WO2009087260A1 - Sistema y método para la detección, localización e identificación de objetos en suelo y subsuelo que se encuentran en un área de interés previamente referenciada - Google Patents

Sistema y método para la detección, localización e identificación de objetos en suelo y subsuelo que se encuentran en un área de interés previamente referenciada Download PDF

Info

Publication number
WO2009087260A1
WO2009087260A1 PCT/ES2009/070001 ES2009070001W WO2009087260A1 WO 2009087260 A1 WO2009087260 A1 WO 2009087260A1 ES 2009070001 W ES2009070001 W ES 2009070001W WO 2009087260 A1 WO2009087260 A1 WO 2009087260A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
objects
locating
detecting
image
Prior art date
Application number
PCT/ES2009/070001
Other languages
English (en)
French (fr)
Inventor
Mario Manuel DURÁN TORO
Marcelo Walter Guarini Herrmann
Original Assignee
Pontificia Universidad Católica De Chile
Muga Urquiza, Ignacio Patricio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile, Muga Urquiza, Ignacio Patricio filed Critical Pontificia Universidad Católica De Chile
Priority to EP09700523.5A priority Critical patent/EP2244101A4/en
Priority to US12/735,344 priority patent/US8508402B2/en
Publication of WO2009087260A1 publication Critical patent/WO2009087260A1/es
Priority to IL206750A priority patent/IL206750A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/15Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat
    • G01V3/17Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for use during transport, e.g. by a person, vehicle or boat operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry

