WO2009085654A1 - Procédé de moulage de profil de turbine - Google Patents

Procédé de moulage de profil de turbine Download PDF

Info

Publication number
WO2009085654A1
WO2009085654A1 PCT/US2008/086569 US2008086569W WO2009085654A1 WO 2009085654 A1 WO2009085654 A1 WO 2009085654A1 US 2008086569 W US2008086569 W US 2008086569W WO 2009085654 A1 WO2009085654 A1 WO 2009085654A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
airfoil
core support
alloy
outer shell
Prior art date
Application number
PCT/US2008/086569
Other languages
English (en)
Inventor
Todd Jay Rockstroh
Sudhir K. Tewari
Joseph Giancario Sabato
Donald Brett Desander
Mark Douglas Gledhill
David Henry Abbott
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to CA2709940A priority Critical patent/CA2709940A1/fr
Priority to GB1010159A priority patent/GB2468083A/en
Priority to DE112008003545T priority patent/DE112008003545T5/de
Priority to JP2010540763A priority patent/JP2011509185A/ja
Publication of WO2009085654A1 publication Critical patent/WO2009085654A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/04Repairing fractures or cracked metal parts or products, e.g. castings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • F05D2230/211Manufacture essentially without removing material by casting by precision casting, e.g. microfusing or investment casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence

Definitions

  • This invention relates generally to the manufacture of gas turbine engine components and more particularly to methods for casting hollow turbine airfoils.
  • Cast turbine airfoils for advanced gas turbine engines have internal features that challenge the capability of current casting technologies.
  • the castings require complex ceramic cores to form the internal features and these cores are fragile during the casting process. The result is that casting yields of 50 percent to 70 percent are not uncommon. The 30 percent to 50 percent casting scrap factors into the cost of the useable castings.
  • One basic casting limitation is that the ceramic core that forms the internal structure of the airfoil can only be secured by the lower (i.e. root) portion with the majority of the core "floating" within the casting wax form.
  • the forces of the molten metal and thermally induced forces during the cooling and solidification cycle result in movement and/or breakage of the ceramic core (referred to as "core shift").
  • the motion can be such that the cast component no longer meets drawing requirements, for example by violating minimum casting wall thicknesses. If the core fractures during the process this will also cause the component to fail requirements.
  • the present invention provides a method for supporting an airfoil core during casting, while maintaining the metallurgical integrity of the finished component.
  • a method for making a turbine airfoil includes: (a) providing a mold having:(i) a core; (ii) an outer shell surrounding the core such that the core and the outer shell cooperatively define a cavity in the shape of an airfoil having at least one outer wall; and (iii) a core support extending from the core to the outer shell through a portion of the cavity that defines the at least one sidewall; (b) introducing molten metal alloy into the cavity and surrounding the core support; (c) solidifying the alloy to form an airfoil casting having at least one outer wall which has at least one core support opening passing therethrough; (d) removing the mold so as to expose the airfoil; and (e) sealing the at least one core support opening in the airfoil with a metal alloy metallurgically bonded to the at least one outer wall.
  • Figure 1 is a perspective view of an exemplary turbine blade constructed in accordance with an aspect of the present invention
  • Figure 2 is a perspective view of a mold core used in casting the blade shown in Figure 1, with a core support carried therein;
  • Figure 3 is another perspective view of the mold core of Figure 2;
  • Figure 4 is a partial cross-sectional view of an assembled mold
  • Figure 5 is a cross-sectional view of the mold of Figure 4 with a portion of a blade casting therein;
  • Figure 6 is a perspective view of an as-cast turbine blade, which includes an opening left by a core support;
  • Figure 7 is another perspective view of the turbine blade of Figure 6;
  • Figure 8 is a partial cross-sectional view of the turbine blade taken along lines ⁇ - ⁇ of Figure 7;
  • Figure 9 is a cross-sectional view taken along lines 9-9 of Figure 1; and [0017] Figure 10 is a schematic view of an apparatus for closing the core support opening in the turbine blade.
  • FIG. 1 illustrates an exemplary turbine blade 10.
  • the turbine blade 10 includes a conventional dovetail 12, which may have any suitable form including tangs that engage complementary tangs of a dovetail slot in a rotor disk (not shown) for radially retaining the blade 10 to the disk as it rotates during operation.
  • a blade shank 14 extends radially upwardly from the dovetail 12 and terminates in a platform 16 that projects laterally outwardly from and surrounds the shank 14.
  • a hollow airfoil 18 extends radially outwardly from the platform 16.
  • the airfoil 18 has a concave pressure side outer wall 20 and a convex suction side outer wall 22 joined together at a leading edge 24 and at a trailing edge 26.
  • the airfoil 18 may take any configuration suitable for extracting energy from the hot gas stream and causing rotation of the rotor disk.
  • the blade 10 is preferably formed as a one-piece casting of a suitable "superalloy" of a known type, such as a nickel-based superalloy (e.g. Rene 80, Rene 142, ReneN4, Rene N5) which has acceptable strength at the elevated temperatures of operation in a gas turbine engine.
  • the airfoil 18 has a root 25 and a tip 27, and incorporates a number of trailing edge bleed holes 28.
  • the interior of the turbine blade 10 is mostly hollow and includes a number of internal cooling features of a known type, such as walls defining serpentine passages, ribs, turbulence promoters ("turbulators"), etc. While the turbine blade 10 is a high pressure turbine blade, the principles of the present invention are applicable to any type of airfoil having a hollow interior.
  • Components such as the turbine blade 10 are manufactured using a known investment casting process.
  • the method includes shaping the turbine blade in wax by enveloping a conventional alumina or silica based ceramic core which defines internal coolant passages.
  • the wax assembly then undergoes a series of dips in liquid ceramic solution.
  • the part is allowed to dry after each dip, forming a hard outer shell, typically a conventional zirconia based ceramic shell.
  • the wax assembly is encased by several layers of hardened ceramic shell, the assembly is placed in a furnace where the wax in the shell is melted out.
  • the mold After wax removal, the mold comprises the internal ceramic core surrounded by the outer ceramic shell.
  • the cavity between the core and the outer shell defines the component and its interior features.
  • the mold is again placed in the furnace, and liquid metal is poured into an opening at the top of the mold.
  • the molten metal enters the space between the ceramic core and the ceramic shell, previously filled by the wax.
  • the external shell is broken and removed, exposing the casting which has taken the shape of the cavity created by removal of the wax, and which encases the internal ceramic core.
  • the casting is then placed in a leeching tank, where the core is dissolved.
  • the component now has the shape of the wax form, and an internal cavity which was previously filled by the internal ceramic core.
  • the relative thermal growths of the ceramic outer shell and the ceramic core material are different, so that after the metal has been poured and is allowed to cool, the relative shrinking of the shell and core components are different. This can cause varying wall thicknesses at areas of the metal nozzle part where one side of the wall is defined by the external shell, and the other side of the wall is engaged by the internal core.
  • the core is typically allowed to "float" and may thus shift its position relative to the outer shell during the casting process. This can cause the walls of a component such as an airfoil to be less than a required minimum thickness.
  • FIGS 2 and 3 are pre-casting views of a core 30 with a core support 32 captured therein.
  • a surrounding outer shell 34 comprises first and second sidewalls 34A and 34, as shown in Figure 4.
  • Figure 4 also shows the core support 32 passing sequentially through the first sidewall 34A, a first portion 36 of wax fill, the core 30, a second portion of wax fill 38, and the second sidewall 34B.
  • the core support 32 takes the form of a circular cross-section rod, but other cross-sectional shapes may be used to suit a particular application.
  • the core support 32 is constructed from a suitable material having a melting point higher than the alloy used for the turbine blade 10, which may be a known nickel- or cobalt-based "superalloy".
  • suitable core support materials include fused quartz, or a ceramic such as Yttria, (Y2O3) or samarium oxide (S1112O3), as used to make the core 30.
  • the core support 32 remains in place during the casting process and resists motion of the core 30 during pouring and solidification. While any number of core supports 32 may be used and placed at any desired location, it is beneficial to support the core 30 in an area, denoted "A" in Figure 2, which defines the airfoil 18. This area of the core 30 is normally unsupported portion of the core 30, and is a substantial distance from the part of the core 30 which defines the blade shank 14. Support of the core helps maintain the core-to-outer shell spacing "S", which directly affects the outer wall thickness of the finished turbine blade 10.
  • Figure 5 is a post-casting partial cross-section which shows the core support 32 passing sequentially through the first sidewall 34A of the outer shell 34, the pressure side outer wall 20 of the turbine blade 10, the core 30, the suction side outer wall 22 of the turbine blade 10, and the second sidewall 34B of the outer shell 34.
  • FIG. 6-8 illustrate the turbine blade 10 after casting and removal of the outer shell 34, core 30, and core support 32.
  • the turbine blade 10 includes core support openings 40 and 42 in the pressure and suction side outer walls 20 and 22, respectively.
  • the core support openings 40 and 42 must be sealed before the turbine blade 10 is usable. Although it is possible to seal them using brazing techniques, this is not a metallurgical bond and does not have the same properties as the basic turbine blade 10, which has a directionally-solidified or single-crystal microstructure imparting enhanced high-temperature strength and creep resistance.
  • FIG. 10 An example of a suitable apparatus for sealing the core support openings 40 and 42 is disclosed in U.S. Patent No. 5,622,638 to Schell et al., assigned to the assignee of this invention, and is schematically illustrated in Figure 10.
  • the apparatus includes a laser 44, an enclosed beam delivery conduit 46, laser focusing optics 48, a part positioning system SO, a vision system 52 for part location and laser path control, an optional preheat box (not shown), and a powder feed system 54 with a powder tube 56.
  • the working and coordination of the individual parts of the apparatus are controlled through a computerized system controller 58.
  • the powder enters the laser beam in close proximity to the blade 10 as it is manipulated to cause melting and weld build-up.
  • the core support openings 40 and 42 may be sealed by using this apparatus to deposit molten alloy powder in one or more passes. Alternatively, powder can be deposited and then heated to melt and fuse it to the airfoil 18. In either case, the power alloy composition is substantially the same as that of the basic turbine blade 10.
  • This process sometimes referred to as "reverse machining", produces a plug or patch that is metallurgically bonded to the core support openings 40 and 42, effectively forming an integral structure with the turbine airfoil 10. With proper control of the process parameters, this process can produce the same microstructure in the plug or patch (e.g. directionally solidified or single crystal) as that of the turbine blade 10.
  • the finished turbine blade 10 is shown in Figures 1 and 9. This process will result in substantially higher casting yields, because of the prevention of core shift, while maintaining the desired high-temperature properties of the turbine blade 10.

