WO2009087734A1 - Dehumidifying device - Google Patents

Dehumidifying device Download PDF

Info

Publication number
WO2009087734A1
WO2009087734A1 PCT/JP2008/003957 JP2008003957W WO2009087734A1 WO 2009087734 A1 WO2009087734 A1 WO 2009087734A1 JP 2008003957 W JP2008003957 W JP 2008003957W WO 2009087734 A1 WO2009087734 A1 WO 2009087734A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air volume
refrigerant
path
dehumidifying
Prior art date
Application number
PCT/JP2008/003957
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuki Fujii
Yoshimasa Katsumi
Tatsuya Hori
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008000908A external-priority patent/JP5358951B2/en
Priority claimed from JP2008034147A external-priority patent/JP5504566B2/en
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2008801243268A priority Critical patent/CN101909723B/en
Publication of WO2009087734A1 publication Critical patent/WO2009087734A1/en
Priority to HK10112119.9A priority patent/HK1145662A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/04Arrangements for portability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Definitions

  • the present invention relates to a dehumidifying device having a refrigeration cycle mechanism.
  • this type of dehumidifying apparatus described in Patent Document 1 has the following configuration. That is, a main body case having an intake port and an exhaust port, and a refrigeration cycle mechanism provided in the main body case are provided.
  • the refrigeration cycle mechanism includes a compressor and a radiator, an expander, and a heat absorber that are sequentially provided downstream of the compressor. Further, a blower is provided that blows air that has been sucked into the main body case from the air inlet into the air outlet through the heat radiator and the heat absorber.
  • Such a conventional dehumidifier is intended to dehumidify the room air by dew condensation using a heat absorber.
  • the function of the compressor will be hindered, so that the refrigerant is surely returned to the compressor in a gasified state in the heat absorber. ing.
  • the refrigerant is surely gasified in the heat absorber, the temperature of the portion where the refrigerant is gasified in the heat absorber becomes high and condensation is unlikely. As a result, there is a problem that the amount of dew condensation in the heat absorber portion is reduced and the dehumidifying ability is lowered.
  • the conventional dehumidifier is configured such that room air is supplied to the heat absorber as it is.
  • the supplied air cannot easily be condensed (increasing the moisture content or increasing the relative humidity), and there is a limit to improving the dehumidifying capacity. was there.
  • the present invention has been made in view of such problems, and provides a dehumidifying device capable of improving the dehumidifying ability.
  • the present invention includes a main body case having an intake port and an exhaust port, a refrigeration cycle mechanism in which a compressor, a radiator, an expander, and a heat sink are provided in this order, and air from the intake port into the main body case. And a dehumidifier provided between the radiator and the heat sink in the air path, and a blower that forms an air path that passes the sucked air through the radiator and the heat absorber in this order and blows the air to the exhaust port.
  • the moisture release part of the rotor, the moisture absorption part of the dehumidification rotor provided between the heat absorber and the exhaust port in the air passage, and the space between the moisture release part of the dehumidification rotor and the heat absorber in the air passage It has the structure provided with the refrigerant
  • the refrigerant heat exchanger is interposed in the air path between the dehumidification rotor and the heat absorber of the dehumidification rotor. Therefore, even in the refrigerant heat exchanger, one of the air that has passed through the dehumidification rotor of the dehumidification rotor is used. The part can be condensed. Further, by providing the refrigerant heat exchanger, the refrigerant returning from the heat absorber to the compressor can be heated and gasified. Therefore, a large amount of dew condensation can be achieved in the heat absorber, and as a result, the dehumidifying ability can be improved.
  • the present invention provides a main body case having a first intake port and an exhaust port, a refrigeration cycle mechanism in which a compressor, a radiator, an expander, and a heat absorber are provided in this order in the main body case, A blower that forms a first air path that sucks air into the main body case from the air inlet and passes the air that has been sucked in order through the radiator and the heat absorber to the exhaust port, and a fan in the first air path.
  • the heating unit is provided between the radiator of the first air passage and the moisture releasing part of the dehumidifying rotor, even in the winter when the room temperature is low, the moisture releasing part of the dehumidifying rotor in the heating part The air passing through can be heated. Thereby, a large amount of water can be evaporated from the moisture release portion of the dehumidifying rotor, and this large amount of water can then be condensed by the heat absorber. As a result, the dehumidifying ability can be improved.
  • the air after dew condensation by the heat absorber reaches the moisture absorption part of the dehumidification rotor.
  • the moisture absorbing part is heated by the heating part in the moisture releasing part and is in a dry state. Therefore, it is possible to sufficiently absorb moisture contained in the air that has been condensed by the heat absorber even in a low temperature state.
  • FIG. 1 is an external perspective view of a dehumidifying device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional configuration diagram of the dehumidifier.
  • FIG. 3 is an external perspective view of the heat absorber of the dehumidifier.
  • FIG. 4 is a rear view of the dehumidifying rotor portion of the dehumidifying device.
  • FIG. 5 is an external perspective view of the refrigerant heat exchanger of the dehumidifier.
  • FIG. 6 is a cross-sectional perspective view of the refrigerant heat exchanger.
  • FIG. 7 is an external perspective view of another refrigerant heat exchanger of the dehumidifier.
  • FIG. 1 is an external perspective view of a dehumidifying device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional configuration diagram of the dehumidifier.
  • FIG. 3 is an external perspective view of the heat absorber of the
  • FIG. 8 is a cross-sectional perspective view of the refrigerant heat exchanger.
  • FIG. 9 is an external perspective view of still another refrigerant heat exchanger of the dehumidifier.
  • FIG. 10 is a schematic cross-sectional configuration diagram of a dehumidifying device according to Embodiment 2 of the present invention.
  • FIG. 11 is an external perspective view of an air volume adjusting unit of the dehumidifier.
  • FIG. 12 is a diagram illustrating control of the dehumidifying device.
  • FIG. 1 is an external perspective view of a dehumidifying device according to Embodiment 1 of the present invention.
  • the dehumidifying device of the present embodiment includes a main body case 3 having an intake port 1 and an exhaust port 2, and a refrigeration constituting the heat pump shown in FIG. 2 provided in the main body case 3.
  • a cycle mechanism 4 is provided.
  • the main body case 3 includes a motor 9 and an impeller, and is provided with a blower 9 that sucks air from the air inlet 1 and blows air into the main body case 3.
  • a dehumidification rotor 10 having a moisture releasing part 11 and a moisture absorbing part 12 is provided in the main body case 3.
  • the dehumidification rotor 10 is rotationally driven by a drive unit 15 including a motor and a chia.
  • the refrigeration cycle mechanism 4 includes a compressor 5 and a radiator 6, an expander 7, and a heat absorber 8 that are sequentially provided downstream of the compressor 5. Air is sucked into the main body case 3 from the air inlet 1 by operating the blower 9, and the air thus sucked is then blown to the air outlet 2 through the radiator 6 and the heat absorber 8 in order. Is done. That is, the blower 9 forms an air passage P that sucks air into the main body case 3 from the air inlet 1, passes the air that has been sucked in through the heat radiator 6 and the heat absorber 8, and blows the air to the air outlet 2. Moreover, in this Embodiment, the air blower 9 also forms the air path Q which blows directly the air suck
  • the air path P of the blower 9 it is the air path P of the blower 9, and the moisture releasing portion 11 of the dehumidifying rotor 10 is provided between the radiator 6 and the heat absorber 8.
  • the moisture absorbing portion 12 of the dehumidifying rotor 10 is provided between the heat absorber 8 and the exhaust port 2.
  • a refrigerant heat exchanger 13 is interposed in the air path P between the moisture releasing portion 11 of the dehumidifying rotor 10 and the heat absorber 8.
  • a heating unit 19 such as a heater is provided between the radiator 6 and the moisture releasing unit 11 of the dehumidifying rotor 10.
  • the refrigerant pressurized by the compressor 5 is sent to the radiator 6, and the air sucked into the main body case 3 from the inlet 1 is heated by the radiator 6.
  • the refrigerant that has passed through the radiator 6 reaches the expander 7 via the refrigerant heat exchanger 13 in a state where the temperature is lowered.
  • the refrigerant that has reached the expander 7 circulates in a cycle that returns to the compressor 5 via the heat absorber 8 and then the refrigerant heat exchanger 13.
  • the air heated by the radiator 6 then passes through the moisture releasing portion 11 of the dehumidifying rotor 10 and removes moisture from the moisture releasing portion 11 and the refrigerant heat exchanger 13 and It flows to the heat absorber 8.
  • the air that has passed through the dehumidifying section 11 of the dehumidifying rotor 10 is partially condensed by the refrigerant heat exchanger 13, and then full-scale condensation is performed by the heat absorber 8 as shown in FIG.
  • the condensed water condensed by the heat absorber 8 is stored in the water storage tank 14.
  • the air that has passed through the heat absorber 8 is cooled by the heat absorber 8.
  • the humidity is extremely high at a low temperature.
  • This low-temperature air containing high humidity then passes through the moisture absorbing portion 12 of the dehumidifying rotor 10.
  • the moisture absorbing section 12 of the dehumidifying rotor 10 is driven to rotate by the drive section 15, so that moisture is already released at the upper moisture releasing section 11 in FIG. 2 and the humidity is low. Therefore, the moisture absorption part 12 can absorb moisture from the air having a very high humidity even at the low temperature.
  • the dehumidifying device of the present embodiment can make the dehumidifying effect extremely high.
  • the refrigerant heat exchanger 13 of the present embodiment includes a first refrigerant path 13A from the radiator 6 to the expander 7 of the refrigeration cycle mechanism 4 and a second refrigerant path from the heat absorber 8 to the compressor 5 of the refrigeration cycle mechanism 4.
  • the refrigerant path 13B is thermally coupled.
  • the first refrigerant path 13A is thermally coupled coaxially into the second refrigerant path 13B. That is, the low-temperature refrigerant flowing through the first refrigerant path 13A and the high-temperature refrigerant flowing through the second refrigerant path 13B are coupled so as to exchange heat.
  • FIG. 4 is a rear view of the dehumidification rotor portion of the dehumidifying device in the present embodiment.
  • FIG. 5 is an external perspective view of the refrigerant heat exchanger of the dehumidifier.
  • FIG. 6 is a cross-sectional perspective view of the refrigerant heat exchanger.
  • the refrigerant heat exchanger 13 will be described in detail with reference to these drawings.
  • the refrigerant heat exchanger 13 is disposed in an inclined manner in the main body case 3. Specifically, as shown in FIGS. 4 to 6, the refrigerant heat exchanger 13 is inclined so that the radiator 6 side a of the first refrigerant path 13A is above the expander 7 side. Further, as shown in FIGS. 4 to 6, the refrigerant heat exchanger 13 is disposed so as to be inclined so that the compressor 5 side b of the second refrigerant path 13B is located above the heat absorber 8 side.
  • the second refrigerant path 13B is on the lower side of the heat absorber 8 on the low temperature refrigerant side than on the compressor 5 side on the high temperature refrigerant side.
  • the condensed water in the refrigerant heat exchanger 13 does not leak out of the main body case 3, but is captured by the drain pan 16 below the refrigerant heat exchanger 13, and then collected in the water storage tank 14. It is done.
  • the refrigerant heat exchanger 13 is provided downstream of the heat absorber 8, the refrigerant that has passed through the heat absorber 8 is again heated and gasified by the refrigerant heat exchanger 13. Therefore, the refrigerant in a gasified state is supplied to the compressor 5 and the operation of the compressor 5 is not hindered. Moreover, the condensation efficiency of the heat absorber 8 can also be improved by this.
  • FIG. 7 is an external perspective view showing another refrigerant heat exchanger of the dehumidifying apparatus in the present embodiment.
  • FIG. 8 is a cross-sectional perspective view of the refrigerant heat exchanger.
  • the refrigerant heat exchanger 13 shown in FIGS. 7 and 8 is provided with radiating fins 17 on the outer surface of the second refrigerant path 13 ⁇ / b> B from the heat absorber 8 to the compressor 5.