Definitions

  • the invention object of the present patent application is related to an integrated system of detection, location and identification of antipersonnel and anti-tank mines for application to humanitarian demining, by means of a non-invasive geophysical electromagnetic technique based on GPR.
  • the detection of hidden or even buried explosive materials is carried out by very different methods: via emitted vapors, by means of driven neutrons and consequent detection of the gamma rays emitted in the interaction of those, by X-rays, by laser rays that produce the ignition of the explosive without detonating, by electrical conductivity and other interactive ones in which the explosive, for example, a mine, has a signaling system, activatable by means of a signal that emits a complementary tool, for cleaning mined fields. It is also possible to locate by direct contact, using a long and thin handle.
  • This technique consists in sending a radar signal and the return signal generated from the reflections of the waves that occur in the discontinuities of the dielectric constants of the penetrated materials, such as soil and mine, or soil is analyzed. and rock The resolution of the image is better if the wavelength of the signal is shorter, however, the smaller the wavelength is the lower the penetration into the ground.
  • GPR Ground Penetrating Radar
  • EMI Electromagnetic Induction
  • the great advantage of the GPR is that it detects changes in the dielectrics Io which makes it possible to detect a wide variety of mine housings.
  • An interesting advantage of the GPR is that it can obtain horizontal sections of the subsoil at different depths, which constitutes a 3D image of the subsoil.
  • the main disadvantages, however, are: non-homogeneous subsoils can cause a large number of false alarms; also performance It is very sensitive to complex interactions such as metal content, radar frequency, soil mixtures and softness of the earth's surface (moisture, etc.).
  • the GPR has established itself as one of the best techniques for subsoil research.
  • the detection of mines using GPR is complex due mainly to the material present in the area, such as rocks, stones, metals, garbage, etc., which dominates the data obtained and hides the information from the mines.
  • This material varies with the irregularity of the surface and with the soil conditions, which implies having uncertainty in the measurements. For this reason it is necessary to have a good processing of the signals obtained from the GPR to stay only with the signal from the mines.
  • the Electrical Impedance Tomography uses electrical currents to generate an image of the distribution of the conductivity of the medium.
  • These systems employ a two-dimensional array of electrodes located on the surface, which collect signals from the distribution of conductivity that can provide information on the presence of mines.
  • it is sensitive to the detection of metals and nonmetals, since both can create anomalies in conductivity; It also has good performance in wet terrain; and the equipment is relatively simple and economical.
  • the main disadvantage is that the sensors must be in contact with the surface, which can trigger the mine.
  • Another disadvantage is that it does not work properly in very dry terrain, such as deserts or rocky surfaces, since the conductivity is very weak. Additionally, it only serves to detect objects that are very close to the surface.
  • X-rays in general, are used to obtain images of an object by means of the attenuation suffered by the photons that cross it.
  • XBS X-rays
  • the principle of Compton dispersion of the X-rays is used, that is, the photons that the object radiates when it receives X-rays are captured. In this way it is possible to design a system that has an emitter and receiver on the surface.
  • the Infrared and Hyperspectral methods detect anomalous variations in the electromagnetic radiation reflected or emitted by the surfaces of the mines or the ground located immediately above the mine. The idea is that the areas where the mines are located reflect these energies in a different way from the surrounding areas.
  • This group also includes the thermal sensors that exploit the phenomenon of the difference between the variations in the temperatures of the soil and the mines due to the speeds of night cooling and daytime heating.
  • Thermal methods have high performance only in homogeneous soils. Laser lighting, or high power microwave radiation can be used to induce these differences.
  • these methods do not require physical contact with the surface are safer; the equipment used is light and the acquisition of Ia Image is fast.
  • the main disadvantage, however, is that the performance is very variable and depends very much on the characteristics of the environment. Some authors point out that these sensors need more maturity.
  • the Acoustic and Seismic systems emit sound waves with speakers in order to make the soil surface vibrate.
  • the sensors used capture the reflected waves from the ground and from the mines. The difference in both amplitude and frequency of these waves makes the detection of the mines possible.
  • this technique is very suitable for the detection of anti-tank mines. These technologies, by capturing mechanical differences between the ground and the mines, can complement the information obtained by electromagnetic sensors, in order to obtain a better performance. They have a low rate of false alarms, however bottles or cans can fool the detector. The main disadvantage is that they are not able to detect mines that are buried very deeply. Additionally, the inspection speed is excessively slow: 2 to 15 min / m 2 . There are also investigations of the use of ultrasound to characterize underground materials, however, there is still more research in this area to objectively determine the operating ranges of this technique.
  • the technique of steam detectors is that a small percentage of the explosive manages to escape in the form of steam through the fissures and structures of the mine housing.
  • the idea of explosive vapor detectors is to determine if there are vapors belonging to the explosives in the area. There are two major currents in this area: biological detectors and chemicals.
  • Explosive detection techniques seek to detect the explosive directly, and not the metal casing or the shape of the mine. Inside them is those based on the principle of nuclear resonance quadrupole (NQR: Nuclear Quadripole Resonance), and other methods that employ the interaction of neutrons with the components of explosives. These methods become very important in the detection of explosives in passenger luggage.
  • NQR Nuclear Quadripole Resonance
  • This system uses a stepped frequency, the trajectories of the aerial platform being in a straight line. This type of frequency allows to have a greater sharpness and the trajectory of the aircraft allows to optimize the illuminated area.
  • this system includes a positioning means (it uses GPS data), in communication with the radar antenna for the location of said radar antenna relative to the area of interest under the surface.
  • the objective of the present invention is to provide an integrated system of detection, location and identification of antipersonnel and anti-tank mines for application to humanitarian demining (Humanitarian Demining), by means of a non-invasive geophysical electromagnetic technique based on GPR.
  • This system provides consistent solutions to mitigate the effects of antipersonnel and anti-tank mines and increase the certainty in the certification of raised fields.
  • the system of detection, location and identification of antipersonnel and anti-tank mines in their application to humanitarian demining considers the integration of a Mathematical Modeling and Computational Simulation Subsystem, which considers the calculation of the own and resonance frequencies of the mines antipersonal in non-bounded non-homogeneous means, with the purpose of determining the optimum frequencies in which a synthetic aperture radar (SAR-Synthetic Aperture Radar) should operate in mine detection; a Radar Design and Construction Subsystem, which considers the design, integration, assembly and operation of a synthetic aperture radar, based on the frequencies selected in the modeling and simulation subsystem, implemented in an aerial platform of the helicopter type and an adjustment for its field employment; a Reconstruction and Image Processing Subsystem, which considers the identification and classification of the signals delivered by the radar and their conversion to output data through the implementation of efficient algorithms and integrated software that allow the subsequent georentification of the mines; and a Georeferencing and Risk Map Subsystem, which considers Ia orientation of the
  • a system for detecting, locating and identifying objects on the ground and subsoil which includes a previously referenced area of interest, an aerial vehicle that circumscribes said area of interest, which incorporates a radar comprising an antenna with its respective transmitter and receiver, signal processing means, data storage means and graphic interface means, where said radar is a ground penetration radar, GPR (Ground Penetration Radar), of the heterodyne type, where the signal transmitted by Ia
  • GPR Ground Penetration Radar
  • the antenna generates a beam of illumination of a strip of terrain and consists of a sinusoidal electromagnetic signal whose frequency is varied in predetermined and precise stepped steps. This signal is mixed with the received (reflected) signal, obtaining two sets of values corresponding to the phases of each step or frequency step. These sets of values obtained along successive sweeps (as the antenna moves), are stored in the storage media and subsequently processed in the processing means to obtain a final image or map of the location of the these objects on the ground and underground.
  • a method for the detection, location and identification of objects on the ground and subsoil comprising an area of interest, an aerial vehicle that circumscribes said area of interest which includes a radar that includes an antenna with its respective transmitter and receiver , signal processing means, data storage media and graphic interface media, comprising:
  • processing said image using a detection algorithm which precisely determines the location of each object in the scanning region, obtaining a map of the location of the objects on the ground and subsoil;
  • FIG. 1 shows a general scheme of the present invention.
  • Figure 2 shows a plan diagram of the present invention.
  • Figure 3 shows a scheme of the georeferencing of base points.
  • Figure 4 shows an area covered by the light beam transmitted by the radar of the present invention.
  • Figure 5 shows the direction of travel of the antennas and the surface swept by the radar of the present invention.
  • Figure 6 shows a graph of one of the phase components that the radar delivers to three objects located in the area covered by the light beam.
  • Figure 7 shows a graph of the other phase component that delivers the radar for three objects located in the area covered by the light beam.
  • Figure 8 shows a graph with the Fourier transform of the graphs of Figure 6 and 7.
  • Figure 9 shows a sequence of range measurements that allows determining the position of the objects on the ground.
  • Figure 10 shows a scheme of the stakeout system of the location of the object detected by the radar.
  • FIG 11 shows a flow chart of the mine detection method of the present invention
  • the system (1) for detecting, locating and identifying anti-personnel and anti-tank mines (2) in their application to humanitarian demining mainly comprises an aerial vehicle (3), preferably a helicopter type, which incorporates a radar (4), preferably a stepped frequency radar, with its respective antenna and graphic interface.
  • a radar (4) preferably a stepped frequency radar, with its respective antenna and graphic interface.
  • the frequency scan is not continuous but stepped, synthesizing a technique of Compression of large bandwidth pulses through the use of sequential transmissions of discrete frequencies over an established band.
  • the radar operating frequency range must be between 750 MHz and 3,000 MHz. These frequencies allow the ground to penetrate, about 1 meter deep (200) , and are high enough to achieve adequate detection of small objects.
  • the number of frequency steps established to obtain the necessary resolution is at least 128.
  • the upper limit must not exceed 512 steps in order not to increase the radar sweep time too much and, consequently, extend the acquisition time of the signals to form the image.
  • the frequency steps have an appropriate value. Therefore, in order to obtain a resolution of 5 cm and 256 frequency steps, it is required that each frequency increase be 1, 72 MHz. Note that if the number of steps is reduced by half, that is to 128, it is required that each step be doubled in frequency to obtain the same resolution, that is, at 23.44 MHz.
  • the radar power (4) does not require it to be high. In fact, an excess of power can be counterproductive since multiple bounces can affect the reading of the signal by the receiver. It has been established that powers between 10 W and 250 mW are sufficient for the required work.
  • a reference frame (5) Before starting the task of illuminating the mined area with the frequency signal, a reference frame (5) must be developed that subsequently allows the image to be georeferenced and determine the coordinates of the mines (2) detected.
