WO2009081933A1 - 半導体磁器組成物 - Google Patents

半導体磁器組成物 Download PDF

Info

Publication number
WO2009081933A1
WO2009081933A1 PCT/JP2008/073417 JP2008073417W WO2009081933A1 WO 2009081933 A1 WO2009081933 A1 WO 2009081933A1 JP 2008073417 W JP2008073417 W JP 2008073417W WO 2009081933 A1 WO2009081933 A1 WO 2009081933A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
calcined powder
composition
temperature
baco
Prior art date
Application number
PCT/JP2008/073417
Other languages
English (en)
French (fr)
Inventor
Takeshi Shimada
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to EP08864787A priority Critical patent/EP2228353A4/en
Priority to US12/810,336 priority patent/US20100279847A1/en
Priority to CN2008801227871A priority patent/CN101910088A/zh
Publication of WO2009081933A1 publication Critical patent/WO2009081933A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • the present invention relates to a semiconductor ceramic composition having a positive resistance temperature, which is used for a PTC thermistor, a PTC heater, a PTC switch, a temperature detector, and the like.
  • compositions in which various semiconducting elements are added to BaTiO 3 have been proposed as a material exhibiting PTCR characteristics (Positive Temperature Coefficient of Resistivity). These compositions have a Curie temperature around 120 ° C. These compositions need to shift the Curie temperature depending on the application.
  • Patent Document 1 A method for manufacturing a BaTiO 3 -based semiconductor ceramic has been proposed that aims to prevent a decrease in the temperature coefficient of resistance due to Pb substitution, reduce voltage dependency, and improve productivity and reliability (Patent Document 1). ).
  • x is 0 ⁇ x ⁇
  • Nb, Ta and rare earth elements are added to the composition in the range of 0.15, sintered in nitrogen, and then heat-treated in an oxidizing atmosphere.
  • Patent Document 1 discloses, as an example, a composition in which 0.1 mol% of Nd 2 O 3 is added as a semiconducting element.
  • a trivalent cation is disclosed. Is added as a semiconducting element, the semiconducting effect is reduced due to the presence of monovalent Na ions. Therefore, there exists a problem that the specific resistance in room temperature becomes high.
  • a PTC material that does not contain Pb as in Patent Document 1 has a high room temperature specific resistance when it has excellent jump characteristics, and a low room temperature specific resistance when it has poor jump characteristics. There was a problem that it was not possible to achieve both resistance and excellent jump characteristics. Also, those with poor jump characteristics have a large temperature fluctuation near the Curie point when a current is passed through the material, and a stable temperature (a temperature at which the rise in temperature stops when a current is passed). There was a problem such as tending to be high.
  • Patent Document 1 all elements constituting the composition such as BaCO 3 , TiO 2 , Bi 2 O 3 , Na 2 O 3 , and PbO as starting materials are mixed before calcination. , Calcining, molding, sintering, and heat treatment, but in a composition in which a part of BaTiO 3 is replaced with Bi—Na, all elements constituting the composition are subjected to pre-calcination.
  • Bi is volatilized in the calcination step, resulting in a composition shift in Bi-Na, thereby promoting the generation of a different phase (glass phase), an increase in resistivity at room temperature (room temperature resistivity), and a Curie temperature.
  • room temperature resistivity room temperature resistivity
  • Curie temperature Curie temperature
  • the inventors prepared a (BaQ) TiO 3 composition and a (BiNa) TiO 3 composition separately when manufacturing the semiconductor ceramic composition according to Patent Document 2, and the (BaQ) TiO 3 composition was compared.
  • the (BiNa) TiO 3 composition is calcined at a relatively low temperature and the optimum temperature corresponding to each, the volatilization of Bi in the (BiNa) TiO 3 composition is suppressed, and the composition of Bi—Na Semiconductor porcelain composition with low room temperature resistivity and curie temperature variation can be suppressed by preventing misalignment and suppressing the generation of heterogeneous phases, mixing these calcined powders, molding and sintering (Patent Document 3).
  • Japanese published patent: JP-A-56-169301 Japanese published patent: JP 2005-255493
  • the above-mentioned semiconductor ceramic composition proposed by the inventors has a low room temperature resistivity and excellent jump characteristics as compared with conventional materials, but it is suitable for various uses such as PTC thermistors, PTC heaters, and PTC switches. In order to provide this, it is necessary to control jump characteristics or room temperature resistivity according to each application.
  • the present invention provides a semiconductor ceramic composition in which a part of BaTiO 3 Ba is substituted with Bi—Na, and the room temperature resistivity can be arbitrarily controlled while maintaining high jump characteristics. Objective.
  • the BT calcined powder and the BNT calcined powder are mixed after preparing so that BaCO 3 and TiO 2 partially remain in the BT calcined powder.
  • Sintering or adding a predetermined amount of BaCO 3 and TiO 2 to at least one of BT calcined powder and BNT calcined powder and then sintering, or BT calcined powder and BNT calcined powder When mixing and sintering, it is found that by sintering without completely dissolving BT and BNT, a P-type semiconductor is generated in the semiconductor ceramic composition, and the generation amount of the P-type semiconductor is controlled.
  • the inventors have found that the room temperature resistivity can be arbitrarily controlled while maintaining high jump characteristics, and have completed the present invention.
  • the present invention is characterized by a semiconductor ceramic composition in which a part of BaTiO 3 is substituted with Bi—Na and has a P-type semiconductor at a crystal grain boundary.
  • This invention is preferably characterized in that, in the semiconductor ceramic composition having the above-described configuration, the area concentration of the P-type semiconductor is 0.01% or more as observed with a scanning capacitance microscope.
  • the composition formula is represented by [(BiNa) x (Ba 1-y R y ) 1-x ] TiO 3 (where R is at least one of rare earth elements) ), 0 ⁇ x ⁇ 0.3 and 0 ⁇ y ⁇ 0.02.
  • the composition formula is represented as [(BiNa) x Ba 1-x ] [Ti 1-z M z ] O 3 (where M is Nb or Sb). At least one kind), 0 ⁇ x ⁇ 0.3, and 0 ⁇ z ⁇ 0.005.
  • the semiconductor ceramic composition according to the present invention can employ any composition as long as it includes a composition in which a part of Ba in BaTiO 3 is substituted with Bi—Na.
  • the composition formula [[BiNa) x (Ba 1 ⁇ y R y ) 1 ⁇ x ] TiO 3 (where R is at least one of rare earth elements), a composition satisfying 0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.02, or a composition formula [ (BiNa) x Ba 1-x ] represents the [Ti 1-z M z] O 3 ( where M is Nb, at least one of Sb), the 0 ⁇ x ⁇ 0.3,0 ⁇ z ⁇ 0.005 A satisfactory composition is preferred.
  • x represents the component range of (BiNa), and 0 ⁇ x ⁇ 0.3 is a preferred range. If x is 0, the Curie temperature cannot be shifted to the high temperature side, and if it exceeds 0.3, the resistivity at room temperature approaches 10 4 ⁇ cm, which makes it difficult to apply to a PTC heater or the like.
  • R is at least one of rare earth elements, and La is most preferable.
  • y represents a component range of R, and 0 ⁇ y ⁇ 0.02 is a preferable range. If y is 0, the composition does not become a semiconductor, and if it exceeds 0.02, the resistivity at room temperature increases, such being undesirable.
  • the valence control is performed by changing the value of y. In a system in which a part of Ba is substituted with Bi-Na, when the valence control of the composition is performed, a trivalent cation is made into a semiconductor.
  • x is a 0 ⁇ x ⁇ 0.3 is preferably in the range indicates a component range of (BiNa). If x is 0, the Curie temperature cannot be shifted to the high temperature side, and if it exceeds 0.3, the resistivity at room temperature approaches 10 4 ⁇ cm, which makes it difficult to apply to a PTC heater or the like.
  • M is at least one of Nb and Sb, and Nb is preferable.
  • z represents the component range of M, and 0 ⁇ z ⁇ 0.005 is a preferable range. If z is 0, the valence cannot be controlled, the composition does not become a semiconductor, and if it exceeds 0.005, the resistivity at room temperature exceeds 10 3 ⁇ cm, which is not preferable.
  • the above 0 ⁇ z ⁇ 0.005 is 0 to 0.5 mol% (not including 0) in terms of mol%.
  • the reason why the ratio of Bi to Na is basically 1: 1 is that, for example, in the calcination step, Bi is volatilized and the ratio of Bi to Na may be shifted. That is, it is 1: 1 at the time of blending, but a case where the sintered body is not 1: 1 is also included in the present invention.
  • a feature of the present invention is that in the semiconductor ceramic composition in which a part of Ba in the above BaTiO 3 is substituted with Bi—Na, a P-type semiconductor exists at the crystal grain boundary.
  • FIG. 1 to FIG. 5 are diagrams showing structural photographs obtained by observing the plane of the semiconductor ceramic composition according to the present invention with a scanning capacitance microscope.
  • the part displayed in white is the main crystal of the present composition
  • the part displayed in gray is the crystal grain boundary
  • the part displayed in black rather than gray is the P-type semiconductor.
  • the P-type semiconductor exists at the grain boundary.
  • the existence ratio of the P-type semiconductor can be obtained, for example, as follows. First, an arbitrary surface of the semiconductor ceramic composition is observed with a scanning capacitance microscope, and an observation image (or a tissue photograph) is subjected to image processing. In the data subjected to image processing, the number of dots corresponding to the P-type semiconductor, that is, the number of dots displayed in black rather than gray in FIGS. The number of dots is multiplied by the area per dot. Divide the resulting area by the total area of the imaged portion. Thereby, the area concentration (%) of the P-type semiconductor in the semiconductor ceramic composition can be obtained. This area concentration is constant on any surface inside the sample, and the P-type semiconductor part is isotropic, and therefore reflects the volume concentration in the material.
  • the area concentration of the P-type semiconductor is preferably 0.01% or more. If it is less than 0.01%, the room temperature resistance cannot be controlled.
  • the jump characteristic can be controlled by changing the area concentration at 0.01% or more.
  • the upper limit of the area concentration is not limited, but the room temperature resistivity tends to increase as the area concentration increases. Therefore, the room temperature resistance is preferably 10% or less, more preferably 5% or less, and even more preferably 2% or less. It is preferable to control.
  • the area concentration (existence ratio) of the P-type semiconductor can be controlled by the abundance of at least one of BaCO 3 and TiO 2 at the time of calcination or the addition amount of BNT during the production process of the semiconductor ceramic composition.
  • an example of a production method for obtaining the semiconductor ceramic composition according to the present invention will be described.
  • the volatilization of Bi in the BNT calcined powder can be suppressed, the composition shift of Bi-Na can be prevented, and the generation of foreign phases can be suppressed.
  • a semiconductor ceramic composition having a low room temperature resistivity and a suppressed Curie temperature variation can be obtained.
  • the following three methods can be employed.
  • a method of preparing BaCO 3 and TiO 2 to partially remain in the BT calcined powder hereinafter referred to as “residual method”
  • a method of adding at least one of BaCO 3 and TiO 2 to at least one of the BT calcined powder and BNT calcined powder produced by the divided calcining method hereinafter referred to as “addition method”
  • addition method When sintering the BT calcined powder and BNT calcined powder produced by the firing method, the BT and BNT are not completely solid solution but sintered (hereinafter referred to as “incomplete sintering method”). is there.
  • the above methods (1) to (3) will be described in order.
  • the mixed calcined powder is molded and sintered, whereby the BaTiO 3 according to the present invention is formed.
  • a part of Ba is substituted with Bi—Na, and a semiconductor ceramic composition having a P-type semiconductor at the crystal grain boundary can be obtained.
  • the calcining temperature is changed at 900 ° C. or less, the calcining time is changed,
  • the remaining amount of BaCO 3 and TiO 2 in the BT calcined powder can be changed by changing the blending composition of the BT calcined powder, whereby the abundance ratio of the P-type semiconductor can be controlled.
  • the calcining time is preferably 0.5 to 10 hours, more preferably 2 to 6 hours.
