ) force An embodiment that satisfies the above formula (1) is more preferable.
なお、 長手方向の伸長率 (SMD) および後記する幅方向の伸長率 (STD) は 、 下記式によって求める。 式中、 M。は、 昇温開始前のフィルムの長手方向また は幅方向の長さ、 Mは、 昇温開始後 10 O :に到達した時点のフィルムの同方向 の長さを示す。 すなわち、 伸長率 (SMD) および伸長率 (STD) は、 マイナス の場合にはフィルムが収縮していることを示し、 プラスの場合にはフィルムが伸 長していることを示す。 In addition, the elongation rate in the longitudinal direction (S MD ) and the elongation rate in the width direction (S TD ), which will be described later, are obtained by the following equations. Where M. Is the length in the longitudinal or width direction of the film before the start of heating, and M is the same direction of the film when it reaches 10 O: Indicates the length. That is, when the elongation rate (S MD ) and the elongation rate (S TD ) are negative, the film is contracted, and when it is positive, the film is stretched.
伸長率 (SMD、 STD) = (ΔΜΖΜ。) X I 00 (%) Elongation rate (S MD , S TD ) = (ΔΜΖΜ.) XI 00 (%)
ΔΜ=Μ-Μ0 ΔΜ = Μ-Μ 0
[長手方向に垂直な方向 (幅方向) の伸長率 (STD)] [Elongation rate in the direction perpendicular to the longitudinal direction (width direction) (S TD )]
本発明の離型フィルムは、 離型フィルムの幅方向に 0. O lMPaの張力を加 えた場合の 100でにおける幅方向の伸長率 (STD) が、 下記式 (2) を満た す。 ここで、 温度条件として 10 を選択することにより、 上記と同様に、 よ り実際の工程に即した状況判断が可能となる。 なお、 伸長率 (STD) は、 上記 の式によつて、 熱処理前後のフィルムの幅方向の長さから求める。 In the release film of the present invention, the elongation (S TD ) in the width direction at 100 when a tension of 0. 1 MPa is applied in the width direction of the release film satisfies the following formula (2). Here, by selecting 10 as the temperature condition, it becomes possible to judge the situation more in line with the actual process as described above. The elongation ratio (S TD ) is determined from the length in the width direction of the film before and after the heat treatment according to the above formula.
—0. 6≤SXD≤- 0. 2 (2) —0. 6≤S XD ≤- 0. 2 (2)
幅方向の伸長率 (STD) がー 0. 6%よりも小さい場合は、 セラミック層 Z 離型フィルム複合体の搬送工程において、 フィルムの幅方向の収縮が大きく、 セ ラミックシートの厚み斑を引き起こしてしまう。 他方、 幅方向の伸長率 (STD ) が—0. 2%よりも大きい場合において、 伸長率 (STD) 力 SOよりも大きい (フィルムが伸長する) 場合は、 セラミック層 Z離型フィルム複合体の搬送中に フィルムの幅方向の伸長によりフィルムの平坦性が崩れ、 セラミックシートの厚 み斑を引き起こしてしまう。 また、 セラミック層の収縮と離型フィルムの伸長と のバランスが悪く、 セラミック層が部分的に剥離して浮いてしまう等の問題が生 じる。 伸長率 (STD) がー 0. 2 %を超え 0%以下の場合は、 セラミック層の 収縮と離型フィルムの収縮とのバランスが悪く、 セラミック層が離型フィルムか ら部分的に剥離して浮いてしまう等の問題が生じる。 When the elongation in the width direction (S TD ) is less than -0.6%, the shrinkage in the width direction of the film is large in the transport process of the ceramic layer Z release film composite, and the thickness variation of the ceramic sheet is reduced. It will cause. On the other hand, when the elongation in the width direction (S TD ) is greater than –0.2%, if the elongation (S TD ) is greater than the force SO (the film stretches), the ceramic layer Z release film composite During the transportation of the body, the flatness of the film is lost due to the stretching in the width direction of the film, causing thick spots on the ceramic sheet. In addition, the balance between the shrinkage of the ceramic layer and the elongation of the release film is poor, causing problems such as partial peeling of the ceramic layer and floating. When the elongation ratio (S TD ) is more than 0.2% and less than 0%, the balance between the shrinkage of the ceramic layer and the shrinkage of the release film is poor, and the ceramic layer partially peels from the release film. Problems such as floating.
[長手方向の熱伸長率 (HSMD) および長手方向に垂直な方向 (幅方向) の熱 伸長率 (HSTD)] [Thermal expansion rate in the longitudinal direction (HS MD ) and the thermal elongation rate in the direction perpendicular to the longitudinal direction (width direction) (HS TD )]
本発明の離型フィルムは、 無荷重下での 100でにおける長手方向の熱伸長率 (HSMD) 力 下記式 (3) を満たし、 同時に、 無荷重下での 100でにおけ る幅方向の熱伸長率 (HSTD) 力 下記式 (4) を満たし、 かつ、 長手方向の 熱伸長率 (HSMD) と幅方向の熱伸長率 (HSTD) とが、 下記式 (5) を満た す。 Release film of the present invention, the longitudinal direction of 100 under no load thermal elongation (HS MD) force the following formula satisfies the (3), at the same time, in the width direction that put on at 100 under no load Thermal elongation rate (HS TD ) force The following formula (4) is satisfied, and the longitudinal direction The thermal expansion rate (HS MD ) and the thermal expansion rate in the width direction (HS TD ) satisfy the following formula (5).
-0. 4≤HSMD≤-0. 1 (3) -0. 4≤HS MD ≤-0. 1 (3)
—0. 6≤HSXD≤-0. 2 (4) —0. 6≤HS XD ≤-0. 2 (4)
ri^)MO^ S TD (o) ri ^) MO ^ S TD (o)
フィルムの長手方向の熱伸長率 (HSMD) と幅方向の熱伸長率 (HSTD) が それぞれ上記の範囲にあり、 かつ、 長手方向の熱伸長率 (HSMD) を幅方向の 熱伸長率 (HSTD) よりも大きくすることにより、 セラミックスラリー塗布後 にセラミック層に含まれる溶媒を加熱乾燥除去する際において、 離型フィルムの 長手方向の収縮と幅方向の収縮のバランスがとれ、 その結果、 得られる乾燥セラ ミック層の厚み斑を低減することができる。 Longitudinal thermal expansion of the film (HS MD) that there is a thermal expansion rate in the width direction (HS TD) is within the above range, respectively, and longitudinal thermal expansion rate (HS MD) thermal elongation of the width direction to be greater than (HS TD), at the time of heat drying and removing the solvent contained in the ceramic layer after the ceramic slurry coating, taken in the longitudinal direction of the balance of contraction of the contraction in the width direction of the release film, as a result Thus, the thickness unevenness of the obtained dry ceramic layer can be reduced.
なお、 長手方向の熱伸長率 (HSMD)、 および幅方向の熱伸長率 (HSTD) は 、 下記式によって求める。 式中、 L。は、 熱処理前のフィルムの長手方向または 幅方向の長さ、 Lは、 熱処理後のフィルムの同方向の長さを示す。 すなわち、 熱 伸長率 (HSMD) および熱伸長率 (HSTD) は、 マイナスの場合にはフィルム が収縮していることを示し、 プラスの場合にはフィルムが伸長していることを示 す。 In addition, the thermal expansion rate in the longitudinal direction (HS MD ) and the thermal expansion rate in the width direction (HS TD ) are obtained by the following formulas. Where L. Is the length in the longitudinal or width direction of the film before heat treatment, and L is the length in the same direction of the film after heat treatment. That is, when the thermal elongation rate (HS MD ) and thermal elongation rate (HS TD ) are negative, it indicates that the film is contracted, and when it is positive, it indicates that the film is stretched.
熱伸長率 (HSMD、 HSTD) = (ALノ L。) X I 00 (%) Thermal elongation (HS MD , HS TD ) = (AL NO L.) XI 00 (%)
△ L = L一し。  △ L = L
[最大高さ (Rmax)]  [Maximum height (Rmax)]
本発明の離型フィルムは、 離型層表面の接触式三次元表面粗さ計で測定した最 大高さ (Rmax) が、 100 nm以上 600 nm以下であることが好ましい。 最大高さ (Rmax) は、 さらに好ましくは 200 nm以上 550 nm以下、 特 に好ましくは 300 nm以上 500 nm以下である。  The release film of the present invention preferably has a maximum height (Rmax) of 100 nm or more and 600 nm or less measured with a contact-type three-dimensional surface roughness meter on the surface of the release layer. The maximum height (Rmax) is more preferably not less than 200 nm and not more than 550 nm, particularly preferably not less than 300 nm and not more than 500 nm.
最大高さ (Rma X) は、 J I S規格 (B 0601— 2001 :表面粗さ—定 義および表示、 B0651— 2001 :触針表面粗さ測定器) に準拠し、 三次元 表面粗さ計を使用して求められる粗さ曲線から、 基準長さを抜き取った部分の最 大高さをいう。 最大高さ (Rmax) は、 輪郭曲線の最大高さ (maximum height of profile) であり、 基準長さにおける輪郭曲線の山高さの最大値と谷深さの最 大値との和である。 B 065 1— 200 1に記載の触針式表面粗さ測定機Maximum height (Rma X) conforms to JIS standard (B 0601—2001: Surface roughness—Definition and display, B0651—2001: Contact surface roughness measuring instrument) and uses a 3D surface roughness meter. This is the maximum height of the part where the reference length is extracted from the roughness curve. The maximum height (Rmax) is the maximum height of the contour curve (maximum height of profile), which is the sum of the maximum value of the peak height of the contour curve and the maximum value of the valley depth at the reference length. B 065 1— 200 1
(stylus instrument) は、 表面上を触針が運動して表面の輪郭形状の偏差を測 定し、 パラメ一夕を計算し、 輪郭曲線を記録することができる測定機である。 The (stylus instrument) is a measuring instrument that can measure the deviation of the contour shape of the surface as the stylus moves on the surface, calculate the parameters, and record the contour curve.
J I S B0601— 2001は、 I SO 4287 : 1997に対応する。 また J I S B0651— 2001は、 I SO 3274 : 1996に対応する。 最大高さ (Rmax) は最大突起高さを示し、 セラミックシートのピンホール 欠点の指標となる。 具体的には、 離型層表面の最大高さ (Rmax) が 60 On mを超える場合は、 当該最大高さ (Rmax) が 600 nmを超える部分に形成 されたセラミックシートの厚みが薄くなり、 結果としてピンホール欠点が生じや すくなる。 一方で、 離型層表面の Rma Xが 100 nm未満の場合には、 滑り性 が得られず巻き取り性が悪くなり生産性が悪くなる傾向にある。  J I S B0601—2001 corresponds to I SO 4287: 1997. J IS B0651-2001 corresponds to ISO 3274: 1996. The maximum height (Rmax) indicates the maximum protrusion height and is an indicator of pinhole defects in ceramic sheets. Specifically, when the maximum height (Rmax) of the release layer surface exceeds 60 Onm, the thickness of the ceramic sheet formed in the part where the maximum height (Rmax) exceeds 600 nm is reduced. As a result, pinhole defects are likely to occur. On the other hand, when Rma X on the surface of the release layer is less than 100 nm, the slipping property cannot be obtained and the winding property is deteriorated and the productivity tends to be deteriorated.
すなわち、 本発明の離型フィルムの離型層表面の最大高さ (Rmax) が上記 数値範囲にあると、 表面平滑性および滑り性に優れることから、 得られるセラミ ックシー卜の凹凸形状を抑制することができ、 厚み斑の抑制されたセラミックシ ートを得ることができる。 その結果、 得られるセラミックシートを用いてセラミ ックコンデンサーを製造した場合には、 内部電極の位置ずれがより抑制されたコ ンデンサーを得ることができる。  That is, when the maximum height (Rmax) of the surface of the release layer of the release film of the present invention is in the above numerical range, the surface smoothness and slipperiness are excellent, so that the uneven shape of the resulting ceramic sea ridge is suppressed. Thus, a ceramic sheet with suppressed thickness unevenness can be obtained. As a result, when a ceramic capacitor is manufactured using the obtained ceramic sheet, a capacitor in which the displacement of the internal electrodes is further suppressed can be obtained.
また、 本発明の離型フィルムは、 上記離型層表面と同時に、 離型層を有さない 側の表面の、 接触式三次元表面粗さ計で測定した最大高さ (Rmax) が 100 nm以上 600 nm以下であることが好ましい。 最大高さ (Rmax) は、 さら に好ましくは 200 nm以上 550 nm以下、 特に好ましくは 300 nm以上 5 00nm以下である。  In addition, the release film of the present invention has a maximum height (Rmax) of 100 nm measured with a contact-type three-dimensional surface roughness meter on the surface on the side having no release layer simultaneously with the release layer surface. The thickness is preferably 600 nm or more. The maximum height (Rmax) is more preferably from 200 nm to 550 nm, particularly preferably from 300 nm to 500 nm.
かかる最大高さ (Rmax) は、 離型層を有さない側の表面における最大突起 高さを示し、 セラミックシートのピンホール欠点の指標となる。 具体的には、 離 型層を有さない側の表面の最大高さ (Rmax) が 600 nmを超える場合は、 セラミックスラリーを塗布、 乾燥後に巻き取る際に、 当該最大高さ (Rmax) が 600 nmを超える部分がセラミックシートに押し付けられ、 セラミツクシ一 ト表面に凹部が形成され、 当該凹部が薄くなり、 結果としてピンホール欠点が生 じやすくなる。 また、 これらによって、 ピンホール欠点には至らないとしても、 セラミックシートにおいて極端に薄い部分が形成されることとなり、 セラミック コンデンサーの欠点となってしまう。 The maximum height (Rmax) indicates the maximum protrusion height on the surface having no release layer, and is an index of the pinhole defect of the ceramic sheet. Specifically, if the maximum height (Rmax) of the surface that does not have a release layer exceeds 600 nm, the maximum height (Rmax) will be reduced when the ceramic slurry is applied and wound up after drying. The part exceeding 600 nm is pressed against the ceramic sheet. A concave portion is formed on the surface of the groove, and the concave portion becomes thin. As a result, pinhole defects are likely to occur. Even if these do not lead to a pinhole defect, an extremely thin portion is formed in the ceramic sheet, which becomes a defect of the ceramic capacitor.
すなわち、 本発明の離型フィルムの、 離型層表面、 および離型層を有さない側 の表面の最大高さ (Rm a x ) を同時に上記数値範囲とすることによって、 表面 平滑性により優れることから、 得られるセラミックシートの表面凹凸形状をより 抑制することができ、 厚み斑のより抑制されたセラミックシートを得ることがで きる。 その結果、 得られるセラミックシートを用いてセラミックコンデンサーを 製造した場合には、 内部電極の位置ずれを更に抑制することができる。 また、 セ ラミックシートにおけるピンホール発生を抑制することができる。 さらに、 セラ ミックシー卜の剥離性が良好なものとなる。  That is, by making the maximum height (Rmax) of the release layer surface and the surface on the side having no release layer of the release film of the present invention simultaneously within the above numerical range, the surface smoothness is more excellent. Therefore, the uneven surface shape of the obtained ceramic sheet can be further suppressed, and a ceramic sheet in which thickness unevenness is further suppressed can be obtained. As a result, when a ceramic capacitor is manufactured using the obtained ceramic sheet, the displacement of the internal electrodes can be further suppressed. Moreover, pinhole generation in the ceramic sheet can be suppressed. Furthermore, the peelability of the ceramic sea cocoon is good.
なお、 最大高さ (Rm a x ) は、 溶融ポリマーを濾過する条件や、 ポリエステ ルフィルムに含有される粒子の態様等を調整することにより達成することができ る。  The maximum height (Rmax) can be achieved by adjusting the conditions for filtering the molten polymer, the mode of particles contained in the polyester film, and the like.
[縦方向の厚み斑および横方向の厚み斑]  [Vertical thickness variation and lateral thickness variation]
本発明の離型フィルムは、 縦方向の厚み斑が 3 . 0 %以下であることが好まし レ^ また、 本発明の離型フィルムは、 横方向の厚み斑が 3 . 0 %以下であること が好ましい。 本発明における離型フィルムは、 縦方向の厚み斑と横方向の厚み斑 とが同時に上記数値範囲にあること力好ましい。 特に厚み斑に優れた離型フィル ムを用いることによって、 得られるセラミックシートの厚み斑をより高度に抑制 することができる。 このような離型フィルムを用いてセラミックシートを製造し、 かかるセラミックシートを用いてセラミックコンデンサ一を製造した場合には、 容量がより均一なセラミックコンデンサーを得ることができる。 このような観点 から、 縦方向の厚み斑は、 好ましくは 2 . 9 %以下、 さらに好ましくは 2 . 5 % 以下、 特に好ましくは 2 . 0 %以下である。 また、 横方向の厚み斑は、 好ましく は 2 . 8 %以下、 さらに好ましくは 2 . 6 %以下、 特に好ましくは 2 . 5 %以下 である。 縦方向の厚み斑は、 縦延伸倍率により調整することができる。 また、 縦延伸ェ 程における補助加熱温度、 延伸温度を調整することも重要である。 横方向の厚み 斑は、 縦延伸倍率、 横延伸倍率により調整することができる。 また、 横延伸工程 における補助加熱温度、 延伸温度を調整することも重要である。 The release film of the present invention preferably has a vertical thickness unevenness of 3.0% or less. In addition, the release film of the present invention has a lateral thickness unevenness of 3.0% or less. It is preferable. In the release film of the present invention, it is preferable that the longitudinal thickness unevenness and the lateral thickness unevenness are simultaneously in the above numerical range. In particular, by using a release film having excellent thickness unevenness, the thickness unevenness of the obtained ceramic sheet can be further suppressed. When a ceramic sheet is manufactured using such a release film and a ceramic capacitor is manufactured using such a ceramic sheet, a ceramic capacitor having a more uniform capacity can be obtained. From this point of view, the vertical thickness unevenness is preferably 2.9% or less, more preferably 2.5% or less, and particularly preferably 2.0% or less. Further, the thickness unevenness in the lateral direction is preferably 2.8% or less, more preferably 2.6% or less, and particularly preferably 2.5% or less. The thickness unevenness in the longitudinal direction can be adjusted by the longitudinal draw ratio. It is also important to adjust the auxiliary heating temperature and stretching temperature in the longitudinal stretching process. The thickness variation in the transverse direction can be adjusted by the longitudinal draw ratio and the transverse draw ratio. It is also important to adjust the auxiliary heating temperature and stretching temperature in the transverse stretching process.
<離型フィルムの製造方法 > <Manufacturing method of release film>
上記のような物性を有する本発明の離型フィルムを製造する方法につき、 以下 に説明する。 本発明の離型フィルムは、 以下に述べる未延伸ポリエステルフィル ム成形工程、 一次延伸工程、 インライン塗布工程、 二次延伸工程、 および熱固定 工程により製造される。  The method for producing the release film of the present invention having the above physical properties will be described below. The release film of the present invention is produced by an unstretched polyester film forming process, a primary stretching process, an in-line coating process, a secondary stretching process, and a heat setting process described below.
[未延伸ポリエステルフィルム成形工程]  [Unstretched polyester film forming process]
本発明の離型フィルムを得るにあたり、 先ず、 未延伸ポリエス^^レフイルム成 形工程において、 後に記載するポリエステル原料を押し出し成形して、 未延伸ポ リエステルフィルムを得る。  In obtaining the release film of the present invention, first, in an unstretched polyester film forming step, a polyester raw material described later is extruded to obtain an unstretched polyester film.
押し出し成形にあたっては、 押出し機を用いて、 ダイより押し出された溶融シ ートを冷却ロールにて冷却固化して未延伸ポリエステルフィルムを得る。 このと き、 ポリマー中の粗大粒子を減らす目的において、 溶融押出しに先立ち、 線径 1 5 z m以下のステンレス鋼細線よりなる平均目開き 1 0 //m以上 3 0 z m以下の 不織布型フィルター、 好ましくは 1 0 m以上 2 0 At m以下の不織布型フィル夕 一を用いて、 溶融ポリマーを濾過すること力好ましい。 このように、 ポリマ一中 の粗大粒子の個数を減らすことによって、 離型フィルムの、 離型層表面、 および 離型層を有さない側の表面の最大高さ (Rm a x ) を 1 0 0 n m以上 6 0 0 n m 以下の数値範囲とすることができる。  In extrusion molding, an unstretched polyester film is obtained by cooling and solidifying the molten sheet extruded from the die with a cooling roll using an extruder. At this time, in order to reduce coarse particles in the polymer, prior to melt extrusion, a non-woven filter having an average opening of stainless steel fine wires with a wire diameter of 15 zm or less of 10 // m or more and 30 zm or less, preferably It is preferable to filter the molten polymer using a non-woven type film having a diameter of 10 m or more and 20 atm or less. In this way, by reducing the number of coarse particles in the polymer, the maximum height (Rm ax) of the release layer surface and the surface on the side without the release layer of the release film can be reduced to 100 °. It can be in the numerical range between nm and 60 nm.
さらに、 かかる濾過処理の後、 ダイの口金の直前で、 平均目開き 1 0 // m以上 5 以下、 好ましくは 1 5 z m以上 3 0 m以下のフィルターを用いて、 溶 融ポリマーを濾過することが、 ポリエステルの熱劣化物をさらに高度に取り除く ことができるという観点から好ましく、 最大高さ (Rm a x ) 値をさらに好まし い数値範囲とすることができる。  Further, after such filtration treatment, the molten polymer is filtered using a filter with an average opening of 10 // m or more and 5 or less, preferably 15 zm or more and 30 m or less, immediately before the die base. However, it is preferable from the viewpoint that the heat-degraded product of the polyester can be further removed, and the maximum height (Rmax) value can be set to a more preferable numerical range.
また、 未延伸ポリエステルフィルムの平面性を向上させるという観点において 、 ダイより押し出された溶融シートと冷却ロールとの密着性を高めることが好ま しく、 例えば、 静電印加密着法および Zまたは液体塗布密着法が好ましく採用さ れる。 In addition, in terms of improving the flatness of the unstretched polyester film It is preferable to improve the adhesion between the molten sheet extruded from the die and the cooling roll. For example, an electrostatic application adhesion method and a Z or liquid application adhesion method are preferably employed.
[一次延伸工程]  [Primary stretching process]
一次延伸工程においては、 上記の未延伸ポリエステルフィルム成形工程により 得られた未延伸ポリエステルフィルムを、 長手方向に延伸 (以下、 縦延伸と呼称 する場合がある。) することにより、 長手方向一軸延伸ポリエステルフィルムを 得る。  In the primary stretching step, the unstretched polyester film obtained by the above-described unstretched polyester film forming step is stretched in the longitudinal direction (hereinafter, sometimes referred to as longitudinal stretching). Get a film.
このとき、 一次延伸工程に先立ち、 あらかじめ (Tg— 10) で以上 (Tg— 2) で以下の温度条件下で予熱しておくことが、 均一な厚みを有するとともに、 所望の長手方向の伸長率 (SMD) および熱伸長率 (HSMD) を有する離型フィ ルムを得るために好ましい。 なお、 ここで Tgは、 未延伸ポリエステルフィルム のガラス転移点温度 (単位:で) を示す。 At this time, prior to the primary stretching step, preheating under (Tg-10) and above (Tg-2) under the following temperature conditions has a uniform thickness and a desired longitudinal elongation ratio. (S MD) and preferred in order to obtain the release Fi Lum having thermal expansion rate (HS MD). Here, Tg represents the glass transition temperature (unit: in) of the unstretched polyester film.