  • a reference point (8) is established, which corresponds to a geodetic reference point linked to the official Geodetic Network (9) of the country, for example the SIRGAS-CHILE National Geodetic Network, which is it will be the point from which the coordinates to be derived will be derived and at which a GPS Base device will be positioned for the measurements of the points in the area of the minefield (201).
  • the official Geodetic Network 9 of the country, for example the SIRGAS-CHILE National Geodetic Network, which is it will be the point from which the coordinates to be derived will be derived and at which a GPS Base device will be positioned for the measurements of the points in the area of the minefield (201).
  • This reference point (8) must be a landmark type point, consisting of a vertical metal rod supported by a concrete base or similar, no more than 2 km from the minefield (201), ideally closest to it, and which will serve as the basis of geodetic measurements in DGPS (GPS differential mode). In addition, it must be georeferenced with static differential measurement linked to a point of said Geodetic Network. If this point of the Geodetic Network is not more than 50 km from the area where the reference framework corresponding to the mined area is being developed, then the reference point (8) must be created with 4 hours of measurement in differential method in DGPS system.
  • the differential method measurement must be increased to 6 hours with an interval of 1 second.
  • These measurements are made using the static measurement method with a differential GPS for 4 or 6 hours, as appropriate, which allows each vertex of the work area to have coordinates with an accuracy of about ⁇ 2 cm.
  • a baseline (10) (point of the Network-Reference Point) is processed and with this the precise coordinates of the reference point (8) are obtained.
  • the next step corresponds to creating the rectangular reference frame (5) composed of points adjacent to and immediate to the area of the minefield (201), called base points (1 1), and are marked with metal discs, for example aluminum, about 10 cm in diameter attached to a stake about 50 cm high.
  • base points (11) The location of these base points (11) is in the four vertices of the rectangular reference frame (5) and in the centers of the major sides of it. Depending on the magnitude of the rectangular reference frame (5), more intermediate base points may be considered.
  • orientation points (12) are also installed in each of the vertices of the rectangular reference frame (5) and further outwards of these vertices with respect to the base points (1 1), so that they are located diagonally to the base points (11), as shown in Figure 2, and distant from them at a distance of about one meter, with the purpose of have a better orientation of the frame of reference (5).
  • These orientation points (12) are not georeferenced, they are only orientation and must be under the radar scanning zone.
  • the mining field area (201) is illuminated using, for this purpose, the radar (4) implemented in the aerial vehicle (3).
  • the ground penetration radar (4), GPR (Ground Penetration Radar) consists of an electromagnetic wave generator system in discrete steps, equally spaced in frequency, in the band 750 to 3,000 MHz.
  • the system additionally consists of an antenna ( 25) constituted by a transmitting antenna to illuminate the terrain to be scanned and a receiving antenna to receive the signal reflected by the ground surface and by the objects in the subsoil.
  • the illumination of the ground cover area (16), consists of scanning with the transmitting antenna (25), at a height (277) of between 5 and 30 meters, which allows covering a suitable portion of land.
  • Both the radar (4) and the antennas are mounted on a helicopter to be able to evolve safely over the mined terrain.
  • the transmitting and receiving antennas, mounted outside the air vehicle (3), must point at an angle (26) between 35 ° and 55 ° with respect to the vertical.
  • the radar antenna (25) (4) sweeps in discrete frequency steps (minimum 64, maximum 512 steps). Each frequency sweep allows to obtain key information to determine the distance to each of the detectable objects, which are in the area covered by terrain (16) by the light beam. This frequency scan must be fast (a fraction of a second), so that when moving the antennas it is possible to obtain a set of distance measurements for the different objects. The geometric place of the distances will allow to determine with precision the location of each one of the objects that compose the scene.
  • the antenna (25), both transmitter and receiver of the radar (4), mounted outside the air vehicle (3), must move at constant speed ( 27) and constant height (277), along a line perpendicular to the vertical and the axis of the lighting beam. With this you have a sweep of a strip on the ground (16).
  • the data obtained in the scan (28) carried out by the radar (4), on the area of the minefield (201), is extracted and entered into the equipment destined for the processing and obtaining of the image.
  • the first step consists in the generation of range sequences.
  • the data obtained from the receiving antenna of the GPR radar and preprocessed by the GPR receiver are processed in a computer using the inverse Fourier transform. This allows obtaining a sequence of distance measurements (range measurements) to the different objects that are in the subsoil.
  • the mixture of the signal emitted by the radar with the received one generates two sets of values corresponding to the phases for each frequency step.
  • Figure 6 shows the first set of 128 values obtained from a simulated version of the radar signal (4) for three objects that are located in the ground cover area (16) by the lighting beam at distances of 5, 12 and 18 m.
  • Figure 7 shows the second set of values obtained from the same simulation, for the same three objects that are located in the area of land cover (16) by the lighting beam at distances of 5, 12 and 18 m.
  • the second step corresponds to the combination of the range measures.
  • the set of range measures is combined to obtain an "image" of the object.
  • This operation consists in sequentially aligning each of the range measures in the same sequence in which they were obtained in the scanning process in the aerial vehicle (3), as shown in Figure 9.
  • This figure corresponds to the image of a group of 5 objects distributed in an area of 48 x 48 meters, obtained from a computer simulated scan.
  • the combined set of range measurements is processed using a detection algorithm, which allows the location of each object in the scanning region to be precisely determined, as shown in Figure 9, where the asterisks represent the location of each object.
  • the image is calibrated, that is, the distances and heights are expressed in meters.
  • the processed and calibrated image contains the representation of the objects captured by the radar, which require the application of georeferencing procedures, to obtain the coordinates of the objects contained therein, which It consists of a geometric coding, which includes moving from the processed and calibrated image to the scope on the ground and the corrections of the angle of incidence of the image, based on the measurements of the points created in the reference frame.
  • This allows a correspondence between the position of the points in the final image and their location in a given cartographic projection, in summary: introducing spatial coordinate data in the original image, and thus representing all the objects contained in the image.
  • the code is determined and assigned to each point measured in the creation of the reference frame.
  • the scope conversion is used, a procedure that consists of positioning the values of the image and placing it on the ground to project it based on a coordinate system. It is necessary to know the geometry of the creation of the image, altitude of the aerial vehicle (3), delay time between the signal of the region closest to the radar with respect to that of the farthest, and the elevation of the terrain. Resampling, which corresponds to a rearrangement of the pixels, is used to create uniform spacing between them (in the domain of scope on the ground) over the entire width of the image.
  • the conversion of the scope on the ground can be done, either during the signal processing or during the image processing. Generally it is applied after the metric radius correction.
  • the approach and algorithms used depend on the objectives of the analysis.
  • the polynomial transformation employs the best fit.
  • the transformations of major orders require a greater number of ground control points (GPS) to produce the transformation model.
  • GPS ground control points
  • a high order does not ensure better accuracy.
  • a major order transformation brings the points of the image closer to the GPS, but it can increase the errors of the points away from the GPS. That said, the GPS points are located in a geo-referenced plane.
  • the next step, within the georeferencing, is to build a densification of points based on the points obtained in the field, this in order to generate a digital terrain model, with which the image can be rectified orthogonally and correct all deformations and vertical exaggerations that the image possesses.
  • the next stage within the georeferencing, is the correlation between the pixels of the image and the imposition of the coordinates of the points on the ground, controlling the location with the points generated in the densification. Based on the pixel dimension as well as the spatial resolution of the image, the mean square error is determined. Since the image is rectified to the points, the cubic convolution method is used, which takes the weighted average of sixteen pixels surrounding to estimate the digital value for the final corrected image, this process provides a good record and appearance of the product.
  • the Risk Map is being prepared. These are generated in paper format in 60 by 60 cm format. This risk map contains the object location vectors in SHP and DXF format (ESRI SHAPEFILE and DXF exchange for other CAD software). As a preponderant factor in a topographic chart, the flight height is the precision indicator, so the tolerance that will determine the scale for an image obtained with radar data will be the pixel size, this is called the spatial resolution of the image. In the case of the validation, these letters must contain accuracies at the centimeter level, whereby their scale must not exceed 1: 250 (1 mm on the paper is equal to 25 cm on the ground).
  • hybrid maps contain the image relative to the roughness of the terrain with 20% transparency, plus a defined grid at a maximum distance of one meter.
  • AP and AT object anti-personnel and anti-tank
  • the System concludes and obtains its objective when it indicates in the field the location of the object detected by the radar, that is to say a stakeout (see figure 10).
  • the stakeout (23) consists of taking the coordinates obtained from the objects in the image and using a DGPS equipment, signaling them in the field.
  • the RTK Real Time Kinematik
  • the Base and mobile GPS, a radio modem system, and the staking system created previously is used
  • the base GPS (29) is installed at the reference point (8) of the minefield (201).
  • the mobile GPS device book displays on its screen: a graphic display of the points entered; sample of flat coordinates; direction and distance display; distance in meters; and address in sexagesimal degrees, in addition to the position of the mobile GPS device itself (30).
  • the antenna (31) of the mobile GPS (30) is installed in the system created for stakeout (23).
  • This system created for stakeout (23) is composed of a tripod where a metal structure will be installed that contains a 4 m long polycarbonate cane that moves radially and retractable.
  • the antenna (31) of the mobile GPS (30) with a vertical elbow is arranged, so that the measurement of visible coordinates on the screen of the notebook will be effectively where the identified mine is located.
  • a paint mark (32) is used, which is released from the end of the polycarbonate stick, under the antenna (31) of the mobile GPS (30), being operated from a device located on the tripod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Sistema y método para la detección, localización e identificación de objetos en suelo y subsuelo que comprende un área de interés, un vehículo aéreo que circunscribe dicha área de interés, el cual lleva incorporado un radar que comprende una antena con su respectivo transmisor y receptor, medios deprocesamiento de señales, medios de almacenamiento de datos y medios de interfaz gráfica, donde dicha área de interés está previamente referenciada y dicho radar es un radar de penetración de suelo, GPR (Ground Penetration Radar), del tipo heterodino, donde la señal transmitida por la antena genera una haz de iluminación de una franja de terreno y consiste en una señal electromagnética sinusoidal cuya frecuencia se varía en pasos escalonados predeterminados y precisos. Esta señal se mezcla con la señal recibida (reflejada), obteniéndose dos conjuntos de valores correspondientes a las fases de cada paso o escalón de frecuencia. Estos conjuntos de valores obtenidos a lo largo de barridos sucesivos (a medida que se desplazan la antena), se almacenan en los medios de almacenamiento y posteriormente son procesados en los medios de procesamiento para la obtención de una imagen o mapa final de la ubicación de dichos objetos en suelo y subsuelo.

