WO2009081942A1 - Spiral-type film module, and film filtering device using the same - Google Patents

Spiral-type film module, and film filtering device using the same Download PDF

Info

Publication number
WO2009081942A1
WO2009081942A1 PCT/JP2008/073455 JP2008073455W WO2009081942A1 WO 2009081942 A1 WO2009081942 A1 WO 2009081942A1 JP 2008073455 W JP2008073455 W JP 2008073455W WO 2009081942 A1 WO2009081942 A1 WO 2009081942A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
membrane
wireless tag
pressure sensor
membrane module
Prior art date
Application number
PCT/JP2008/073455
Other languages
French (fr)
Japanese (ja)
Inventor
Takahisa Konishi
Kouji Maruyama
Toshiki Kouno
Keisuke Hirano
Akira Ootani
Hiroshi Yoshikawa
Norio Ikeyama
Yoshihiko Kondou
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2009081942A1 publication Critical patent/WO2009081942A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/60Specific sensors or sensor arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/90Additional auxiliary systems integrated with the module or apparatus

Definitions

  • a plurality of spiral-type membrane elements in which one or more of a separation membrane, a supply-side channel material and a permeate-side channel material are wound around a perforated hollow central tube are connected to each other in a pressure vessel.
  • the present invention relates to a spiral-type membrane module loaded on a membrane and a membrane filtration device using the same.
  • a spiral membrane element (hereinafter also simply referred to as “membrane element”) is a perforated hollow shape in which a separation membrane unit including one or more of a separation membrane, a supply-side flow path material, and a permeate-side flow path material. It has a structure wound around a central tube (hereinafter also simply referred to as “central tube”) (see, for example, Patent Document 1).
  • FIG. 4 is a partially cutaway perspective view of a conventional membrane element.
  • the membrane element 1 shown in this figure includes an envelope-like membrane (bag-like membrane) 4 in which separation membranes 2 are superimposed on both sides of a permeate-side flow passage material 3, and a net-like (net-like) supply-side flow passage material 6.
  • the separation membrane unit is formed by spirally winding the outer peripheral surface of the central tube 5.
  • an exterior material (not shown) is wound around the outer periphery of the wound body of the separation membrane unit.
  • the supply liquid 7 is supplied from one end face side of the membrane element 1.
  • the supplied supply liquid 7 flows along the supply-side flow path member 6 in a direction parallel to the axial direction of the central tube 5 and is discharged as a concentrated liquid 9 from the other end face side of the membrane element 1.
  • the permeated liquid 8 that has permeated through the separation membrane 2 in the process in which the supply liquid 7 flows along the supply-side flow path material 6 passes through the permeation-side flow path material 3 along the permeation-side flow path material 3 as shown by the broken line arrow in the figure. It flows into the interior and is discharged from the end of the central tube 5.
  • the spiral membrane module generally has a structure in which a plurality of membrane elements as described above are connected and loaded in a pressure vessel.
  • a membrane filtration apparatus is configured by holding one or a plurality of spiral membrane modules in a rack called a train, for example.
  • the processing characteristics pressure, permeate flow rate, liquid quality, etc.
  • the degree of contamination of the separation membrane differs depending on the position of each membrane element in the train.
  • the new membrane element and the membrane element that can still be used are appropriately combined and accommodated in the train. That is, the arrangement and combination of the membrane elements are optimized so that the optimum processing performance can be finally exhibited in the entire train.
  • optimization is performed based only on the period of use, so that it cannot be said that the optimization is sufficiently performed.
  • the present invention has been made in view of the above circumstances, and provides a spiral membrane module capable of determining the degree of deterioration for each membrane element by a simple method, and a membrane filtration device using the spiral membrane module.
  • the spiral membrane module of the present invention comprises a plurality of spiral membrane elements in which one or more of a separation membrane, a supply side channel material and a permeate side channel material are wound around a perforated hollow central tube.
  • a pressure sensor for detecting a pressure value applied to an outer peripheral portion of each spiral membrane element and a wireless tag for transmitting the pressure value detected by the pressure sensor in the spiral membrane module loaded in the pressure vessel It is characterized by comprising.
  • the pressure value applied to the outer periphery of each membrane element (that is, the pressure value on the supply side) is detected by the pressure sensor, and the pressure value is transmitted by the wireless tag. Since the pressure value on the supply side that varies depending on the degree of contamination of the separation membrane can be detected from the outside, the degree of deterioration can be determined for each membrane element by a simple method. Also, the processing characteristics of each membrane element can be managed by storing data in the wireless tag in advance and reading the data from the outside. Therefore, management can be performed with higher accuracy based on data stored in the wireless tag and data obtained by the pressure sensor.
  • the pressure sensor may be configured to receive power supply from the outside via the wireless tag. This is because it is not necessary to provide a separate power source for driving the pressure sensor, so that the module configuration can be simplified.
  • the spiral membrane module of the present invention may further include a converter that converts the alternating current generated by the electromagnetic induction into a direct current and supplies the direct current to the pressure sensor. This is because a conventional pressure sensor driven by a direct current power source can be used, so that cost reduction is facilitated.
  • the membrane filtration device of the present invention is a membrane filtration device including one or more spiral membrane modules, wherein the spiral membrane module is the above-described spiral membrane module of the present invention.
  • the operation pressure is adjusted to keep the permeate amount constant, but when the membrane element in the pressure vessel is clogged at that time, the pressure loss increases accordingly, Even at the same operating pressure, the amount of permeate tends to decrease. In order to compensate for this, the operating pressure is increased to ensure the necessary amount of permeate.
  • the membrane filtration device of the present invention since the spiral membrane module of the present invention is provided, the pressure applied to each membrane element can be detected. Therefore, for example, the differential pressure between adjacent membrane elements can be detected when the membrane elements are connected in series. Accordingly, since it can be determined at which part in the membrane filtration device the differential pressure is greater, it is possible to accurately determine the degree of deterioration (blocking degree) of each membrane element by a simple method.
  • the membrane filtration device of the present invention may include a determination unit that determines the degree of deterioration of each spiral membrane element based on the pressure value transmitted from the wireless tag of the spiral membrane module. This is because the maintenance time of each membrane element can be appropriately determined.
  • a power supply unit that supplies power to the pressure sensor via the wireless tag May further be included. This is because it is easy to simplify the module configuration by providing a power supply unit for driving the pressure sensor outside the spiral membrane module.
  • a configuration in which the power supply unit supplies power by electromagnetic induction via the wireless tag can be cited.
  • the membrane element used in the spiral membrane module of the present invention has a structure in which one or more of a separation membrane, a supply-side channel material and a permeate-side channel material are wound around a perforated hollow central tube.
  • a membrane element is also described in detail in Patent Document 1 described above, and any of conventionally known separation membranes, supply-side flow channel materials, permeation-side flow channel materials, central tubes, and the like can be employed.
  • a plurality of supply-side channel materials and permeation-side channel materials are used, a structure in which a plurality of membrane leaves are wound around the central tube is obtained.
  • FIG. 1 is a schematic cross-sectional view showing an example of the spiral membrane module of the present invention
  • FIG. 2 is a cross-sectional view taken along line II of the spiral membrane module of FIG.
  • the spiral membrane module 50 includes a plurality of membrane elements 10 loaded in a state of being connected in series in the pressure vessel 40. Adjacent membrane elements 10 are connected to each other via the central tube 20 and a tubular interconnector 42.
  • the spiral membrane module 50 includes a wireless tag 30 provided on the outer periphery of each membrane element 10.
