WO2009087813A1 - Motor controller - Google Patents

Motor controller Download PDF

Info

Publication number
WO2009087813A1
WO2009087813A1 PCT/JP2008/070649 JP2008070649W WO2009087813A1 WO 2009087813 A1 WO2009087813 A1 WO 2009087813A1 JP 2008070649 W JP2008070649 W JP 2008070649W WO 2009087813 A1 WO2009087813 A1 WO 2009087813A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
command
feedforward
spectrum
response
Prior art date
Application number
PCT/JP2008/070649
Other languages
French (fr)
Japanese (ja)
Inventor
Fukashi Andoh
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to JP2009548860A priority Critical patent/JP5278333B2/en
Publication of WO2009087813A1 publication Critical patent/WO2009087813A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/05Torque loop, i.e. comparison of the motor torque with a torque reference

Definitions

  • the present invention relates to a motor control device that drives a motor connected to a load.
  • the conventional motor control device performs a filtering process on the first torque feedforward signal when a change in the first torque feedforward signal, which is a torque feedforward signal calculated based on the inverse model of the control target, is moderate.
  • the applied second torque feedforward signal is added to the torque command, and when the first torque feedforward signal changes suddenly, the first torque feedforward signal is added to the torque command to be controlled.
  • 501 is a position command generator
  • 502 is position control means
  • 503 is speed control means
  • 504 current control means
  • 505 is an object to be controlled
  • 506 is a detector
  • 507 speed FF creation means
  • 508 torque FF.
  • Creation means 509 is filter processing means
  • 510 is switching means.
  • the position command generator 501 outputs a position command.
  • the position control means 502 inputs a position tracking deviation obtained by subtracting the position from the position command and outputs a speed command.
  • the speed control means 503 inputs a speed tracking deviation obtained by adding a speed feedforward signal to the speed command and subtracting the speed, and outputs a torque command.
  • the current control means 504 inputs an adjustment torque command obtained by adding the first torque feedforward signal or the second feedforward signal to the torque command, and drives the controlled object 505 by the current.
  • the detector 506 detects and outputs the position of the control object 505.
  • the speed FF creating means 507 inputs the position command and outputs the speed feed forward signal obtained by first-order differentiation of the input signal.
  • the torque FF creating means 508 receives the speed feedforward signal and outputs a first torque feedforward signal based on a known machine constant of the control target 505.
  • the filter processing means 509 inputs the first torque feedforward signal and outputs a second torque feedforward signal obtained by applying filter processing such as a low-pass filter and a moving average filter to the input signal.
  • the switching means 510 inputs the first feedforward signal and the second feedforward signal, and when the change amount of the first feedforward signal is larger than a set threshold, the first feedforward signal is changed. Otherwise, the second feedforward signal is output.
  • the conventional feedforward control device is configured to perform the first torque feedforward when the change in the first torque feedforward signal, which is the torque feedforward signal calculated based on the inverse model to be controlled, is moderate.
  • the second torque feedforward signal obtained by filtering the signal is added to the torque command, and when the first torque feedforward signal changes suddenly, the first torque feedforward signal is added to the torque command.
  • the control target is driven by addition. JP 2007-34729 (page 10, FIG. 1)
  • the conventional motor control device measures the response waveform by increasing the control gain to determine the effective combination of the control gain setting value and the control target to improve the response of the feedforward control that is going to be used. There was a problem that it was not possible to judge without doing. In addition, there is a problem in that it is impossible to set a control gain that realizes the highest control performance that should be obtained by the feedforward control to be used.
  • the present invention has been made in view of such a problem, and it is possible to determine whether or not the feedforward control to be used is effective by using only the information on the frequency response of the control target, and the best control to be obtained. It is an object of the present invention to provide a motor control device capable of setting a control gain that realizes performance.
  • the present invention is configured as follows. According to the first aspect of the present invention, a position or speed command, a control response to be controlled, and a feedforward signal are input, and a control command is calculated so that the command and the control response match to calculate a torque command.
  • a feedback controller that receives the torque command, supplies a power to the controlled object based on the torque command, inputs the command, and calculates the feedforward signal based on the command
  • a motor control device comprising a feedforward controller and a signal generator that outputs a frequency response measurement signal during frequency response measurement, the command and the control response during frequency response measurement are input, and the spectrum of the command A command spectrum, a control target frequency response that is a frequency response of the control target, and the command spectrum Based on the frequency response to be controlled, a feedforward control setting that calculates a load response tracking deviation spectrum that is a tracking deviation with respect to the command of the load response of the load that constitutes the control target and outputs a feedforward control setting signal And a control gain of the feedforward controller, and whether or not to use the feedforward controller is set based on the feedforward control setting signal.
  • the feedforward control setting device in the invention according to claim 1 sets a threshold for each of a frequency range included in the command spectrum and a frequency range higher than the frequency range, and the load When the response tracking deviation spectrum is equal to or greater than at least one of the threshold values, the feedforward control setting signal indicating that the feedforward controller is not used is output.
  • the feedforward control setting device is configured such that the load is applied to each of a plurality of control gain combinations of the feedback controller and the feedforward controller.
  • a response tracking deviation spectrum is calculated, and a set value of the control gain is output as the feedforward control setting signal based on the control gain combination when the magnitude of the load response tracking deviation spectrum is minimum. It is what.
  • the feedforward control to be used since it is possible to determine whether or not the feedforward control to be used is effective using only the information on the frequency response of the control target, it is not necessary to increase the control gain and measure the response waveform. Can be predicted in the initial state, and a control gain setting that achieves the highest control performance to be obtained by the controller to be used can be performed. According to the invention described in claim 2 or 3, since the frequency response measurement becomes faster, the effect of the feedforward control can be predicted in a short time, and the best control performance to be obtained by the controller to be used. Can be set to achieve control gain.
  • FIG. 1 is a block diagram for explaining a motor control device according to a first embodiment of the present invention.
  • the figure which shows the waveform of the equivalent speed command and position command in 1st Example of this invention Command spectrum and Bort diagram of Grt (s) ⁇ Gp1 (s) ⁇ Gp2 (s) in the first embodiment of the present invention
  • FIG. 1 is a block diagram illustrating a motor control apparatus according to a first embodiment of the present invention.
  • 101 is a command generator
  • 102 is a feedback controller
  • 103 is a torque controller
  • 104 is an object to be controlled
  • 105 is an encoder
  • 106 is a feedforward controller
  • 107 is a signal generator for frequency response measurement
  • 108 is This is a feedforward control setting device.
  • Reference numeral 109 is a command spectrum calculator
  • 110 is a controlled frequency response detector
  • 111 is a load response spectrum calculator
  • 112 is a load response tracking deviation spectrum calculator
  • 113 is a feedforward control setting device.
  • the command generator 101 outputs a command.
  • the feedback controller 102 receives the command, the feedforward signal, and the response of the control target 104, performs a control calculation so that the response matches the command, calculates a torque command, and outputs the torque command to the torque controller 103.
  • the control object 104 is a motor connected with a load.
  • the torque controller 103 receives the torque command and frequency response measurement signal, and based on the torque command during normal operation, and based on the frequency response measurement signal output from the frequency response signal generator during frequency response measurement. Then, a motor current is passed through the motor.
  • the encoder 105 detects and outputs the response of the control object 104.
  • the feedforward controller 106 receives the command and the feedforward control setting signal, calculates the feedforward signal based on the feedforward control setting signal, and outputs it to the feedback controller 102.
  • the frequency response measurement signal generator 107 outputs the frequency response measurement signal to the torque controller 103.
  • the frequency response measurement signal may be any signal as long as it can measure the frequency response of the motor control device, but is preferably a swept sine wave signal. Further, it may be composed of sine waves having a plurality of frequencies.
  • the frequency response measurement signal By making the frequency response measurement signal a swept sine wave signal, the frequency response of the controlled object 104 can be accurately measured in a short time. Moreover, the frequency response of the controlled object 104 can be accurately measured in a short time by setting the frequency response measurement signal to a sine wave having a plurality of frequencies.
  • the feedforward control setting device 108 When the frequency response is detected, the feedforward control setting device 108 inputs the command and the response, calculates the feedforward control setting signal, and outputs it to the feedforward controller 106.
  • the feedforward control setting signal includes a control gain of the feedforward controller 106 and a setting value for using / not using the feedforward control.
  • the feedforward control setting device 108 includes a command spectrum calculator 109, a control target frequency response detector 110, a load response spectrum calculator 111, a load response tracking deviation spectrum calculator 112, and a feedforward control setter 113.
  • the command spectrum calculator 109 receives the command, calculates a command spectrum, and outputs the command spectrum to the load response spectrum calculator 111 and the load response tracking deviation spectrum calculator 112.