Description

SISTEMA Y MÉTODO PARA LA DETECCIÓN, LOCALIZACIÓN E IDENTIFICACIÓN
DE OBJETOS EN SUELO Y SUBSUELO QUE SE ENCUENTRAN EN UN ÁREA DE
INTERÉS PREVIAMENTE REFERENCIADA
CAMPO DE APLICACIÓN DE LA INVENCIÓN
La invención objeto de Ia presente solicitud de patente está referida a un sistema integrado de detección, localización e identificación de minas antipersonales y antitanques para su aplicación al desminado humanitario, mediante una técnica geofísica electromagnética no invasiva basado en GPR.
DESCRIPCIÓN DEL ARTE PREVIO
La detección de minas antipersonales convencional se ha llevado a cabo principalmente con métodos que no difieren mucho de los utilizados durante Ia Segunda Guerra Mundial, es decir, un operador humano emplea un detector de metales y hace un barrido minucioso y lento en Ia zona afectada. La alta tasa de falsas alarmas conlleva a una detección lenta, muy peligrosa y cara. Ajustando los detectores para que disminuya Ia tasa de falsas alarmas implica que ciertas minas no sean detectadas.
En el ámbito nacional e internacional, Ia situación es crítica pues no existen metodologías modernas, ni datos confiables que permitan efectuar una buena toma de decisiones con respecto al proceso de desminado. Es evidente entonces que, en ausencia de estos avances, se continuarán haciendo inversiones inciertas, que no generarán conocimiento, que no involucrarán a los actores del país que deben y pueden generar valor en este ámbito, que no consideran variables fundamentales Io cual conlleva, y aumenta, el riesgo de manera innecesaria.
La detección de materiales explosivos ocultos o incluso, enterrados se realiza por muy diversos métodos: vía vapores emitidos, mediante neutrones impulsados y consiguiente detección de los rayos gamma emitidos en Ia interactuación de aquellos, por rayos X, por rayos láser que producen Ia ignición del explosivo sin que detone, por conductividad eléctrica y otros interactivos en los que el explosivo, por ejemplo, una mina, dispone de un sistema de señalización, activable mediante una señal que emite una herramienta complementaria, de limpieza de campos minados. También es posible Ia localización por contacto directo, mediante un mango largo y delgado.
Otra técnica para erradicar las minas antipersonales hospedadas en Ia capa más superficial de Ia Tierra, es con Ia ayuda de herramientas basadas en ondas electromagnéticas (radares aerotransportados). Esta técnica consiste en enviar una señal de radar y se analiza Ia señal de retorno generada a partir de las reflexiones de las ondas que se producen en las discontinuidades de las constantes de dieléctrico de los materiales penetrados, tales como suelo y mina, o bien suelo y roca. La resolución de Ia imagen es mejor si Ia longitud de onda de Ia señal es menor, sin embargo a menor longitud de onda menor es Ia penetración en el suelo.
Sin embargo, se han obtenido muy buenos resultados combinando GPR (Ground Penetrating Radar) con EMI (Inducción Electromagnética). La gran ventaja del GPR es que detecta cambios en los dieléctricos Io que hace que pueda detectar una gran variedad de carcasas de minas. Una ventaja interesante del GPR es que puede obtener secciones horizontales del subsuelo a diferentes profundidades, Io cual constituye una imagen 3D del subsuelo. Las principales desventajas sin embargo son: subsuelos no homogéneos pueden causar una gran cantidad de falsas alarmas; además el desempeño es muy sensible a complejas interacciones tales como contenido de metal, frecuencia del radar, mezclas de los suelos y suavidad de Ia tierra de Ia superficie (humedad, etc.).
El GPR se ha establecido como una de las mejores técnicas para Ia investigación de los subsuelos. Sin embargo, Ia detección de minas usando GPR es compleja debido principalmente al material presente en Ia zona, como rocas, piedras, metales, basura, etc., el que domina los datos obtenidos y esconde Ia información de las minas. Este material varía con Ia irregularidad de Ia superficie y con las condiciones del suelo, Io que implica contar con incertidumbre en las mediciones. Por esta razón es necesario tener un buen procesamiento de las señales obtenidas del GPR para quedarse sólo con Ia señal de las minas.
La Tomografía de Impedancia Eléctrica (EIT) utiliza corrientes eléctricas para generar una imagen de Ia distribución de Ia conductividad del medio. Estos sistemas emplean un arreglo bidimensional de electrodos ubicados sobre Ia superficie, los que recogen señales de Ia distribución de Ia conductividad que pueden proveer información sobre Ia presencia de minas. Dentro de sus ventajas se puede mencionar que es sensible a Ia detección de metales y no metales, ya que ambos pueden crear anomalías en Ia conductividad; además tiene buen desempeño en terrenos húmedos; y los equipos son relativamente simples y económicos. La principal desventaja sin embargo, es que los sensores deben estar en contacto con Ia superficie, Io que puede hacer detonar Ia mina. Otra desventaja es que no funciona adecuadamente en terrenos muy secos, como los desiertos o superficies rocosas, ya que Ia conductividad es muy débil. Adicionalmente, sólo sirve para Ia detección de objetos que estén muy cercanos a Ia superficie.
Los Rayos X (XBS), por Io general, se usan para obtener imágenes de un objeto por medio de Ia atenuación que sufren los fotones que Io atraviesan. Como es imposible captar los fotones que atraviesan el suelo, ya que es inviable colocar un detector de rayos X debajo de las minas, en estos sistemas se usa el principio de Ia dispersión de Compton de los rayos X, es decir se captan los fotones que el objeto irradia cuando éste recibe rayos X. De esta manera es posible diseñar un sistema que tenga emisor y receptor sobre Ia superficie. El uso de esta tecnología tiene tres grandes ventajas: a) Ia información obtenida es suficiente para detectar todas las minas colocadas regularmente; b) se pueden detectar minas no-metálicas; c) se pueden detectar las minas colocadas bajo una gran variedad de condiciones de suelos (incluyendo varios tipos de vegetación). Una de las principales características que señalan los autores es Ia obtención de una imagen que puede ser analizada fácilmente por un operador humano. Sin embargo, debido al bajo rango de energía que necesita el sensor, el uso de esta tecnología está limitado a Ia detección de minas superficiales (menos de 10 cm de Ia superficie), ya que minas que estén colocadas a mayor profundidad no obtendrán un nivel adecuado de señal a ruido. Adicionalmente, como se trata de un equipo que trabaja con rayos X, es necesario contar con todas las medidas que aseguren Ia no exposición de los operadores a Ia irradiación.
Los métodos Infrarrojos e Hiperespectrales detectan variaciones anómalas en Ia radiación electromagnética reflejada o emitida por las superficies de las minas o el suelo ubicado inmediatamente sobre Ia mina. La idea es que las áreas donde se encuentran las minas reflejan estas energías de una manera distinta a las áreas de los alrededores. En este grupo también entran los sensores térmicos que explotan el fenómeno de Ia diferencia entre las variaciones de las temperaturas del suelo y de las minas a raíz de las velocidades de enfriamientos nocturnos y calentamientos diurnos. Los métodos térmicos tienen un alto desempeño sólo en suelos homogéneos. Iluminación láser, o radiación de microondas de alta potencia puede ser utilizada para inducir estas diferencias. Dentro de las ventajas se puede señalar que estos métodos al no necesitar contacto físico con Ia superficie son más seguros; los equipos utilizados son livianos y Ia adquisición de Ia imagen es rápida. Como principal desventaja sin embargo es que el desempeño es muy variable y depende muchísimo de las características del medio. Algunos autores señalan que estos sensores necesitan mayor madurez.
Los sistemas Acústicos y Sísmicos emiten ondas de sonido con parlantes con el fin de hacer vibrar Ia superficie del suelo. Los sensores empleados captan las ondas reflejadas del suelo y de las minas. La diferencia tanto en amplitud como en frecuencia de estas ondas hace Ia detección de las minas posible. Existen sensores especiales que no necesitan estar en contacto con Ia superficie. Experimentos señalan que esta técnica es muy adecuada para Ia detección de minas antitanques. Estas tecnologías, al captar diferencias mecánicas entre el suelo y las minas, pueden complementar Ia información que obtienen los sensores electromagnéticos, con el fin de obtener un mejor desempeño. Presentan una baja tasa de falsas alarmas, sin embargo botellas o latas pueden engañar al detector. La principal desventaja es que no son capaces de detectar minas que estén enterradas muy profundamente. Adicionalmente, Ia velocidad de inspección es excesivamente lenta: 2 a 15 min/m2. También existen investigaciones del uso de ultrasonido para Ia caracterizar materiales bajo tierra, sin embargo aún falta investigar más en esta área para determinar objetivamente cuáles son los rangos de operación de esta técnica.
La técnica de los detectores de vapor se vale en que un porcentaje pequeño del explosivo logra salir en forma de vapor por las fisuras y estructuras de Ia carcasa de Ia mina. La idea de los detectores de vapor de explosivos, es determinar si hay vapores pertenecientes a los explosivos en Ia zona. Existen dos grandes corrientes en esta área: los detectores biológicos y los químicos.
Las técnicas de detección de explosivos buscan detectar directamente el explosivo, y no Ia carcasa metálica o Ia forma de Ia mina. Dentro de ellos se encuentra los basados en el principio de cuadripolo de resonancia nuclear (NQR: Nuclear Quadripole Resonance), y otros métodos que emplean Ia interacción de los neutrones con los componentes de los explosivos. Cobran gran importancia estos métodos en Ia detección de explosivos en equipajes de pasajeros.
Estos métodos sin embargo pueden, en el mejor de los casos, medir los números relativos de átomos específicos, pero no pueden determinar Ia estructura molecular presente. Esto hace que el agua por ejemplo produzca un gran número de falsa alarmas, debido a su alto contenido en hidrógeno. Construyendo imágenes a partir de esta información es posible hacer un análisis de Ia señal en su conjunto, lográndose discriminar así las falsas alarmas de las minas. Estas técnicas pueden ser usadas como complementarias para confirmar otras detecciones.
Se observa que existen diversas tecnologías para Ia detección de minas, sin embargo, cada una de ellas tiene buenos desempeños sólo en un tipo de minas. Al tomar Ia decisión de Ia tecnología a utilizar es necesario también hacer un estudio del medio en el que están las minas (vegetación, homogeneidad y tipo de suelos), así como también hacer un estudio del tipo de minas colocadas y el tipo de explosivos utilizados, en algunos casos esta información se puede obtener con una inspección inicial cuidadosa o bien a partir de informes militares que ya sean públicos debido al término del conflicto que llevó a minar los campos.
El documento de Ia patente US 5,673,050, de Moussally George; Ziernicki Robert; Fialer Philip A; Heinzman Fred Judson, titulado "Three-dimensional underground imaging radar system", describe un sistema que comprende una antena de radar que incluye un transmisor y receptor en una plataforma del radar para transmitir una onda continua de frecuencia modulada interrumpida (FMCW) dirigida al área de interés bajo Ia superficie y recibir una onda reflejada (onda de eco) desde el área de interés bajo Ia superficie. Dicha FMCW se transmite cuando una aeronave circunscribe el área de interés bajo Ia superficie, y Ia mencionada onda reflejada (onda de eco) está siendo recibida por Ia antena de radar cuando dicha aeronave circunscribe el área de interés bajo Ia superficie. Este sistema emplea una frecuencia escalonada, siendo las trayectorias de Ia plataforma aérea en línea recta. Este tipo de frecuencia permite tener una mayor nitidez y Ia trayectoria de Ia aeronave permite optimizar el área iluminada. Además, este sistema incluye un medio de posicionamiento (utiliza data de GPS), en comunicación con Ia antena de radar para localización de Ia mencionada antena de radar relativa al área de interés bajo Ia superficie.
El documento de Ia patente US 5,502,444, de Kohlberg Ira, titulado "Method and apparatus for improving the signal-to-clutter ratio of an airborne earth penetrating radar", describe un método para detector objetos bajo superficie, que utiliza un avión con un radar de pulsos para efectuar Ia detección, desde distancias mayores a 50 metros, mientras que utiliza un radar de trasmisión continua para Ia detección a distancias menores de 50 metros.
La solicitud de patente US 2006087471 , de Hintz Kenneth J., titulada "Syntactic landmine detector", describe un método de identificación de minas terrestres a través de un sistema de indicadores, llamada parámetros sintácticos. Solo entrega Ia información de Ia existencia de minas en terreno.
Sin embargo ninguno de estos documentos utiliza una metodología basada en marcas de terreno para su georreferenciación, que permite obtener mejores precisiones y seguridad en Ia determinación de las coordenadas de los objetos detectados en Ia imagen, que da como resultado final un mapa de riesgo, ya sea en papel o digital. Emplea frecuencia escalonada en su transmisión que permite obtener una alta resolución. Además, Ia presente invención, permite el replanteo en terreno de las coordenadas del objeto detectado por el radar.
Entonces, el objetivo de Ia presente invención es proveer un sistema integrado de detección, localización e identificación de minas antipersonales y antitanques para su aplicación al desminado humanitario (Humanitarian Demining), mediante una técnica geofísica electromagnética no invasiva basado en GPR. Este sistema entrega soluciones consistentes para mitigar los efectos de las minas antipersonales y antitanques y aumentar Ia certidumbre en Ia certificación de los campos levantados.
RESUMEN DE LA INVENCIÓN