  • the wireless tag 30 incorporates a pressure sensor 33 (see FIG. 3).
  • the pressure sensor 33 is a pressure value applied to the outer peripheral portion of each membrane element 10 (that is, a pressure value on the supply side). ) Can be detected. Then, the pressure value detected by the pressure sensor 33 is transmitted by the antenna 31 (see FIG.
  • the wireless tag 30 is provided on the outer peripheral portion of the concentration side end portion of each membrane element 10, but the present invention is not limited to this, and the supply side end portion, the central portion, etc. It may be provided at any position. However, in order to accurately manage the differential pressure between adjacent membrane elements 10, it is preferable to provide the wireless tag 30 at the same location in all the membrane elements 10.
  • the pressure vessel 40 is made of metal such as fiber reinforced plastic (FRP) or stainless steel, for example.
  • FRP fiber reinforced plastic
  • the thickness of the wall portion of the pressure vessel 40 may be of a level that does not hinder communication by the wireless tag 30 described later, and is, for example, about 10 to 80 mm.
  • a supply liquid inlet 48 into which a supply liquid such as drainage or seawater flows is formed at one end of the pressure vessel 40, and the supply liquid flowing in from the supply liquid inlet 48 passes through the plurality of membrane elements 10.
  • a purified permeate and a concentrated liquid are obtained.
  • a permeate outlet 46 through which the permeate flows out and a concentrate outlet 44 through which the concentrate flows out are formed at the other end of the pressure vessel 40.
  • the membrane element 10 has a separation membrane unit 16 wound around a central tube 20, and an outer wrap 26 is wound around the outer periphery of the wound body of the separation membrane unit 16.
  • the outer wrap 26 is formed of a water resistant material such as polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), fiber reinforced plastic (FRP), and the like.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • FRP fiber reinforced plastic
  • the wireless tag 30 is fixed to the external wrap 26 with an adhesive or the like, and is covered with an exterior material 28 made of fiber reinforced plastic (FRP) or the like together with the external wrap 26.
  • the thickness of the exterior material 28 may be a thickness that does not hinder communication by the wireless tag 30 described later, and is, for example, about 0.01 to 3 mm. According to the configuration of FIG.
  • the wireless tag 30 can be prevented from being exposed to the supply liquid.
  • the installation location of the wireless tag 30 is not particularly limited as long as the pressure value applied to the outer peripheral portion of the membrane element 10 can be detected, and may be, for example, the outer peripheral side of the exterior material 28.
  • FIG. 3 to be referred to is a schematic block diagram showing an electrical configuration for explaining an example of the membrane filtration device of the present invention.
  • the components of the spiral membrane module 50 described above will be used.
  • the spiral membrane module that can be used in the membrane filtration device of the present invention includes the spiral membrane module 50 described above. It is not limited.
  • the configuration includes one spiral membrane module.
  • the present invention is not limited to this, and may include a plurality of spiral membrane modules.
  • the membrane filtration device 100 includes a reader / writer 60, a control device 70, and the like in addition to the spiral membrane module 50.
  • the control device 70 controls the operation of the reader / writer 60 and the like based on a setting value input by a user via an input means (not shown) such as a touch panel or a button or stored in advance in a memory. Further, as will be described later, the control device 70 includes a determination unit 71 that determines the degree of deterioration of each membrane element 10 based on the pressure value transmitted from the wireless tag 30. In addition, the control apparatus 70 can be normally implement
  • the antenna 31, the converter 32, and the pressure sensor 33 are incorporated in the wireless tag 30.
  • a power supply unit 61 and an antenna 62 are incorporated in the reader / writer 60.
  • the reader / writer 60 is provided outside the spiral membrane module 50 at a position close to each wireless tag 30.
  • the distance between each reader / writer 60 and each wireless tag 30 may be a distance (for example, about 1 to 500 cm) that can transmit and receive data and the like.
  • Communication between the wireless tag 30 and the reader / writer 60 is performed via the antenna 31 of the wireless tag 30 and the antenna 62 of the reader / writer 60.
  • each reader / writer 60 is provided at a position close to each wireless tag 30.
  • the present invention is not limited to this.
  • a plurality of wireless reader / writers may be used by using a movable reader / writer. It is good also as a structure which transmits / receives with respect to a tag by one reader / writer.
  • the pressure sensor 33 incorporated in the wireless tag 30 is supplied with electric power by electromagnetic induction from the power supply unit 61 incorporated in the reader / writer 60 via the antenna 31 of the wireless tag 30 and the antenna 62 of the reader / writer 60.
  • the converter 32 incorporated in the wireless tag 30 converts the alternating current generated by the electromagnetic induction into a direct current and supplies it to the pressure sensor 33.
  • the wireless tag 30 for example, a conventionally known RFID (Radio Frequency Identification) tag or the like in which a converter 32, a pressure sensor 33, or the like is incorporated can be used.
  • a conventionally known AC / DC converter or the like can be used as the converter 32.
  • the pressure sensor 33 is preferably one having low power consumption that can be driven by electric power supplied by electromagnetic induction.
  • a pressure sensor (trade name: Flexi Force, model: A201-25) manufactured by Nitta Corporation is used. Can be used.
  • the reader / writer 60 for example, a conventionally known RFID tag reader / writer incorporating the power supply unit 61 or the like can be used.
  • the power supply unit 61 for example, an electromagnetic wave generator or the like can be used.
  • each reader / writer 60 applies each radio tag 30 of the corresponding membrane element 10 to each wireless tag 30 based on a command from the control device 70.
  • a signal asking for a pressure value applied to the outer peripheral portion of the membrane element 10 is transmitted.
  • power is supplied from the corresponding power supply unit 61 to each pressure sensor 33.
  • Each pressure sensor 33 detects a pressure value applied to the outer peripheral portion of the corresponding membrane element 10 and transmits the pressure value to the corresponding reader / writer 60 via the antenna 31 of the wireless tag 30.
  • each reader / writer 60 transmits the pressure value from the corresponding pressure sensor 33 to the control device 70.
  • the determination unit 71 of the control device 70 determines the degree of deterioration of each membrane element 10 based on each pressure value.
  • data such as position information and use period may be stored in each wireless tag 30 in advance, and each reader / writer 60 may read the data based on a command from the control device 70.
  • the determination unit 71 calculates the differential pressure between the adjacent membrane elements 10, and when the value is equal to or greater than a predetermined threshold value, the display unit such as a display (not shown) of the membrane element 10 requiring maintenance is calculated. The position can be displayed. Further, each reader / writer 60 can track the change over time of each membrane element 10 by writing the obtained pressure value to each wireless tag 30 based on the command of the control device 70.
  • the pressure sensor is configured to receive power supply by electromagnetic induction from the power supply unit incorporated in the reader / writer, but the present invention is not limited to this, and a battery is separately provided, It is good also as a structure which drives a pressure sensor with a battery.
  • the pressure sensor and the converter are incorporated in the wireless tag.
  • the present invention is not limited to this, and the pressure sensor, the converter, and the wireless tag may be arranged separately.
  • the wireless tag and the converter do not need to be attached to the outer peripheral portion of the membrane element.
  • they are attached to an end surface holding member (seal carrier or telescope prevention member) provided at the end of the membrane element.
  • An attached configuration may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided are a spiral-type film module capable of deciding the degree of deterioration for each film element by a simple method, and a film filtering device using the film module. In the spiral-type film module (50), spiral-type film elements (10) each having one or more of a separating film, a feeding-side passage member and a transmitting-side passage member wound around a porous, hollow center tube are connected in plurality and fitted in a pressure container. The spiral-type film module (50) is characterized by comprising a pressure sensor (33) for detecting a pressure level to be applied to the outer circumference portion of each of the spiral-type film elements (10), and a wireless tag (30) for transmitting the pressure level detected by the pressure sensor (33).