一次延伸工程においては、 任意に予熱が施された未延伸ポリエステルフィルム を、 (Tg + 2) 以上 (Tg + 40) で以下の温度条件下で、 長手方向に 3. 3倍以上 4. 0倍以下の範囲で延伸する。  In the primary stretching process, an unstretched polyester film that has been preheated arbitrarily is (Tg + 2) or more and (Tg + 40) at the following temperature conditions: 3.3 to 4.0 times in the longitudinal direction Stretch in the following range.
延伸倍率が 3. 3倍より小さい場合は、 長手方向の熱伸長率 HSMDがプラス 値となる傾向にあり、 すなわちフィルムが伸長する傾向にあり好ましくない。 他 方、 延伸倍率が 4. 0倍より大きい場合は、 長手方向の伸長率 (SMD;.が小さ くなりすぎる傾向にあり好ましくない。 また、 長手方向の熱伸長率 (HSMD) が小さくなりすぎる傾向にあり好ましくない。 延伸倍率を 3. 3倍以上 4. 0倍 以下とすることは、 長手方向の伸長率 (SMD) および熱伸長率 (HSMD) を、 所望の数値範囲とするためにも重要である。 When the draw ratio is less than 3.3 times, the thermal expansion rate HS MD in the longitudinal direction tends to be a positive value, that is, the film tends to be stretched, which is not preferable. On the other hand, when the draw ratio is larger than 4.0 times, the longitudinal elongation rate (S MD ;. Tends to be too small), which is not preferable. Also, the longitudinal thermal elongation rate (HS MD ) is small. It is not preferable because the stretching ratio is 3.3 times or more and 4.0 times or less, and the elongation ratio (S MD ) and thermal elongation ratio (HS MD ) in the longitudinal direction are set within the desired numerical range. It is also important to do.
また未延伸ポリエステルフィルムを、 (Tg + 2) で以上 (Tg + 40) で以 下の温度条件下で、 長手方向に 3. 7倍以上 4. 0倍以下の範囲で延伸すると、 縦方向の厚み斑を 3. 0%以下にすることができる。 長手方向の延伸倍率が低す ぎると、 縦方向の厚み斑が悪くなる傾向にある。 このような観点から、 長手方向 の延伸倍率の下限は、 より好ましくは 3. 8倍以上である。 他方、 長手方向の延 伸倍率が高すぎると、 縦延伸工程において得られる長手方向一軸延伸ポリエステ ルフィルムにおいて、 横方向の厚み斑が悪くなる傾向にあるため、 また、 部分的 な配向結晶化部分が形成されるため、 離型フィルムの横方向の厚み斑を良くする ことが困難となる傾向にある。 When an unstretched polyester film is stretched in the range of (Tg + 2) or more and (Tg + 40) or less and (Tg + 40) in the range of 3.7 times or more and 4.0 times or less in the longitudinal direction, Thickness unevenness can be reduced to 3.0% or less. If the draw ratio in the longitudinal direction is too low, the thickness unevenness in the longitudinal direction tends to deteriorate. From such a viewpoint, the lower limit of the draw ratio in the longitudinal direction is more preferably 3.8 times or more. On the other hand, the longitudinal extension If the draw ratio is too high, in the longitudinal uniaxially stretched polyester film obtained in the longitudinal stretching step, the thickness unevenness in the transverse direction tends to deteriorate, and a partially oriented crystallized portion is formed. It tends to be difficult to improve the lateral thickness unevenness of the mold film.
[インライン塗布工程]  [Inline coating process]
ィンライン塗布工程においては、 長手方向一軸延伸ポリエステルフィルムの少 なくとも一方の面に、 インラインにて、 離型層形成組成物 (以下、 塗剤と呼称す る場合がある。) を塗布することにより、 塗膜を有するポリエステルフィルムを 得る。 即ち、 離型層は、 一方向に延伸したポリエステルフィルムに離型層形成組 成物を塗布することにより形成される。  In the in-line coating process, a release layer forming composition (hereinafter sometimes referred to as a coating agent) is applied inline to at least one surface of the uniaxially stretched polyester film in the longitudinal direction. A polyester film having a coating film is obtained. That is, the release layer is formed by applying the release layer forming composition to a polyester film stretched in one direction.
ィンライン塗布工程において用いられる塗剤としては、 後記する水系の熱硬化 性シリコ一ン樹脂組成物を含む水性塗液を用いることが好ましい。  As the coating agent used in the in-line coating process, it is preferable to use an aqueous coating liquid containing an aqueous thermosetting silicone resin composition described later.
また、 塗布方法としては、 特に限定されるものではなく、 水性ェマルジヨンの 塗布方法として既知の任意の塗工技法を用いることができる。 例えば、 ローラー コーティング、 スプレーコーティング、 グラビアコーティング、 リバースグラビ アコ一ティング、 または、 スロットコーティング等の方法により、 一次延伸工程 で得られた長手方向一軸延伸ポリエステルフィルム上に塗剤を塗布することがで さる。  Also, the coating method is not particularly limited, and any known coating technique can be used as a coating method for aqueous emulsion. For example, the coating can be applied on the longitudinally uniaxially stretched polyester film obtained in the primary stretching process by methods such as roller coating, spray coating, gravure coating, reverse gravure coating, or slot coating. .
本発明の離型フィルムは、 塗剤をインラインで塗布することに特徴がある。 本 発明の離型フィルムは、 塗剤をインラインで塗布し、 その後に二軸目の延伸がな され、 さらに熱固定がなされることで離型フィルムに対する熱処理が完了する。 そして、 その後はオフラインにて熱がかからない。 このため、 離型フィルムの製 造の目標値として定めた物性、 とりわけ、 長手方向の伸長率 (S MD;)、 幅方向の 伸長率 (S TD) や、 長手方向の熱伸長率 (H S MD)、 幅方向の熱伸長率 (H S TD ) を、 そのまま維持した状態で、 実際の使用に用いることができる。 すなわち、 本発明の離型フィルムは、 塗剤をインラインで塗布することによって、 離型フィ ルム製造にあたっての物性の目標値がそのまま離型フィルムの最終的な物性とな るため、 寸法安定性に優れた離型フィルムとなる。 一方、 一度、 製膜したポリエステルフィルムを使用して、 オフラインで離型層 を形成するための塗剤を塗布する方法では、 塗剤に含まれる溶媒を乾燥除去し、 離型層となる樹脂を硬化させる工程を経る必要がある。 離型層となる樹脂を硬化 する工程では、 1 5 0で付近の温度をかける必要があるため、 オフラインで離型 層を形成した離型フィルムは、 離型フィルムの長手方向および幅方向の両者にお いて、 伸長率が大きくなり、 セラミック層 Z離型フィルム複合体の搬送工程にお いてフィルムが伸びてしまい好ましくない。 The release film of the present invention is characterized in that the coating agent is applied in-line. In the release film of the present invention, the coating agent is applied in-line, the second axis is then stretched, and the heat treatment is performed to complete the heat treatment for the release film. And after that, there is no heat off-line. For this reason, the physical properties set as the target values for the release film production, in particular, the longitudinal elongation rate (S MD ), the transverse elongation rate (S TD ), and the longitudinal thermal elongation rate (HS MD) ), It can be used for actual use while maintaining the thermal expansion rate (HS TD ) in the width direction. That is, in the release film of the present invention, by applying the coating agent in-line, the target value of the physical properties in producing the release film becomes the final physical property of the release film, so that the dimensional stability is improved. It becomes an excellent release film. On the other hand, in the method of applying a coating agent for forming a release layer off-line using a polyester film once formed, the solvent contained in the coating agent is removed by drying, and the resin that becomes the release layer is removed. It is necessary to go through a curing step. In the process of curing the resin to be the release layer, it is necessary to apply a temperature around 1550, so the release film with the release layer formed off-line is both in the longitudinal and width directions of the release film. However, the elongation rate is increased, and the film is undesirably stretched in the conveying process of the ceramic layer Z release film composite.
なお、 本発明の離型フィルムにおいては、 インラインにて塗剤を塗布して塗膜 を得た後には、 塗布後の予熱、 二軸目の延伸、 および熱固定の各工程で加えられ る熱のみにより、 塗膜からの溶媒を乾燥除去し、 塗剤に含まれる樹脂を硬化させ In the release film of the present invention, after the coating agent is applied in-line to obtain a coating film, the heat applied in the preheating, second-axis stretching, and heat setting steps after coating. Only to remove the solvent from the coating film and harden the resin contained in the coating.
、 そして、 離型層となる樹脂をポリエステルフィルムに密着させることができる 。 したがって、 塗膜を乾燥硬化させる工程を特別に設ける必要がなく、 このため 、 寸法安定性に優れた離型フィルムが得られるとともに、 離型フィルムを得るた めの工程を煩雑にすることもない。 And resin which becomes a mold release layer can be stuck to a polyester film. Therefore, it is not necessary to provide a special process for drying and curing the coating film, and therefore, a release film having excellent dimensional stability can be obtained, and the process for obtaining the release film is not complicated. .
また、 本発明の離型フィルムは、 塗剤をインラインで一軸延伸ポリエステルフ イルムに塗布することに特徴がある。 このような態様とすることによって、 離型 層とポリエステルフィルムとの密着性をより高くすることができる。 また、 離型 層が含有する界面活性剤の種類、 および添加量を調整しやすくなり、 剥離帯電防 止性の向上効果を高くすることができる。  In addition, the release film of the present invention is characterized in that the coating agent is applied to a uniaxially stretched polyester film in-line. By setting it as such an aspect, the adhesiveness of a mold release layer and a polyester film can be made higher. In addition, it becomes easy to adjust the type and amount of the surfactant contained in the release layer, and the effect of improving the peel-off antistatic property can be enhanced.
なお、 塗剤の固形分濃度は、 0 . 5質量%以上 3 0質量%以下が好ましく、 1 質量%以上 1 5質量%以下がさらに好ましく、 1 . 5質量%以上 1 0質量%以下 が特に好ましい。 塗剤の固形分濃度が 0 . 5質量%未満である場合は、 ポリエス テルフィルム表面に塗剤を塗工する際に、 塗剤がポリエステルフィルム表面では じかれてしまい、 均一に塗工できない傾向にある。 他方、 3 0質量%を超える場 合は、 得られる離型層に曇りが生じたり、 また、 塗剤がゲル化しやすくなつたり 、 コーティングの費用がかかるわりには効果が低くなるという問題が生じる場合 がある。  The solid content concentration of the coating is preferably 0.5% by mass or more and 30% by mass or less, more preferably 1% by mass or more and 15% by mass or less, and particularly preferably 1.5% by mass or more and 10% by mass or less. preferable. When the solid content concentration of the coating is less than 0.5% by mass, when the coating is applied to the surface of the polyester film, the coating tends to be repelled on the surface of the polyester film and cannot be applied uniformly. It is in. On the other hand, if it exceeds 30% by mass, the resulting release layer may become cloudy, or the coating may be easily gelled, or the cost may be low and the effect may be reduced. There is.
[二次延伸工程] 二次延伸工程においては、 インライン塗布工程により得られた塗膜を有するポ リエステルフィルムを、 幅方向に延伸 (以下、 横延伸と呼称する場合がある。) することにより、 二軸延伸ポリエステルフィルムを得る。 - このとき、 二次延伸工程に先立ち、 あらかじめ (Tg+10) X:以上 (Tg + 30) :以下の温度条件下で補助加熱を施すと、 塗剤に含まれる溶媒を十分に乾 燥することができ、 その後に行う二次延伸工程において均一に延伸を行うことが できるため好ましい。 [Secondary stretching process] In the secondary stretching process, the polyester film having the coating film obtained by the in-line coating process is stretched in the width direction (hereinafter, sometimes referred to as lateral stretching), whereby a biaxially stretched polyester film is obtained. obtain. -At this time, prior to the secondary stretching process, (Tg + 10) X: or more (Tg + 30): If auxiliary heating is performed under the following temperature conditions, the solvent contained in the coating will be sufficiently dried. It is preferable because it can be uniformly stretched in the subsequent secondary stretching step.
二次延伸工程においては、 (Tg+10) で以上 (Tg + 80) で以下、 好ま しくは補助加熱温度以上 (Tg + 70) で以下の温度条件下で、 幅方向に 3. 0 倍以上 5. 0倍以下の範囲で延伸する。 幅方向の延伸倍率が上記数値範囲にある と、 横方向の厚み斑に優れる。 幅方向の延伸倍率が低すぎる場合は、 横方向の厚 み斑が悪くなる傾向にある。 他方、 幅方向の延伸倍率が高すぎる竭合は、 製造中 にフィルムが破断しやすくなる傾向にある。 このような観点から、 幅方向の延伸 倍率は、 より好ましくは 3. 5倍以上 4. 5倍以下、 さらに好ましくは 3. 9倍 以上 4. 3倍以下、 特に好ましくは 4. 0倍以上 4. 2倍以下である。  In the secondary stretching process, (Tg + 10) or more (Tg + 80) or less, preferably the auxiliary heating temperature or more (Tg + 70) or less, and the following temperature conditions, 3.0 times or more in the width direction. 5. Stretch in the range of 0 times or less. When the draw ratio in the width direction is in the above numerical range, the thickness unevenness in the transverse direction is excellent. When the draw ratio in the width direction is too low, the thickness unevenness in the transverse direction tends to deteriorate. On the other hand, when the draw ratio in the width direction is too high, the film tends to break during production. From such a viewpoint, the draw ratio in the width direction is more preferably 3.5 times or more and 4.5 times or less, further preferably 3.9 times or more and 4.3 times or less, and particularly preferably 4.0 times or more 4 Less than 2 times.
また、 本発明においては、 面延伸倍率 (縦延伸倍率 X横延伸倍率) が 15以 上であることが好ましく、 縦方向および横方向の厚み斑をより良くすることがで きる。 面延伸倍率は、 より好ましくは 16以上である。  In the present invention, the surface draw ratio (longitudinal draw ratio X transverse draw ratio) is preferably 15 or more, and thickness spots in the machine direction and the transverse direction can be improved. The surface draw ratio is more preferably 16 or more.
なお、 本発明における一次延伸工程の延伸倍率 (以下、 縦延伸倍率と呼称する 場合がある。) と二次延伸工程における延伸倍率 (以下、 横延伸倍率と呼称する 場合がある。) との関係は、 縦延伸倍率≤横延伸倍率であることが好ましい。 縦 延伸倍率≤横延伸倍率の関係にあれば、 長手方向の伸長率 (SMD)、 幅方向伸長 率 (STD)、 および、 長手方向の熱伸長率 (HSMD)、 幅方向の熱伸長率 (HST D) を、 所望の値に制御することが容易となる。 The relationship between the stretching ratio in the primary stretching step in the present invention (hereinafter sometimes referred to as the longitudinal stretching ratio) and the stretching ratio in the secondary stretching step (hereinafter sometimes referred to as the lateral stretching ratio). The longitudinal draw ratio is preferably equal to or less than the transverse draw ratio. If the relationship of longitudinal stretch ratio ≤ lateral stretch ratio, the longitudinal stretch ratio (S MD ), the lateral stretch ratio (S TD ), and the longitudinal thermal stretch ratio (HS MD ), the lateral thermal stretch It becomes easy to control the rate (HS T D ) to a desired value.
[熱固定工程]  [Heat setting process]
熱固定工程においては、 二次延伸工程によって得られた二軸延伸ポリエステル フィルムを、 熱固定することにより、 離型フィルムを得る。  In the heat setting step, a release film is obtained by heat setting the biaxially stretched polyester film obtained in the secondary stretching step.
熱固定の温度条件は、 ポリエステルフィルムを構成するポリエステルの種類に より異なるが、 一般に、 (T g + 7 0 ) で以上.(Tm) で以下の温度範囲にて行 うことが好ましい。 例えば、 ポリエステルがポリエチレンテレフ夕レートである 場合は、 1 8 0で以上 2 3 5で以下の温度範囲で熱固定することが好ましい。 ま た、 ポリエステルがポリエチレン— 2 , 6 _ナフ夕レートである場合には、 1 8 5で以上 2 4 0で以下の温度範囲で熱固定することが好ましい。 この温度範囲で 熱固定することにより、 所望の伸長率 (S MDおよび S TD)、 熱伸長率 (H S MDお よび H S TD) を得ることができる。 なお、 ここで Tmは、 ポリエステルの融点 (単位:で) を示す。 The temperature condition for heat setting depends on the type of polyester that makes up the polyester film. Although it is more different, in general, it is preferable that the temperature is (T g +70) or more and (Tm) in the following temperature range. For example, when the polyester is polyethylene terephthalate, it is preferably heat-set in a temperature range of 1800 to 235. In addition, when the polyester is polyethylene-2,6-naphthalate, it is preferably heat-set in a temperature range of 1 85 to 2 40. By heat-setting within this temperature range, desired elongation rates (S MD and S TD ) and thermal elongation rates (HS MD and HS TD ) can be obtained. Here, Tm represents the melting point (in units) of polyester.
また、 熱固定は 1ゾーンのみで実施するのでなく、 複数のゾーンに分けて段階 的に実施することが望ましく、 好ましくは 3ゾーン以上として温度を制御して行 うことが望ましい。 例えば、 熱固定を 3ゾーンで実施する場合には、 第 1ゾーン は 1 8 0 以上 2 1 0 以下、 第 2ゾーンは第 1ゾーンよりも高く、 3ゾーンの 中で最大の温度となるように設定する。 そして、 第 3ゾーンは第 2ゾーンよりも 低い温度とし、 1 8 0で以上 2 0 0 以下に設定することが好ましい。 このよう に第 2ゾーンを最高温度とし、 第 3ゾーンをそれよりも低い温度として熱固定す ることにより、 得られる離型フィルムの平面性を良好に保ち、 セラミックシート の厚み斑を低減することができる。 なお、 熱固定時間は、 特に限定されるもので はなく、 例えば 1秒以上 6 0秒以下程度行うことが好ましい。  In addition, heat fixation is not performed in only one zone, but is preferably performed in stages divided into a plurality of zones. Preferably, the temperature is controlled in three or more zones. For example, when heat setting is performed in three zones, the first zone should be between 1800 and 210, the second zone should be higher than the first zone, and the maximum temperature among the three zones. Set. The third zone is preferably set to a temperature lower than that of the second zone, and is set to 1 80 or more and 2 0 or less. In this way, the second zone is set to the maximum temperature, and the third zone is set to a lower temperature and heat-fixed, so that the flatness of the obtained release film is kept good and the thickness variation of the ceramic sheet is reduced. Can do. The heat setting time is not particularly limited, and for example, it is preferably about 1 second or more and 60 seconds or less.
また、 離型フィルムの幅方向の熱伸長率 (H S TD) を所望の値とするために 、 熱固定工程の最後のゾーンにおいて、 レール幅を 2 %以上 5 %以下程度縮めて フィルムを弛緩処理することが好ましい。 In addition, in order to obtain the desired thermal expansion rate (HS TD ) in the width direction of the release film, the film is relaxed by reducing the rail width by about 2% to 5% in the last zone of the heat setting process. It is preferable to do.
[冷却工程] (任意工程)  [Cooling process] (Optional process)
本発明の離型フィルムは、 熱固定工程の後に、 任意に冷却工程を設けてもよい 。 冷却工程を設けることにより、 得られる離型フィルムの平面性を良好に保ち、 セラミックシートの厚み斑を低減させることができる。  The release film of the present invention may optionally be provided with a cooling step after the heat setting step. By providing a cooling step, the flatness of the obtained release film can be kept good, and the thickness unevenness of the ceramic sheet can be reduced.
冷却工程においては、 冷却温度を (T g— 3 0 ) t:以上 (T g + 2 0 ) で以下 の範囲として実施することが好ましく、 上記の熱固定工程と同様に、 複数のゾー ンに分けて行うことが好ましい。 冷却温度が上記数値範囲よりも低い場合は、 熱 1フ In the cooling process, the cooling temperature is preferably (T g−30) t: or more and (T g +20) in the following range. In the same manner as in the heat setting process, a plurality of zones are used. It is preferable to carry out separately. If the cooling temperature is lower than the above range, heat 1
伸長率 (H S MD、 H S TD) がともに小さくなりすぎる場合がある。 他方、 冷却 温度が上記数値範囲より高い場合は、 フィルムの長手方向の中心線付近では物性 が各方向に均等であっても、 長手方向の側縁部では斜め配向が強くなる現象を生 じるため好ましくない。 なお、 長手方向の側縁部が斜め配向となる現象は、 上記 の熱固定温度の好適範囲の下限側でも起こりうるが、 その程度は比較的小さい。 <ポリエステルフィルム > Both elongation ratios (HS MD and HS TD ) may be too small. On the other hand, when the cooling temperature is higher than the above numerical range, even in the vicinity of the center line in the longitudinal direction of the film, even if the physical properties are uniform in each direction, a phenomenon occurs in which the oblique orientation becomes stronger at the side edges in the longitudinal direction. Therefore, it is not preferable. The phenomenon that the side edge in the longitudinal direction is obliquely oriented can occur on the lower limit side of the preferred range of the heat setting temperature, but the degree is relatively small. <Polyester film>
[ポリエステル] ホモポリエステルであっても共重合ポリエステルであってもよい。  [Polyester] It may be a homopolyester or a copolyester.
本発明に用いられるポリエステルフィルムがホモポリエステルからなる場合は 、 芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ま しい。 ここで、 用いられる芳香族ジカルボン酸としては、 例えば、 テレフタル酸 、 2 , 6—ナフ夕レンジカルボン酸等が挙げられる。 また、 用いられる脂肪族グ リコールとしては、 例えば、 エチレングリコール、 ジエチレングリコール、 1, 4ーシクロへキサンジメタノール等が挙げられる。 本発明に用いられるポリエス テルフィルムの代表的なホモポリエステルとしては、 ポリエチレンテレフ夕レー ト (P E T)、 ポリエチレンー2, 6—ナフ夕レート (P E N) 等を挙げること ができる。  In the case where the polyester film used in the present invention is made of a homopolyester, those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred. Here, examples of the aromatic dicarboxylic acid to be used include terephthalic acid and 2,6-naphthalenedicarboxylic acid. Examples of the aliphatic glycol used include ethylene glycol, diethylene glycol, 1,4-cyclohexane dimethanol, and the like. Typical examples of the homopolyester of the polyester film used in the present invention include polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and the like.
一方、 本発明に用いられるポリエステルフィルムを形成するポリエステルが、 共重合ポリエステルの場合は、 全酸成分に対して、 2 0モル%以下の第三成分と なるジカルボン酸および Zまたはグリコールを共重合させた共重合体であること が好ましい。  On the other hand, when the polyester forming the polyester film used in the present invention is a copolymerized polyester, 20 mol% or less of a dicarboxylic acid and Z or glycol as the third component are copolymerized with respect to the total acid component. It is preferable to be a copolymer.
共重合ポリエステルのモノマー成分となるジカルボン酸としては、 例えば、 ィ ソフタル酸、 テレフタル酸、 2, 6—ナフ夕レンジカルボン酸、 アジピン酸、 セ バシン酸、 ォキシカルボン酸 (例えば、 P—ォキシ安息香酸等) 等を挙げること ができ、 これらの一種または二種以上を用いることができる。 また、 共重合ポリ エステルのモノマー成分となるグリコールとしては、 エチレングリコール、 ジェ チレングリコール、 プロピレングリコール、 ブタンジオール、 1, 4—シクロへ キサンジメタノール、 ネオペンチルグリコール等を挙げることができ、 これらの 一種または二種以上を用いることができる。 Examples of the dicarboxylic acid that is a monomer component of the copolyester include isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, P-oxybenzoic acid, etc.) ) And the like, and one or more of these can be used. In addition, glycols that are monomer components of the copolymerized polyester include ethylene glycol, polyethylene glycol, propylene glycol, butanediol, 1,4-cyclohexane. Examples thereof include xanthanimethanol and neopentyl glycol, and one or more of these can be used.