  • the radiation fin 17 radiates the heat of the refrigerant flowing through the second refrigerant path 13B from the outside, the dehumidifying ability of the refrigerant heat exchanger 13 can be further enhanced.
  • FIG. 9 is an external perspective view showing still another refrigerant heat exchanger of the dehumidifying apparatus in the present embodiment.
  • the heat absorber cooler 13 shown in FIG. 9 has a groove 18 formed on the outer surface of the second refrigerant path from the heater 8 to the compressor 5.
  • channel 18 dissipates the heat
  • the dew condensation water condensed by the refrigerant heat exchanger 13 can be easily guided to the drain pan 16.
  • the refrigerant heat exchanger 13 is interposed in the first air path P between the moisture releasing portion 11 of the dehumidifying rotor 10 and the heat absorber 8.
  • coolant heat exchanger 13 a part of air which passed the moisture release part 11 of the dehumidification rotor 10 can be condensed.
  • the refrigerant returning from the heat absorber 8 to the compressor 5 can be heated and gasified.
  • the heat absorber 8 can cause a large amount of dew condensation. Therefore, the dehumidifying ability can be improved.
  • FIG. 10 is a schematic cross-sectional configuration diagram of a dehumidifier according to Embodiment 2 of the present invention.
  • the main body case 3 is formed with a first intake port 1 ⁇ / b> A, a second intake port 1 ⁇ / b> B, and an exhaust port 2.
  • the first air inlet 1 ⁇ / b> A and the second air inlet 1 ⁇ / b> B are formed on the side surface that is the outer peripheral surface of the main body case 3, and the exhaust port 2 is formed on the upper surface of the main body case 3.
  • the second air inlet 1B is formed below the outer periphery of the main body case 3 with respect to the first air inlet 1A.
  • a refrigeration cycle mechanism 4 constituting a heat pump is provided.
  • the refrigeration cycle mechanism 4 includes a compressor 5, a radiator 6, an expander 7, and a heat absorber 8 that are sequentially provided downstream of the compressor 5.
  • the main body case 3 includes a dehumidifying rotor 10 having a moisture releasing portion 11 and a moisture absorbing portion 12.
  • the dehumidification rotor 10 is rotationally driven by a drive unit 15 including a motor and gears.
  • a heating unit 19 such as a heater is provided in the main body case 3 between the radiator 6 and the moisture release unit 11.
  • the blower 9 draws air into the main body case 3 from the first intake port 1A, passes the drawn air through the radiator 6 and the heat absorber 8 in this order, and blows the air to the exhaust port 2.
  • P1 is formed.
  • the blower 9 also forms an air path Q that directly blows air that has been sucked into the main body case 3 from the first air inlet 1A into the air outlet 2 from the radiator 6.
  • air is sucked into the main body case 3 from the second air inlet 1 ⁇ / b> B, passes through the heat absorbing portion 8, and is blown to the exhaust port 2. That is, the blower 9 draws air into the main body case 3 from the second air inlet 1B, and sends the air drawn from the second air inlet 1B through the heat absorber 8 to the exhaust port 2.
  • the air path P2 is formed. As shown in FIG. 10, the second air path P2 is formed below the first air path P1.
  • FIG. 11 is an external perspective view of the air volume adjusting unit 20 in the dehumidifying apparatus of the present embodiment.
  • the air volume adjusting unit 20 has a stepped shape portion 20A that is rotationally driven as indicated by an arrow. That is, the second air path P2 can be opened and closed by rotationally driving the stepped shape portion 20A of the air volume adjusting unit 20.
  • the step shape portion 20A of the air volume adjusting unit 20 is driven to rotate, so that the second air reaching the heat absorber 8 from the first air inlet 1A.
  • the air path P2 can be controlled to a large opening state, a middle opening state, and a small opening state. That is, by such opening control, the air volume of the air flowing through the second air path P2 can be switched between three levels: a large air volume, a medium air volume, and a small air volume.
  • the refrigerant pressurized by the compressor 5 is sent to the radiator 6, and the air sucked into the main body case 3 from the first inlet 1 ⁇ / b> A is heated by the radiator 6.
  • the refrigerant that has passed through the radiator 6 reaches the expander 7, and then returns to the compressor 5 via the heat absorber 8.
  • the refrigerant circulates in the refrigeration cycle mechanism 4.
  • a heating unit 19 is provided between the radiator 6 of the first air path P1 and the moisture releasing unit 11 of the dehumidifying rotor 10. Therefore, even in the winter when the room temperature is low, the air passing through the moisture releasing portion 11 of the dehumidifying rotor 10 can be heated by the heating portion 19. As a result, a large amount of water can be evaporated from the moisture release portion 11 of the dehumidifying rotor 10, and this large amount of water can then be condensed by the heat absorber 8. As a result, the dehumidifying ability can be improved.
  • the air heated by the radiator 6 is then heated by the heating unit 19 and then passes through the moisture releasing unit 11 of the dehumidifying rotor 10.
  • the air that has passed through the moisture release section 11 flows to the heat absorber 8 in a state where the moisture from the moisture release section 11 has been taken away.
  • the air that has passed through the moisture releasing portion 11 of the dehumidifying rotor 10 is condensed in the heat absorber 8, and the condensed water is stored in the water storage tank 14. Thereafter, the air that has passed through the heat absorber 8 is cooled to a low temperature by the heat absorber 8, but the humidity is extremely high although the temperature is low.
  • This low-temperature air containing high humidity then passes through the moisture absorbing portion 12 of the dehumidifying rotor 10.
  • the moisture absorption unit 12 is already driven to rotate by the drive unit 15 to release moisture at the upper moisture release unit 11 in FIG. 10, and the humidity is low. Therefore, it is possible to sufficiently absorb moisture from air in a state where the humidity is extremely high although the temperature is low. Therefore, the dehumidifying device of the present embodiment can greatly increase the dehumidifying effect.
  • FIG. 12 is a diagram illustrating the control of the operation of the dehumidifying device of the present embodiment.
  • the compressor 5, the blower 9, and the drive unit 15 are turned on, the heating unit 19 is turned off, and the air volume adjusting unit 13 is in a small opening state.
  • the heat absorber 8 the air that has passed through the moisture release portion 11 of the dehumidification rotor 10 from the first intake port 1 ⁇ / b> A and the moisture release of the dehumidification rotor 10 that has passed the air volume adjustment unit 3 from the second intake port 1 ⁇ / b> B. Air that has not passed through the section 11 is supplied.
  • the dehumidifying rotor 10 when air that does not pass through the radiator 6 and the dehumidifying rotor 10 is supplied from the second air inlet 1B to the heat absorber 8, the dehumidifying rotor is compared with the case where air is not supplied from the second air inlet 1B.
  • the amount of air passing through the ten moisture absorbing portions 12 increases. Thereby, the moisture absorption amount of the dehumidification rotor 10 increases and a dehumidification capability can be improved.
  • the compressor 5, the blower 9, the driving unit 15, and the heating unit 19 are turned on, and the air volume adjusting unit 13 is opened with a large opening. State.
  • the heating unit 19 is turned on and the air volume adjusting unit 13 is in a large opening state, the air supplied from the radiator 6 to the moisture releasing unit 11 of the dehumidifying rotor 10 is heated.
  • air that has not passed through the moisture release section 11 of the dehumidification rotor 10 that has passed through the air volume adjustment section 13 from the second air inlet 1B is supplied in a large volume.
  • the compressor 5, the blower 9, the drive unit 15, and the heating unit 19 are turned on, and the air volume adjusting unit 13 is in the middle opening state.
  • the air supplied from the radiator 6 to the moisture releasing part 11 of the dehumidifying rotor 10 is heated.
  • air that has not passed through the moisture release section 11 of the dehumidification rotor 10 that has passed through the air volume adjustment section 13 from the second air inlet 1B is supplied at a medium air volume.
  • the heating unit 19 since the heating unit 19 is on, the moisture dehumidifying capacity of the dehumidifying rotor 10 is increased. For this reason, due to the balance between moisture absorption and desorption of the dehumidification rotor 10, the supply of air from the second air inlet 1 ⁇ / b> B is larger than when the heating unit 19 is turned off. In this mode, it is possible to achieve an optimal air volume balance in order to obtain the maximum capacity when the heating unit 19 is turned on.
  • the compressor 5, the blower 9, and the drive unit 15 are turned on, the heating unit 19 is turned off, and the air volume adjusting unit 13 is in a large opening state.
  • the air passes through the moisture releasing unit 11 of the dehumidification rotor 10 that has passed through the air volume adjusting unit 13 from the second air inlet 1B. Air that has not been supplied is supplied with a large air volume.
  • the heat absorber 8 is The amount of heat absorbed can be increased by maximizing the amount of air passing therethrough. Therefore, the cold air capacity can be improved by lowering the temperature of the air passing through the heat absorber 8 and maximizing the blown air volume.
  • the operation is automatically performed in the defrosting mode indicated by M5 in FIG.
  • the compressor 5 is turned off, the blower 9 is turned on, the drive unit 15 and the heating unit 19 are turned on, and the air volume adjusting unit 13 is fully closed. That is, at the time of extremely low temperature, in addition to stopping the compressor 5, the air volume adjusting unit 13 is fully closed so that the air from the second air inlet 1 ⁇ / b> B is not supplied to the heat absorber 8. That is, only high-temperature air heated by the heating unit 19 is supplied to the heat absorber 8.
  • the temperature of the heat absorber 8 can be quickly raised to melt the frost on the heat absorber 8, and the air path can be prevented from being blocked by the frost on the heat absorber 8.
  • the operation mode set before entering the defrosting mode operation is restored.
  • the air volume adjusting unit 13 is built in the main body case 3. Thereby, the air volume adjusting unit 13 is not deformed or damaged by an external force. Therefore, the rotational drive of the air volume adjusting unit 13 is not impaired by the external force.
  • the air passage P1 from the first air inlet 1A is disposed above the air passage P2 from the second air inlet 1B. Since the first air path P1 that is operated by the compressor 5, the radiator 6, the expander 7, the heat absorber 8, the blower 9, and the dehumidifying rotor 10 is main from the second air path P2, the main air path P1. The air path resistance of the air path P1 can be reduced by bringing the air path close to the exhaust port 2.
  • the first intake port 1A is provided above the outer peripheral surface of the main body case 3, the second intake port 1B is provided below, and the exhaust port 2 is provided on the upper surface of the main body case 3. Thereby, the air path resistance of the air path P1 can be reduced.
  • the moisture releasing portion 11 of the dehumidifying rotor 10 is provided between the radiator 6 and the heat absorber 8 in the first air path P1. Moreover, the moisture absorption part 12 of the dehumidification rotor 10 is provided between the heat absorber 8 and the exhaust port 2 of the first air path P1 and the second air path P2. Further, a heating unit 19 is provided between the radiator 6 in the first air path P ⁇ b> 1 and the moisture releasing unit 11 of the dehumidifying rotor 10.
  • a first air passage P1 for blowing air sucked into the main body case 3 from the first intake port 1A to the exhaust port 2 through the heat radiator 6 and the heat absorber 8 sequentially, A second air passage P2 for blowing air sucked into the main body case 3 from the second air inlet 1B to the air outlet 2 through the heat absorber 8, and an air volume adjusting unit in the second air passage P2. 13 are provided.
  • the present invention is useful as a wide range of dehumidifying devices for home use and office use because it provides high dehumidifying ability and can perform optimum dehumidifying operation for each season such as spring, summer, autumn and winter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)

Abstract

A dehumidifying device achieves improved dehumidifying ability by having a body case (3) provided with a suction opening (1) and a discharge opening (2), a refrigeration cycle mechanism (4) provided in the body case (3), a fan (9) for sucking air into the body case (3) from the suction opening (1) and forming an air flow path in which the sucked air is sent to the discharge opening (2) after being passed through a heat dissipater (6) and a heat absorber (8) in that order, a moisture releasing section (11) of a dehumidifying rotor (10) located in the air flow path and provided between the heat dissipater (6) and the heat absorber (8), a moisture absorbing section (12) of the dehumidifying rotor (10) located in the air flow path and provided between the heat absorber (8) and the discharge opening (2), and a refrigerant heat exchanger (13) located in the air flow path and provided between the humidity discharging section (11) and the heat absorber (8).