Description

スパイラル型膜モジュール及びこれを用いた膜濾過装置Spiral membrane module and membrane filtration device using the same
 本発明は、分離膜、供給側流路材及び透過側流路材の単数又は複数が有孔の中空状中心管の周りに巻きつけられたスパイラル型膜エレメントが、複数連結されて耐圧容器内に装填されているスパイラル型膜モジュールと、これを用いた膜濾過装置に関する。 In the present invention, a plurality of spiral-type membrane elements in which one or more of a separation membrane, a supply-side channel material and a permeate-side channel material are wound around a perforated hollow central tube are connected to each other in a pressure vessel. The present invention relates to a spiral-type membrane module loaded on a membrane and a membrane filtration device using the same.
 スパイラル型膜エレメント(以下、単に「膜エレメント」ともいう)は、一般的に、分離膜、供給側流路材及び透過側流路材を単数又は複数含む分離膜ユニットが、有孔の中空状中心管(以下、単に「中心管」ともいう)の周りに巻きつけられた構造を有する(例えば、特許文献1参照)。 Generally, a spiral membrane element (hereinafter also simply referred to as “membrane element”) is a perforated hollow shape in which a separation membrane unit including one or more of a separation membrane, a supply-side flow path material, and a permeate-side flow path material. It has a structure wound around a central tube (hereinafter also simply referred to as “central tube”) (see, for example, Patent Document 1).
 図4は、従来の膜エレメントの一部切欠き斜視図である。この図に示す膜エレメント1は、透過側流路材3の両面に分離膜2を重ね合わせた封筒状膜(袋状膜)4と、ネット状(網状)の供給側流路材6とからなる分離膜ユニットを中心管5の外周面にスパイラル状に巻回することにより構成される。通常、上記分離膜ユニットの巻回体の外周には、外装材(図示せず)が巻き付けられている。 FIG. 4 is a partially cutaway perspective view of a conventional membrane element. The membrane element 1 shown in this figure includes an envelope-like membrane (bag-like membrane) 4 in which separation membranes 2 are superimposed on both sides of a permeate-side flow passage material 3, and a net-like (net-like) supply-side flow passage material 6. The separation membrane unit is formed by spirally winding the outer peripheral surface of the central tube 5. Usually, an exterior material (not shown) is wound around the outer periphery of the wound body of the separation membrane unit.
 上記膜エレメント1を使用する際は、供給液7は膜エレメント1の一方の端面側から供給される。供給された供給液7は、供給側流路材6に沿って中心管5の軸方向に平行な方向に流れ、膜エレメント1の他方の端面側から濃縮液9として排出される。また、供給液7が供給側流路材6に沿って流れる過程で分離膜2を透過した透過液8は、図中破線矢印に示すように透過側流路材3に沿って中心管5の内部に流れ込み、この中心管5の端部から排出される。 When the membrane element 1 is used, the supply liquid 7 is supplied from one end face side of the membrane element 1. The supplied supply liquid 7 flows along the supply-side flow path member 6 in a direction parallel to the axial direction of the central tube 5 and is discharged as a concentrated liquid 9 from the other end face side of the membrane element 1. Further, the permeated liquid 8 that has permeated through the separation membrane 2 in the process in which the supply liquid 7 flows along the supply-side flow path material 6 passes through the permeation-side flow path material 3 along the permeation-side flow path material 3 as shown by the broken line arrow in the figure. It flows into the interior and is discharged from the end of the central tube 5.
 また、スパイラル型膜モジュールは、一般的に、上述のような膜エレメントが複数連結されて、耐圧容器内に装填されている構造を有する。そして、このスパイラル型膜モジュールの単数又は複数が、例えばトレーンと呼ばれるラックで保持されることにより膜濾過装置が構成される。 In addition, the spiral membrane module generally has a structure in which a plurality of membrane elements as described above are connected and loaded in a pressure vessel. A membrane filtration apparatus is configured by holding one or a plurality of spiral membrane modules in a rack called a train, for example.
特開平10-137558号公報JP-A-10-137558
 この種の膜濾過装置では、通常、トレーンごとに処理特性(圧力、透過液の流量や液質など)の管理が行われている。例えば、複数の膜エレメントを含むスパイラル型膜モジュールがトレーン内に多数本配置された構成では、トレーンにおける各膜エレメントの位置に応じて、分離膜の汚染具合が異なるため、膜エレメントを交換する際には、新しい膜エレメントと、まだ使用可能な膜エレメントを適宜に組み合わせてトレーン内に収容している。即ち、最終的にトレーン全体で最適な処理性能を発揮できるように、各膜エレメントの配置及び組み合わせの最適化を行っている。しかしながら、現状では、使用期間のみに基づいて最適化を行っているため、十分に最適化が行われているとは言えない。 In this type of membrane filtration apparatus, the processing characteristics (pressure, permeate flow rate, liquid quality, etc.) are usually managed for each train. For example, in a configuration in which a large number of spiral membrane modules including a plurality of membrane elements are arranged in the train, the degree of contamination of the separation membrane differs depending on the position of each membrane element in the train. The new membrane element and the membrane element that can still be used are appropriately combined and accommodated in the train. That is, the arrangement and combination of the membrane elements are optimized so that the optimum processing performance can be finally exhibited in the entire train. However, at present, optimization is performed based only on the period of use, so that it cannot be said that the optimization is sufficiently performed.
 さらに、膜エレメントの洗浄や交換といったメンテナンスを行うか否かの判断は、トレーンごとの処理特性に基づいて行われるため、膜エレメントによっては、その位置や使用期間によりメンテナンスが必ずしも適切に行われているとは言えない場合がある。すなわち、場合によっては、いずれかの膜エレメントがメンテナンスを行うには手遅れの状態となっていたり、又は、必要以上に早い段階でメンテナンスが行われていたりする場合があった。 In addition, whether or not to perform maintenance such as cleaning or replacement of the membrane element is determined based on the processing characteristics of each train. Therefore, depending on the membrane element, the maintenance is not always performed properly depending on the position and period of use. It may not be said that there is. That is, depending on the case, one of the membrane elements may be too late to perform maintenance, or maintenance may be performed at an earlier stage than necessary.
 本発明は、上記実情に鑑みてなされたものであり、簡易な方法で膜エレメントごとに劣化の程度を判断できるスパイラル型膜モジュールと、これを用いた膜濾過装置を提供する。 The present invention has been made in view of the above circumstances, and provides a spiral membrane module capable of determining the degree of deterioration for each membrane element by a simple method, and a membrane filtration device using the spiral membrane module.
 本発明のスパイラル型膜モジュールは、分離膜、供給側流路材及び透過側流路材の単数又は複数が有孔の中空状中心管の周りに巻きつけられたスパイラル型膜エレメントが、複数連結されて耐圧容器内に装填されているスパイラル型膜モジュールにおいて、前記各スパイラル型膜エレメントの外周部に加わる圧力値を検出する圧力センサと、前記圧力センサにより検出された圧力値を送信する無線タグとを備えたことを特徴とする。 The spiral membrane module of the present invention comprises a plurality of spiral membrane elements in which one or more of a separation membrane, a supply side channel material and a permeate side channel material are wound around a perforated hollow central tube. A pressure sensor for detecting a pressure value applied to an outer peripheral portion of each spiral membrane element and a wireless tag for transmitting the pressure value detected by the pressure sensor in the spiral membrane module loaded in the pressure vessel It is characterized by comprising.