本発明に用いられるポリエステルフィルムの材料としては、 これらの中でも、 As a material of the polyester film used in the present invention, among these,
8 0モル%以上、 好ましくは 9 0モル%以上がエチレンテレフ夕レート単位であ るポリエチレンテレフ夕レート、 あるいは、 8 0モル%以上、 好ましくは 9 0モ ル%以上がエチレン一 2, 6—ナフ夕レート単位であるポリエチレン一 2 , 6 - ナフ夕レートが好ましく、 ポリエチレンテレフ夕レート力特に好ましい。 一般に ポリエチレンテレフ夕レートの T gは、 7 8で付近と低温であることから、 1 0 0で付近の温度にて処理されるセラミックシートの製造用キヤリアフィルムとし てポリエチレンテレフ夕レートフィルムを用いる場合には、 工程中における寸法 安定性が特に問題となっていた。 これに対して、 本発明の離型フィルムは、 寸法 安定性に優れることから、 T gをはるかに超える温度においての使用であっても 、 離型フィルムとしての性能を十分に発揮することができる。 80 mol% or more, preferably 90 mol% or more of polyethylene terephthalate having ethylene terephthalate units, or 80 mol% or more, preferably 90 mol% or more of ethylene terephthalate. Polyethylene 1, 2 -naphtholate, which is a naphtholate unit, is preferred, and polyethyleneterephrate rate is particularly preferred. Generally, Tg of polyethylene terephthalate is around 78 and low, so when using polyethylene terephthalate film as a carrier film for manufacturing ceramic sheets processed at around 100 ° C. In particular, dimensional stability during the process was a particular problem. On the other hand, since the release film of the present invention is excellent in dimensional stability, the performance as a release film can be sufficiently exerted even when used at a temperature far exceeding Tg. .
[添加剤] ィルムとした場合の易滑性付与を主たる目的として、 粒子を配合することが好ま しい。 配合する粒子の種類としては、 易滑性付与が可能な粒子であれば特に限定 されるものではなく、 具体的には、 例えば、 シリカ、 炭酸カルシウム、 炭酸マグ ネシゥム、 炭酸バリウム、 硫酸カルシウム、 リン酸カルシウム、 リン酸マグネシ ゥム、 カオリン、 酸化アルミニウム、 酸化チタン等の粒子が挙げられる。  [Additives] It is preferable to blend particles mainly for the purpose of imparting slipperiness when used as a film. The type of particles to be blended is not particularly limited as long as it can impart lubricity, and specifically, for example, silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate. And particles of magnesium phosphate, kaolin, aluminum oxide, titanium oxide, and the like.
また、 特公昭 5 9 - 5 2 1 6号公報、 特開昭 5 9— 2 1 7 7 5 5号公報等に記 載されているような、 耐熱性の有機粒子を用いてもよい。 耐熱性有機粒子のまた 別の例としては、 シリコーン樹脂、 熱硬化性尿素樹脂、 熱硬化性フエノール樹脂 、 熱硬化性エポキシ樹脂、 ベンゾグアナミン樹脂等からなる粒子を挙げることも できる。 さらには、 ポリエステルの製造工程中にて、 触媒等の金属化合物の一部 を沈殿、 微分散させた析出粒子を用いることもできる。  Further, heat-resistant organic particles such as those described in Japanese Patent Publication No. 5-9-5 2 16 and Japanese Patent Application Laid-Open No. 59-2 1 7 75 5 may be used. Other examples of the heat-resistant organic particles include particles made of silicone resin, thermosetting urea resin, thermosetting phenol resin, thermosetting epoxy resin, benzoguanamine resin, and the like. Furthermore, it is possible to use precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed during the production process of the polyester.
上記のような易滑性を付与するための粒子の形状は、 特に限定されるわけでは なく、 球状、 塊状、 棒状、 扁平状等の何れを用いてもよい。 また、 その硬度、 比 重、 色等についても特に制限されるものではない。 さらに、 これらの粒子は、 必 要に応じて 2種類以上を併用することもできる。 The shape of the particles for imparting the slipperiness as described above is not particularly limited, and any of a spherical shape, a lump shape, a rod shape, a flat shape, and the like may be used. Also its hardness, ratio The weight, color, etc. are not particularly limited. Furthermore, two or more kinds of these particles can be used in combination as required.
なお、 粒子の平均粒径としては、 0 . 1 zzm以上 1 zz m以下が好ましく、 0 . 2 / m以上 0. 5 /z m以下がさらに好ましい。 平均粒径が 0 . 1 m未満の場合 は、 粒子が凝集しやすく、 分散性が不十分となることがある。 他方、 l zmを超 える場合は、 得られるポリエステルフィルムの表面粗度が粗くなりすぎて、 離型 フィルムの、 離型層表面の最大高さ (Rm a x )、 および離型層を有さない側の 表面の最大高さ (Rm a x) を 1 0 0 n m以上 6 0 0 n m以下とすることが困難 となる。  The average particle size of the particles is preferably from 0.1 zzm to 1 zzm, and more preferably from 0.2 / m to 0.5 / zm. When the average particle size is less than 0.1 m, the particles tend to aggregate and dispersibility may be insufficient. On the other hand, if it exceeds l zm, the surface roughness of the resulting polyester film becomes too rough, and the release film has a maximum release layer surface height (Rmax) and no release layer. It is difficult to make the maximum height (Rm ax) of the side surface 10 0 nm or more and 60 0 nm or less.
また、 易滑性を付与するために配合する粒子の含有量は、 ポリエステルフィル ム中において、 0 . 0 1質量%以上 2質量%以下が好ましく、 0 . 0 1質量%以 上 1質量%以下がさらに好ましい。 粒子の含有量が 0 . 0 1質量%未満の場合は 、 フィルムの易滑性が不十分となる傾向にある。 他方、 2質量%を超える場合は 、 フィルム表面の平滑性が不十分となる傾向にある。  Further, the content of the particles to be blended for imparting slidability is preferably from 0.1 to 2% by mass, preferably from 0.1 to 1% by mass in the polyester film. Is more preferable. If the content of the particles is less than 0.01% by mass, the slipperiness of the film tends to be insufficient. On the other hand, if it exceeds 2% by mass, the smoothness of the film surface tends to be insufficient.
ポリエステルフィルム中に粒子を含有させる方法としては、 特に限定されるも のではなく、 従来公知の方法を採用することができる。 例えば、 ポリエステルを 製造する任意の段階において、 配合したい粒子を添加することが可能であるカ^ エステル化の段階、 もしくはエステル交換反応終了後に粒子を配合し、 その後、 重縮合反応を進めることが好ましい。 また、 ベント付き混練押出機を用いて、 ェ チレングリコールまたは水等に分散させた粒子のスラリーとポリエステル原料と をブレンドする方法、 あるいは、 混練押出機を用いて、 乾燥させた粒子とポリエ ステル原料とをブレンドする方法等によっても行うことができる。  The method for incorporating the particles in the polyester film is not particularly limited, and conventionally known methods can be employed. For example, in any stage of producing polyester, it is preferable to add particles to be mixed, or to mix the particles after completion of the transesterification reaction, and then proceed to the polycondensation reaction. . Also, a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a dried particle and a polyester raw material using a kneading extruder It can also be performed by a method of blending and the like.
[層構成]  [Layer structure]
本発明におけるポリエステルフィルムの構成は、 特に限定されるものではなく 、 単層構成であっても積層構成であってもよい。 また、 積層構成である場合には 、 2層、 3層構成以外にも、 本発明の要旨を越えない限り、 4層またはそれ以上 の多層であってもよい。 積層構成としても特に限定されるものではなく、 例えば 、 A/B , A/B/A, AZBZC、- A/B/A' 等の積層構成を挙げることが できる。 ここで、 A、 B、 Cは、 それぞれ上述のポリエステルからなる層を表わ し、 同じであってもよいし、 異なっていてもよい。 A ' は、 とりわけ Aに構造が 類似しているのポリエステルからなる層を表わす。 The structure of the polyester film in the present invention is not particularly limited, and may be a single layer structure or a laminated structure. Further, in the case of a laminated structure, other than the two-layer or three-layer structure, a multilayer having four layers or more may be used as long as the gist of the present invention is not exceeded. The laminated structure is not particularly limited, and examples thereof include laminated structures such as A / B, A / B / A, AZBZC, and -A / B / A '. it can. Here, A, B, and C each represent a layer made of the above-described polyester, and may be the same or different. A 'represents a layer of polyester, which is especially similar in structure to A.
[ポリエステルフィルムの厚み]  [Thickness of polyester film]
本発明におけるポリエステルフィルム全体の厚みは、 特に限定されるものでは ないが、 好ましくは 9 // m以上 5 0 m以下、 さらに好ましくは 1 5 m以上 3 8 m以下、 特に好ましくは 2 5 zm以上 3 1 / m以下である。  The total thickness of the polyester film in the present invention is not particularly limited, but preferably 9 // m or more and 50 m or less, more preferably 15 m or more and 38 m or less, particularly preferably 25 zm or more. 3 1 / m or less.
く離型層〉 Release layer>
[シリコーン樹脂組成物]  [Silicone resin composition]
本発明における離型層は、 ェマルジヨンとして安定であることから、 主にシリ コ一ン樹脂組成物から形成されることが好ましい。 シリコーン樹脂組成物とは、 Since the release layer in the present invention is stable as an emulsion, it is preferably formed mainly from a silicone resin composition. What is a silicone resin composition?
1分子中に不飽和基または水酸基の少なくともいずれか一方を少なくとも 2個有 するポリシロキサンからなる主剤、 および、 1分子中にケィ素原子に直接結合し た水素原子を少なくとも 2個有するハイド口ジェンポリシロキサンからなる架橋 剤を構成成分として含むものである。 本発明においては、 かかるシリコーン樹脂 組成物を含む水性塗液 (塗剤) を塗布し、 塗膜を形成し、 かかる塗膜を硬化させ て離型層を形成する。 A main agent composed of a polysiloxane having at least two unsaturated groups or hydroxyl groups in one molecule, and a hydrogen having at least two hydrogen atoms directly bonded to a silicon atom in one molecule. It contains a cross-linking agent made of polysiloxane as a constituent component. In the present invention, an aqueous coating liquid (coating agent) containing such a silicone resin composition is applied to form a coating film, and the coating film is cured to form a release layer.
本発明におけるシリコ一ン樹脂組成物は、 水系のシリコーン樹脂組成物である ことが好ましい。 水系のシリコーン樹脂組成物は、 ェマルジヨンとした際の安定 性に優れるため、 結果として塗剤の安定性を高くすることができる。 また、 後述 する界面活性剤の選択肢が広がり、 例えば水酸基をより多く含む界面活性剤を使 用できるようになり、 剥離帯電防止性の向上効果を高くすることができる。 なお The silicone resin composition in the present invention is preferably an aqueous silicone resin composition. Since the aqueous silicone resin composition is excellent in stability when it is emulsified, the stability of the coating material can be increased as a result. In addition, there are a wide range of surfactant options to be described later. For example, a surfactant containing more hydroxyl groups can be used, and the effect of improving the antistatic property of peeling can be increased. In addition
、 水系の塗剤とすることは、 環境の面からも好ましい。 From the viewpoint of the environment, it is preferable to use a water-based coating agent.
また、 本発明においては、 シリコーン樹脂組成物を硬化させる方法として、 熱 硬化、 紫外線硬化、 電子線硬化等を例示することができるが、 中でも熱硬化が好 ましく、 すなわちシリコーン樹脂組成物としては、 熱硬化性シリコーン樹脂組成 物が好ましい。 本発明においては、 前述のように、 インライン塗布工程において 塗膜を有するポリエステルフィルムを得て、 その後の熱固定工程において熱処理 がなされる。 シリコーン樹脂組成物が熱硬化性シリコーン樹脂組成物であれば、 力、かる熱固定工程における熱処理によって架橋反応を促進させ、 シリコーン樹脂 組成物の硬化を十分に進行させることができ、 離型性に優れる等の優れた特性を 有する離型層を得ることができる。 In the present invention, examples of the method for curing the silicone resin composition include thermal curing, ultraviolet curing, electron beam curing, etc., among which thermal curing is preferable. That is, as the silicone resin composition, A thermosetting silicone resin composition is preferred. In the present invention, as described above, a polyester film having a coating film is obtained in the in-line coating process, and heat treatment is performed in the subsequent heat setting process. Is made. If the silicone resin composition is a thermosetting silicone resin composition, the crosslinking reaction can be accelerated by heat treatment in the heat setting step, and the curing of the silicone resin composition can be sufficiently progressed. A release layer having excellent properties such as excellent properties can be obtained.
以上のことから、 本発明におけるシリコーン樹脂組成物としては、 水系の熱硬 化性シリコーン樹脂組成物が特に好ましい。 なお、 ここで 「主に」 とは、 離型層 の重量に対して、 75質量%以上がシリコーン樹脂組成物から形成されることを 表すこととする。  From the above, as the silicone resin composition in the present invention, an aqueous thermosetting silicone resin composition is particularly preferable. Here, “mainly” means that 75% by mass or more is formed from the silicone resin composition with respect to the weight of the release layer.
シリコーン樹脂組成物としては、 付加重合タイプ (主剤が、 1分子中に不飽和 基を少なくとも 2個有するポリシロキサンからなる場合) および縮合タイプ (主 剤が、 1分子中に水酸基を少なくとも 2個有するポリシロキサンからなる場合) のいずれであってもよいが、 付加重合タイプの場合は、 塗剤に触媒としての白金 を含むもの、 縮合タイプの場合は、 塗剤に触媒としての錫を含むものであること が好ましい。 このうち、 剥離特性に優れるという観点から、 付加重合タイプのも のが好ましい。 また、 架橋剤は、 同時に使用する主剤の製造者が推奨するものを 好ましく用いることができる。  Silicone resin compositions include addition polymerization types (when the main agent is made of polysiloxane having at least two unsaturated groups in one molecule) and condensation types (the main agent has at least two hydroxyl groups in one molecule). In the case of an addition polymerization type, the coating material contains platinum as a catalyst, and in the case of a condensation type, the coating material contains tin as a catalyst. Is preferred. Of these, the addition polymerization type is preferable from the viewpoint of excellent peeling properties. Further, as the crosslinking agent, those recommended by the manufacturer of the main agent used at the same time can be preferably used.
以下に、 本発明において好適に用いることのできる水系の熱硬化性シリコーン 樹脂組成物の具体例を示す。  Specific examples of the water-based thermosetting silicone resin composition that can be suitably used in the present invention are shown below.
1) Wac ke r S i l i c on e (ミシガン州、 A d r i an) の水性 の 400 Eシリコーン樹脂組成物。 ポリシロキサン、 白金触媒、 および、 メチル 水素ポリシロキサンから成る V 20架橋剤系を含む。  1) Water-based 400 E silicone resin composition of Wacker Silicone (Adrian, Michigan). V 20 crosslinker system comprising polysiloxane, platinum catalyst, and methylhydrogen polysiloxane.
2) Dow C o r n i n g (ミシガン州、 M i d 1 a n d) の水性の X 2 一 7720シリコーン樹脂組成物。 メチルビ二ルポリシロキサン、 および、 白金 ポリシロキサンから成る X2— 7721架橋剤系を含むメチル水素ポリシロキサ ンカ、ら成る。  2) Aqueous X2 1 7720 silicone resin composition of Dow Cornining (Mid 1 a n d, Michigan). Methylvinylpolysiloxane, and methylhydrogenpolysiloxane containing X2-7721 crosslinker system consisting of platinum polysiloxane.
3) PCL (Phone-Pou 1 en c I n c., サウスカロライナ 州、 Roc k H i l l) の水性の P C -105シリコーン樹脂組成物。 メチル ビニルポリシロキサン、 白金ポリシロキサンから成る PC_ 95の触媒成分を含 むメチル水素ポリシロキサンから成る。 3) Aqueous PC-105 silicone resin composition of PCL (Phone-Pou 1 en c Inc., Roc Hill, South Carolina). PC_95 catalyst component consisting of methyl vinyl polysiloxane and platinum polysiloxane It consists of methyl hydrogen polysiloxane.
4 ) P C L P C— 1 0 7水性のシリコーン樹脂組成物 (P C— 1 0 5と類 似)。 上記の P C— 9 5架橋剤を含む。  4) P C L P C—10 7 Water-based silicone resin composition (similar to P C—10 5). Contains the above P C-9 5 crosslinker.
5 ) P C L P C— 1 8 8水性のシリコーン樹脂組成物 (P C— 1 0 5と類 似)。 上記の P C— 9 5架橋剤を含む。  5) P C L P C— 1 8 8 Water-based silicone resin composition (similar to P C—1 0 5). Contains the above P C-9 5 crosslinker.
なお、 これらの水系の熱硬化性シリコーン樹脂組成物は、 脱イオン水を加える 等によって固形分濃度が適宜調整され、 塗剤として用いるこことができる。  These water-based thermosetting silicone resin compositions can be used as a coating agent with the solid content concentration adjusted as appropriate by adding deionized water or the like.
[シランカップリング剤]  [Silane coupling agent]
さらに、 本発明における離型層は、 シランカップリング剤を含有することが好 ましい。 シランカップリング剤としては、 ポリエステル樹脂およびシリコーン樹 脂組成物のいずれか、 または双方と結合する反応基を有する有機ケィ素低分子化 合物が好ましく、 かかる反応基として、 メトキシ基、 エトキシ基、 シラノール基 、 ビニル基、 エポキシ基、 (メタ) アクリル基、 アミノ基、 メルカプト基、 クロ ル基、 ヒドロキシル基、 力ルポキシル基等の少なくとも 1種以上を有している有 機ケィ素低分子化合物が好ましい。  Furthermore, the release layer in the present invention preferably contains a silane coupling agent. As the silane coupling agent, either a polyester resin or a silicone resin composition, or an organic silicon low molecular weight compound having a reactive group bonded to both, is preferable, and as such a reactive group, a methoxy group, an ethoxy group, Organic low molecular weight compounds having at least one kind such as silanol group, vinyl group, epoxy group, (meth) acrylic group, amino group, mercapto group, chloro group, hydroxyl group, strong lpoxyl group preferable.
かかるシランカップリング剤の含有量は、 離型層の固形分重量に対して、 0 . 1質量%以上 2 0質量%が好ましく、 1質量%以上 1 0質量%以下がさらに好ま しく、 3質量%以上 7質量%以下が特に好ましレ 含有量を上記数値範囲とする ことによって、 離型層の密着性を高くすることができる。  The content of the silane coupling agent is preferably 0.1% by mass or more and 20% by mass, more preferably 1% by mass or more and 10% by mass or less, with respect to the solid content weight of the release layer. % Or more and 7% by mass or less is particularly preferable. By making the content within the above numerical range, the adhesion of the release layer can be enhanced.
[界面活性剤]  [Surfactant]
本発明における離型層は、 離型層の固形分重量に対して 0 . 5質量%以上 1 0 質量%以下の界面活性剤を含有することが好ましい。 離型層が界面活性剤を上記 数値範囲の量含有することによつて、 ロール状の離型フィルムを巻き出す際の剥 離帯電、 および離型フィルムからセラミックシ一トを剥離する際の剥離帯電を抑 制することができる。 また、 積層セラミックコンデンサーを製造する際に、 内部 電極の位置ずれを抑制することができる。 さらに、 塗剤においては、 界面活性剤 を添加することにより、 ポリエステルフィルム表面に対する塗剤の濡れ性が良好 となり、 その結果、 塗剤の局所的なハジキ欠点等が抑制され、 均一な塗膜を得る ことができるばかり力、、 セラミックシートを剥離する際に発生するピンホール欠 点を抑制することができる。 The release layer in the present invention preferably contains 0.5% by mass or more and 10% by mass or less surfactant based on the solid content weight of the release layer. When the release layer contains the surfactant in an amount in the above numerical range, the release charge when unwinding the roll release film and the release when peeling the ceramic sheet from the release film Charging can be suppressed. In addition, when manufacturing the multilayer ceramic capacitor, it is possible to suppress the displacement of the internal electrodes. Furthermore, in the coating agent, by adding a surfactant, the wettability of the coating agent on the surface of the polyester film is improved. As a result, local repellency defects of the coating agent are suppressed, and a uniform coating film is formed. obtain As much as possible, it can suppress the pinhole defect generated when peeling the ceramic sheet.
このような観点から、 界面活性剤の含有量は、 離型層の全乾燥重量を基準とし て、 より好ましくは 1 . 0質量%以上 7 . 0質量%以下、 特に好ましくは 2 . 0 質量%以上 5 . 0質量%以下である。 含有量が 0 . 5質量%未満の場合は、 剥離 帯電が高くなつてしまう。 また、 ポリエステルフィルム表面に対して、 塗剤の濡 れ性が不十分となる傾向にある。 他方、 1 0質量%を超える場合は、 セラミック シートに対する剥離力が重剥離となる傾向にあり、 好ましくない。  From such a viewpoint, the content of the surfactant is more preferably 1.0% by mass or more and 7.0% by mass or less, and particularly preferably 2.0% by mass, based on the total dry weight of the release layer. More than 5.0% by mass. When the content is less than 0.5% by mass, the peeling charge becomes high. In addition, the wettability of the coating tends to be insufficient with respect to the polyester film surface. On the other hand, when it exceeds 10% by mass, the peeling force on the ceramic sheet tends to be heavy peeling, which is not preferable.
界面活性剤としては、 イオン系界面活性剤 (ァニオン系界面活性剤、 カチオン 系界面活性剤、 両性イオン系界面活性剤)、 および非イオン系界面活性剤 (ノニ オン系界面活性剤) を挙げることができる。 中でもノニオン系界面活性剤が好ま しい。 ァニオン系界面活性剤、 カチオン系界面活性剤、 両性イオン系界面活性剤 等のイオン系界面活性剤を用いた場合は、 これらの界面活性剤が離型層を形成す るためのシリコーン樹脂組成物に対して触媒毒となり、 シリコーン樹脂組成物が 十分に硬化しない場合がある。  Examples of surfactants include ionic surfactants (anionic surfactants, cationic surfactants, zwitterionic surfactants), and nonionic surfactants (nonionic surfactants). Can do. Of these, nonionic surfactants are preferred. When an ionic surfactant such as an anionic surfactant, a cationic surfactant, or an amphoteric surfactant is used, a silicone resin composition for these surfactants to form a release layer As a result, the silicone resin composition may not be sufficiently cured.
ノニオン系界面活性剤としては、 ポリオキシエチレン型、 多価アルコール脂肪 酸エステル型、 多価アルコールアルキルエーテル型、 含窒素型等の界面活性剤、 およびノニオン系のシリコーン系界面活性剤、 ノニオン系のフッ素系界面活性剤 等を例示することができる。  Nonionic surfactants include polyoxyethylene, polyhydric alcohol fatty acid ester, polyhydric alcohol alkyl ether, nitrogen-containing surfactants, nonionic silicone surfactants, nonionic surfactants, and the like. Examples thereof include fluorine-based surfactants.