El sistema de detección, localización e identificación de minas antipersonales y antitanques en su aplicación al desminado humanitario (Humanitarian Demining), considera Ia integración de un Subsistema Modelación Matemática y Simulación Computacional, que considera el cálculo de las frecuencias propias y de resonancias de las minas antipersonales en medios no acotados no homogéneos, con Ia finalidad de determinar las óptimas frecuencias en las cuales debe operar un radar de apertura sintética (SAR-Synthetic Aperture Radar) en Ia detección de minas; un Subsistema Diseño y Construcción del Radar, que considera el diseño, integración, montaje y operación de un radar de apertura sintética, basado en Ia frecuencias seleccionadas en el subsistema modelación y simulación, implementado en una plataforma aérea del tipo helicóptero y un ajuste para su empleo en terreno; un Subsistema Reconstrucción y Procesamiento de Imágenes, que considera Ia identificación y clasificación de las señales entregadas por el radar y su conversión a datos de salida a través de Ia implementación de algoritmos eficientes y software integrados que permitan Ia posterior georefenciación de las minas; y un Subsistema Georeferenciación y Mapa de Riesgo, que considera Ia orientación de los datos entregados por el subsistema reconstrucción y procesamiento de imágenes y Ia ubicación general y particular de cada mina sembrada en terreno, a través del uso de tecnología DGPS (Differential Geographic Position Systems) y software especializado de ajuste y visualización.
Por Io anterior se provee un sistema de detección, localización e identificación de objetos en suelo y subsuelo que comprende un área de interés previamente referenciada, un vehículo aéreo que circunscribe dicha área de interés, el cual lleva incorporado un radar que comprende una antena con su respectivo transmisor y receptor, medios de procesamiento de señales, medios de almacenamiento de datos y medios de interfaz gráfica, donde dicho radar es un radar de penetración de suelo, GPR (Ground Penetration Radar), del tipo heterodino, donde Ia señal transmitida por Ia antena genera una haz de iluminación de una franja de terreno y consiste en una señal electromagnética sinusoidal cuya frecuencia se varía en pasos escalonados predeterminados y precisos. Esta señal se mezcla con Ia señal recibida (reflejada), obteniéndose dos conjuntos de valores correspondientes a las fases de cada paso o escalón de frecuencia. Estos conjuntos de valores obtenidos a Io largo de barridos sucesivos (a medida que se desplazan Ia antena), se almacenan en los medios de almacenamiento y posteriormente son procesados en los medios de procesamiento para Ia obtención de una imagen o mapa final de Ia ubicación de dichos objetos en suelo y subsuelo.
Además se provee un método para Ia detección, localización e identificación de objetos en suelo y subsuelo que comprende un área de interés, un vehículo aéreo que circunscribe dicha área de interés el cual lleva incorporado un radar que comprende una antena con su respectivo transmisor y receptor, medios de procesamiento de señales, medios de almacenamiento de datos y medios de interfaz gráfica, que comprende:
- establecer un marco de referencia rectangular en base a un punto de referencia, puntos bases y puntos de orientación alrededor del área de interés;
transmitir una señal electromagnética sinusoidal cuya frecuencia se varía en pasos escalonados predeterminados y precisos, para iluminar el área de interés y marco de referencia;
mezclar Ia señal reflejada con Ia señal enviada, para obtener conjuntos de valores correspondientes a las fases de cada paso o escalón de frecuencia. Estos conjuntos de valores son obtenidos a Io largo de barridos sucesivos a medida que se desplazan Ia antena;
aplicar Ia transformada inversa de Fourier a los conjuntos de valores para así obtener un conjunto de mediciones de rango para los objetos en terreno iluminados por el haz de iluminación del radar;
alinear en forma secuencial cada una de las mediciones de rango en Ia misma secuencia en que fueron obtenidas de los barridos sucesivos para obtener una imagen;
procesar dicha imagen utilizando un algoritmo de detección, que determina en forma precisa Ia ubicación de cada objeto en Ia región de barrido, obteniéndose un mapa de ubicación de los objetos en Ie suelo y subsuelo;
calibrar dicho mapa para obtener las distancias y alturas expresadas en medidas de longitud (metros, pulgadas, etc.);
georreferenciar Ia imagen calibrada para introducir datos de coordenadas espaciales en Ia imagen, de acuerdo a las siguientes subetapas:
• codificar geométricamente Ia imagen calibrada para determinar y asignar un código a cada punto medido en Ia creación del marco de referencia; • construir una densificación de puntos en base a los puntos obtenidos en terreno, esto con el fin de generar un modelo digital de terreno, con el cual se rectifica ortogonalmente Ia imagen y se corrigen todas las deformaciones y exageraciones verticales que posee Ia imagen;
• correlacionar los píxeles de Ia imagen del punto anterior y Ia imposición de las coordenadas de los puntos en terreno, controlando Ia ubicación con los puntos generados en Ia densificación;
- elaborar un mapa de riesgo que contiene los vectores de ubicación de los objetos; y
- replantear las coordenadas de los objetos en Ia imagen obtenidas en el paso anterior para señalizarlas en terreno.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Los dibujos que se acompañan, los cuales se incluyen para proporcionar una mayor comprensión del invento, quedan incorporados y constituyen parte de esta descripción, ilustran una ejecución del invento, y junto con Ia descripción, sirven para explicar los principios del invento.
La figura 1 muestra un esquema general de Ia presente invención.
La figura 2 muestra un esquema en planta de Ia presente invención.
La figura 3 muestra un esquema de Ia georreferenciación de puntos bases.
La figura 4 muestra un área cubierta de terreno por el haz de iluminación que transmite el radar de Ia presente invención. La figura 5 muestra Ia dirección de desplazamiento de las antenas y Ia superficie barrida por el radar de Ia presente invención.
La figura 6 muestra un gráfico de una de las componentes de fase que entrega el radar para tres objetos ubicados en el área cubierta de terreno por el haz de iluminación.
La figura 7 muestra un gráfico de Ia otra componente de fase que entrega el radar para tres objetos ubicados en el área cubierta de terreno por el haz de iluminación.
La figura 8 muestra un gráfico con Ia transformada de Fourier de los gráficos de Ia figura 6 y 7.
La figura 9 muestra una secuencia de mediciones de rango que permite determinar Ia posición de los objetos en el terreno.
La figura 10 muestra un esquema del sistema de replanteo de Ia ubicación del objeto detectado por el radar.
La figura 11 muestra un diagrama de flujo del método de detección de minas de Ia presente invención
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El sistema (1 ) de detección, localización e identificación de minas (2) antipersonales y antitanques en su aplicación al desminado humanitario, comprende principalmente un vehículo aéreo (3), preferentemente tipo helicóptero, el cual lleva incorporado un radar (4), preferentemente un radar de frecuencia escalonada (stepped frecuency radar), con su respectiva antena e interfaz gráfica. En este tipo de radares, el barrido de frecuencia no es continuo sino que escalonado, sintetizando una técnica de compresión de pulsos de gran ancho de banda mediante el uso de transmisiones secuenciales de frecuencias discretas sobre una banda establecida. Sus ventajas son permitir una alta resolución y Ia transmisión de una onda continua, ambos aspectos altamente relevantes en aplicaciones de poco rango y alta precisión, además, como su arquitectura es del tipo heterodina, es posible establecer anchos de banda muy estrechos y Ia generación de frecuencias resulta fácil de lograr con el uso de sintetizadores de frecuencia, los cuales garantizan Ia precisión requerida para los pasos de frecuencia. Por último, este tipo de radares elimina el problema de Ia proporcionalidad del ancho de banda existente en los radares de barrido continuo de frecuencia. La señal transmitida por Ia antena consiste en una onda electromagnética sinusoidal cuya frecuencia se varía en pasos escalonados predeterminados y precisos. La señal recibida se mezcla con Ia señal enviada, obteniéndose dos conjuntos de valores correspondientes a las fases de cada paso o escalón de frecuencia. La figura 6 muestra en forma graficada un ejemplo para el primer conjunto de valores y Ia figura 7 un ejemplo para el segundo conjunto de valores.
Para obtener una precisión y resolución adecuada para detectar minas antipersonales (2), el rango de frecuencias de operación del radar debe estar entre los 750 MHz y los 3.000 MHz. Estas frecuencias permiten penetrar el suelo, alrededor de 1 metro de profundidad (200), y son suficientemente altas para lograr una detección adecuada de objetos pequeños. El número de pasos de frecuencia establecidos para obtener Ia resolución necesaria es al menos 128. El límite superior no debe exceder los 512 pasos con el objeto de no incrementar demasiado el tiempo de barrido del radar y, consecuentemente, extender el tiempo de adquisición de las señales para formar Ia imagen. Por otra parte, y también para obtener Ia resolución adecuada a Ia tarea de detectar minas antipersonales (2) de pequeño tamaño, es necesario que los pasos de frecuencia tengan un valor apropiado. Por lo anterior y para obtener una resolución de 5 cm y 256 pasos de frecuencia, se requiere que cada incremento de frecuencia sea de 1 1 ,72 MHz. Nótese que si se reduce el número de pasos a Ia mitad, es decir a 128, se requiere que cada paso sea incrementado en el doble en frecuencia para obtener Ia misma resolución, es decir a 23,44 MHz.
Como los objetos a detectar estarán a una distancia cercana, entre 10 a 50 m, Ia potencia del radar (4) no requiere que sea elevada. En efecto, un exceso de potencia puede ser contraproducente ya que múltiples rebotes pueden afectar Ia lectura de Ia señal por parte del receptor. Se ha establecido que potencias entre los 10 W y los 250 mW son suficientes para el trabajo requerido.
Antes de iniciar Ia tarea de iluminar el área minada con Ia señal de frecuencia, se debe elaborar un marco de referencia (5) que permita posteriormente georreferenciar Ia imagen y determinar las coordenadas de las minas (2) detectadas.
Como muestra Ia figura 1 y 2, se establece un punto de referencia (8), que corresponde a un punto de referencia geodésico ligado a Ia Red Geodésica (9) oficial del país, por ejemplo Ia Red Geodésica Nacional SIRGAS-CHILE, que se constituirá en el punto del cual derivaran las coordenadas a obtener y en el cual se posicionará un equipo GPS Base para las mediciones de los puntos en el área del campo minado (201 ).
Este punto de referencia (8) debe ser un punto tipo hito, conformado por una vara vertical metálica sustentada por una base de concreto o similar, a no más de 2 km del campo minado (201 ), idealmente Io más próximo a éste, y que servirá como base de las mediciones geodésicas en DGPS (modo diferencial GPS). Además, debe ser georreferenciado con medición diferencial estática ligado a un punto de dicha Red Geodésica. Si este punto de Ia Red Geodésica se encuentra a no más de 50 Km de Ia zona donde se está elaborando el marco de referencia correspondiente al área minada, entonces el punto de referencia (8) se debe crear con 4 horas de medición en método diferencial en sistema DGPS. Por el contrario, si el punto de Ia Red Geodésica se encuentra a más de 50 Km de Ia zona de trabajo del marco de referencia, entonces Ia medición en método diferencial debe aumentarse a 6 horas con un intervalo de 1 segundo. Estas mediciones se realizan utilizando el método de medición estática con un GPS diferencial por 4 ó 6 horas, según corresponda, Io que permite que cada vértice de Ia zona de trabajo tenga coordenadas con una precisión de alrededor de ± 2 cm.
En general para todas las mediciones estáticas, se deben considerar los parámetros: Datum: WGS-84; Mascara de elevación: 10°; Intervalo de medición: 5"; Número mínimo de satélites: 5; Altura Instrumental: medida en terreno; Sistema: GPS+GLONASS.
Una vez realizadas las mediciones del punto de referencia (8), se procesa una línea base (10) (punto de Ia Red-Punto de Referencia) y con esto se obtienen las coordenadas precisas del punto de referencia (8).
El paso siguiente corresponde a crear el marco de referencia (5) rectangular compuesto por puntos adyacentes e inmediatos a Ia zona del campo minado (201 ), denominados puntos bases (1 1 ), y se señalizan con discos de metal, por ejemplo aluminio, de unos 10 cm de diámetro adosados a una estaca de unos 50 cm de alto.
La ubicación de estos puntos bases (11 ) es en los cuatro vértices del marco de referencia (5) rectangular y en los centros de los lados mayores de éste. Dependiendo de Ia magnitud del marco de referencia (5) rectangular se podrán considerar más puntos bases intermedios.
Por otro lado, también se instalan puntos de orientación (12) en cada uno de los vértices del marco de referencia (5) rectangular y más hacia el exterior de estos vértices con respecto a los puntos bases (1 1 ), de manera tal que se ubiquen diagonales a los puntos bases (11 ), como Io muestra Ia figura 2, y distantes de estos a una distancia de alrededor de un metro, con Ia finalidad de tener una mejor orientación del marco de referencia (5). Estos puntos de orientación (12) no van georreferenciadas, solo son de orientación y deben estar bajo Ia zona de barrido del radar.
Una vez ubicada Ia totalidad de estos puntos bases (11 ), deben ser georreferenciados con equipos GPS por el método RTK (Real Time Kinematik), cuyo equipo GPS base (14), está instalado sobre el punto de referencia (8). Este equipo GPS base (14), debe estar en funcionamiento continuo, evitando cualquier discontinuidad de funcionamiento mientras se realiza Ia medición de los puntos bases (11 ). Con este procedimiento las coordenadas de cada punto base (1 1 ) se obtiene con una precisión de ± 2 cm.