 本発明のスパイラル型膜モジュールによれば、各膜エレメントの外周部に加わる圧力値(即ち、供給側の圧力値)を圧力センサにより検出して、その圧力値を無線タグにより送信することで、分離膜の汚染の程度などにより変化する供給側の圧力値を外部から検出できるため、簡易な方法で膜エレメントごとに劣化の程度を判断できる。また、無線タグにデータを予め格納しておき、当該データを外部から読み出すことにより、各膜エレメントの処理特性の管理を行うこともできる。したがって、無線タグに格納されているデータと、上記圧力センサで得られるデータとに基づいて、より精度よく管理を行うことができる。 According to the spiral membrane module of the present invention, the pressure value applied to the outer periphery of each membrane element (that is, the pressure value on the supply side) is detected by the pressure sensor, and the pressure value is transmitted by the wireless tag. Since the pressure value on the supply side that varies depending on the degree of contamination of the separation membrane can be detected from the outside, the degree of deterioration can be determined for each membrane element by a simple method. Also, the processing characteristics of each membrane element can be managed by storing data in the wireless tag in advance and reading the data from the outside. Therefore, management can be performed with higher accuracy based on data stored in the wireless tag and data obtained by the pressure sensor.
 本発明のスパイラル型膜モジュールでは、前記圧力センサが、前記無線タグを介して外部から電力の供給を受ける構成であってもよい。圧力センサの駆動用に別途電源を設ける必要がなくなるため、モジュール構成の簡略化が容易となるからである。その一例としては、前記圧力センサが、前記無線タグを介して外部から電磁誘導により電力の供給を受ける構成が挙げられる。この場合、本発明のスパイラル型膜モジュールが、上記電磁誘導により発生した交流電流を直流電流に変換して前記圧力センサに供給するコンバータを更に含んでいてもよい。従来の直流電源により駆動する圧力センサを使用できるため、低コスト化が容易となるからである。 In the spiral membrane module of the present invention, the pressure sensor may be configured to receive power supply from the outside via the wireless tag. This is because it is not necessary to provide a separate power source for driving the pressure sensor, so that the module configuration can be simplified. As an example, a configuration in which the pressure sensor is supplied with electric power from the outside by electromagnetic induction through the wireless tag can be cited. In this case, the spiral membrane module of the present invention may further include a converter that converts the alternating current generated by the electromagnetic induction into a direct current and supplies the direct current to the pressure sensor. This is because a conventional pressure sensor driven by a direct current power source can be used, so that cost reduction is facilitated.
 また、本発明の膜濾過装置は、スパイラル型膜モジュールを単数又は複数含む膜濾過装置において、前記スパイラル型膜モジュールが、上述した本発明のスパイラル型膜モジュールであることを特徴とする。 In addition, the membrane filtration device of the present invention is a membrane filtration device including one or more spiral membrane modules, wherein the spiral membrane module is the above-described spiral membrane module of the present invention.
 通常、膜濾過装置では、透過液量を一定に保つために、操作圧力を調節しているが、その際、耐圧容器内の膜エレメントが詰まってくると、その分、圧力損失が大きくなり、同じ操作圧力でも、透過液量が減少する傾向にある。それを補うために、操作圧力を上昇させ、必要な透過液量を確保する仕組みになっている。本発明の膜濾過装置によれば、上記本発明のスパイラル型膜モジュールを備えるため、各膜エレメントにかかる圧力が検出できる。よって、例えば、膜エレメントを直列に繋いだときに隣接する膜エレメント間の差圧が検出できる。従って、膜濾過装置内のどの部分で、差圧がより大きくなっているかが判断できるため、各膜エレメントの劣化具合(閉塞具合)を簡易な方法で正確に判断できる。 Usually, in the membrane filtration device, the operation pressure is adjusted to keep the permeate amount constant, but when the membrane element in the pressure vessel is clogged at that time, the pressure loss increases accordingly, Even at the same operating pressure, the amount of permeate tends to decrease. In order to compensate for this, the operating pressure is increased to ensure the necessary amount of permeate. According to the membrane filtration device of the present invention, since the spiral membrane module of the present invention is provided, the pressure applied to each membrane element can be detected. Therefore, for example, the differential pressure between adjacent membrane elements can be detected when the membrane elements are connected in series. Accordingly, since it can be determined at which part in the membrane filtration device the differential pressure is greater, it is possible to accurately determine the degree of deterioration (blocking degree) of each membrane element by a simple method.
 本発明の膜濾過装置は、前記スパイラル型膜モジュールの前記無線タグから送信された圧力値に基づいて前記各スパイラル型膜エレメントの劣化の程度を判断する判断部を備えていてもよい。各膜エレメントのメンテナンスの時期を適切に判断することができるからである。 The membrane filtration device of the present invention may include a determination unit that determines the degree of deterioration of each spiral membrane element based on the pressure value transmitted from the wireless tag of the spiral membrane module. This is because the maintenance time of each membrane element can be appropriately determined.
 本発明の膜濾過装置において、前記圧力センサが前記無線タグを介して外部から電力の供給を受ける構成である場合は、前記圧力センサに対し、前記無線タグを介して電力を供給する電力供給部を更に含んでいてもよい。スパイラル型膜モジュールの外部に圧力センサを駆動するための電力供給部を設けることにより、モジュール構成の簡略化が容易となるからである。その一例としては、前記電力供給部が、前記無線タグを介して電磁誘導により電力を供給する構成が挙げられる。 In the membrane filtration device of the present invention, when the pressure sensor is configured to receive power supply from the outside via the wireless tag, a power supply unit that supplies power to the pressure sensor via the wireless tag May further be included. This is because it is easy to simplify the module configuration by providing a power supply unit for driving the pressure sensor outside the spiral membrane module. As an example, a configuration in which the power supply unit supplies power by electromagnetic induction via the wireless tag can be cited.
本発明のスパイラル型膜モジュールの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the spiral membrane module of this invention. 図1のスパイラル型膜モジュールのI-I線断面図である。It is the II sectional view taken on the line of the spiral membrane module of FIG. 本発明の膜濾過装置の一例を説明するための、電気的構成を示した概略ブロック図である。It is the schematic block diagram which showed the electrical structure for demonstrating an example of the membrane filtration apparatus of this invention. 従来の膜エレメントの一部切欠き斜視図である。It is a partially cutaway perspective view of a conventional membrane element.
符号の説明Explanation of symbols
10 膜エレメント
16 分離膜ユニット
20 中心管
26 外部ラップ
28 外装材
30 無線タグ
31 アンテナ
32 コンバータ
33 圧力センサ
40 耐圧容器
42 インターコネクタ
44 濃縮液流出口
46 透過液流出口
48 供給液入口
50 スパイラル型膜モジュール
60 リーダライタ
61 電力供給部
62 アンテナ
70 制御装置
71 判断部
100 膜濾過装置
DESCRIPTION OF SYMBOLS 10 Membrane element 16 Separation membrane unit 20 Center pipe 26 External wrap 28 Exterior material 30 Radio tag 31 Antenna 32 Converter 33 Pressure sensor 40 Pressure vessel 42 Interconnector 44 Concentrated liquid outlet 46 Permeate outlet 48 Supply liquid inlet 50 Spiral type membrane Module 60 Reader / writer 61 Power supply unit 62 Antenna 70 Control device 71 Determination unit 100 Membrane filtration device
 本発明のスパイラル型膜モジュールで使用される膜エレメントは、分離膜、供給側流路材及び透過側流路材の単数又は複数が有孔の中空状中心管の周りに巻きつけられた構造を有する。かかる膜エレメントは、前記の特許文献1にも詳細に記載されており、従来公知の分離膜、供給側流路材、透過側流路材、中心管などが何れも採用できる。例えば、供給側流路材と透過側流路材が複数用いられる場合には、複数の膜リーフが中心管の周りに巻きつけられた構造となる。 The membrane element used in the spiral membrane module of the present invention has a structure in which one or more of a separation membrane, a supply-side channel material and a permeate-side channel material are wound around a perforated hollow central tube. Have. Such a membrane element is also described in detail in Patent Document 1 described above, and any of conventionally known separation membranes, supply-side flow channel materials, permeation-side flow channel materials, central tubes, and the like can be employed. For example, when a plurality of supply-side channel materials and permeation-side channel materials are used, a structure in which a plurality of membrane leaves are wound around the central tube is obtained.
 以下、本発明の実施形態について、図面を参照しながら説明する。図1は、本発明のスパイラル型膜モジュールの一例を示す概略断面図であり、図2は、図1のスパイラル型膜モジュールのI-I線断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an example of the spiral membrane module of the present invention, and FIG. 2 is a cross-sectional view taken along line II of the spiral membrane module of FIG.