  • the command spectrum calculator 109 calculates the command spectrum using FFT. Further, the command spectrum may be calculated using a plurality of bandpass filters having continuous frequency bands.
  • the control target frequency response detector 110 receives the response, calculates a control target frequency response, and outputs it to the load response spectrum calculator 111.
  • the load response spectrum calculator 111 receives the command spectrum and the control target frequency response, calculates a load response spectrum, and outputs it to the load response tracking deviation spectrum calculator 112.
  • the load response spectrum calculator 111 calculates an anti-resonance frequency of the control target from the control target frequency response, and calculates a load frequency response that is a frequency response up to the load response of the control target based on the anti-resonance frequency.
  • a load response spectrum obtained by multiplying the feedforward controller frequency response calculated from the command spectrum and the control gain of the feedforward controller and the load frequency response is calculated.
  • the load response tracking deviation spectrum calculator 112 receives the command spectrum and the load response spectrum, calculates a load response tracking deviation spectrum, and outputs it to the feedforward control setting unit 113. It is preferable that the load response tracking deviation spectrum calculator 112 calculates the load response tracking deviation spectrum by subtracting a command spectrum from the load response spectrum.
  • the feedforward control setting unit 113 receives the load response tracking deviation spectrum, calculates the feedforward control setting signal, and outputs it to the feedforward controller 106.
  • the feedforward control setter 113 sets a threshold for each of the frequency range included in the command spectrum and a frequency range higher than that, and when the load response tracking deviation spectrum is at least one of the thresholds, the feedforward controller It is desirable to output a feedforward control setting signal not to use 106, and to output a feedforward control setting signal to use the feedforward controller 106 in other cases.
  • the feedforward control setting unit 113 calculates the load response tracking deviation spectrum for each of a plurality of control gain combinations of the feedback controller 102 and the feedforward controller 106, and the magnitude of the load response tracking deviation spectrum is calculated. It is desirable to output the control gain setting value of the feedforward controller 106 as the feedforward control setting signal based on the control gain combination when the value is the minimum.
  • the present invention is different from the prior art in that it includes a command spectrum calculator 109, a control target frequency response detector 110, a load response spectrum calculator 111, a load response tracking deviation spectrum calculator 112, and a feedforward control setting unit 113.
  • the feedforward control setting device 108 includes a load response spectrum calculator 111 for calculating a load response spectrum based on the command spectrum and the frequency response to be controlled, and based on the command spectrum and the load response spectrum.
  • a load response tracking deviation spectrum calculator 112 for calculating a load response tracking deviation spectrum, and a feedforward control setting device 113 for calculating a feedforward control setting signal based on the load response tracking deviation spectrum.
  • the feedforward control setting device 108 calculates the feedforward control setting signal. If the command is a position command, the feedback controller 102 is a position speed controller, the control object 104 is a motor connected to a load and can be approximated by a two-inertia system, and the response is a motor position, the control object frequency response detector The control target frequency response output by 110 is the frequency response from the torque command to the motor position.
  • the frequency at which the amplitude of the frequency response Gp1 (s) to be controlled takes a minimum value is defined as an antiresonance frequency ⁇ a
  • the frequency at which the amplitude takes a maximum value is defined as a resonance frequency ⁇ r
  • the frequency response Gp1 (s) to be controlled near the antiresonance frequency ⁇ a is defined by the equation (1).
  • the feedforward controller 106 outputs a feedforward signal including a position feedforward signal, a speed feedforward signal, and a torque feedforward signal.
  • the motor position is subtracted from the position feedforward signal.
  • a speed command is calculated based on the motor position tracking deviation, and the feedback torque is calculated based on the motor speed tracking deviation obtained by adding the speed feedforward signal to the speed command and subtracting the motor speed which is a first-order time differential value of the motor position.
  • a command is calculated, and a torque command is calculated by adding the torque feedforward signal to the feedback torque command.
  • the position feedforward signal is obtained by multiplying the position command by a position feedforward filter Grp (s).
  • the speed feedforward signal is obtained by multiplying the position command by a speed feedforward filter Grv (s).
  • the torque feed forward signal is obtained by multiplying the position command by a torque feed forward filter Grt (s).
  • Gp2 (s) is obtained.
  • the command spectrum calculator 109 calculates a command spectrum sr ( ⁇ ) that is a spectrum of the position command using FFT. However, let ⁇ be the spectral frequency.
  • the load response spectrum calculator 111 calculates a load response spectrum sl ( ⁇ ) that is a load response spectrum based on the equation (5).
  • sl ( ⁇ ) ⁇ Grt (j ⁇ ) ⁇ Gp1 (j ⁇ ) ⁇ Gp2 (j ⁇ ) ⁇ ⁇ sr ( ⁇ ) (5)
  • ⁇ ⁇ ⁇ represents a norm
  • j represents an imaginary unit.
  • the load response follow-up deviation spectrum calculator 112 calculates a load response follow-up deviation spectrum, which is a spectrum of the load position follow-up deviation, which is a follow-up deviation with respect to the position command of the load position, using Equation (6).
  • the feedforward control setter 113 outputs a feedforward control setting signal for “use” the feedforward control to the feedforward controller 106 only when the load response tracking deviation spectrum sld ( ⁇ ) is equal to or less than the allowable value. By doing so, it is possible to realize a load response with little transient response and high frequency vibration.
  • the feedforward control can be set using only the frequency response of the controlled object 104, the feedback control gain is increased for setting the food forward control as in the prior art, and the controlled object 104 is greatly vibrated.
  • the feedforward control setting most suitable for the feedback control gain set with the control object 104 is possible.
  • the position control law, the speed control law, and the feedforward control law are applicable to any control law in addition to those shown in this embodiment.
  • J is the total moment of inertia of the controlled object 104
  • ⁇ a is the antiresonance frequency
  • ⁇ a is the antiresonance damping coefficient
  • ⁇ r is the resonance frequency
  • ⁇ r is the resonance damping coefficient.
  • the feedback control law is position P speed PI control in which the motor position is proportionally controlled and the motor speed is proportionally integrated.
  • FIG. 2 is a diagram showing waveforms of an equivalent speed command and a position command in the first embodiment of the present invention
  • 2A shows an equivalent speed command
  • FIG. 2B shows a position command waveform.
  • the equivalent speed command shown in FIG. 2A is obtained by integrating the position command shown in FIG. In this simulation, the position command shown in FIG. 2B is used as an example of a command generally used for operation control of a general industrial machine.
  • FIG. 3 is a Bode diagram of the command spectrum and Grt (s) ⁇ Gp1 (s) ⁇ Gp2 (s) in the first embodiment of the present invention
  • FIG. 3 (a) is the command spectrum
  • FIG. 3A shows that the position command has a frequency component mainly at 8 Hz or less. That is, the command frequency component upper limit value is 8 Hz. From FIG. 3B, it can be inferred that at 8 Hz or less, the Bode diagram from the position command to the load position is almost constant at 0 dB, and the load position follows the position command well.
  • FIG. 4 is a diagram showing the load response spectrum, the load response tracking deviation spectrum, and the position command amplitude ratio of the load response tracking deviation spectrum in the first embodiment of the present invention.
  • FIG. 4 (a) shows the load response spectrum.
  • 4B shows the load response tracking deviation spectrum
  • FIG. 4C shows the position command amplitude ratio of the load response tracking deviation spectrum.
  • the load response spectrum of FIG. 4A has the same tendency as the command spectrum of FIG. 3A, but its amplitude is smaller than the command spectrum.
  • the load response tracking deviation spectrum in FIG. 4B was obtained by subtracting the command spectrum from the load response spectrum.
  • FIG. 4B also shows that the load response spectrum is smaller than the command spectrum.
  • FIG. 4C is a% ratio of the load response tracking deviation spectrum to the maximum value of the command spectrum.
  • FIG. 4 (c) shows that the load position includes a vibration having a frequency of 4 Hz and an amplitude of 13% of the command amplitude.
  • the feedforward control setting unit 113 outputs a feedforward control setting signal that the feedforward control is used.
  • the present invention sets the feed controller 102 and the feed controller 102 so that the position command amplitude ratio of the load response tracking deviation spectrum of FIG.
  • the control gain of the forward controller 106 it can also be used for setting the control gain that achieves the highest control performance that should be obtained by the feedforward controller 106 to be used.
  • the feedback controller 102 applies any feedback control law such as position P speed P control, position P speed PI control, position P speed IP control, position PID control, speed P control, speed PI control, speed IP control, etc.
  • the feedforward controller 106 can be applied to any feedforward control law that outputs speed feedforward, torque feedforward, and the like.
  • the control object frequency response Gp1 (s) is equal to the control object frequency response Gp1 (s) and the frequency response Gp2 (s) to the load position. Therefore, the present invention can be similarly applied using Grt (s) ⁇ Gp1 (s) instead of Grt (s) ⁇ Gp1 (s) ⁇ Gp2 (s) in FIG.
  • the feedforward control to be used since it is possible to determine whether or not the feedforward control to be used is effective using only the frequency response information of the control target, it is possible to determine the effect of the feedforward control without having to increase the control gain and measure the response waveform. Can be predicted in the initial state, and a control gain setting that realizes the highest control performance obtained by the controller to be used can be performed.
  • the semiconductor manufacturing apparatus Since the optimum setting of the feedforward control is performed using only the frequency response information of the controlled object, and the control gain setting that realizes the highest control performance to be obtained by the feedforward controller that is going to be used, the semiconductor manufacturing apparatus, It can be widely applied to general industrial equipment such as machine tools, liquid crystal panel manufacturing equipment, and industrial robots.