  • the reason why the residual amount of BaCO 3 is set to 30 mol% or less is that when it exceeds 30 mol%, a different phase other than BaCO 3 is generated and the room temperature resistivity is increased. Further, CO 2 gas is generated in the sintering process, and cracks are generated in the sintered body, which is not preferable.
  • the reason why the residual amount of TiO 2 is set to 30 mol% or less is that when it exceeds 30 mol%, a different phase other than BaCO 3 is generated and the room temperature resistivity is increased.
  • the upper limit of the remaining amount of BaCO 3 and TiO 2 is 60 mol% in total of 30 mol% of BaCO 3 and 30 mol% of TiO 2 , and the lower limit exceeds 0, but when BaCO 3 exceeds 20 mol%, TiO 2 is less than 10 mol% Then, a different phase other than BaCO 3 is generated and the room temperature resistivity is increased, which is not preferable. Similarly, when TiO 2 exceeds 20 mol% and BaCO 3 is less than 10 mol%, it is not preferable. Therefore, when one of BaCO 3 or TiO 2 exceeds 20 mol%, it is preferable to adjust the calcining temperature, temperature, blending composition, etc. so that the other is 10 mol% or more.
  • the step of preparing BNT calcined powder made of (BiNa) TiO 3 calcined powder, which is mixed with the BT calcined powder in which BaCO 3 and TiO 2 partially remain, is first made Na 2 CO 3 to be a raw material powder. , Bi 2 O 3 and TiO 2 are mixed to produce a mixed raw material powder. At this time, if Bi 2 O 3 is added excessively (for example, exceeding 5 mol%), a heterogeneous phase is generated during calcination, and the room temperature specific resistance becomes high, which is not preferable.
  • the mixed raw material powder is calcined.
  • the calcining temperature is preferably in the range of 700 ° C to 950 ° C.
  • the calcining time is preferably 0.5 hours to 10 hours, more preferably 2 hours to 6 hours. If the calcining temperature is less than 700 ° C. or the calcining time is less than 0.5 hour, unreacted Na 2 CO 3 or decomposed NaO reacts with the water in the atmosphere or in the case of wet mixing, resulting in a composition shift And undesirably uneven characteristics. On the other hand, if the calcining temperature exceeds 950 ° C. or the calcining time exceeds 10 hours, the volatilization of Bi proceeds, the composition shifts, and the generation of heterogeneous phases is promoted.
  • pulverization may be performed according to the particle size of the raw material powder when the raw material powder is mixed.
  • the mixing and pulverization may be either wet mixing / pulverization using pure water or ethanol, or dry mixing / pulverization. However, it is preferable to perform dry mixing / pulverization because the compositional deviation can be further prevented.
  • BaCO 3 , Na 2 CO 3 , TiO 2 and the like are exemplified as the raw material powder, but other Ba compounds and Na compounds may be used.
  • a BT calcined powder and a BNT calcined powder in which part of BaCO 3 and TiO 2 remain are prepared separately, and after mixing each calcined powder in a predetermined amount, they are mixed.
  • Mixing may be either wet mixing using pure water or ethanol, or dry mixing. However, it is preferable to perform dry mixing because the compositional deviation can be further prevented.
  • pulverization after mixing, or mixing and pulverization may be performed simultaneously.
  • the average particle size of the mixed calcined powder after mixing and pulverization is preferably 0.5 ⁇ m to 2.5 ⁇ m.
  • Si oxide is 3.0 mol% or less
  • Ca oxide when Ca carbonate is added in an amount of 4.0 mol% or less, Si oxide can suppress abnormal growth of crystal grains and can easily control resistivity, and Ca oxide or Ca carbonate can be sintered at low temperature. It is preferable because it can improve the cohesion and can control the reducing property. In any case, adding more than the above-mentioned limited amount is not preferable because the composition does not show semiconducting properties. The addition is preferably performed before mixing in each step.
  • the mixed calcined powder obtained by the process of mixing the BT calcined powder and the BNT calcined powder is molded by a desired molding means. You may granulate a pulverized powder with a granulator as needed before shaping
  • the compact density after molding is preferably 2.5 to 3.5 g / cm 3 .
  • Sintering can be performed in the air, in a reducing atmosphere, or in an inert gas atmosphere having a low oxygen concentration, but is particularly preferably sintered in a nitrogen or argon atmosphere having an oxygen concentration of less than 1%.
  • the sintering temperature is preferably 1250 ° C to 1380 ° C.
  • the sintering time is preferably 1 hour to 10 hours, more preferably 2 hours to 6 hours. Any of these is not preferable because the room temperature resistivity increases as the deviation from the preferable conditions and the jump characteristic decreases.
  • a preferable calcination temperature is 1000 ° C. to 1300 ° C.
  • the calcining time is preferably 0.5 to 10 hours, more preferably 2 to 6 hours.
  • the step of preparing the BNT calcined powder, the mixing (pulverizing) step of the BT calcined powder and the BNT calcined powder, and the like are the same as the above-described residual method.
  • a part of BaTiO 3 Ba according to the present invention is substituted with Bi—Na, and a semiconductor ceramic composition having a P-type semiconductor at the crystal grain boundary is obtained. Can do.
  • the amount of addition when adding BaCO 3 or TiO 2 is (BaR) TiO 3 or Ba (TiM) O 3 and at least one of BaCO 3 and TiO 2 is 100 mol%, and BaCO 3 is 30 mol%. hereinafter, it is preferred that TiO 2 is not more than 30 mol%.
  • the reason why the amount of BaCO 3 added is set to 30 mol% or less is that when it exceeds 30 mol%, a different phase other than BaCO 3 is generated, and the room temperature resistivity is increased. Further, CO 2 gas is generated in the sintering process, and cracks are generated in the sintered body, which is not preferable.
  • the reason why the amount of TiO 2 added is set to 30 mol% or less is that when it exceeds 30 mol%, a different phase other than BaCO 3 is generated, and the room temperature resistivity increases.
  • the upper limit of the amount added is 30 mol% BaCO 3 and 30 mol% TiO 2 in total, and the lower limit exceeds 0.
  • the lower limit exceeds 0.
  • BaCO 3 exceeds 20 mol% TiO 2 Is less than 10 mol%, it is not preferable because a different phase other than BaCO 3 occurs and the room temperature resistivity increases.
  • TiO 2 exceeds 20 mol% and BaCO 3 is less than 10 mol% it is not preferable. Therefore, when one of BaCO 3 or TiO 2 exceeds 20 mol%, the other is preferably 10 mol% or more.
  • the BT calcined powder preferably has a complete single phase formed with (BaR) TiO 3 or Ba (TiM) O 3. the but part of the calcined BT powder is formed, and replaced with the calcined BT powder is BaCO 3, TiO 2 by the above-described residual method remains, further, adding a predetermined amount of at least one of BaCO 3 and TiO 2 Thus, the addition amount can be changed.
  • each calcined powder is mixed in a predetermined amount and then mixed. Mixing may be either wet mixing using pure water or ethanol, or dry mixing. However, it is preferable to perform dry mixing because a composition shift can be prevented. Further, depending on the particle size of the calcined powder, pulverization after mixing, or mixing and pulverization may be performed simultaneously.
  • the average particle size of the mixed calcined powder after mixing and pulverization is preferably 0.5 ⁇ m to 2.5 ⁇ m.
  • the Si oxide can suppress the abnormal growth of crystal grains and can easily control the resistivity, and the Ca oxide or Ca carbonate can be controlled at a low temperature. Sinterability can be improved, and reducibility can be controlled, which is preferable. In any case, adding more than the above-mentioned limited amount is not preferable because the composition does not show semiconducting properties.
  • the addition is preferably performed before mixing in each step.
  • the steps such as molding and sintering after the step of mixing the BT calcined powder and the BNT calcined powder are the same as the residual method described above.
  • the incomplete sintering method is characterized in that, when sintering a mixed calcined powder of BT calcined powder and BNT calcined powder, sintering is performed without completely dissolving BT and BNT. Thereby, a part of Ba of BaTiO 3 according to the present invention is substituted with Bi—Na, and a semiconductor ceramic composition having a P-type semiconductor at the grain boundary can be obtained.
  • the sintering temperature and sintering time in the incomplete sintering method vary depending on the calcining temperature of the BT calcined powder.
  • the sintering temperature is The preferred range is 1250 ° C. to 1380 ° C. and the sintering time is 2.5 hours or less.
  • the preferable sintering time when the sintering temperature is relatively low may be 3.5 hours or less, and preferable sintering when the sintering temperature is relatively high (for example, 1380 ° C.). The time will be 2 hours or less.
  • the sintering temperature is high (for example, 1400 ° C. or higher), or when the sintering time is low (for example, for 5 hours or longer), BT and BNT are completely dissolved. It is not preferable.
  • the solid solubility of BT and BNT can be changed, whereby the abundance ratio of the P-type semiconductor can be controlled.
  • Raw material powders of Na 2 CO 3 , Bi 2 O 3 and TiO 2 were prepared, blended so as to be (Bi 0.5 Na 0.5 ) TiO 3, and mixed by a dry mixer.
  • the obtained mixed raw material powder was calcined in the air at 800 ° C. for 2 hours to prepare BNT calcined powder.
  • the prepared BT calcined powder and BNT calcined powder are blended in a molar ratio of 73: 7, and the center particle diameter of the mixed calcined powder is 1.0 ⁇ m to 2.0 ⁇ m by a pot mill using pure water as a medium. After mixing and pulverizing until dry, it was dried. After adding and mixing PVA to the pulverized powder of the mixed calcined powder, it was granulated by a granulator. The obtained granulated powder is molded with a uniaxial press machine, and the molded body is debindered at 700 ° C. and then sintered in nitrogen at the sintering temperature and sintering time shown in Table 1 to obtain a sintered body. It was.
  • the samples having the BT calcination temperatures of 700 ° C. and 900 ° C. are examples according to the above-described residual method, and the samples having the BT calcination temperatures of 1000 ° C. and 1200 ° C. are described above. This is an example of the incomplete sintering method.
  • the obtained sintered body is processed into a plate shape of 10 mm ⁇ 10 mm ⁇ 1 mm to produce a test piece, and after forming an ohmic electrode, each test piece is subjected to a specific resistance in a range from room temperature to 270 ° C. with a resistance measuring instrument. The temperature change of the value was measured, and the room temperature specific resistance, the Curie temperature, and the resistance temperature coefficient were obtained. The results are shown in Table 1. In Table 1, those marked with * next to the sample number are comparative examples. In the examples, the temperature coefficient of resistance was obtained by the following equation.
  • R 1 is the maximum specific resistance
  • R c is the specific resistance at T c
  • T 1 is the temperature indicating R 1
  • T c is the Curie temperature is there.
  • the plane of the obtained sintered body is observed with a scanning capacitance microscope, image processing of the observed image is performed, the number of dots corresponding to the P-type semiconductor in the image processing data is counted, and 1 dot is included in the number of dots.
  • the area per unit area was multiplied and the area was divided by the total area of the image-processed portion to obtain the area concentration (%) of the P-type semiconductor.
  • the results are shown in Table 1.
  • tissue photograph of the observation image of sample number 3, 6, 12, 20, 22 is shown in FIG.1, FIG.2, FIG.3, FIG.4 and FIG.
  • the semiconductor ceramic composition according to the present invention has a low room temperature resistivity.
  • the P-type semiconductor when the calcination temperature is high and the sintering temperature is high, as in the comparative example, or when the sintering time is low but the sintering time is long, the P-type semiconductor is not generated, so jump characteristics (resistance temperature coefficient) ) Is difficult to control. It is considered that the P-type semiconductor was not generated because BT and BNT were completely dissolved during sintering. From these results, the preferable area concentration of the P-type semiconductor was set to 0.01% or more.
  • the portion displayed in white is the main crystal of the semiconductor ceramic composition according to the present invention
  • the portion displayed in gray is the crystal grain boundary
  • the portion displayed in black rather than gray is the P-type semiconductor.
  • FIGS. 1 to 5 there is a portion displayed in black rather than gray in any of the drawings, and it can be seen that a P-type semiconductor exists. It can also be seen that the P-type semiconductor exists at the grain boundary.
  • the semiconductor ceramic composition obtained by the present invention is optimal as a material for PTC thermistors, PTC heaters, PTC switches, temperature detectors and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