 図1に示すように、スパイラル型膜モジュール50は、耐圧容器40内において直列に連結された状態で装填された複数の膜エレメント10を含む。隣接する膜エレメント10同士は、その中心管20及び管状のインターコネクタ42を介して連結されている。そして、スパイラル型膜モジュール50は、各膜エレメント10の外周部に設けられた無線タグ30を含む。この無線タグ30には、後述するように圧力センサ33(図3参照)が組み込まれており、この圧力センサ33は、各膜エレメント10の外周部に加わる圧力値(即ち、供給側の圧力値)を検出することができる。そして、圧力センサ33により検出された圧力値を無線タグ30のアンテナ31(図3参照)により送信することで、膜エレメント10に含まれる分離膜(図示せず)の汚染の程度などにより変化する供給側の圧力値を外部から検出できるため、簡易な方法で膜エレメント10ごとに劣化の程度を判断できる。 As shown in FIG. 1, the spiral membrane module 50 includes a plurality of membrane elements 10 loaded in a state of being connected in series in the pressure vessel 40. Adjacent membrane elements 10 are connected to each other via the central tube 20 and a tubular interconnector 42. The spiral membrane module 50 includes a wireless tag 30 provided on the outer periphery of each membrane element 10. As will be described later, the wireless tag 30 incorporates a pressure sensor 33 (see FIG. 3). The pressure sensor 33 is a pressure value applied to the outer peripheral portion of each membrane element 10 (that is, a pressure value on the supply side). ) Can be detected. Then, the pressure value detected by the pressure sensor 33 is transmitted by the antenna 31 (see FIG. 3) of the wireless tag 30, thereby changing depending on the degree of contamination of the separation membrane (not shown) included in the membrane element 10. Since the pressure value on the supply side can be detected from the outside, the degree of deterioration can be determined for each membrane element 10 by a simple method.
 なお、図1に示す例では、無線タグ30は、各膜エレメント10の濃縮側端部の外周部に設けられているが、本発明はこれに限定されず、供給側端部、中央部などいずれの位置に設けてもよい。ただし、隣接する膜エレメント10間の差圧を正確に管理するには、全ての膜エレメント10において同じ箇所に無線タグ30を設けることが好ましい。 In the example shown in FIG. 1, the wireless tag 30 is provided on the outer peripheral portion of the concentration side end portion of each membrane element 10, but the present invention is not limited to this, and the supply side end portion, the central portion, etc. It may be provided at any position. However, in order to accurately manage the differential pressure between adjacent membrane elements 10, it is preferable to provide the wireless tag 30 at the same location in all the membrane elements 10.
 耐圧容器40は、例えば、繊維強化プラスチック(FRP)やステンレス鋼等の金属等により形成されている。特に、無線伝送を容易に実現させるためには、繊維強化プラスチックの方が好ましい。耐圧容器40の壁部の厚みは、後述する無線タグ30による通信を妨げない程度であればよく、例えば、10~80mm程度である。耐圧容器40の一端部には、排水や海水などの供給液が流入する供給液入口48が形成されており、当該供給液入口48から流入する供給液が複数の膜エレメント10を通過することにより、浄化された透過液と、濃縮液とが得られる。また、耐圧容器40の他端部には、透過液が流出する透過液流出口46と、濃縮液が流出する濃縮液流出口44とが形成されている。 The pressure vessel 40 is made of metal such as fiber reinforced plastic (FRP) or stainless steel, for example. In particular, fiber-reinforced plastic is preferable in order to easily realize wireless transmission. The thickness of the wall portion of the pressure vessel 40 may be of a level that does not hinder communication by the wireless tag 30 described later, and is, for example, about 10 to 80 mm. A supply liquid inlet 48 into which a supply liquid such as drainage or seawater flows is formed at one end of the pressure vessel 40, and the supply liquid flowing in from the supply liquid inlet 48 passes through the plurality of membrane elements 10. A purified permeate and a concentrated liquid are obtained. In addition, a permeate outlet 46 through which the permeate flows out and a concentrate outlet 44 through which the concentrate flows out are formed at the other end of the pressure vessel 40.
 図2に示すように、膜エレメント10は、中心管20の周りに分離膜ユニット16が巻きつけられており、この分離膜ユニット16の巻回体の外周には外部ラップ26が巻きつけられている。外部ラップ26は、例えばポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)、繊維強化プラスチック(FRP)等の耐水性材料で形成されている。そして、無線タグ30は、外部ラップ26に接着剤等によって固定されており、外部ラップ26と共に繊維強化プラスチック(FRP)等からなる外装材28で覆われている。外装材28の厚みは、後述する無線タグ30による通信を妨げない程度であればよく、例えば、0.01~3mm程度である。図2の構成によれば、無線タグ30が供給液に曝されることを防止できる。なお、無線タグ30の設置場所は、膜エレメント10の外周部に加わる圧力値を検出できる限り、特に限定されず、例えば外装材28の外周側であってもよい。 As shown in FIG. 2, the membrane element 10 has a separation membrane unit 16 wound around a central tube 20, and an outer wrap 26 is wound around the outer periphery of the wound body of the separation membrane unit 16. Yes. The outer wrap 26 is formed of a water resistant material such as polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), fiber reinforced plastic (FRP), and the like. The wireless tag 30 is fixed to the external wrap 26 with an adhesive or the like, and is covered with an exterior material 28 made of fiber reinforced plastic (FRP) or the like together with the external wrap 26. The thickness of the exterior material 28 may be a thickness that does not hinder communication by the wireless tag 30 described later, and is, for example, about 0.01 to 3 mm. According to the configuration of FIG. 2, the wireless tag 30 can be prevented from being exposed to the supply liquid. The installation location of the wireless tag 30 is not particularly limited as long as the pressure value applied to the outer peripheral portion of the membrane element 10 can be detected, and may be, for example, the outer peripheral side of the exterior material 28.
 次に、本発明の膜濾過装置の一例について説明する。参照する図3は、本発明の膜濾過装置の一例を説明するための、電気的構成を示した概略ブロック図である。尚、以下の説明においては、上記で説明したスパイラル型膜モジュール50の構成要素を用いて説明するが、本発明の膜濾過装置に使用できるスパイラル型膜モジュールは、上記スパイラル型膜モジュール50には限定されない。また、図3では、1つのスパイラル型膜モジュールを含む構成としたが、本発明はこれに限定されず、複数のスパイラル型膜モジュールを含む構成としてもよい。 Next, an example of the membrane filtration device of the present invention will be described. FIG. 3 to be referred to is a schematic block diagram showing an electrical configuration for explaining an example of the membrane filtration device of the present invention. In the following description, the components of the spiral membrane module 50 described above will be used. However, the spiral membrane module that can be used in the membrane filtration device of the present invention includes the spiral membrane module 50 described above. It is not limited. In FIG. 3, the configuration includes one spiral membrane module. However, the present invention is not limited to this, and may include a plurality of spiral membrane modules.
 図3に示すように、膜濾過装置100は、上記スパイラル型膜モジュール50の他に、リーダライタ60及び制御装置70等を備えている。 3, the membrane filtration device 100 includes a reader / writer 60, a control device 70, and the like in addition to the spiral membrane module 50.
 制御装置70は、タッチパネルやボタン等の入力手段(図示せず)を介してユーザーが入力した、あるいは予めメモリ上に記憶された設定値に基づいて、リーダライタ60などの動作を制御する。また、制御装置70は、後述するように、無線タグ30から送信された圧力値に基づいて各膜エレメント10の劣化の程度を判断する判断部71を備えている。なお、制御装置70は、通常、CPUやメモリ等で実現され得る。 The control device 70 controls the operation of the reader / writer 60 and the like based on a setting value input by a user via an input means (not shown) such as a touch panel or a button or stored in advance in a memory. Further, as will be described later, the control device 70 includes a determination unit 71 that determines the degree of deterioration of each membrane element 10 based on the pressure value transmitted from the wireless tag 30. In addition, the control apparatus 70 can be normally implement | achieved by CPU, memory, etc.