Description

除湿装置Dehumidifier
 本発明は、冷凍サイクル機構を備えた除湿装置に関する。 The present invention relates to a dehumidifying device having a refrigeration cycle mechanism.
 従来の、例えば、特許文献1に記載されたこの種の除湿装置は、次のような構成を有している。すなわち、吸気口と排気口を有する本体ケースと、本体ケース内に設けられた冷凍サイクル機構とを備えている。冷凍サイクル機構は、圧縮機と、圧縮機の下流に順次設けた放熱器、膨張機、吸熱器とにより構成されている。さらに、吸気口から本体ケース内に吸気した空気を放熱器、吸熱器を順次介して排気口へ送風する送風機が設けられている。 Conventionally, for example, this type of dehumidifying apparatus described in Patent Document 1 has the following configuration. That is, a main body case having an intake port and an exhaust port, and a refrigeration cycle mechanism provided in the main body case are provided. The refrigeration cycle mechanism includes a compressor and a radiator, an expander, and a heat absorber that are sequentially provided downstream of the compressor. Further, a blower is provided that blows air that has been sucked into the main body case from the air inlet into the air outlet through the heat radiator and the heat absorber.
 このような従来の除湿装置は、吸熱器で室内空気を結露させ、これによって除湿を行おうとするものである。冷凍サイクル機構において、圧縮機に冷媒が液化の状態で供給されると、この圧縮機の機能を阻害してしまうので、吸熱器において冷媒が確実にガス化された状態で圧縮機に戻るようにしている。しかしながら、吸熱器内で冷媒を確実にガス化させようとすると、吸熱器内で冷媒がガス化した部分は、温度が高くなり結露しにくくなる。その結果、吸熱器部分における結露量が減少し、除湿能力が低くなる問題があった。 Such a conventional dehumidifier is intended to dehumidify the room air by dew condensation using a heat absorber. In the refrigeration cycle mechanism, if the refrigerant is supplied to the compressor in a liquefied state, the function of the compressor will be hindered, so that the refrigerant is surely returned to the compressor in a gasified state in the heat absorber. ing. However, if the refrigerant is surely gasified in the heat absorber, the temperature of the portion where the refrigerant is gasified in the heat absorber becomes high and condensation is unlikely. As a result, there is a problem that the amount of dew condensation in the heat absorber portion is reduced and the dehumidifying ability is lowered.
 また、従来の除湿装置は、吸熱器に室内空気がそのまま供給される構成となっている。しかし、空気中に含まれる水分の絶対量が少ないので、供給される空気を結露しやすい状態(含有水分量を増やす、相対湿度を上げる)にすることができず、除湿能力向上させるには限界があった。 Moreover, the conventional dehumidifier is configured such that room air is supplied to the heat absorber as it is. However, since the absolute amount of moisture contained in the air is small, the supplied air cannot easily be condensed (increasing the moisture content or increasing the relative humidity), and there is a limit to improving the dehumidifying capacity. was there.
 また、冬季のように室温が低い場合、吸熱器に霜が付着(着霜状態)するので、除霜しながら運転することになり除湿能力が著しく低下していた。
特開平6-331167号公報
Further, when the room temperature is low as in winter, frost adheres to the heat absorber (frosting state), so that the dehumidifying ability is remarkably lowered because the operation is performed while defrosting.
JP-A-6-331167
 本発明は、このような問題点に鑑みてなされたもので、除湿能力の向上を図ることのできる除湿装置を提供するものである。 The present invention has been made in view of such problems, and provides a dehumidifying device capable of improving the dehumidifying ability.
 本発明は、吸気口と排気口を有する本体ケースと、圧縮機と放熱器と膨張機と吸熱器とがこの順に本体ケース内に設けられた冷凍サイクル機構と、吸気口から本体ケース内に空気を吸気し、吸気した空気を放熱器および吸熱器の順に通過させて排気口へ送風する風路を形成する送風機と、風路内にあって放熱器と吸熱器との間に設けられた除湿ローターの放湿部と、風路内にあって吸熱器と排気口との間に設けられた除湿ローターの吸湿部と、風路内にあって除湿ローターの放湿部と吸熱器との間に設けられた冷媒熱交換器とを備えた構成を有する。 The present invention includes a main body case having an intake port and an exhaust port, a refrigeration cycle mechanism in which a compressor, a radiator, an expander, and a heat sink are provided in this order, and air from the intake port into the main body case. And a dehumidifier provided between the radiator and the heat sink in the air path, and a blower that forms an air path that passes the sucked air through the radiator and the heat absorber in this order and blows the air to the exhaust port. The moisture release part of the rotor, the moisture absorption part of the dehumidification rotor provided between the heat absorber and the exhaust port in the air passage, and the space between the moisture release part of the dehumidification rotor and the heat absorber in the air passage It has the structure provided with the refrigerant | coolant heat exchanger provided in.
 このような構成により、除湿ローターの放湿部と吸熱器の間の風路に冷媒熱交換器を介在させたので、冷媒熱交換器においても、除湿ローターの放湿部を通過した空気の一部を結露させることができる。また、冷媒熱交換器を設けたことにより、吸熱器から圧縮機に戻る冷媒を加熱しガス化することができる。したがって、吸熱器では大量の結露をさせることができるようになり、その結果、除湿能力を向上させることができる。 With such a configuration, the refrigerant heat exchanger is interposed in the air path between the dehumidification rotor and the heat absorber of the dehumidification rotor. Therefore, even in the refrigerant heat exchanger, one of the air that has passed through the dehumidification rotor of the dehumidification rotor is used. The part can be condensed. Further, by providing the refrigerant heat exchanger, the refrigerant returning from the heat absorber to the compressor can be heated and gasified. Therefore, a large amount of dew condensation can be achieved in the heat absorber, and as a result, the dehumidifying ability can be improved.
 また、本発明は、第1の吸気口と排気口を有する本体ケースと、圧縮機と放熱器と膨張機と吸熱器とがこの順に本体ケース内に設けられた冷凍サイクル機構と、第1の吸気口から本体ケース内に空気を吸気し、吸気した空気を放熱器および吸熱器の順に通過させて排気口へ送風する第1の風路を形成する送風機と、第1の風路内にあって放熱器と吸熱器との間に設けられた除湿ローターの放湿部と、第1の風路内にあって吸熱器と排気口との間に設けられた除湿ローターの吸湿部と、第1の送風路の放熱器と除湿ローターの放湿部との間に設けられた加熱部とを備えた構成を有する。 Further, the present invention provides a main body case having a first intake port and an exhaust port, a refrigeration cycle mechanism in which a compressor, a radiator, an expander, and a heat absorber are provided in this order in the main body case, A blower that forms a first air path that sucks air into the main body case from the air inlet and passes the air that has been sucked in order through the radiator and the heat absorber to the exhaust port, and a fan in the first air path. A dehumidification rotor of the dehumidification rotor provided between the radiator and the heat absorber, a dehumidification rotor of the dehumidification rotor provided in the first air passage and between the heat absorber and the exhaust port, It has the structure provided with the heating part provided between the heat radiator of 1 ventilation path, and the moisture release part of a dehumidification rotor.
 このような構成により、第1の風路の放熱器と除湿ローターの放湿部との間に加熱部を設けたので、たとえ室温が低い冬季であっても加熱部で除湿ローターの放湿部を通過する空気を加熱することができる。これにより、除湿ローターの放湿部から大量の水分を蒸発させ、次にこの大量の水分を吸熱器で結露させることができる。その結果、除湿能力を向上させることができる。 With such a configuration, since the heating unit is provided between the radiator of the first air passage and the moisture releasing part of the dehumidifying rotor, even in the winter when the room temperature is low, the moisture releasing part of the dehumidifying rotor in the heating part The air passing through can be heated. Thereby, a large amount of water can be evaporated from the moisture release portion of the dehumidifying rotor, and this large amount of water can then be condensed by the heat absorber. As a result, the dehumidifying ability can be improved.
 また、吸熱器で結露された後の空気は除湿ローターの吸湿部に到達することになる。吸湿部は上述したように、放湿部において加熱部で加熱され乾燥状態となっている。したがって、低温状態でも吸熱器で結露された後の空気に含まれる水分を十分に吸湿することができる。 Also, the air after dew condensation by the heat absorber reaches the moisture absorption part of the dehumidification rotor. As described above, the moisture absorbing part is heated by the heating part in the moisture releasing part and is in a dry state. Therefore, it is possible to sufficiently absorb moisture contained in the air that has been condensed by the heat absorber even in a low temperature state.
図1は、本発明の実施の形態1における除湿装置の外観斜視図である。FIG. 1 is an external perspective view of a dehumidifying device according to Embodiment 1 of the present invention. 図2は、同除湿装置の概略断面構成図である。FIG. 2 is a schematic cross-sectional configuration diagram of the dehumidifier. 図3は、同除湿装置の吸熱器の外観斜視図である。FIG. 3 is an external perspective view of the heat absorber of the dehumidifier. 図4は、同除湿装置の除湿ローター部分の背面図である。FIG. 4 is a rear view of the dehumidifying rotor portion of the dehumidifying device. 図5は、同除湿装置の冷媒熱交換器の外観斜視図である。FIG. 5 is an external perspective view of the refrigerant heat exchanger of the dehumidifier. 図6は、同冷媒熱交換器の断面斜視図である。FIG. 6 is a cross-sectional perspective view of the refrigerant heat exchanger. 図7は、同除湿装置の他の冷媒熱交換器の外観斜視図である。FIG. 7 is an external perspective view of another refrigerant heat exchanger of the dehumidifier. 図8は、同冷媒熱交換器の断面斜視図である。FIG. 8 is a cross-sectional perspective view of the refrigerant heat exchanger. 図9は、同除湿装置の更に他の冷媒熱交換器の外観斜視図である。FIG. 9 is an external perspective view of still another refrigerant heat exchanger of the dehumidifier. 図10は、本発明の実施の形態2における除湿装置の概略断面構成図である。FIG. 10 is a schematic cross-sectional configuration diagram of a dehumidifying device according to Embodiment 2 of the present invention. 図11は、同除湿装置の風量調整部の外観斜視図である。FIG. 11 is an external perspective view of an air volume adjusting unit of the dehumidifier. 図12は、同除湿装置の制御を示す図である。FIG. 12 is a diagram illustrating control of the dehumidifying device.
符号の説明Explanation of symbols
 1  吸気口
 1A  第1の吸気口
 1B  第2の吸気口
 2  排気口
 3  本体ケース
 4  冷凍サイクル機構
 5  圧縮機
 6  放熱器
 7  膨張機
 8  吸熱器
 9  送風機
 10  除湿ローター
 11  放湿部
 12  吸湿部
 13  冷媒熱交換器
 14  貯水タンク
 15  駆動部
 16  ドレンパン
 17  放熱フィン
 18  溝
 19  加熱部
 20  風量調整部
DESCRIPTION OF SYMBOLS 1 Intake port 1A 1st intake port 1B 2nd intake port 2 Exhaust port 3 Main body case 4 Refrigeration cycle mechanism 5 Compressor 6 Radiator 7 Expander 8 Heat absorber 9 Blower 10 Dehumidification rotor 11 Humidity release part 12 Hygroscopic part 13 Refrigerant heat exchanger 14 Water storage tank 15 Drive unit 16 Drain pan 17 Radiation fin 18 Groove 19 Heating unit 20 Air volume adjustment unit
 (実施の形態1)
 以下本発明の実施の形態1を図面を用いて説明する。図1は、本発明の実施の形態1における除湿装置の外観斜視図である。図1に示すように、本実施の形態の除湿装置は、吸気口1と排気口2を有する本体ケース3と、この本体ケース3内に設けられた、図2に示す、ヒートポンプを構成する冷凍サイクル機構4とを備えている。また、本体ケース3内には、モーターと羽根車などで構成され、吸気口1から空気を吸気して本体ケース3内に空気を送風する送風機9が設けられている。さらに、本体ケース3内には、放湿部11および吸湿部12を有する除湿ローター10が設けられている。除湿ローター10は、モーターとキアなどから構成される駆動部15により回転駆動される。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is an external perspective view of a dehumidifying device according to Embodiment 1 of the present invention. As shown in FIG. 1, the dehumidifying device of the present embodiment includes a main body case 3 having an intake port 1 and an exhaust port 2, and a refrigeration constituting the heat pump shown in FIG. 2 provided in the main body case 3. A cycle mechanism 4 is provided. The main body case 3 includes a motor 9 and an impeller, and is provided with a blower 9 that sucks air from the air inlet 1 and blows air into the main body case 3. Further, a dehumidification rotor 10 having a moisture releasing part 11 and a moisture absorbing part 12 is provided in the main body case 3. The dehumidification rotor 10 is rotationally driven by a drive unit 15 including a motor and a chia.