Abstract

A motor controller which can judge whether feedforward control to be used is effective or not using only the frequency response information of a controlled object, and can set a control gain for realizing highest available control performance. The motor controller comprises an operating unit (111) for calculating a load response spectrum based on a command spectrum and a controlled object frequency response, an operating unit (112) for calculating a load response follow-up deviation spectrum based on the command spectrum and the load response spectrum, and a feedforward control setter (113) for calculating a feedforward control setting signal based on the load response follow-up deviation spectrum.

Description

モータ制御装置Motor control device
 本発明は、負荷を連結したモータを駆動するモータ制御装置に関する。 The present invention relates to a motor control device that drives a motor connected to a load.
 従来のモータ制御装置は、制御対象の逆モデルに基づいて算出したトルクフィードフォワード信号である第1のトルクフィードフォワード信号の変化が緩やかな場合には前記第1のトルクフィードフォワード信号にフィルタ処理を施した第2のトルクフィードフォワード信号をトルク指令に加算し、前記第1のトルクフィードフォワード信号の変化が急な場合には前記第1のトルクフィードフォワード信号を前記トルク指令に加算して制御対象を駆動している(例えば、特許文献1参照)。
 図5において、501は位置指令発生器、502は位置制御手段、503は速度制御手段、504は電流制御手段、505は制御対象、506は検出器、507は速度FF作成手段、508はトルクFF作成手段、509はフィルタ処理手段、510は切替手段である。
 位置指令発生器501は位置指令を出力する。
 位置制御手段502は前記位置指令から位置を減算した位置追従偏差を入力し速度指令を出力する。
 速度制御手段503は前記速度指令に速度フィードフォワード信号を加算し速度を減算した速度追従偏差を入力しトルク指令を出力する。
 電流制御手段504は前記トルク指令に第1のトルクフィードフォワード信号または第2のフィードフォワード信号を加算した調整トルク指令を入力し電流により制御対象505を駆動する。
 検出器506は制御対象505の前記位置を検出し出力する。
 速度FF作成手段507は前記位置指令を入力しその入力信号を1階微分した前記速度フィードフォワード信号を出力する。
 トルクFF作成手段508は前記速度フィードフォワード信号を入力し、既知の制御対象505の機械定数に基づいて第1のトルクフィードフォワード信号を出力する。
 フィルタ処理手段509は前記第1のトルクフィードフォワード信号を入力しその入力信号にローパスフィルタ、移動平均フィルタなどのフィルタ処理を施した第2のトルクフィードフォワード信号を出力する。
 切替手段510は前記第1のフィードフォワード信号と前記第2のフィードフォワード信号を入力し、前記第1のフィードフォワード信号の変化量が設定した閾値より大きい場合には前記第1のフィードフォワード信号を出力し、それ以外の場合には前記第2のフィードフォワード信号を出力する。
 このように、従来のフィードフォワード制御装置は、制御対象の逆モデルに基づいて算出したトルクフィードフォワード信号である第1のトルクフィードフォワード信号の変化が緩やかな場合には前記第1のトルクフィードフォワード信号にフィルタ処理を施した第2のトルクフィードフォワード信号をトルク指令に加算し、前記第1のトルクフィードフォワード信号の変化が急な場合には前記第1のトルクフィードフォワード信号を前記トルク指令に加算して制御対象を駆動するのである。
特開2007-34729(第10頁、第1図)
The conventional motor control device performs a filtering process on the first torque feedforward signal when a change in the first torque feedforward signal, which is a torque feedforward signal calculated based on the inverse model of the control target, is moderate. The applied second torque feedforward signal is added to the torque command, and when the first torque feedforward signal changes suddenly, the first torque feedforward signal is added to the torque command to be controlled. (For example, refer to Patent Document 1).
In FIG. 5, 501 is a position command generator, 502 is position control means, 503 is speed control means, 504 is current control means, 505 is an object to be controlled, 506 is a detector, 507 is speed FF creation means, and 508 is torque FF. Creation means, 509 is filter processing means, and 510 is switching means.
The position command generator 501 outputs a position command.
The position control means 502 inputs a position tracking deviation obtained by subtracting the position from the position command and outputs a speed command.
The speed control means 503 inputs a speed tracking deviation obtained by adding a speed feedforward signal to the speed command and subtracting the speed, and outputs a torque command.
The current control means 504 inputs an adjustment torque command obtained by adding the first torque feedforward signal or the second feedforward signal to the torque command, and drives the controlled object 505 by the current.
The detector 506 detects and outputs the position of the control object 505.
The speed FF creating means 507 inputs the position command and outputs the speed feed forward signal obtained by first-order differentiation of the input signal.
The torque FF creating means 508 receives the speed feedforward signal and outputs a first torque feedforward signal based on a known machine constant of the control target 505.
The filter processing means 509 inputs the first torque feedforward signal and outputs a second torque feedforward signal obtained by applying filter processing such as a low-pass filter and a moving average filter to the input signal.
The switching means 510 inputs the first feedforward signal and the second feedforward signal, and when the change amount of the first feedforward signal is larger than a set threshold, the first feedforward signal is changed. Otherwise, the second feedforward signal is output.
As described above, the conventional feedforward control device is configured to perform the first torque feedforward when the change in the first torque feedforward signal, which is the torque feedforward signal calculated based on the inverse model to be controlled, is moderate. The second torque feedforward signal obtained by filtering the signal is added to the torque command, and when the first torque feedforward signal changes suddenly, the first torque feedforward signal is added to the torque command. The control target is driven by addition.
JP 2007-34729 (page 10, FIG. 1)
 従来のモータ制御装置は、制御ゲインの設定値と制御対象の組み合わせがどのような場合に、使用しようとしているフィードフォワード制御の応答改善に有効であるかを、制御ゲインを上げて応答波形を計測することなく判断することが出来ないという問題があった。また、使用しようとしているフィードフォワード制御により得られるべき最高の制御性能を実現する制御ゲイン設定ができないという問題もあった。
 本発明はこのような問題点に鑑みてなされたものであり、制御対象の周波数応答の情報のみを用いて、使用しようとしているフィードフォワード制御が有効であるか判断でき、得られるべき最高の制御性能を実現する制御ゲイン設定をすることができるモータ制御装置を提供することを目的とする。
The conventional motor control device measures the response waveform by increasing the control gain to determine the effective combination of the control gain setting value and the control target to improve the response of the feedforward control that is going to be used. There was a problem that it was not possible to judge without doing. In addition, there is a problem in that it is impossible to set a control gain that realizes the highest control performance that should be obtained by the feedforward control to be used.
The present invention has been made in view of such a problem, and it is possible to determine whether or not the feedforward control to be used is effective by using only the information on the frequency response of the control target, and the best control to be obtained. It is an object of the present invention to provide a motor control device capable of setting a control gain that realizes performance.
 上記問題を解決するため、本発明は、次のように構成したのである。
 請求項1記載の発明は、位置あるいは速度の指令と、制御対象の制御応答、ならびにフィードフォワード信号とを入力し、前記指令と前記制御応答とが一致するように制御演算してトルク指令を算出するフィードバック制御器と、前記トルク指令を入力し、前記トルク指令に基づいて前記制御対象に電力を供給するトルク制御器と、前記指令を入力し、前記指令に基づいて前記フィードフォワード信号を算出するフィードフォワード制御器と、周波数応答計測時に周波数応答計測用信号を出力する信号発生器と、を備えたモータ制御装置において、前記指令および周波数応答計測時における前記制御応答を入力し、前記指令のスペクトルである指令スペクトルと、前記制御対象の周波数応答である制御対象周波数応答と、前記指令スペクトルと前記制御対象周波数応答とに基づいて、前記制御対象を構成する負荷の負荷応答の前記指令に対する追従偏差である負荷応答追従偏差スペクトルとを算出し、フィードフォワード制御設定信号を出力するフィードフォワード制御設定装置を備え、前記フィードフォワード制御設定信号に基づいて、前記フィードフォワード制御器の制御ゲイン、および前記フィードフォワード制御器を使用する、あるいは使用しないことを設定することを特徴とするものである。
In order to solve the above problem, the present invention is configured as follows.
According to the first aspect of the present invention, a position or speed command, a control response to be controlled, and a feedforward signal are input, and a control command is calculated so that the command and the control response match to calculate a torque command. A feedback controller that receives the torque command, supplies a power to the controlled object based on the torque command, inputs the command, and calculates the feedforward signal based on the command In a motor control device comprising a feedforward controller and a signal generator that outputs a frequency response measurement signal during frequency response measurement, the command and the control response during frequency response measurement are input, and the spectrum of the command A command spectrum, a control target frequency response that is a frequency response of the control target, and the command spectrum Based on the frequency response to be controlled, a feedforward control setting that calculates a load response tracking deviation spectrum that is a tracking deviation with respect to the command of the load response of the load that constitutes the control target and outputs a feedforward control setting signal And a control gain of the feedforward controller, and whether or not to use the feedforward controller is set based on the feedforward control setting signal.
 また、請求項2記載の発明は、請求項1に記載の発明における前記フィードフォワード制御設定装置が、前記指令スペクトルの含む周波数範囲とそれ以上の周波数範囲とのそれぞれについて閾値を設定し、前記負荷応答追従偏差スペクトルが少なくとも一方の前記閾値以上の場合、前記フィードフォワード制御器を使用しないという前記フィードフォワード制御設定信号を出力することを特徴とするものである。 In the invention according to claim 2, the feedforward control setting device in the invention according to claim 1 sets a threshold for each of a frequency range included in the command spectrum and a frequency range higher than the frequency range, and the load When the response tracking deviation spectrum is equal to or greater than at least one of the threshold values, the feedforward control setting signal indicating that the feedforward controller is not used is output.
 また、請求項3記載の発明は、請求項1に記載の発明におけ前記フィードフォワード制御設定装置が、前記フィードバック制御器と前記フィードフォワード制御器の複数の制御ゲイン組み合わせのそれぞれに対して前記負荷応答追従偏差スペクトルを算出し、前記負荷応答追従偏差スペクトルの大きさが最小である場合の前記制御ゲイン組み合わせに基づいて、前記制御ゲインの設定値を前記フィードフォワード制御設定信号として出力することを特徴とするものである。 According to a third aspect of the present invention, the feedforward control setting device according to the first aspect of the present invention is configured such that the load is applied to each of a plurality of control gain combinations of the feedback controller and the feedforward controller. A response tracking deviation spectrum is calculated, and a set value of the control gain is output as the feedforward control setting signal based on the control gain combination when the magnitude of the load response tracking deviation spectrum is minimum. It is what.