 無線タグ30には、アンテナ31、コンバータ32及び圧力センサ33が組み込まれている。リーダライタ60には、電力供給部61及びアンテナ62が組み込まれている。また、リーダライタ60は、スパイラル型膜モジュール50の外部において、各無線タグ30に対しそれぞれ近接する位置に設けられている。各リーダライタ60と各無線タグ30との距離は、データ等の送受信が行える程度の距離(例えば1~500cm程度)であればよい。そして、無線タグ30とリーダライタ60との通信は、無線タグ30のアンテナ31及びリーダライタ60のアンテナ62を介して行われる。なお、本実施形態では、各リーダライタ60を各無線タグ30に対し近接する位置に設ける構成としたが、本発明はこれに限定されず、例えば可動式のリーダライタを用いて、複数の無線タグに対し1つのリーダライタで送受信を行う構成としてもよい。 The antenna 31, the converter 32, and the pressure sensor 33 are incorporated in the wireless tag 30. A power supply unit 61 and an antenna 62 are incorporated in the reader / writer 60. Further, the reader / writer 60 is provided outside the spiral membrane module 50 at a position close to each wireless tag 30. The distance between each reader / writer 60 and each wireless tag 30 may be a distance (for example, about 1 to 500 cm) that can transmit and receive data and the like. Communication between the wireless tag 30 and the reader / writer 60 is performed via the antenna 31 of the wireless tag 30 and the antenna 62 of the reader / writer 60. In the present embodiment, each reader / writer 60 is provided at a position close to each wireless tag 30. However, the present invention is not limited to this. For example, a plurality of wireless reader / writers may be used by using a movable reader / writer. It is good also as a structure which transmits / receives with respect to a tag by one reader / writer.
 無線タグ30に組み込まれた圧力センサ33は、無線タグ30のアンテナ31及びリーダライタ60のアンテナ62を介して、リーダライタ60に組み込まれた電力供給部61から電磁誘導により電力の供給を受ける。この際、無線タグ30に組み込まれたコンバータ32は、上記電磁誘導により発生した交流電流を直流電流に変換して圧力センサ33に供給する。 The pressure sensor 33 incorporated in the wireless tag 30 is supplied with electric power by electromagnetic induction from the power supply unit 61 incorporated in the reader / writer 60 via the antenna 31 of the wireless tag 30 and the antenna 62 of the reader / writer 60. At this time, the converter 32 incorporated in the wireless tag 30 converts the alternating current generated by the electromagnetic induction into a direct current and supplies it to the pressure sensor 33.
 無線タグ30としては、例えば、従来公知のRFID(Radio Frequency Identification)タグ等に、コンバータ32や圧力センサ33等を組み込んだものが使用できる。コンバータ32としては、例えば、従来公知のAC/DCコンバータ等が使用できる。また、圧力センサ33としては、電磁誘導により供給される電力で駆動できる程度の低消費電力のものが好ましく、例えばニッタ株式会社製圧力センサ(商品名:Flexi Force、型式:A201-25)等が使用できる。 As the wireless tag 30, for example, a conventionally known RFID (Radio Frequency Identification) tag or the like in which a converter 32, a pressure sensor 33, or the like is incorporated can be used. For example, a conventionally known AC / DC converter or the like can be used as the converter 32. Further, the pressure sensor 33 is preferably one having low power consumption that can be driven by electric power supplied by electromagnetic induction. For example, a pressure sensor (trade name: Flexi Force, model: A201-25) manufactured by Nitta Corporation is used. Can be used.
 リーダライタ60としては、例えば、従来公知のRFIDタグのリーダライタに電力供給部61等を組み込んだものが使用できる。電力供給部61としては、例えば、電磁波発生装置等が使用できる。 As the reader / writer 60, for example, a conventionally known RFID tag reader / writer incorporating the power supply unit 61 or the like can be used. As the power supply unit 61, for example, an electromagnetic wave generator or the like can be used.
 膜濾過装置100において、各膜エレメント10の劣化の程度を判断する際は、まず、制御装置70の指令に基づいて、各リーダライタ60が、対応する膜エレメント10の無線タグ30に対し、各膜エレメント10の外周部に加わる圧力値を問う信号を送信する。更に、各圧力センサ33に対し、対応する電力供給部61から電力が供給される。そして、各圧力センサ33が、対応する膜エレメント10の外周部に加わる圧力値を検出し、その圧力値を無線タグ30のアンテナ31を介して対応するリーダライタ60に送信する。続いて、各リーダライタ60が、対応する圧力センサ33からの圧力値を制御装置70に送信する。そして、制御装置70の判断部71が、上記各圧力値に基づいて各膜エレメント10の劣化の程度を判断する。この際、各無線タグ30に位置情報や使用期間等のデータを予め格納しておき、制御装置70の指令に基づいて、各リーダライタ60が当該データを読み出す構成としてもよい。これにより、例えば判断部71が、隣接する膜エレメント10間の差圧を算出し、その値が所定の閾値以上の場合に、図示しないディスプレイ等の表示手段に、メンテナンスが必要な膜エレメント10の位置を表示することができる。また、制御装置70の指令に基づいて、各リーダライタ60が、得られた圧力値を各無線タグ30に書き込むことにより、各膜エレメント10の経時変化を追跡することもできる。 When determining the degree of deterioration of each membrane element 10 in the membrane filtration device 100, first, each reader / writer 60 applies each radio tag 30 of the corresponding membrane element 10 to each wireless tag 30 based on a command from the control device 70. A signal asking for a pressure value applied to the outer peripheral portion of the membrane element 10 is transmitted. Further, power is supplied from the corresponding power supply unit 61 to each pressure sensor 33. Each pressure sensor 33 detects a pressure value applied to the outer peripheral portion of the corresponding membrane element 10 and transmits the pressure value to the corresponding reader / writer 60 via the antenna 31 of the wireless tag 30. Subsequently, each reader / writer 60 transmits the pressure value from the corresponding pressure sensor 33 to the control device 70. Then, the determination unit 71 of the control device 70 determines the degree of deterioration of each membrane element 10 based on each pressure value. At this time, data such as position information and use period may be stored in each wireless tag 30 in advance, and each reader / writer 60 may read the data based on a command from the control device 70. Thereby, for example, the determination unit 71 calculates the differential pressure between the adjacent membrane elements 10, and when the value is equal to or greater than a predetermined threshold value, the display unit such as a display (not shown) of the membrane element 10 requiring maintenance is calculated. The position can be displayed. Further, each reader / writer 60 can track the change over time of each membrane element 10 by writing the obtained pressure value to each wireless tag 30 based on the command of the control device 70.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されない。例えば、上記実施形態では、圧力センサが、リーダライタに組み込まれた電力供給部から電磁誘導により電力の供給を受ける構成としたが、本発明はこれに限定されず、バッテリを別途設けて、当該バッテリで圧力センサを駆動する構成としてもよい。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, in the above embodiment, the pressure sensor is configured to receive power supply by electromagnetic induction from the power supply unit incorporated in the reader / writer, but the present invention is not limited to this, and a battery is separately provided, It is good also as a structure which drives a pressure sensor with a battery.
 また、上記実施形態では、圧力センサ及びコンバータが無線タグに組み込まれた構成としたが、本発明はこれに限定されず、圧力センサ、コンバータ及び無線タグが分離して配置されていても良い。この場合、無線タグやコンバータは、膜エレメントの外周部に取り付けられている必要はなく、例えば、これらが膜エレメントの端部に設けられた端面保持部材(シールキャリア又はテレスコープ防止部材)などに取り付けられた構成であってもよい。 In the above embodiment, the pressure sensor and the converter are incorporated in the wireless tag. However, the present invention is not limited to this, and the pressure sensor, the converter, and the wireless tag may be arranged separately. In this case, the wireless tag and the converter do not need to be attached to the outer peripheral portion of the membrane element. For example, they are attached to an end surface holding member (seal carrier or telescope prevention member) provided at the end of the membrane element. An attached configuration may be used.