 BaTiO3のBaの一部をBi-Naで置換した半導体磁器組成物において、室温抵抗率を低く維持しながら、ジャンプ特性を任意にコントロールすることができる半導体磁器組成物を提供する。  BaTiO3のBaの一部がBi-Naで置換され、結晶粒界にP型半導体を有する半導体磁器組成物とし、P型半導体の存在比率を仮焼条件、添加物の添加量、焼結条件などにより変化させ、それによってジャンプ特性を高く維持しながら、室温抵抗率を任意にコントロールする。

Description

半導体磁器組成物
 この発明は、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などに用いられる、正の抵抗温度を有する半導体磁器組成物に関する。
 従来、PTCR特性(正の比抵抗温度係数:Positive Temperature Coefficient of Resistivity)を示す材料としてBaTiOに様々な半導体化元素を加えた組成物が提案されている。これらの組成物は、キュリー温度が120℃前後である。なお、これら組成物は、用途に応じてキュリー温度をシフトさせることが必要になる。
 例えば、BaTiOにSrTiOを添加することによってキュリー温度をシフトさせることが提案されているが、この場合、キュリー温度は負の方向にのみシフトし、正の方向にはシフトしない。現在、キュリー温度を正の方向にシフトさせる添加元素として知られているのはPbTiOである。しかし、PbTiOは環境汚染を引き起こす元素を含有するため、近年、PbTiOを使用しない材料が要望されている。
 Pb置換による抵抗温度係数の低下を防止するとともに、電圧依存性を小さくし、生産性や信頼性を向上させることを目的としたBaTiO系半導体磁器の製造方法が提案されている(特許文献1)。特許文献1に記載の製造方法では、PbTiOを使用しない、BaTiOのBaの一部をBi-Naで置換したBa1-2x(BiNa)TiOなる構造において、xを0<x≦0.15の範囲とした組成物にNb、Taまたは希土類元素のいずれか一種または一種以上を加えて窒素中で焼結した後酸化性雰囲気中で熱処理する。
 特許文献1には、実施例として、半導体化元素としてNdを0.1モル%添加した組成物が開示されているが、組成物の原子価制御を行う場合、3価の陽イオンを半導体化元素として添加すると、半導体化の効果が1価のNaイオンの存在のために低下する。そのため、室温における比抵抗が高くなるという問題がある。
 PTC材料における大きな特徴は、PTC材料の比抵抗値がキュリー点で急激に高くなること(ジャンプ特性=抵抗温度係数α)にあるが、これは、結晶粒界に形成された抵抗(ショットキー障壁による抵抗)が増大するために起こると考えられている。PTC材料の特性としては、この比抵抗値のジャンプ特性が高いものが要求されている。
 特許文献1のようなPbを含有しないPTC材料は、ジャンプ特性に優れているものは室温比抵抗が高く、ジャンプ特性に劣るものは室温比抵抗が低くなり過ぎるという傾向があり、安定した室温比抵抗と優れたジャンプ特性を両立することができないという問題があった。また、ジャンプ特性が劣るものは、当該材料に電流を流した際、キュリー点付近での温度変動が大きくなるとともに、キュリー点よりも安定温度(電流を流したとき温度の上昇がストップする温度)が高くなる傾向があるなどの問題があった。
 安定温度の変動を抑制し、材料設計を容易に行うためには、ジャンプ特性を向上させる必要があるが、それを行うと室温比抵抗が必然的に上昇してしまい、高いジャンプ特性の維持と室温比抵抗の上昇抑制を両立することは非常に困難となる。その結果、室温比抵抗が上がり過ぎて使用範囲を超えてしまうのが通例であった。
 また、特許文献1には、実施例として、出発原料となるBaCO、TiO、Bi、Na、PbOなど、組成物を構成する全ての元素を仮焼前に混合し、仮焼、成形、焼結、熱処理することが開示されているが、BaTiOのBaの一部をBi-Naで置換した組成物において、組成物を構成する全ての元素を仮焼前に混合すると、仮焼工程において、Biが揮散してBi-Naに組成ずれが生じ、それにより異相(ガラス相)の生成が促進され、室温における抵抗率(室温抵抗率)の上昇、およびキュリー温度のバラツキを惹起するという問題がある。
 Biの揮散を抑制するため、低い温度で仮焼するということも考えられるが、Biの揮散は抑制されるものの、完全な固溶体を形成することができず、所望の特性を得ることができないという問題がある。
 発明者らは先に、上述した従来のBaTiO系半導体磁器の問題を解決するため、Pbを使用することなく、キュリー温度を正の方向へシフトすることができるとともに、室温抵抗率を大幅に低下させた、BaTiOのBaの一部をBi-Naで置換した材料として、[(A10.5A20.5(Ba1-y1-x]TiO(A1はNa、Ka、Liの一種又は二種以上、A2はBi、QはLa、Dy、Eu、Gdの一種又は二種以上)、0<x≦0.2、0.002<y≦0.01を満足する半導体磁器組成物、及び[(A10.5A20.5Ba1-x][Ti1-z]O(A1はNa、Ka、Liの一種又は二種以上、A2はBi、MはNb、Ta、Sbの一種又は二種以上)0<x≦0.2、0<z≦0.01を満足する半導体磁器組成物を提案した(特許文献2)。
 さらに発明者らは、上記特許文献2による半導体磁器組成物を製造するに際して、(BaQ)TiO組成物と(BiNa)TiO組成物を別々に用意し、(BaQ)TiO組成物は比較的高温で、(BiNa)TiO組成物は比較的低温で、それぞれに応じた最適温度で仮焼することにより、(BiNa)TiO組成物のBiの揮散が抑制され、Bi-Naの組成ずれを防止して異相の生成を抑制することができ、それら仮焼粉を混合して、成形、焼結することにより、室温抵抗率が低く、キュリー温度のバラツキが抑制された半導体磁器組成物が得られることを提案した(特許文献3)。
日本公開特許:特開昭56-169301号公報 日本公開特許:特開2005-255493公報 国際公開特許:WO2006/118274A1公報
 発明者らによって提案された上記の半導体磁器組成物は、従来の材料に比べ、室温抵抗率が低く、かつジャンプ特性に優れるものであるが、PTCサーミスタ、PTCヒータ、PTCスイッチなどの各種用途に供するためには、それぞれの用途に応じてジャンプ特性あるいは室温抵抗率をコントロールする必要がある。
 ジャンプ特性あるいは室温抵抗率をコントロールするには、添加物を加えたり、焼成条件を変えることが考えられるが、上記の半導体磁器組成物においてこの様な製法の変更を行うと、ジャンプ特性あるいは室温抵抗率を単独でコントロールできないという問題がある。
 この発明は、BaTiOのBaの一部をBi-Naで置換した半導体磁器組成物において、ジャンプ特性を高く維持しながら、室温抵抗率を任意にコントロールすることができる半導体磁器組成物の提供を目的とする。
 発明者らは、上記目的を達成すべく、鋭意研究の結果、発明者らが先に提案した上記特許文献3による方法、すなわち、(BaQ)TiO組成物(以下「BT仮焼粉」と称する)と(BiNa)TiO組成物(以下「BNT仮焼粉」と称する)を別々に用意し、該BT仮焼粉とBNT仮焼粉をそれぞれに応じた最適温度で仮焼する方法(以下「分割仮焼法」と称する)に着目した。
 そして、分割仮焼法において、BT仮焼粉を用意するに際して、BT仮焼粉中にBaCO及びTiOが一部残存するように調製した後、BT仮焼粉とBNT仮焼粉を混合、焼結するか、BT仮焼粉及びBNT仮焼粉の少なくとも一方に、BaCO及びTiOの少なくとも一方を所定量添加した後焼結するか、あるいはBT仮焼粉とBNT仮焼粉を混合、焼結するに際して、BTとBNTを完全に固溶させないで焼結することにより、半導体磁器組成物中にP型半導体が生成されることを見出し、そのP型半導体の生成量を制御することにより、ジャンプ特性を高く維持しながら、室温抵抗率を任意にコントロールすることができることを知見し、この発明を完成した。
 この発明は、BaTiOのBaの一部がBi-Naで置換され、結晶粒界にP型半導体を有する半導体磁器組成物を特徴とする。
 この発明は、好ましくは上記構成を有する半導体磁器組成物において、走査型キャパシタンス顕微鏡による観察で、P型半導体の面積濃度が0.01%以上であることを特徴とする。