 本発明によると、制御対象の周波数応答の情報のみを用いて使用しようとしているフィードフォワード制御が有効であるか判断できるため、制御ゲインを上げて応答波形を計測する必要なく、フィードフォワード制御の効果を初期状態で予測でき、利用しようとしている制御器により得られるべき最高の制御性能を実現する制御ゲイン設定ができる。
 また、請求項2または3に記載の発明によると、周波数応答の測定が、速くなるので、短時間にフィードフォワード制御の効果を予測でき、使用しようとしている制御器により得られるべき最高の制御性能を実現する制御ゲイン設定ができる。
According to the present invention, since it is possible to determine whether or not the feedforward control to be used is effective using only the information on the frequency response of the control target, it is not necessary to increase the control gain and measure the response waveform. Can be predicted in the initial state, and a control gain setting that achieves the highest control performance to be obtained by the controller to be used can be performed.
According to the invention described in claim 2 or 3, since the frequency response measurement becomes faster, the effect of the feedforward control can be predicted in a short time, and the best control performance to be obtained by the controller to be used. Can be set to achieve control gain.
本発明の第1実施例を示すモータ制御装置を説明するブロック図1 is a block diagram for explaining a motor control device according to a first embodiment of the present invention. 本発明の第1実施例における等価速度指令と位置指令の波形を示す図The figure which shows the waveform of the equivalent speed command and position command in 1st Example of this invention 本発明の第1実施例における指令スペクトルおよびGrt(s)・Gp1(s)・Gp2(s)のボード線図Command spectrum and Bort diagram of Grt (s) · Gp1 (s) · Gp2 (s) in the first embodiment of the present invention 本発明の第1実施例における負荷応答スペクトル、負荷応答追従偏差スペクトル、および負荷応答追従偏差スペクトルの位置指令振幅比を示す図The figure which shows the position command amplitude ratio of the load response spectrum in 1st Example of this invention, a load response tracking deviation spectrum, and a load response tracking deviation spectrum. 従来のフィードフォワード制御装置Conventional feedforward control device
符号の説明Explanation of symbols
101 指令発生器
102 フィードバック制御器
103 トルク制御器
104 制御対象
105 エンコーダ
106 フィードフォワード制御器
107 周波数応答計測用信号発生器
108 フィードフォワード制御設定装置
109 指令スペクトル演算器
110 制御対象周波数応答検出器
111 負荷応答スペクトル演算器
112 負荷応答追従偏差スペクトル演算器
113 フィードフォワード制御設定器
501 位置指令発生器
502 位置制御手段
503 速度制御手段
504 電流制御手段
505 制御対象
506 検出器
507 速度FF作成手段
508 トルクFF作成手段
509 フィルタ処理手段
510 切替手段
DESCRIPTION OF SYMBOLS 101 Command generator 102 Feedback controller 103 Torque controller 104 Control object 105 Encoder 106 Feedforward controller 107 Frequency response measurement signal generator 108 Feedforward control setting device 109 Command spectrum calculator 110 Control object frequency response detector 111 Load Response spectrum calculator 112 Load response tracking deviation spectrum calculator 113 Feed forward control setter 501 Position command generator 502 Position control means 503 Speed control means 504 Current control means 505 Control object 506 Detector 507 Speed FF creation means 508 Torque FF creation Means 509 Filter processing means 510 Switching means
 以下、本発明の実施の形態について図を参照して説明する。
 実際のモータ制御装置には様々な機能や手段が内蔵されているが、図には本発明に関係する機能や手段のみを記載し説明することとする。また、以下同一名称には極力同一符号を付け重複説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Although various functions and means are built in the actual motor control device, only the functions and means related to the present invention will be described and described in the figure. Hereinafter, the same reference numerals are assigned to the same names as much as possible, and the duplicate description is omitted.
 図1は、本発明の第1実施例を示すモータ制御装置を説明するブロック図である。
 図1において、101は指令発生器、102はフィードバック制御器、103はトルク制御器、104は制御対象、105はエンコーダ、106はフィードフォワード制御器、107は周波数応答計測用信号発生器、108はフィードフォワード制御設定装置である。また、109は指令スペクトル演算器、110は制御対象周波数応答検出器、111は負荷応答スペクトル演算器、112は負荷応答追従偏差スペクトル演算器、113はフィードフォワード制御設定器である。
FIG. 1 is a block diagram illustrating a motor control apparatus according to a first embodiment of the present invention.
In FIG. 1, 101 is a command generator, 102 is a feedback controller, 103 is a torque controller, 104 is an object to be controlled, 105 is an encoder, 106 is a feedforward controller, 107 is a signal generator for frequency response measurement, and 108 is This is a feedforward control setting device. Reference numeral 109 is a command spectrum calculator, 110 is a controlled frequency response detector, 111 is a load response spectrum calculator, 112 is a load response tracking deviation spectrum calculator, and 113 is a feedforward control setting device.
 指令発生器101は、指令を出力する。
 フィードバック制御器102は、前記指令とフィードフォワード信号と制御対象104の応答を入力し、前記応答が前記指令に一致するように制御演算を行いトルク指令を算出し、トルク制御器103へ出力する。
 制御対象104は、負荷を連結したモータである。
 トルク制御器103は、前記トルク指令と周波数応答計測用信号を入力し、通常動作時には前記トルク指令に基づいて、周波数応答計測時には周波数応答用信号発生器より出力される周波数応答計測用信号に基づいて、前記モータにモータ電流を流す。
 エンコーダ105は、制御対象104の前記応答を検出し出力する。
 フィードフォワード制御器106は、前記指令とフィードフォワード制御設定信号を入力し、前記フィードフォワード制御設定信号に基づいて前記フィードフォワード信号を算出し、フィードバック制御器102に出力する。
 周波数応答計測用信号発生器107は、前記周波数応答計測用信号をトルク制御器103へ出力する。
The command generator 101 outputs a command.
The feedback controller 102 receives the command, the feedforward signal, and the response of the control target 104, performs a control calculation so that the response matches the command, calculates a torque command, and outputs the torque command to the torque controller 103.
The control object 104 is a motor connected with a load.
The torque controller 103 receives the torque command and frequency response measurement signal, and based on the torque command during normal operation, and based on the frequency response measurement signal output from the frequency response signal generator during frequency response measurement. Then, a motor current is passed through the motor.
The encoder 105 detects and outputs the response of the control object 104.
The feedforward controller 106 receives the command and the feedforward control setting signal, calculates the feedforward signal based on the feedforward control setting signal, and outputs it to the feedback controller 102.
The frequency response measurement signal generator 107 outputs the frequency response measurement signal to the torque controller 103.
 前記周波数応答計測用信号は、モータ制御装置の周波数応答を測定できるもであればどのようなものでもよいが、掃引正弦波信号であることが好ましい。また、複数の周波数の正弦波で構成されたものであってもよい。前記周波数応答測定用信号を掃引正弦波信号とすることで、短時間で正確に制御対象104の周波数応答を計測することができる。また、前記周波数応答計測用信号を複数の周波数の正弦波で構成されたものとすることで、短時間により正確に制御対象104の周波数応答を計測することができる。 The frequency response measurement signal may be any signal as long as it can measure the frequency response of the motor control device, but is preferably a swept sine wave signal. Further, it may be composed of sine waves having a plurality of frequencies. By making the frequency response measurement signal a swept sine wave signal, the frequency response of the controlled object 104 can be accurately measured in a short time. Moreover, the frequency response of the controlled object 104 can be accurately measured in a short time by setting the frequency response measurement signal to a sine wave having a plurality of frequencies.
 フィードフォワード制御設定装置108は、周波数応答検出時において、前記指令と前記応答を入力し、前記フィードフォワード制御設定信号を算出し、フィードフォワード制御器106へ出力する。
 前記フィードフォワード制御設定信号は、フィードフォワード制御器106の制御ゲインおよびフィードフォワード制御の使用/不使用の設定値を含んでいる。
 また、フィードフォワード制御設定装置108は、指令スペクトル演算器109、制御対象周波数応答検出器110、負荷応答スペクトル演算器111、負荷応答追従偏差スペクトル演算器112、およびフィードフォワード制御設定器113で構成される。
 指令スペクトル演算器109は、前記指令を入力し、指令スペクトルを算出し、負荷応答スペクトル演算器111および負荷応答追従偏差スペクトル演算器112へ出力する。
 指令スペクトル演算器109は、FFTを用いて前記指令スペクトルを算出することが望ましい。また、周波数帯域の連続した複数のバンドパスフィルタを用いて前記指令スペクトルを算出してもよい。
 制御対象周波数応答検出器110は、前記応答を入力し、制御対象周波数応答を算出し、負荷応答スペクトル演算器111へ出力する。
When the frequency response is detected, the feedforward control setting device 108 inputs the command and the response, calculates the feedforward control setting signal, and outputs it to the feedforward controller 106.
The feedforward control setting signal includes a control gain of the feedforward controller 106 and a setting value for using / not using the feedforward control.
The feedforward control setting device 108 includes a command spectrum calculator 109, a control target frequency response detector 110, a load response spectrum calculator 111, a load response tracking deviation spectrum calculator 112, and a feedforward control setter 113. The
The command spectrum calculator 109 receives the command, calculates a command spectrum, and outputs the command spectrum to the load response spectrum calculator 111 and the load response tracking deviation spectrum calculator 112.
It is desirable that the command spectrum calculator 109 calculates the command spectrum using FFT. Further, the command spectrum may be calculated using a plurality of bandpass filters having continuous frequency bands.
The control target frequency response detector 110 receives the response, calculates a control target frequency response, and outputs it to the load response spectrum calculator 111.
 負荷応答スペクトル演算器111は、前記指令スペクトルと前記制御対象周波数応答を入力し、負荷応答スペクトルを算出し、負荷応答追従偏差スペクトル演算器112へ出力する。
 負荷応答スペクトル演算器111は、前記制御対象周波数応答より前記制御対象の反共振周波数を算出し、前記反共振周波数に基づいて前記制御対象の負荷応答までの周波数応答である負荷周波数応答を算出し、前記指令スペクトルと前記フィードフォワード制御器の制御ゲインから算出したフィードフォワード制御器周波数応答と前記負荷周波数応答を乗算した負荷応答スペクトルを算出することが望ましい。
 負荷応答追従偏差スペクトル演算器112は、前記指令スペクトルと前記負荷応答スペクトルを入力し、負荷応答追従偏差スペクトルを算出し、フィードフォワード制御設定器113へ出力する。
 負荷応答追従偏差スペクトル演算器112は、前記負荷応答スペクトルから指令スペクトルを減算して前記負荷応答追従偏差スペクトルを算出することが望ましい。
The load response spectrum calculator 111 receives the command spectrum and the control target frequency response, calculates a load response spectrum, and outputs it to the load response tracking deviation spectrum calculator 112.
The load response spectrum calculator 111 calculates an anti-resonance frequency of the control target from the control target frequency response, and calculates a load frequency response that is a frequency response up to the load response of the control target based on the anti-resonance frequency. Preferably, a load response spectrum obtained by multiplying the feedforward controller frequency response calculated from the command spectrum and the control gain of the feedforward controller and the load frequency response is calculated.
