WO2009086660A1 - 一种大带宽系统下终端的上行传输方法及系统帧结构 - Google Patents

一种大带宽系统下终端的上行传输方法及系统帧结构 Download PDF

Info

Publication number
WO2009086660A1
WO2009086660A1 PCT/CN2007/003927 CN2007003927W WO2009086660A1 WO 2009086660 A1 WO2009086660 A1 WO 2009086660A1 CN 2007003927 W CN2007003927 W CN 2007003927W WO 2009086660 A1 WO2009086660 A1 WO 2009086660A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
terminal
unit
uplink data
frequency band
Prior art date
Application number
PCT/CN2007/003927
Other languages
English (en)
French (fr)
Inventor
Xiaojiang Han
Feng Li
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2007/003927 priority Critical patent/WO2009086660A1/zh
Publication of WO2009086660A1 publication Critical patent/WO2009086660A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a wireless communication system, and more particularly to a method for accessing and uplink transmission of a plurality of bandwidth capable terminals in a large bandwidth wireless communication system.
  • the fourth-generation (4G) wireless communication system has higher spectrum utilization efficiency than the third-generation mobile communication system.
  • the goal of the 4G system is to enable the mobile user's data transmission rate to reach 100 Mbit/s before 2010, and the data transmission rate of the stationary user. Up to 1 Gbit/s. Due to the smooth evolution of mobile communication systems, in order to protect the interests of operators, fourth-generation wireless communication systems and third-generation mobile communication systems such as Time Division-Synchronous Code Division (Time Division-Synchronous Code Division) Multiple Access, TD-SCDMA) or 802.16E systems, etc. will be compatible or coexistent.
  • TD-SCDMA Time Division-Synchronous Code Division
  • 802.16E systems etc.
  • the bandwidth of the 4G wireless communication system can be up to 100MHz and the bandwidth is variable, so that the entire network of the 4G system can flexibly set the system bandwidth of each cell according to the service requirements.
  • the existing method is based on the system bandwidth, and the terminal bandwidth takes a fixed bandwidth within the system bandwidth.
  • OFDM Orthogonal Frequency Division Multiplexing
  • IFFT Inverse Fast Fourier Transform
  • the center frequency of all users and the size of the IFFT window must be the same, otherwise the carrier cannot be orthogonal. , causing interference.
  • the technical problem to be solved by the present invention is to provide an uplink transmission method and a system frame structure of a terminal in a large bandwidth system, so that multiple bandwidth capability terminals coexist in the system, and the carrier is not orthogonal. And interference and other issues.
  • the present invention provides a method for uplink transmission of a terminal in a large bandwidth system, including the following steps:
  • the method further includes the step (c): the network side receives the uplink data on the entire system bandwidth, and sets a plurality of unit bandwidth filters respectively to filter the uplink data on the corresponding working frequency band, and works on the same terminal.
  • the uplink data on the frequency band is separately subjected to FFT transform, demodulation, and decoding, and combined to obtain complete uplink data of the large bandwidth terminal.
  • each radio frequency unit transmits an uplink signal on a unit bandwidth, and the center frequency of each radio frequency unit is The center frequency of the corresponding operating band.