Una vez obtenido el marco de referencia (5), se procede a Ia iluminación de Ia zona de campo minado (201 ) empleando, para tal efecto, el radar (4) implementado en el vehículo aéreo (3).
El radar (4) de penetración de suelo, GPR (Ground Penetration Radar) consiste en un sistema generador de ondas electromagnéticas en pasos discretos, igualmente distanciados en frecuencia, en Ia banda de 750 a 3.000 MHz. El sistema consta adicionalmente de una antena (25) constituida por una antena transmisora para iluminar el terreno a escanear y una antena receptora para recibir Ia señal de reflejada por Ia superficie del terreno y por los objetos en el subsuelo.
A continuación se describen los procedimientos básicos necesarios para obtener una señal con información relevante para generar posteriormente una imagen de los componentes del subsuelo utilizando el sistema GPR. La iluminación del área cubierta de terreno (16), consiste en escanear con Ia antena transmisora (25), a una altura (277) de entre 5 a 30 metros, que permita cubrir una porción adecuada de terreno. Tanto el radar (4) como las antenas van montadas en un helicóptero para poder evolucionar en forma segura sobre el terreno minado. Las antenas transmisora y receptora, montadas en el exterior del vehículo aéreo (3), deben apuntar en un ángulo (26) comprendido entre los 35° y los 55° con respecto a Ia vertical.
Durante Ia iluminación, Ia antena (25) del radar (4) barre en pasos discretos de frecuencia (mínimo 64, máximo 512 pasos). Cada barrido de frecuencia permite obtener información clave para determinar Ia distancia a cada uno de los objetos detectables, que se encuentren en el área cubierta de terreno (16) por el haz de iluminación. Este barrido de frecuencia debe ser rápido (una fracción de segundo), de tal forma que al mover las antenas sea posible obtener un conjunto de mediciones de distancias para los distintos objetos. El lugar geométrico de las distancias permitirá determinar con precisión Ia ubicación de cada uno de los objetos que componen Ia escena.
Para obtener un patrón confiable y posible de procesar para los lugares geométricos de los objetos, Ia antena (25), tanto transmisora como receptora del radar (4), montadas en el exterior del vehículo aéreo (3), deben moverse a velocidad constante (27) y altura constante (277), a Io largo de una línea perpendicular a Ia vertical y al eje del haz de iluminación. Con esto se tiene un barrido de una franja sobre el terreno (16).
A Io largo del barrido (28), toda Ia información recibida por Ia antena receptora y preprocesada por el receptor del radar se almacena en un computador a bordo del vehículo aéreo (3). Esta información, constituye Ia materia prima para generar posteriormente las imágenes de Ia superficie del terreno y del subsuelo. Adicionalmente, es necesario almacenar datos continuos de velocidad y altura del vehículo aéreo (3), obtenidos de un GPS de precisión montado sobre él. Estos deben estar sincronizados con los datos recibidos por Ia antena receptora del radar, de tal forma de permitir Ia calibración de las coordenadas de Ia imagen o mapa final.
La data obtenida en el barrido (28) realizado por el radar (4), sobre Ia zona del campo minado (201 ), es extraída e ingresada en el equipamiento destinado para el procesamiento y obtención de Ia imagen.
El primer paso consiste en Ia generación de secuencias de rango. Los datos obtenidos de Ia antena receptora del radar GPR y preprocesados por el receptor del GPR se procesan en un computador utilizando Ia transformada inversa de Fourier. Esto permite obtener una secuencia de mediciones de distancias (medidas de rango) a los distintos objetos que se encuentran en el subsuelo.
Como se indicó inicialmente, Ia mezcla de Ia señal emitida por el radar con Ia recibida, genera dos conjuntos de valores correspondientes a las fases para cada paso de frecuencia. La figura 6 muestra el primer conjunto de 128 valores obtenido a partir de una versión simulada de Ia señal del radar (4) para tres objetos que están ubicados en el área cubierta de terreno (16) por el haz de iluminación a distancias de 5, 12 y 18 m. La figura 7 muestra el segundo conjunto de valores obtenidos a partir de Ia misma simulación, para los mismos tres objetos que están ubicados en el área de cobertura de terreno (16) por el haz de iluminación a distancias de 5, 12 y 18 m. Con estas dos señales, formada por ambos conjuntos de valores, y a través de un procesamiento matemático basado en Ia transformada inversa de Fourier, es posible obtener un gráfico de distancias para los tres objetos, como Io muestra Ia figura 8. Nótese que en Ia figura 8 las distancias aparecen en las posiciones 27, 65 y 97. Para obtener Ia distancia en metros, es necesario multiplicar estos valores por Ia resolución dada por los pasos de frecuencia utilizados en Ia simulación, que es de 0,1852 m. Cuando Ia antena (25), tanto transmisora como receptora, se mueven en línea recta formando un barrido, como se muestra en Ia figura 5, es posible determinar Ia posición de los objetos que yacen en el terreno efectuando una serie de mediciones de rango a medida que el barrido progresa. El o los objetos ubicados en el terreno y que entran en el área cubierta por el haz (16) de iluminación del radar (4), comienzan a aproximarse a las antenas, hasta alcanzar un valor mínimo, y luego se alejan de ellas, hasta que salen del área cubierta por el haz (16). Las mediciones sucesivas de rango efectuadas, indicarán un desplazamiento de las posiciones de los objetos hacia Ia izquierda cuando estos se acercan a las antenas, y posteriormente un desplazamiento hacia Ia derecha, cuando se alejan.
El segundo paso corresponde a Ia combinación de las medidas de rango. El conjunto de medidas de rango se combina para obtener una "imagen" del objeto. Esta operación consiste en alinear en forma secuencial cada una de las medidas de rango en Ia misma secuencia en que fueron obtenidas en el proceso de barrido en el vehículo aéreo (3), como se muestra en Ia figura 9. Esta figura corresponde a Ia imagen de un grupo de 5 objetos distribuidos en un área de 48 x 48 metros, obtenida a partir de un barrido simulado por computador.
El conjunto combinado de mediciones de rango es procesado utilizando un algoritmo de detección, que permite determinar en forma precisa Ia ubicación de cada objeto en Ia región de barrido, como Io muestra Ia figura 9, donde los asteriscos representan Ia ubicación de cada objeto. Finalmente Ia imagen es calibrada, es decir las distancias y alturas son expresadas en metros.
La imagen procesada y calibrada, contiene Ia representación de los objetos capturados por el radar, que requieren de Ia aplicación de procedimientos de georreferenciación, para obtener las coordenadas de los objetos contenidos en ella, que consta de una codificación geométrica, Ia cual incluye pasar de Ia imagen procesada y calibrada al alcance sobre el terreno y las correcciones del ángulo de incidencia de Ia imagen, en base a las mediciones de los puntos creados en el marco de referencia. Esto permite una correspondencia entre Ia posición de los puntos en Ia imagen final y su ubicación en una proyección cartográfica dada, en resumen: introducir datos de coordenadas espaciales en Ia imagen original, y así representar todos los objetos contenidos en Ia imagen.
Para Ia ubicación de los datos de terreno en un espacio georreferenciado y proyectado, es necesario analizar los datos obtenidos en terreno y proyectarlos sobre Ia tierra. En base al archivo de puntos GPS en formato Excel, generado por el software que posee el equipo se determina y asigna el código a cada punto medido en Ia creación del marco de referencia.
Se emplea Ia conversión del alcance, procedimiento que consiste en posicionar los valores de Ia imagen y situarla sobre el terreno para proyectarla en base a un sistema de coordenadas. Es necesario conocer Ia geometría de Ia creación de Ia imagen, altitud del vehículo aéreo (3), tiempo de retraso entre Ia señal de Ia región más cercana al radar con respecto a Ia de Ia más lejana, y Ia elevación del terreno. El remuestreo, que corresponde a una reacomodación de los pixeles, se utiliza para crear el espaciamiento uniforme entre ellos (en el dominio del alcance sobre el terreno) en todo el ancho de Ia imagen.
La conversión del alcance sobre el terreno puede realizarse, ya sea durante el procesamiento de Ia señal o durante el procesamiento de Ia imagen. Generalmente se aplica después de Ia corrección radio métrica. El enfoque y los algoritmos utilizados dependen de los objetivos del análisis. La transformación polinómica emplea el mejor ajuste. La imagen obtenida del radar sin georeferencia ni rectificación ortogonal, cambia para ajustarse a una proyección cartográfica utilizando diversos órdenes.
Las transformaciones de órdenes mayores requieren de un mayor número de puntos de control terrestres (GPS) para poder producir el modelo de transformación. Un orden elevado no asegura mejor precisión. Generalmente una transformación de orden mayor acerca los puntos de Ia imagen a los GPS, pero puede incrementar los errores de los puntos alejados de los GPS. Dicho Io anterior los puntos GPS son ubicados en un plano georreferenciado.
El siguiente paso, dentro de Ia georreferenciación, es construir una densificación de puntos en base a los puntos obtenidos en terreno, esto con el fin de generar un modelo digital de terreno, con el cual se puede rectificar ortogonalmente Ia imagen y corregir todas las deformaciones y exageraciones verticales que posee Ia imagen.
La siguiente etapa, dentro de Ia georreferenciación, es Ia correlación entre los píxeles de Ia imagen y Ia imposición de las coordenadas de los puntos en terreno, controlando Ia ubicación con los puntos generados en Ia densificación. En base a Ia dimensión del píxel así como también a Ia resolución espacial de Ia imagen se determina el error medio cuadrático .Ya teniendo Ia imagen rectificada a los puntos, se utiliza el método de convolución cúbica, Ia cual toma el promedio ponderado de dieciséis píxeles circundantes para estimar el valor digital para Ia imagen final corregida, este proceso entrega un buen registro y apariencia del producto.
Una vez realizado Io anterior, se está en condiciones de confeccionar el Mapa de Riesgo. Estos se generan en formato de papel en formato de 60 por 60 cm. Este mapa de riesgo contiene los vectores de ubicación de objetos en formato SHP y DXF (ESRI SHAPEFILE y DXF de intercambio para otros software CAD). Como factor preponderante en una carta topográfica Ia altura de vuelo es el indicador de precisión, por Io cual Ia tolerancia que determinara Ia escala para una imagen obtenida con datos de radar será Ia dimensión del píxel, esto se denomina resolución espacial de Ia imagen .Para el caso de Ia validación estas cartas deben contener precisiones a nivel del centímetro, por Io cual su escala no debe sobrepasar 1 :250 (1 mm en el papel es igual a 25 cm en el terreno).
Estos mapas híbridos contienen Ia imagen relativa a Ia rugosidad del terreno con un 20% de transparencia, más una cuadrícula definida a una distancia máxima de un metro. Por sobre Ia distorsión propia del objeto AP y AT (antipersonales y antitanque), habrá un vector generado en el centro de cada mina AP y AT, para Ia obtención de estos elementos es necesario un magnificación del objeto de Ia imagen ubicado en el centro mismo.
El Sistema concluye y obtiene su objetivo cuando señaliza en terreno Ia ubicación del objeto detectado por el radar, es decir un replanteo, (ver figura 10).
El replanteo (23), consiste en tomar las coordenadas obtenidas de los objetos en Ia imagen y empleando un equipo DGPS, señalizarlas en terreno. Para este objetivo se utiliza el método de medición RTK (Real Time Kinematik), para Io cual se utiliza un GPS Base y móvil, un sistema de radiomodem, y el sistema de replanteo creado anteriormente
Como muestra Ia figura 10 el GPS base (29) se instala en el punto de referencia (8) del campo minado (201 ).
Como es conocido el marco de referencia (5), que permite contar con un alto grado de seguridad para acercarse al campo minado (201 ), se comienza a replantear las coordenadas de los objetos detectados por el radar (4). Para esto es necesario programar una libreta, que es parte del equipo GPS móvil (30), Ia cual permite ingresar las coordenadas de los objetos detectados a replantear.
Una vez ingresadas las coordenadas en Ia libreta del equipo GPS móvil (30), ésta despliega en su pantalla: una visualización gráfica de los puntos ingresados; muestra de coordenadas planas; muestra de dirección y distancia; distancia en metros; y dirección en grados sexagesimales, además de Ia posición del propio equipo GPS móvil (30).
En el replanteo gráfico se selecciona una de las coordenadas ingresadas, y el equipo indica gráficamente Ia distancia a Ia cual se encuentra de ésta y su dirección referida al Norte Magnético.
La antena (31 ) del GPS móvil (30) se instala en el sistema creado para el replanteo (23). Este sistema creado para el replanteo (23), está compuesto por un trípode en donde se instalará una estructura metálica que contiene un bastón de policarbonato de 4 m de largo que se desplaza en forma radial y retráctil. En el extremo de este bastón se dispone Ia antena (31 ) del GPS móvil (30) con un codo vertical por Io que Ia medición de coordenadas visibles en Ia pantalla de Ia libreta será efectivamente en donde se encuentra Ia mina identificada.
Cuando Ia antena (31 ) del GPS Móvil (30) se encuentra en Ia coordenada requerida, en Ia libreta del GPS Móvil (30) se indica gráficamente y a través de una alarma de ruido, que se obtuvo una coincidencia entre Ia coordenada ingresada y Ia obtenida por el equipo GPS Móvil (30).
Para marcar en terreno Ia ubicación del objeto (mina), se emplea una marca de pintura (32), que se libera desde el extremo del bastón de policarbonato, bajo Ia antena (31 ) del GPS móvil (30), siendo accionado desde un dispositivo ubicado en el trípode.