The load response tracking deviation spectrum calculator 112 receives the command spectrum and the load response spectrum, calculates a load response tracking deviation spectrum, and outputs it to the feedforward control setting unit 113.
It is preferable that the load response tracking deviation spectrum calculator 112 calculates the load response tracking deviation spectrum by subtracting a command spectrum from the load response spectrum.
 フィードフォワード制御設定器113は、前記負荷応答追従偏差スペクトルを入力し、前記フィードフォワード制御設定信号を算出し、フィードフォワード制御器106へ出力する。
 フィードフォワード制御設定器113は、前記指令スペクトルの含む周波数範囲とそれ以上の周波数範囲のそれぞれについて閾値を設定し、前記負荷応答追従偏差スペクトルがすくなくとも一方の前記閾値以上の場合、前記フィードフォワード制御器106を使用しないというフィードフォワード制御設定信号を出力し、それ以外の場合は、前記フィードフォワード制御器106を使用するというフィードフォワード制御設定信号を出力することが望ましい。
 また、フィードフォワード制御設定器113は、フィードバック制御器102とフィードフォワード制御器106の複数の制御ゲイン組み合わせのそれぞれに対して前記負荷応答追従偏差スペクトルを算出し、前記負荷応答追従偏差スペクトルの大きさが最小である場合の前記制御ゲイン組み合わせに基づいて、フィードフォワード制御器106の制御ゲイン設定値を前記フィードフォワード制御設定信号として出力することが望ましい。
The feedforward control setting unit 113 receives the load response tracking deviation spectrum, calculates the feedforward control setting signal, and outputs it to the feedforward controller 106.
The feedforward control setter 113 sets a threshold for each of the frequency range included in the command spectrum and a frequency range higher than that, and when the load response tracking deviation spectrum is at least one of the thresholds, the feedforward controller It is desirable to output a feedforward control setting signal not to use 106, and to output a feedforward control setting signal to use the feedforward controller 106 in other cases.
The feedforward control setting unit 113 calculates the load response tracking deviation spectrum for each of a plurality of control gain combinations of the feedback controller 102 and the feedforward controller 106, and the magnitude of the load response tracking deviation spectrum is calculated. It is desirable to output the control gain setting value of the feedforward controller 106 as the feedforward control setting signal based on the control gain combination when the value is the minimum.
 本発明が従来技術と異なる部分は、指令スペクトル演算器109、制御対象周波数応答検出器110、負荷応答スペクトル演算器111、負荷応答追従偏差スペクトル演算器112、およびフィードフォワード制御設定器113で構成されるフィードフォワード制御設定装置108を備える部分であって、特に、指令スペクトルと制御対象周波数応答に基づいて負荷応答スペクトルを算出する負荷応答スペクトル演算器111と、前記指令スペクトルと前記負荷応答スペクトルに基づいて負荷応答追従偏差スペクトルを算出する負荷応答追従偏差スペクトル演算器112と、前記負荷応答追従偏差スペクトルに基づいてフィードフォワード制御設定信号を算出するフィードフォワード制御設定器113を備える部分である。 The present invention is different from the prior art in that it includes a command spectrum calculator 109, a control target frequency response detector 110, a load response spectrum calculator 111, a load response tracking deviation spectrum calculator 112, and a feedforward control setting unit 113. The feedforward control setting device 108 includes a load response spectrum calculator 111 for calculating a load response spectrum based on the command spectrum and the frequency response to be controlled, and based on the command spectrum and the load response spectrum. A load response tracking deviation spectrum calculator 112 for calculating a load response tracking deviation spectrum, and a feedforward control setting device 113 for calculating a feedforward control setting signal based on the load response tracking deviation spectrum.
 以下、フィードフォワード制御設定装置108がフィードフォワード制御設定信号を算出する仕組みの詳細を説明する。
 指令を位置指令とし、フィードバック制御器102を位置速度制御器とし、制御対象104は負荷を連結したモータであり2慣性系で近似できるものとし、応答をモータ位置とすると、制御対象周波数応答検出器110の出力する制御対象周波数応答はトルク指令からモータ位置までの周波数応答となる。
 前記制御対象の周波数応答Gp1(s)の振幅が極小値をとる周波数を反共振周波数ωa、極大値をとる周波数を共振周波数ωrとし、反共振周波数ωaの近傍における制御対象周波数応答Gp1(s)の振幅の溝のQ値をQaとすると、反共振の減衰係数ζaは式(1)で表される。
  ζa=1/(2・Qa)   (1)
 同様に、共振周波数ωrの近傍における制御対象の周波数応答Gp1(s)の振幅のピークのQ値をQrとすると、共振の減衰係数ζrは式(2)で表される。
  ζr=1/(2・Qr)   (2)
 反共振周波数ωaより十分に低い周波数ωにおける制御対象の周波数応答Gp1(s)の振幅をM1とすると、制御対象104の総慣性モーメントJは、式(3)で表される。
  J=1/(M1・ω)   (3)
 制御対象周波数応答Gp1(s)および式(1)から(3)を用いて算出した反共振周波数ωa、反共振の減衰係数ζaを用いて式(4)により前記モータ位置から負荷位置までの周波数応答Gp2(s)を算出する。
  Gp2(s)=ωa/(s+2・ζa・ωa・s+ωa)   (4)
Hereinafter, the details of the mechanism by which the feedforward control setting device 108 calculates the feedforward control setting signal will be described.
If the command is a position command, the feedback controller 102 is a position speed controller, the control object 104 is a motor connected to a load and can be approximated by a two-inertia system, and the response is a motor position, the control object frequency response detector The control target frequency response output by 110 is the frequency response from the torque command to the motor position.
The frequency at which the amplitude of the frequency response Gp1 (s) to be controlled takes a minimum value is defined as an antiresonance frequency ωa, the frequency at which the amplitude takes a maximum value is defined as a resonance frequency ωr, and the frequency response Gp1 (s) to be controlled near the antiresonance frequency ωa. When the Q value of the groove having the amplitude of Q is Qa, the anti-resonance damping coefficient ζa is expressed by the equation (1).
ζa = 1 / (2 · Qa) (1)
Similarly, assuming that the Q value of the amplitude peak of the frequency response Gp1 (s) to be controlled in the vicinity of the resonance frequency ωr is Qr, the resonance attenuation coefficient ζr is expressed by the following equation (2).
ζr = 1 / (2 · Qr) (2)
When the amplitude of the frequency response Gp1 (s) of the controlled object at a frequency ω sufficiently lower than the antiresonant frequency ωa is M1, the total moment of inertia J of the controlled object 104 is expressed by Expression (3).
J = 1 / (M1 · ω 2 ) (3)
The frequency from the motor position to the load position according to equation (4) using the anti-resonance frequency ωa calculated using the control object frequency response Gp1 (s) and equations (1) to (3) and the anti-resonance damping coefficient ζa. Response Gp2 (s) is calculated.
Gp2 (s) = ωa 2 / (s 2 + 2 · ζa · ωa · s + ωa 2 ) (4)
 フィードフォワード制御器106は位置フィードフォワード信号、速度フィードフォワード信号、トルクフィードフォワード信号を含むフィードフォワード信号を出力するものとし、フィードバック制御器102内において、前記位置フィードフォワード信号から前記モータ位置を減算したモータ位置追従偏差に基づいて速度指令を算出し、前記速度指令に前記速度フィードフォワード信号を加算し前記モータ位置の1階時間微分値であるモータ速度を減算したモータ速度追従偏差に基づいてフィードバックトルク指令を算出し、前記フィードバックトルク指令に前記トルクフィードフォワード信号を加算してトルク指令を算出する。前記位置フィードフォワード信号は前記位置指令に位置フィードフォワードフィルタGrp(s)を乗算して求める。
 前記速度フィードフォワード信号は前記位置指令に速度フィードフォワードフィルタGrv(s)を乗算して求める。
 前記トルクフィードフォワード信号は前記位置指令にトルクフィードフォワードフィルタGrt(s)を乗算して求める。
 制御対象周波数応答Gp1(s)、式(4)、トルクフィードフォワードフィルタGrt(s)を用いて前記位置指令から負荷位置までの周波数応答である負荷周波数応答Grt(s)・Gp1(s)・Gp2(s)が求められる。
The feedforward controller 106 outputs a feedforward signal including a position feedforward signal, a speed feedforward signal, and a torque feedforward signal. In the feedback controller 102, the motor position is subtracted from the position feedforward signal. A speed command is calculated based on the motor position tracking deviation, and the feedback torque is calculated based on the motor speed tracking deviation obtained by adding the speed feedforward signal to the speed command and subtracting the motor speed which is a first-order time differential value of the motor position. A command is calculated, and a torque command is calculated by adding the torque feedforward signal to the feedback torque command. The position feedforward signal is obtained by multiplying the position command by a position feedforward filter Grp (s).
The speed feedforward signal is obtained by multiplying the position command by a speed feedforward filter Grv (s).
The torque feed forward signal is obtained by multiplying the position command by a torque feed forward filter Grt (s).
Load frequency response Grt (s) / Gp1 (s) / frequency response from the position command to the load position using the control target frequency response Gp1 (s), the equation (4), and the torque feedforward filter Grt (s). Gp2 (s) is obtained.
 指令スペクトル演算器109はFFTを用いて前記位置指令のスペクトルである指令スペクトルsr(ω)を算出する。ただし、ωをスペクトル周波数とする。 The command spectrum calculator 109 calculates a command spectrum sr (ω) that is a spectrum of the position command using FFT. However, let ω be the spectral frequency.
 負荷応答スペクトル演算器111は式(5)に基づいて負荷応答のスペクトルである負荷応答スペクトルsl(ω)を算出する。
sl(ω)=∥Grt(jω)・Gp1(jω)・Gp2(jω)∥・sr(ω)  (5)
   ただし、∥・∥はノルム、jは虚数単位を表す。
 負荷応答追従偏差スペクトル演算器112は負荷位置の前記位置指令に対する追従偏差である負荷位置追従偏差のスペクトルである負荷応答追従偏差スペクトルを式(6)により算出する。
  sld(ω)=sr(ω)-sl(ω)   (6)
 負荷応答追従偏差スペクトルsld(ω)が全てのスペクトル周波数ωにおいて0である場合、前記負荷位置が前記位置指令に完全に追従していることを示す。一方、ある周波数ωにおいてピークを持つ場合、前記負荷位置がその周波数ωの振動を含むことを示す。
The load response spectrum calculator 111 calculates a load response spectrum sl (ω) that is a load response spectrum based on the equation (5).
sl (ω) = ∥Grt (jω) · Gp1 (jω) · Gp2 (jω) ∥ · sr (ω) (5)
However, ∥ · ∥ represents a norm, and j represents an imaginary unit.
The load response follow-up deviation spectrum calculator 112 calculates a load response follow-up deviation spectrum, which is a spectrum of the load position follow-up deviation, which is a follow-up deviation with respect to the position command of the load position, using Equation (6).
sld (ω) = sr (ω) −sl (ω) (6)
When the load response tracking deviation spectrum sld (ω) is 0 at all spectrum frequencies ω, it indicates that the load position completely follows the position command. On the other hand, when there is a peak at a certain frequency ω, it indicates that the load position includes vibration at the frequency ω.