ポリオキシエチレン型界面活性剤としては、 ポリ (ォキシエチレン) アルキル エーテル、 ポリ (ォキシエチレン) アルキルフエニルエーテル、 ポリ (ォキシェ チレン) ポリ (ォキシプロピレン) アルキルエーテル、 ポリ (ォキシエチレン) 脂肪酸エステル、 ポリ (ォキシエチレン) ソルビ夕ン脂肪酸エステル等を例示す ることができる。 中でも、 ポリ (ォキシエチレン) アルキルエーテルとしては、 ポリオキシエチレンラウリルエーテル、 ポリオキシエチレンミリスチルエーテル 、 ポリオキシエチレンセチルエーテル、 ポリオキシエチレンステアリルエーテル 、 ポリオキシエチレンォレイルエーテル等の、 炭素数 1 2以上のアルキル基を有 するポリ (ォキシエチレン) アルキルエーテルを好ましく例示することができる 。 かかるアルキル基は、 直鎖状であってもよいし、 分岐状であってもよい。 多価 アルコール脂肪酸エステル型界面活性剤としては、 プロピレンダリコール脂肪酸 エステル、 グリセリン脂肪酸エステル、 ポリグリセリン脂肪酸エステル、 ソルビ タン脂肪酸エステル、 ショ糖脂肪酸エステル等を例示することができる。 多価ァ ルコールアルキルエーテル型界面活性剤としては、 アルキルポリグリコキシド等 を例示することができる。 含窒素型界面活性剤としては、 アルキルジェ夕ノール アミド、 アルキルアミンォキシド等を例示することができる。 Polyoxyethylene surfactants include poly (oxyethylene) alkyl ether, poly (oxyethylene) alkylphenyl ether, poly (oxyethylene) poly (oxypropylene) alkyl ether, poly (oxyethylene) fatty acid ester, poly (oxyethylene) ) Examples include sorbin fatty acid esters. Among them, as poly (oxyethylene) alkyl ether, polyoxyethylene lauryl ether, polyoxyethylene myristyl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, etc. having 12 or more carbon atoms Preferred examples include poly (oxyethylene) alkyl ethers having an alkyl group. . Such an alkyl group may be linear or branched. Examples of the polyhydric alcohol fatty acid ester type surfactant include propylene dallicol fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester. Examples of the polyvalent alcohol alkyl ether type surfactant include alkyl polyglycoxide. Examples of the nitrogen-containing surfactant include alkyl ether amides and alkyl amine oxides.
シリコーン系界面活性剤としては、 ポリエーテル変性シリコーン、 ポリグリセ リン変性シリコーン等を例示することができる。 また、 かかる変性シリコーンの 構造としては、 側鎖変形型、 両末端変性型 (A B A型)、 片末端変性型 (A B型) 、 両末端側鎖変性型、 直鎖ブロック型 (A B n型)、 分岐型等に分類されるが、 いずれの構造のものであってもよい。  Examples of the silicone surfactant include polyether-modified silicone and polyglycerin-modified silicone. In addition, the structure of such modified silicone includes: side chain modified type, both end modified type (ABA type), one end modified type (AB type), both end side chain modified type, linear block type (AB n type), Although it is classified as a branched type, it may be of any structure.
本発明における界面活性剤としては、 中でも、 ポリオキシエチレン型界面活性 剤、 シリコーン系界面活性剤が好ましい。 これらは、 よりシリコーン樹脂組成物 の触媒毒となりにくく、 また十分な濡れ性を発現することができる。 特に好まし くはシリコーン系界面活性剤であり、 さらに触媒毒となりにくく、 離型特性をよ り優れたものとすることができ、 また剥離帯電防止性の向上効果をより高くする ことができる。  Of these, polyoxyethylene surfactants and silicone surfactants are preferred as the surfactant in the present invention. These are less likely to be a catalyst poison of the silicone resin composition, and can exhibit sufficient wettability. Particularly preferred is a silicone-based surfactant, which is less likely to be a catalyst poison, can have a more excellent release property, and can further enhance the effect of improving the antistatic properties of peeling.
なお、 本発明における離型層の厚み (すなわち乾燥後の厚み)は、 特に限定され るものではないが、 好ましくは 2 0 n m以上 9 0 n m以下である。 一般に、 2 0 n m未満では、 軽剥離力等の、 離型層としての効果を発揮することが困難となり 、 他方、 9 0 n mを超える場合は、 費用の割に得られる効果が少なくなる。  The thickness of the release layer (that is, the thickness after drying) in the present invention is not particularly limited, but is preferably 20 nm or more and 90 nm or less. In general, if it is less than 20 nm, it is difficult to exert the effect as a release layer such as a light peeling force. On the other hand, if it exceeds 90 nm, the effect obtained for the cost is reduced.
<離型フィルムの用途 > <Application of release film>
本発明の離型フィルムは、 樹脂シート、 セラミックシート等のシート成形用フ イルム、 あるいは、 ラベル用、 医療用、 事務用品用等の粘着用フィルムのセパレ 一夕一として用いることができる。  The release film of the present invention can be used as a separator for sheet forming films such as resin sheets and ceramic sheets, or adhesive films for labels, medical use, office supplies and the like.
とりわけ、 本発明の離型フィルムは、 セラミックシート製造の際に離型フィル ムに求められる性能を十分に満足していることから、 セラミックシート製造用の キャリアフィルムとして好適に用いることができる。 本発明の離型フィルムを用 いてセラミックシートを製造すると、 薄膜のセラミックシートが精度よく得られ 、 また、 得られた薄膜のセラミックシートは、 小型化,大容量化に伴って内部電 極の多層化が求められている積層セラミックコンデンサーに好適に用いることが できる。 In particular, the release film of the present invention sufficiently satisfies the performance required for the release film during the production of the ceramic sheet. It can be suitably used as a carrier film. When a ceramic sheet is produced by using the release film of the present invention, a thin ceramic sheet can be obtained with high precision, and the obtained thin ceramic sheet can be multilayered with internal electrodes as the size and capacity increase. Therefore, it can be suitably used for multilayer ceramic capacitors that are required to be made.
なお、 セラミックシートの製造にあたっては、 用意したセラミックスラリーを 、 本発明の離型フィルムの離型層表面に塗布し、 セラミックスラリーに含まれる 溶媒を乾燥除去すればよい。 セラミックスラリーの塗布方法としては、 特に限定 されるものではなく、 従来公知の塗布方法を用いることができる。 例えば、 セラ ミック粉体とバインダー剤等を溶媒に分散させたセラミックスラリーを、 リバ一 スロール法により塗布し、 加熱乾燥により溶媒を除去する方法を用いることがで きる。 用いるバインダー剤としては特に限定されず、 例えば、 ポリビニルブチラ 一ル等を用いることができる。 また、 用いる溶媒としても特に限定されず、 例え ば、 エタノール、 トルエン等を用いることができる。  In the production of the ceramic sheet, the prepared ceramic slurry may be applied to the surface of the release layer of the release film of the present invention, and the solvent contained in the ceramic slurry may be removed by drying. The method for applying the ceramic slurry is not particularly limited, and a conventionally known application method can be used. For example, a ceramic slurry in which ceramic powder and a binder agent are dispersed in a solvent can be applied by a reverse roll method, and the solvent can be removed by heat drying. It does not specifically limit as a binder agent to be used, For example, a polyvinyl butyral etc. can be used. Further, the solvent to be used is not particularly limited, and for example, ethanol, toluene and the like can be used.
ぐフィルムロール > Gu film roll>
本発明のフィルムロールは、 上記で得られた離型フィルムをロール状に巻き取 つたものである。 離型フィルムロールとしては、 上述した離型フィルムの製造ェ 程により直接得られる親ロールであってもよいし、 かかる親ロールを顧客要求の 幅および長さにスリッ卜されたスリットロールであってもよい。  The film roll of the present invention is obtained by winding the release film obtained above in a roll shape. The release film roll may be a parent roll obtained directly by the above-described release film manufacturing process, or a slit roll obtained by slitting the parent roll to the width and length required by the customer. Also good.
本発明のフィルムロールは、 ロール表層のビッカース硬度 (H v ) が 0以上 4 5 0以下である。 ロール表層のビッカース硬度 (H v ) を上記数値範囲とするこ とによって、 平坦性に優れた離型フィルムを得ることができる。 また、 離型フィ ルムロールにおいては、 巻きずれや皺が生じにくい。  The film roll of the present invention has a Vickers hardness (H v) of a roll surface layer of 0 or more and 45 or less. By setting the Vickers hardness (H v) of the roll surface layer within the above numerical range, a release film having excellent flatness can be obtained. In addition, in the release film roll, winding deviation and wrinkle hardly occur.
ビッカース力夕サとは、 対面角が 1 3 6度のダイヤモンド四角スィ圧子を用い、 試験面にピラミッド型のクボミをつけたときの荷重を、 永久クボミの対角線の長 さから求めた表面積で除した商をいい、 つぎの式で算出する。  Vickers force is a diamond square indenter with a diagonal angle of 1 to 36 degrees, and the load when a pyramid-shaped dent is attached to the test surface is divided by the surface area obtained from the diagonal length of the permanent dent. The quotient is calculated by the following formula.
H v = ( 2 · Ρ · s i n ( a / 2 ) ) / ά 2 H v = (2 · Ρ · sin (a / 2)) / ά 2
P :荷重 (k g )、 d :クボミの対角線の長さの平均 (mm)、 a :対面角 α=136度であるから、 上式は、 つぎのようになる。 P: Load (kg), d: Average length of diagonal lines (mm), a: Diagonal angle Since α = 136 degrees, the above equation becomes
Ην= 1. 8 δ 4 X P/d2 Ην = 1. 8 δ 4 XP / d 2
一般に、 フィルムをロール状に巻き取ると、 フィルム厚みが厚い部分は、 巻き 径が増大するにつれて巻き締まり、 所謂バンド状の欠点となる場合がある。 かか る部分においては、 フィルムは伸びてしまい、 フィルムの平坦性が損なわれる。 この傾向は、 ロール表層のピツカ一ス硬度 (Hv) が高くなるにつれてより顕著 なものとなる。 すなわち、 ロール表層のビッカース硬度 (Hv) が 450を超え る場合は、 卷き締まりが強すぎ、 フィルムの伸びが大きすぎ、 フィルムの平坦性 に劣るものとなる。 このような観点から、 ロール表層のピツカ一ス硬度 (Hv) の上限は、 好ましくは 430以下、 さらに好ましくは 420以下、 特に好ましく は 410以下である。 他方、 ロール表層のビッカース硬度 (Hv) が低すぎる場 合は、 巻きずれが生じやすくなる傾向にあるが、 このような問題が生じない限り 低いことが好ましい。 このような観点から、 ロール表層のピツカ一ス硬度 (H V) の下限は、 好ましくは 340以上、 さらに好ましくは 360以上、 特に好ま しくは 380以上である。  In general, when a film is wound into a roll shape, a portion where the film thickness is thick is tightened as the winding diameter increases, which may be a so-called band-shaped defect. In such areas, the film stretches and the flatness of the film is impaired. This tendency becomes more remarkable as the picker hardness (Hv) of the roll surface layer increases. That is, when the Vickers hardness (Hv) of the roll surface layer exceeds 450, the tightening is too strong, the film is stretched too much, and the flatness of the film is inferior. From such a viewpoint, the upper limit of the pickers hardness (Hv) of the roll surface layer is preferably 430 or less, more preferably 420 or less, and particularly preferably 410 or less. On the other hand, when the Vickers hardness (Hv) of the roll surface layer is too low, winding deviation tends to occur, but it is preferable that the roll surface layer is low as long as such a problem does not occur. From such a viewpoint, the lower limit of the pickers hardness (HV) of the roll surface layer is preferably 340 or more, more preferably 360 or more, and particularly preferably 380 or more.
上記のようなロール表層のピツカ一ス硬度 (Hv) は、 離型フィルムを巻き取 る際の巻き取り張力や二ップ圧力等の巻き取り条件を調整することにより達成す ることができる。  The picker hardness (Hv) of the roll surface as described above can be achieved by adjusting the winding conditions such as the winding tension and the nipping pressure when winding the release film.
巻き取り張力としては、 初期張力を 49 NZm以下とする必要がある。 初期張 力を上記数値範囲とすることによって、 ロール表層のビッカース硬度 (Hv) を 450以下とすることができる。 また、 巻き取り中の巻き込みエア一量が適度な 量となり、 フィルムの厚み斑の影響を低減することができ、 すなわち巻き締まり を抑制することができ、 平坦性により優れる。 また巻きずれを抑制することがで きる。 初期張力が高すぎる場合は、 ロール表層のビッカース硬度 (Hv) が高く なりすぎる傾向にある。 また、 巻き取り中の巻き込みエアー量が少なくなる傾向 にあり、 平坦性に劣る傾向にある。 このような観点から、 初期張力の上限は、 好 ましくは 48NZm以下、 さらに好ましくは 47 N/m以下である。 他方、 初期 張力が低すぎる場合は、 巻き取りが不安定となり、 フィルムが蛇行しやすくなる 傾向にあり、 ロール端面が不揃いとなったり、 皺が発生したり、 スリット不良と なったりする傾向にある力 これらの問題が生じない限り低いこと力好ましい。 このような観点から、 初期張力の下限は、 好ましくは 3 O NZm以上である。 な お、 かかる初期張力とは、 実質的に製品となる離型フィルムをロール状に巻き始 める際の張力を示し、 必ずしもコアに卷き始めた直後の張力を示すものではない。 すなわち、 一般的に、 コア表面の異物や傷等の影響を少なくする目的で、 コアに 巻き始めた直後から数 m乃至数十 mの長さまでの巻き取り張力を特に高くする手 法が用いられるが、 このような部分における巻き取り張力を示すものではない。 また、 張力テーパーをつけて、 初期張力に対して最終張力を低くする必要があ る。 具体的には、 初期張力に対する最終張力の比率 (張力テーパー率) を 8 0 % 以下とする必要がある。 張力テーパー率を上記数値範囲とすることによって、 口 ール表層のビッカース硬度 (H v ) を低くしたまま、 巻きずれを抑制することが できる。 張力テーパー率が高すぎる場合は、 ロール表層のビッカース硬度 (Η V ) が高くなりすぎる傾向にある。 このような観点から、 張力テーパー率の上限 は、 好ましくは 7 0 %以下、 さらに好ましくは 6 0 %以下である。 他方、 ロール 硬度の観点からは、 張力テーパー率は低いことが好ましいが、 張力テーパー率が 低すぎる場合は、 最終張力が低くなりすぎ、 ロール端面ずれ等の問題が生じやす くなる傾向にある。 このような観点から、 張力テーパー率の下限は、 好ましくは 3 0 %以上である。 本発明においては、 初期張力から最終張力までの間、 巻き取 り張力が 4 9 N/mを超えない限りにおいて、 巻き取り張力が増加する部分があ つてもよいが、 ロールの主たる部分において、 巻き取り張力を連続的に漸減させ る態様が好ましく、 一定の割合で連続的に漸減させる態様が好ましい。 張力テー パーを上記のような態様とすることによって、 ロールにおいて、 巻き取り方向の 内部応力を常に 0以上とすることができ、 横方向の折れ皺状欠点 (Tバー) ゃス キマ等の不具合を抑制することができる。 なお、 ここで、 ロールの主たる部分と は、 ロール径方向に、 コアの表層から 5 mm以上外側であって、 ロールの表層か ら 5 mm以上内側の部分を示す。 The initial tension must be 49 NZm or less as the winding tension. By setting the initial tension within the above numerical range, the Vickers hardness (Hv) of the roll surface layer can be made 450 or less. Further, the amount of air taken in during winding becomes an appropriate amount, and the influence of film thickness unevenness can be reduced, that is, winding tightening can be suppressed, and flatness is excellent. Moreover, winding deviation can be suppressed. When the initial tension is too high, the Vickers hardness (Hv) of the roll surface layer tends to be too high. In addition, the amount of air entrained during winding tends to decrease, and the flatness tends to be poor. From such a viewpoint, the upper limit of the initial tension is preferably 48 NZm or less, more preferably 47 N / m or less. On the other hand, if the initial tension is too low, the winding becomes unstable and the film tends to meander. Force that tends to cause uneven roll end faces, wrinkles, or slit failure. Low force is preferable unless these problems occur. From such a viewpoint, the lower limit of the initial tension is preferably 3 O NZm or more. The initial tension means a tension when the release film as a product is substantially wound in a roll shape, and does not necessarily indicate a tension immediately after starting to roll on the core. That is, in general, for the purpose of reducing the influence of foreign matter, scratches, etc. on the core surface, a method is used in which the take-up tension from several meters to several tens of meters is particularly high immediately after starting to be wound around the core. However, it does not indicate the winding tension in such a part. In addition, it is necessary to provide a tension taper to make the final tension lower than the initial tension. Specifically, the ratio of final tension to initial tension (tensile taper ratio) must be 80% or less. By setting the tension taper ratio within the above numerical range, it is possible to suppress the winding slip while keeping the Vickers hardness (H v) of the surface of the tool low. When the tension taper ratio is too high, the Vickers hardness (Η V) of the roll surface layer tends to be too high. From such a viewpoint, the upper limit of the tension taper rate is preferably 70% or less, and more preferably 60% or less. On the other hand, from the viewpoint of roll hardness, it is preferable that the tension taper rate is low. However, if the tension taper rate is too low, the final tension tends to be too low and problems such as roll end face misalignment tend to occur. From such a viewpoint, the lower limit of the tension taper rate is preferably 30% or more. In the present invention, there may be a portion where the winding tension increases from the initial tension to the final tension as long as the winding tension does not exceed 49 N / m, but in the main part of the roll, A mode in which the winding tension is gradually decreased continuously is preferable, and a mode in which the winding tension is gradually decreased at a constant rate is preferable. By adopting the tension taper as described above, the internal stress in the winding direction can always be 0 or more in the roll, and there is a problem such as lateral crease defects (T bars) Can be suppressed. Here, the main part of the roll means a part 5 mm or more outside the core surface layer and 5 mm or more inside the roll surface layer in the roll radial direction.
以上のような初期張力および張力テーパー率から、 最終張力は 3 9 NZm以下 とする必要がある。 最終張力を上記数値範囲とすることによって、 ロール表層の ビッカース硬度 (H v) を 4 5 0以下とすることができる。 最終張力が高すぎる 場合は、 ロール表層のビッカース硬度 (H v) が高くなりすぎる傾向にある。 こ のような観点から、 最終張力の上限は、 好ましくは 3 8 NZm以下、 さらに好ま しくは 3 O NZm以下である。 他方、 ロール硬度の観点からは、 最終張力は低い ことが好ましいが、 最終張力が低すぎる場合は、 巻き取りが不安定となり、 フィ ルムが蛇行しやすくなる傾向にあり、 ロール端面ずれ等の問題が生じやすくなる 傾向にある。 このような観点から、 最終張力の下限は、 好ましくは l O NZm以 上、 さらに好ましくは 1 S NZm以上である。 From the above initial tension and tension taper ratio, the final tension is less than 39 NZm It is necessary to. By setting the final tension within the above numerical range, the Vickers hardness (H v) of the roll surface layer can be made 4500 or less. When the final tension is too high, the Vickers hardness (H v) of the roll surface layer tends to be too high. From such a viewpoint, the upper limit of the final tension is preferably 3 8 NZm or less, and more preferably 3 O NZm or less. On the other hand, from the viewpoint of roll hardness, it is preferable that the final tension is low. However, if the final tension is too low, the winding becomes unstable and the film tends to meander, and problems such as roll end face misalignment occur. Tend to occur. From such a viewpoint, the lower limit of the final tension is preferably 1 O NZm or more, more preferably 1 S NZm or more.
ニップ圧力としては、 初期ニップ圧力を 2 0 O NZm以下とする必要がある。 初期ニップ圧力を上記数値範囲とすることによって、 ロール表層のピツカ一ス硬 度 (H v) を 4 5 0以下とすることができる。 また、 巻き取り中の巻き込みエア 一量が適度な量となり、 フィルムの厚み斑の影響を低減することができ、 すなわ ち巻き締まりを抑制することができ、 平坦性により優れる。 また巻きずれを抑制 することができる。 初期ニップ圧力が高すぎる場合は、 ロール表層のビッカース 硬度 (H v) が高くなりすぎる傾向にある。 また、 巻き取り中の巻き込みエアー 量が少なくなる傾向にあり、 平坦性に劣る傾向にある。 このような観点から、 初 期ニップ圧力の上限は、 好ましくは 1 8 O NZm以下、 さらに好ましくは 1 6 0 NZm以下、 特に好ましくは 1 2 O NZm以下である。 他方、 初期ニップ圧力が 低すぎる場合は、 巻き取りが不安定となる傾向にあり、 巻きずれや皺が発生しや すくなる傾向にある。 このような観点から、 初期ニップ圧力の下限は、 好ましく は 5 0 NZm以上、 さらに好ましくは 8 0 NZm以上である。  As the nip pressure, the initial nip pressure needs to be 20 O NZm or less. By setting the initial nip pressure within the above numerical range, the picker hardness (Hv) of the roll surface layer can be reduced to 4500 or less. In addition, the amount of air entrained during winding becomes an appropriate amount, which can reduce the influence of uneven thickness of the film, that is, it can suppress the tightening of the film, and is excellent in flatness. Moreover, winding deviation can be suppressed. When the initial nip pressure is too high, the Vickers hardness (H v) of the roll surface layer tends to be too high. In addition, the amount of air entrained during winding tends to decrease, and the flatness tends to be poor. From such a viewpoint, the upper limit of the initial nip pressure is preferably 1 8 O NZm or less, more preferably 1600 NZm or less, and particularly preferably 1 2 O NZm or less. On the other hand, when the initial nip pressure is too low, the winding tends to be unstable, and winding misalignment and wrinkles tend to occur. From such a viewpoint, the lower limit of the initial nip pressure is preferably 50 NZm or more, more preferably 80 NZm or more.
また、 ニップ圧力テーパーは、 つけなくても良いが、 一 1 0 %以上 1 0 %以下 の二ップ圧力テーパー率で二ップ圧力テーパーをつけることによって、 皺やピン プルの発生、 ロールの端面ずれを抑制することができる。  Also, the nip pressure taper does not have to be attached, but it is possible to generate wrinkles and pin pulls and roll rolls by applying a two-up pressure taper with a two-up pressure taper ratio of 10% to 10%. End face shift can be suppressed.
以上のような初期ニップ圧力およびニップ圧力テーパー率から、 最終ニップ圧 力は 2 2 O NZm以下であればよいが、 最終ニップ圧力が高すぎる場合は、 ロー ル表層のビッカース硬度 (H v) が高くなりすぎる傾向にある。 このような観点 から、 最終ニップ圧力の上限は、 好ましくは 17 ONZm以下、 さらに好ましく は 150NZm以下、 特に好ましくは 14 ONZm以下である。 他方、 最終ニッ プ圧力が低すぎる場合は、 巻き取りが不安定となる傾向にある。 このような観点 から、 最終ニップ圧力の下限は、 好ましくは 5 ONZm以上、 さらに好ましくは 70 N/m以上、 特に好ましくは 90 NZm以上.である。 実施例 From the above initial nip pressure and nip pressure taper ratio, the final nip pressure should be 2 2 O NZm or less, but if the final nip pressure is too high, the Vickers hardness (H v) of the roll surface layer will be It tends to be too high. Such a perspective Therefore, the upper limit of the final nip pressure is preferably 17 ONZm or less, more preferably 150 NZm or less, and particularly preferably 14 ONZm or less. On the other hand, if the final nip pressure is too low, the winding tends to be unstable. From such a viewpoint, the lower limit of the final nip pressure is preferably 5 ONZm or more, more preferably 70 N / m or more, and particularly preferably 90 NZm or more. Example
以下、 実施例および比較例を挙げて本発明をさらに具体的に説明するが、 本発 明はその要旨を越えない限り、 これらに限定されるものではない。  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these unless it exceeds the gist.
<測定 ·評価方法〉 <Measurement and evaluation method>
実施例および比較例においては、 以下の項目について、 以下の方法によって各 測定 ·評価を実施した。  In the examples and comparative examples, the following items were measured and evaluated by the following methods.