 冷凍サイクル機構4は、圧縮機5と、圧縮機5の下流に順次設けた放熱器6、膨張機7、吸熱器8とにより構成されている。吸気口1から本体ケース3内には、送風機9が動作されることにより空気が吸気され、この吸気された空気は、その後、放熱器6、吸熱器8を順次介して排気口2へと送風される。すなわち、送風機9は、吸気口1から本体ケース3内に空気を吸気し、吸気した空気を放熱器6および吸熱器8の順に通過させて排気口2へ送風する風路Pを形成する。また、本実施の形態では、送風機9は、吸気口1から本体ケース3内に吸気した空気を放熱器6から排気口2へ直接送風する風路Qも形成している。 The refrigeration cycle mechanism 4 includes a compressor 5 and a radiator 6, an expander 7, and a heat absorber 8 that are sequentially provided downstream of the compressor 5. Air is sucked into the main body case 3 from the air inlet 1 by operating the blower 9, and the air thus sucked is then blown to the air outlet 2 through the radiator 6 and the heat absorber 8 in order. Is done. That is, the blower 9 forms an air passage P that sucks air into the main body case 3 from the air inlet 1, passes the air that has been sucked in through the heat radiator 6 and the heat absorber 8, and blows the air to the air outlet 2. Moreover, in this Embodiment, the air blower 9 also forms the air path Q which blows directly the air suck | inhaled in the main body case 3 from the inlet port 1 to the exhaust port 2 from the radiator 6. FIG.
 本実施の形態においては、送風機9の風路Pであって、放熱器6と吸熱器8の間に除湿ローター10の放湿部11を設けている。除湿ローター10の吸湿部12は吸熱器8と排気口2の間に設けている。また、除湿ローター10の放湿部11と吸熱器8の間の風路Pに冷媒熱交換器13を介在させている。また、放熱器6と除湿ローター10の放湿部11との間に、ヒーターなどの加熱部19を設けている。 In this embodiment, it is the air path P of the blower 9, and the moisture releasing portion 11 of the dehumidifying rotor 10 is provided between the radiator 6 and the heat absorber 8. The moisture absorbing portion 12 of the dehumidifying rotor 10 is provided between the heat absorber 8 and the exhaust port 2. Further, a refrigerant heat exchanger 13 is interposed in the air path P between the moisture releasing portion 11 of the dehumidifying rotor 10 and the heat absorber 8. A heating unit 19 such as a heater is provided between the radiator 6 and the moisture releasing unit 11 of the dehumidifying rotor 10.
 このような構成により、圧縮機5で加圧された冷媒は放熱器6に送られ、吸気口1から本体ケース3内に吸気された空気を放熱器6で加熱する。次に、放熱器6を通過した冷媒は、温度が下がった状態で冷媒熱交換器13を介して膨張機7に到達する。その後、膨張機7に到達した冷媒は、吸熱器8、次に冷媒熱交換器13を介して、圧縮機5へと戻るサイクルで循環する。 With such a configuration, the refrigerant pressurized by the compressor 5 is sent to the radiator 6, and the air sucked into the main body case 3 from the inlet 1 is heated by the radiator 6. Next, the refrigerant that has passed through the radiator 6 reaches the expander 7 via the refrigerant heat exchanger 13 in a state where the temperature is lowered. Thereafter, the refrigerant that has reached the expander 7 circulates in a cycle that returns to the compressor 5 via the heat absorber 8 and then the refrigerant heat exchanger 13.
 放熱器6で加熱された空気は、風路Pで示すように、次に除湿ローター10の放湿部11を通過し、放湿部11からの湿気を奪った状態で冷媒熱交換器13および吸熱器8へと流れる。 As shown by the air path P, the air heated by the radiator 6 then passes through the moisture releasing portion 11 of the dehumidifying rotor 10 and removes moisture from the moisture releasing portion 11 and the refrigerant heat exchanger 13 and It flows to the heat absorber 8.
 除湿ローター10の放湿部11を通過した空気は、冷媒熱交換器13で一部結露し、次に吸熱器8で図3に示すごとく、本格的な結露が行われる。吸熱器8で結露した結露水は貯水タンク14へと貯められる。 The air that has passed through the dehumidifying section 11 of the dehumidifying rotor 10 is partially condensed by the refrigerant heat exchanger 13, and then full-scale condensation is performed by the heat absorber 8 as shown in FIG. The condensed water condensed by the heat absorber 8 is stored in the water storage tank 14.
 吸熱器8を通過した空気は、吸熱器8によって低温となる。しかし、低温ながらも湿度は極めて高い状態となっている。この高い湿度を含んだ低温の空気は、次に除湿ローター10の吸湿部12を通過する。除湿ローター10の吸湿部12は、駆動部15により回転駆動されることにより、図2の上方の放湿部11部分ですでに放湿し、湿度が低い状態となっているものである。したがって、吸湿部12で、上記低温ながらも湿度は極めて高い状態の空気から湿気を吸湿することができる。このように、本実施の形態の除湿装置は、除湿効果を極めて高くすることができる。 The air that has passed through the heat absorber 8 is cooled by the heat absorber 8. However, the humidity is extremely high at a low temperature. This low-temperature air containing high humidity then passes through the moisture absorbing portion 12 of the dehumidifying rotor 10. The moisture absorbing section 12 of the dehumidifying rotor 10 is driven to rotate by the drive section 15, so that moisture is already released at the upper moisture releasing section 11 in FIG. 2 and the humidity is low. Therefore, the moisture absorption part 12 can absorb moisture from the air having a very high humidity even at the low temperature. Thus, the dehumidifying device of the present embodiment can make the dehumidifying effect extremely high.
 本実施の形態の冷媒熱交換器13は、冷凍サイクル機構4の放熱器6から膨張機7までの第1の冷媒路13Aと、冷凍サイクル機構4の吸熱器8から圧縮機5までの第2の冷媒路13Bとを熱的に結合して構成したものである。具体的には、図2に示すように、第1の冷媒路13Aを第2の冷媒路13Bの中に同軸状に熱的に結合した構成である。すなわち、第1の冷媒路13Aを流れる低温冷媒と第2の冷媒路13Bを流れる高温冷媒との間で熱交換するように結合されている。 The refrigerant heat exchanger 13 of the present embodiment includes a first refrigerant path 13A from the radiator 6 to the expander 7 of the refrigeration cycle mechanism 4 and a second refrigerant path from the heat absorber 8 to the compressor 5 of the refrigeration cycle mechanism 4. The refrigerant path 13B is thermally coupled. Specifically, as shown in FIG. 2, the first refrigerant path 13A is thermally coupled coaxially into the second refrigerant path 13B. That is, the low-temperature refrigerant flowing through the first refrigerant path 13A and the high-temperature refrigerant flowing through the second refrigerant path 13B are coupled so as to exchange heat.
 図4は、本実施の形態における除湿装置の除湿ローター部分の背面図である。図5は、同除湿装置の冷媒熱交換器の外観斜視図である。図6は、同冷媒熱交換器の断面斜視図である。これらの図を用いて冷媒熱交換器13を詳述する。冷媒熱交換器13は、図4に示すように、本体ケース3内において傾斜させて配置されている。具体的には、冷媒熱交換器13は、図4~図6に示すように、第1の冷媒路13Aの放熱器6側aが膨張機7側より上側なるように傾斜させている。また、冷媒熱交換器13は、図4~図6に示すように、第2の冷媒路13Bの圧縮機5側bが吸熱器8側より上側となるように傾斜させて配置している。 FIG. 4 is a rear view of the dehumidification rotor portion of the dehumidifying device in the present embodiment. FIG. 5 is an external perspective view of the refrigerant heat exchanger of the dehumidifier. FIG. 6 is a cross-sectional perspective view of the refrigerant heat exchanger. The refrigerant heat exchanger 13 will be described in detail with reference to these drawings. As shown in FIG. 4, the refrigerant heat exchanger 13 is disposed in an inclined manner in the main body case 3. Specifically, as shown in FIGS. 4 to 6, the refrigerant heat exchanger 13 is inclined so that the radiator 6 side a of the first refrigerant path 13A is above the expander 7 side. Further, as shown in FIGS. 4 to 6, the refrigerant heat exchanger 13 is disposed so as to be inclined so that the compressor 5 side b of the second refrigerant path 13B is located above the heat absorber 8 side.
 すなわち、冷媒熱交換器13は、第2の冷媒路13Bの、高温冷媒側である圧縮機5側より、低温冷媒側である吸熱器8側の方が、図4に示すごとく下側となるように配置されている。このことによって、冷媒熱交換器13での結露水は、本体ケース3の外方に漏れ出すことはなく、冷媒熱交換器13の下方のドレンパン16に捕獲され、その後上記貯水タンク14へと集められる。 That is, in the refrigerant heat exchanger 13, as shown in FIG. 4, the second refrigerant path 13B is on the lower side of the heat absorber 8 on the low temperature refrigerant side than on the compressor 5 side on the high temperature refrigerant side. Are arranged as follows. As a result, the condensed water in the refrigerant heat exchanger 13 does not leak out of the main body case 3, but is captured by the drain pan 16 below the refrigerant heat exchanger 13, and then collected in the water storage tank 14. It is done.
 本実施の形態においては、吸熱器8の下流に冷媒熱交換器13を設けているので、吸熱器8を通過した冷媒は、冷媒熱交換器13によって再度加熱されガス化される。したがって、圧縮機5にはガス化された状態の冷媒が供給され、圧縮機5の動作が阻害されることはない。また、このことにより、吸熱器8の結露効率を高めることもできる。 In the present embodiment, since the refrigerant heat exchanger 13 is provided downstream of the heat absorber 8, the refrigerant that has passed through the heat absorber 8 is again heated and gasified by the refrigerant heat exchanger 13. Therefore, the refrigerant in a gasified state is supplied to the compressor 5 and the operation of the compressor 5 is not hindered. Moreover, the condensation efficiency of the heat absorber 8 can also be improved by this.
 図7は、本実施の形態における除湿装置の他の冷媒熱交換器を示す外観斜視図である。図8は、同冷媒熱交換器の断面斜視図である。図7および図8に示す冷媒熱交換器13は、吸熱器8から圧縮機5までの第2の冷媒路13Bの外部表面に放熱フィン17を設けている。これにより、放熱フィン17が、第2の冷媒路13Bを流れる冷媒の熱を外部へより放熱するので、冷媒熱交換器13の除湿能力を更に高めることができる。 FIG. 7 is an external perspective view showing another refrigerant heat exchanger of the dehumidifying apparatus in the present embodiment. FIG. 8 is a cross-sectional perspective view of the refrigerant heat exchanger. The refrigerant heat exchanger 13 shown in FIGS. 7 and 8 is provided with radiating fins 17 on the outer surface of the second refrigerant path 13 </ b> B from the heat absorber 8 to the compressor 5. Thereby, since the radiation fin 17 radiates the heat of the refrigerant flowing through the second refrigerant path 13B from the outside, the dehumidifying ability of the refrigerant heat exchanger 13 can be further enhanced.
 図9は、本実施の形態における除湿装置の更に他の冷媒熱交換器を示す外観斜視図である。図9に示す吸熱器冷器13は、給熱器8から圧縮機5までの第2の冷媒路の外表面に溝18を形成している。これにより、溝18が、第2の冷媒路13Bを流れる冷媒の熱を外部へより放熱するので、冷媒熱交換器13の除湿能力を更に高めることができる。さらに、冷媒熱交換器13で結露した結露水をドレンパン16に導き易くなる。 FIG. 9 is an external perspective view showing still another refrigerant heat exchanger of the dehumidifying apparatus in the present embodiment. The heat absorber cooler 13 shown in FIG. 9 has a groove 18 formed on the outer surface of the second refrigerant path from the heater 8 to the compressor 5. Thereby, since the groove | channel 18 dissipates the heat | fever of the refrigerant | coolant which flows through the 2nd refrigerant path 13B from the exterior, the dehumidification capability of the refrigerant | coolant heat exchanger 13 can further be improved. Furthermore, the dew condensation water condensed by the refrigerant heat exchanger 13 can be easily guided to the drain pan 16.
 以上のように本実施の形態は、除湿ローター10の放湿部11と吸熱器8の間の第1の風路Pに冷媒熱交換器13を介在させてある。これにより、冷媒熱交換器13においても除湿ローター10の放湿部11を通過した空気の一部を結露させることができる。また、吸熱器8から圧縮機5に戻る冷媒を加熱しガス化することができる。これにより、吸熱器8では大量に結露をさせることができる。したがって、除湿能力を向上させることができる。 As described above, in the present embodiment, the refrigerant heat exchanger 13 is interposed in the first air path P between the moisture releasing portion 11 of the dehumidifying rotor 10 and the heat absorber 8. Thereby, also in the refrigerant | coolant heat exchanger 13, a part of air which passed the moisture release part 11 of the dehumidification rotor 10 can be condensed. Further, the refrigerant returning from the heat absorber 8 to the compressor 5 can be heated and gasified. Thereby, the heat absorber 8 can cause a large amount of dew condensation. Therefore, the dehumidifying ability can be improved.
 (実施の形態2)
 図10は、本発明の実施の形態2における除湿装置の概略断面構成図である。図10において、本実施の形態の除湿装置は、本体ケース3には、第1の吸気口1Aと第2の吸気口1Bと排気口2とが形成されている。第1の吸気口1Aおよび第2の吸気口1Bは本体ケース3の外周面である側面に形成されており、排気口2は本体ケース3の上面に形成されている。第2の吸気口1Bは第1の吸気口1Aよりも、本体ケース3の外周の下方に形成されている。
(Embodiment 2)
FIG. 10 is a schematic cross-sectional configuration diagram of a dehumidifier according to Embodiment 2 of the present invention. In the dehumidifying device of the present embodiment in FIG. 10, the main body case 3 is formed with a first intake port 1 </ b> A, a second intake port 1 </ b> B, and an exhaust port 2. The first air inlet 1 </ b> A and the second air inlet 1 </ b> B are formed on the side surface that is the outer peripheral surface of the main body case 3, and the exhaust port 2 is formed on the upper surface of the main body case 3. The second air inlet 1B is formed below the outer periphery of the main body case 3 with respect to the first air inlet 1A.