 指令スペクトルsr(ω)が含む主な周波数成分の周波数上限値である指令周波数上限値より低い周波数範囲に負荷応答追従偏差スペクトルsld(ω)が持つピークの許容値と、前記指令周波数上限値より高い周波数範囲に負荷応答追従偏差スペクトルsld(ω)が持つピークの許容値をそれぞれ設定する。フィードフォワード制御設定器113は、負荷応答追従偏差スペクトルsld(ω)が前記許容値以下である場合にのみ、フィードフォワード制御を「使用」とするフィードフォワード制御設定信号をフィードフォワード制御器106に出力することにより、過渡応答や高周波振動の少ない負荷の応答を実現できる。 From the peak allowable value of the load response tracking deviation spectrum sld (ω) in a frequency range lower than the command frequency upper limit value which is the frequency upper limit value of the main frequency component included in the command spectrum sr (ω), and the command frequency upper limit value The permissible peak value of the load response tracking deviation spectrum sld (ω) is set in the high frequency range. The feedforward control setter 113 outputs a feedforward control setting signal for “use” the feedforward control to the feedforward controller 106 only when the load response tracking deviation spectrum sld (ω) is equal to or less than the allowable value. By doing so, it is possible to realize a load response with little transient response and high frequency vibration.
 また、本発明は、制御対象104の周波数応答のみを用いてフィードフォワード制御設定ができるので、従来技術のようにフードフォーワード制御の設定のためにフィードバック制御ゲインを上げ、制御対象104を大きく振動させる必要がなく、制御対象104と設定しているフィードバック制御ゲインに最も適したフィードフォワード制御設定が可能である。 Further, according to the present invention, since the feedforward control can be set using only the frequency response of the controlled object 104, the feedback control gain is increased for setting the food forward control as in the prior art, and the controlled object 104 is greatly vibrated. The feedforward control setting most suitable for the feedback control gain set with the control object 104 is possible.
 本実施例では位置速度制御の場合を示したが、前記フィードフォワード信号を速度フィードフォワード信号とトルクフィードフォワード信号のみとし、式(3)分母のωをωとし、前記指令を速度指令とし、前記応答をモータ速度、前記負荷応答を負荷速度とすることにより、速度制御の場合にも同様に適用可能である。 Although this embodiment shows the case of position and speed control, the feed to the forward signal speed feed-forward signal and the torque feedforward signal only, the equation (3) the denominator of omega 2 and omega, the command and speed command, By applying the response to the motor speed and the load response to the load speed, the present invention can be similarly applied to speed control.
 また、本発明は位置制御則、速度制御則、フィードフォワード制御則は本実施例に示すものの他、任意の制御則に対しても同様に適用可能である。 In the present invention, the position control law, the speed control law, and the feedforward control law are applicable to any control law in addition to those shown in this embodiment.
 以下、第1実施例におけるシミュレーション結果を示す。シミュレーションに用いた数値は以下の通りである。
 J=0.116×10-3[kg・m]、ωa=80・2・π[rad/s]、
 ζa=0.1、ωr=100・2・π[rad/s]、ζr=0.1
 ただし、Jは制御対象104の総慣性モーメント、ωaは反共振周波数、ζaは反共振の減衰係数、ωrは共振周波数、ζrは共振の減衰係数である。フィードバック制御則はモータ位置を比例制御しモータ速度を比例積分制御する位置P速度PI制御とした。
The simulation results in the first embodiment are shown below. The numerical values used for the simulation are as follows.
J = 0.116 × 10 −3 [kg · m 2 ], ωa = 80 · 2 · π [rad / s],
ζa = 0.1, ωr = 100 · 2 · π [rad / s], ζr = 0.1
However, J is the total moment of inertia of the controlled object 104, ωa is the antiresonance frequency, ζa is the antiresonance damping coefficient, ωr is the resonance frequency, and ζr is the resonance damping coefficient. The feedback control law is position P speed PI control in which the motor position is proportionally controlled and the motor speed is proportionally integrated.
 図2は、本発明の第1実施例における等価速度指令と位置指令の波形を示す図であり、
 図2(a)は等価速度指令、図2(b)は位置指令波形である。
 図2(a)の等価速度指令は、図2(b)の位置指令を1階時間積分して求めた。
 本シミュレーションでは一般産業用機械の動作制御に一般的に使われる指令の一例として、図2(b)の位置指令を用いる。
 また、図3は、本発明の第1実施例における指令スペクトルおよびGrt(s)・Gp1(s)・Gp2(s)のボード線図であり、図3(a)は指令スペクトル、図3(b)はGrt(s)・Gp1(s)・Gp2(s)のボード線図である。
 図3(a)より、位置指令は主に8Hz以下に周波数成分を持つことを示している。すなわち、指令周波数成分上限値は8Hzである。図3(b)より、8Hz以下では位置指令から負荷位置までのボード線図は0dBでほぼ一定であり、負荷位置は位置指令に良く追従することが推測できる。
FIG. 2 is a diagram showing waveforms of an equivalent speed command and a position command in the first embodiment of the present invention,
2A shows an equivalent speed command, and FIG. 2B shows a position command waveform.
The equivalent speed command shown in FIG. 2A is obtained by integrating the position command shown in FIG.
In this simulation, the position command shown in FIG. 2B is used as an example of a command generally used for operation control of a general industrial machine.
FIG. 3 is a Bode diagram of the command spectrum and Grt (s) · Gp1 (s) · Gp2 (s) in the first embodiment of the present invention, FIG. 3 (a) is the command spectrum, and FIG. b) is a Bode diagram of Grt (s) · Gp1 (s) · Gp2 (s).
FIG. 3A shows that the position command has a frequency component mainly at 8 Hz or less. That is, the command frequency component upper limit value is 8 Hz. From FIG. 3B, it can be inferred that at 8 Hz or less, the Bode diagram from the position command to the load position is almost constant at 0 dB, and the load position follows the position command well.
 また、図4は、本発明の第1実施例における負荷応答スペクトル、負荷応答追従偏差スペクトル、および負荷応答追従偏差スペクトルの位置指令振幅比を示す図であり、図4(a)は負荷応答スペクトル、図4(b)は負荷応答追従偏差スペクトル、図4(c)は負荷応答追従偏差スペクトルの位置指令振幅比である。
 図4(a)の負荷応答スペクトルは、図3(a)の指令スペクトルと同じ傾向であるが、その振幅は前記指令スペクトルと比べて小さい。
 図4(b)の負荷応答追従偏差スペクトルは、前記負荷応答スペクトルから前記指令スペクトルを減算して求めた。
 図4(b)からも前記負荷応答スペクトルが前記指令スペクトルより小さいことが分かる。図4(c)の負荷応答追従偏差スペクトルの指令振幅比は、前記負荷応答追従偏差スペクトルの前記指令スペクトルの最大値に対する%比である。図4(c)より前記負荷位置は周波数が4Hz、振幅が指令振幅の13%の振動を含むことが分かる。たとえば、周波数が8Hz以下において位置指令振幅の20%までの振幅の振動が許容され、周波数が8Hzより大きい領域で前記位置指令振幅の10%までの振幅の振動が許容される産業用機械の動作制御では、図4(c)より、フィードフォワード制御設定器113はフィードフォワード制御を使用するというフィードフォワード制御設定信号を出力する。
FIG. 4 is a diagram showing the load response spectrum, the load response tracking deviation spectrum, and the position command amplitude ratio of the load response tracking deviation spectrum in the first embodiment of the present invention. FIG. 4 (a) shows the load response spectrum. 4B shows the load response tracking deviation spectrum, and FIG. 4C shows the position command amplitude ratio of the load response tracking deviation spectrum.
The load response spectrum of FIG. 4A has the same tendency as the command spectrum of FIG. 3A, but its amplitude is smaller than the command spectrum.
The load response tracking deviation spectrum in FIG. 4B was obtained by subtracting the command spectrum from the load response spectrum.
FIG. 4B also shows that the load response spectrum is smaller than the command spectrum. The command amplitude ratio of the load response tracking deviation spectrum in FIG. 4C is a% ratio of the load response tracking deviation spectrum to the maximum value of the command spectrum. FIG. 4 (c) shows that the load position includes a vibration having a frequency of 4 Hz and an amplitude of 13% of the command amplitude. For example, the operation of an industrial machine in which vibration with an amplitude up to 20% of the position command amplitude is allowed at a frequency of 8 Hz or less, and vibration with an amplitude up to 10% of the position command amplitude is allowed in a region where the frequency is greater than 8 Hz. In the control, as shown in FIG. 4C, the feedforward control setting unit 113 outputs a feedforward control setting signal that the feedforward control is used.
 また、本発明は、フィードフォワード制御器106を使用するか否かを設定するほか、図4(c)の負荷応答追従偏差スペクトルの位置指令振幅比を最小にするようにフィードバック制御器102とフィードフォワード制御器106の制御ゲインを設定することにより、使用しようとしているフィードフォワード制御器106により得られるべき最高の制御性能を実現する制御ゲイン設定にも利用できる。 In addition to setting whether or not to use the feedforward controller 106, the present invention sets the feed controller 102 and the feed controller 102 so that the position command amplitude ratio of the load response tracking deviation spectrum of FIG. By setting the control gain of the forward controller 106, it can also be used for setting the control gain that achieves the highest control performance that should be obtained by the feedforward controller 106 to be used.
 フィードバック制御器102は、位置P速度P制御、位置P速度PI制御、位置P速度I-P制御、位置PID制御、速度P制御、速度PI制御、速度I-P制御などいかなるフィードバック制御則にも適用でき、また、フィードフォワード制御器106は速度フィードフォワード、トルクフィードフォワードなどを出力するいかなるフィードフォワード制御則にも適用できる。 The feedback controller 102 applies any feedback control law such as position P speed P control, position P speed PI control, position P speed IP control, position PID control, speed P control, speed PI control, speed IP control, etc. The feedforward controller 106 can be applied to any feedforward control law that outputs speed feedforward, torque feedforward, and the like.
 また、制御対象104の剛性が比較的高く負荷応答が前記応答とほぼ一致する場合、制御対象周波数応答Gp1(s)は制御対象周波数応答Gp1(s)と負荷位置までの周波数応答Gp2(s)の乗算値とほぼ一致するので、図3においてGrt(s)・Gp1(s)・Gp2(s)に代えて、Grt(s)・Gp1(s)を用いて同様に本発明を適用できる。 Further, when the rigidity of the control object 104 is relatively high and the load response substantially matches the response, the control object frequency response Gp1 (s) is equal to the control object frequency response Gp1 (s) and the frequency response Gp2 (s) to the load position. Therefore, the present invention can be similarly applied using Grt (s) · Gp1 (s) instead of Grt (s) · Gp1 (s) · Gp2 (s) in FIG.
 したがって、本発明によると制御対象の周波数応答の情報のみを用いて使用しようとしているフィードフォワード制御が有効であるか判断できるため、制御ゲインを上げて応答波形を計測する必要なくフィードフォワード制御の効果を初期状態で予測でき、使用しようとしている制御器により得られる最高の制御性能を実現する制御ゲイン設定ができる。 Therefore, according to the present invention, since it is possible to determine whether or not the feedforward control to be used is effective using only the frequency response information of the control target, it is possible to determine the effect of the feedforward control without having to increase the control gain and measure the response waveform. Can be predicted in the initial state, and a control gain setting that realizes the highest control performance obtained by the controller to be used can be performed.
 制御対象の周波数応答の情報のみを用いてフィードフォワード制御の最適設定を行い、使用しようとしているフィードフォワード制御器により得られるべき最高の制御性能を実現する制御ゲイン設定ができるので、半導体製造装置、工作機械、液晶パネル製造装置、産業用ロボットなどの一般産業用装置に広く適用できる。 Since the optimum setting of the feedforward control is performed using only the frequency response information of the controlled object, and the control gain setting that realizes the highest control performance to be obtained by the feedforward controller that is going to be used, the semiconductor manufacturing apparatus, It can be widely applied to general industrial equipment such as machine tools, liquid crystal panel manufacturing equipment, and industrial robots.