 この発明は、好ましくは上記構成を有する半導体磁器組成物において、組成式を[(BiNa)(Ba1-y1-x]TiOと表し(但しRは希土類元素のうち少なくとも一種)、0<x≦0.3、0<y≦0.02を満足することを特徴とする。
 この発明は、好ましくは上記構成を有する半導体磁器組成物において、組成式を[(BiNa)Ba1-x][Ti1-z]Oと表し(但しMはNb、Sbのうち少なくとも一種)、0<x≦0.3、0<z≦0.005を満足することを特徴とする。
 この発明によれば、ジャンプ特性を高く維持しながら、室温抵抗率を任意にコントロールすることができる半導体磁器組成物を提供することができる。
この発明による半導体磁器組成物の走査型キャパシタンス顕微鏡による観察画像の組織写真を示す図である。 この発明による半導体磁器組成物の走査型キャパシタンス顕微鏡による観察画像の組織写真を示す図である。 この発明による半導体磁器組成物の走査型キャパシタンス顕微鏡による観察画像の組織写真を示す図である。 この発明による半導体磁器組成物の走査型キャパシタンス顕微鏡による観察画像の組織写真を示す図である。 この発明による半導体磁器組成物の走査型キャパシタンス顕微鏡による観察画像の組織写真を示す図である。
 この発明による半導体磁器組成物は、BaTiOのBaの一部をBi-Naで置換した組成を含むものであればいずれの組成でも採用できるが、組成式を[(BiNa)(Ba1-y1-x]TiOと表し(但しRは希土類元素のうち少なくとも一種)、0<x≦0.3、0<y≦0.02を満足する組成、あるいは、組成式を[(BiNa)Ba1-x][Ti1-z]Oと表し(但しMはNb、Sbのうち少なくとも一種)、0<x≦0.3、0<z≦0.005を満足する組成が好ましい。
 上記[(BiNa)(Ba1-y1-x]TiO組成物において、xは(BiNa)の成分範囲を示し0<x≦0.3が好ましい範囲である。xが0ではキュリー温度を高温側へシフトすることができず、0.3を超えると室温の抵抗率が10Ωcmに近づき、PTCヒータなどに適用することが困難となるため好ましくない。
 上記Rは希土類元素のうち少なくとも一種でありLaが最も好ましい。組成式中、yはRの成分範囲を示し、0<y≦0.02が好ましい範囲である。yが0では組成物が半導体化せず、0.02を超えると室温の抵抗率が大きくなるため好ましくない。このyの値を変化させて、原子価制御を行うのであるが、Baの一部をBi-Naで置換した系において、組成物の原子価制御を行う場合、3価の陽イオンを半導体化元素として添加すると半導体化の効果が1価のNaイオンの存在とBiの揮散のために低下し、室温の抵抗率が高くなるという問題がある。従って、より好ましい範囲は0.002≦y≦0.02である。なお、0.002≦y≦0.02はmol%表記では0.2mol%~2.0mol%となる。ちなみに、先述した特許文献1においては、半導体元素としてNdを0.1モル%添加しているが、これではPTC用途としては十分な半導体化を実現できていないものと考えられる。
 [(BiNa)Ba1-x][Ti1-z]O組成物において、xは(BiNa)の成分範囲を示し0<x≦0.3が好ましい範囲である。xが0ではキュリー温度を高温側へシフトすることができず、0.3を超えると室温の抵抗率が10Ωcmに近づき、PTCヒータなどに適用することが困難となるため好ましくない。
 また、MはNb、Sbのうち少なくとも一種であり中でもNbが好ましい。組成式中zはMの成分範囲を示し0<z≦0.005が好ましい範囲である。zが0では原子価制御ができず、組成物が半導体化せず、0.005を超えると室温の抵抗率が10Ωcmを超えるため好ましくない。なお、上記0<z≦0.005はmol%表記で0~0.5mol%(0を含まず)となる。
 上記[(BiNa)Ba1-x][Ti1-z]O組成物の場合、原子価制御を行うために、TiをM元素で置換するが、この場合、M元素の添加(添加量0<z≦0.005)は4価の元素であるTiサイトの原子価制御を目的としているため、Rを半導体化元素として用いた[(BiNa)(Ba1-y1-x]TiO組成物におけるR元素の好ましい添加量(0.002≦y≦0.02)よりも少量で原子価制御を行うことができ、この発明による半導体磁器組成物の内部歪を軽減できるなどの利点を有する。
 上述した[(BiNa)(Ba1-y1-x]TiOと、[(BiNa)Ba1-x][Ti1-z]Oの両組成物において、BiとNaの比は1:1を基本とする。組成式では、[(Bi0.5Na0.5(Ba1-y1-x]TiO、[(Bi0.5Na0.5Ba1-x][Ti1-z]Oと表記することができる。BiとNaの比を、1:1を基本としたのは、例えば、仮焼工程などにおいて、Biが揮散してBiとNaの比にずれが生じることがあるからである。すなわち、配合時は1:1であるが、焼結体では1:1になっていない場合なども、この発明に含まれるものとする。
 この発明の特徴は、上記のBaTiOのBaの一部をBi-Naで置換した半導体磁器組成物において、結晶粒界にP型半導体が存在することを特徴とする。
 P型半導体が存在することは、例えば、半導体磁器組成物の任意の面を走査型キャパシタンス顕微鏡で観察することで確認できる。図1~図5はこの発明における半導体磁器組成物の平面を走査型キャパシタンス顕微鏡で観察した組織写真を示す図である。各図において白く表示されている部分が本組成物の主結晶、灰色に表示されている部分が結晶粒界、灰色よりも黒く表示されている部分がP型半導体である。図1~図5から明らかなように、P型半導体は結晶粒界に存在している。
 P型半導体の存在割合は、例えば、次のようにして求めることができる。まず、半導体磁器組成物の任意の面について走査型キャパシタンス顕微鏡で観察し、観察画像(あるいは組織写真)を画像処理する。画像処理を行ったデータにおけるP型半導体に該当する部分のドット数、図1~図5で言えば灰色よりも黒く表示されている部分のドット数を数える。そのドット数に1ドット当たりの面積を掛ける。得られた面積を画像処理した部分の全面積で割る。これによって、半導体磁器組成物におけるP型半導体の面積濃度(%)を求めることができる。この面積濃度は試料内部のどの面においても一定であり、P型半導体部が等方的であるため、材料中の体積濃度を反映している。
 この発明において、P型半導体の面積濃度は0.01%以上が好ましい。0.01%未満では室温抵抗をコントロールすることができないため好ましくない。0.01%以上で面積濃度を変化させることによりジャンプ特性をコントロールすることができる。面積濃度の上限に限定はないが、面積濃度が高くなるにつれ室温比抵抗が高くなる傾向にあるため、好ましくは10%以下、より好ましくは5%以下、さらに好ましくは2%以下で室温抵抗をコントロールすることが好ましい。
 P型半導体の面積濃度(存在比率)は、半導体磁器組成物の製造過程における仮焼時のBaCO及びTiOの少なくとも一方の存在量あるいはBNT添加量によって制御することができる。以下にこの発明による半導体磁器組成物を得るための製造方法の一例を説明する。
 まず、BaTiOのBaの一部をBi-Naで置換した半導体磁器組成物の製造に際して、(BaR)TiO仮焼粉(半導体磁器組成物が組成式[(BiNa)(Ba1-y1-x]TiOの場合)又はBa(TiM)O仮焼粉(半導体磁器組成物が組成式[(BiNa)Ba1-x][Ti1-z]Oの場合)からなるBT仮焼粉と、(BiNa)TiO仮焼粉からなるBNT仮焼粉を別々に用意し、該BT仮焼粉とBNT仮焼粉をそれぞれに応じた適正温度で仮焼する分割仮焼法を採用する。
 上記分割仮焼法を用いることにより、BNT仮焼粉のBiの揮散が抑制され、Bi-Naの組成ずれを防止して異相の生成を抑制することができ、それら仮焼粉を混合して、成形、焼結することにより、室温抵抗率が低く、キュリー温度のバラツキが抑制された半導体磁器組成物が得られる。