(1) 粒子の平均粒径  (1) Average particle size
島津製作所製、 商品名: C Pュ 50型セントリフューダル パーティクルサイ ズ アナライザ一 (C e n t r i f u g a 1 Pa r t i c l e S i z e A n a 1 y z e r) を用いて測定を行った。 測定により得られる遠心沈降曲線を基 に算出した各粒径の粒子と、 その存在量との積算曲線から、 50マスパーセント に相当する粒径である 「等価球直径」 を読み取り、 この値を粒子の平均粒径 (単 位: ; am) とした (Book 「粒度測定技術」 日刊工業新聞発行、 1975年、 頁 242〜頁 247参照)。  Made by Shimadzu Corp., trade name: Cp 50 type centrifudal particle size analyzer (Cen tri fuga 1 Par t c i c e S ize A n a 1 y ze r) was used for measurement. From the integrated curve of the particles of each particle size calculated based on the centrifugal sedimentation curve obtained by measurement and their abundance, read the “equivalent sphere diameter”, which is the particle size equivalent to 50 mass percent, and use this value as the particle size. (Refer to Book “Particle Size Measurement Technology” published by Nikkan Kogyo Shimbun, 1975, pages 242 to 247).
(2) 最大高さ (Rmax)  (2) Maximum height (Rmax)
J I S規格 (B 0601 :表面粗さ一定義および表示、 B 0651 :触針表面 粗さ測定器) に準拠し、 3次元表面粗さ計 (小坂研究所社製、 商品名: SE— 3 AK) により、 倍率: 2万倍、 走査ピッチ: 2/_im、 走査長: lmm、 走査本数 : 100本、 カットオフ: 0. 25 mmの条件にて、 その面積の最大高さを求め 、 これを 10点測定した結果の平均値を Rmax (単位: nm) とした。  Compliant with JIS standards (B 0601: Definition and display of surface roughness, B 0651: Probe surface roughness measuring instrument), 3D surface roughness meter (trade name: SE-3AK manufactured by Kosaka Laboratory) , Magnification: 20,000 times, Scanning pitch: 2 / _im, Scanning length: lmm, Scanning number: 100, Cut-off: 0.25mm, and find the maximum height of the area, 10 The average value of the point measurement results was defined as Rmax (unit: nm).
(3) 荷重下の伸長率 (SMD、 STD) (3) Elongation rate under load (S MD , S TD )
TMA (セイコーインスツルメンッ (株) 製、 商品名: SS 6000) を用い 、 湿度: 50%RH下において、 サンプゾレ幅: 4mm, チャック間: 2 Ommに て、 長手方向に、 単位面積あたりそれぞれ 0. 3MP a, 1. 0MPa、 2. 5 MP aの荷重をかけて、 開始温度: 30 から、 昇温速度: 10 :Z分で昇温さ せた。 100 に達したときのフィルムの伸縮挙動から、 下記式にて 0. 3MP a、 1. OMP a, 2. 5 MP aの各荷重条件下における伸長率 (SMD) (単位 : %) を求めた。 同様に、 幅方向には 0. 0 IMP aの荷重をかけて測定を実施 し、 力、かる荷重条件下における伸長率 (STD) (単位:%) を求めた。 なお、 伸 長率 (SMD、 STD) は、 各々 10枚の試料について採取し、 その平均値を求め た。 Using TMA (Seiko Instruments Inc., trade name: SS 6000) Humidity: Under 50% RH, sample width: 4mm, between chucks: 2 Omm, in the longitudinal direction, with a load of 0.3MPa, 1.0MPa and 2.5MPa respectively. The temperature was increased from a starting temperature of 30 to a heating rate of 10: Z minutes. From the expansion and contraction behavior of the film when reaching 100, the following formula was used to calculate the elongation rate (S MD ) (unit:%) under each load condition of 0.3MPa, 1. OMPa, 2.5MPa. It was. Similarly, measurement was performed with a load of 0.0 IMP a in the width direction, and the elongation rate (S TD ) (unit:%) under the load condition was determined. The elongation ratios ( SMD and STD ) were obtained from 10 samples each and the average value was obtained.
伸長率 (SMD、 STD) = (厶 MZM0) X I 00 ( )Elongation rate (S MD , S TD ) = (厶 MZM 0 ) XI 00 ()
△ M=M— MQ △ M = M— M Q
上記式中、 M。は、 熱処理前のフィルムの長手方向または幅方向の長さ、 Mは 、 熱処理後のフィルムの同方向の長さを示す。 すなわち、 伸長率 (SMD) およ び伸長率 (STD) は、 マイナスの場合にはフィルムが収縮していることを示し 、 プラスの場合にはフィルムが伸長していることを示す。 In the above formula, M. Is the length in the longitudinal or width direction of the film before heat treatment, and M is the length in the same direction of the film after heat treatment. That is, when the elongation rate (S MD ) and the elongation rate (S TD ) are negative, the film is contracted, and when it is positive, the film is stretched.
(4) 無荷重下の熱伸長率 (HSMD、 HSTD) (4) Thermal elongation rate under no load (HS MD , HS TD )
温度 100 に設定されたオーブン中に、 予め正確な長さを測定した長さ約 3 0 cm四方のフィルムサンプルを懸垂し、 無荷重下に 30分間保持処理した。 3 0分経過後、 オーブンからフィルムサンプルを取り出し、 室温に戻した後に、 そ の寸法変化を計測し、 下記式にて熱伸長率 (HSMD、_ HSTD) (単位:%) を求 めた。 なお、 伸長率 (HSMD、 HSTD) は、 10枚の試料について各々採取し 、 その平均値を求めた。 In an oven set at a temperature of 100, a film sample having a length of about 30 cm, which had been accurately measured in advance, was suspended and held for 30 minutes under no load. After 30 minutes, remove the film sample from the oven, return to room temperature, measure its dimensional change, and calculate the thermal elongation rate (HS MD , _ HS TD ) (unit:%) using the following formula. It was. The elongation rate (HS MD , HS TD ) was obtained for each of 10 samples, and the average value was obtained.
熱伸長率 (HSMD、 HSTD) = (AL/L0) X I 00 ( ) AL=L-L0 Thermal expansion rate (HS MD , HS TD ) = (AL / L 0 ) XI 00 () AL = LL 0
上記式中、 L。は、 熱処理前のフィルムの長手方向または幅方向の長さ、 Lは 、 熱処理後のフィルムの同方向の長さを示す。 すなわち、 熱伸長率 (HSMD) および熱伸長率 (HSTD) は、 マイナスの場合にはフィルムが収縮しているこ とを示し、 プラスの場合にはフィルムが伸長していることを示す。 (5) セラミックシートの表面平滑性評価 (実用特性代用評価) In the above formula, L. Is the length in the longitudinal direction or width direction of the film before heat treatment, and L is the length in the same direction of the film after heat treatment. That is, when the thermal elongation rate (HS MD ) and the thermal elongation rate (HS TD ) are negative, the film is contracted, and when it is positive, the film is expanded. (5) Evaluation of surface smoothness of ceramic sheet (Practical property substitution evaluation)
(条件 1) 離型フィルムの離型層側の面に、 下記組成からなるセラミックスラリ 一をダイコ一夕一を用いて塗布し、 乾燥後の厚みが 5 tmとなるセラミック層を 形成し、 200mを巻き取った。  (Condition 1) On the release layer side surface of the release film, a ceramic slurry having the following composition was applied using a Dyco overnight to form a ceramic layer with a thickness of 5 tm after drying. Rolled up.
(条件 2) 幅 450mm、 長さ 2, 000mの離型フィルムのロールを準備した 。 かかる離型フィルムの、 離型層側の表面に、 下記組成からなるセラミックスラ リーを、 ダイコー夕一を用いて、 6 OmZ分のフィルム搬送速度で塗布し、 乾燥 後の厚みが 5 zmとなるセラミック層を形成し、 長さ 1, 900mのセラミック 層 離型フィルム複合体を得て、 ロール状に巻き取った。  (Condition 2) A release film roll having a width of 450 mm and a length of 2,000 m was prepared. A ceramic rally having the following composition is applied to the surface of the release layer of such a release film at a film transport speed of 6 OmZ using Daiko Yui, and the thickness after drying becomes 5 zm. A ceramic layer was formed, and a ceramic layer release film composite having a length of 1,900 m was obtained and wound into a roll.
その後、 条件 1および 2から得られたセラミック層 離型フィルム複合体にお いて、 離型フィルムからセラミック層を剥離することによりセラミックシートを 得た。 得られたセラミックシート (測定対象面積: lm2) の両面について、 走 查型レーザ一顕微鏡 (レーザーテック社製) を用いて表面観察を行い、 下記の評 価基準にて表面平滑性の評価を実施した。 Thereafter, in the ceramic layer release film composite obtained from Conditions 1 and 2, the ceramic layer was peeled from the release film to obtain a ceramic sheet. The surface of the obtained ceramic sheet (measurement area: lm 2 ) is observed on both sides using a scanning laser microscope (made by Lasertec), and the surface smoothness is evaluated according to the following evaluation criteria. did.
[セラミックスラリー組成]  [Ceramic slurry composition]
•チタン酸バリウム (富士チタン社製、 平均粒径: 0. 7^m) : 100部 •ポリビニルプチラール樹脂 (積水化学社製、 商品名:エスレック BM— S) : 30部  • Barium titanate (manufactured by Fuji Titanium Co., Ltd., average particle size: 0.7 ^ m): 100 parts • Polyvinyl petital resin (manufactured by Sekisui Chemical Co., Ltd., trade name: S-REC BM—S): 30 parts
•可塑剤 (フタール酸ジォクチル) : 5部  • Plasticizer (dioctyl phthalate): 5 parts
· トルエン エタノ一ル混合溶媒 (混合比率: 6 : 4) : 200部  · Toluene ethanol mixed solvent (mixing ratio: 6: 4): 200 parts
[表面平滑性評価基準]  [Surface smoothness evaluation criteria]
〇:深さ0. 5 ^m以上のクレーター (凹み) が 2個 Zm2以下 ◯: 2 craters (dents) of depth of 0.05 ^ m or more Zm 2 or less
(実用上、 問題ないレベル)  (Practical, no problem level)
:深さ0. 5 m以上のクレーター (凹み) が 2個 Zm2を超え 6個 Zm 2未満 : 0.5 m or more craters (dents) exceeding 2 Zm 2 and 6 and less than Zm 2
(実用上、 問題となる場合があるレベル)  (Practical level that may cause problems)
X :深さ 0. 5 im以上のクレーター (凹み) が 6個 m2以上 X: 6 craters (recesses) with a depth of 0.5 im or more m 2 or more
(実用上、 問題あるレベル) (6) 離型フィルムの剥離帯電評価 (Practical problem level) (6) Release charge evaluation of release film
上記 (5) (条件 2) の評価を実施する際に、 離型フィルムのロールを巻き出 す際の剥離帯電量を測定した。 ロールから巻き出した直後の離型フィルム表面 ( ロールにおいて、 巻き内側の表面) から、 垂直上方、 距離 5 cmの位置に、 集中 電位測定器 (春日電機 (株) 製、 商品名:静電電位測定器 S V— 10) を設置し て、 温度: 22で、 湿度: 44 %RHの雰囲気下において剥離帯電量を測定した 。 離型フィルムのロールの全長 2, 000mを巻き出す間に、 100m毎に、 少 なくとも 15点剥離帯電量を計測し、 それらの平均値を離型フィルムの剥離帯電 量 (単位: kV) とした。 または、 下記の評価基準により評価を実施した。  When carrying out the evaluation of (5) (Condition 2) above, the peel charge amount when unrolling the release film roll was measured. Concentrated potential meter (made by Kasuga Denki Co., Ltd., product name: electrostatic potential) from the release film surface immediately after unwinding from the roll (on the roll, the inner surface of the roll) vertically upward, at a distance of 5 cm A measuring instrument SV-10) was installed, and the peel charge amount was measured in an atmosphere with a temperature of 22 and a humidity of 44% RH. While unrolling the entire length of the release film roll of 2,000m, measure the peel charge amount at least 15 points every 100m, and use the average value as the peel charge amount (unit: kV) of the release film. did. Alternatively, the evaluation was performed according to the following evaluation criteria.
[離型フィルム剥離帯電評価基準]  [Evaluation criteria for release film peeling electrification]
〇:剥離帯電量が 2. 0k V以下 (剥離帯電良好)  ○: Peeling charge amount is 2.0 kV or less
X:剥離帯電量が 2. O kVを超える (剥離帯電不良)  X: Peeling charge exceeds 2. O kV (Peeling charge failure)
(7) セラミックシートの剥離帯電評価  (7) Evaluation of peeling electrification of ceramic sheet
上記 (5) (条件 2) と同様の方法で、 セラミック層 Z離型フィルム複合体を 得た。 得られたセラミック層 Z離型フィルム複合体のセラミック廇の表面に、 金 属膜として、 スクリーン印刷法によって、 乾燥後の厚みが 3 mのパターン化さ れた N i電極印刷層を形成した。 次いで、 得られた金属膜 セラミック層/離型 フィルム複合体を、 30 Ommx 30 Ommの大きさに断裁し、 枚葉サンプル を得た。 得られた枚葉サンプルについて、 2 Omノ分の剥離速度にて、 離型フィ ルムから金属膜 Zセラミック層複合体を剥離し、 かかる剥離における剥離帯電量 を測定した。 剥離した金属膜/セラミック層複合体の、 セラミック層の表面から 距離 5 cmの位置に、 集中電位測定器 (春日電機 (株) 製、 商品名:静電電位測 定器 SV— 10) を設置して、 温度: 22 、 湿度: 44%RHの雰囲気下にお いて、 剥離帯電量を測定した。 測定は、 枚葉サンプル 100枚について実施し、 それらの平均値をセラミックシートの剥離帯電量 (単位: kV) とした。 または 、 下記の評価基準により評価を実施した。  A ceramic layer Z release film composite was obtained in the same manner as in (5) (Condition 2) above. On the surface of the ceramic layer of the obtained ceramic layer Z release film composite, a patterned Ni electrode printed layer having a thickness of 3 m after drying was formed as a metal film by screen printing. Next, the obtained metal film / ceramic layer / release film composite was cut into a size of 30 Omm × 30 Omm to obtain a single-wafer sample. With respect to the obtained single wafer sample, the metal film Z ceramic layer composite was peeled from the release film at a peeling speed of 2 Om, and the peel charge amount in the peeling was measured. Concentrated potential measuring device (manufactured by Kasuga Electric Co., Ltd., trade name: electrostatic potential measuring device SV-10) is installed at a distance of 5 cm from the surface of the ceramic layer of the peeled metal film / ceramic layer composite. The peel charge amount was measured in an atmosphere of temperature: 22 and humidity: 44% RH. The measurement was carried out on 100 single-wafer samples, and the average value was taken as the peel charge amount (unit: kV) of the ceramic sheet. Or, the evaluation was performed according to the following evaluation criteria.
[セラミックシート剥離帯電評価基準]  [Ceramic sheet peeling charge evaluation criteria]
〇:剥離帯電量が 20 k V以下 (剥離帯電良好) X :剥離帯電量が 20 k Vを超える (剥離帯電不良) ○: Peeling charge amount is 20 kV or less (Peeling charge is good) X: Peeling charge amount exceeds 20 kV (Peeling charge failure)
(8) セラミックシートの剥離評価  (8) Evaluation of peeling of ceramic sheet
上記 (7) における枚葉サンプルについて、 離型フィルムから金属膜ノセラミ ック層複合体を剥離した際に、 かかる剥離の状況を下記の評価基準により評価を 実施した。  Regarding the single-wafer sample in (7) above, when the metal film no ceramic layer composite was peeled from the release film, the state of the peeling was evaluated according to the following evaluation criteria.
[剥離評価基準]  [Peeling evaluation criteria]
◎ :剥離力が適度であり、 金属膜 Zセラミック層が破断せず、 離型フィルム にセラミック層の残存が見られない (実用上全く問題ないレベル)  ◎: Peeling force is moderate, metal film Z ceramic layer does not break, and no residual ceramic layer is seen in the release film (a level that causes no problem in practical use)
〇:剥離力が僅かに重いか、 金属膜 Zセラミック層に僅かな破断が見られた か、 離型フィルムにセラミック層の残存が僅かに見られた (実用上全く問題ない レベル)  ◯: Slightly heavy peeling force, slight breakage in the metal film Z ceramic layer, or a slight residual ceramic layer in the release film (no problem in practical use)
X :剥離力が重過ぎるか、 金属膜 セラミック層に破断が見られたか、 離 型フィルムにセラミツク層の残存が見られた (実用上問題あるレベル)  X: The peel force was too heavy, the metal film was broken in the ceramic layer, or the ceramic layer remained in the release film (practically problematic level)
(9-1) セラミックシートの積層評価 1 (実用特性代用評価)  (9-1) Lamination evaluation of ceramic sheets 1 (Practical property substitution evaluation)
上記 (5) (条件 1) で得られたセラミックシートの上に、 パターン印刷され た N i電極印刷層 (乾燥後の厚みが 3 / m) を積層した。 得られたセラミツクシ ート 電極積層体を用いて、 片側の端部を基準にして 10層積層し、 その際の電 極印刷層の位置ずれの程度につき、 下記の評価基準により位置ずれ評価を実施し た。  On the ceramic sheet obtained in (5) (Condition 1) above, a patterned Ni electrode printed layer (thickness after drying was 3 / m) was laminated. Using the obtained ceramic sheet electrode laminate, 10 layers were stacked based on the edge of one side, and the displacement evaluation was performed according to the following evaluation criteria for the degree of displacement of the electrode printing layer. did.
[位置ずれ評価基準]  [Position evaluation criteria]
◎:位置ずれが 200 m未満 (実用上全く問題ないレベル)  ◎: Misalignment is less than 200 m (a level where there is no practical problem)
〇:位置ずれが 200 zm以上 400 //m未満 (実用上問題ないレベル) X :位置ずれが 400 im以上 (実用上問題あるレベル)  ○: Misalignment is 200 zm or more and less than 400 // m (Practical problem level) X: Misalignment is 400 im or more (Practical problem level)
(9-2) セラミックシートの積層評価 2 (実用特性代用評価)  (9-2) Lamination evaluation of ceramic sheets 2 (Practical property substitution evaluation)
上記 (7) と同様の方法で得られた、 断裁および剥離後の金属膜 Zセラミック 層複合体を、 C C Dカメラにより位置を検出する方式のス夕ッキングマシンを用 いて 10層に積層し、 積層体を得た。 得られた積層体について、 1層目の金属膜 セラミック層複合体を基準として、 各層のずれの量を、 顕微鏡を用いて測定し 、 得られた値を位置ずれ (単位: / m) とした。 評価は、 下記の評価基準により 実施した。 なお、 積層は、 離型フィルムを剥離した後、 直ちに実施した。 The metal film Z ceramic layer composite after cutting and peeling, obtained by the same method as in (7) above, is laminated into 10 layers using a swinging machine that detects the position with a CCD camera. Got. About the obtained laminated body, the amount of deviation of each layer was measured using a microscope with reference to the first metal film ceramic layer composite. The obtained value was defined as a positional deviation (unit: / m). The evaluation was conducted according to the following evaluation criteria. Lamination was performed immediately after the release film was peeled off.
[位置ずれ評価基準]  [Position evaluation criteria]
◎:位置ずれが 200 Atm未満 (実用上全く問題ないレベル)  : Misalignment is less than 200 Atm (a level where there is no practical problem)
〇:位置ずれが 200 /zm以上 400 m未満 (実用上問題ないレベル) ○: Misalignment of 200 / zm or more and less than 400 m
X:位置ずれが 400 /zm以上 (実用上問題あるレベル) X: Misalignment of 400 / zm or more (practical problem level)
(10) ロール表層のビッカース硬度 (Hv)  (10) Vickers hardness of roll surface layer (Hv)
J I S Z2244 (1961) の手法にしたがって以下の方法にて測定した。 測定は、 実施例にて得られた離型フィルムロールの表層において、 端面から 5m mの部分を除き、 幅方向に 10点測定し、 最大値をロール表層のビッカース硬度 (Hv) とした。  Measurement was carried out by the following method according to the method of J I S Z2244 (1961). In the surface layer of the release film roll obtained in the example, 10 points were measured in the width direction excluding the 5 mm portion from the end face, and the maximum value was defined as the Vickers hardness (Hv) of the roll surface layer.
(11) 卷きずれ  (11) Slip
実施例にて得られた離型フィルムロールについて、 端面の巻きずれの状況を、 下記の評価基準により評価した。  About the release film roll obtained in the Example, the condition of the end face winding deviation was evaluated according to the following evaluation criteria.
[巻きずれ評価基準]  [Evaluation criteria for winding slip]
◎:巻きずれが lmm以下 (全く問題なく好適に使用できるレベル) 〇:巻きずれが 1 mmを超え 2 mm以下 (問題なく使用できるレベル) △:巻きずれが 2 mmを超え 3 mm以下 (僅かに問題があるが使用できるレ ベル)  ◎: Winding deviation is lmm or less (level that can be used suitably without any problem) ○: Winding deviation exceeds 1 mm and 2 mm or less (level that can be used without problems) △: Winding deviation exceeds 2 mm and 3 mm or less (slightly There is a problem with the level that can be used)
X:巻きずれが 3 mmを超える (問題があり使用できないレベル)  X: Winding deviation exceeds 3 mm (Unusable level due to problems)
(12) 平坦性  (12) Flatness
離型フィルムロールから、 長さ 2mのフィルムサンプルを採取し、 ロールに巻 かれていたときにロールの表面側であった側を上にして、 水平で平坦な台の上に 広げる。 10分静置後、 フィルムサンプルの全表面を観察し、 該表面に残存する 皺 (フルート、 上記台よりフィルムが浮いている部分) の長さ (単位: cm) を 計測し、 その合計を測定面積 (単位: m2) で除してフラットネス (単位: cm /m2) を算出した。 平坦性の評価は、 下記の評価基準により実施した。 Take a 2m long film sample from the release film roll and spread it on a flat, flat table with the side that was the surface of the roll when it was wound on the roll facing up. After standing for 10 minutes, observe the entire surface of the film sample, measure the length (unit: cm) of ridges (flutes, the part where the film is floating above the base) remaining on the surface, and measure the total The flatness (unit: cm 2 / m 2 ) was calculated by dividing by the area (unit: m 2 ). The flatness was evaluated according to the following evaluation criteria.
[平坦性評価基準] ◎:フラットネスが 28 cmZm2以下 (実用上全く問題ないレベル) 〇: フラットネスが 28 cmZm2を超え、 33 cm/m2以下 (実用上問 題ないレベル) [Flatness evaluation criteria] ◎: Flatness is 28 cmZm 2 or less (no problem for practical use) ○: Flatness exceeds 28 cmZm 2 and 33 cm / m 2 or less (no problem for practical use)
X: フラットネスが 33 cmZm2を超える (実用上問題あるレベル) (13) フィルムの厚み斑 X: Flatness exceeds 33 cmZm 2 (Practical problem level) (13) Thickness unevenness of film
マイクロメーター (アンリツ (株) 製、 商品名 「K一 402B」 型) を用いて、 フィルムの縦方向に 10 c m間隔で 10点、 かかる縦方向 10点の測定を横方向 に 10 cm間隔で 10列、 全部で 100点のフィルム厚みを測定し、 得られた 1 00点のフィルム厚みの平均値を算出してフィルム厚み (単位: ; am) とした。 次いで、 電子マイクロメ一夕一 (アンリツ (株) 製、 商品名 「K— 312A」 型を用いて、 針圧 30g、 走行速度 25mmZ秒でフィルムの縦方向 lm、 横方 向 450mmの長さに渡って測定し、 連続厚みチャートを得る。 得られたチヤ一 卜から縦方向、 横方向それぞれの最大厚み (単位: /m) と最小厚み (単位: m) を読み取り、 上記のフィルム厚みと合わせて下記式から厚み斑 (単位:%) を求めた。  Using a micrometer (manufactured by Anritsu Co., Ltd., trade name “K-I 402B” type), 10 points are measured at 10 cm intervals in the longitudinal direction of the film, and 10 measurements are taken at 10 cm intervals in the longitudinal direction. The film thickness of 100 points in total was measured, and the average value of the obtained film thicknesses of 100 points was calculated as the film thickness (unit: am). Next, using an electronic micrometer (Anritsu Co., Ltd., product name “K-312A” type), the length of the film was lm and the horizontal direction was 450 mm at a needle pressure of 30 g and a running speed of 25 mmZ seconds. Read the maximum thickness (unit: / m) and the minimum thickness (unit: m) in the vertical and horizontal directions from the obtained thickness, and match it with the above film thickness. Thickness spots (unit:%) were obtained from the following formula.