 本体ケース3内には、ヒートポンプを構成する冷凍サイクル機構4を備えている。冷凍サイクル機構4は、圧縮機5と、圧縮機5の下流に順次設けた放熱器6と膨張機7と吸熱器8とにより構成される。また、本体ケース3内には、放湿部11と吸湿部12とを有する除湿ローター10を備えている。除湿ローター10は、モーターとギアなどから構成される駆動部15により回転駆動される。さらに、本体ケース3内には、放熱器6と放湿部11との間にヒーターなどの加熱部19を備えている。 In the main body case 3, a refrigeration cycle mechanism 4 constituting a heat pump is provided. The refrigeration cycle mechanism 4 includes a compressor 5, a radiator 6, an expander 7, and a heat absorber 8 that are sequentially provided downstream of the compressor 5. Further, the main body case 3 includes a dehumidifying rotor 10 having a moisture releasing portion 11 and a moisture absorbing portion 12. The dehumidification rotor 10 is rotationally driven by a drive unit 15 including a motor and gears. Furthermore, a heating unit 19 such as a heater is provided in the main body case 3 between the radiator 6 and the moisture release unit 11.
 第1の吸気口1Aから本体ケース3内には、送風機9が動作することにより空気が吸気され、その後放熱器6および吸熱器8を順次通過して排気口2へと送風される。すなわち、送風機9は、第1の吸気口1Aから本体ケース3内に空気を吸気し、吸気した空気を放熱器6および吸熱器8の順に通過させて排気口2へ送風する第1の風路P1を形成している。なお、本実施の形態においては、送風機9は、第1の吸気口1Aから本体ケース3内に吸気した空気を放熱器6から排気口2へ直接送風する風路Qも形成している。 In the main body case 3, air is sucked into the main body case 3 from the first air inlet 1 </ b> A, and then passes through the radiator 6 and the heat absorber 8 in order to be blown to the exhaust port 2. That is, the blower 9 draws air into the main body case 3 from the first intake port 1A, passes the drawn air through the radiator 6 and the heat absorber 8 in this order, and blows the air to the exhaust port 2. P1 is formed. In the present embodiment, the blower 9 also forms an air path Q that directly blows air that has been sucked into the main body case 3 from the first air inlet 1A into the air outlet 2 from the radiator 6.
 また、第2の吸気口1Bから本体ケース3内には、送風機9が動作することにより空気が吸気され、吸熱部8を通過して排気口2へと送風される。すなわち、送風機9は、第2の吸気口1Bから本体ケース3内に空気を吸気し、第2の吸気口1Bから吸気した空気を吸熱器8を通過させて排気口2へ送風する第2の風路P2を形成している。図10に示すように、第2の風路P2は第1の風路P1よりも下方に形成されている。 In the main body case 3, air is sucked into the main body case 3 from the second air inlet 1 </ b> B, passes through the heat absorbing portion 8, and is blown to the exhaust port 2. That is, the blower 9 draws air into the main body case 3 from the second air inlet 1B, and sends the air drawn from the second air inlet 1B through the heat absorber 8 to the exhaust port 2. The air path P2 is formed. As shown in FIG. 10, the second air path P2 is formed below the first air path P1.
 第2の風路P2内には、風量調整部20が設けられている。図11は本実施の形態の除湿装置における風量調整部20の外観斜視図である。図11において、風量調整部20は、矢印のように回転駆動される階段形状部20Aを有する。すなわち、風量調整部20の階段形状部20Aが回転駆動されることにより、第2の風路P2を開放しまた閉鎖することができる。第2の風路P2を開放する場合は、本実施の形態においては、風量調整部20の階段形状部20Aが回転駆動されることにより、第1の吸気口1Aから吸熱器8に至る第2の風路P2を、大開口状態、中開口状態、小開口状態に制御することができる。すなわち、このような開口制御により、第2の風路P2を流れる空気の風量を大風量、中風量、小風量の3段階に切り替えることができる。 An air volume adjusting unit 20 is provided in the second air path P2. FIG. 11 is an external perspective view of the air volume adjusting unit 20 in the dehumidifying apparatus of the present embodiment. In FIG. 11, the air volume adjusting unit 20 has a stepped shape portion 20A that is rotationally driven as indicated by an arrow. That is, the second air path P2 can be opened and closed by rotationally driving the stepped shape portion 20A of the air volume adjusting unit 20. In the case of opening the second air passage P2, in the present embodiment, the step shape portion 20A of the air volume adjusting unit 20 is driven to rotate, so that the second air reaching the heat absorber 8 from the first air inlet 1A. The air path P2 can be controlled to a large opening state, a middle opening state, and a small opening state. That is, by such opening control, the air volume of the air flowing through the second air path P2 can be switched between three levels: a large air volume, a medium air volume, and a small air volume.
 本実施の形態では、圧縮機5で加圧された冷媒は、放熱器6に送られ、第1の吸気口1Aから本体ケース3内に吸気された空気を、放熱器6で加熱する。次に、放熱器6を通過した冷媒は、膨張機7に到達し、その後、吸熱器8を介して圧縮機5へと戻る。このように、冷凍サイクル機構4内を冷媒は循環する。 In the present embodiment, the refrigerant pressurized by the compressor 5 is sent to the radiator 6, and the air sucked into the main body case 3 from the first inlet 1 </ b> A is heated by the radiator 6. Next, the refrigerant that has passed through the radiator 6 reaches the expander 7, and then returns to the compressor 5 via the heat absorber 8. Thus, the refrigerant circulates in the refrigeration cycle mechanism 4.
 本実施の形態では、第1の風路P1の放熱器6と除湿ローター10の放湿部11との間に加熱部19を設けてある。そのため、たとえ室温が低い冬季であっても、除湿ローター10の放湿部11を通過する空気を加熱部19で加熱することができる。これにより、除湿ローター10の放湿部11から大量の水分を蒸発させ、次にこの大量の水分を吸熱器8で結露させることができる。その結果、除湿能力を向上させることができる。 In the present embodiment, a heating unit 19 is provided between the radiator 6 of the first air path P1 and the moisture releasing unit 11 of the dehumidifying rotor 10. Therefore, even in the winter when the room temperature is low, the air passing through the moisture releasing portion 11 of the dehumidifying rotor 10 can be heated by the heating portion 19. As a result, a large amount of water can be evaporated from the moisture release portion 11 of the dehumidifying rotor 10, and this large amount of water can then be condensed by the heat absorber 8. As a result, the dehumidifying ability can be improved.
 また、本実施の形態では、放熱器6で加熱された空気は、次に加熱部19で加熱され、その後除湿ローター10の放湿部11を通過する。放湿部11を通過した空気は、放湿部11からの湿気を奪った状態で吸熱器8へと流れる。 In the present embodiment, the air heated by the radiator 6 is then heated by the heating unit 19 and then passes through the moisture releasing unit 11 of the dehumidifying rotor 10. The air that has passed through the moisture release section 11 flows to the heat absorber 8 in a state where the moisture from the moisture release section 11 has been taken away.
 除湿ローター10の放湿部11を通過した空気は、吸熱器8で結露が行われ、この結露水は貯水タンク14へと貯められる。その後、吸熱器8を通過した空気は、吸熱器8によって低温となるが、低温ながらも湿度は極めて高い状態となっている。この高い湿度を含んだ低温の空気は、次に除湿ローター10の吸湿部12を通過する。ところが、吸湿部12は、駆動部15により回転駆動されることにより図10の上方の放湿部11部分ですでに放湿し、湿度が低い状態となっている。そのため、上記低温ながらも湿度は極めて高い状態の空気から湿気を十分に吸湿することができる。したがって、本実施の形態の除湿装置は、除湿効果を極めて高くすることができる。 The air that has passed through the moisture releasing portion 11 of the dehumidifying rotor 10 is condensed in the heat absorber 8, and the condensed water is stored in the water storage tank 14. Thereafter, the air that has passed through the heat absorber 8 is cooled to a low temperature by the heat absorber 8, but the humidity is extremely high although the temperature is low. This low-temperature air containing high humidity then passes through the moisture absorbing portion 12 of the dehumidifying rotor 10. However, the moisture absorption unit 12 is already driven to rotate by the drive unit 15 to release moisture at the upper moisture release unit 11 in FIG. 10, and the humidity is low. Therefore, it is possible to sufficiently absorb moisture from air in a state where the humidity is extremely high although the temperature is low. Therefore, the dehumidifying device of the present embodiment can greatly increase the dehumidifying effect.
 また、本実施の形態においては、第1の吸気口1Aから放熱器6および吸熱器8を介して排気口2に向かう第1の風路P1と、第2の吸気口1Bから排気口2に向かう第2の風路P2を設けるとともに、第2の風路P2に風量調整部13を設けている。このような構成における本実施の形態の運転モードについて説明する。図12は、本実施の形態の除湿装置の動作の制御を示す図である。 In the present embodiment, the first air passage P1 from the first air inlet 1A to the air outlet 2 through the radiator 6 and the heat absorber 8 and the second air inlet 1B to the air outlet 2 are provided. A second air passage P2 is provided, and an air volume adjusting unit 13 is provided in the second air passage P2. The operation mode of the present embodiment having such a configuration will be described. FIG. 12 is a diagram illustrating the control of the operation of the dehumidifying device of the present embodiment.
 まず、図12のM1に示す定格除湿モードにおいては、圧縮機5、送風機9、駆動部15をオンにし、加熱部19はオフにし、さらに風量調整部13は小開口状態とする。この結果、吸熱器8には、第1の吸気口1Aから除湿ローター10の放湿部11を通過した空気と、第2の吸気口1Bから風量調整部3を通過した除湿ローター10の放湿部11を通過していない空気とが供給されることになる。 First, in the rated dehumidification mode indicated by M1 in FIG. 12, the compressor 5, the blower 9, and the drive unit 15 are turned on, the heating unit 19 is turned off, and the air volume adjusting unit 13 is in a small opening state. As a result, in the heat absorber 8, the air that has passed through the moisture release portion 11 of the dehumidification rotor 10 from the first intake port 1 </ b> A and the moisture release of the dehumidification rotor 10 that has passed the air volume adjustment unit 3 from the second intake port 1 </ b> B. Air that has not passed through the section 11 is supplied.
 すなわち、このように第2の吸気口1Bから放熱器6や除湿ローター10を通過しない空気を吸熱器8に供給すると、第2の吸気口1Bから空気を供給しない場合と比較して、除湿ローター10の吸湿部12の通過風量が増加する。これにより、除湿ローター10の吸湿量が増加し除湿能力を向上させることができる。 That is, when air that does not pass through the radiator 6 and the dehumidifying rotor 10 is supplied from the second air inlet 1B to the heat absorber 8, the dehumidifying rotor is compared with the case where air is not supplied from the second air inlet 1B. The amount of air passing through the ten moisture absorbing portions 12 increases. Thereby, the moisture absorption amount of the dehumidification rotor 10 increases and a dehumidification capability can be improved.
 この場合、加熱部19がオフであるため、除湿ローター10の水分放湿能力が減少する。そのため、除湿ローター10の吸放湿のバランスにより、第2の吸気口1Bからの空気の供給は加熱部19をオンにした時と比べて少量とする所に最適混合量が存在する。したがって、このモードでは省エネルギーで必要除湿能力を得ることができる。 In this case, since the heating unit 19 is off, the moisture dehumidifying ability of the dehumidifying rotor 10 is reduced. For this reason, due to the balance between moisture absorption and desorption of the dehumidifying rotor 10, there is an optimum mixing amount where the supply of air from the second air inlet 1 </ b> B is smaller than when the heating unit 19 is turned on. Therefore, in this mode, the necessary dehumidifying ability can be obtained with energy saving.
 次に、図12のM2に示す、衣類を素早く乾燥したいときのパワフル衣類乾燥モードにおいては、圧縮機5、送風機9、駆動部15、加熱部19をオンにし、さらに風量調整部13は大開口状態とする。このように衣類を素早く乾燥したいときは加熱部19をオン、風量調整部13を大開口状態とすれば、放熱器6から除湿ローター10の放湿部11に供給される空気が加熱される。さらに、第2の吸気口1Bから風量調整部13を通過した除湿ローター10の放湿部11を通過していない空気が大風量で供給される。 Next, in the powerful clothing drying mode shown in M2 in FIG. 12 when the clothing is desired to be quickly dried, the compressor 5, the blower 9, the driving unit 15, and the heating unit 19 are turned on, and the air volume adjusting unit 13 is opened with a large opening. State. In this way, when it is desired to quickly dry the clothing, if the heating unit 19 is turned on and the air volume adjusting unit 13 is in a large opening state, the air supplied from the radiator 6 to the moisture releasing unit 11 of the dehumidifying rotor 10 is heated. Furthermore, air that has not passed through the moisture release section 11 of the dehumidification rotor 10 that has passed through the air volume adjustment section 13 from the second air inlet 1B is supplied in a large volume.