Abstract

L'invention concerne un procédé de réalisation d'un profil de turbine comprenant : (a) la mise en œuvre d'un moule ayant (i) un noyau, (ii) une carapace extérieure entourant le noyau de sorte que le noyau et la carapace extérieure définissent en coopération une cavité sous la forme d'un profil ayant au moins une paroi extérieure ; et (iii) un support de noyau s'étendant du noyau jusqu'à la carapace extérieure au travers d'une partie de la cavité qui définit ladite ou lesdites parois latérales ; (b) l'introduction d'un alliage métallique liquide dans la cavité et autour du support de noyau ; (c) la solidification de l'alliage pour former un moulage de profil ayant au moins une paroi extérieure qui est traversée par au moins une ouverture de support de noyau ; (d) le retrait du moule afin d'exposer le profil ; et (e) l'étanchéité de ladite ou lesdites ouvertures de support de noyau dans le profil à l'aide d'un alliage métallique collé de manière métallurgique à ladite ou lesdites parois extérieures.
PCT/US2008/086569 2007-12-31 2008-12-12 Procédé de moulage de profil de turbine WO2009085654A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2709940A CA2709940A1 (fr) 2007-12-31 2008-12-12 Procede de moulage de profil de turbine
GB1010159A GB2468083A (en) 2007-12-31 2008-12-12 Turbine airfoil casting method
DE112008003545T DE112008003545T5 (de) 2007-12-31 2008-12-12 Gießverfahren für Turbinenschaufelblätter
JP2010540763A JP2011509185A (ja) 2007-12-31 2008-12-12 タービンエアフォイルの鋳造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/968,022 US20090165988A1 (en) 2007-12-31 2007-12-31 Turbine airfoil casting method
US11/968,022 2007-12-31

Publications (1)

Publication Number Publication Date
WO2009085654A1 true WO2009085654A1 (fr) 2009-07-09

Family

ID=40342316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/086569 WO2009085654A1 (fr) 2007-12-31 2008-12-12 Procédé de moulage de profil de turbine

Country Status (6)