厚み斑 (%) = ((最大厚み一最小厚み) Zフィルム厚み) X I 00 (14) セラミックシートの厚み斑  Thickness unevenness (%) = ((maximum thickness minus minimum thickness) Z film thickness) X I 00 (14) Ceramic sheet thickness unevenness
上記 (5) (条件 2) で得られたセラミック層 Z離型フィルム複合体について、 マイクロメ一夕一 (アンリツ (株) 製、 商品名 「K_402 B」 型) を用いて厚 みを測定し、 次いで厚みを測定した箇所のセラミック層を完全に剥離して、 同一 箇所において再度厚みを測定し、 それらの差をセラミックシート厚みとして求め た。 かかる操作を、 縦方向に lm間隔で 10点、 力、かる縦方向 10点の測定を横 方向に 1 cm間隔で 10列、 全部で 100点について実施し、 得られた 100点 のセラミックシート厚みの平均値をセラミックシート厚み (単位: / m) とした。 次いで、 上記 100点の測定のうち、 最大のものを最大厚み (単位: 最 小のものを最小厚み (単位: / m) とし、 下記式から厚み斑 (単位:%) を求め た。  For the ceramic layer Z release film composite obtained in (5) (Condition 2) above, the thickness was measured using Micromechiichi (trade name “K_402 B”, manufactured by Anritsu Corporation) Next, the ceramic layer at the location where the thickness was measured was completely peeled off, the thickness was measured again at the same location, and the difference between them was determined as the thickness of the ceramic sheet. This operation was carried out for 10 points in the vertical direction at 10 lm intervals, 10 points in the vertical direction, and 10 rows in the horizontal direction at 10 cm intervals in total, 100 points in total. Was the ceramic sheet thickness (unit: / m). Next, among the above 100 measurements, the maximum thickness was the maximum thickness (unit: minimum thickness was the minimum thickness (unit: / m), and thickness spots (unit:%) were determined from the following formula.
厚み斑 (%) = ((最大厚み一最小厚み) Zセラミックシート厚み) X I 00 評価は、 下記の評価基準により実施した。 Thickness unevenness (%) = ((maximum thickness minus minimum thickness) Z ceramic sheet thickness) XI 00 Evaluation was carried out according to the following evaluation criteria.
[厚み斑評価基準]  [Thickness spot evaluation standard]
◎ :厚み斑が 2. 0%以下 (厚み斑に非常に優れ、 実用上全く問題ないレべ ル)  ◎: Thickness unevenness is 2.0% or less (excellent thickness unevenness, no problem in practical use)
〇:厚み斑が 2. 0%を超え、 3. 0%以下 (厚み斑に優れ、 実用上問題な いレベル)  ○: Thickness unevenness exceeds 2.0% and 3.0% or less (excellent thickness unevenness, practically no problem)
X:厚み斑が 3. 0%を超える (厚み斑に劣り、 実用上問題あるレベル) 実施例 1  X: Thickness unevenness exceeds 3.0% (Inferior thickness unevenness, practically problematic level) Example 1
[ポリエステルの製造]  [Production of polyester]
ジメチルテレフ夕レー卜 100部とエチレングリコール 70部との混合物に、 エステル交換触媒として齚酸マンガン ' 4水塩を、 得られるポリエステル中のマ ンガンの元素量が 80 p pmとなるように添加し、 内温を 150でから徐々に上 げながらエステル交換反応を行った。 エステル交換反応が 95%となった時点で 、 安定剤として亜リン酸を 0. 01部添加し、 充分撹拌した後、 三酸化アンチモ ンを 0. 03部添加した。 引き続き、 系内に混入した水を充分留出させた後、 内 添フイラ一 (易滑剤) として、 平均粒径 0. 6 z^rnの合成炭酸カルシウム粒子を 、 得られるポリエステルの質量に対して 0. 2質量%となるように添加し、 充分 に撹拌した。 次いで、 反応生成物を重合反応器に移し、 高温真空下 (最終内温 2 95で) にて重縮合を行うことにより、 固有粘度 0. 65 (35 、 オルトクロ ロフエノール中) のポリエチレンテレフ夕レート組成物を得た。  Manganese oxalate 'tetrahydrate as a transesterification catalyst was added to a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol so that the amount of mangan element in the resulting polyester was 80 ppm. The transesterification was carried out while gradually raising the internal temperature from 150. When the transesterification reached 95%, 0.01 part of phosphorous acid was added as a stabilizer, and after sufficient stirring, 0.03 part of antimony trioxide was added. Subsequently, after sufficiently distilling water mixed in the system, synthetic calcium carbonate particles having an average particle size of 0.6 z ^ rn as an internal filler (sliding agent) with respect to the mass of the obtained polyester 0.2% by mass was added and stirred thoroughly. The reaction product is then transferred to a polymerization reactor and subjected to polycondensation under a high temperature vacuum (final internal temperature of 295), thereby producing a polyethylene terephthalate composition having an intrinsic viscosity of 0.65 (35 in orthochlorophenol). I got a thing.
[塗剤の調製]  [Preparation of paint]
88. 5部の脱イオン水、 10部のシリコーンェマルジヨン 400 E (Wa c k e r S i l i c on e s社製、 シリコーン: ビニル基を有するメチルポリシ ロキサン、 架橋剤が添加されている場合には、 白金触媒と早熟な反応を防止する ための禁止剤が併用されている)、 1部の架橋剤 V 72 (W ac ke r S i 1 i c one s社製、 メチル水素ポリシロキサンのェマルジヨンであり、 メチルシ ロキサンの中で二重結合と反応する) に、 0. 5部のシランカップリング剤 (信 越シリコーン社製、 商品名: K B M— 4 0 3 ) を添加することにより塗剤を得た 。 なお、 固形分重量は 5質量%であった。 88. 5 parts deionized water, 10 parts silicone emulsion 400 E (from Wacker Silicones, silicone: methylpolysiloxane with vinyl group, platinum catalyst if crosslinker is added) ), 1 part of the cross-linking agent V 72 (Wacker Si 1 ic one s, methyl hydrogen polysiloxane emulsion, methyl siloxane Reacts with a double bond in) and 0.5 parts of a silane coupling agent A coating agent was obtained by adding Koshi Silicone Co., Ltd., trade name: KBM—40 3). The solid content was 5% by mass.
[未延伸ポリエステルフィルム成形工程]  [Unstretched polyester film forming process]
上記で得られたポリエチレンテレフ夕レート組成物を、 1 7 0 でポリマーの 水分率が 0 . 0 5質量%になるまで 5時間乾燥した。 弓 Iき続き、 乾燥されたポリ エチレンテレフ夕レート組成物を押し出し機に供給し、 溶融温度 2 8 0〜3 0 0 にて溶融し、 平均目開き 1 1 μ ιηの鋼線フィルターを用いて高精度ろ過した後 、 押出しダイを用いて、 静電密着法にて冷却ドラムに接触急冷させることにより 、 厚さ 4 5 0 mの未延伸ポリエステルフィルムを得た。  The polyethylene terephthalate composition obtained above was dried for 5 hours until the water content of the polymer at 170 was 0.05% by mass. Continuing with the bow I, the dried polyethylene terephthalate composition was fed to the extruder and melted at a melting temperature of 28.degree. To 30.000, using a steel wire filter with an average opening of 11.1 .mu..eta. After high-precision filtration, an unstretched polyester film having a thickness of 4500 m was obtained by using an extrusion die and rapidly cooling the cooling drum by electrostatic contact.
[一次延伸工程]  [Primary stretching process]
得られた未延伸ポリエステルフィルムを、 7 5でで予熱し、 引き続き、 低速- 高速のロール間にてフィルム温度 1 0 5 で長手方向に 3 . 6倍に延伸し、 その '後、 急冷することにより長手方向 (縦方向) 延伸ポリエステルフィルムを得た。  The resulting unstretched polyester film is preheated at 75, and subsequently stretched 3.6 times in the longitudinal direction at a film temperature of 105 between low-speed and high-speed rolls, and then rapidly cooled. Thus, a stretched polyester film was obtained in the longitudinal direction (longitudinal direction).
[インライン塗布工程]  [Inline coating process]
次いで、 得られた長手方向延伸ポリエステルフィルムに、 上記で調整した塗剤 を、 乾燥後の厚みが 4 0 n mになるよう塗布することにより、 塗膜を有するポリ エステルフィルムを得た。  Next, a polyester film having a coating film was obtained by applying the coating agent prepared above to the obtained longitudinally stretched polyester film so that the thickness after drying was 40 nm.
[二次延伸工程]  [Secondary stretching process]
続いて、 得られた塗膜を有するポリエステルフィルムをステン夕一に供給し、 1 0 5 、 1 1 5での 2ゾーンにおいて、 それぞれ 2秒間ずつ予備加熱した後、 1 2 0 、 1 3 0 、 1 4 5 :、 1 5 5 の 4ゾーンにおいて、 それぞれ 2秒間 ずつ、 合計で長手方向に垂直な方向 (幅方向) の延伸倍率 (横延伸倍率) が 4. 1倍となるように均一に延伸し、 二軸延伸ポリエステルフイルムとした。  Subsequently, a polyester film having the obtained coating film was supplied to the stainless steel, and after preheating for 2 seconds each in two zones at 1 0 5 and 1 15, 1 2 0, 1 3 0, 1 4 5: In 4 zones of 1 5 5, stretched uniformly so that the stretching ratio (transverse stretching ratio) in the direction perpendicular to the longitudinal direction (width direction) is 4.1 times in total for 2 seconds each. A biaxially stretched polyester film was obtained.
[熱固定工程]  [Heat setting process]
得られた二軸延伸ポリエステルフィルムにっき、 2 1 0で、 2 2 5で、 1 9 5 の 3ゾーンにおいて、 それぞれ 2秒間、 合計 6秒間の熱固定を実施し、 最後の 1 9 5 の熱固定ゾーンにおいては、 長手方向と垂直な方向 (幅方向) に 2 . δ %の弛緩処理を実施することにより、 全厚み 3 1 mの離型フィルムを得た。 得 られた離型フィルムを用いて、 各種の測定 ·評価を行った。 結果を表 1に示す。 実施例 2 The obtained biaxially stretched polyester film was heat-fixed at 2 1 0, 2 2 5 and 3 zones of 1 9 5 for 2 seconds each for a total of 6 seconds, and the final heat fix of 1 95 5 In the zone, a release film having a total thickness of 31 m was obtained by performing 2.δ% relaxation treatment in the direction (width direction) perpendicular to the longitudinal direction. Gain Various measurements and evaluations were performed using the obtained release film. The results are shown in Table 1. Example 2
二次延伸工程において、 長手方向に垂直な方向 (幅方向) の延伸倍率を 4. 5 倍とし、 熱固定工程の 3ゾーン目における弛緩量を 4. 0 %とする以外は、 実施 例 1と同様にして離型フィルムを得た。 得られた離型フィルムを用いて、 各種の 測定 ·評価を行った結果を表 1に示す。  In the secondary stretching process, the stretching ratio in the direction perpendicular to the longitudinal direction (width direction) was 4.5 times, and the amount of relaxation in the third zone of the heat setting process was 4.0%. A release film was obtained in the same manner. Table 1 shows the results of various measurements and evaluations using the obtained release film.
比較例 1 Comparative Example 1
離型フィルムの製造において、 インラインで水系の熱硬化型シリコーン組成物 力^なる離型剤塗液を塗布しない以外は、 実施例 1と同様にして、 離型層を有し ない二軸延伸ポリエステルフィルムを得た。  Biaxially stretched polyester without a release layer in the same manner as in Example 1 except that in the production of the release film, a release agent coating solution that is a water-based thermosetting silicone composition is applied in-line. A film was obtained.
また、 付加型シリコーン系化合物 (東芝シリコーン社製、 商品名: T P R— 6 7 2 1 ) のトルエン溶液 (固形分濃度: 3質量%) に、 P t触媒 (東芝シリコー ン社製、 商品名: C M 6 7 0 ) を、 付加型シリコーン型化合物の固形分 1 0 0質 量部に対して 1質量部となるよう加えて、 離型剤塗液を調整した。  In addition, a toluene solution (solid content concentration: 3% by mass) of an addition-type silicone compound (Toshiba Silicone, trade name: TPR-6 7 2 1) is mixed with a Pt catalyst (Toshiba Silicone, trade name: CM 6700) was added so as to be 1 part by mass with respect to 100 parts by mass of the solid content of the addition-type silicone compound to prepare a release agent coating solution.
引き続き、 上記で得られた離型層を有しない二軸延伸ポリエステルフィルム口 —ルを巻き出し、 巻き出された二軸延伸ポリエステルフィルムの長手方向に垂直 な方向 (幅方向) における中央部に、 上記で調整した離型剤塗液を、 塗布量 (w e t ) 6 g Zm2となるよう塗布し、 下方および上方の空気流吹き出し口の間隔 がそれぞれ 3 8 c mの空気浮上搬送式乾燥装置を用いて、 搬送張力: 2 , 0 0 0 k P a , 乾燥温度: 1 6 0でで 1 6秒間乾燥させて離型層を形成し、 離型層の乾 燥硬化後の重量が 0 . 2 g Zm2の離型フィルムを得た。 得られた離型フィルム を用いて、 各種の測定 ·評価を行った結果を表 1に示す。 Subsequently, the biaxially stretched polyester film mouth having no release layer obtained above was unwound, and the biaxially stretched polyester film unwound in the center in the direction (width direction) perpendicular to the longitudinal direction, Apply the release agent coating solution adjusted as described above to a coating amount (wet) of 6 g Zm 2 and use an air levitation conveyor type drying device in which the distance between the lower and upper air flow outlets is 38 cm. Then, the release tension is 2,100 kPa, the drying temperature is 160, and the release layer is formed by drying for 16 seconds. The weight of the release layer after drying and curing is 0.2 g. A release film of Zm 2 was obtained. Table 1 shows the results of various measurements and evaluations using the obtained release film.
比較例 2 Comparative Example 2
一次延伸工程において、 長手方向 (縦方向) の延伸倍率を 3 . 0倍とした以外 は、 実施例 1と同様にして離型フィルムを得た。 得られた離型フィルムを用いて 、 各種の測定 ·評価を行った結果を表 1に示す。  A release film was obtained in the same manner as in Example 1 except that in the primary stretching step, the stretching ratio in the longitudinal direction (longitudinal direction) was 3.0. Table 1 shows the results of various measurements and evaluations using the obtained release film.
比較例 3 Comparative Example 3
一次延伸工程における長手方向 (縦方向) の延伸倍率を 4. 8倍、 二次延伸ェ 程における長手方向に垂直な方向 (幅方向) の延伸倍率を 3 . 0倍とした以外は 、 実施例 1と同様にして離型フィルムを得た。 得られた離型フィルムを用いて、 各種の測定 ·評価を行った結果を表 1に示す。 The stretching ratio in the longitudinal direction (longitudinal direction) in the primary stretching process is 4.8 times, secondary stretching A release film was obtained in the same manner as in Example 1 except that the draw ratio in the direction perpendicular to the longitudinal direction (width direction) was 3.0. Table 1 shows the results of various measurements and evaluations using the obtained release film.
表 1table 1
Figure imgf000041_0001
Figure imgf000041_0001
0 実施例 3 0 Example 3
[ポリエステルの製造]  [Production of polyester]
実施例 1と同様にして、 固有粘度 0. 65 (35 、 オルトクロ口フエノール 中) のポリエチレンテレフタレート組成物を得た。  In the same manner as in Example 1, a polyethylene terephthalate composition having an intrinsic viscosity of 0.65 (35, in orthoclonal phenol) was obtained.
[塗剤の調製]  [Preparation of paint]
87部の脱イオン水に、 攪拌下において、 主剤として 10部のシリコーンエマ ルジヨン 400E (W a c k e r S i l i c on e s社製、 シリコーン: ビニ ル基を有するメチルポリシロキサン、 架橋剤が添加されている場合は、 白金触媒 と早熟な反応を防止するための禁止剤が併用されている、 固形分濃度 50質量% )、 1部の架橋剤 V 72 (Wa c k e r S i 1 i c o n e s社製、 メチル水素ポ リシロキサンのェマルジヨンであり、 メチルシロキサンの中で二重結合と反応す る、 固形分濃度 50質量%)、 0. 3部のシランカップリング剤 (信越シリコー ン (株) 製、 商品名: KBM— 403)、 および、 ノニオン系の界面活性剤とし て 0. 15部のポリオキシエチレンォレイルエーテル (花王 (株) 製、 商品名: ェマルゲン 404) (S 1成分) を添加することにより塗剤を得た。 なお、 塗剤 の固形分濃度は 6. 0質量%であった。 また、 この塗剤から得られる離型層 10 0質量%における各成分の固形分比率は、 以下の通りとなる。  In 87 parts of deionized water, with stirring, 10 parts of silicone emulsion 400E (manufactured by Wacker Silicones, silicone: methylpolysiloxane having vinyl group, crosslinking agent added) Is used in combination with a platinum catalyst and an inhibitor to prevent premature reaction, solid content 50 mass%), 1 part of cross-linking agent V 72 (made by Wacker Si 1 icones, methyl hydrogen poly Siloxane emulsion, which reacts with double bonds in methylsiloxane, solid content concentration 50% by mass), 0.3 part silane coupling agent (manufactured by Shin-Etsu Silicon Co., Ltd., trade name: KBM— 403), and 0.15 part of polyoxyethylene oleyl ether (trade name: Emulgen 404) (S 1 component) by adding 0.15 part of a nonionic surfactant. Obtained. The solid content concentration of the coating was 6.0% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
主剤: 84. 1質量%  Main agent: 84. 1% by mass
架橋剤: 8. 4質量%  Cross-linking agent: 8.4% by mass
シランカップリング剤: 5. 0質量%  Silane coupling agent: 5.0% by mass
界面活性剤: 2. 5質量%  Surfactant: 2.5% by mass
[未延伸ポリエステルフィルム成形工程]  [Unstretched polyester film forming process]
上記で得られたポリエチレンテレフ夕レート組成物を、 ポリエチレンテレフ夕 レート組成物の水分率が 0. 05質量%以下となるまで、 170でで 5時間乾燥 した。 引き続き、 乾燥されたポリエチレンテレフ夕レート組成物を押し出し機に 供給し、 溶融温度 280〜300でにて溶融し、 平均目開き 11 imの鋼線フィ ルターを用いて高精度ろ過した後、 ダイより押し出して溶融シートとし、 かかる 溶融シートを静電密着法にて冷却ドラムに接触急冷させることにより、 厚さ 45 0 mの未延伸ポリエステルフィルムを得た。 The polyethylene terephthalate composition obtained above was dried at 170 for 5 hours until the water content of the polyethylene terephthalate composition was 0.05% by mass or less. Subsequently, the dried polyethylene terephthalate composition was supplied to the extruder, melted at a melting temperature of 280 to 300, and filtered with high precision using a steel wire filter with an average opening of 11 im. By extruding the molten sheet into a molten sheet and quenching the molten sheet with a cooling drum by electrostatic contact method, a thickness of 45 An unstretched polyester film of 0 m was obtained.
[一次延伸工程]  [Primary stretching process]
得られた未延伸ポリエステルフィルムを用いて、 実施例 1と同様にして、 長手 方向一軸延伸ポリエスエルフィルムを得た。  Using the obtained unstretched polyester film, a uniaxially stretched polyester film in the longitudinal direction was obtained in the same manner as in Example 1.
[インライン塗布工程]  [Inline coating process]
次いで、 得られた長手方向一軸延伸ポリエステルフィルムに、 上記で調製した 塗剤を、 得られる離型フィルムにおける離型層の厚みが 4 0 n mとなるよう塗布 することにより、 塗膜を有するポリエステルフィルムを得た。 なお、 塗剤の塗布 は、 未延伸ポリエステルフィルム成形工程において冷却ドラムに接触しなかった 面に施した。  Next, a polyester film having a coating film is applied to the obtained longitudinally uniaxially stretched polyester film by applying the coating agent prepared above so that the thickness of the release layer in the obtained release film is 40 nm. Got. The coating was applied to the surface that did not contact the cooling drum in the unstretched polyester film forming process.
[二次延伸工程]  [Secondary stretching process]
続いて、 得られた塗膜を有するポリエステルフィルムをステン夕一に供給し、 実施例 1と同様にして、 二軸延伸ポリエステルフィルムとした。  Subsequently, the polyester film having the obtained coating film was supplied to stainless steel, and a biaxially stretched polyester film was obtained in the same manner as in Example 1.
[熱固定工程]  [Heat setting process]
得られた二軸延伸ポリエステルフィルムにっき、 実施例 1と同様にして、 全厚 み 3 1 i mの離型フィルムを得た。 得られた離型フィルムを用いて、 各種の測定 •評価を行った。 結果を表 2に示す。  The obtained biaxially stretched polyester film was cut in the same manner as in Example 1 to obtain a release film having a total thickness of 31 1 m. Various measurements and evaluations were performed using the obtained release film. The results are shown in Table 2.
実施例 4 Example 4
各工程における各条件を以下の通りとする以外は、 実施例 3と同様にして離型 フィルムを得た。 得られた離型フィルムを用いて、 各種の測定 ·評価を行った結 果を表 2に示す。  A release film was obtained in the same manner as in Example 3 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
[塗剤の調製]  [Preparation of paint]
界面活性剤として、 ポリオキシエチレンォレイルエーテルに替えて、 0 . 0 6 部のノニオン系のシリコーン系界面活性剤であるポリオキシエチレン ·メチルポ リシロキサン共重合体 (日本ェマルジヨン (株) 製、 商品名: E MA L E X S S - 5 0 5 1 ) ( S 2成分) を用いた。 なお、 塗剤の固形分濃度は 6 . 0質量% であった。 また、 この塗剤から得られる離型層 1 0 0質量%における各成分の固 形分比率は、 以下の通りとなる。 主剤: 85. 4質量% As a surfactant, instead of polyoxyethylene glycol ether, 0.06 part nonionic silicone surfactant polyoxyethylene methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd.) Name: E MA LEXSS-5 0 5 1) (S 2 component) was used. The solid content concentration of the coating material was 6.0% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows. Main agent: 85.4% by mass
架橋剤: 8. 5質量%  Cross-linking agent: 8.5% by mass
シラン力ップリング剤: 5. 1質量%  Silane power pulling agent: 5.1% by mass
界面活性剤: 1. 0質量%  Surfactant: 1.0% by mass
[二次延伸工程]  [Secondary stretching process]
横延伸倍率を 4. 5倍とした。  The transverse draw ratio was 4.5 times.
[熱固定工程]  [Heat setting process]
弛緩処理における弛緩量を 4. 0%とした。  The amount of relaxation in the relaxation treatment was 4.0%.