 すなわち、このように第2の吸気口1Bから放熱器6や除湿ローター10を通過しない空気を吸熱器8に大量供給すると、第2の吸気口1Bから空気を供給しない場合と比較して、加熱部19を通過する風量が減少し加熱部19の温度が上昇する。このことによって、除湿ローター10の放湿部11からの放湿量が増加し、また、除湿ローター10の吸湿部12の通過風量が増加する。これにより、除湿ローター10の吸湿量が増加し、結果として除湿能力を向上させることができる。また、吹出し風量が最大となるため衣類に大量の空気が供給されることにより、衣類乾燥能力が向上する。 That is, when a large amount of air that does not pass through the radiator 6 and the dehumidifying rotor 10 is supplied from the second air inlet 1B to the heat absorber 8, heating is performed as compared with a case where air is not supplied from the second air inlet 1B. The amount of air passing through the part 19 decreases and the temperature of the heating part 19 rises. As a result, the moisture release amount from the moisture release portion 11 of the dehumidification rotor 10 is increased, and the passing air amount of the moisture absorption portion 12 of the dehumidification rotor 10 is increased. Thereby, the moisture absorption amount of the dehumidification rotor 10 increases, As a result, the dehumidification capability can be improved. In addition, since the blown air volume is maximized, the clothes drying ability is improved by supplying a large amount of air to the clothes.
 次に、図12のM3に示す、冬季の低温除湿モードにおいては、圧縮機5、送風機9、駆動部15、加熱部19をオンにし、さらに風量調整部13は中開口状態とする。このように低温時においては、加熱部19をオン、風量調整部13を中開口状態とすれば、放熱器6から除湿ローター10の放湿部11に供給される空気が加熱される。さらに、第2の吸気口1Bから風量調整部13を通過した除湿ローター10の放湿部11を通過していない空気が中風量で供給される。 Next, in the low-temperature dehumidification mode in winter indicated by M3 in FIG. 12, the compressor 5, the blower 9, the drive unit 15, and the heating unit 19 are turned on, and the air volume adjusting unit 13 is in the middle opening state. Thus, at the time of low temperature, if the heating part 19 is turned on and the air volume adjusting part 13 is in the middle opening state, the air supplied from the radiator 6 to the moisture releasing part 11 of the dehumidifying rotor 10 is heated. Furthermore, air that has not passed through the moisture release section 11 of the dehumidification rotor 10 that has passed through the air volume adjustment section 13 from the second air inlet 1B is supplied at a medium air volume.
 すなわち、このように第2の吸気口1Bから放熱器6や除湿ローター10を通過しない空気を吸熱器8に中量供給すると、第2の吸気口1Bから空気を供給しない場合と比較して、加熱部19を通過する風量が減少し加熱部19の温度が上昇する。このことによって、除湿ローター10の放湿部11からの放湿量が増加し、さらに、除湿ローター10の吸湿部12の通過風量が増加する。これにより、除湿ローター10の吸湿量が増加し、結果として除湿能力を向上させることができる。 That is, when a medium amount of air that does not pass through the radiator 6 and the dehumidifying rotor 10 is supplied from the second air inlet 1B to the heat absorber 8, as compared with the case where air is not supplied from the second air inlet 1B, The amount of air passing through the heating unit 19 decreases and the temperature of the heating unit 19 rises. As a result, the amount of moisture released from the moisture releasing portion 11 of the dehumidifying rotor 10 is increased, and the amount of air passing through the moisture absorbing portion 12 of the dehumidifying rotor 10 is further increased. Thereby, the moisture absorption amount of the dehumidification rotor 10 increases, As a result, the dehumidification capability can be improved.
 この場合、加熱部19がオンであるため、除湿ローター10の水分放湿能力が増加する。そのため、除湿ローター10の吸放湿のバランスにより、第2の吸気口1Bからの空気の供給は加熱部19をオフした時と比べて多量としている。このモードでは、加熱部19をオンにしたときに最大能力を得るために最適な風量バランスとすることができる。 In this case, since the heating unit 19 is on, the moisture dehumidifying capacity of the dehumidifying rotor 10 is increased. For this reason, due to the balance between moisture absorption and desorption of the dehumidification rotor 10, the supply of air from the second air inlet 1 </ b> B is larger than when the heating unit 19 is turned off. In this mode, it is possible to achieve an optimal air volume balance in order to obtain the maximum capacity when the heating unit 19 is turned on.
 次に、図12のM4に示す、夏季の冷風モードにおいては、圧縮機5、送風機9、駆動部15をオンにし、加熱部19はオフにし、さらに風量調整部13は大開口状態とする。このように、高温時においては加熱部19をオフ、風量調整部13を大開口状態とすれば、第2の吸気口1Bから風量調整部13を通過した除湿ローター10の放湿部11を通過していない空気が大風量で供給されることになる。 Next, in the cold wind mode in summer indicated by M4 in FIG. 12, the compressor 5, the blower 9, and the drive unit 15 are turned on, the heating unit 19 is turned off, and the air volume adjusting unit 13 is in a large opening state. In this way, when the heating unit 19 is turned off and the air volume adjusting unit 13 is in a large opening state at a high temperature, the air passes through the moisture releasing unit 11 of the dehumidification rotor 10 that has passed through the air volume adjusting unit 13 from the second air inlet 1B. Air that has not been supplied is supplied with a large air volume.
 すなわち、加熱部19をオフにし空気が加熱されないようにすることに加え、第2の吸気口1Bから放熱器6や除湿ローター10を通過しない空気を吸熱器8に大量供給すると、吸熱器8を通過する風量を最大として吸熱量を増加させることができる。そのため、吸熱器8を通過する空気の温度を下げ、かつ、吹出し風量を最大とすることによって冷風能力を向上させることができる。 That is, in addition to turning off the heating unit 19 and preventing the air from being heated, if a large amount of air that does not pass through the radiator 6 and the dehumidifying rotor 10 is supplied from the second air inlet 1B to the heat absorber 8, the heat absorber 8 is The amount of heat absorbed can be increased by maximizing the amount of air passing therethrough. Therefore, the cold air capacity can be improved by lowering the temperature of the air passing through the heat absorber 8 and maximizing the blown air volume.
 次に、冬季の極低温時においては(図示しない蒸発温センサーが所定の温度以下を検知した場合)、図12のM5に示す自動的に除霜モードで運転する。このときは、圧縮機5はオフ、送風機9はオン、駆動部15、加熱部19をオンにし、さらに風量調整部13は全閉状態とする。すなわち、極低温時においては圧縮機5を停止することに加え、風量調整部13を全閉状態として第2の吸気口1Bからの空気を吸熱器8に供給しない。すなわち、加熱部19で加熱された高温の空気のみを吸熱器8に供給する。このことにより素早く吸熱器8の温度を上げて吸熱器8の着霜を溶解し、吸熱器8の着霜による風路の閉塞を防止することができる。但し、除霜モード運転では除湿されないため所定時間除霜モードで運転した後は、除霜モード運転に入る前に設定されていた運転モードに戻る。 Next, when the temperature is very low in winter (when an evaporating temperature sensor (not shown) detects a predetermined temperature or lower), the operation is automatically performed in the defrosting mode indicated by M5 in FIG. At this time, the compressor 5 is turned off, the blower 9 is turned on, the drive unit 15 and the heating unit 19 are turned on, and the air volume adjusting unit 13 is fully closed. That is, at the time of extremely low temperature, in addition to stopping the compressor 5, the air volume adjusting unit 13 is fully closed so that the air from the second air inlet 1 </ b> B is not supplied to the heat absorber 8. That is, only high-temperature air heated by the heating unit 19 is supplied to the heat absorber 8. Accordingly, the temperature of the heat absorber 8 can be quickly raised to melt the frost on the heat absorber 8, and the air path can be prevented from being blocked by the frost on the heat absorber 8. However, since it is not dehumidified in the defrosting mode operation, after operating in the defrosting mode for a predetermined time, the operation mode set before entering the defrosting mode operation is restored.
 本実施の形態において、風量調整部13は、本体ケース3内に内蔵させている。これにより、風量調整部13は外力によって変形・損傷することがない。したがって、外力によって風量調整部13の回転駆動が損なわれることはない。 In the present embodiment, the air volume adjusting unit 13 is built in the main body case 3. Thereby, the air volume adjusting unit 13 is not deformed or damaged by an external force. Therefore, the rotational drive of the air volume adjusting unit 13 is not impaired by the external force.
 また、本実施の形態において、第1の吸気口1Aからの風路P1を、第2の吸気口1Bからの風路P2の上方に配置している。圧縮機5、放熱器6、膨張機7、吸熱器8、送風機9、除湿ローター10により動作する第1の風路P1が第2の風路P2よりメインとなるので、メインとなる風路P1を排気口2に近づけることにより風路P1の風路抵抗を小さくすることができる。 In the present embodiment, the air passage P1 from the first air inlet 1A is disposed above the air passage P2 from the second air inlet 1B. Since the first air path P1 that is operated by the compressor 5, the radiator 6, the expander 7, the heat absorber 8, the blower 9, and the dehumidifying rotor 10 is main from the second air path P2, the main air path P1. The air path resistance of the air path P1 can be reduced by bringing the air path close to the exhaust port 2.
 また、本実施の形態において、本体ケース3の外周面の上方に第1の吸気口1A、下方に第2の吸気口1Bを設け、この本体ケース3の上面に排気口2を設けている。これにより、風路P1の風路抵抗を小さくすることができる。 Further, in the present embodiment, the first intake port 1A is provided above the outer peripheral surface of the main body case 3, the second intake port 1B is provided below, and the exhaust port 2 is provided on the upper surface of the main body case 3. Thereby, the air path resistance of the air path P1 can be reduced.
 以上のように、本実施の形態によれば、第1の風路P1の放熱器6と吸熱器8の間に除湿ローター10の放湿部11を設けている。また、除湿ローター10の吸湿部12を第1の風路P1と第2の風路P2の吸熱器8と排気口2の間に設けている。さらに、第1の風路P1の放熱器6と除湿ローター10の放湿部11との間に加熱部19を設けている。これにより、たとえ室温が低い冬季であっても加熱部19で除湿ローター10の放湿部11を通過する空気を加熱することにより、放湿部11から大量の水分を蒸発させることができる。さらに、その後この大量の水分を吸熱器8で結露させることができる。その結果、除湿能力を向上させることができる。 As described above, according to the present embodiment, the moisture releasing portion 11 of the dehumidifying rotor 10 is provided between the radiator 6 and the heat absorber 8 in the first air path P1. Moreover, the moisture absorption part 12 of the dehumidification rotor 10 is provided between the heat absorber 8 and the exhaust port 2 of the first air path P1 and the second air path P2. Further, a heating unit 19 is provided between the radiator 6 in the first air path P <b> 1 and the moisture releasing unit 11 of the dehumidifying rotor 10. Thereby, even in the winter when the room temperature is low, a large amount of water can be evaporated from the moisture release unit 11 by heating the air passing through the moisture release unit 11 of the dehumidification rotor 10 by the heating unit 19. Further, this large amount of water can be condensed by the heat absorber 8 thereafter. As a result, the dehumidifying ability can be improved.
 また、吸熱器8で結露された後の空気は次に除湿ローター10の吸湿部12に到達する。吸湿部12は放湿部11において加熱部19で加熱され乾燥状態となっているので、低温状態でも、吸湿部12に到達した空気に含まれる水分を十分に吸湿することができる。 Further, the air after the dew condensation by the heat absorber 8 reaches the moisture absorbing portion 12 of the dehumidifying rotor 10 next. Since the moisture absorption part 12 is heated by the heating part 19 in the moisture release part 11 and is in a dry state, moisture contained in the air reaching the moisture absorption part 12 can be sufficiently absorbed even in a low temperature state.
 さらに、本実施の形態では、第1の吸気口1Aから本体ケース3内に吸気した空気を放熱器6、吸熱器8を順次介して排気口2へと送風する第1の風路P1と、第2の吸気口1Bから本体ケース3内に吸気した空気を吸熱器8を介して排気口2へと送風する第2の風路P2とを有し、第2の風路P2に風量調整部13設けている。これにより、第2の風路P2を流れる空気の風量を調整できるので、例えば春夏秋冬の季節ごとに最適な除湿運転が行える。 Further, in the present embodiment, a first air passage P1 for blowing air sucked into the main body case 3 from the first intake port 1A to the exhaust port 2 through the heat radiator 6 and the heat absorber 8 sequentially, A second air passage P2 for blowing air sucked into the main body case 3 from the second air inlet 1B to the air outlet 2 through the heat absorber 8, and an air volume adjusting unit in the second air passage P2. 13 are provided. Thereby, since the air volume of the air which flows through the 2nd wind path P2 can be adjusted, the optimal dehumidification driving | operation can be performed for every season of spring, summer, autumn and winter, for example.
 本発明は、高い除湿能力が得られ、また例えば春夏秋冬の季節ごとに最適な除湿運転が行えるので、家庭用や事務所用などの広範囲な除湿装置として有用である。 The present invention is useful as a wide range of dehumidifying devices for home use and office use because it provides high dehumidifying ability and can perform optimum dehumidifying operation for each season such as spring, summer, autumn and winter.