Country Link
US (1) US20090165988A1 (fr)
JP (1) JP2011509185A (fr)
CA (1) CA2709940A1 (fr)
DE (1) DE112008003545T5 (fr)
GB (1) GB2468083A (fr)
WO (1) WO2009085654A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111437A1 (fr) * 2016-12-13 2018-06-21 General Electric Company Structure noyau-enveloppe de coulée intégrée pour fabriquer un composant coulé avec des trous de refroidissement dans des emplacements inaccessibles
CN110062673A (zh) * 2016-12-13 2019-07-26 通用电气公司 带有浮动顶腔的一体化铸造芯壳结构
US11351599B2 (en) 2016-12-13 2022-06-07 General Electric Company Multi-piece integrated core-shell structure for making cast component
US11813669B2 (en) 2016-12-13 2023-11-14 General Electric Company Method for making an integrated core-shell structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8752609B2 (en) * 2009-11-05 2014-06-17 Dresser-Rand Company One-piece manufacturing process
US9550230B2 (en) * 2011-09-16 2017-01-24 United Technologies Corporation Mold for casting a workpiece that includes one or more casting pins
SG10201900946WA (en) 2012-12-14 2019-03-28 United Technologies Corp Hybrid turbine blade for improved engine performance or architecture
SG10201610144XA (en) 2012-12-14 2017-01-27 United Technologies Corp Multi-shot casting
US9057276B2 (en) 2013-02-06 2015-06-16 Siemens Aktiengesellschaft Twisted gas turbine engine airfoil having a twisted rib
US9797258B2 (en) * 2013-10-23 2017-10-24 General Electric Company Turbine bucket including cooling passage with turn
WO2015112583A1 (fr) * 2014-01-21 2015-07-30 United Technologies Corporation Procédé permettant de former des composants monocristallins à l'aide d'une fabrication additive et d'une refusion
US9435211B2 (en) 2014-05-09 2016-09-06 United Technologies Corporation Method for forming components using additive manufacturing and re-melt
FR3037972B1 (fr) * 2015-06-29 2017-07-21 Snecma Procede simplifiant le noyau utilise pour la fabrication d'une aube de turbomachine
FR3037830B1 (fr) * 2015-06-29 2024-02-16 Snecma Ensemble de moulage d'une aube de turbomachine, comprenant une portion en relief de grande section
US10053989B2 (en) 2015-12-21 2018-08-21 General Electric Company Cooling circuit for a multi-wall blade
WO2019046036A1 (fr) * 2017-08-28 2019-03-07 Siemens Aktiengesellschaft Procédé pour réaliser un profil aérodynamique de turbine
DE102021204782A1 (de) 2021-05-11 2022-11-17 Siemens Energy Global GmbH & Co. KG Verbesserte Schaufelspitze im Neuteil oder repariertem Bauteil und Verfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249300A1 (fr) * 2001-04-12 2002-10-16 General Electric Company Méthode de réparation laser pour des superalliages base Nickel aayant une haute teneur de phase gamma prime
EP1396299A1 (fr) * 2002-09-06 2004-03-10 Siemens Aktiengesellschaft Procédé pour réparer un trou dans une structure
EP1561536A1 (fr) * 2004-02-03 2005-08-10 Siemens Aktiengesellschaft Procédé de réparation par brasage d'une pièce ayant un matériau de base avec une microstructure orientée
EP1775054A1 (fr) * 2005-10-14 2007-04-18 General Electric Company Procédé de fermeture d'une ouverture dans une aube de turbine creuse en super-alliage à base de nickel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659645A (en) * 1965-08-09 1972-05-02 Trw Inc Means for supporting core in open ended shell mold
US5810552A (en) * 1992-02-18 1998-09-22 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures having a high thermal conductivity member connecting the walls and methods of making the same
US5584663A (en) 1994-08-15 1996-12-17 General Electric Company Environmentally-resistant turbine blade tip
DE19905887C1 (de) * 1999-02-11 2000-08-24 Abb Alstom Power Ch Ag Hohlgegossenes Bauteil
US6454156B1 (en) * 2000-06-23 2002-09-24 Siemens Westinghouse Power Corporation Method for closing core printout holes in superalloy gas turbine blades