Claims (8)

  1.  分離膜、供給側流路材及び透過側流路材の単数又は複数が有孔の中空状中心管の周りに巻きつけられたスパイラル型膜エレメントが、複数連結されて耐圧容器内に装填されているスパイラル型膜モジュールにおいて、
     前記各スパイラル型膜エレメントの外周部に加わる圧力値を検出する圧力センサと、
     前記圧力センサにより検出された圧力値を送信する無線タグとを備えたことを特徴とするスパイラル型膜モジュール。
    A spiral membrane element in which one or more of a separation membrane, a supply-side channel material and a permeation-side channel material is wound around a perforated hollow central tube is connected in a plurality and loaded into a pressure vessel. In the spiral membrane module
    A pressure sensor for detecting a pressure value applied to the outer periphery of each spiral membrane element;
    A spiral membrane module, comprising: a wireless tag that transmits a pressure value detected by the pressure sensor.
  2.  前記圧力センサは、前記無線タグを介して外部から電力の供給を受ける請求項1に記載のスパイラル型膜モジュール。 The spiral-type membrane module according to claim 1, wherein the pressure sensor is supplied with electric power from the outside via the wireless tag.
  3.  前記圧力センサは、前記無線タグを介して外部から電磁誘導により電力の供給を受ける請求項2に記載のスパイラル型膜モジュール。 The spiral type membrane module according to claim 2, wherein the pressure sensor is supplied with electric power from the outside by electromagnetic induction through the wireless tag.
  4.  前記電磁誘導により発生した交流電流を直流電流に変換して前記圧力センサに供給するコンバータを更に含む請求項3に記載のスパイラル型膜モジュール。 4. The spiral membrane module according to claim 3, further comprising a converter that converts an alternating current generated by the electromagnetic induction into a direct current and supplies the direct current to the pressure sensor.
  5.  スパイラル型膜モジュールを単数又は複数含む膜濾過装置において、
     前記スパイラル型膜モジュールが、請求項1~4のいずれか1項に記載のスパイラル型膜モジュールであることを特徴とする膜濾過装置。
    In a membrane filtration apparatus including one or more spiral membrane modules,
    The membrane filtration device according to any one of claims 1 to 4, wherein the spiral membrane module is the spiral membrane module according to any one of claims 1 to 4.
  6.  前記スパイラル型膜モジュールの前記無線タグから送信された圧力値に基づいて前記各スパイラル型膜エレメントの劣化の程度を判断する判断部を更に備えた請求項5に記載の膜濾過装置。 The membrane filtration device according to claim 5, further comprising a determination unit that determines a degree of deterioration of each spiral membrane element based on a pressure value transmitted from the wireless tag of the spiral membrane module.
  7.  前記スパイラル型膜モジュールが、請求項2~4のいずれか1項に記載のスパイラル型膜モジュールであり、
     前記圧力センサに対し、前記無線タグを介して電力を供給する電力供給部を更に含む請求項5又は6に記載の膜濾過装置。
    The spiral membrane module is the spiral membrane module according to any one of claims 2 to 4,
    The membrane filtration device according to claim 5 or 6, further comprising a power supply unit that supplies power to the pressure sensor via the wireless tag.
  8.  前記電力供給部は、前記無線タグを介して電磁誘導により電力を供給する請求項7に記載の膜濾過装置。 The membrane filtration device according to claim 7, wherein the power supply unit supplies power by electromagnetic induction through the wireless tag.
PCT/JP2008/073455 2007-12-26 2008-12-24 Spiral-type film module, and film filtering device using the same WO2009081942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007333838A JP5107020B2 (en) 2007-12-26 2007-12-26 Spiral membrane module and membrane filtration device using the same
JP2007-333838 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081942A1 true WO2009081942A1 (en) 2009-07-02