Claims (21)

  1. 吸気口と排気口を有する本体ケースと、
    圧縮機と放熱器と膨張機と吸熱器とがこの順に前記本体ケース内に設けられた冷凍サイクル機構と、
    前記吸気口から前記本体ケース内に空気を吸気し、前記吸気した空気を前記放熱器および前記吸熱器の順に通過させて前記排気口へ送風する風路を形成する送風機と、
    前記風路内にあって前記放熱器と前記吸熱器との間に設けられた除湿ローターの放湿部と、
    前記風路内にあって前記吸熱器と前記排気口との間に設けられた前記除湿ローターの吸湿部と、
    前記風路内にあって前記除湿ローターの放湿部と前記吸熱器との間に設けられた冷媒熱交換器と
    を備えた除湿装置。
    A body case having an air inlet and an air outlet;
    A refrigeration cycle mechanism in which a compressor, a radiator, an expander, and a heat absorber are provided in this order in the main body case;
    A blower that forms air passages for sucking air into the main body case from the intake port, passing the intake air in order of the radiator and the heat absorber, and blowing the air to the exhaust port;
    A moisture release portion of a dehumidification rotor provided between the radiator and the heat absorber in the air passage;
    A moisture absorbing portion of the dehumidifying rotor provided in the air passage and provided between the heat absorber and the exhaust port;
    A dehumidifying device provided with a refrigerant heat exchanger provided in the air passage and between the moisture releasing portion of the dehumidifying rotor and the heat absorber.
  2. 前記冷凍サイクル機構は、前記放熱器から前記膨張機までの第1の冷媒路と、前記吸熱器から前記圧縮機までの第2の冷媒路とを有し、前記冷媒熱交換器は、前記第1の冷媒路と前記第2の冷媒路とを熱的に結合して構成された請求項1に記載の除湿装置。 The refrigeration cycle mechanism includes a first refrigerant path from the radiator to the expander, and a second refrigerant path from the heat absorber to the compressor, and the refrigerant heat exchanger includes the first refrigerant path. The dehumidifying device according to claim 1, wherein the dehumidifying device is configured by thermally coupling one refrigerant path and the second refrigerant path.
  3. 前記冷媒熱交換器は、前記第1の冷媒路と前記第2の冷媒路とを同軸状に熱的に結合して構成された請求項2に記載の除湿装置。 The dehumidifying device according to claim 2, wherein the refrigerant heat exchanger is configured by thermally coupling the first refrigerant path and the second refrigerant path coaxially.
  4. 前記冷媒熱交換器は、前記第1の冷媒路が前記第2の冷媒路の内部に同軸状に配置されて構成された請求項3に記載の除湿装置。 The dehumidifier according to claim 3, wherein the refrigerant heat exchanger is configured such that the first refrigerant path is coaxially disposed inside the second refrigerant path.
  5. 前記冷媒熱交換器は、前記本体ケース内において傾斜させて配置した請求項1に記載の除湿装置。 The dehumidifying device according to claim 1, wherein the refrigerant heat exchanger is disposed to be inclined in the main body case.
  6. 前記冷媒熱交換器は、前記第1の冷媒路の前記放熱器側を上側として傾斜させて配置した請求項2に記載の除湿装置。 The dehumidifying device according to claim 2, wherein the refrigerant heat exchanger is arranged to be inclined with the radiator side of the first refrigerant path as an upper side.
  7. 前記冷媒熱交換器は、前記第2の冷媒路の前記圧縮機側を上側として傾斜させて配置した請求項2に記載の除湿装置。 The dehumidifier according to claim 2, wherein the refrigerant heat exchanger is disposed so as to be inclined with the compressor side of the second refrigerant path as an upper side.
  8. 前記冷媒熱交換器は、前記第2の冷媒路の外部に放熱フィンを有する請求項4に記載の除湿装置。 The dehumidifying device according to claim 4, wherein the refrigerant heat exchanger has heat radiation fins outside the second refrigerant path.
  9. 前記冷媒熱交換器は、前記第2の冷媒路の外部に溝を有する請求項4に記載の除湿装置。 The dehumidifier according to claim 4, wherein the refrigerant heat exchanger has a groove outside the second refrigerant path.
  10. 前記冷媒熱交換器の下方に設けられたドレンパンを有する請求項1に記載の除湿装置。 The dehumidification apparatus of Claim 1 which has a drain pan provided in the downward direction of the said refrigerant | coolant heat exchanger.
  11. 第1の吸気口と排気口を有する本体ケースと、
    圧縮機と放熱器と膨張機と吸熱器とがこの順に前記本体ケース内に設けられた冷凍サイクル機構と、
    前記第1の吸気口から前記本体ケース内に空気を吸気し、前記吸気した空気を前記放熱器および前記吸熱器の順に通過させて前記排気口へ送風する第1の風路を形成する送風機と、
    前記第1の風路内にあって前記放熱器と前記吸熱器との間に設けられた除湿ローターの放湿部と、
    前記第1の風路内にあって前記吸熱器と前記排気口との間に設けられた前記除湿ローターの吸湿部と、
    前記第1の風路の前記放熱器と前記除湿ローターの放湿部との間に設けられた加熱部と
    を備えた除湿装置。
    A body case having a first air inlet and an air outlet;
    A refrigeration cycle mechanism in which a compressor, a radiator, an expander, and a heat absorber are provided in this order in the main body case;
    A blower that forms a first air passage that sucks air into the main body case from the first air intake port, passes the intake air in the order of the radiator and the heat absorber, and blows air to the exhaust port; ,
    A dehumidifying part of a dehumidifying rotor in the first air path and provided between the radiator and the heat absorber;
    A moisture absorption part of the dehumidification rotor provided in the first air passage and provided between the heat absorber and the exhaust port;
    A dehumidifier comprising a heating unit provided between the radiator of the first air passage and a moisture releasing unit of the dehumidifying rotor.
  12. 前記本体ケースが第2の吸気口を有し、
    前記送風機が、前記第2の吸気口から前記本体ケース内に空気を吸気し、前記第2の吸気口から吸気した空気を前記吸熱器を通過させて前記排気口へ送風する第2の風路を形成し、
    前記第2の風路を流れる風量を調整する風量調整部が設けられた請求項11に記載の除湿装置。
    The body case has a second air inlet;
    A second air passage through which the blower sucks air into the main body case from the second air inlet, and blows the air sucked from the second air inlet through the heat absorber to the exhaust port; Form the
    The dehumidifying device according to claim 11, further comprising an air volume adjusting unit that adjusts an air volume flowing through the second air path.
  13. 前記風量調整部は、前記第2の風路における前記第2の吸気口と前記吸熱器の間に設けられた請求項12に記載の除湿装置。 The dehumidifying device according to claim 12, wherein the air volume adjusting unit is provided between the second air inlet and the heat absorber in the second air path.
  14. 前記風量調整部は、回転駆動される階段形状部を有する請求項12に記載の除湿装置。 The dehumidifying device according to claim 12, wherein the air volume adjusting unit includes a stepped shape unit that is rotationally driven.
  15. 前記風量調整部は、前記本体ケース内に内蔵された請求項12に記載の除湿装置。 The dehumidifying device according to claim 12, wherein the air volume adjusting unit is built in the main body case.
  16. 前記第1の風路は、前記第2の風路の上方に配置された請求項12に記載の除湿装置。 The dehumidifying device according to claim 12, wherein the first air passage is disposed above the second air passage.
  17. 前記第1の吸気口および前記第2の吸気口は前記本体ケースの外周面に設けられ、前記排気口は前記本体ケースの上面に設けられた請求項12に記載の除湿装置。 The dehumidifier according to claim 12, wherein the first intake port and the second intake port are provided on an outer peripheral surface of the main body case, and the exhaust port is provided on an upper surface of the main body case.
  18. 前記風量調整部は、前記第2の風路を流れる風量を、中風量と、前記中風量より大きな風量の大風量と、前記中風量より小さな風量の小風量との3段階に調整可能で、前記圧縮機と前記送風機と前記除湿ローターとを動作させるとともに、前記風量調整部により前記第2の風路を流れる風量を小風量に調整した第1の動作モードを有する請求項12に記載の除湿装置。 The air volume adjusting unit is capable of adjusting the air volume flowing through the second air path in three stages: an intermediate air volume, a large air volume larger than the intermediate air volume, and a small air volume smaller than the intermediate air volume. The dehumidification according to claim 12, further comprising a first operation mode in which the compressor, the blower, and the dehumidifying rotor are operated, and the air volume adjustment unit adjusts the air volume flowing through the second air path to a small air volume. apparatus.
  19. 前記風量調整部は、前記第2の風路を流れる風量を、中風量と、前記中風量より大きな風量の大風量と、前記中風量より小さな風量の小風量との3段階に調整可能で、前記圧縮機と前記送風機と前記除湿ローターと前記加熱部とを動作させるとともに、前記風量調整部により前記第2の風路を流れる風量を中風量に調整した第2の動作モードを有する請求項12に記載の除湿装置。 The air volume adjusting unit is capable of adjusting the air volume flowing through the second air path in three stages: an intermediate air volume, a large air volume larger than the intermediate air volume, and a small air volume smaller than the intermediate air volume. The compressor, the blower, the dehumidifying rotor, and the heating unit are operated, and a second operation mode in which the air volume flowing through the second air path is adjusted to a medium air volume by the air volume adjusting unit. The dehumidifying device described in 1.
  20. 前記風量調整部は、前記第2の風路を流れる風量を、中風量と、前記中風量より大きな風量の大風量と、前記中風量より小さな風量の小風量との3段階に調整可能で、前記圧縮機と前記送風機とを動作させるとともに、前記風量調整部により前記第2の風路を流れる風量を大風量に調整した第3の動作モードを有する請求項12に記載の除湿装置。 The air volume adjusting unit is capable of adjusting the air volume flowing through the second air path in three stages: an intermediate air volume, a large air volume larger than the intermediate air volume, and a small air volume smaller than the intermediate air volume. The dehumidifying device according to claim 12, wherein the dehumidifying device has a third operation mode in which the compressor and the blower are operated, and the air volume adjusting unit adjusts the air volume flowing through the second air path to a large air volume.
  21. 前記風量調整部は、前記第2の風路を流れる風量を、中風量と、前記中風量より大きな風量の大風量と、前記中風量より小さな風量の小風量との3段階に調整可能で、前記送風機と前記除湿ローターと前記加熱部とを動作させるとともに、前記風量調整部により前記第2の風路を閉鎖した第4の動作モードを有する請求項12に記載の除湿装置。 The air volume adjusting unit is capable of adjusting the air volume flowing through the second air path in three stages: an intermediate air volume, a large air volume larger than the intermediate air volume, and a small air volume smaller than the intermediate air volume. The dehumidifying device according to claim 12, wherein the dehumidifying device has a fourth operation mode in which the blower, the dehumidifying rotor, and the heating unit are operated, and the second air path is closed by the air volume adjusting unit.
PCT/JP2008/003957 2008-01-08 2008-12-25 Dehumidifying device WO2009087734A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008801243268A CN101909723B (en) 2008-01-08 2008-12-25 Dehumidifying device
HK10112119.9A HK1145662A1 (en) 2008-01-08 2010-12-24 Dehumidifying device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-000908 2008-01-08
JP2008000908A JP5358951B2 (en) 2008-01-08 2008-01-08 Dehumidifier
JP2008034147A JP5504566B2 (en) 2008-02-15 2008-02-15 Dehumidifier
JP2008-034147 2008-02-15