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1249300A1 (fr) * 2001-04-12 2002-10-16 General Electric Company Méthode de réparation laser pour des superalliages base Nickel aayant une haute teneur de phase gamma prime
EP1396299A1 (fr) * 2002-09-06 2004-03-10 Siemens Aktiengesellschaft Procédé pour réparer un trou dans une structure
EP1561536A1 (fr) * 2004-02-03 2005-08-10 Siemens Aktiengesellschaft Procédé de réparation par brasage d'une pièce ayant un matériau de base avec une microstructure orientée
EP1775054A1 (fr) * 2005-10-14 2007-04-18 General Electric Company Procédé de fermeture d'une ouverture dans une aube de turbine creuse en super-alliage à base de nickel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018111437A1 (fr) * 2016-12-13 2018-06-21 General Electric Company Structure noyau-enveloppe de coulée intégrée pour fabriquer un composant coulé avec des trous de refroidissement dans des emplacements inaccessibles
CN110062673A (zh) * 2016-12-13 2019-07-26 通用电气公司 带有浮动顶腔的一体化铸造芯壳结构
US10807154B2 (en) 2016-12-13 2020-10-20 General Electric Company Integrated casting core-shell structure for making cast component with cooling holes in inaccessible locations
CN110062673B (zh) * 2016-12-13 2021-11-30 通用电气公司 带有浮动顶腔的一体化铸造芯壳结构
US11351599B2 (en) 2016-12-13 2022-06-07 General Electric Company Multi-piece integrated core-shell structure for making cast component
US11813669B2 (en) 2016-12-13 2023-11-14 General Electric Company Method for making an integrated core-shell structure

Also Published As

Publication number Publication date
DE112008003545T5 (de) 2010-12-09
JP2011509185A (ja) 2011-03-24
GB201010159D0 (en) 2010-07-28
GB2468083A (en) 2010-08-25
CA2709940A1 (fr) 2009-07-09
US20090165988A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
US20090165988A1 (en) Turbine airfoil casting method
EP2366476B1 (fr) Procédé de fabrication de surfaces portantes de turbine et structures à pointe associées
US20100200189A1 (en) Method of fabricating turbine airfoils and tip structures therefor
EP3585556B1 (fr) Procédé de fabrication d'un profil aérodynamique de turbine et composant de pointe correspondant
JP5887052B2 (ja) 耐酸化性フィラー材料で単結晶タービンブレード先端部を溶接する方法
US7610946B2 (en) Cooled turbine blade cast tip recess
EP1614488B2 (fr) Méthode de coulée utilisant un modèle produit par stéréolithographie
JP5451463B2 (ja) タービン翼形部及びその先端構造体を製造する方法
EP3585534A1 (fr) Procédé de fabrication d'un profil aérodynamique de turbine avec moulage à pointe ouverte et composant de pointe correspondant
EP0815993B1 (fr) Procédé de fabrication d'une extension d'un article à partir d'une masse fondue, utilisant un moule céramique
EP3585555B1 (fr) Procédé de fabrication de profil aérodynamique de turbine
JP4348423B2 (ja) 製品の末端上に延長部分を形成するための方法
EP0815992B1 (fr) Procédé de fabrication d'une extension d'un article à partir d'un masse fondu, utilisant une préforme dans un moule céramique
JPH06210433A (ja) 溶融材料から部材の成長を開始する方法、部品の端部に延長部を設ける方法、及び損傷した部品のエアホイル形状先端部を修理する方法、並びに部品
US20080202718A1 (en) Process For Producing A Lost Model, And Core Introduced Therein
JPH06182523A (ja) 部品の端部に延長部を設ける方法
EP0815990B1 (fr) Procédé de fabrication d'une extension d'un article à partir d'une masse fondue, utilisant un mandrin intégré et un moule céramique
EP0785039B1 (fr) Solidification d'une extension d'un article à partir d'une masse fondue, utilisant un moule céramique
CA2696274A1 (fr) Procede de fabrication de profils de turbines et de structures d'inclinaison connexes
EP0815991B1 (fr) Procédé de fabrication d'une extension d'un article à partir d'une masse fondue d'un mandrin dans un moule céramique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1010159

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20081212

WWE Wipo information: entry into national phase

Ref document number: 1010159.0

Country of ref document: GB

Ref document number: 2709940

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010540763

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120080035458

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112008003545

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08868791

Country of ref document: EP

Kind code of ref document: A1