Claims

REIVINDICACIONES
1. Sistema de detección, localización e identificación de objetos en suelo y subsuelo que comprende un área de interés, un vehículo aéreo que circunscribe dicha área de interés, el cual lleva incorporado un radar que comprende una antena con su respectivo transmisor y receptor, medios de procesamiento de señales, medios de almacenamiento de datos y medios de interfaz gráfica, porque dicha área de interés está previamente referenciada y dicho radar es un radar de penetración de suelo, GPR (Ground Penetration Radar), del tipo heterodino, donde Ia señal transmitida por Ia antena genera una haz de iluminación de una franja de terreno y consiste en una señal electromagnética sinusoidal cuya frecuencia se varía en pasos escalonados predeterminados y precisos, donde dicha señal transmitida se mezcla con Ia señal recibida o reflejada, obteniéndose dos conjuntos de valores correspondientes a las fases de cada paso o escalón de frecuencia, y en que estos conjuntos de valores obtenidos a Io largo de barridos sucesivos, a medida que se desplazan Ia antena, se almacenan en los medios de almacenamiento y posteriormente son procesados en los medios de procesamiento para Ia obtención de una imagen o mapa final de Ia ubicación de dichos objetos en suelo y subsuelo.
2. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 1 , porque el área de interés previamente referenciada consiste en una marco de referencia rectangular que se elabora en base a un punto de referencia, puntos bases y puntos de orientación, que permite posteriormente, georreferenciar los valores procesados y determinar las coordenadas de los objetos en el suelo y subsuelo, en forma de imagen o mapa.
3. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 2, porque dicho punto de referencia está ligado a un punto de referencia geodésico perteneciente a una Red Geodésica oficial.
4 Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 3, porque si dicho punto de Ia Red Geodésica se encuentra a no más de 50 Km del punto de referencia del marco de referencia, entonces Ia medición del método diferencial del punto de referencia es de 4 horas de medición con un intervalo de 1 segundo.
5. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 3, porque si dicho punto de Ia Red Geodésica se encuentra a más de 50 Km del punto de referencia del marco de referencia, entonces Ia medición del método diferencial del punto de referencia es de 6 horas con un intervalo de 1 segundo.
6. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 2, porque dichos puntos bases son puntos adyacentes e inmediatos a Ia zona de interés y señalizados con discos de metal adosados a una estaca.
7. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 6, porque dichos puntos bases se sitúan en los cuatro vértices del marco de referencia, y en los centros de los lados mayores de éste dependiendo de Ia magnitud del marco de referencia.
8. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 2, porque dichos puntos de orientación se sitúan en cada uno de los vértices del marco de referencia y más hacia el exterior de estos vértices con respecto a los puntos bases, de manera tal que se ubiquen diagonales a los puntos bases, distantes de estos a una distancia de alrededor de un metro.
9. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 7, porque dichos puntos bases son georreferenciados con un equipo GPS base por el método RTK (Real Time Kinematik), donde dicho equipo GPS base se instala sobre el punto de referencia.
10. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 4 y 9, porque Ia medición en método diferencial del punto de referencia permite que cada punto base del marco de referencia genera coordenadas con una precisión de alrededor de ± 2 cm.
1 1. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 5 y 9, porque Ia medición en método diferencial del punto de referencia permite que cada punto base del marco de referencia genera coordenadas con una precisión de alrededor de ± 2 cm.
12. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 1 , porque dicha señal electromagnética sinusoidal cuya frecuencia se varía en pasos escalonados iguales, está en Ia banda de 750 a 3000 MHz.
13. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 12, porque dichos pasos escalonados son pasos discretos de frecuencia con un mínimo de 64 pasos y un máximo de 512 pasos.
14. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 1 , porque dicho radar que comprende una antena con su respectivo transmisor y receptor van montados en el exterior del vehículo aéreo, cuya orientación, para generar el barrido del haz de iluminación, está comprendida entre 35° y 55° respecto a Ia vertical.
15. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 14, porque dicha antena se mueve a velocidad constante y altura constante a Io largo de una línea perpendicular a Ia vertical y al eje del haz de iluminación.
16. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 15, porque dichos valores de velocidad y altura se obtienen de un equipo GPS de precisión montado sobre el vehículo aéreo, los cuales están sincronizados con los valores recibidos por el receptor del radar, de tal forma de permitir Ia calibración de las coordenadas de Ia imagen.
17. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 1 , porque dichos medios procesadores generan secuencias de rango o mediciones de distancias a los distintos objetos que se encuentran en el suelo y subsuelo, utilizando Ia transformada inversa de Fourier.
18. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 17, porque dichas secuencias de rango son combinadas para obtener una imagen del objeto, que consiste alinear en forma secuencial cada una de las medidas de rango en Ia misma secuencia en que fueron obtenidas en el proceso de barrido.
19. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 18, porque dicha combinación de mediciones de rango es procesada utilizando un algoritmo de detección, que permite determinar en forma precisa Ia ubicación de cada objeto en Ia región de barrido para obtener una imagen del objeto detectado, en donde Ia ubicación está determinada por valores de altura y valores de distancia georreferenciadas.
20. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 19, porque Ia imagen del objeto así obtenida es calibrada, con las distancias y las alturas expresadas en metros.
21. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 1 y 20, porque los medios de procesamiento además introducen datos de coordenadas espaciales en Ia imagen calibrada.
22. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 1 y 20, porque dichos medios de procesamiento además codifican geométricamente Ia imagen calibrada, es decir, determina y asigna un código a cada punto medido en Ia creación del marco de referencia.
23. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 21 y 22, porque dichos medios de procesamiento además posicionan los valores de Ia imagen y Ia sitúan sobre el terreno para proyectarla en base a un sistema de coordenadas.
24. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 23, porque dichos medios de procesamiento además reacomodan pixeles para crear el espaciamiento uniforme entre ellos en todo el ancho de Ia imagen.
25. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 24, porque dichos medios de procesamiento además construyen una densificación de puntos en base a los puntos obtenidos en terreno, esto con el fin de generar un modelo digital de terreno, con el cual se rectifica ortogonalmente Ia imagen para corregir todas las deformaciones y exageraciones verticales que posee Ia imagen.
26. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 25, porque dichos medios de procesamiento además correlacionan los píxeles de Ia imagen y Ia imposición de las coordenadas de los puntos en terreno, controlando Ia ubicación con los puntos generados en Ia densificación.
27. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 26, porque dichos medios de procesamiento además calculan el error medio cuadrático en base a Ia dimensión del píxel así como también a Ia resolución espacial de Ia imagen.
28. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 27, porque dichos medios de procesamiento además calculan el promedio ponderado de dieciséis píxeles circundantes para estimar el valor digital para Ia imagen final corregida a través de convolución cúbica.
29. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 28, porque dichos medios de procesamiento además elabora un mapa de riesgo que contiene los vectores de ubicación de los objetos detectados.
30. Sistema de detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 29, porque dichos medios de procesamiento además realizan un replanteo por el método de medición RTK (Real Time Kinematik), que consiste en tomar las coordenadas obtenidas de los objetos en Ia imagen y empleando un equipo DGPS y señalizarlos en terreno.
31. Método para Ia detección, localizador) e identificación de objetos en suelo y subsuelo que comprende un área de interés, un vehículo aéreo que circunscribe dicha área de interés el cual lleva incorporado un radar que comprende una antena con su respectivo transmisor y receptor, medios de procesamiento de señales, medios de almacenamiento de datos y medios de interfaz gráfica, porque comprende:
- establecer un marco de referencia rectangular en base a un punto de referencia, puntos bases y puntos de orientación alrededor del área de interés;
- transmitir una señal electromagnética sinusoidal cuya frecuencia se varía en pasos escalonados predeterminados y precisos, para iluminar el área de interés y marco de referencia;
mezclar Ia señal reflejada con Ia señal enviada, para obtener conjuntos de valores correspondientes a las fases de cada paso o escalón de frecuencia, donde estos conjuntos de valores son obtenidos a Io largo de barridos sucesivos a medida que se desplazan Ia antena;
- aplicar Ia transformada inversa de Fourier a los conjuntos de valores para así obtener un conjunto de mediciones de rango para los objetos en terreno iluminados por el haz de iluminación del radar;
alinear en forma secuencial cada una de las mediciones de rango en Ia misma secuencia en que fueron obtenidas de los barridos sucesivos para obtener una imagen; procesar dicha imagen utilizando un algoritmo de detección, que determina en forma precisa Ia ubicación de cada objeto en Ia región de barrido, obteniéndose un mapa de ubicación de los objetos en el suelo y subsuelo;
calibrar dicho mapa para obtener las distancias y alturas expresadas en medidas de longitud;
georreferenciar el mapa calibrado para introducir datos de coordenadas espaciales, de acuerdo a las siguientes subetapas:
• codificar geométricamente el mapa calibrado para determinar y asignar un código a cada punto medido en Ia creación del marco de referencia;
• construir una densificación de puntos en base a los puntos obtenidos en terreno, esto con el fin de generar un modelo digital de terreno, con el cual se rectifica ortogonalmente Ia imagen y se corrigen las deformaciones y exageraciones verticales que posee Ia imagen; y
• correlacionar los píxeles de Ia imagen del punto anterior y Ia imposición de las coordenadas de los puntos en terreno, controlando Ia ubicación con los puntos generados en Ia densificación;
elaborar un mapa de riesgo que contiene los vectores de ubicación de los objetos; y
replantear las coordenadas de los objetos en Ia imagen obtenidas en el paso anterior para señalizarlas en terreno.
32. Método para Ia detección, localizador) e identificación de objetos en suelo y subsuelo según reivindicación 31 , por relacionar dicho punto de referencia a un punto de referencia geodésico perteneciente a una Red Geodésica oficial.
33. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 32, porque si dicho punto de Ia Red Geodésica se encuentra a no más de 50 Km del punto de referencia del marco de referencia, entonces Ia medición del método diferencial del punto de referencia es de 4 horas de medición con un intervalo de 1 segundo.
34. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 32, porque si dicho punto de Ia Red Geodésica se encuentra a más de 50 Km del punto de referencia del marco de referencia, entonces Ia medición del método diferencial del punto de referencia es de 6 horas de medición con un intervalo de 1 segundo.
35. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 31 , por situar dichos puntos bases adyacentes e inmediatos a Ia zona de interés, en los cuatro vértices del marco de referencia, y en los centros de los lados mayores de éste dependiendo de Ia magnitud del marco de referencia y señalizados con discos de metal adosados a una estaca.
36. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 31 , por situar dichos puntos de orientación en cada uno de los vértices del marco de referencia y más hacia el exterior de estos vértices con respecto a los puntos bases, de manera tal que se ubiquen diagonales a los puntos bases, distantes de estos a una distancia de alrededor de un metro.
37. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 31 , por georreferenciar dichos puntos bases con un equipo GPS base por el método RTK (Real Time Kinematik), donde dicho equipo GPS base se instala sobre el punto de referencia.
38. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 31 , por orientar Ia antena del radar para generar el barrido del haz de iluminación que está comprendida entre 35° y 55° respecto a Ia vertical.
39. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 38, por proporcionar una velocidad constante y una altura constante a dicha antena, a Io largo de una línea perpendicular a Ia vertical y al eje del haz de iluminación.
40. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 39, por obtener dichos valores de velocidad y altura mediante un equipo GPS de precisión montado sobre el vehículo aéreo, los cuales están sincronizados con los valores recibidos por el receptor del radar, para Ia calibración de las coordenadas de Ia imagen.
41. Método para Ia detección, localizador) e identificación de objetos en suelo y subsuelo según reivindicación 31 , porque dicha combinación de mediciones de rango es procesada utilizando un algoritmo de detección, que permite determinar en forma precisa Ia ubicación de cada objeto en Ia región de barrido para obtener una imagen del objeto.
42. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 41 , porque además comprende posicionar los valores de Ia imagen y situarlos sobre el terreno para proyectarlos en base a un sistema de coordenadas.
43. Método para Ia detección, localización e identificación de objetos en suelo y subsuelo según reivindicación 42, porque además comprende reacomodar pixeles para crear el espaciamiento uniforme entre ellos en todo el ancho de Ia imagen.
PCT/ES2009/070001 2008-01-04 2009-01-02 Sistema y método para la detección, localización e identificación de objetos en suelo y subsuelo que se encuentran en un área de interés previamente referenciada WO2009087260A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09700523.5A EP2244101A4 (en) 2008-01-04 2009-01-02 SYSTEM AND METHOD FOR DETECTION, LOCALIZATION AND IDENTIFICATION OF GROUND AND UNDERLAND OBJECTS IN AN AREA OF INTEREST PREFERREDLY REFERENCED
US12/735,344 US8508402B2 (en) 2008-01-04 2009-01-02 System and method for detecting, locating and identifying objects located above the ground and below the ground in a pre-referenced area of interest
IL206750A IL206750A (en) 2008-01-04 2010-07-01 A system and method for detecting, detecting and identifying items located above or below the ground of interest

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2008000024A CL2008000024A1 (es) 2008-01-04 2008-01-04 Sistema y metodo para la deteccion, localizacion e identificacion de objetos en suelo y subsuelo que se encuentran en un area de interes previamente referenciada.
CL00242008 2008-01-04

Publications (1)

Publication Number Publication Date
WO2009087260A1 true WO2009087260A1 (es) 2009-07-16

Family

ID=40852815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070001 WO2009087260A1 (es) 2008-01-04 2009-01-02 Sistema y método para la detección, localización e identificación de objetos en suelo y subsuelo que se encuentran en un área de interés previamente referenciada

Country Status (5)

Country Link
US (1) US8508402B2 (es)
EP (1) EP2244101A4 (es)
CL (1) CL2008000024A1 (es)
IL (1) IL206750A (es)
WO (1) WO2009087260A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100679A1 (en) * 2010-02-14 2011-08-18 Vermeer Manufacturing Company Derivative imaging for subsurface object detection