Family

ID=40801242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073455 WO2009081942A1 (en) 2007-12-26 2008-12-24 Spiral-type film module, and film filtering device using the same

Country Status (2)

Country Link
JP (1) JP5107020B2 (en)
WO (1) WO2009081942A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220008869A1 (en) * 2018-10-31 2022-01-13 Research Triangle Institute Electrically conductive membrane assembly and related systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319516A (en) * 1998-05-21 1999-11-24 Nkk Corp Water filtration apparatus and method for operating the same
JP2000218135A (en) * 1999-01-28 2000-08-08 Nitto Denko Corp Membrane separation apparatus and method
JP2001239134A (en) * 2000-03-01 2001-09-04 Toray Ind Inc Method for operating reverse osmosis treatment device, control device therefor and method for making water
JP2007527318A (en) * 2004-03-05 2007-09-27 ハイドラノーティックス Filtration device with built-in radio frequency identification (RFID) tag
JP2008246285A (en) * 2007-03-29 2008-10-16 Kurita Water Ind Ltd Separation membrane element, management system and management method of the separation membrane element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5225088B2 (en) * 2005-09-07 2013-07-03 ハイドラノーティックス Reverse osmosis filtration device with flow meter and conductivity meter powered by RFID tag
AU2007227628A1 (en) * 2006-03-13 2007-09-27 Hydranautics Device for measuring permeate flow and permeate conductivity of individual reverse osmosis membrane elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319516A (en) * 1998-05-21 1999-11-24 Nkk Corp Water filtration apparatus and method for operating the same
JP2000218135A (en) * 1999-01-28 2000-08-08 Nitto Denko Corp Membrane separation apparatus and method
JP2001239134A (en) * 2000-03-01 2001-09-04 Toray Ind Inc Method for operating reverse osmosis treatment device, control device therefor and method for making water
JP2007527318A (en) * 2004-03-05 2007-09-27 ハイドラノーティックス Filtration device with built-in radio frequency identification (RFID) tag
JP2008246285A (en) * 2007-03-29 2008-10-16 Kurita Water Ind Ltd Separation membrane element, management system and management method of the separation membrane element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220008869A1 (en) * 2018-10-31 2022-01-13 Research Triangle Institute Electrically conductive membrane assembly and related systems and methods
US11845041B2 (en) * 2018-10-31 2023-12-19 Research Triangle Institute Electrically conductive membrane assembly and related systems and methods

Also Published As

Publication number Publication date
JP2009154072A (en) 2009-07-16
JP5107020B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
AU2008339451B2 (en) Spiral type film filtering device and mounting member, and film filtering device managing system and film filtering device managing method using the same
US20110114560A1 (en) Spiral type membrane element and spiral type membrane filtering device having the membrane element, and membrane filtering device managing system and membrane filtering device managing method using the device
US8568596B2 (en) Membrane filtering device managing system and membrane filtering device for use therein, and membrane filtering device managing method
JP5379464B2 (en) Spiral type membrane element and spiral type membrane filtration device provided with the same
JP5473482B2 (en) Membrane filtration device
ES2905844T3 (en) Membrane-based water filtration plant comprising a mems sensor system and method of use
US20090032477A1 (en) Filtration devices with embedded radio frequency identification (rfid) tags
JP2011005478A (en) Autonomous filter element
WO2011024801A1 (en) Membrane filtration device
WO2012093694A1 (en) Membrane filtration device and operating method for membrane filtration device
JP5107020B2 (en) Spiral membrane module and membrane filtration device using the same
Kurth et al. Design considerations for implementing ceramics in new and existing polymeric UF systems
EP3663266B1 (en) Water purifier and control method of the same
JP5271608B2 (en) Membrane filtration device management system, membrane filtration device used therefor, and membrane filtration device management method
JP5420450B2 (en) Filtration device
CA3018721A1 (en) Bioreactor assembly
JP5271607B2 (en) Membrane filtration device management system, membrane filtration device used therefor, and membrane filtration device management method
JP3579193B2 (en) Filtration treatment method and filtration device
JP2011045842A (en) Membrane element and membrane filtration apparatus
US20130334124A1 (en) Separation membrane module
JP2009119333A (en) Spiral-type separation membrane element and production method and administration method for separation membrane module
JP2003019481A (en) Method for managing liquid level of membrane separation apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864739

Country of ref document: EP

Kind code of ref document: A1