Claims (3)

  1.  位置あるいは速度の指令と、制御対象の制御応答、ならびにフィードフォワード信号とを入力し、前記指令と前記制御応答とが一致するように制御演算してトルク指令を算出するフィードバック制御器と、前記トルク指令を入力し、前記トルク指令に基づいて前記制御対象に電力を供給するトルク制御器と、前記指令を入力し、前記指令に基づいて前記フィードフォワード信号を算出するフィードフォワード制御器と、周波数応答計測時に周波数応答計測用信号を出力する信号発生器と、を備えたモータ制御装置において、
     前記指令および周波数応答計測時における前記制御応答を入力し、前記指令のスペクトルである指令スペクトルと、前記制御対象の周波数応答である制御対象周波数応答と、前記指令スペクトルと前記制御対象周波数応答とに基づいて、前記制御対象を構成する負荷の負荷応答の前記指令に対する追従偏差である負荷応答追従偏差スペクトルとを算出し、フィードフォワード制御設定信号を出力するフィードフォワード制御設定装置を備え、
     前記フィードフォワード制御設定信号に基づいて、前記フィードフォワード制御器の制御ゲイン、および前記フィードフォワード制御器を使用する、あるいは使用しないことを設定することを特徴とするモータ制御装置。
    A feedback controller that inputs a position or speed command, a control response to be controlled, and a feedforward signal, calculates a torque command by performing a control calculation so that the command and the control response match, and the torque A torque controller that inputs a command and supplies power to the controlled object based on the torque command; a feedforward controller that inputs the command and calculates the feedforward signal based on the command; and a frequency response In a motor control device comprising a signal generator that outputs a frequency response measurement signal during measurement,
    The command and the control response at the time of frequency response measurement are input, and the command spectrum that is the spectrum of the command, the control target frequency response that is the frequency response of the control target, the command spectrum and the control target frequency response Based on a load response follow deviation spectrum that is a follow deviation with respect to the command of the load response of the load constituting the control object, and includes a feed forward control setting device that outputs a feed forward control setting signal,
    A motor control device that sets, based on the feedforward control setting signal, a control gain of the feedforward controller and whether or not to use the feedforward controller.
  2.  前記フィードフォワード制御設定装置が、前記指令スペクトルの含む周波数範囲とそれ以上の周波数範囲とのそれぞれについて閾値を設定し、前記負荷応答追従偏差スペクトルが少なくとも一方の前記閾値以上の場合、前記フィードフォワード制御器を使用しないという前記フィードフォワード制御設定信号を出力することを特徴とする請求項1に記載のモータ制御装置。 When the feedforward control setting device sets a threshold for each of a frequency range included in the command spectrum and a frequency range higher than the command spectrum, and the load response tracking deviation spectrum is at least one of the thresholds, the feedforward control The motor control device according to claim 1, wherein the feedforward control setting signal indicating that a device is not used is output.
  3.  前記フィードフォワード制御設定装置が、前記フィードバック制御器と前記フィードフォワード制御器の複数の制御ゲイン組み合わせのそれぞれに対して前記負荷応答追従偏差スペクトルを算出し、前記負荷応答追従偏差スペクトルの大きさが最小である場合の前記制御ゲイン組み合わせに基づいて、前記制御ゲインの設定値を前記フィードフォワード制御設定信号として出力することを特徴とする請求項1に記載のモータ制御装置。 The feedforward control setting device calculates the load response tracking deviation spectrum for each of a plurality of control gain combinations of the feedback controller and the feedforward controller, and the magnitude of the load response tracking deviation spectrum is minimized. 2. The motor control device according to claim 1, wherein the control gain setting value is output as the feedforward control setting signal based on the control gain combination in the case of
PCT/JP2008/070649 2008-01-11 2008-11-13 Motor controller WO2009087813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548860A JP5278333B2 (en) 2008-01-11 2008-11-13 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008003863 2008-01-11
JP2008-003863 2008-01-11