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8730332B2 (en) 2010-09-29 2014-05-20 Digitaloptics Corporation Systems and methods for ergonomic measurement
US8705894B2 (en) 2011-02-15 2014-04-22 Digital Optics Corporation Europe Limited Image rotation from local motion estimates
US8587665B2 (en) * 2011-02-15 2013-11-19 DigitalOptics Corporation Europe Limited Fast rotation estimation of objects in sequences of acquired digital images
US8587666B2 (en) * 2011-02-15 2013-11-19 DigitalOptics Corporation Europe Limited Object detection from image profiles within sequences of acquired digital images
US10043263B1 (en) * 2011-07-05 2018-08-07 Bernard Fryshman Mobile system for explosive device detection and instant active response
US8774985B2 (en) * 2011-07-22 2014-07-08 The Boeing Company Systems and methods for generating a command trajectory
US8786485B2 (en) * 2011-08-30 2014-07-22 Masachusetts Institute Of Technology Mobile coherent change detection ground penetrating radar
US8842937B2 (en) * 2011-11-22 2014-09-23 Raytheon Company Spectral image dimensionality reduction system and method
US8655091B2 (en) 2012-02-24 2014-02-18 Raytheon Company Basis vector spectral image compression
CN102636501B (zh) * 2012-03-26 2014-09-03 中南大学 一种剔除表层钢筋对高频电磁波影响的滤波方法
RU2515191C2 (ru) * 2012-06-19 2014-05-10 Вячеслав Адамович Заренков Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления
US9870504B1 (en) * 2012-07-12 2018-01-16 The United States Of America, As Represented By The Secretary Of The Army Stitched image
GB201216818D0 (en) * 2012-09-20 2012-11-07 Bae Systems Plc Detection of a target in a scene
GB2506687B (en) 2012-10-08 2018-02-07 Bae Systems Plc Hyperspectral imaging of a moving scene
US11721066B2 (en) 2013-07-23 2023-08-08 Hover Inc. 3D building model materials auto-populator
CN103499612B (zh) * 2013-10-14 2015-12-09 浙江水利水电学院 一种用于海堤工程隐患探测的组合物探方法
WO2015061735A1 (en) * 2013-10-25 2015-04-30 Hover Inc. Estimating dimensions of geo-referenced ground-level imagery using orthogonal imagery
ES2511941B1 (es) * 2014-03-06 2015-08-05 Xpresa Geophysics S.L. Sistema y método de localización y cartografía de activos enterrados
CN105911559A (zh) * 2016-06-02 2016-08-31 中国科学院光电研究院 基于可见光-近红外-短波红外波段的激光雷达系统
KR101967305B1 (ko) * 2016-10-14 2019-05-15 주식회사 만도 차량의 보행자 인식 방법 및 차량의 보행자 인식 시스템
JP6837690B2 (ja) * 2017-01-27 2021-03-03 マサチューセッツ インスティテュート オブ テクノロジー 表面貫通レーダーを用いた乗物位置特定方法およびシステム
CN107918160B (zh) * 2017-11-10 2023-12-19 中国石油化工股份有限公司 一种废弃井全面扫查系统及方法
CN107976673B (zh) * 2017-11-17 2020-02-07 中国科学技术大学 提高大场景目标成像质量的mimo雷达成像方法
IT201800009761A1 (it) * 2018-10-24 2020-04-24 Ids Georadar Srl Sistema fotogrammetrico di ausilio al posizionamento dei dati georadar sullo scenario di misura
CN109782274B (zh) * 2019-01-31 2023-05-16 长安大学 一种基于探地雷达信号时频统计特征的水损害识别方法
US10895637B1 (en) * 2019-07-17 2021-01-19 BGA Technology LLC Systems and methods for mapping manmade objects buried in subterranean surfaces using an unmanned aerial vehicle integrated with radar sensor equipment
CN110554437A (zh) * 2019-10-02 2019-12-10 湖南科技大学 雷场多源信息同步探测系统
US20220351507A1 (en) * 2020-05-07 2022-11-03 Hypergiant Industries, Inc. Volumetric Baseline Image Generation and Object Identification
CN112934758B (zh) * 2020-12-14 2022-10-14 中科院计算所西部高等技术研究院 基于图像识别的煤炭分拣拨手控制方法
CN113050175B (zh) * 2021-03-08 2022-05-13 吉林大学 直升机航空电磁收录装置及发射源参数识别方法
CN113327229B (zh) * 2021-05-27 2023-09-22 扬州大学 一种快速定位像点网格的方法
CN113359197B (zh) * 2021-06-03 2024-01-23 河北省地震局 一种适于浅层高精度的曲地表叠加成像方法
CN113607186B (zh) * 2021-07-26 2023-11-10 成都飞机工业(集团)有限责任公司 一种消除机载瞄准吊舱安装误差的校准方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502444A (en) 1994-09-23 1996-03-26 Mandex, Inc. Method and apparatus for improving the signal-to-clutter ratio of an airborne earth penetrating radar
US5673050A (en) 1996-06-14 1997-09-30 Moussally; George Three-dimensional underground imaging radar system
WO2000008590A1 (en) * 1998-08-05 2000-02-17 Case Corporation A method of determining and treating the health of a crop
WO2001071377A1 (en) * 2000-03-22 2001-09-27 Hot/Shot Radar Inspections, Llc Method and system for identification of subterranean objects
US20040118313A1 (en) * 2001-06-08 2004-06-24 Temes Clifford L. Three-dimensional synthetic aperture radar for mine detection and other uses
US20060087471A1 (en) 2004-10-12 2006-04-27 Hintz Kenneth J Syntactic landmine detector
US20070024489A1 (en) * 2005-03-31 2007-02-01 Cerwin Stephen A Signal Processing Methods for Ground Penetrating Radar from Elevated Platforms
EP1965223A1 (en) * 2007-03-02 2008-09-03 Saab Ab Subsurface Imaging radar

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB666335A (en) * 1949-03-28 1952-02-13 Suchy Holdings Ltd Improvements in and relating to radar reflectors
US5499029A (en) * 1992-07-14 1996-03-12 Eg&G Energy Measurements, Inc. Wide band stepped frequency ground penetrating radar
US6140959A (en) * 1996-03-13 2000-10-31 Caterpillar Inc. Self-calibrating GPS reference station and method
CA2574595C (en) * 2004-07-20 2013-07-02 Global Precision Solutions, Llp Precision gps driven utility asset management and utility damage prevention system and method
US8115666B2 (en) * 2008-04-17 2012-02-14 Mirage Systems, Inc. Ground penetrating synthetic aperture radar

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502444A (en) 1994-09-23 1996-03-26 Mandex, Inc. Method and apparatus for improving the signal-to-clutter ratio of an airborne earth penetrating radar
US5673050A (en) 1996-06-14 1997-09-30 Moussally; George Three-dimensional underground imaging radar system
WO2000008590A1 (en) * 1998-08-05 2000-02-17 Case Corporation A method of determining and treating the health of a crop
WO2001071377A1 (en) * 2000-03-22 2001-09-27 Hot/Shot Radar Inspections, Llc Method and system for identification of subterranean objects
US20040118313A1 (en) * 2001-06-08 2004-06-24 Temes Clifford L. Three-dimensional synthetic aperture radar for mine detection and other uses
US20060087471A1 (en) 2004-10-12 2006-04-27 Hintz Kenneth J Syntactic landmine detector
US20070024489A1 (en) * 2005-03-31 2007-02-01 Cerwin Stephen A Signal Processing Methods for Ground Penetrating Radar from Elevated Platforms
EP1965223A1 (en) * 2007-03-02 2008-09-03 Saab Ab Subsurface Imaging radar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2244101A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100679A1 (en) * 2010-02-14 2011-08-18 Vermeer Manufacturing Company Derivative imaging for subsurface object detection
CN102859394A (zh) * 2010-02-14 2013-01-02 弗米尔制造公司 用于地下对象检测的导数成像
US8694258B2 (en) 2010-02-14 2014-04-08 Vermeer Manufacturing Company Derivative imaging for subsurface object detection
US9459374B2 (en) 2010-02-14 2016-10-04 Vermeer Manufacturing Company Derivative imaging for subsurface object detection
CN102859394B (zh) * 2010-02-14 2016-10-05 弗米尔制造公司 用于地下对象检测的导数成像
CN106443667A (zh) * 2010-02-14 2017-02-22 弗米尔制造公司 用于地下对象检测的导数成像

Also Published As

Publication number Publication date
IL206750A0 (en) 2010-12-30
US8508402B2 (en) 2013-08-13
US20110037639A1 (en) 2011-02-17
EP2244101A4 (en) 2015-10-14
EP2244101A1 (en) 2010-10-27
CL2008000024A1 (es) 2009-01-16
IL206750A (en) 2017-01-31

Similar Documents

Publication Publication Date Title
WO2009087260A1 (es) Sistema y método para la detección, localización e identificación de objetos en suelo y subsuelo que se encuentran en un área de interés previamente referenciada
Fernández et al. Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle
ES2577403B2 (es) Sistema aerotransportado y métodos para la detección, localización y obtención de imágenes de objetos enterrados y la caracterización de la composición del subsuelo
Nagihara et al. Use of a three‐dimensional laser scanner to digitally capture the topography of sand dunes in high spatial resolution
CN104569972B (zh) 一种植物根系三维构型无损检测方法
ES2965413T3 (es) Radar de penetración terrestre y método de análisis electromagnético del suelo
Merkle et al. Fusion of ground penetrating radar and laser scanning for infrastructure mapping
Smekalova et al. Natural science methods in field archaeology, with the case study of Crimea
Barla et al. 3D Laser scanner and thermography for tunnel discontinuity mapping
González-Jorge et al. Comparison between laser scanning, single-image rectification and ground-penetrating radar technologies in forensic science
CN110297237A (zh) 考虑天线方向图的探地雷达绕射叠加成像方法及系统
Guo Spaceborne and airborne SAR for target detection and flood monitoring
Sato et al. Archaeological survey by GPR for recovery from 3.11 Great Earthquake and Tsunami in East Japan
Monte Radio frequency tomography for underground void detection
Aqeel Measuring the orientations of hidden subvertical joints in highways rock cuts using ground penetrating radar in combination with LIDAR
Song et al. Ground-penetrating radar land mine imaging: Two-dimensional seismic migration and three-dimensional inverse scattering in layered media
Foessel-Bunting et al. Radar sensor for an autonomous Antarctic explorer
Leucci et al. Integration of high resolution optical satellite imagery and geophysical survey for archaeological prospection in Hierapolis (Turkey)
Note Prospecting World War One conflict landscapes with non-invasive soil sensing techniques: geophysical exploration of the former Western Front in Belgium
Smith et al. Helicopter electromagnetic and magnetic survey data and maps, northern Bexar County, Texas
Grimm et al. On conductive ground: Analysis of “Bistatic sounding of the deep subsurface with ground penetrating radar− experimental validation” by V. Ciarletti et al.
KR101636879B1 (ko) 위성레이더 영상에 의한 벤토나이트 탐사방법
Soldovieri et al. A preparatory study on subsurface exploration on Mars using GPR and microwave tomography
WO2017222481A1 (en) Gyroscopic georadar
Blanco et al. a New Branch of the Anio Novus Aqueduct (rome, Italy) Revealed by Archaeology and Geophysics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09700523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 206750

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009700523

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009700523

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12735344

Country of ref document: US