  • the intermediate frequency processing process is added, and the time domain data of the plurality of unit frequency bands is superimposed on the terminal bandwidth and the central frequency point of the terminal, and when transmitting, the maximum bandwidth is transmitted according to the terminal.
  • the unit bandwidth is a bandwidth of a minimum bandwidth terminal supported in the system.
  • the terminal when the terminal is a minimum bandwidth terminal supported by the system, the terminal performs uplink data transmission and processing only on one unit bandwidth; when the terminal bandwidth is multiple unit bandwidth, the terminal divides the bandwidth into multiples.
  • the unit bandwidth performs transmission and processing of respective uplink data on the plurality of unit bandwidths.
  • the present invention also provides a system frame structure.
  • the bandwidth of the system frame structure is equally divided into multiple frequency bands, and a synchronization channel, a broadcast channel, and a random access channel are respectively set in each frequency band, and the system center frequency point is At least one set of synchronization channels, a broadcast channel, and a random access channel are provided in a range of one unit bandwidth of the center, and the unit bandwidth is a bandwidth of a minimum bandwidth terminal supported by the system.
  • the synchronization channel, the broadcast channel, and the random access channel of each working frequency band are disposed at a central location of the corresponding working frequency band.
  • the set of synchronization channels, the broadcast channel and the random access channel are set at a system center frequency point. If the system bandwidth is equally divided into an odd multiple, the group of channels also serves as a channel of the working frequency band.
  • multiple capability terminals can coexist in one OFDM system, and the performance of the downlink process is good for the terminal, such as synchronization, random access, etc.; in the uplink process, each terminal avoids by processing according to the minimum bandwidth. Carrier non-orthogonal and interference issues. For the system, the computational complexity is reduced. BRIEF abstract
  • FIG. 1 is a schematic structural diagram of a frame structure when a terminal bandwidth is 20 M and a system bandwidth is 60 M.
  • FIG. 2 is a schematic structural diagram of a frame structure when a terminal bandwidth is 20 M and a system bandwidth is 40 M.
  • FIG. 3 is a flowchart of a terminal initial access method in this embodiment.
  • 4 is a schematic diagram of an uplink data transmission process of terminals with different bandwidth capabilities
  • Figure 5 is a schematic diagram showing the structure of the uplink frame of the terminal when the bandwidth of the terminal is 20M and the bandwidth of the system is 40M.
  • the system-compatible multiple bandwidth terminals include a minimum bandwidth terminal supported by the system and a terminal whose bandwidth is a multiple of the minimum bandwidth.
  • the idea of the present invention divides the system bandwidth by the bandwidth of the supported minimum bandwidth terminal, and then performs corresponding processing.
  • the system bandwidth is first divided.
  • the division principle is to form a plurality of working frequency bands by dividing the system bandwidth into units of bandwidth supporting the minimum bandwidth terminal.
  • the broadcast channel BCH and the random access channel RACH are matched to the synchronization channel.
  • a set of synchronization channels SCH, a broadcast channel BCH, and a random access channel RACH are added at the zero frequency point.