 上述した分割仮焼法を用いて、本発明による半導体磁器組成物を得るには、以下に示す三つの方法を採用することができる。(1)分割仮焼法においてBT仮焼粉を用意するに際して、BT仮焼粉中にBaCO及びTiOが一部残存するように調製する方法(以下「残存法」と称する)、(2)分割仮焼法にて作製したBT仮焼粉及びBNT仮焼粉の少なくとも一方に、BaCO及びTiOの少なくとも一方を添加する方法(以下「添加法」と称する)、(3)分割仮焼法にて作製したBT仮焼粉とBNT仮焼粉を焼結する際に、BTとBNTを完全に固溶させずに焼結する方法(以下「不完全焼結法」と称する)である。以下に上記(1)~(3)の各方法について順に説明する。
 (1)残存法
 分割仮焼法においては、BT仮焼粉を用意するに際して、BaCO、TiOと半導体化元素の原料粉末、例えば、LaやNbを混合して混合原料粉末を作製し、仮焼するが、これまでは、完全な単一相を形成させるために、仮焼温度を900℃~1300℃の範囲で実施していた。これに対して、残存法は、この仮焼温度をこれまでより低い900℃以下で実施し、(BaR)TiO又はBa(TiM)Oを完全に形成させずに、仮焼粉中にBaCO、TiOを一部残存させるものである。
 残存法によるBaCO、TiOを一部残存させたBT仮焼粉と、別に用意したBNT仮焼粉を混合し、混合仮焼粉を成形、焼結することにより、この発明によるBaTiOのBaの一部がBi-Naで置換され、結晶粒界にP型半導体を有する半導体磁器組成物を得ることができる。
 BT仮焼粉中におけるBaCO及びTiOの残存量を変化させるには、BT仮焼粉を用意する工程において、仮焼温度を900℃以下で変化させたり、仮焼時間を変化させたり、あるいはBT仮焼粉の配合組成を変化させることにより、BT仮焼粉中におけるBaCO及びTiOの残存量を変化させることができ、これによってP型半導体の存在比率を制御することができる。
 上記残存法において、仮焼温度が900℃を超えると(BaR)TiO又はBa(TiM)Oが形成され過ぎ、BaCO、TiOを残存させることができなくなるため好ましくない。仮焼時間は0.5時間~10時間が好ましく、2~6時間がより好ましい。
 BT仮焼粉におけるBaCO及びTiOの残存量は、(BaR)TiO又はBa(TiM)Oと、BaCO及びTiOの合計を100mol%としたとき、BaCOが30mol%以下、TiOが30mol%以下であることが好ましい。
 BaCOの残存量を30mol%以下としたのは、30mol%を超えるとBaCO以外の異相が生じ、室温比抵抗が上昇するためである。また、焼結工程においてCOガスが発生し、焼結体にクラックが生じるため好ましくない。TiOの残存量を30mol%以下としたのは、30mol%を超えるとBaCO以外の異相が生じ、室温比抵抗が上昇するためである。
 BaCO及びTiOの残存量の上限はBaCO30mol%、TiO30mol%の合計60mol%、下限は0を超える量となるが、BaCOが20mol%を超える場合、TiOが10mol%未満になるとBaCO以外の異相が生じ室温比抵抗が上昇するため好ましくない。TiOが20mol%を超え、BaCOが10mol%未満になる場合も同様に好ましくない。よって、BaCO又はTiOの一方が20mol%を超える場合は、他方を10mol%以上にするよう、仮焼温度や温度、配合組成などを調整することが好ましい。
 上述したBaCO及びTiOが一部残存するBT仮焼粉と混合する、(BiNa)TiO仮焼粉からなるBNT仮焼粉を用意する工程は、まず、原料粉末となるNaCO、Bi、TiOを混合して混合原料粉末を作製する。この時、Biを過剰に(例えば5mol%を超えて)添加すると、仮焼時に異相を生成し、室温比抵抗が高くなり好ましくない。
 次に、上記混合原料粉末を仮焼する。仮焼温度は700℃~950℃の範囲が好ましい。仮焼時間は0.5時間~10時間が好ましく、2時間~6時間がさらに好ましい。仮焼温度が700℃未満あるいは仮焼時間が0.5時間未満では未反応のNaCOや分解して生成したNaOが雰囲気の水分あるいは湿式混合の場合はその溶媒と反応し、組成ずれや特性のバラツキを生じるため好ましくない。また、仮焼温度が950℃を超えるかあるいは仮焼時間が10時間を超えると、Biの揮散が進み、組成ずれを起こし、異相の生成が促進されるため好ましくない。
 上述した各々の仮焼粉を用意する工程においては、原料粉末の混合の際に、原料粉末の粒度に応じて粉砕を施してもよい。また、混合、粉砕は純水やエタノールを用いた湿式混合・粉砕または乾式混合・粉砕のいずれでもよいが、乾式混合・粉砕を行うと、組成ずれをより防止することができ好ましい。なお、上記においては、原料粉末として、BaCO、NaCO、TiOなどを例としてあげたが、その他のBa化合物、Na化合物などを用いてもよい。
 上記の通り、BaCO、TiOが一部残存するBT仮焼粉とBNT仮焼粉を別々に用意し、各仮焼粉を所定量に配合した後、混合する。混合は、純水やエタノールを用いた湿式混合または乾式混合のいずれでもよいが、乾式混合を行うと、組成ずれをより防止することができ好ましい。また、仮焼粉の粒度に応じて、混合の後粉砕、あるいは混合と粉砕を同時に行ってもよい。混合、粉砕後の混合仮焼粉の平均粒度は、0.5μm~2.5μmが好ましい。
 上述した、BT仮焼粉を用意する工程及びBNT仮焼粉を用意する工程の少なくとも一方の工程、あるいは各仮焼粉を混合する工程において、Si酸化物を3.0mol%以下、Ca酸化物またはCa炭酸塩を4.0mol%以下添加すると、Si酸化物は結晶粒の異常成長を抑制するとともに抵抗率のコントロールを容易にすることができ、Ca酸化物またはCa炭酸塩は低温での焼結性を向上させることができ、また還元性をコントロールすることができ好ましい。いずれも上記限定量を超えて添加すると、組成物が半導体化を示さなくなるため好ましくない。添加は、各工程における混合前に行うことが好ましい。
 BT仮焼粉とBNT仮焼粉を混合する工程により得られた混合仮焼粉は、所望の成形手段によって成形する。成形前に必要に応じて粉砕粉を造粒装置によって造粒してもよい。成形後の成形体密度は2.5~3.5g/cmが好ましい。
 焼結は、大気中または還元雰囲気中、あるいは低酸素濃度の不活性ガス雰囲気で行うことができるが、特に、酸素濃度1%未満の窒素またはアルゴン雰囲気中で焼結することが好ましい。焼結温度は1250℃~1380℃が好ましい。焼結時間は1時間~10時間が好ましく、2時間~6時間がより好ましい。いずれも好ましい条件からはずれるに従って、室温比抵抗が上昇し、ジャンプ特性が低下するため好ましくない。
 他の焼結工程として、温度1290℃~1380℃、酸素濃度1%未満の雰囲気中において、(1)4時間未満の焼結時間で実行するか、あるいは(2)式:ΔT≧25t(t=焼結時間(hr)、ΔT=焼結後の冷却速度(℃/hr))を満足する焼結時間で実行され、次いで、上記式を満足する冷却速度で焼結後の冷却を実行することにより、室温比抵抗を低く保ったまま、高温域(キュリー温度以上)で抵抗温度係数を向上させた半導体磁器組成物を得ることができる。
 (2)添加法
 添加法において、BT仮焼粉を用意するには、BaCO、TiOと半導体化元素の原料粉末、例えば、LaやNbを混合して混合原料粉末を作製し、仮焼する。仮焼温度は1000℃以上が好ましい。仮焼温度が1000℃未満では(BaR)TiO又はBa(TiM)Oの完全な単一相が形成されないため好ましくない。完全な単一相が形成されないと未反応のBaCO、TiOが残存することとなり、BaCO粉及びTiO粉の少なくとも一方の添加を前提とするためその添加量の予測が困難になるためであるが、若干のBaCOやTiOの残存は許容できる。好ましい仮焼温度は1000℃~1300℃である。仮焼時間は0.5時間~10時間が好ましく、2~6時間がより好ましい。
 添加法において、BNT仮焼粉を用意する工程、BT仮焼粉とBNT仮焼粉の混合(粉砕)工程などについては、上述した残存法と同様である。
 上記により用意したBT仮焼粉又はBNT仮焼粉或いはそれらの混合仮焼粉に、BaCO及びTiOの少なくとも一方を添加することが、添加法の特徴である。添加後の混合仮焼粉を成形、焼結することにより、この発明によるBaTiOのBaの一部がBi-Naで置換され、結晶粒界にP型半導体を有する半導体磁器組成物を得ることができる。