Publications (1)

Publication Number Publication Date
WO2009087734A1 true WO2009087734A1 (en) 2009-07-16

Family

ID=40852859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003957 WO2009087734A1 (en) 2008-01-08 2008-12-25 Dehumidifying device

Country Status (3)

Country Link
CN (2) CN102937310B (en)
HK (2) HK1145662A1 (en)
WO (1) WO2009087734A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120977A (en) * 2009-12-09 2011-06-23 Panasonic Corp Dehumidifier

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519125B (en) * 2011-12-30 2014-09-17 宁波奥克斯空调有限公司 Movable dehumidifier and control method thereof
CN103968475B (en) * 2013-01-24 2020-10-02 松下知识产权经营株式会社 Dehumidifying device
JP6074595B2 (en) * 2013-01-29 2017-02-08 パナソニックIpマネジメント株式会社 Dehumidifier
DE112013006529B4 (en) * 2013-01-29 2017-12-14 Mitsubishi Electric Corporation dehumidifiers
JP6286659B2 (en) * 2013-09-26 2018-03-07 パナソニックIpマネジメント株式会社 Dehumidifier
JP6286660B2 (en) * 2013-09-26 2018-03-07 パナソニックIpマネジメント株式会社 Dehumidifier
JP6390003B2 (en) * 2014-11-10 2018-09-19 パナソニックIpマネジメント株式会社 Dehumidifier
CN106556211A (en) * 2015-09-30 2017-04-05 青岛海尔智能技术研发有限公司 A kind of pressure equaliser and the refrigerating equipment with the pressure equaliser
CN106931730A (en) * 2015-12-30 2017-07-07 青岛海尔智能技术研发有限公司 Rotary-type drier and refrigeration plant
CN105671216A (en) * 2016-03-29 2016-06-15 海宁市富升裘革有限公司 Low-temperature dehumidifying and drying system for leather
CN107036113A (en) * 2017-04-13 2017-08-11 保定清科节能技术推广有限公司 A kind of flue gas heat recovery system
CN107726479A (en) * 2017-09-23 2018-02-23 张曦曦 A kind of air dehumidifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009851A (en) * 2003-05-27 2005-01-13 Calsonic Kansei Corp Air conditioning device
JP2006214708A (en) * 2005-01-06 2006-08-17 Matsushita Electric Ind Co Ltd Dehumidifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902853B2 (en) * 1992-04-27 1999-06-07 三洋電機株式会社 Air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009851A (en) * 2003-05-27 2005-01-13 Calsonic Kansei Corp Air conditioning device
JP2006214708A (en) * 2005-01-06 2006-08-17 Matsushita Electric Ind Co Ltd Dehumidifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120977A (en) * 2009-12-09 2011-06-23 Panasonic Corp Dehumidifier

Also Published As

Publication number Publication date
CN102937310B (en) 2014-12-24
HK1145662A1 (en) 2011-04-29
CN101909723A (en) 2010-12-08
CN101909723B (en) 2013-06-12
CN102937310A (en) 2013-02-20
HK1181106A1 (en) 2013-11-01

Similar Documents

Publication Publication Date Title
WO2009087734A1 (en) Dehumidifying device
JP4169747B2 (en) Air conditioner
JP4781384B2 (en) Dehumidifier
JP4781408B2 (en) Dehumidifier
KR100947615B1 (en) Dehumidifying air conditioner
JP6998502B2 (en) Dehumidifier
JP5470865B2 (en) Dehumidifier
JP7308386B2 (en) dehumidifier
KR100437678B1 (en) All in one type usual habit and thermo airconditioner
JP4042688B2 (en) Bathroom air conditioner
JP5504566B2 (en) Dehumidifier
JP4784340B2 (en) Dehumidifier
JP5092447B2 (en) Dehumidifier
JP7170184B2 (en) dehumidifier
KR100469793B1 (en) Method for controlling over-load on heating mode of air-conditioner used both cooler and heater
JP2003214723A (en) Air conditioner
KR101452420B1 (en) Dehumidifying air conditioner
KR102436120B1 (en) Dehumidifier for lowering temperature of output air
KR20090044813A (en) Air conditioner for vehicle and control method of the same
CN1176414C (en) Efficient miniature temp and humidity regulator
JP2020094771A (en) Heat-exchange-type ventilation apparatus with dehumidifying function
KR200239556Y1 (en) All in one type usual habit and thermo airconditioner
KR20140143856A (en) Dehumidifier
KR102246320B1 (en) Air conditioning system
KR20070064077A (en) Air conditioner for dehumidification

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124326.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869996

Country of ref document: EP

Kind code of ref document: A1