Publications (1)

Publication Number Publication Date
WO2009087813A1 true WO2009087813A1 (en) 2009-07-16

Family

ID=40852938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070649 WO2009087813A1 (en) 2008-01-11 2008-11-13 Motor controller

Country Status (3)

Country Link
JP (1) JP5278333B2 (en)
TW (1) TW200944970A (en)
WO (1) WO2009087813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221112A (en) * 2018-06-22 2019-12-26 オークマ株式会社 Position controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106582B2 (en) * 2013-12-09 2017-04-05 山洋電気株式会社 Motor control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208404A (en) * 1993-01-11 1994-07-26 Matsushita Electric Ind Co Ltd Automatic adjusting unit for feedback gain
WO2001082462A1 (en) * 2000-04-20 2001-11-01 Kabushiki Kaisha Yaskawa Denki Motor controller
JP2005285030A (en) * 2004-03-31 2005-10-13 Yaskawa Electric Corp Servo control apparatus
JP2006003953A (en) * 2004-06-15 2006-01-05 Yaskawa Electric Corp Mechanical vibration suppressing device and mechanical vibration frequency detecting method
JP2006280080A (en) * 2005-03-29 2006-10-12 Yaskawa Electric Corp System identification device and its system identification method
JP2007122575A (en) * 2005-10-31 2007-05-17 Yaskawa Electric Corp Motor controller

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308489A (en) * 1991-04-05 1992-10-30 Mitsubishi Heavy Ind Ltd Servo controller
JP2001100801A (en) * 1999-10-01 2001-04-13 Mikuni Corp Device and method for controlling actuator
JP4166157B2 (en) * 2004-01-07 2008-10-15 三菱電機株式会社 Electric motor control device
JP2005339011A (en) * 2004-05-25 2005-12-08 Fujitsu Ltd Servo control method, servo control system and disk device
JP4939388B2 (en) * 2007-12-17 2012-05-23 三菱重工業株式会社 Feed-forward control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208404A (en) * 1993-01-11 1994-07-26 Matsushita Electric Ind Co Ltd Automatic adjusting unit for feedback gain
WO2001082462A1 (en) * 2000-04-20 2001-11-01 Kabushiki Kaisha Yaskawa Denki Motor controller
JP2005285030A (en) * 2004-03-31 2005-10-13 Yaskawa Electric Corp Servo control apparatus
JP2006003953A (en) * 2004-06-15 2006-01-05 Yaskawa Electric Corp Mechanical vibration suppressing device and mechanical vibration frequency detecting method
JP2006280080A (en) * 2005-03-29 2006-10-12 Yaskawa Electric Corp System identification device and its system identification method
JP2007122575A (en) * 2005-10-31 2007-05-17 Yaskawa Electric Corp Motor controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019221112A (en) * 2018-06-22 2019-12-26 オークマ株式会社 Position controller
CN110635739A (en) * 2018-06-22 2019-12-31 大隈株式会社 Position control device
JP7057723B2 (en) 2018-06-22 2022-04-20 オークマ株式会社 Position control device

Also Published As

Publication number Publication date
JPWO2009087813A1 (en) 2011-05-26
TW200944970A (en) 2009-11-01
JP5278333B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5816826B2 (en) Motor drive device
TWI430067B (en) Apparatus for controlling a positioning process
US6982536B2 (en) Device and method for apportioning a movement of a machine element along a drive axis of a machine tool or production machine
JP4973665B2 (en) Electric motor control device, output filter adjustment method, and output filter adjustment device
JP5989694B2 (en) Control device, control method, and control program
JP2011188571A (en) Controller of motor
JP5278333B2 (en) Motor control device
JP2011188571A5 (en)
JP5469949B2 (en) Electric machine control device
JP5499865B2 (en) Generation method of speed command profile for articulated robot
JP5283804B1 (en) Servo control device
JP5176729B2 (en) Motor controller with moment of inertia identifier
JP4683198B2 (en) Setting method of vibration suppression filter
JPH07337057A (en) Mechanical resonance detector and vibration controller for motor control system
WO2022044971A1 (en) Control device for electric motor, machine system, and control method
JP5017648B2 (en) Actuator control device and actuator control method
US20200376620A1 (en) Motor control device and industrial machine for suppressing vibration
JP2010045957A (en) Motor control device and backlash identifying method
JP4784826B2 (en) System identification apparatus and motor control apparatus including the same
JP4730538B2 (en) Motor control device with machine constant identification device
JP2021005918A (en) Controller for evaluating inertia and evaluation method of inertia
JP2008061470A (en) Vibration detector and motor control device therewith
JP7346920B2 (en) motor control device
JP2007189856A (en) Motor controller with inertial moment identifier
JP4687418B2 (en) Motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869252

Country of ref document: EP

Kind code of ref document: A1