  • a set of synchronization channel SCH, broadcast channel BCH and random access channel RACH at the central frequency point also serve as corresponding channels of the working frequency band.
  • a set of SCH, BCH, and RACH channels used for initial access does not have to be set at the center frequency of the system, but can be set within a unit bandwidth centered at the center frequency of the system.
  • Bandwidth is the bandwidth of the smallest bandwidth terminal supported by the system.
  • Figure 1 and Figure 2 are schematic diagrams of the frame structure when the terminal bandwidth is 20M and the system bandwidth is 60M or 40M.
  • the horizontal direction is the time direction and the vertical direction is the frequency direction.
  • the system bandwidth is 60M
  • the terminal bandwidth is 20M
  • the system bandwidth is equally divided into 20M units.
  • the synchronization channel SCH, the wide BCH, and the random access channel RACH are set in each working frequency band.
  • the synchronization channel SCH shown in Fig. 1 occupies one OFDM symbol. In other embodiments, the synchronization channel SCH may also occupy a plurality of OFDM symbols.
  • the system bandwidth is 40M
  • the terminal bandwidth is 20M
  • the system bandwidth is equally divided in units of 20M
  • the system bandwidth is equally divided in units of 20M
  • the synchronization channel SCH, the broadcast channel BCH, and the random are set in each working frequency band.
  • Access channel RACH Since the system bandwidth is equally divided by an even number, a set of synchronization channels SCH, broadcast channel BCH, and random access channel RACHo are added at the zero frequency point.
  • the initial access process of the terminal in the network includes the following steps:
  • Step 301 After the terminal is turned on or just after entering a certain cell, the terminal searches the network, uses the center frequency point as a reference point, and filters the synchronization channel time domain data at a certain interval (determined in the frame structure) within the terminal bandwidth to complete synchronization; For a terminal with at least twice the unit bandwidth (also referred to as a large bandwidth terminal in the text), since there are multiple synchronization channels in the bandwidth, all the synchronization channels can be filtered out through the filter for downlink synchronization, so that the synchronization has Better performance.
  • Step 302 parsing broadcast channel information, and completing cell search;
  • Step 303 In the terminal bandwidth range, refer to the center frequency point as a reference, and compete for resources in one or more random access channels for random access, and complete registration of the terminal on the base station side;
  • Step 304 The network side analyzes the load status of each working frequency band, and allocates a working frequency band to the terminal according to the load measurement;
  • the base station on the network side can send the terminal to the terminal through the control channel, the data sharing channel or the designated special channel, and the terminal performs the working frequency band adjustment.
  • the base station may allocate one or more working frequency bands to the terminal.
  • Step 305 The terminal performs the adjustment of the working frequency band according to the allocated frequency band, if the allocated working frequency band is not currently located in the terminal;