 BaCOあるいはTiOを添加する際の添加量は、(BaR)TiO又はBa(TiM)Oと、BaCO及びTiOの少なくとも一方の合計を100mol%としたとき、BaCOが30mol%以下、TiOが30mol%以下であることが好ましい。この添加量を変化させることにより、P型半導体の存在比率を制御することができる。特に、添加法によれば、添加量を正確に調整できるため、極めて精度よく室温抵抗率のコントロールが可能になるという効果も有する。
 BaCOの添加量を30mol%以下としたのは、30mol%を超えるとBaCO以外の異相が生じ、室温比抵抗が上昇するためである。また、焼結工程においてCOガスが発生し、焼結体にクラックが生じるため好ましくない。TiOの添加量を30mol%以下としたのは、30mol%を超えるとBaCO以外の異相が生じ、室温比抵抗が上昇するためである。
 BaCOとTiOを両方含むとき、添加量の上限はBaCO30mol%、TiO30mol%の合計60mol%、下限は0を超える量となるが、BaCOが20mol%を超える場合、TiOが10mol%未満になるとBaCO以外の異相が生じ室温比抵抗が上昇するため好ましくない。TiOが20mol%を超え、BaCOが10mol%未満になる場合も同様に好ましくない。よって、BaCOまたはTiOの一方が20mol%を超える場合は、他方を10mol%以上にすることが好ましい。
 なお、BT仮焼粉として(BaR)TiO又はBa(TiM)Oとの完全な単一相が形成されているものが好ましいことは先に述べた通りであるが、完全な単一相が形成されたBT仮焼粉の一部を、上述した残存法によるBaCO、TiOが残存するBT仮焼粉で置換し、さらに、BaCO及びTiOの少なくとも一方を所定量添加することにより、添加量を変化させることもできる。
 添加法では、上記の通り、BT仮焼粉とBNT仮焼粉と別々に用意した後、該BT仮焼粉又はBNT仮焼粉或いはそれらの混合仮焼粉にBaCO及びTiOの少なくとも一方を添加する。次いで、各仮焼粉を所定量に配合した後、混合する。混合は、純水やエタノールを用いた湿式混合または乾式混合のいずれでもよいが、乾式混合を行うと、組成ずれを防止することができ好ましい。また、仮焼粉の粒度に応じて、混合の後粉砕、あるいは混合と粉砕を同時に行ってもよい。混合、粉砕後の混合仮焼粉の平均粒度は、0.5μm~2.5μmが好ましい。
 上述した、BT仮焼粉を用意する工程及びBNT仮焼粉を用意する工程の少なくとも一方の工程、或いはそれらの仮焼粉を混合する工程において、Si酸化物を3.0mol%以下、Ca酸化物またはCa炭酸塩を4.0mol%以下添加すると、Si酸化物は結晶粒の異常成長を抑制するとともに抵抗率のコントロールを容易にすることができ、Ca酸化物またはCa炭酸塩は低温での焼結性を向上させることができ、また還元性をコントロールすることができ好ましい。いずれも上記限定量を超えて添加すると、組成物が半導体化を示さなくなるため好ましくない。添加は、各工程における混合前に行うことが好ましい。
 BT仮焼粉とBNT仮焼粉を混合する工程以降の、成形、焼結などの工程は、上述した残存法と同様である。
 (3)不完全焼結法
 不完全焼結法において、BT仮焼粉を用意する工程、BNT仮焼粉を用意する工程、BT仮焼粉とBNT仮焼粉を混合(粉砕)する工程、成形工程については、上述した添加法と同様である。
 不完全焼結法では、BT仮焼粉とBNT仮焼粉との混合仮焼粉を焼結する際に、BTとBNTを完全に固溶させないで焼結することが特徴である。これにより、この発明によるBaTiOのBaの一部がBi-Naで置換され、結晶粒界にP型半導体を有する半導体磁器組成物を得ることができる。
 不完全焼結法における焼結温度、焼結時間は、BT仮焼粉の仮焼温度によって異なるが、例えば、BT仮焼粉の仮焼温度が700℃~1200℃の場合、焼結温度は1250℃~1380℃、焼結時間は2.5時間以下が好ましい範囲である。但し、焼結温度が比較的低い場合(例えば1300℃の場合)の好ましい焼結時間は3.5時間以下でもよく、焼結温度が比較的高い場合(例えば1380℃の場合)の好ましい焼結時間は2時間以下となる。焼結温度が高い場合(例えば1400℃以上の場合)や焼結温度が低くても焼結時間が長い場合(例えば5時間以上の場合)は、BTとBNTが完全に固溶してしまうため好ましくない。
 上記のように、焼結温度と焼結時間を制御することにより、BTとBNTの固溶度を変化させることができ、これによってP型半導体の存在比率を制御することができる。
 [実施例]
 BaCO、TiO、Laの原料粉末を準備し、(Ba0.994La0.006)TiOとなるように配合し、純水で混合した。得られた混合原料粉末を表1に示す温度で4時間大気中で仮焼し、BT仮焼粉を用意した。
 NaCO、Bi、TiOの原料粉末を準備し、(Bi0.5Na0.5)TiOとなるように配合し、乾式混合機により混合した。得られた混合原料粉末を、800℃で2時間大気中で仮焼し、BNT仮焼粉を用意した。
 用意したBT仮焼粉とBNT仮焼粉をモル比で73:7となるように配合し、純水を媒体としてポットミルにより、混合仮焼粉の中心粒径が1.0μm~2.0μmになるまで混合、粉砕した後、乾燥させた。該混合仮焼粉の粉砕粉にPVAを添加、混合した後、造粒装置によって造粒した。得られた造粒粉を一軸プレス装置で成形し、上記成形体を700℃で脱バインダー後、表1に示す焼結温度、焼結時間で窒素中にて焼結し、焼結体を得た。
 なお、表1のこの発明による半導体磁器組成物において、BT仮焼温度が700℃及び900℃の試料が上述した残存法による例であり、BT仮焼温度が1000℃及び1200℃の試料が上述した不完全焼結法による例である。
 得られた焼結体を10mm×10mm×1mmの板状に加工して試験片を作製し、オーミック電極を形成の後、各試験片を抵抗測定器で室温から270℃までの範囲で比抵抗値の温度変化を測定し、室温比抵抗、キュリー温度、抵抗温度係数を求めた。その結果を表1に示す。表1において試料番号の横に*印を付したものは比較例である。なお、実施例において、抵抗温度係数は次式により求めた。α=(lnR-lnR)×100/(T-T) Rは最大比抵抗、RはTにおける比抵抗、TはRを示す温度、Tはキュリー温度である。
 また、得られた焼結体の平面を走査型キャパシタンス顕微鏡で観察し、観察画像の画像処理を行い、画像処理データにおけるP型半導体に該当する部分のドット数を数え、そのドット数に1ドット当たりの面積を掛け、その面積を画像処理した部分の全面積で割り、P型半導体の面積濃度(%)を求めた。その結果を表1に示す。また、試料番号3、6、12、20、22の観察画像の組織写真をそれぞれ図1、図2、図3、図4、図5に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、BT仮焼温度、焼結温度、焼結時間を制御することにより、P型半導体の面積濃度(存在比率)を変化させることができ、それによってジャンプ特性(抵抗温度係数)を任意にかつ精度よくコントロールすることができる。また、この発明による半導体磁器組成物は、室温比抵抗が低く維持されていることが分かる。
 一方、比較例のように、仮焼温度が高く焼結温度も高い場合や、焼結温度は低くても焼結時間が長い場合は、P型半導体が生成しないため、ジャンプ特性(抵抗温度係数)をコントロールすることが困難である。P型半導体が生成しなかったのは、焼結時にBTとBNTが完全に固溶してしまったためであると考えられる。これらの結果より、好ましいP型半導体の面積濃度を0.01%以上とした。
 図1~図5において、白く表示されている部分がこの発明による半導体磁器組成物の主結晶、灰色に表示されている部分が結晶粒界、灰色よりも黒く表示されている部分がP型半導体であるが、図1~図5から明らかなように、いずれもの図にも灰色よりも黒く表示されている部分があり、P型半導体が存在していることが分かる。また、P型半導体は結晶粒界に存在していることが分かる。
 この発明により得られる半導体磁器組成物は、PTCサーミスタ、PTCヒータ、PTCスイッチ、温度検知器などの材料として最適である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2007年12月26日出願の日本特許出願(特願2007-333528)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (4)