実施例 5 Example 5
各工程における各条件を以下の通りとする以外は、 実施例 4と同様にして離型 フィルムを得た。 得られた離型フィルムを用いて、 各種の測定 ·評価を行った結 果を表 2に示す。  A release film was obtained in the same manner as in Example 4 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
[塗剤の調製]  [Preparation of paint]
界面活性剤として、 0. 15部のノニオン系のシリコーン系界面活性剤である ポリオキシエチレン ·メチルポリシロキサン共重合体 (日本ェマルジヨン (株) 製、 商品名: EMALEX S S— 5051) (S 2成分) を用いた。 なお、 塗 剤の固形分濃度は 6. 0質量%であった。 また、 この塗剤から得られる離型層 1 00質量%における各成分の固形分比率は、 以下の通りとなる。  0.15 part nonionic silicone surfactant polyoxyethylene / methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd., trade name: EMALEX SS-5051) (S 2 component) ) Was used. The solid content concentration of the coating was 6.0% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
主剤: 84. 1質量%  Main agent: 84. 1% by mass
架橋剤: 8. 4質量%  Cross-linking agent: 8.4% by mass
シラン力ップリング剤: 5. 0質量%  Silane power pulling agent: 5.0% by mass
界面活性剤: 2. 5質量%  Surfactant: 2.5% by mass
実施例 6 Example 6
各工程における各条件を以下の通りとする以外は、 実施例 4と同様にして離型 フィルムを得た。 得られた離型フィルムを用いて、 各種の測定 ·評価を行った結 果を表 2に示す。  A release film was obtained in the same manner as in Example 4 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
[塗剤の調製]  [Preparation of paint]
界面活性剤として、 0. 3部のノニオン系のシリコーン系界面活性剤であるポ リオキシエチレン ·メチルポリシロキサン共重合体 (日本ェマルジヨン (株) 製As the surfactant, 0.3 part of a nonionic silicone surfactant Lioxyethylene methylpolysiloxane copolymer (Nippon Emulsion Co., Ltd.)
、 商品名: EMALEX SS— 5051) (S 2成分) を用いた。 なお、 塗剤 の固形分濃度は 6. 2質量%であった。 また、 この塗剤から得られる離型層 10 0質量%における各成分の固形分比率は、 以下の通りとなる。 Trade name: EMALEX SS-5051) (S 2 component) was used. The solid content of the coating was 6.2% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
主剤: 82. 0質量%  Main agent: 82.0% by mass
架橋剤: 8. 2質量%  Crosslinking agent: 8.2% by mass
シラン力ップリング剤: 4. 9質量%  Silane power pulling agent: 4.9% by mass
界面活性剤: 4. 9質量%  Surfactant: 4.9% by mass
実施例 7 Example 7
各工程における各条件を以下の通りとする以外は、 実施例 4と同様にして離型 フィルムを得た。 得られた離型フィルムを用いて、 各種の測定 ·評価を行った結 果を表 2に示す。  A release film was obtained in the same manner as in Example 4 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
[塗剤の調製]  [Preparation of paint]
界面活性剤として、 0. 6部のノニオン系のシリコーン系界面活性剤であるポ リオキシエチレン.'メチルポリシロキサン共重合体 (日本ェマルジヨン (株) 製 、 商品名: EMALEX S S— 5051) (S 2成分) を用いた。 なお、 塗剤 の固形分濃度は 6. 5質量%であった。 また、 この塗剤から得られる離型層 10 0質量%における各成分の固形分比率は、 以下の通りとなる。  As a surfactant, 0.6 part of a nonionic silicone surfactant, polyoxyethylene.'methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd., trade name: EMALEX SS-5051) (S Two components) were used. The solid content concentration of the coating was 6.5% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
主剤: 78. 1質量%  Main agent: 78. 1% by mass
架橋剤: 7. 8質量%  Cross-linking agent: 7.8% by mass
シラン力ップリング剤: 4. 7質量%  Silane power pulling agent: 4.7% by mass
界面活性剤: 9. 4質量%  Surfactant: 9.4% by mass
比較例 4 Comparative Example 4
各工程における各条件を以下の通りとする以外は、 実施例 4と同様にして離型 フィルムを得た。 得られた離型フィルムを用いて、 各種の測定,評価を行った結 果を表 2に示す。  A release film was obtained in the same manner as in Example 4 except that the conditions in each step were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
[塗剤の調製]  [Preparation of paint]
界面活性剤を用いなかった。 なお、 塗剤の固形分濃度は 5. 9質量%であった 。 また、 この塗剤から得られる離型層 100質量%における各成分の固形分比率 は、 以下の通りとなる。 No surfactant was used. The solid content concentration of the coating was 5.9% by mass. . In addition, the solid content ratio of each component in the release layer 100% by mass obtained from this coating composition is as follows.
主剤: 86. 2質量% '  Main ingredient: 86. 2% by mass'
架橋剤: 8. 6質量%  Cross-linking agent: 8.6% by mass
シランカップリング剤: 5. 2質量%  Silane coupling agent: 5.2% by mass
界面活性剤: 0質量%  Surfactant: 0% by mass
[一次延伸工程]  [Primary stretching process]
縦延伸倍率を 3. 0倍とした。  The longitudinal draw ratio was 3.0 times.
比較例 5 Comparative Example 5
以下の工程における各条件を以下の通りとする以外は、 比較例 4と同様にして 離型フィルムを得た。 得られた離型フィルムを用いて、 各種の測定,評価を行つ た結果を表 2に示す。  A release film was obtained in the same manner as in Comparative Example 4 except that the conditions in the following steps were as follows. Table 2 shows the results of various measurements and evaluations using the obtained release film.
[一次延伸工程]  [Primary stretching process]
縦延伸倍率を 4. 8倍とした。  The longitudinal draw ratio was 4.8 times.
[二次延伸工程]  [Secondary stretching process]
横延伸倍率を 3. 0倍とした。  The transverse draw ratio was 3.0 times.
比較例 6 Comparative Example 6
塗剤を塗布しない以外は、 実施例 3と同様にして、 離型層を有さない二軸延伸 ポリエステルフィルムを得た。  A biaxially stretched polyester film having no release layer was obtained in the same manner as in Example 3 except that the coating agent was not applied.
次いで、 付加重合タイプのシリコーン樹脂組成物 (東芝シリコーン (株) 製、 商品名: TPR— 6721) のトルエン溶液 (固形分濃度: 3質量%) に、 P t 触媒 (東芝シリコーン (株) 製、 商品名: CM 670) を、 付加重合タイプのシ リコーン樹脂組成物の固形分 100質量部に対して 1質量部となるよう加えて、 離型剤塗液を調製した。 なお、 この離型剤塗液には界面活性剤は含まれていない 引き続き、 上記で得られた離型層を有さない二軸延伸ポリエステルフィルムの ロールを巻き出し、 巻き出されたニ軸延伸ポリエステルフィルムの幅方向におけ る中央部に、 上記で調製した離型剤塗液を、 塗布量 (we t) 6 g/m2となる よう塗布し、 下方および上方の空気流吹き出し口の間隔がそれぞれ 38 cmの空 気浮上搬送式乾燥装置を用いて、 搬送張力: 2, O O O kPa, 乾燥温度: 16 0 :、 乾燥時間: 16秒間で乾燥させて離型層を形成し、 離型層の乾燥硬化後の 重量が 0. 2 gZm2の離型フィルムを得た。 得られた離型フィルムを用いて、 各種の測定 ·評価を行った結果を表 2に示す。 なお、 離型剤塗液の塗布は、 未延 伸ポリエステルフィルム成形工程において冷却ドラムに接触しなかつた面に施し た。 Next, an addition polymerization type silicone resin composition (manufactured by Toshiba Silicone Co., Ltd., trade name: TPR-6721) in a toluene solution (solid content concentration: 3% by mass), Pt catalyst (manufactured by Toshiba Silicone Co., Ltd.) Product name: CM 670) was added so as to be 1 part by mass with respect to 100 parts by mass of the solid content of the addition polymerization type silicone resin composition to prepare a release agent coating liquid. This release agent coating liquid does not contain a surfactant. Subsequently, the roll of the biaxially stretched polyester film without the release layer obtained above is unwound and unrolled biaxially. In the center of the polyester film in the width direction, apply the release agent coating solution prepared above to a coating amount (wet) of 6 g / m 2 Using an air levitation conveying dryer with a space of 38 cm between the lower and upper air flow outlets, conveying tension: 2, OOO kPa, drying temperature: 16 0:, drying time: 16 seconds Then, a release layer was formed by drying with a mold, and a release film having a weight after drying and curing of the release layer of 0.2 gZm 2 was obtained. Table 2 shows the results of various measurements and evaluations using the obtained release film. The release agent coating solution was applied to the surface that was not in contact with the cooling drum in the unstretched polyester film forming process.
表 2 Table 2
Figure imgf000048_0001
Figure imgf000048_0001
表 2 (つづき) Table 2 (continued)
00
Figure imgf000049_0001
00
Figure imgf000049_0001
実施例 8 Example 8
[ポリエステルの製造]  [Production of polyester]
実施例 1と同様にして、 固有粘度 0 . 6 5 ( 3 5 :、 オルトクロ口フエノール 中) のポリエチレンテレフ夕レー卜組成物を得た。  In the same manner as in Example 1, a polyethylene terephthalate composition having an intrinsic viscosity of 0.65 (35: in orthoclonal phenol) was obtained.
[塗剤の調製]  [Preparation of paint]
実施例 3と同様にして、 塗剤を得た。 なお、 塗剤の固形分濃度は 6 . 0質量% であった。 また、 この塗剤から得られる離型層 1 0 0質量%における各成分の固 形分比率は、 以下の通りとなる。  A coating agent was obtained in the same manner as in Example 3. The solid content concentration of the coating material was 6.0% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
主剤: 8 4. 1質量%  Main agent: 8 4.1% by mass
架橋剤: 8 . 4質量%  Crosslinking agent: 8.4% by mass
シラン力ップリング剤: 5. 0質量%  Silane power pulling agent: 5.0% by mass
界面活性剤: 2 . 5質量%  Surfactant: 2.5% by mass
[未延伸ポリエステルフィルム成形工程]  [Unstretched polyester film forming process]
上記で得られたポリエチレンテレフ夕レート組成物を用いて、 実施例 3と同様 にして、 厚さ 4 5 0 /mの未延伸ポリエステルフィルムを得た。  Using the polyethylene terephthalate composition obtained above, an unstretched polyester film having a thickness of 4500 / m was obtained in the same manner as in Example 3.
[一次延伸工程]  [Primary stretching process]
得られた未延伸ポリエステルフィルムを用いて、 実施例 1と同様にして、 長手 方向一軸延伸ポリエスエルフィルムを得た。  Using the obtained unstretched polyester film, a uniaxially stretched polyester film in the longitudinal direction was obtained in the same manner as in Example 1.
[インライン塗布工程]  [Inline coating process]
次いで、 得られた長手方向一軸延伸ポリエステルフィルムに、 上記で調製した 塗剤を、 得られる離型フィルムにおける離型層の厚みが 4 0 n mとなるよう塗布 することにより、 塗膜を有するポリエステルフィルムを得た。 なお、 塗剤の塗布 は、 未延伸ポリエステルフィルム成形工程において冷却ドラムに接触しなかつた 面に施した。  Next, a polyester film having a coating film is applied to the obtained longitudinally uniaxially stretched polyester film by applying the coating agent prepared above so that the thickness of the release layer in the obtained release film is 40 nm. Got. The coating was applied to the surface that did not contact the cooling drum in the unstretched polyester film forming process.
[二次延伸工程]  [Secondary stretching process]
続いて、 得られた塗膜を有するポリエステルフィルムをステン夕一に供給し、 実施例 1と同様にして、 二軸延伸ポリエステルフィルムとした。 [熱固定工程] Subsequently, the polyester film having the obtained coating film was supplied to stainless steel, and a biaxially stretched polyester film was obtained in the same manner as in Example 1. [Heat setting process]
得られた二軸延伸ポリエステルフィルムにっき、 実施例 1と同様にして、 全厚 み 3 1 mの離型フィルムを得た。 ここで得られた離型フィルムをスリット前の 離型フィルムとして、 各種の測定 ·評価を行った結果を表 3に示す。  A release film having a total thickness of 31 m was obtained in the same manner as in Example 1 except for the obtained biaxially stretched polyester film. Table 3 shows the results of various measurements and evaluations using the obtained release film as the release film before slitting.
[スリット工程]  [Slit process]
巻き取り条件として、 初期張力 4 7 N m、 張力テーパー率 6 0 % (—定)、 ニップ圧力 1 5 O N/m, ニップ圧力テーパー率 1 0 0 %、 速度 1 8 O mZ分と し、 4 5 O mm幅 2, 0 0 0 m長の離型フィルムロールを得た。 得られた離型フ イルムロールについて、 各種の測定 ·評価を行った結果を表 3に示す。  The winding conditions are as follows: initial tension 4 7 N m, tension taper ratio 60% (—constant), nip pressure 15 ON / m, nip pressure taper ratio 100%, speed 1 8 O mZ, 4 A release film roll having a width of 5 O mm and a length of 2,00 m was obtained. Table 3 shows the results of various measurements and evaluations on the obtained release film roll.
また、 得られた離型フィルムロールの表層から 5 0 O mの位置でサンプリング を行い、 離型フィルムを得た。 ここで得られた離型フィルムをスリット後の離型 フィルムとして、 各種の測定 ·評価を行った結果を表 3に示す。  Further, sampling was performed at a position of 50 Om from the surface layer of the obtained release film roll to obtain a release film. Table 3 shows the results of various measurements and evaluations using the release film obtained here as the release film after slitting.
実施例 9 Example 9
各工程における各条件を以下の通りとする以外は、 実施例 8と同様にして、 ス リット前の離型フィルム、 離型フィルムロール、 スリット後の離型フィルムを得 た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。  A release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 8 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
[塗剤の調製]  [Preparation of paint]
界面活性剤を用いなかった。 なお、 塗剤の固形分濃度は 5. 9質量%であった。 また、 この塗剤から得られる離型層 1 0 0質量%における各成分の固形分比率は、 以下の通りとなる。  No surfactant was used. The solid content of the coating was 5.9% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
主剤: 8 6 . 2質量%  Main agent: 8 6.2% by mass
架橋剤: 8 . 6質量%  Cross-linking agent: 8.6% by mass
シラン力ップリング剤: 5 . 2質量%  Silane pulling agent: 5.2% by mass
界面活性剤: 0質量%  Surfactant: 0% by mass
[二次延伸工程]  [Secondary stretching process]
横延伸倍率を 4. 5倍とした。 - The transverse draw ratio was 4.5 times. -
[熱固定工程] [Heat setting process]
弛緩処理における弛緩量を 4. 0 %とした。 実施例 10 The amount of relaxation in the relaxation treatment was 4.0%. Example 10
各工程における各条件を以下の通りとする以外は、 実施例 9と同様にして、 ス リット前の離型フィルム、 離型フィルムロール、 スリット後の離型フィルムを得 た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。  A release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 9 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
[塗剤の調製]  [Preparation of paint]
界面活性剤として、 0. 06部のノニオン系のシリコーン系界面活性剤である ポリオキシエチレン ·メチルポリシロキサン共重合体 (日本ェマルジヨン株式会 社製、 商品名: EMALEX S S- 50 δ 1) (S 2成分) を用いた。 なお、 塗剤の固形分濃度は 6. 0質量%であった。 また、 この塗剤から得られる離型層 100質量%における各成分の固形分比率は、 以下の通りとなる。  As a surfactant, 0.06 part of a nonionic silicone surfactant polyoxyethylene / methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd., trade name: EMALEX S S-50 δ 1) ( S 2 component) was used. The solid content concentration of the coating material was 6.0% by mass. Moreover, the solid content ratio of each component in the release layer 100% by mass obtained from this coating agent is as follows.
主剤: 85. 4質量%  Main agent: 85.4% by mass
架橋剤: 8. 5質量%  Cross-linking agent: 8.5% by mass
シラン力ップリング剤: 5. 1質量%  Silane power pulling agent: 5.1% by mass
界面活性剤: 1. 0質量%  Surfactant: 1.0% by mass
実施例 1 1 Example 1 1
各工程における各条件を以下の通りとする以外は、 実施例 10と同様にして、 スリット前の離型フィルム、 離型フィルムロール、 スリット後の離型フィルムを 得た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。  A release film before the slit, a release film roll, and a release film after the slit were obtained in the same manner as in Example 10 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
[塗剤の調製]  [Preparation of paint]
界面活性剤 (S 2成分) の添加量を 0. 15部とした。 なお、 塗剤の固形分濃 度は 6. 0質量%であった。 また、 この塗剤から得られる離型層 100質量%に おける各成分の固形分比率は、 以下の通りとなる。  The amount of surfactant (S 2 component) added was 0.15 parts. The solid content concentration of the coating was 6.0% by mass. In addition, the solid content ratio of each component in the release layer 100% by mass obtained from this coating agent is as follows.
主剤: 84. 1質量%  Main agent: 84. 1% by mass
架橋剤: 8. 4質量%  Cross-linking agent: 8.4% by mass
シランカップリング剤: 5. 0質量%  Silane coupling agent: 5.0% by mass
界面活性剤: 2. 5質量%  Surfactant: 2.5% by mass
[スリット工程]  [Slit process]
スリツト工程における巻き取り条件を、 表 3に示す通りとした。 実施例 1 2〜: I 5 Table 3 shows the winding conditions in the slitting process. Example 1 2 to: I 5
スリット工程における巻き取り条件を、 表 3に示す通りとする以外は、 実施例 1 1と同様にして、 スリット前の離型フィルム、 離型フィルムロール、 スリット 後の離型フィルムを得た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。  A release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 11 except that the winding conditions in the slitting process were as shown in Table 3. Table 3 shows the results of various measurements and evaluations using these.
実施例 1 6 Example 1 6
各工程における各条件を以下の通りとする以外は、 実施例 1 0と同様にして、 スリット前の離型フィルム、 離型フィルムロール、 スリット後の離型フィルムを 得た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。  A release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 10, except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
[塗剤の調製]  [Preparation of paint]
界面活性剤 (S 2成分) の添加量を 0 . 3部とした。 なお、 塗剤の固形分濃度 は 6 . 2質量%であった。 また、 この塗剤から得られる離型層 1 0 0質量%にお ける各成分の固形分比率は、 以下の通りとなる。  The amount of surfactant (S 2 component) added was 0.3 parts. The solid content concentration of the coating material was 6.2% by mass. Further, the solid content ratio of each component in the release layer (100% by mass) obtained from the coating composition is as follows.
主剤: 8 2 . 0質量%  Main agent: 82.0% by mass
架橋剤: 8 . 2質量%  Cross-linking agent: 8.2% by mass
シラン力ップリング剤: 4. 9質量%  Silane power pulling agent: 4.9% by mass
界面活性剤: 4. 9質量%  Surfactant: 4.9% by mass
実施例 1 7 Example 1 7
各工程における各条件を以下の通りとする以外は、 実施例 1 0と同様にして、 スリット前の離型フィルム、 離型フィルムロール、 スリット後の離型フィルムを 得た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。  A release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 10, except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
[塗剤の調製]  [Preparation of paint]
界面活性剤 (S 2成分) の添加量を 0 . 6部とした。 なお、 塗剤の固形分濃度 は 6 . 5質量%であった。 また、 この塗剤から得られる離型層 1 0 0質量%にお ける各成分の固形分比率は、 以下の通りとなる。  The amount of surfactant (S 2 component) added was 0.6 parts. The solid content concentration of the coating material was 6.5% by mass. Further, the solid content ratio of each component in the release layer (100% by mass) obtained from the coating composition is as follows.
主剤: 7 8. 1質量%  Main agent: 7 8. 1% by mass
架橋剤: 7 . 8質量%  Cross-linking agent: 7.8% by mass
シラン力ップリング剤: 4. 7質量% 界面活性剤: 9. 4質量% Silane power pulling agent: 4.7% by mass Surfactant: 9.4% by mass
比較例 7 Comparative Example 7
各工程における各条件を以下の通りとする以外は、 実施例 9と同様にして、 ス リット前の離型フィルム、 離型フィルムロール、 スリット後の離型フィルムを得 た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。  A release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 9 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
[一次延伸工程]  [Primary stretching process]
縦延伸倍率を 3. 0倍とした。  The longitudinal draw ratio was 3.0 times.
比較例 8 Comparative Example 8
各工程における各条件を以下の通りとする以外は、 実施例 9と同様にして、 ス リット前の離型フィルム、 離型フィルムロール、 スリット後の離型フィルムを得 た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。  A release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 9 except that the conditions in each step were as follows. Table 3 shows the results of various measurements and evaluations using these.
[一次延伸工程]  [Primary stretching process]
縦延伸倍率を 4. 8倍とした。  The longitudinal draw ratio was 4.8 times.
[二次延伸工程]  [Secondary stretching process]
横延伸倍率を 3. 0倍とした。  The transverse draw ratio was 3.0 times.
比較例 9 Comparative Example 9
塗剤を塗布しない以外は、 実施例 8と同様にして、 離型層を有さない二軸延伸 ポリエステルフィルムを得た。  A biaxially stretched polyester film having no release layer was obtained in the same manner as in Example 8 except that the coating agent was not applied.
- 次いで、 付加重合タイプのシリコーン樹脂組成物 (東芝シリコーン社製、 商品 名: TPR—6721) のトルエン溶液 (固形分濃度: 3質量%) に、 P t触媒 (東芝シリコーン社製、 商品名: CM 670) を、 付加重合タイプのシリコーン 樹脂組成物の固形分 100質量部に対して 1質量部となるよう加えて、 離型剤塗 液を調製した。 なお、 この離型剤塗液には界面活性剤は含まれていない。  -Next, a Pt catalyst (manufactured by Toshiba Silicone Co., Ltd., trade name) was added to a toluene solution (solid content concentration: 3% by mass) of an addition polymerization type silicone resin composition (Toshiba Silicone Co., Ltd., trade name: TPR-6672). CM 670) was added at 1 part by mass with respect to 100 parts by mass of the solid content of the addition polymerization type silicone resin composition to prepare a release agent coating solution. This release agent coating liquid does not contain a surfactant.
引き続き、 上記で得られた離型層を有さない二軸延伸ポリエステルフィルムの ロールを巻き出し、 巻き出された二軸延伸ポリエステルフィルムの幅方向におけ る中央部に、 上記で調製した離型剤塗液を、 塗布量 (we t) 6 gZm2となる よう塗布し、 下方および上方の空気流吹き出し口の間隔がそれぞれ 38 cmの空 気浮上搬送式乾燥装置を用いて、 搬送張力: 2, O O O kPa, 乾燥温度: 16 O t:、 乾燥時間: 1 6秒間で乾燥させて離型層を形成し、 離型層の乾燥硬化後の 重量が 0 . 2 g Zm2の離型フィルムを得た。 ここで得られた離型フィルムをス リッ卜前の離型フィルムとして、 各種の測定 ·評価を行った結果を表 3に示す。 なお、 離型剤塗液の塗布は、 未延伸ポリエステルフィルム成形工程において冷却 ドラムに接触しなかった面に施した。 Subsequently, the roll of the biaxially stretched polyester film having no release layer obtained above was unwound, and the release agent prepared above was placed in the center in the width direction of the unrolled biaxially stretched polyester film. Apply the agent coating solution to a coating amount (wet) of 6 gZm 2, and use an air levitation transport dryer with a space of 38 cm between the lower and upper air flow outlets. , OOO kPa, Drying temperature: 16 Ot: Drying time: A release layer was formed by drying in 16 seconds, and a release film having a weight after drying and curing of the release layer of 0.2 g Zm 2 was obtained. Table 3 shows the results of various measurements and evaluations using the release film obtained here as the release film before slitting. The release agent coating solution was applied to the surface that did not contact the cooling drum in the unstretched polyester film forming step.
[スリット工程]  [Slit process]
スリツト工程における巻き取り条件を、 表 3に示す通りとして離型フィルム口 ール、 スリット後の離型フィルムを得た。 これらを用いて、 各種の測定 ·評価を 行った結果を表 3に示す。  With the winding conditions in the slitting process as shown in Table 3, a release film tool and a release film after slitting were obtained. Table 3 shows the results of various measurements and evaluations using these.
参考例 1 Reference example 1
スリット工程における卷き取り条件を、 表 3に示す通りとする以外は、 実施例 1 1と同様にして、 スリット前の離型フィルム、 離型フィルムロール、 スリット 後の離型フィルムを得た。 これらを用いて、 各種の測定 ·評価を行った結果を表 3に示す。 A release film before slitting, a release film roll, and a release film after slitting were obtained in the same manner as in Example 11 except that the scraping conditions in the slitting process were as shown in Table 3. Table 3 shows the results of various measurements and evaluations using these.
表 3 Table 3
Figure imgf000056_0001
Figure imgf000056_0001
表 3 (つづき) Table 3 (continued)
Figure imgf000057_0001
Figure imgf000057_0001
表 3 (つづき) Table 3 (continued)
Figure imgf000058_0001
Figure imgf000058_0001
表 3 (つづき) Table 3 (continued)
Figure imgf000059_0001
Figure imgf000059_0001
実施例 1 8 Example 1 8
[ポリエステルの製造]  [Production of polyester]
実施例 1と同様にして、 固有粘度 0 . 6 5 ( 3 5で、 オルトクロ口フエノール 中) のポリエチレンテレフ夕レート組成物を得た。  In the same manner as in Example 1, a polyethylene terephthalate composition having an intrinsic viscosity of 0.65 (35, in orthoclonal phenol) was obtained.
[塗剤の調製]  [Preparation of paint]
実施例 3と同様にして、 塗剤を得た。 なお、 塗剤の固形分濃度は 6 . 0質量% であった。 また、 この塗剤から得られる離型層 1 0 0質量%における各成分の固 形分比率は、 以下の通りとなる。  A coating agent was obtained in the same manner as in Example 3. The solid content concentration of the coating material was 6.0% by mass. Further, the solid content ratio of each component in 100% by mass of the release layer obtained from this coating agent is as follows.
主剤: 8 4. 1質量%  Main agent: 8 4.1% by mass
架橋剤: 8 . 4質量%  Crosslinking agent: 8.4% by mass
シランカップリング剤: 5 . 0質量%  Silane coupling agent: 5.0% by mass
界面活性剤: 2 . 5質量%  Surfactant: 2.5% by mass
[未延伸ポリエステルフィルム成形工程]  [Unstretched polyester film forming process]
上記で得られたポリエチレンテレフ夕レー卜組成物を、 ポリエチレンテレフ夕 レート組成物の水分率が 0 . 0 5質量%以下となるまで、 1 7 0でで 5時間乾燥 した。 引き続き、 乾燥されたポリエチレンテレフ夕レー卜組成物を押し出し機に 供給し、 溶融温度 2 8 0〜3 0 0でにて溶融し、 平均目開き 1 1 / mの鋼線フィ ルターを用いて高精度ろ過した後、 ダイより押し出して溶融シートとし、 かかる 溶融シートを静電密着法にて冷却ドラムに接触急冷させることにより、 厚さ約 4 8 0 mの未延伸ポリエステルフィルムを得た。  The polyethylene terephthalate composition obtained above was dried at 170 for 5 hours until the water content of the polyethylene terephthalate composition was 0.05% by mass or less. Subsequently, the dried polyethylene terephthalate composition is fed to an extruder, melted at a melting temperature of 28 to 300, and high using a steel wire filter with an average opening of 11 / m. After precision filtration, the sheet was extruded from a die to form a molten sheet, and the molten sheet was contacted and rapidly cooled to a cooling drum by an electrostatic contact method to obtain an unstretched polyester film having a thickness of about 4880 m.
[一次延伸工程]  [Primary stretching process]
得られた未延伸ポリエステルフィルムを、 7 5でで予熱し、 引き続き、 低速 · 高速のロール間にてフィルム温度 1 0 5 で長手方向に 3 . 8倍に延伸し、 その 後、 急冷することにより長手方向一軸延伸ポリエステルフィルムを得た。  The obtained unstretched polyester film was preheated at 75, and then stretched 3.8 times in the longitudinal direction at a film temperature of 105 between low-speed and high-speed rolls, and then rapidly cooled. A longitudinally uniaxially stretched polyester film was obtained.
[インライン塗布工程]  [Inline coating process]
次いで、 得られた長手方向一軸延伸ポリエステルフィルムに、 上記で調整した 塗剤を、 得られる離型フィルムにおける離型層の厚みが 4 0 n mとなるよう塗布 することにより、 塗膜を有するポリエステルフィルムを得た。 なお、 塗剤の塗布 は、 未延伸ポリエステルフィルム成形工程において冷却ドラムに接触しなかつた 面に施した。 Next, a polyester film having a coating film is applied to the obtained longitudinally uniaxially stretched polyester film by applying the coating agent prepared above so that the thickness of the release layer in the obtained release film is 40 nm. Got. Application of paint Was applied to the surface that did not contact the cooling drum in the unstretched polyester film forming process.
[二次延伸工程]  [Secondary stretching process]
続いて、 得られた塗膜を有するポリエスチルフィルムをステン夕一に供給し、 実施例 1と同様にして、 二軸延伸ポリエステルフィルムとした。  Subsequently, a polyester film having the obtained coating film was supplied to stainless steel, and a biaxially stretched polyester film was obtained in the same manner as in Example 1.
[熱固定工程]  [Heat setting process]
得られた二軸延伸ポリエステルフィルムにっき、 実施例 1と同様にして、 全厚 み 31 xmの離型フィルムを得た。 得られた離型フィルムを用いて、 各種の測 定 ·評価を行った。 結果を表 4に示す。  The obtained biaxially stretched polyester film was cut in the same manner as in Example 1 to obtain a release film having a total thickness of 31 xm. Various measurements and evaluations were performed using the obtained release film. The results are shown in Table 4.
実施例 19 Example 19
各工程における各条件を以下の通りとする以外は、 実施例 18と同様にして、 全厚み 31 / mの離型フィルムを得た。 得られた離型フィルムを用いて、 各種の 測定 ·評価を行った。 結果を表 4に示す。 '  A release film having a total thickness of 31 / m was obtained in the same manner as in Example 18 except that the conditions in each step were as follows. Various measurements and evaluations were performed using the obtained release film. The results are shown in Table 4. '
[塗剤の調整]  [Coating adjustment]
界面活性剤として、 ポリオキシエチレンォレイルエーテルに替えて、 0. 06 部のノニオン系のシリコーン系界面活性剤であるポリオキシエチレン ·メチルポ リシロキサン共重合体 (日本ェマルジヨン株式会社製、 商品名: EMALEX S S- 5051) (S 2成分) を用いた。 なお、 塗剤の固形分濃度は 6. 0質 量%であった。 また、 この塗剤から得られる離型層 100質量%における各成分 の固形分比率は、 以下の通りとなる。  As a surfactant, 0.06 part of a nonionic silicone surfactant polyoxyethylene / methylpolysiloxane copolymer (manufactured by Nippon Emulsion Co., Ltd., trade name) instead of polyoxyethylene glycol ether EMALEX S S-5051) (S 2 component) was used. The solid content concentration of the coating was 6.0% by mass. Moreover, the solid content ratio of each component in the release layer 100% by mass obtained from this coating agent is as follows.
主剤: 84. 1質量%  Main agent: 84. 1% by mass
架橋剤: 8. 4質量%  Cross-linking agent: 8.4% by mass
シラン力ップリング剤: 5. 0質量%  Silane power pulling agent: 5.0% by mass
界面活性剤: 2. 5質量%  Surfactant: 2.5% by mass
[—次延伸工程]  [—Next stretching process]
縦延伸倍率を 4. 0倍とした。 The longitudinal draw ratio was 4.0 times.
[熱固定工程]  [Heat setting process]
弛緩処理における弛緩量を 4. 0%とした。 表 4 The amount of relaxation in the relaxation treatment was 4.0%. Table 4
測定 ·評価項目 単位 実施例 18 実施例 19  Measurement / Evaluation Item Unit Example 18 Example 19
種類 ― S1 S2 離型層が含有する界面活性剤  Type ― S1 S2 Surfactant contained in the release layer
含有量 質量% 2. 5 2. 5 長手方向 倍 3. 8 4. 0 延伸倍率 幅方向 倍 4. 1 4. 1  Content Mass% 2.5 5 5 Longitudinal direction Magnification 3. 8 4.0 0 Stretch ratio Width direction Double 4 1 4.1
面 倍 15. 6 16. 4 フィルム厚み ― μ m 31 31  Surface magnification 15. 6 16. 4 Film thickness-μm 31 31
荷重 0. 3MPa % 一 0. 33 -0. 35 長手方向の伸長率 (sMD) 荷重 1. OMPa % -0. 26 -0.29 Load 0.3 MPa% 1 0.33 -0.35 Longitudinal elongation (s MD ) Load 1. OMPa% -0.26 -0.29
荷重 2. 5MPa % -0. 12 -0. 15 幅方向の伸長率 (sTD) 荷重 0. 01MPa % -0. 38 —0. 37 長手方向の熱伸長率 (HSMD) 荷重なし % -0. 23 -0. 25 幅方向の熱伸長率 (HSTD) 荷重なし % -0. 40 -0. 39 一 HoTD ― % Load 2.5 MPa% -0. 12 -0. 15 Elongation rate in the width direction (s TD ) Load 0. 01 MPa% -0. 38 —0. 37 Longitudinal thermal elongation rate (HS MD ) No load% -0 23 -0. 25 Thermal elongation in the width direction (HS TD ) No load% -0. 40 -0. 39 One Ho TD ―%
離型フィルム 縦方向 % 2. 9 1. 9 Release film Longitudinal direction% 2. 9 1. 9
厚み斑  Thick spot
の特性 横方向 % 2. 5 2. 5  Characteristic Horizontal direction% 2. 5 2. 5
離型層表面 nm 452 454 最大高さ(Rmax)  Release layer surface nm 452 454 Maximum height (Rmax)
離型層を有さない側の表面 nm 458 460 剥離評価 ― ― ◎ ◎ 離型フィルム ―  Surface with no release layer nm 458 460 Release evaluation ― ― ◎ ◎ Release film ―
剥離帯電評価 o 〇  Peeling evaluation o 〇
セラミックシート ― 〇 o セラミックシート評価 表面平滑性 (条件 2) ― 〇 〇 Ceramic sheet ― ○ o Ceramic sheet evaluation Surface smoothness (Condition 2) ― ○ ○
(実用特性代用評価) 厚み斑 ― ◎ ◎ (Practical property substitution evaluation) Thickness spots ― ◎ ◎
発明の効果 The invention's effect
本発明の離型フィルムは、 セラミックシートを製造する際の加熱張力下におい て適度の寸法変化率を有し、 セラミックスラリーを乾燥する際の熱収縮バランス に優れる。 すなわち、 セラミックシート製造の際に用いられる離型フィルムとし て求められる性能を十分に満足している。 したがって、 本発明の離型フィルムを セラミックシート製造用のキャリアフィルムとして用いた場合には、 搬送工程の みならず、 乾燥工程においてもキャリアフィルムの熱収縮バランスに優れるため 、 得られるセラミックシートの厚み斑を高度に抑制することができる。  The release film of the present invention has an appropriate dimensional change rate under the heating tension at the time of producing a ceramic sheet, and has an excellent heat shrinkage balance when the ceramic slurry is dried. That is, the performance required for a release film used in the production of a ceramic sheet is sufficiently satisfied. Therefore, when the release film of the present invention is used as a carrier film for producing a ceramic sheet, the thickness of the resulting ceramic sheet is excellent because the heat shrink balance of the carrier film is excellent not only in the conveying process but also in the drying process. Spots can be highly suppressed.
また、 本発明における好ましい態様を有する離型フィルムは、 表面平滑性に優 れるため、 得られるセラミックシートにおけるピンホール発生を抑制することが できる。 したがって、 本発明における好ましい態様を有する離型フィルムによれ ば、 セラミックシートおよびセラミックコンデンサ一の生産性を向上することが できる。  In addition, since the release film having a preferred embodiment in the present invention is excellent in surface smoothness, pinhole generation in the obtained ceramic sheet can be suppressed. Therefore, according to the release film having a preferred embodiment of the present invention, the productivity of the ceramic sheet and the ceramic capacitor can be improved.
さらに、 本発明における好ましい態様を有する離型フィルムは、 キャリアフィ ルムを巻き出す工程や、 キャリアフィルムからセラミックシートを剥離する工程 において発生する剥離帯電を高度に抑制することができる。 その結果、 本発明の 離型フィルムを用いて製造されたセラミックシートを用いて、 セラミックコンデ ンサ一を製造した場合には、 得られるコンデンサーの内部電極の位置ずれを高度 に抑制することができる。  Furthermore, the release film having a preferred embodiment of the present invention can highly suppress peeling charge generated in the step of unwinding the carrier film and the step of peeling the ceramic sheet from the carrier film. As a result, when the ceramic capacitor is manufactured using the ceramic sheet manufactured using the release film of the present invention, the displacement of the internal electrode of the obtained capacitor can be highly suppressed.
本発明のフィルムロールは、 平坦性に優れた離型フィルムを提供することがで きる。 かかる離型フィルムを用いて製造されたセラミックシートを用いて、 セラ ミックコンデンサーを製造した場合には、 容量が均一なセラミックコンデンサー を得ることができる。  The film roll of the present invention can provide a release film having excellent flatness. When a ceramic capacitor is manufactured using a ceramic sheet manufactured using such a release film, a ceramic capacitor having a uniform capacity can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1. ポリエステルフィルムの少なくとも一方の面に離型層を有する離型フィル ムであって、 1. a release film having a release layer on at least one surface of a polyester film,
離型フィルムの長手方向に 0. 2 MP a以上 4. 0 MP a以下の張力を加えた 場合の 100でにおける長手方向の伸長率 (SMD) が、 下記式 (1) を満たし 離型フィルムの長手方向に垂直な方向に 0. 0 IMP aの張力を加えた場合の 100でにおける長手方向に垂直な方向の伸長率 (STD) が、 下記式 (2) を 満たし、 When the tension is 0.2 MPa or more and 4.0 MPa or less in the longitudinal direction of the release film, the elongation ( SMD ) in the longitudinal direction at 100 satisfies the following formula (1). The elongation rate (S TD ) in the direction perpendicular to the longitudinal direction at 100 when a tension of 0.0 IMP a is applied in the direction perpendicular to the longitudinal direction of the material satisfies the following formula (2),
離型フィルムの無荷重下での 100でにおける長手方向の熱伸長率 (HSMD ) が、 下記式 (3) を満たし、 The longitudinal thermal expansion rate (HS MD ) at 100 under no load of the release film satisfies the following formula (3),
離型フィルムの無荷重下での 100 における長手方向に垂直な方向の熱伸長 率 (HSTD) が、 下記式 (4) を満たし、 The thermal expansion rate (HS TD ) in the direction perpendicular to the longitudinal direction at 100 under no load of the release film satisfies the following formula (4),
長手方向の熱伸長率 (HSMD) と前記長手方向に垂直な方向の熱伸長率 (H STD) と力 下記式 (5) を満たす離型フィルム。 Release film satisfying the following formula (5): thermal elongation rate in the longitudinal direction (HS MD ), thermal elongation rate in the direction perpendicular to the longitudinal direction (HS TD ), and force.
0. 0961X—0. 45≤SMD≤0. 0961 X - 0. 25 (1) (式 (1) 中、 Xは、 フィルム単位面積にかかる張力 (MP a) であり、 Xは 0 . 2MPa以上 4. OMP a以下の値を示す。) 0. 0961X—0. 45≤S MD ≤0. 0961 X-0.25 (1) (In formula (1), X is the tension applied to the film unit area (MPa), and X is 0.2MPa. 4. Shows values below OMP a.)
—0. 6≤STD≤- 0. 2 (2) —0. 6≤S TD ≤- 0. 2 (2)
-0. 4≤HSMD≤-0. 1 (3) -0. 4≤HS MD ≤-0. 1 (3)
—0. 6≤HSTD≤-0. —0. 6≤HS TD ≤-0.
2 (4) twenty four)
HSMD>HSTD (δ) 2. 離型層表面の接触式三次元表面粗さ計で測定した最大高さ (Rmax) が 、 100 nm以上 600 nm以下の範囲である請求項 1に記載の離型フィルム。 HS MD > HS TD (δ) 2. The maximum height (Rmax) measured with a contact-type three-dimensional surface roughness meter on the surface of the release layer is in the range of 100 nm to 600 nm. Release film.
3. 離型層表面および離型層を有さない側の表面の、 接触式三次元表面粗さ計 で測定した最大高さ (Rma X) 力 それぞれ 100 nm以上 600 nm以下で ある請求項 1または 2に記載の離型フィルム。 3. Contact-type three-dimensional surface roughness tester on the surface of the release layer and the surface that does not have a release layer The release film according to claim 1 or 2, wherein the maximum height (Rma X) force measured in step 1 is 100 nm or more and 600 nm or less.
4. 離型層が、 離型層の重量に対して 0. 5質量%以上 10質量%以下の界面 活性剤を含有する請求項 1〜 3のいずれか一項に記載の離型フィルム。 4. The release film according to any one of claims 1 to 3, wherein the release layer contains 0.5% by mass or more and 10% by mass or less surfactant with respect to the weight of the release layer.
5. 縦方向の厚み斑が 3. 0%以下、 横方向の厚み斑が 3. 0%以下である請 求項 1〜 3のいずれか一項に記載の離型ブイルム。 5. The release film according to any one of claims 1 to 3, wherein the thickness unevenness in the vertical direction is 3.0% or less and the thickness unevenness in the horizontal direction is 3.0% or less.
6. 離型層は、 一方向に延伸したポリエステルフィルムに離型層形成組成物を 塗布することにより形成される請求項 1〜 5のいずれか一項に記載の離型フィル ム。 6. The release film according to any one of claims 1 to 5, wherein the release layer is formed by applying a release layer forming composition to a polyester film stretched in one direction.
7. セラミツクシ一ト製造用である請求項 1〜 6のいずれか一項に記載の離型 フィルム。 7. The release film according to any one of claims 1 to 6, which is used for producing ceramic sheets.
8. セラミックシートが、 セラミックコンデンサー製造用である請求項 7記載 の離型フィルム。 8. The release film according to claim 7, wherein the ceramic sheet is used for producing a ceramic capacitor.
9. 請求項 1〜6のいずれか一項に記載の離型フィルムをロール状に巻き取つ たフィルムロールであって、 ロール表層のビッカース硬度 (Hv) が 0以上 45 0以下であるフィルム口ール。 9. A film roll obtained by winding the release film according to any one of claims 1 to 6 into a roll shape, wherein the roll surface layer has a Vickers hardness (Hv) of 0 or more and 45 or less. The
PCT/JP2009/050495 2008-01-11 2009-01-08 Mould release film WO2009088094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980102135.6A CN101909875B (en) 2008-01-11 2009-01-08 Mould release film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008004400 2008-01-11
JP2008-004400 2008-01-11
JP2008-096078 2008-04-02
JP2008096078A JP2009184339A (en) 2008-01-11 2008-04-02 Mold release film
JP2008124633A JP5378703B2 (en) 2008-05-12 2008-05-12 Release film
JP2008-124633 2008-05-12
JP2008237824A JP5689579B2 (en) 2008-09-17 2008-09-17 Release film roll
JP2008-237824 2008-09-17

Publications (1)

Publication Number Publication Date
WO2009088094A1 true WO2009088094A1 (en) 2009-07-16

Family

ID=40853203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050495 WO2009088094A1 (en) 2008-01-11 2009-01-08 Mould release film

Country Status (1)

Country Link
WO (1) WO2009088094A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164797A (en) * 2014-02-07 2015-09-17 株式会社村田製作所 Release film and method for manufacturing multilayer ceramic electronic component using the same
JP2016203570A (en) * 2015-04-28 2016-12-08 ユニチカ株式会社 Release sheet and manufacturing method therefor
JP2017500220A (en) * 2013-09-30 2017-01-05 コーロン インダストリーズ インク Release film and manufacturing method thereof
CN112778681A (en) * 2020-12-31 2021-05-11 苏州市新广益电子有限公司 Special demoulding film for manufacturing flexible printed circuit board
JP2021172083A (en) * 2020-04-21 2021-11-01 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated Release film and manufacturing method of the release film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399827A (en) * 1989-09-12 1991-04-25 Toray Ind Inc Preparation of biaxially oriented polyester film
JP2002105230A (en) * 2000-10-02 2002-04-10 Mitsubishi Polyester Film Copp Polyester film
JP2006051661A (en) * 2004-08-11 2006-02-23 Mitsubishi Polyester Film Copp Mold release film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399827A (en) * 1989-09-12 1991-04-25 Toray Ind Inc Preparation of biaxially oriented polyester film
JP2002105230A (en) * 2000-10-02 2002-04-10 Mitsubishi Polyester Film Copp Polyester film
JP2006051661A (en) * 2004-08-11 2006-02-23 Mitsubishi Polyester Film Copp Mold release film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500220A (en) * 2013-09-30 2017-01-05 コーロン インダストリーズ インク Release film and manufacturing method thereof
JP2015164797A (en) * 2014-02-07 2015-09-17 株式会社村田製作所 Release film and method for manufacturing multilayer ceramic electronic component using the same
JP2016203570A (en) * 2015-04-28 2016-12-08 ユニチカ株式会社 Release sheet and manufacturing method therefor
JP2021172083A (en) * 2020-04-21 2021-11-01 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッドToray Advanced Materials Korea Incorporated Release film and manufacturing method of the release film
JP7235797B2 (en) 2020-04-21 2023-03-08 トーレ・アドバンスド・マテリアルズ・コリア・インコーポレーテッド Release film and method for producing release film
CN112778681A (en) * 2020-12-31 2021-05-11 苏州市新广益电子有限公司 Special demoulding film for manufacturing flexible printed circuit board
CN112778681B (en) * 2020-12-31 2023-09-29 苏州市新广益电子股份有限公司 Special demolding film for manufacturing flexible printed circuit board

Similar Documents

Publication Publication Date Title
JP5319329B2 (en) Release film for ceramic sheet production
JP5251315B2 (en) Release film production method
JP7380910B2 (en) Laminated film and method for manufacturing laminated film
WO2022186184A1 (en) Laminated film and method for manufacturing laminated film
KR101600104B1 (en) Mould release film
WO2009088094A1 (en) Mould release film
WO2000021752A1 (en) Release film
JP5346679B2 (en) Release film
JP5346640B2 (en) Release film
JP5319328B2 (en) Release film for ceramic sheet production
JP5689579B2 (en) Release film roll
JP5378703B2 (en) Release film
KR102453649B1 (en) Release film for manufacturing ceramic green sheet
JP2009184339A (en) Mold release film
WO2024019039A1 (en) Laminated film and method for producing laminated film
KR100597896B1 (en) Releasing film for forming green sheet
JP4391858B2 (en) Release film for green sheet molding
WO2024019038A1 (en) Laminated film and method for producing laminated film
WO2024019037A1 (en) Laminated film roll and method for manufacturing laminated film roll
JP2004291240A (en) Release film
JP2003301052A (en) Polyester film for releasing film
JP2003301051A (en) Polyester film for releasing film
WO2005046986A1 (en) Release film for forming ceramic green sheet
JP2005262456A (en) Mold release film for molding thin film green sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102135.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107015213

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PI 2010003291

Country of ref document: MY

122 Ep: pct application non-entry in european phase

Ref document number: 09701403

Country of ref document: EP

Kind code of ref document: A1