  • the terminal adjusts or fine-tunes its frequency to the assigned working frequency band. If the assigned working frequency band of the terminal is not needed, no adjustment is needed.
  • Step 306 The terminal performs synchronous adjustment or synchronization on the working frequency band.
  • the terminal After the terminal adjusts the working frequency band, because the frequency band adjustment may cause delay, it needs to be synchronized according to the synchronization channel in the new working frequency band. If the frequency band adjustment causes the out-of-step, it needs to be re-synchronized in the new working frequency band.
  • Step 307 The terminal receives other working information that is delivered, and works according to the terminal bandwidth in the working frequency band.
  • the terminal can continue to receive other working information such as PCH information or service resource allocation information in the working frequency band.
  • a terminal having a bandwidth capability of multiple times of unit bandwidth divides its own bandwidth into one or more unit bandwidths. After accessing the system, the working frequency band corresponding to each unit bandwidth can be determined.
  • the terminal sends uplink data the uplink data is coded and modulated, mapped to the allocated carrier, and then subjected to respective IFFT operations and subsequent processing (for example, adding a CP, etc.) according to each unit bandwidth, and then transmitted separately by radio frequency.
  • Radio frequency There are two ways to send, the first plurality of unit bandwidth RF support (the center frequency of each unit bandwidth is different, corresponding to the corresponding working frequency band); Second, adding the intermediate frequency processing process, the time of multiple unit frequency bands The domain data is superimposed on the bandwidth of the terminal and the center frequency of the terminal (the method is not described in detail, this method already exists). When transmitting, it is transmitted according to the maximum bandwidth of the terminal.
  • the base station on the network side receives the entire system bandwidth (full bandwidth), and sets a plurality of unit bandwidth filters to filter out the uplink data on the corresponding working frequency band, and then the received same terminal in each working frequency band.
  • FIG. 5 shows a schematic diagram of uplink transmission when the system unit bandwidth is 20M and the terminal bandwidth is 40M.
  • the other processing including the processing on the network side is the same as the uplink transmission method on the large bandwidth terminal, and is not mentioned.
  • the performance of the downlink process is good for the terminal, such as synchronization, random access, etc.
  • each terminal avoids problems such as carrier non-orthogonality and interference by processing according to the minimum bandwidth.
  • the computational complexity is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种大带宽系统下终端的上行传输方法及系统帧结构
技术领域
本发明涉及无线通信系统,尤其涉及一种大带宽无线通信系统中多种带 宽能力终端的接入和上行传输方法。
背景技术
第四代(4G )无线通信系统比第三代移动通信系统具有更高的频谱利 用效率, 4G 系统的目标是 2010 年前使移动用户的数据传输速率达到 100Mbit/s, 静止用户的数据传输速率达到 1 Gbit/s。 由于移动通信系统平滑 演进的需要, 为了保护运营商的利益, 在一定的时间内, 第四代无线通信系 统与第三代移动通信系统如时分同 步码分多 址系统 ( Time Division-Synchronous Code Division Multiple Access, TD-SCDMA )或 802.16E 系统等将会兼容或共存。
4G无线通信系统的带宽可高达 100MHz且带宽可变, 以便 4G系统全 网根据业务需求灵活设置各个小区的系统带宽。
现有的方法是根据系统带宽的制定,终端带宽取系统带宽以内的固定带 宽, 对于 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复 用) 系统来讲, 没有多种带宽终端同时兼容的系统。 因为 OFDM技术中的 IFFT ( Inverse Fast Fourier transform, 反傅里叶变换 ) 窗口以及收发中心频 点要一致, 导致需要所有用户的中心频点以及 IFFT窗口大小要一致, 不然 就会导致载波不能正交, 产生干扰。
而对于系统来讲, 需要兼容多种能力的终端, 其从向后兼容以及同时满 足多种需求的用户来讲都是必要的。 目前还没有这样的现有技术。 发明内容
本发明要解决的技术问题是提供一种大带宽系统下终端的上行传输方 法及系统帧结构,使多种带宽能力终端在系统中共存, 且可避免载波不正交 及干扰等问题。
为了解决上述技术问题,本发明提供了一种大带宽系统下终端的上行传 输方法, 包括以下步骤:
( a )将所述大带宽系统的系统带宽按单位带宽等分为多个工作频段, 终端按系统单位带宽将自身带宽分为一个或多个单位带宽;
( b )所述终端接入系统后, 发送上行数据时, 将编码调制后的上行数 据映射到分配的载波上, 在所述一个或多个单位带宽上分别进行 IFFT运算 及后续处理, 然后通过射频发送。
进一步地, 步骤(b )之后还包括步骤(c ): 网络侧在整个系统带宽上 接收上行数据,设置多个单位带宽滤波器分别滤出对应工作频段上的上行数 据, 对同一终端在各工作频段上的上行数据分别进行 FFT 变换、 解调和译 码后, 组合得到所述大带宽终端完整的上行数据。
进一步地, 所述射频发送时, 采用和终端等分得到的单位带宽数目相同 的一个或多个射频支持,每一射频单元发送一个单位带宽上的上行信号,且 各个射频单元的中心频点为相应工作频段的中心频点。
进一步地, 所述射频发送时, 是添加中频处理过程, 将多个单位频段的 时域数据叠加到终端带宽以及终端的中心频点,发射时,按照终端最大带宽 发射。
进一步地, 所述单位带宽为系统中支持的最小带宽终端的带宽。
进一步地, 所述终端为系统支持的最小带宽终端时, 终端只在一个单位 带宽上进行上行数据的传输和处理; 所述终端带宽为多倍单位带宽时, 终端 将自身带宽等分为多个单位带宽,在所述多个单位带宽上分别进行各自的上 行数据的传输和处理。
本发明还提供了一种系统帧结构,所述系统帧结构的带宽等分为多个频 段, 在各个频段中分别设置有同步信道、 广播信道和随机接入信道, 且在以 系统中心频点为中心的一个单位带宽的范围内设有至少一组同步信道、广播 信道和随机接入信道, 所述单位带宽是系统支持的最小带宽终端的带宽。 进一步地, 所述各工作频段的同步信道、 广播信道和随机接入信道是设 置在相应工作频段的中心位置处。
进一步地, 所述一组同步信道、 广播信道和随机接入信道设置在系统中 心频点处,如系统带宽被等分为奇数倍, 则该组信道同时也作为所在工作频 段的信道。
采用本发明的方法,可以使得多种能力终端在一个 OFDM系统下共存, 对于终端, 下行过程的性能较好, 比如同步, 随机接入等; 上行过程, 通过 按最小带宽处理,各个终端避免了载波不正交以及干扰等问题。对于系统来 讲, 减少了运算复杂度。 附图概述
图 1是终端带宽为 20M系统带宽为 60M时帧结构的结构示意图; 图 2是终端带宽为 20M系统带宽为 40M时帧结构的结构示意图; 图 3是本实施例中终端初始接入方法的流程图;
图 4是不同带宽能力终端的上行数据传输过程示意图;
图 5是终端带宽为 20M系统带宽为 40M时终端的上行帧结构示意图。
本发明的较佳实施方式
本发明中,系统兼容的多种带宽终端包括系统支持的最小带宽终端以及 带宽为该最小带宽倍数的终端。本发明的思想是以支持的最小带宽终端的带 宽为单位带宽来划分系统带宽, 然后再进行相应的处理。
下面结合附图对本发明具体实施方式进行详细说明。
系统帧结构中, 先划分系统带宽, 划分原则是以支持最小带宽终端的带 宽为单位等分系统带宽后形成多个工作频段。 在各个工作频段的中心位置 (或其它规定位置) 处设置一个同步信道 SCH, 并在各个工作频段分别设 置广播信道 BCH和随机接入信道 RACH, 与同步信道相匹配。 系统带宽被 等分为偶数倍时, 在零频点处加设有一组同步信道 SCH、 广播信道 BCH和 随机接入信道 RACH。 系统带宽被等分为奇数倍时,在中心频点处的一组同 步信道 SCH、广播信道 BCH和随机接入信道 RACH同时还作为所在工作频 段的相应信道。
但是, 用于初始接入的一组 SCH、 BCH和 RACH信道并不一定要设置 在系统的中心频点处,而是可以设置在系统中心频点为中心的一个单位带宽 的范围内, 该单位带宽即为系统支持的最小带宽终端的带宽。
图 1和图 2分别为终端带宽为 20M, 系统带宽为 60M或 40M时的帧结 构的示意图, 图中横向是时间方向, 纵向是频率方向。 如图 1所示, 系统带 宽为 60M, 终端带宽为 20M, 以 20M为单位等分系统带宽, 在每个工作频 段中设置同步信道 SCH、 广^ ί言道 BCH和随机接入信道 RACH。 图 1中示 出的同步信道 SCH占用一个 OFDM符号的情况, 在其它实施例中, 同步信 道 SCH还可占用多个 OFDM符号。
如图 2所示, 系统带宽为 40M, 终端带宽为 20M, 以 20M为单位等分 系统带宽, 以 20M为单位等分系统带宽, 在每个工作频段中设置同步信道 SCH、 广播信道 BCH和随机接入信道 RACH。 由于系统带宽被偶数倍等分, 在零频点处加设了一组同步信道 SCH、 广播信道 BCH 和随机接入信道 RACHo
初始过程中, 所有终端都从网络侧初始接入, 完成同步以及随机接入, 如图 3所示, 终端在网络中的初始接入过程包括以下步骤:
步骤 301 , 终端在开机后或刚进入某小区后, 搜索网络, 以中心频点为 参考点,在终端带宽内按一定间隔(帧结构中确定)滤波同步信道时域数据, 完成同步; 对于带宽为单位带宽至少两倍的终端 (文中也称为大带宽终端)来讲, 因为其带宽内有多个同步信道, 因此, 可以通过滤波器滤出所有同步信道进 行下行同步, 这样, 其同步有比较好的性能。 步骤 302, 解析广播信道信息, 完成小区搜索;
步骤 303, 在终端带宽范围内, 以中心频点为参考, 在一个或多个随机 接入信道中竟争资源作随机接入, 完成终端在基站侧的注册;
由于大带宽终端的随机接入的资源也比较多, 因此, 随机接入的性能也 比较好。
步骤 304, 网络侧分析各个工作频段的负载情况, 根据负载衡量后为终 端分配工作频段;
网络侧的基站可以通过控制信道、数据共享信道或者指定的特殊信道下 发给终端, 终端进行工作频段调整。基站为终端分配的工作频段可以有一个 或多个。
步骤 305, 终端根据接收的频段分配情况, 如分配的不是终端当前所在 的工作频段, 则进行工作频段调整;
进行工作频段调整时, 终端将其频率调整或微调到分配的工作频段上。 如分配的是终端当前所在的工作频段则不需要再调整。
步骤 306, 终端在工作频段上作同步调整或同步;
终端进行工作频段调整后, 因为频段调整可能造成时延, 需要在新的工 作频段上根据同步信道进行同步调整, 如频段调整造成失步, 则需要在新的 工作频段上重新进行同步。
步驟 307, 终端接收下发的其它工作信息, 在工作频段按照终端带宽进 行工作。
终端在工作频段上可以继续接收下发的其它工作信息如 PCH信息或者 业务资源分配信息等。
请参照图 4, 在上行过程, 为了避免载波不正交以及干扰等问题, 带宽 能力为多倍单位带宽的终端将自身带宽分成一个或多个单位带宽。在接入系 统后, 可确定每一单位带宽对应的工作频段。 终端发送上行数据时, 对上行 数据编码调制后,映射到分配的载波上,再按照各单位带宽进行各自的 IFFT 运算以及后续处理(比如添加 CP等) , 然后通过射频分别发送。 射频分别 发送时有两种方式, 第一多个单位带宽的射频支持(其每个单位带宽的中心 频点不同, 与相应工作频段对应); 第二, 添加中频处理过程, 将多个单位 频段的时域数据叠加到终端带宽以及终端的中心频点 (具体方法不多做说 明, 此方法已有), 发射时, 按照终端最大带宽发射。 在接收端, 网络侧的 基站在整个系统带宽(满带宽)上接收, 设置多个单位带宽滤波器分别滤出 对应工作频段上的上行数据,再对收到的同一终端在各工作频段上的上行数 据分别进行 FFT变换、 解调和译码, 组合得到该终端完整的上行数据。 这 样就完成了大带宽终端的上行传输过程。 图 5示出了系统单位带宽为 20M, 终端带宽为 40M时的上行传输的示意图。
对于最小带宽终端的上行传输, 除了带宽能力为一个单位带宽外, 其它 处理包括网络侧的处理与大带宽终端的上行传输方法相同, 不再赞述。
工业实用性 采用本发明的方法, 对于终端, 下行过程的性能较好, 比如同步, 随机 接入等; 上行过程, 通过按最小带宽处理, 各个终端避免了载波不正交以及 干扰等问题。 对于系统来讲, 减少了运算复杂度。

Claims

权 利 要 求 书
1、 一种大带宽系统下终端的上行传输方法, 包括以下步骤:
( a )将所述大带宽系统的系统带宽按单位带宽等分为多个工作频段, 终端按系统单位带宽将自身带宽分为一个或多个单位带宽;
( b )所述终端接入系统后, 发送上行数据时, 将编码调制后的上行数 据映射到分配的载波上, 在所述一个或多个单位带宽上分别进行 IFFT运算 及后续处理, 然后通过射频发送。
2、 如权利要求 1所述的方法, 其特征在于,
步驟(b )之后还包括步骤(c ): 网络侧在整个系统带宽上接收上行数 据,设置多个单位带宽滤波器分别滤出对应工作频段上的上行数据, 对同一 终端在各工作频段上的上行数据分别进行 FFT变换、 解调和译码后, 组合 得到所述大带宽终端完整的上行数据。
3、 如权利要求 1或 2所述的方法, 其特征在于,
所述射频发送时,采用和终端等分得到的单位带宽数目相同的一个或多 个射频支持,每一射频单元发送一个单位带宽上的上行信号, 且各个射频单 元的中心频点为相应工作频段的中心频点。
4、 如权利要求 1或 2所述的方法, 其特征在于,
所述射频发送时, 是添加中频处理过程, 将多个单位频段的时域数据叠 加到终端带宽以及终端的中心频点, 发射时, 按照终端最大带宽发射。
5、 如权利要求 1所述的方法, 其特征在于, 所述单位带宽为系统中支 持的最小带宽终端的带宽。
6、 如权利要求 1所述的方法, 其特征在于,
所述终端为系统支持的最小带宽终端时,终端只在一个单位带宽上进行 上行数据的传输和处理; 所述终端带宽为多倍单位带宽时, 终端将自身带宽 等分为多个单位带宽,在所述多个单位带宽上分别进行各自的上行数据的传 输和处理。
7、 一种系统帧结构, 其特征在于, 所述系统帧结构的带宽等分为多个 频段, 在各个频段中分别设置有同步信道、 广播信道和随机接入信道, 且在 以系统中心频点为中心的一个单位带宽的范围内设有至少一组同步信道、广 播信道和随机接入信道, 所述单位带宽是系统支持的最小带宽终端的带宽。
8、 如权利要求 7所述的系统帧结构, 其特征在于,
所述各工作频段的同步信道、广播信道和随机接入信道是设置在相应工 作频段的中心位置处。
9、 如权利要求 7所述的系统帧结构,其特征在于, 所述一组同步信道、 广播信道和随机接入信道设置在系统中心频点处, 如系统带宽被等分为奇 数, 则该组信道同时也作为所在工作频段的信道。
PCT/CN2007/003927 2007-12-29 2007-12-29 一种大带宽系统下终端的上行传输方法及系统帧结构 WO2009086660A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003927 WO2009086660A1 (zh) 2007-12-29 2007-12-29 一种大带宽系统下终端的上行传输方法及系统帧结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/003927 WO2009086660A1 (zh) 2007-12-29 2007-12-29 一种大带宽系统下终端的上行传输方法及系统帧结构

Publications (1)

Publication Number Publication Date
WO2009086660A1 true WO2009086660A1 (zh) 2009-07-16

Family

ID=40852744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003927 WO2009086660A1 (zh) 2007-12-29 2007-12-29 一种大带宽系统下终端的上行传输方法及系统帧结构

Country Status (1)

Country Link
WO (1) WO2009086660A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567732A (zh) * 2003-07-02 2005-01-19 电子科技大学 一种新的超宽带信号的接收方法
CN1956356A (zh) * 2005-10-27 2007-05-02 中兴通讯股份有限公司 一种可灵活利用频谱资源的频段分配和接入方法及其系统
EP1819069A2 (en) * 2006-02-11 2007-08-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving broadcast channels in cellular communication systems supporting scalable bandwidth
WO2007138666A1 (ja) * 2006-05-29 2007-12-06 Panasonic Corporation 無線基地局装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1567732A (zh) * 2003-07-02 2005-01-19 电子科技大学 一种新的超宽带信号的接收方法
CN1956356A (zh) * 2005-10-27 2007-05-02 中兴通讯股份有限公司 一种可灵活利用频谱资源的频段分配和接入方法及其系统
EP1819069A2 (en) * 2006-02-11 2007-08-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving broadcast channels in cellular communication systems supporting scalable bandwidth
WO2007138666A1 (ja) * 2006-05-29 2007-12-06 Panasonic Corporation 無線基地局装置

Similar Documents

Publication Publication Date Title
US10826745B2 (en) System and method for guard band utilization for synchronous and asynchronous communications
RU2643643C1 (ru) Системы и способы для OFDM с гибкими интервалом поднесущей и продолжительностью символа
CN101282567B (zh) 一种支持多种多址接入的系统
US8238301B2 (en) Method, system, and wireless frame structure for supporting different mode of multiple access
CN107465496B (zh) 一种无线通信中的方法和装置
CN108605335A (zh) 用于多个服务的信令和控制信道结构
WO2011054368A1 (en) Method and apparatus for interference-resistant wireless communications
CA2581166C (en) Method for assigning frequency spectrum bandwidth of an ofdm and ofdma coexistence system
WO2018028270A1 (zh) 一种发送和检测同步信号的方法、设备
KR20090128063A (ko) 주파수 오버레이를 지원하는 광대역 무선통신 시스템에서공통제어채널 송수신 장치 및 방법
CN108123782B (zh) 一种无线通信中的方法和装置
KR101521202B1 (ko) 직교 주파수 분할 다중화 시스템에서의 이산 주파수 스펙트럼의 사용, 및 이산 주파수 스펙트럼을 이용하는 수신 방법 및 장치
KR101365561B1 (ko) 효율적인 동기 채널 전송 방법 및 이를 위한 전송 전력할당 방법
WO2009086660A1 (zh) 一种大带宽系统下终端的上行传输方法及系统帧结构
WO2009082843A1 (fr) Procédé d'accès d'un terminal à un système ayant une grande bande passante et sa structure de trame
CN117676878A (zh) 上下行频域非重叠全双工通信的资源配置方法、系统
CN116367170A (zh) 一种终端确定小区参数的方法
WO2009086659A1 (zh) 大带宽无线通信系统中终端的同步方法及帧结构
WO2009086657A1 (zh) 一种大带宽无线通信系统中终端的接入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07855927

Country of ref document: EP

Kind code of ref document: A1