  1.  BaTiOのBaの一部がBi-Naで置換され、結晶粒界にP型半導体を有する半導体磁器組成物。
  2.  走査型キャパシタンス顕微鏡による観察で、P型半導体の面積濃度が0.01%以上である請求項1に記載の半導体磁器組成物。
  3.  組成式を[(BiNa)(Ba1-y1-x]TiOと表し(但しRは希土類元素のうち少なくとも一種)、0<x≦0.3、0<y≦0.02を満足する請求項1に記載の半導体磁器組成物。
  4.  組成式を[(BiNa)Ba1-x][Ti1-z]Oと表し(但しMはNb、Sbのうち少なくとも一種)、0<x≦0.3、0<z≦0.005を満足する請求項1に記載の半導体磁器組成物。
PCT/JP2008/073417 2007-12-26 2008-12-24 半導体磁器組成物 WO2009081933A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08864787A EP2228353A4 (en) 2007-12-26 2008-12-24 SEMICONDUCTOR CERAMIC COMPOSITION
US12/810,336 US20100279847A1 (en) 2007-12-26 2008-12-24 Semiconductor ceramic composition
CN2008801227871A CN101910088A (zh) 2007-12-26 2008-12-24 半导体陶瓷组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007333528A JP5251119B2 (ja) 2007-12-26 2007-12-26 半導体磁器組成物
JP2007-333528 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081933A1 true WO2009081933A1 (ja) 2009-07-02

Family

ID=40801233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073417 WO2009081933A1 (ja) 2007-12-26 2008-12-24 半導体磁器組成物

Country Status (7)

Country Link
US (1) US20100279847A1 (ja)
EP (1) EP2228353A4 (ja)
JP (1) JP5251119B2 (ja)
KR (1) KR20100098662A (ja)
CN (1) CN101910088A (ja)
TW (1) TWI421226B (ja)
WO (1) WO2009081933A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023287A (ja) * 2009-07-17 2011-02-03 Nippon Seiki Co Ltd 有機elパネルの製造方法
CN102822911A (zh) * 2010-04-08 2012-12-12 日立金属株式会社 Ptc元件和加热元件模块

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263668B2 (ja) * 2008-10-02 2013-08-14 日立金属株式会社 半導体磁器組成物
KR20120093834A (ko) * 2009-10-06 2012-08-23 히다찌긴조꾸가부시끼가이사 반도체 자기 조성물 및 그 제조 방법, ptc 소자 및 발열 모듈
WO2016002714A1 (ja) * 2014-07-02 2016-01-07 日立金属株式会社 半導体磁器組成物およびptc素子
JP2017197389A (ja) * 2014-09-10 2017-11-02 日立金属株式会社 半導体磁器組成物の製造方法、半導体磁器組成物、並びにptc素子
US20180166763A1 (en) 2016-11-14 2018-06-14 Skyworks Solutions, Inc. Integrated microstrip and substrate integrated waveguide circulators/isolators formed with co-fired magnetic-dielectric composites
JP7115941B2 (ja) 2017-09-08 2022-08-09 スカイワークス ソリューションズ,インコーポレイテッド 複合材料の形成方法、及び無線周波数アイソレータ又はサーキュレータの形成方法
CN107721412A (zh) * 2017-11-13 2018-02-23 陕西科技大学 一种nbt基半导体陶瓷及其制备方法
US11603333B2 (en) 2018-04-23 2023-03-14 Skyworks Solutions, Inc. Modified barium tungstate for co-firing
WO2019246364A1 (en) * 2018-06-21 2019-12-26 Skyworks Solutions, Inc. Low firing temperature dielectric materials designed to be co-fired with high bismuth garnet ferrites for miniaturized isolators and circulators
CN109761602B (zh) * 2019-02-28 2020-11-24 华中科技大学 一种低阻热敏陶瓷材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169301A (en) 1980-06-02 1981-12-26 Tohoku Metal Ind Ltd Method of producing barium titanate semiconductor porcelain
JP2005255493A (ja) 2004-03-12 2005-09-22 Neomax Co Ltd 半導体磁器組成物
WO2006118274A1 (ja) 2005-04-28 2006-11-09 Hitachi Metals, Ltd. 半導体磁器組成物とその製造方法
WO2008050876A1 (fr) * 2006-10-27 2008-05-02 Hitachi Metals, Ltd. Composition de céramique semi-conductrice et procédé de production de cette composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179692A (ja) * 2004-12-22 2006-07-06 Komatsu Electronics Inc サーミスタの製造方法
US7700509B2 (en) * 2005-03-31 2010-04-20 Hitachi Metals, Ltd. Method of producing semiconductor porcelain composition
JP5218042B2 (ja) * 2006-02-27 2013-06-26 日立金属株式会社 半導体磁器組成物
EP2067755A4 (en) * 2006-09-28 2016-02-10 Murata Manufacturing Co BARIUM TITANATE SEMICONDUCTOR PORCELAIN COMPOSITION AND PTC DEVICE USING THE SAME
EP2096092A4 (en) * 2006-10-27 2011-05-18 Hitachi Metals Ltd SEMICONDUCTOR CERAMIC COMPOSITION AND PROCESS FOR PRODUCING THE SAME
JP5590494B2 (ja) * 2008-03-27 2014-09-17 日立金属株式会社 半導体磁器組成物−電極接合体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169301A (en) 1980-06-02 1981-12-26 Tohoku Metal Ind Ltd Method of producing barium titanate semiconductor porcelain
JP2005255493A (ja) 2004-03-12 2005-09-22 Neomax Co Ltd 半導体磁器組成物
WO2006118274A1 (ja) 2005-04-28 2006-11-09 Hitachi Metals, Ltd. 半導体磁器組成物とその製造方法
WO2008050876A1 (fr) * 2006-10-27 2008-05-02 Hitachi Metals, Ltd. Composition de céramique semi-conductrice et procédé de production de cette composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2228353A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023287A (ja) * 2009-07-17 2011-02-03 Nippon Seiki Co Ltd 有機elパネルの製造方法
CN102822911A (zh) * 2010-04-08 2012-12-12 日立金属株式会社 Ptc元件和加热元件模块

Also Published As

Publication number Publication date
JP5251119B2 (ja) 2013-07-31
KR20100098662A (ko) 2010-09-08
CN101910088A (zh) 2010-12-08
US20100279847A1 (en) 2010-11-04
EP2228353A4 (en) 2012-01-04
TW200932702A (en) 2009-08-01
EP2228353A1 (en) 2010-09-15
JP2009155145A (ja) 2009-07-16
TWI421226B (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
JP5251119B2 (ja) 半導体磁器組成物
JP5218042B2 (ja) 半導体磁器組成物
JP5151477B2 (ja) 半導体磁器組成物とその製造方法
JP5228916B2 (ja) 半導体磁器組成物とその製造方法
JP5228915B2 (ja) 半導体磁器組成物とその製造方法
JP5228917B2 (ja) 半導体磁器組成物とその製造方法
JP4765258B2 (ja) 半導体磁器組成物
JPWO2008053813A1 (ja) 半導体磁器組成物とその製造方法
US7993965B2 (en) Process for producing semiconductive porcelain composition/electrode assembly
CN101528632B (zh) 半导体陶瓷组合物及其制备方法
WO2009116452A1 (ja) 半導体磁器組成物の製造方法及び半導体磁器組成物を用いたヒータ
JP2010168265A (ja) 半導体磁器組成物の製造方法
TWI406304B (zh) Semiconductor porcelain composition and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122787.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864787

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12810336

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107014201

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4628/DELNP/2010

Country of ref document: IN

Ref document number: 2008864787

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE